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SUMMARY 52 

The human Ureaplasma species are the most frequently isolated microorganisms from the 53 

amniotic fluid and placentae of women who deliver preterm and are also associated with 54 

spontaneous abortions or miscarriages, neonatal respiratory diseases and chorioamnionitis. 55 

Despite the fact that these microorganisms have been habitually found within placentae of 56 

pregnancies with chorioamnionitis, the role of Ureaplasma spp. as a causative agent has not 57 

been satisfactorily explained. There is also controversy surrounding their role in disease, 58 

particularly as not all women infected with Ureaplasma spp. develop chorioamnionitis. In 59 

this review, we provide evidence that Ureaplasma spp. are associated with diseases of 60 

pregnancy and discuss recent findings, which demonstrate that Ureaplasma spp. are 61 

associated with chorioamnionitis, regardless of gestational age at the time of delivery. Here, 62 

we also discuss the proposed major virulence factors of Ureaplasma spp., with a focus on the 63 

multiple banded antigen (MBA), which may facilitate modulation/alteration of the host 64 

immune response and potentially explain why only subpopulations of infected women 65 

experience adverse pregnancy outcomes. The information presented within this review 66 

confirms that Ureaplasma spp. are not simply ‘innocent bystanders’ in disease and highlights 67 

that these microorganisms are an often underestimated pathogen of pregnancy.   68 
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CLINICAL PERSPECTIVES ON CHORIOAMNIONITIS AND ITS SIGNIFICANCE 69 

TO THE HEALTH OF THE PREGNANCY AND NEONATE 70 

Chorioamnionitis refers to inflammation of the fetal membranes, which comprise the chorion 71 

and amnion. Although the chorioamnion is anatomically part of the placenta, it is derived 72 

from the zygote and is considered to be of fetal origin (Box 1). The chorioamnion is also in 73 

contact with the decidua, a tissue of maternal origin, and together these form the 74 

maternal/fetal interface. Chorioamnionitis frequently occurs in parallel with microbial 75 

infection of the chorioamnion and amniotic fluid (1-3); however, it may also occur in the 76 

absence of demonstrable microorganisms (i.e. ‘sterile inflammation’ (2, 4), which will not be 77 

discussed in this review). The clinical signs of chorioamnionitis include fever, uterine fundal 78 

tenderness, maternal tachycardia (>100 beats/minute), fetal tachycardia (>160 beats/minute) 79 

and purulent or foul-smelling amniotic fluid (5). However, it is becoming increasingly 80 

apparent that a large proportion of chorioamnionitis cases are sub-clinical and are not 81 

diagnosed until retrospective analysis of the placenta (6) (Box 2). Upon histological 82 

examination, acute chorioamnionitis is defined as diffuse influx of neutrophils into the 83 

chorioamnion/decidua, and the severity of the maternal and fetal immune response can be 84 

classified according to published standards (7). Chronic chorioamnionitis is less well-defined, 85 

but has been characterized by an infiltration of maternally-derived mononuclear cells, usually 86 

macrophages and T lymphocytes, into the chorioamnion or chorionic plate (the fetal surface 87 

of the placenta that directly connects to the uterine wall, where the chorionic villi are formed) 88 

(7, 8).  89 

Since amniotic fluid, but not the placenta, is accessible prior to delivery in women at risk for 90 

preterm labor, most clinical studies have correlated intraamniotic infection or inflammation 91 

rather than chorioamnionitis with preterm labor/delivery. However, intraamniotic infection, 92 

defined as microorganisms detected in the amniotic fluid (9), may not always be concordant 93 
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with retrospective diagnosis of histological chorioamnionitis. Recently, a National Institutes 94 

of Health workshop recommended that the term ‘chorioamnionitis’ be replaced with 95 

‘intrauterine infection or inflammation or both’ (abbreviated to ‘Triple I’ and characterized as 96 

being either proven or suspected), or isolated maternal fever (10). For the purposes of this 97 

review, we have used the terms ‘chorioamnionitis’ and ‘intraamniotic infection’ according to 98 

their traditional definitions, as described above.  99 

Clinical chorioamnionitis and histological chorioamnionitis affect 1-4% and 23.6% of term 100 

births (37-42 weeks of gestation) respectively (5, 11, 12). However, it has been well 101 

established that the frequency (13-15) and severity (15, 16) of chorioamnionitis is inversely 102 

related to gestational age at the time of delivery. In a study of 7505 placentae from singleton 103 

pregnancies, Russell (13) reported that the frequency of chorioamnionitis in patients who 104 

delivered between 21-24 weeks of gestation was 94.4% (17/18 patients). More recently, Stoll 105 

et al. (14) demonstrated that histological chorioamnionitis was present in 70% (295/421) of 106 

pregnancies that delivered at 22 weeks of gestation. The frequency of histological 107 

chorioamnionitis was significantly higher in women who delivered after the spontaneous 108 

onset of labor compared to those who had induction of labor at term or delivered via 109 

Caesarean section in the absence of labor (17, 18). Furthermore, the frequency of histological 110 

chorioamnionitis increases in patients with prolonged duration of labor (19) and premature 111 

rupture of membranes (20). Additional risk factors for chorioamnionitis include: multiple 112 

digital examinations, nulliparity, bacterial vaginosis, alcohol and tobacco use, group B 113 

Streptococcus colonization, meconium-stained amniotic fluid and epidural anesthesia (20-114 

23). 115 

Chorioamnionitis: a major predictor of preterm birth 116 

Preterm birth, defined as delivery at <37 weeks of gestation, is the leading cause of neonatal 117 

death worldwide (24). In addition, complications arising from preterm birth are a leading 118 
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cause of death in children under the age of 5, second only to pneumonia (25). 119 

Microbiological studies have demonstrated that intrauterine infection may be responsible for 120 

25-40% of preterm births (26); however, this is likely to be underreported due to difficulties 121 

in detecting fastidious microorganisms using conventional culture methods. Histological 122 

chorioamnionitis complicates 40-70% of all preterm births (5) suggesting that 123 

chorioamnionitis may be an important, and potentially preventable, antecedent of preterm 124 

birth.  125 

Parturition in normal pregnancy versus chorioamnionitis  126 

Figure 1 compares the key events that occur during normal parturition and inflammation-127 

induced preterm delivery. The normal initiation of parturition in humans is a complex process 128 

that involves fetal hypothalamic-pituitary-adrenal (HPA) axis activation and increased 129 

placental synthesis of corticotropin releasing hormone (CRH) (Figure 1). Maternal CRH 130 

plasma levels increase throughout the duration of pregnancy and peak at term (27). Increased 131 

CRH levels drive the production of corticotropin and cortisol in the mother and fetus, which 132 

promotes fetal lung maturation and prostaglandin (PG) synthesis (e.g. PGE2 and PGF2α) 133 

within the amnion (28). PG production is enhanced by the concomitant downregulation of 134 

prostaglandin dehydrogenase (PGDH) within the chorion (29) and the production of 135 

prostaglandin-endoperoxide synthase-2 (PGS2, formerly cyclooxygenase-2) (30). Both CRH 136 

and PGE2 stimulate the release of matrix metalloproteases (31, 32) (MMPs; e.g. MMP-2 and 137 

MMP-9), which weaken the chorioamnion and facilitate membrane rupture and cervical 138 

ripening. In parallel, activation of the fetal HPA axis and uterine stretching caused by fetal 139 

growth leads to the upregulation of contraction-associated proteins and myometrial activation 140 

(28). Progesterone withdrawal coupled with increased estrogen production is also a key 141 

feature of parturition and further promotes uterine contractility (33-35).  142 
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In patients with chorioamnionitis, parturition may be accelerated by a maternal and/or fetal 143 

inflammatory response, which is thought to be mediated by Toll-like receptor (TLR) 144 

signaling (Figure 1). A recent prospective study of human pregnancies demonstrated that the 145 

expression of TLR-1 and TLR-2 was significantly increased in chorion obtained from 146 

preterm deliveries with histological chorioamnionitis compared to chorion from preterm 147 

deliveries without histological chorioamnionitis (36). Similar results were reported in a 148 

separate studies by Moço et al. (37) and Kim et al. (38), suggesting that the upregulation of 149 

TLRs plays an important role in the pathogenesis of chorioamnionitis.  150 

Bacterial endotoxins, such as lipopolysaccharide (LPS) (39), and live microorganisms (40) 151 

have been shown to upregulate placental/chorioamnion TLRs, which are expressed by 152 

amnion epithelial cells, decidual cells, intermediate trophoblasts in the chorion, macrophages 153 

and neutrophils (38). In vitro studies have demonstrated that human primary amnion 154 

epithelial cells express functional TLR-2, TLR-4, TLR-5 and TLR-6, and that stimulation 155 

with TLR-5 and TLR-2/6 agonists leads to activation of nuclear factor-kappa B signaling, and 156 

the production of proinflammatory cytokines, MMP-9 and PGS2 (41). These findings are 157 

consistent with human studies and animal models of chorioamnionitis/intrauterine infection, 158 

which demonstrate an increase in interleukin (IL)-1β and IL-6 (42, 43), IL-8 (36) tumor 159 

necrosis factor (TNF)-α (44), monocyte chemotactic proteins (45) and granulocyte colony-160 

stimulating factor (G-CSF) (46) in preterm fetal membranes, amniotic fluid and/or cord 161 

blood. These inflammatory cytokines and chemokines stimulate PG production (47, 48), 162 

neutrophil infiltration and the release of MMPs (49), thus leading to cervical ripening and 163 

weakening/rupture of the fetal membranes. Indeed, the levels of MMPs (50) and PGs (40, 51) 164 

are significantly increased within the amniotic fluid and fetal membranes during 165 

chorioamnionitis.  166 

Neonatal sequelae of chorioamnionitis  167 
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During chorioamnionitis, the fetus may be directly exposed to microorganisms and 168 

inflammatory mediators within infected amniotic fluid. The fetus inspires, swallows and is 169 

bathed in amniotic fluid, therefore the fetal lungs (52, 53), gastrointestinal tract (54, 55) and 170 

skin (56) are primary sites of inflammation-mediated injury. Exposure to inflammatory 171 

mediators may also occur via the placental-fetal circulation, resulting in immunomodulation 172 

within the fetal blood (57-59), lymphoid tissues (60-62), and distant organs such as the brain 173 

(63, 64). The systemic response of the fetus to chorioamnionitis, termed the fetal 174 

inflammatory response syndrome (FIRS), is a severe inflammatory condition that is 175 

characterized by elevated inflammatory cytokines within fetal plasma, particularly IL-6 (65, 176 

66), and increased fetal plasma white blood cell counts (67). FIRS is associated with multi-177 

organ injury and is associated with severe neonatal morbidity and mortality (66). The fetal 178 

immune response to chorioamnionitis has been reviewed in detail elsewhere (68, 69).  179 

In human studies, chorioamnionitis has been associated with neonatal death (11, 70), early-180 

onset neonatal sepsis (70-72), intrauterine growth restriction (73), poor neonatal growth (74), 181 

neurologic impairment/injury (75, 76), intraventricular hemorrhage (70), bronchopulmonary 182 

dysplasia (77-79), patent ductus arteriosus (70, 73, 77, 80), retinopathy of prematurity (73, 183 

81, 82), cardiovascular abnormalities (83, 84), necrotizing enterocolitis (85, 86), and 184 

dermatitis (87). However, low gestational age is often a significant contributing factor (88-185 

90) and therefore it is difficult to attribute these sequelae solely to chorioamnionitis. 186 

Nonetheless, when controlling for gestational age in a multivariable analysis, a recent study 187 

of 3,082 extremely preterm infants (<27 weeks of gestation) demonstrated that fetal exposure 188 

to histological chorioamnionitis and clinical chorioamnionitis was associated with an 189 

increased risk of cognitive impairment at 18-22 months corrected age compared to infants 190 

exposed to no chorioamnionitis or histological chorioamnionitis alone (91). When adjusting 191 

for gestational age, other studies have confirmed that chorioamnionitis is an independent risk 192 
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factor for early-onset neonatal sepsis (92, 93), bronchopulmonary dysplasia (79), adverse 193 

neurodevelopmental outcome at 3 years (94) and necrotizing enterocolitis (92). Interestingly, 194 

the severity of chorioamnionitis has been shown to correlate with an increased frequency of 195 

chronic lung disease and necrotizing enterocolitis (95), but has an inverse relationship with 196 

the development of respiratory distress syndrome (96).    197 

HOST DEFENSES AND PATHWAYS OF MICROBIAL INVASION OF THE 198 

CHORIOAMNION AND AMNIOTIC FLUID 199 

Traditionally, the normal intrauterine environment is considered to be a sterile site with the 200 

chorioamnion representing the major physical and immunological barrier to the developing 201 

fetus. The chorioamnion expresses TLRs, which detect pathogen associated molecular 202 

patterns and signal to coordinate cellular immune responses. The chorioamnion also secretes 203 

numerous natural antimicrobial peptides and defensins to protect against microbial invasion 204 

(97). In vitro, human chorion and amnion from healthy pregnancies that delivered at term 205 

inhibited the growth of a wide range of pathogenic bacteria, including group B Streptococcus, 206 

group A Streptococcus, Staphylococcus aureus and S. saprophyticus (98). Parthasarathy et al.  207 

also reported that human fetal membranes possess strong antimicrobial effects against 208 

Escherichia coli, Shigella spp., and the fungal pathogens Aspergillus niger and A. nidulans 209 

(99). Nonetheless, a wide range of microbes are capable of invading the fetal membranes and 210 

amniotic cavity, and causing chorioamnionitis. Specific routes by which microorganisms are 211 

thought to access the upper genital tract during pregnancy include: (i) retrograde spread from 212 

the peritoneal cavity (via the Fallopian tubes); (ii) hematogenous dissemination via the 213 

placenta and maternal blood supply; (iii) iatrogenic contamination at the time of invasive 214 

medical procedures (such as chorionic villus sampling or amniocentesis) and (iv) ascending 215 

invasive infections from the lower genital tract (26). While other studies have suggested that 216 

bacteria (specifically, Ureaplasma spp.) may also gain access to the upper genital tract 217 
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attached to spermatozoa (100, 101), the most widely accepted route is that microorganisms 218 

originating from the lower genital tract ascend through the cervix into the choriodecidual 219 

space and cross the chorioamnion membrane, thereby reaching the amniotic fluid and fetus 220 

(102).  221 

Recent deep sequencing studies have demonstrated that the placental parenchyma harbors a 222 

unique microbiome comprising non-pathogenic bacteria from the Firmicutes, Tenericutes, 223 

Proteobacteria, and Fusobacteria phyla, with distinct similarities to the adult oral microbiota 224 

(103). Furthermore, whole genome shotgun sequencing of placental membranes (fetal 225 

chorion and/or villous placental membranes) from term deliveries without chorioamnionitis 226 

demonstrated the presence of a diverse range of bacteria, including Enterobacter spp., E. coli, 227 

Acinetobacter lwoffii, A. johnsonii and Lactobacillus crispatus (104). These findings redefine 228 

our understanding of the placental microenvironment and challenge the view that the fetus 229 

exists normally within a sterile compartment. It is therefore possible that the commensal 230 

microorganisms of the placental parenchyma and fetal membranes represent a previously 231 

unrecognized source of bacteria, which under certain conditions, may initiate an 232 

inflammatory response leading to chorioamnionitis. This may also be important for the 233 

establishment of the fetal/neonate microbiota (103) and normal immune development of the 234 

fetus (105).  235 

CAUSATIVE AGENTS OF CHORIOAMNIONITIS  236 

A range of microorganisms, including bacteria, viruses and (less frequently) yeast and fungi 237 

have been implicated in chorioamnionitis. The bacterial pathogens that are most frequently 238 

isolated in cases of chorioamnionitis include: the human Ureaplasma species (U. parvum and 239 

U. urealyticum), Fusobacterium spp., Streptococcus spp., and less frequently, Gardnerella 240 

spp., Mycoplasma spp. and Bacteroides spp. (1, 46, 104, 106-108). Other studies have 241 
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identified that the sexually transmitted pathogens Chlamydia trachomatis and Neisseria 242 

gonorrhoeae, along with the uropathogen E.coli and yeast Candida, are also infrequently 243 

associated with chorioamnionitis (106, 109-112). Viral etiologies of chorioamnionitis 244 

include: adenovirus, cytomegalovirus, enterovirus and, less frequently, respiratory syncytial 245 

virus and Epstein-Barr virus (113-116). Of the microorganisms associated with 246 

chorioamnionitis, the human Ureaplasma spp. are consistently identified as the most 247 

common microorganisms within the amniotic fluid and placentae of women with 248 

chorioamnionitis (1, 46, 107, 117, 118), funisitis (104, 119, 120) and preterm birth (1, 121).  249 

THE HUMAN UREAPLASMA SPP.  250 

The human Ureaplasma spp. were first discovered in 1954 in agar cultures of urethral 251 

exudates from male patients with non-gonococcal urethritis (122). Due to their small colony 252 

size (5 – 20 µm) and their resemblance to the human Mycoplasma spp., Ureaplasma spp. 253 

were initially identified as tiny-form pleuropneuomonia-like organisms and referred to as ‘T-254 

mycoplasmas’ (122). However, Ureaplasma can be distinguished from Mycoplasma spp. 255 

(123) by the presence of a urease enzyme, which hydrolyses urea to produce 95% of their 256 

energy requirements. The hydrolysis of urea produces ammonia, which leads to an increase in 257 

proton electrochemical potential and de novo ATP synthesis (124). The production of 258 

ammonia is a distinguishing feature for the identification of Ureaplasma spp. in culture, and 259 

these tiny bacteria are detected, not by turbidity within broth, but by an alkaline shift and pH 260 

indicator color change in both broth and agar culture media (125, 126). Due to this distinctive 261 

urease activity, the Ureaplasma spp. were reclassified into their own genus within the 262 

Mycoplasmataceae family in 1974 (123). As members of the class Mollicutes, Ureaplasma 263 

spp. do not possess a cell wall and are surrounded only by a plasma membrane. Due to this 264 

lack of structural integrity, Ureaplasma are pleomorphic and individual organisms can range 265 



13 
 

in size from 100 nm to 1 µm (127). As such, the Ureaplasma spp. are considered to be among 266 

the smallest self-replicating microorganisms.  267 

Taxonomic classification  268 

The human Ureaplasma spp. are divided into two species, which contain at least 14 serovars: 269 

U. parvum (serovars 1, 3, 6 and 14) and U. urealyticum (serovars 2, 4, 5, 7-13) (128). U. 270 

parvum possesses a smaller genome (0.75 – 0.78 Mbp) than U. urealyticum (0.84 – 0.95 271 

Mbp) (129) and these two species can also be distinguished based on restriction fragment 272 

length polymorphisms, DNA-DNA hybridization, multi-locus sequence typing and sequences 273 

of 16S rRNA, multiple banded antigen (mba) and urease genes (130-135). Whilst this 274 

taxonomic classification was formally accepted in 2002, it has not been universally adopted 275 

within the literature, and often the 14 serovars are still erroneously referred to as U. 276 

urealyticum.  277 

Several methods for serotyping Ureaplasma spp. have been described, including growth 278 

inhibition tests (136, 137), immunoperoxidase tests (138), enzyme-linked immunosorbent 279 

assays (139, 140) and colony indirect epi-immunofluorescence (141), which utilize rabbit 280 

antisera. These tests performed poorly due to a lack of standardized reagents and the presence 281 

of multiple cross-reactions between serovars. These approaches also poorly discriminate 282 

clinical samples containing more than one Ureaplasma serovar. Therefore, serotyping of 283 

Ureaplasma for diagnostic and epidemiological purposes has historically been technically 284 

challenging.  Molecular-based typing methods based on sequencing of the upstream region of 285 

the mba (135), conventional PCR of the mba (142-144) and random amplified polymorphic 286 

DNA PCR (142) have also been described. However, these methods do not fully discriminate 287 

all 14 Ureaplasma serovars. In addition, the mba was recently shown to be part of a phase 288 

variable gene super-family (129), suggesting its use as a diagnostic target may be limited.  289 
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Following the release of full genome sequences of Ureaplasma American Type Culture 290 

Collection (ATCC) strains, Xiao et al. designed 14 separate mono-plex real-time PCR assays, 291 

which successfully typed all 14 ATCC type strains without cross-reactivity between serovars 292 

(145).  However, when these real-time PCRs were used to type clinical human Ureaplasma 293 

isolates, 6% of isolates failed to amplify and could not be typed according to any of the 294 

known 14 serovars (146). Whole-genome shotgun sequencing of a selection of these isolates 295 

revealed that the gene targets for real-time PCR were completely absent or had been 296 

significantly modified, such that one of the primers was unable to bind. Even more intriguing 297 

was that following filtering and sub-culture of single Ureaplasma colonies isolated from 298 

samples thought to contain mixtures of multiple serovars, several isolates continued to 299 

express loci from more than one serovar. DNA sequencing revealed that these isolates were 300 

in fact ‘hybrids’ or genetic mosaics that carried multiple serovar markers. Screening of 271 301 

clinical samples initially believed to contain multiple serovar mixtures demonstrated that 75 302 

(28%) were hybrids, which carried markers of up to 4 different serovars (146). These data, in 303 

combination with recent comparative genome sequencing studies, demonstrate that there is 304 

extensive evidence of horizontal gene transfer in Ureaplasma spp., suggesting that typing 305 

these microorganisms into defined serovar groups may be of limited value for diagnostic 306 

purposes (146) and that Ureaplasma exist as quasi-species (129). On the other hand, it is 307 

possible that there are more stable gene targets that have yet to be identified, which could be 308 

utilized for the discrimination of Ureaplasma serovars or pathogenic versus commensal 309 

subtypes. Large scale comparative genome sequencing studies are required to clarify this 310 

issue.  311 

Ureaplasma spp. are commensals of the female lower genital tract 312 

Ureaplasma can be isolated from the mucosal surfaces of the vagina or cervix from 40-80% 313 

of sexually active females (147). U. parvum is isolated more frequently from the lower 314 



15 
 

genital tract of females than U. urealyticum (142, 143, 148-150), and serovar 3 is the most 315 

common serovar isolated from females in the United States and Australia (100, 142, 147). 316 

Ureaplasma colonization of the female lower genital tract has been associated with numerous 317 

factors including ethnicity (particularly African-American, Central/West African and 318 

Indigenous Australian women) (107, 151, 152), age (most prevalent in the 14 – 25 year age 319 

group and carriage declines with increasing age) (149, 151), the number of recent sexual 320 

partners (107, 152), the use of non-barrier contraceptives (107), level of education (151), age 321 

of first sexual intercourse (107) and intrauterine devices (151, 153). Ureaplasma spp. are 322 

considered to be commensal organisms within the female lower genital tract due to: (i) their 323 

high prevalence and (ii) studies demonstrating no differences in the rates of endocervical 324 

Ureaplasma colonization between women of reproductive age with or without symptoms of 325 

genital infection (149, 150). However, others have reported that Ureaplasma spp. can cause 326 

lower urogenital tract infections, such as symptomatic vaginitis (154, 155), cervicitis (156), 327 

bacterial vaginosis (157), pelvic infections (158, 159) and urinary tract infections (160-162).  328 

Lower genital tract Ureaplasma colonization association with chorioamnionitis and 329 

adverse pregnancy outcomes 330 

It has been proposed that the presence of Ureaplasma spp. in the female lower genital tract 331 

may be a risk factor for chorioamnionitis and adverse pregnancy outcomes, such as preterm 332 

birth (163-168). A prospective study of 2471 women attending an antenatal clinic 333 

demonstrated that Ureaplasma spp. were isolated from vaginal swabs from 52/97 women 334 

(53.6%) who delivered preterm, and that vaginal Ureaplasma colonization was an 335 

independent risk factor for preterm birth (odds ratio 1.64, confidence interval 1.08 - 2.48, p = 336 

0.02). Despite this statistical association, it should be noted that, in the same study, 337 

Ureaplasma was also isolated from the lower genital tract of 783/1891 women (41.1%) who 338 

delivered at term. Similarly, Kataoka et al. demonstrated that U. parvum was detected in 339 
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16/21 women (76.2%) who delivered preterm, and also in 440/856 women (51.4%) who 340 

delivered at term (p = 0.024). Other authors have reported equally high carriage rates in 341 

women who deliver at term and the majority of studies conclude that lower genital tract 342 

Ureaplasma colonization is not a significant predictor of preterm birth or chorioamnionitis 343 

(169-174).  344 

Ureaplasma can cause ascending asymptomatic infections of the upper genital tract 345 

Although Ureaplasma spp. are (in most instances) considered to be commensals within the 346 

lower genital tract, these microorganisms are capable of causing ascending asymptomatic 347 

infections of the upper genital tract. A recent study of fertile and infertile women undergoing 348 

diagnostic laparoscopy (who had no symptoms of genital tract infection) demonstrated that 349 

lower genital tract Ureaplasma colonization can lead to asymptomatic infection of the Pouch 350 

of Douglas (175). Furthermore, Ureaplasma spp. have been isolated from the endometrium 351 

and Fallopian tubes of non-pregnant women in the absence of clinical symptoms or abnormal 352 

pathology (176, 177). While it was historically thought that the Ureaplasma spp. were of 353 

‘low virulence’ and that their presence in the upper genital tract may be of little consequence, 354 

there is now increasing evidence that these microorganisms are not simply innocent 355 

bystanders. The presence of Ureaplasma spp. in the upper genital tract of non-pregnant 356 

women suggests that these microorganisms may infect the embryo at the time of implantation 357 

(147). Moreover, they are capable of inducing chorioamnionitis, which can adversely affect 358 

the health of the pregnancy and neonate. Herein, we discuss the role of the human 359 

Ureaplasma spp. as causative agents of chorioamnionitis. 360 

UREAPLASMA SPP. AS ETIOLOGICAL AGENTS OF CHORIOAMNIONITIS:   361 

The first study to identify an association between Ureaplasma spp. and chorioamnionitis was 362 

published in 1975 and identified a link between carriage of Ureaplasma spp. in the lower 363 
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genital tract and an increased incidence of chorioamnionitis (178).  While the majority of 364 

studies since have demonstrated that lower genital tract colonization with Ureaplasma is not 365 

predictive of adverse outcomes during pregnancy, the role of Ureaplasma spp. in 366 

chorioamnionitis has remained controversial. Attempts to correlate infection with 367 

Ureaplasma spp. to the presence of chorioamnionitis have been made by a variety of studies 368 

and utilizing amniotic fluid, cord blood or placental samples. These studies have 369 

demonstrated that Ureaplasma spp. are habitually found in placentae with chorioamnionitis 370 

(Table 1). Despite the fact that up to 100% of placentae infected with Ureaplasma spp. have 371 

evidence of histological chorioamnionitis (see Table 1), a causative role for these 372 

microorganisms has not been satisfactorily explained and is complicated by a number of 373 

factors.  374 

A factor which complicates the role of Ureaplasma spp. in chorioamnionitis is that not all 375 

women who are infected with these microorganisms develop chorioamnionitis or experience 376 

adverse pregnancy outcomes. Gerber et al. tested the amniotic fluid from 254 asymptomatic 377 

pregnant women at 15 - 17 weeks of gestation by PCR and detected Ureaplasma spp. in 378 

29/254 (11.4%) of subjects (121). Significantly, this study identified that 24% of women 379 

infected/colonized with Ureaplasma spp. delivered preterm, compared to 4.4% of women 380 

who were not infected with Ureaplasma spp. However, this study failed to comment on the 381 

vast majority (76%) of women in this study who were infected/colonized with Ureaplasma 382 

that went on to deliver at term with no apparent adverse outcomes. Similarly, Horowitz et al. 383 

detected intraamniotic Ureaplasma infections in six pregnant women (2.8%) but only three 384 

(50%) of these women experienced preterm birth (179). Numerous studies have identified 385 

that the severity of upper genital tract Ureaplasma infection/inflammation in pregnant 386 

women is highly variable. Some studies have demonstrated that there may be immunological 387 

evidence of severe inflammation (180, 181), while in others there may only be moderate 388 
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inflammation (182), or there may be no correlation between infection with Ureaplasma spp. 389 

and inflammation (183) (Figure 2).  390 

Although it remains unclear why some women infected with Ureaplasma spp. experience 391 

adverse pregnancy outcomes, while others do not, some researchers have attributed these 392 

differences in sequelae to the virulence of the infecting serovar (184), the bacterial load 393 

present (185, 186), or genetic background/ethnicity (187, 188). However, these findings are 394 

not always consistent, with a recent study by our group demonstrating no correlation between 395 

the numbers of Ureaplasma present within placentae, the species/serovar present, or the 396 

ethnicity of women infected with Ureaplasma, and the incidence or severity of histological 397 

chorioamnionitis (46). Furthermore, animal model studies in which Ureaplasma spp. 398 

infections have been established with the same strain and dose of U. parvum resulted in 399 

divergent inflammatory responses within the chorioamnion (43, 189, 190) and within other 400 

genital tract tissues (191), suggesting that the development or magnitude of host immune 401 

responses may contribute to the severity of chorioamnionitis. Indeed, we have demonstrated 402 

that the human Ureaplasma spp. can undergo immune evasive behavior in vivo by varying 403 

the expression of their surface exposed antigens, and that the severity of chorioamnionitis is 404 

inversely related to the number of antigenically distinct subtypes detected within amniotic 405 

fluid (reviewed in detail below). Therefore, we hypothesize that the ability of some 406 

Ureaplasma strains to ‘hide’ from the immune system may be an important predictor of 407 

outcomes, and may potentially explain why some women do not develop chorioamnionitis 408 

despite high bacterial loads within the amniotic fluid and chorioamnion.   409 

Table 1 summarizes human studies, which have investigated the role of Ureaplasma spp. in 410 

chorioamnionitis. These studies showed that the rates of Ureaplasma-associated 411 

inflammation within the chorioamnion may vary between 0 – 100%, further highlighting the 412 

diversity of histological chorioamnionitis and why it is so difficult to confirm the role of 413 
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these microorganisms as causative agents of chorioamnionitis. Additionally, the pathogenic 414 

role of Ureaplasma spp. is often unclear as the majority of these infections are clinically 415 

silent. Ureaplasma infections of the chorioamnion can persist asymptomatically for up to two 416 

months in humans (192) and Ureaplasma infected placentae cannot be distinguished 417 

macroscopically from normal placentae (although there may be histological evidence of 418 

chorioamnionitis that is detected following delivery). Due to the predominantly 419 

asymptomatic nature of Ureaplasma infections, coupled with the fastidious growth 420 

requirements of these microorganisms, pregnant women are not routinely screened for 421 

Ureaplasma spp. and therefore these tiny bacteria are not always suspected (and are, 422 

therefore, likely to be under-reported) as causative agents of chorioamnionitis.  423 

One of the major reasons as to why the role of Ureaplasma spp. in chorioamnionitis has 424 

remained unconfirmed is due to the polymicrobial nature of chorioamnionitis (5, 193). The 425 

majority of studies investigating chorioamnionitis focus specifically on very preterm (< 28 426 

weeks) and early preterm (28 – 32 weeks) pregnancies and these studies have demonstrated 427 

that up to 67% of amniotic fluid or placental samples with chorioamnionitis contained at least 428 

two detectable microorganisms (often Ureaplasma spp. and another microorganism) (Table 429 

1). Because of this, researchers have not been able to confidently claim that Ureaplasma spp. 430 

are true etiological agents of chorioamnionitis. However, a recent study by our research 431 

group demonstrated that infections within late preterm (32 – 36 weeks) and term (≥ 37 432 

weeks) placentae typically harbored only a single microorganism (90.5%) and that the 433 

presence of Ureaplasma alone was significantly associated with histological 434 

chorioamnionitis, at any gestational age (46). Further investigations confirmed the finding 435 

that placental infections with Ureaplasma spp. are strongly associated with chorioamnionitis, 436 

using whole genome shotgun sequencing of late preterm and term placentae (104). Similarly, 437 

another study has reported that preterm placentae infected with Ureaplasma spp. alone are 438 
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independently associated with inflammation of the chorioamnion membranes. This study 439 

demonstrated that there were no differences in the incidence of chorioamnionitis in placentae 440 

infected with Ureaplasma spp. and other microorganisms, when compared to placentae 441 

infected with Ureaplasma spp. alone (194). Taken together, these recent data suggest that not 442 

only are Ureaplasma  spp. likely to be a key etiological agent of chorioamnionitis in the 443 

absence of other microorganisms, but these reports also support a causal role for Ureaplasma 444 

in chorioamnionitis throughout pregnancy.  445 

ANIMAL MODELS HAVE HELPED TO ELUCIDATE THE PATHOGENESIS OF 446 

UREAPLASMA CHORIOAMNIONITIS 447 

Studies in experimental animal models have confirmed that Ureaplasma spp. can cause 448 

chorioamnionitis and fetal inflammation following intrauterine inoculation. Using a non-449 

human primate model, Novy et al. (195) inoculated 107 colony forming units of U. parvum 450 

serovar 1 into the amniotic fluid of pregnant Rhesus macaques at day (d) 132 - 147 of 451 

gestation (term = 155 – 172 d) via an indwelling catheter. Intraamniotic U. parvum caused a 452 

significant influx of leukocytes into the amniotic fluid, and significant increases in the 453 

amniotic fluid levels of: (i) TNF-α, IL-1β, IL-1ra, IL-6 and IL-8; (ii) PGE2 and PGF2α and 454 

(iii) latent (92 kDa) and active (83 kDa) MMP-9 compared with pre-inoculation baseline 455 

values. A progressive increase in uterine activity was also observed following U. parvum 456 

intraamniotic inoculation and the mean inoculation-to-labor onset period was significantly 457 

reduced in U. parvum infected animals, compared to those inoculated with sterile media or 458 

saline. Histological examination of fetal membranes revealed acute chorioamnionitis that was 459 

characterized by edematous thickening of the chorioamnion, neutrophil infiltration, 460 

denudation of amnion epithelial cells, and necrosis and microabscess formation in chorion 461 

trophoblast cells (195). Similarly, intraamniotic injection of U. parvum serovar 1 into the 462 

amniotic cavity of pregnant baboons at day 122 - 123 of gestation (term is 185 d) resulted in 463 
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elevated levels of amniotic fluid IL-6 and IL-8 at the time of preterm delivery (125 d), and 464 

histological evidence of acute chorioamnionitis (196). In contrast, more recent studies in 465 

Rhesus macaques demonstrated that despite the presence of high numbers (3.9x107 CFU/mL) 466 

of U. parvum serovar 1 within the amniotic fluid, no chorioamnionitis was detected after 467 

acute durations (3 d and 7 d) of infection (197). 468 

Whilst non-human primate models exhibit the closest resemblance to humans with respect to 469 

gestational length, uterine anatomy and parturition, experimental intrauterine infection causes 470 

preterm delivery (195, 198) and therefore it is only possible to study acute chorioamnionitis 471 

in these models. In contrast, sheep do not experience inflammation-induced preterm birth, as 472 

intraamniotic infection/inflammation does not cause significant activation of the fetal HPA 473 

axis, cortisol production and subsequent progesterone withdrawal, which is required for the 474 

initiation of labor in many species (199-201). This enables the study of chronic, 475 

asymptomatic intrauterine infection and chorioamnionitis, which is not possible using other 476 

animal models. In addition, fetal sheep are similar in size to human fetuses, which enables 477 

instrumentation of the ewe and fetus (201) and thus makes the ovine model very useful for 478 

the study of fetal development and neonatal outcomes following chorioamnionitis exposure.  479 

We have demonstrated that human U. parvum clinical isolates injected into the amniotic 480 

cavity of pregnant sheep at 55 d (term is 150 d) can chronically colonize the amniotic fluid 481 

and fetus (43, 189, 199, 202). Following an intraamniotic injection of 2 x 104 CFU of U. 482 

parvum serovar 6 at 55 d of gestation, temporal analysis demonstrated that the peak of 483 

amniotic fluid infection occurred between  87 d and 101 d of gestation, and that the number 484 

of CFU/mL remained high (approximately 107 CFU/mL) until the time of surgical delivery at 485 

140 d (43). These data demonstrate that Ureaplasma can chronically colonize the amniotic 486 

fluid for at least 85 d and suggest that amniotic fluid, a rich source of urea, can support the 487 

long term growth of these microorganisms. We further demonstrated that U. parvum was 488 
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consistently isolated from the chorioamnion and fetal lung following chronic intraamniotic 489 

infection (189, 199, 202-204), and was also isolated from the umbilical cord and other fetal 490 

tissues including cerebrospinal fluid, gut, kidney, liver and spleen (189). These findings are 491 

consistent with human studies that have reported that Ureaplasma spp. may systemically 492 

infect the fetus, leading to neonatal morbidity and mortality (205-212).  493 

Both chronic and acute intrauterine Ureaplasma infections were capable of causing 494 

histological chorioamnionitis in pregnant sheep (43, 189, 190, 202, 203). Intraamniotic U. 495 

parvum infection was also associated with increased expression of IL-1β, IL-6 and IL-8 496 

mRNA within the chorioamnion (43, 203) and an influx of neutrophils, 497 

monocytes/macrophages and lymphocytes (43, 189, 202), compared to media controls. 498 

Generally, the severity of chorioamnionitis correlated with increased duration of 499 

intraamniotic Ureaplasma exposure (190); however, variability in the severity of 500 

inflammation was a notable feature of these sheep studies (189, 190), consistent with findings 501 

from human pathological investigations. Despite 100% of chorioamnion samples being 502 

infected with U. parvum, the severity of chorioamnionitis ranged from moderate 503 

(characterized by inflammatory cell infiltrate, fibrosis, scarring, sloughing of the amnion 504 

epithelium and disruption to the normal tissue architecture) to no histological evidence of 505 

chorioamnionitis (189). The severity of chorioamnionitis was not related to the bacterial load 506 

within the chorioamnion at the time of delivery, the inoculating serovar, or the initial dose of 507 

U. parvum (189).  508 

In an attempt to explain the differences in severity of Ureaplasma chorioamnionitis and 509 

address whether some Ureaplasma isolates are inherently more virulent than others, we 510 

infected the amniotic cavity of pregnant sheep with clonal U. parvum serovar 6 isolates (43), 511 

derived from placental isolates, that had caused severe histological chorioamnionitis 512 

(virulent-derived strain) or no chorioamnionitis (avirulent-derived strain) in a previous ovine 513 
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study (189). Regardless of the inoculating clonal strain, moderate to severe chorioamnionitis 514 

was observed in experimentally infected animals and there were no differences in the 515 

chorioamnion expression of TLR-1, TLR-2, TLR-6, IL-1β, IL-6, IL-8, IL-10 and TNF-α 516 

between animals infected with the avirulent-derived strain or virulent-derived strain. 517 

Similarly, there were no differences in the numbers of U. parvum isolated from the amniotic 518 

fluid, chorioamnion, cord or fetal lung at 140 d (43). In the same study, we demonstrated that 519 

only a sub-population of infected ewes from each group generated a serum IgG response to 520 

intrauterine U. parvum infection. When cytokine expression was compared between animals 521 

with/without anti-Ureaplasma serum IgG, the expression of IL-1β, IL-6 and IL-8 was 522 

significantly increased in the chorioamnion of anti-Ureaplasma IgG+ animals. In addition, 523 

maternal anti-Ureaplasma serum IgG was associated with a significant increase in 524 

meconium-stained amniotic fluid (43). These findings are also consistent with human studies 525 

that have demonstrated that patients with anti-Ureaplasma antibodies are at a higher risk for 526 

adverse pregnancy and neonatal outcomes compared to those who do not develop a humoral 527 

immune response (213, 214). Taken together, this suggests that Ureaplasma strains are not 528 

likely to be inherently virulent/avirulent, but that the host response to infection may affect the 529 

pathogenesis of chorioamnionitis.   530 

The immune response to Ureaplasma chorioamnionitis: harmful or helpful? 531 

Studies in BALB/c and C57Bl/6 mice have provided unique insights into the potentially 532 

harmful immune responses that may occur during Ureaplasma chorioamnionitis. BALB/c 533 

mice typically display a Th1/M1-dominant immune profile, whereas the immune profile of 534 

C57Bl/6 mice is consistent with a Th2/M2 bias (187). These differences have enabled 535 

researchers to examine the immunopathogenic role of a skewed Th1/M1 or Th2/M2 response 536 

in Ureaplasma chorioamnionitis. In a model of experimental intrauterine infection, von 537 

Chamier et al. injected 107 CFU of U. parvum into the uterine horns of pregnant BALB/c and 538 
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C57Bl/6 mice at 14 d (187). Examination of the fetal membranes at 72 hours post-infection 539 

demonstrated that C57Bl/6 mice exhibited mild-moderate chorioamnionitis, whereas BALB/c 540 

mice displayed severe necrotizing chorioamnionitis and extensive neutrophil infiltration. 541 

These differences could not be attributed to differences in bacterial load; however, the 542 

placental expression of cytokines and calgranulins was markedly different between the strains 543 

(187). In a separate study, it was demonstrated that intrauterine U. parvum infection increased 544 

the expression of TLR2 and CD14 on neutrophils in BALB/c but not C57Bl/6 mice (40). 545 

TLR/CD14-mediated signaling triggered by bacterial lipoproteins has been shown to extend 546 

the survival of apoptotic neutrophils in infected tissues, thereby increasing the duration of 547 

inflammation (215). It is therefore possible that TLR2/CD14 signaling plays a role in the 548 

extensive neutrophil infiltration and severe chorioamnionitis observed in BALB/c mice. 549 

Interestingly, increased levels of soluble CD14 are also observed in the amniotic fluid of 550 

women with intrauterine Ureaplasma infection (216), suggesting that CD14 signaling may be 551 

an important area for future research. Combined, these studies demonstrate highlight that the 552 

host immune response may be a key factor that modulates the pathogenesis of acute 553 

Ureaplasma chorioamnionitis. Further studies using genetically modified/knock-out mouse 554 

lines may significantly improve our understanding of protective versus pathogenic immune 555 

responses to intrauterine Ureaplasma infection.  556 

Immune effects of Ureaplasma spp. on the fetus 557 

Animal model studies from our research group have investigated the fetal immune responses 558 

to U. parvum exposure during gestation. In a series of experiments in pregnant sheep, it was 559 

demonstrated that chronic (69 d), but not acute (7 d), in utero infections with U. parvum 560 

suppressed innate immune responses in fetal sheep. Fetuses were challenged with E. coli LPS 561 

2 days prior to delivery, and the fetuses that were chronically exposed to intraamniotic 562 

Ureaplasma spp. demonstrated significant decreases in pro- and anti-inflammatory cytokine 563 



25 
 

expression, as well as fewer CD3+ T lymphocytes and myeloperoxidase+ cells within the 564 

fetal lung when compared to the fetuses that were intraamniotically exposed to sterile culture 565 

media (vehicle). Blood monocytes obtained from these same animals also had a significantly 566 

decreased response to LPS in vitro (105), demonstrating that fetal exposure to U. parvum in 567 

utero can markedly alter the neonatal immune responses following delivery. Similarly, 568 

chronic exposure to U. parvum alone (with no LPS challenge) was sufficient to augment the 569 

presence of transforming growth factor (TGF)-β within the fetal lung, which may also 570 

contribute to the development of lung pathologies, such as bronchopulmonary dysplasia 571 

(217).  572 

In both Rhesus macaque and sheep models, intraamniotic U. parvum infections decreased the 573 

populations of CD4+FOXP3+ regulatory T cells (Tregs) in the preterm fetus, in both the 574 

thymus and periphery (197, 218). Furthermore, an interferon-γ response was seen in Tregs 575 

exposed to U. parvum during gestation, and this response was absent in Tregs of fetuses 576 

exposed to control (media) intraamniotic injections. Since it is well established that Tregs are 577 

potent anti-inflammatory T-cells (219), these results suggest the existence of a subset of 578 

Tregs that can develop a Th1 phenotype early in life, and that this response may be increased 579 

in the presence of inflammation (e.g. chorioamnionitis). 580 

MANIPULATION OF HOST CELLS BY UREAPLASMA SPP. 581 

Compared to other Mycoplasma spp., the cytadherence of Ureaplasma has not been 582 

investigated in detail. In vitro studies have demonstrated that Ureaplasma spp. are adherent 583 

to erythrocytes (220), placental endothelial cells (221) and human epithelial cells (222); 584 

however, the adhesion mechanisms are unknown. Pretreatment of HeLa cells and 585 

erythrocytes with neuraminidase significantly reduced ureaplasmal adherence (222), 586 

suggesting that Ureaplasma may bind to receptors containing sialic acid. In contrast, the 587 
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adhesion of Ureaplasma to spermatozoa is thought to be mediated by 588 

sulfogalactoglycerolipid, which is expressed by the mammalian male germ cell membrane 589 

(223).  590 

The human Ureaplasma spp. have been shown to alter/manipulate host cells in several ways. 591 

Allam et al. reported that U. parvum significantly increased filamin A phosphorylation at 592 

serine 2152 in human benign prostate cells, and altered its intracellular distribution (224). 593 

Filamin A is an actin-binding protein that regulates the cytoskeleton and is involved in 594 

antimicrobial signaling pathways (225). Further investigation into the upstream and 595 

downstream signaling events may therefore reveal novel insights into Ureaplasma-host 596 

interactions. In endothelial cells isolated from normal and preeclamptic placentae, U. 597 

urealyticum significantly reduced cell viability, altered the expression of heat shock protein 598 

70 and significantly increased the intracellular concentration of calcium and iron. It was 599 

suggested that these events occurred as part of the cellular stress response to infection and 600 

may indicate that cells are progressing towards apoptosis (221). Additional studies have 601 

demonstrated that U. urealyticum induces apoptosis in other cell types, including human lung 602 

epithelial cells (A549) and THP-1-derived macrophages (226). Ureaplasma-infected cells 603 

demonstrated an altered morphology, underwent DNA fragmentation and translocation of 604 

phosphatidylserine to the outside surface of the cell (as determined by Annexin V staining 605 

and flow cytometry) (226). Ureaplasma spp. further manipulate host cells by suppressing 606 

innate host defense pathways. A recent study demonstrated that Ureaplasma infection 607 

decreased the expression of antimicrobial peptide genes in THP-1 cells in vitro, in association 608 

with a significant decrease in histone H3K9 acetylation (227). These findings suggest that 609 

Ureaplasma may downregulate antimicrobial/host defense genes via epigenetic modifications 610 

(227), which may be an important factor contributing to the ability of these microorganisms 611 

to cause persistent infections. Further studies using a combination of ex vivo and in vivo 612 
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approaches are required to elucidate the host-pathogen interactions that occur during 613 

Ureaplasma chorioamnionitis.   614 

UREAPLASMA VIRULENCE FACTORS 615 

While Ureaplasma spp. were traditionally portrayed as microorganisms of low virulence, 616 

they are now recognized as the cause of serious disease. As such, Ureaplasma spp. have 617 

evolved specific virulence mechanisms that contribute to their survival and disease 618 

pathogenesis. Five proposed virulence factors have been identified: the multiple banded 619 

antigen (MBA), phospholipases A and C, IgA protease and the urease gene of Ureaplasma 620 

spp. Genetic manipulation of these microorganisms has remained elusive, and thus definitive 621 

roles for these proposed virulence factors have not been determined. Furthermore, recent 622 

genome sequencing studies have questioned the presence of some of these proposed virulence 623 

factors. 624 

The multiple banded antigen 625 

The multiple banded antigen (MBA) was first described by Watson et al. (1990) and has 626 

since been identified as one of the major virulence factors of the human Ureaplasma spp. The 627 

mba gene, which encodes the MBA protein, contains no homology to any other known 628 

prokaryotes and is unique to Ureaplasma spp. (228). The MBA protein is the major antigen 629 

that is recognized by the host during infection, and elicits the production of cytokines by 630 

activating nuclear factor-kappa B via TLR-1, -2, and 6 (229-231). The MBA protein consists 631 

of three major domains: a typical prokaryotic signal peptide, an N-terminal transmembrane 632 

domain that is conserved among all 14 serovars of Ureaplasma spp. and a C-terminal 633 

(surface-exposed) variable domain that is composed of multiple repeating units, with both 634 

serovar-specific and cross-reactive epitopes (232, 233). The C-terminal region of the MBA 635 

that has been shown to alter, both by switching on/off of the gene (antigenic phase variation) 636 
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and more commonly to vary in size (antigenic size variation) (43, 189, 232-235). U. 637 

urealyticum serovar 13 is the only Ureaplasma serovar that does not contain any tandem 638 

repeat units in the C-terminal variable domain of the mba (129).  639 

While some studies demonstrated differences in the size of the MBA protein (giving rise to 640 

the name of the protein itself as the multiple banded antigen) (235, 236), the first study to 641 

characterize MBA size variation demonstrated that differences in the size of the MBA protein 642 

directly correlated with the number of tandem repeating units within the mba gene (133, 237). 643 

More recently, Knox et al. identified mba/MBA size variation in vivo using an ovine model 644 

(189). Pregnant ewes were chronically infected for 69 d with a non-clonal U. parvum isolate 645 

and the size of the mba/MBA was assessed. This study demonstrated that the number of 646 

mba/MBA size variants was inversely correlated with the severity of inflammation within the 647 

chorioamnion: when > 9 mba/MBA size variants were identified, there was little or no 648 

chorioamnionitis; however, when < 5 mba/MBA size variants were identified, there was 649 

severe histological chorioamnionitis (189). Other ovine studies have identified that variation 650 

in the size of the mba/MBA was not seen after three days of intraamniotic infection, while 651 

some slight variation was seen after seven days of infection (190) and significant mba/MBA 652 

size variation was seen after 69 days of chronic intraamniotic U. parvum infection (43, 189, 653 

190). Dando et al. (2012) also demonstrated the ability of Ureaplasma spp. to vary their 654 

mba/MBA throughout the course of gestation and suggested that size variation of the 655 

mba/MBA (presumably by slipped-strand mispairing) may be a mechanism by which 656 

Ureaplasma spp. may evade host immune recognition, allowing chronic asymptomatic 657 

infections to develop (43). 658 

More recently, we have demonstrated for the first time that Ureaplasma spp. clinical isolates 659 

from human placentae were also able to vary the size of their mba/MBA (Sweeney et al., 660 

manuscript in preparation). Clinical isolates that varied the size of their mba/MBA were 661 
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associated with a reduced incidence of histological chorioamnionitis and significantly lower 662 

levels of the cord blood cytokines G-CSF and IL-8. In contrast, Ureaplasma spp. isolated 663 

from placentae that demonstrated no mba/MBA size variation had severe histological 664 

chorioamnionitis and elevated cord blood cytokines. Further in vitro investigations using 665 

recombinant MBA (rMBAs) proteins of differing sizes (i.e. different numbers of tandem 666 

repeat units) and human macrophage cells lines demonstrated  immune responses that varied 667 

depending on the size of the rMBA. These results were confirmed by western blot; the 668 

expression of nuclear factor-kappa B fragment p65 (an activator of transcription) varied when 669 

stimulated with the different sized rMBA proteins (Sweeney et al., manuscript in 670 

preparation). Combined, these results confirm the ability of Ureaplasma spp. to vary their 671 

surface-exposed MBA in vivo, and that this variation is associated with the modulation of the 672 

host immune response both in vivo and in vitro. 673 

Other studies have also demonstrated that the mba/MBA can undergo phase (on/off 674 

switching) variation. Three studies have identified that selective antibody pressure directed 675 

against the MBA can result in the generation of MBA-negative variants (Ureaplasma isolates 676 

that do not express their MBA protein) in serial passage experiments (43, 234, 238). In these 677 

studies, MBA-negative Ureaplasma isolates were detected following two to three serial 678 

passages in culture medium containing MBA-specific antibodies (43, 234). More recently, 679 

phase variation of the MBA occurred in the absence of any selective (antibody) pressures 680 

(239), indicating that this antigen is capable of rapid phase variation. Zimmerman et al. 681 

(2009) hypothesized that the expression of the MBA (locus UU375) is alternated with 682 

expression of an adjacent locus (UU376), which encodes an Ureaplasma-specific conserved 683 

hypothetical protein. Utilizing polyclonal rabbit antisera generated against the conserved (N-684 

terminal, non-repetitive) regions of the MBA and UU376, these authors identified that 685 

antibody treatment led to the emergence of ‘escape variants’, which expressed the protein that 686 
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had not been the target of selective pressure. Following this, it was hypothesized that DNA-687 

inversion events – presumably occurring at short inversion sequences - were responsible for 688 

the switching on/off of expression of these genes (238). Zimmerman and colleagues further 689 

investigated the role of DNA-inversion sites within the Ureaplasma genome, and 690 

demonstrated experimentally that the mba paralogues UU171, UU172 and the orthologue 691 

UU144 were also involved in site-specific DNA inversion/recombination (240). Furthermore, 692 

it was shown that the XerC tyrosine recombinase gene of U. parvum is the most likely 693 

mediator of these DNA inversion events (241). Subsequent experimental investigation into 694 

the ability of the XerC to process the recombination event proved successful, indicating that 695 

this tyrosine recombinase is able to induce DNA inversion events (242), representing the first 696 

evidence of a mechanism which may govern antigenic phase variation in Ureaplasma spp.  697 

In a separate series of investigations, whole genome sequencing was carried out on 698 

Ureaplasma spp. ATCC strains and a range of clinical isolates, and revealed the presence of 699 

multiple additional tandem repeat domains within the mba locus of all Ureaplasma isolates 700 

tested (129). Remarkably, it was shown that the mba was part of a large gene superfamily, 701 

comprising 183 genes in U. parvum and U. urealyticum, and 22 gene subfamilies. This study 702 

also identified the presence of putative recombination sites surrounding tandem repeating 703 

domains, consistent with the theory that Ureaplasma spp. may undergo significant antigenic 704 

phase and size variation, dependent on which sequences within the genome are expressed. 705 

Whilst there is convincing molecular evidence that the mba is part of a complex phase 706 

variable system it should be noted that, to the best of our knowledge, MBA-negative 707 

Ureaplasma variants have not been isolated from human clinical material or experimental 708 

animal studies. Rather, there is significant evidence of MBA size variation in vivo.  709 

Phospholipase A and C 710 



31 
 

The pathogenesis of phospholipases results from the production of membrane-destabilizing 711 

compounds and degradation of the host cell membrane phospholipids (243). Endogenous 712 

phospholipase A1, A2 and C activity has been previously identified in U. parvum serovar 3 713 

and U. urealyticum serovars 4 and 8 (244-246). These phospholipases demonstrated higher 714 

activity in Ureaplasma in their exponential growth phase; suggesting that the Ureaplasma 715 

spp. phospholipases were membrane bound and were not being secreted (245). It was further 716 

identified that phospholipase A2 activity was three-fold higher in U. urealyticum serovar 8, 717 

when compared to U. urealyticum serovar 4 and U. parvum serovar 3 (244). However, 718 

subsequent whole genome sequencing of U. parvum serovar 3 could not identify any genes of 719 

significant similarity to any known sequences of phospholipase A1, A2 or C (228). These 720 

findings indicated that Ureaplasma may encode phospholipases that are evolutionarily 721 

distinct from other phospholipase genes, or that these phospholipases may not exist within 722 

Ureaplasma spp. Interestingly, more recent studies by the same research group revealed that 723 

whole genome sequencing of the 14 Ureaplasma spp. serovars and four Ureaplasma spp. 724 

clinical isolates were again unable to detect any phospholipase A1, A2 or C genes; however, a 725 

phospholipase D domain containing protein was identified in all Ureaplasma spp. (129). 726 

These researchers further investigated the presence/activity of these enzymes experimentally 727 

and were unable to detect any significant phospholipase C or D activity in U. parvum serovar 728 

3 and U. urealyticum serovar 8 (129). Further investigation into the presence and activity of 729 

phospholipases within Ureaplasma spp. are required to elucidate if these enzymes are 730 

potential virulence factors of these organisms. 731 

Immunoglobulin (Ig) A protease 732 

One of the primary defense mechanisms of the mammalian immune system is the production 733 

of IgA at mucosal sites (247) and the ability of an organism to degrade IgA antibodies allows 734 

the microorganism to evade this host defense mechanism. Robertson et al.  published the first 735 
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evidence of an IgA protease in U. urealyticum that was capable of cleaving IgA1 (248). While 736 

it was subsequently determined that all 14 Ureaplasma serovars possess an IgA protease with 737 

proteolytic activity against IgA1 (but no proteolytic activity against IgA2, IgG or IgM 738 

antibodies) (249, 250), more recent evidence has questioned the presence of an IgA protease 739 

in Ureaplasma spp. Initial genome sequencing studies of U. parvum serovar 3 were unable to 740 

identify any genes with similarity to known IgA proteases (228) and more recent whole 741 

genome analyses were unable to identify any IgA protease genes within the 14 Ureaplasma 742 

serovars, nor was it found to be present in any of the Ureaplasma spp. clinical isolates tested 743 

(129). Recently, an IgG binding protein and IgG serine protease were identified within 744 

Mycoplasma mycoides subspecies capri. This study provided evidence that both U. parvum 745 

and U. urealyticum contain genes that encode an IgG binding protein and an IgG serine 746 

protease within their genomes (251). Based on these recent findings, further studies are 747 

warranted to determine if these IgG binding/IgG protease genes are active in cleaving IgG 748 

and therefore may be a previously unrecognized virulence factor of the human Ureaplasma 749 

spp.  750 

Urease 751 

The ability of Ureaplasma spp. to hydrolyze urea was first identified in 1966, and the 752 

production of adenosine triphosphate (ATP) via this mechanism appears to be unique within 753 

Ureaplasma (125, 252). The urease enzyme is a key virulence factor of many ureolytic 754 

bacteria, and the ureaplasmal urease gene cluster has a similar genetic organization to that of 755 

E. coli, Proteus mirabilis, Klebsiella pneumoniae and K. aerogenes (253). The urease 756 

complex constitutes a major component of the ureaplasmal cytoplasm (254) and Takebe et al. 757 

demonstrated that the urease of U. urealyticum serovar 8 was responsible for urolithiasis in 758 

humans (255). The Ureaplasma spp. urease has a significantly higher specific activity 759 

compared to other bacterial ureases (256) and was responsible for lethal toxicity in mice 760 
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following intravenous injection (257). Interestingly, the Ureaplasma spp. are one of few 761 

bacteria which encode a urease enzyme but lack the ability to assimilate ammonia into 762 

glutamine or glutamate (258), potentially explaining the very high intracellular ammonia 763 

concentration of these microorganisms (124).  764 

Our recent studies suggest that Ureaplasma infection, and a subsequent increase in ammonia 765 

due to urease metabolism, can alter the pH of amniotic fluid and fetal lung fluid in an ovine 766 

model (190). This study also identified that the increased pH within the fetal lung was 767 

associated with lung damage, even in the absence of inflammatory responses and provides the 768 

first evidence that increased pH in vivo may be due to Ureaplasma infections. Other studies 769 

have demonstrated that Ureaplasma spp. infections can result in hyperammonemia (259). 770 

Clinical reports of patients who underwent lung transplantation and subsequently developed 771 

hyperammonemia (abnormally high levels of ammonia within the blood) were found to be 772 

infected with Ureaplasma spp. within their blood or bronchoalveolar lavage fluid. When 773 

these patients received antibiotic treatment to eradicate the Ureaplasma spp., their syndromes 774 

resolved and only one relapse was identified in a patient colonized with an antimicrobial 775 

resistant Ureaplasma strain (259). Taken together, these findings suggest that the activity of 776 

the Ureaplasma urease enzyme can result in an alkaline environment, in both fetal and adult 777 

lungs, and also within amniotic fluid. 778 

HORIZONTAL GENE TRANSFER AND THE ABILITY OF UREAPLASMA SPP. TO 779 

RAPIDLY ADAPT TO HOST MICROENVIRONMENTS  780 

HGT is an important mechanism used by microorganisms to acquire genetic material. 781 

Although Ureaplasma spp. maintain minimal genomes that have undergone significant 782 

degenerative evolution (228), recent evidence has identified that HGT is likely to occur 783 

within these microorganisms and may be an important determinant of virulence. As 784 
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previously discussed, the identification of genetic hybrids (146) suggests that the Ureaplasma 785 

spp. may be genetically promiscuous. Comparative genome sequencing studies have provided 786 

further evidence of this and identified integrase-recombinase genes, transposases and phage 787 

related proteins in Ureaplasma spp. genomes (129), which are highly indicative of HGT 788 

events. Interestingly, U. urealyticum genomes generally contained a higher number of these 789 

genes, suggesting that this species may be more capable of acquiring genes horizontally than 790 

U. parvum (129).  791 

Early attempts to define the phylogeny of Mycoplasma suggested that Mycoplasma spp. with 792 

the smallest genomes have high mutation rates and undergo rapid evolution (260, 261). 793 

Dando et al. provided evidence of the ability of the human Ureaplasma spp. to rapidly adapt 794 

to their microenvironment in a sheep model of intrauterine infection (262). Following 795 

injection of a non-clonal U. parvum serovar 3 isolate into the amniotic fluid of pregnant 796 

sheep at 55 d, significant genetic variability within the 23S ribosomal (r) RNA gene was 797 

detected between U. parvum isolated from the amniotic fluid and chorioamnion at the time of 798 

preterm surgical delivery (125 d). While U. parvum isolated from amniotic fluid showed 799 

100% 23S rRNA domain V sequence homology to the original strain injected, highly 800 

polymorphic sequences (containing only 64 – 82% sequence homology to the inoculating 801 

strain) were detected within Ureaplasma isolates from the chorioamnion. Furthermore, 802 

chorioamnion Ureaplasma isolates demonstrated the presence of macrolide resistance genes, 803 

which were not evident in amniotic fluid isolates. Whilst this study did not investigate the 804 

presence of potential genetic transfer elements flanking these variable gene sequences, these 805 

data support the concept that Ureaplasma spp. may undergo significant HGT in vivo. 806 

Furthermore, this study suggests that different anatomical sites (amniotic fluid versus 807 

chorioamnion) may select for different Ureaplasma subtypes within non-clonal populations 808 

and thus influence the socio-microbiological structure of the bacterial population (262). 809 
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Taken together, there is increasing evidence that Ureaplasma spp. undergo significant genetic 810 

variation, allowing them to diversify their populations, and this is likely to contribute to the 811 

overall pathogenicity of Ureaplasma spp.   812 

TREATMENT OF UREAPLASMA CHORIOAMNIONITIS AND THERAPEUTIC 813 

CONSIDERATIONS 814 

The major difficulty in treating chorioamnionitis is that a large proportion of cases are 815 

clinically asymptomatic and therefore are not diagnosed until retrospective analysis of the 816 

placenta and fetal membranes. This is particularly problematic for the human Ureaplasma 817 

spp., which can cause chronic, asymptomatic intrauterine infections that modulate the host 818 

immune response to prevent significant pathological events, but are still associated with 819 

adverse outcomes. Whilst antibiotics are recommended for women with preterm pre-labor 820 

rupture of membranes (263) to prevent ascending invasive infections from the lower genital 821 

tract, the timing of administration may be too late to have beneficial effects against chronic 822 

Ureaplasma infections that were established in early/mid gestation. It has been suggested that 823 

the administration of appropriate antibiotics before 22 weeks of gestation (or before 824 

inflammation and maternal-fetal damage occurs) could significantly decrease the incidence of 825 

preterm birth (264). This is supported by a meta-analysis, which demonstrated that the 826 

administration of macrolides and clindamycin during the second trimester of pregnancy was 827 

associated with a reduced risk of preterm delivery (265). However, due to the concern of 828 

antibiotic resistance, widespread antimicrobial treatment is not recommended unless there is 829 

evidence of intraamniotic infection. Culture and/or PCR detection of Ureaplasma spp. within 830 

amniotic fluid remains the gold standard for diagnosis; however, amniocentesis is an invasive 831 

procedure that is not routinely performed, and it is likely that high numbers of Ureaplasma 832 

infections during pregnancy remain undetected and therefore untreated. 833 
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An additional complicating factor for the treatment of Ureaplasma chorioamnionitis includes 834 

the often polymicrobial nature of this disease, which suggests that more than one 835 

antimicrobial agent may be required to successfully eradicate infection. Furthermore, 836 

treatment options for pregnant women are limited due to potential teratogenic and harmful 837 

effects associated with the use of some antimicrobials during pregnancy. Even fewer options 838 

are available for the treatment of intrauterine Ureaplasma infections, as these 839 

microorganisms are inherently resistant to beta-lactam and glycopeptide antibiotics (due to 840 

their lack of a cell wall), as well as trimethoprim and sulphonamides (as Ureaplasma spp. do 841 

not synthesize folic acid) (266). Antimicrobials that are potentially active against Ureaplasma 842 

include the tetracyclines, fluoroquinolones and macrolides; however, resistance to these 843 

antimicrobial classes has also been well described (267-271).  844 

Erythromycin, a 14-membered lactone ring macrolide, is the most common antibiotic used 845 

for the treatment of neonatal Ureaplasma infections and is routinely used in clinical 846 

obstetrics. Large randomized controls and meta-analyses have demonstrated that 847 

erythromycin administration for preterm pre-labor rupture of membranes can reduce the risk 848 

of chorioamnionitis and neonatal morbidity, and delay preterm birth (272-274). However, it 849 

is less clear if maternal erythromycin can eradicate existing human intrauterine infections due 850 

to conflicting reports within the literature (275-277). In pregnant sheep, maternal 851 

intramuscular erythromycin treatment (30 mg/kg/d for 4 days) failed to eradicate an 852 

erythromycin susceptible strain of U. parvum from the amniotic fluid, chorioamnion and fetal 853 

lung (202), presumably due to poor transplacental passage (202, 278-280). In a follow-up 854 

study, it was again demonstrated that intraamniotic Ureaplasma infection was not eradicated 855 

following: (i) single intraamniotic and repeated maternal intramuscular erythromycin, or (ii) 856 

single maternal intramuscular and repeated intraamniotic erythromycin injections (281). 857 
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These data suggest that erythromycin may not be beneficial for the treatment of intrauterine 858 

Ureaplasma infections.  859 

Azithromycin is 15-membered semisynthetic macrolide with superior tissue penetration, a 860 

prolonged half-life and broader antimicrobial coverage than erythromycin (282). 861 

Azithromycin is well tolerated during pregnancy and achieves peak concentrations of 151 ± 862 

46 ng/mL within human amniotic fluid and 2130 ± 340 ng/mL within human placentae at 6 863 

hours post-injection, before rapidly declining (282). In pregnant sheep, a single intraamniotic 864 

injection of azithromycin achieved therapeutic concentrations that were sustained for 48 865 

hours; however there was poor maternal-fetal transfer (280). Despite this, a single maternal 866 

intravenous azithromycin injection or a single maternal intravenous azithromycin injection 867 

combined with an intraamniotic azithromycin injection completely eradicated an established 868 

U. parvum infection from the amniotic fluid, chorioamnion and fetal lung in pregnant sheep 869 

(283). Similarly, studies in Rhesus macaques demonstrated that maternal intravenous 870 

azithromycin (25 mg/kg/d for 10 d) administered 6-8 d after intraamniotic U. parvum 871 

inoculation successfully eradicated Ureaplasma from the amniotic fluid (284, 285). It should 872 

be noted that in both of these sheep (283) and monkey (285) studies, histological evidence of 873 

chorioamnionitis was still observed at the time of delivery, suggesting that azithromycin 874 

treatment alone is not sufficient to reduce/eliminate inflammation within the fetal 875 

membranes.  876 

Recent research efforts have evaluated a new, broad-spectrum fluoroketolide, solithromycin, 877 

in pregnant sheep and demonstrated that a single maternal dose can deliver therapeutic 878 

concentrations to both the fetus and amniotic fluid (286). The transplacental transfer of 879 

solithromycin was significantly higher than that reported for other macrolides, including 880 

azithromycin, and a maternal intravenous infusion resulted in sustained therapeutic 881 

concentrations within maternal plasma, fetal plasma and amniotic fluid for >12 hours (286). 882 
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In vitro, solithromycin has potent activity against human clinical Ureaplasma isolates (287, 883 

288), in addition to a range of other important pathogens (289-293). Both maternal 884 

intravenous solithromycin and maternal intravenous solithromycin combined with 885 

intraamniotic solithromycin effectively eradicated U. parvum from the amniotic cavity of 886 

pregnant sheep, but similar to azithromycin, failed to reduce inflammation of the 887 

chorioamnion and fetal lung (283). These findings suggest that solithromycin may not 888 

accumulate in high enough concentrations to exert anti-inflammatory effects and that co-889 

administration of immune modulators should be investigated. To date, solithromycin is the 890 

most potent antimicrobial for the treatment of genital mycoplasmas and has several 891 

pharmacokinetic advantages over older macrolides, suggesting that it may be useful for the 892 

treatment of intrauterine infections. Human studies are required to further examine the 893 

effectiveness and safety of solithromycin in pregnancy and chorioamnionitis.  894 

CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS 895 

In conclusion, the findings of both human and animal studies have now demonstrated that 896 

infection with Ureaplasma spp. alone are able to cause chorioamnionitis, demonstrating a 897 

true causal role for these microorganisms in disease. Furthermore, the ability of Ureaplasma 898 

spp. to vary the expression and size of their major surface-exposed antigen, the MBA, 899 

indicates that these pathogens have evolved specific virulence mechanisms to avoid immune 900 

detection by the host. Despite the lack of genetic manipulation studies, both animal and 901 

human research has now shown the involvement of the MBA in modulating the host response 902 

to chorioamnionitis, and our most recent study has demonstrated that recombinant MBA 903 

proteins of different sizes elicit different immune responses, potentially as a consequence of 904 

altered NF-kappa B activation. We predict that this highly variable surface antigen expression 905 

facilitates immune evasion, enabling these microorganisms to cause chronic in utero 906 

infections, and further research is required to elucidate the mechanisms of antigenic variation 907 
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in Ureaplasma spp. This may also assist in understanding the progression of disease during 908 

Ureaplasma infections and provide unique insights into the host-microbe interactions that 909 

occur in vivo. Furthermore, the development of genetic tools to create isogenic deletion 910 

mutants would enable researchers to assign definitive roles to proposed ureaplasmal virulence 911 

factors.  912 

Due to the difficulties associated with identifying and diagnosing Ureaplasma infections and 913 

chorioamnionitis, additional research should be undertaken to identify biomarkers for the 914 

rapid diagnosis of Ureaplasma in order to detect subclinical infections and clinically silent 915 

chorioamnionitis. Due to the unique metabolism of the Ureaplasma spp., ‘omics’ profiling of 916 

Ureaplasma-infected amniotic fluid may identify unique molecular signatures that could be 917 

used for diagnostic purposes, in combination with conventional Ureaplasma culture/PCR 918 

identification. This is a critical area of research that may lead to the improved identification 919 

and treatment of in utero inflammation, which will ultimately lead to improved maternal and 920 

neonatal outcomes. We also propose that amniotic fluid collected from pregnant women 921 

undergoing amniocentesis should be routinely tested for Ureaplasma spp., even in the 922 

absence of clinical signs/symptoms of chorioamnionitis.  Additionally, further studies are 923 

required to identify effective and targeted therapies that eradicate intrauterine Ureaplasma 924 

spp. infections and reduce inflammation. Continued research investigating the 925 

pharmacokinetics and anti-Ureaplasma activity of new generation drugs, potentially in 926 

combination with immunomodulatory agents, may lead to the development of more effective 927 

treatment options for Ureaplasma chorioamnionitis.   928 
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FIGURE LEGENDS 2034 

Figure 1: Comparison of key events involved in normal parturition and inflammation-2035 

induced parturition.  2036 

Normal parturition is initiated by the increased placental synthesis of CRH at term, which 2037 

causes the production of cortisol. Cortisol induces the production of prostaglandin E2 and 2038 

prostaglandin F2α, and works in a positive feedback loop to further stimulate placental CRH 2039 

production. Prostaglandins induce the production of matrix metalloproteases, which facilitate 2040 

membrane rupture and cervical remodeling. In concert, activation of the fetal HPA axis leads 2041 

to a functional progesterone withdrawal and production of contraction-associated proteins, 2042 

which cause myometrial activation and uterine contractility. During chorioamnionitis, 2043 

inflammatory cytokines and chemokines produced in response to microbial invasion of the 2044 

chorioamnion and/or amniotic fluid stimulate prostaglandin production and neutrophil 2045 

infiltration, leading to the synthesis of matrix metalloproteases and subsequent membrane 2046 

weakening. Recognition of pathogen associated molecular patterns by pattern recognition 2047 

receptors (such as TLRs) is critical for the initiation of inflammation-induced parturition.  2048 

CAPs = contraction-associated proteins; CRH = corticotropin releasing hormone; HPA = 2049 

hypothalamic-pituitary-adrenal; MMPs = matrix metalloproteases; NF-κB = nuclear factor-2050 

kappa B; PGDH = prostaglandin dehydrogenase; PGs = prostaglandins; PGS2 = 2051 

prostaglandin-endoperoxide synthase-2; TLRs = Toll-like receptors. The direction of the 2052 

black arrows represents either an increase or decrease in expression. 2053 

Figure 2: Differences in the presence of chorioamnionitis in Ureaplasma spp.-infected 2054 

women.  2055 

Hematoxylin and eosin stained chorioamnion tissue demonstrates that some women whose 2056 

placentae are colonized with Ureaplasma spp. have no evidence of chorioamnionitis (panels 2057 
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A & B), whilst other women have mild/moderate (panels C & D) or severe (panels E & F) 2058 

evidence of inflammation (demonstrated by neutrophil influx, arrows) within their 2059 

chorioamnion, despite high numbers of Ureaplasma spp. present within the tissue. Images are 2060 

shown at x200 (A, C, E) and x400 (B, D, F) total magnification; boxed areas in A, C and E 2061 

are shown in B, D and F respectively. 2062 
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Author Gestational 
age (GA) 
in weeks  

Specimen n = Incidence of 
Ureaplasma spp. 

infection 

Incidence of 
polymicrobial 

infections 

Ureaplasma spp. with 
chorioamnionitis 

Ureaplasma spp. 
without 

chorioamnionitis 

Reference 

Viscardi et al. 
(2008) 

< 33  S/CSF 313 74/313 (23.6%) - a 30/46 (65.0%) 16/46 (35.0%) (206) 

Hassanein et al. 
(2012) 

< 35  CB 30 13/30 (43.3%) no polymicrobial 
infections 

7/13 (53.8%) 6/13 (46.2%) (294) 

Gray et al. 
(1992) 

< 28  AF 2461 8/2461 (0.4%) - b 8/8 (100.0%) 0/8 (0.0%) (295) 

Yoon et al. 
(1998) 

≤ 36  AF 120 25/120 (20.8%) 11/120 (9.0%) 5/25 (20.0%) - (44) 

Yoon et al. 
(2003) 

≤ 35  AF 252 23/252 (9.1%) - c - - (296) 

Park et al. 
(2013) 

< 34  AF 56 35/56 (62.5%) 7/56 (12.5%) 26/47 (55.31%) # 0/3 (0.0%) (120) 

Kacerovsky et 
al. (2014) 

24 – 36  AF 124 26/124 (21.0%) 5/124 (4.0%) d - - (297) 

Romero et al. 
(2015) 

≤ 35  AF 59 6/24 (25.0%) 10/24 (41.7%) 3/6 (50.0%) 2/6 (33.3%) # (298) 

Stepan et al. 
(2016) 

24 - 34  AF 122 33/122 (27.0%) 8/122 (6.6%) 29/33 (87.9%) 4/33 (12.1%) (299) 

Musilova et al. 
(2015) 

24 – 36  AF 166 40/166 (24.1%) 19/166 (11.4%) 26/40 (65.0%) 14/40 (35.0%) (300) 
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Stepan et al. 
(2016) 

24 – 36  AF 386 103/386 (26.7%) 32/386 (8.3%) 70/103 (68.0%) # 16/103 (15.5%) # (301) 

Berger et al. 
(2009) 

≤ 33  AF/PL 114 32/114 (28.1%) ‐ a 11/25 (44.0%) # 14/25 (66.0%) # (302) 

Hillier et al. 
(1988) 

< 37  PL 112 32/112 (28.6%) ‐ c 19/29 (65.5%) # 10/65 (15.4%) # (1) 

Stein et al. 
(1994) 

Any GA PL 182 21/182 (11.5%) ‐ e 11/16# 5/16# (303) 

Van Marter et 
al. (2002) 

< 36  PL 206 58/155 (37.4%) ‐ e 51/77 (66.2%) 7/78 (9.0%) (304) 

Miralles et al. 
(2005) 

< 33  PL 14 5/14 (35.7%) 5/14 (35.7%) 4/5 (80.0%) 1/5 (20.0%) (305) 

Egawa et al. 
(2007) 

< 32  PL 83 4 (4.8%) 5/83 (6.0%) b 4/4 (100.0%) 0/4 (0.0%) (119) 

Olomu et al. 
(2009) 

< 28  PL 866 52/866 (6.0%) 21/52 (40.4%) 34/52 (65.4%) 18/52 (34.6%) (306) 

Kasper et al. 
(2010) 

< 34  AF 118 32/118 (27.1%) ‐ a 5/19 (26.3%) # 14/19 (73.7%) # (186) 

Namba et al. 
(2010) 

≤ 32  PL 151 63/151 (41.7%) 13/151 (8.6%) 52/63 (82.5%) 11/63 (17.5%) (118) 

Roberts et al. 
(2012) 

> 37  PL 195 2/195 (1.0%) 1/195 (0.5%) 0/2 (0.0%) 2/2 (100.0%) (4) 

Kundsin et al. Various PL 801 156/801 (19.5%) 18/801 (2.2%) b 32/53 (60.4%) # 21/53 (39.6%) (307) 
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(1984) 

Sweeney et al. 
(2016) 

> 32  PL 535 42/535 (7.9%) 4/57 (7.0%) 26/38 (68.4%) 12/38 (31.6%) (46) 

Cox et al. 
(2016) 

< 37  PL 57 13/57 (22.8%) - 9/24 (37.5%) 4/33 (12.1%) (117) 

 

Table 1. The incidence of Ureaplasma spp. infection, polymicrobial infections and chorioamnionitis in women delivering preterm, late preterm 

or at term. The incidence of chorioamnionitis in Ureaplasma spp.-infected women is frequently high, indicating that these microbes are 

associated with chorioamnionitis. AF = amniotic fluid; CB = cord blood; GA = gestational age; PL = placenta; S = serum. 

a Only Ureaplasma spp. were tested for within study  

b Only genital mycoplasmas (Ureaplasma spp. and Mycoplasma hominis) were tested for within this study  

c Study states that >1 organism may have been isolated, but prevalence of polymicrobial infections not stated 

d Only Ureaplasma spp., Mycoplasma hominis and Chlamydia trachomatis tested for within this study  

e No comment on polymicrobial infections  

# not all placentae in study were tested 
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Box 1: Development, structure and function of the chorioamnion. 

The amnion develops from the ectoderm of the embryo 8 days after conception and surrounds 

the developing embryo to form an amniotic sac, which contains amniotic fluid. As the 

amniotic sac expands due to fetal growth and the production of amniotic fluid, the amnion 

makes contact with the chorion, which lines the decidua of the uterine wall, to form the 

chorioamnion at 10-12 weeks of gestation (308). The avascular chorioamniotic membranes 

persist until term in healthy pregnancies and perform critical barrier and container functions 

(309). The amnion comprises five layers: (i) a cuboidal epithelium which is in contact with 

the amniotic fluid; (ii) an acellular basement membrane; (iii) a compact layer; (iv) a 

mesenchymal cell layer and (v) a spongy layer, which is in contact with the chorion (310). 

The amniotic epithelial cells and mesenchymal cells possess stem cell and 

immunomodulatory properties, and have shown promising results for use in regenerative 

medicine (311). The chorion comprises four layers: (i) a cellular, fibroblast layer; (ii) a 

reticular layer; (iii) a pseudo-basement membrane and (iv) a trophoblast layer (310).  
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Box 2: Diagnosis of chorioamnionitis. 

The diagnosis of chorioamnionitis is currently based on clinical signs coupled with 

histological and microbiological analysis of the placenta after delivery of the newborn. 

Histologic grading of the placenta is considered the gold standard for the diagnosis of 

chorioamnionitis; however, this retrospective diagnosis is not useful in informing patient 

management throughout pregnancy, especially in the absence of clinical signs. Several 

studies have investigated the diagnostic value of amniotic fluid and maternal serum 

biomarkers for the detection of chorioamnionitis in pregnant women undergoing 

amniocentesis. Elevated inflammatory markers such as interleukin (IL)-6, IL-8, matrix 

metalloproteinase (MMP)-8, MMP-9 and monocyte chemotactic proteins within amniotic 

fluid are positive predictors of intra-amniotic inflammation and/or clinical chorioamnionitis 

(297, 312-317); however, these markers may have poor positive predictive values for the 

detection of sub-clinical, histologic chorioamnionitis and may be variably expressed within 

the amniotic fluid and fetal membranes during chorioamnionitis (318-320). Recently, Liu et 

al. (321) reported that surface-enhanced laser desorption/ionization time-of-flight mass 

spectrometry (SELDI-TOF-MS) for the detection of human neutrophil defensins (HNP) -1 

and HNP-2, calgranulins A and calgranulins C within amniotic fluid was highly accurate for 

the diagnosis of sub-clinical chorioamnionitis, but further studies with larger patient cohorts 

are required to validate these findings. Non-inflammatory markers such as amniotic fluid 

lactate dehydrogenase and glucose were also recently investigated for the detection of 

histologic chorioamnionitis (322), but the diagnostic accuracy of these assays was low, 

suggesting that additional amniotic fluid biomarkers should be investigated for the diagnosis 

of chorioamnionitis.  
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