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Hole-closing model reveals exponents for nonlinear degeneraf: diffusivity
functions in cell biology
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“School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD «+. ™). Australia.
bDepartment of Agricultural Chemistry, National Taiwan University, Taipei o "7, Taiw. 1

Abstract

Continuum mathematical models for collective cell motion normally i .volv~ -=action-diffusion equations, such as
the Fisher-KPP equation, with a linear diffusion term to describe cell - .lity ind a logistic term to describe cell
proliferation. While the Fisher-KPP equation and its generalisations ~re cc~ .ionplace, a significant drawback for
this family of models is that they are not able to capture the moving fro..’s that arise in cell invasion applications
such as wound healing and tumour growth. An alternative, less con. ~on, ap sroach is to include nonlinear degenerate
diffusion in the models, such as in the Porous-Fisher equation, s. ~e su.utions to the corresponding equations have
compact support and therefore explicitly allow for moving fronts. Wr ~onsider here a hole-closing problem for the
Porous-Fisher equation whereby there is initially a simply co. nected region (the hole) with a nonzero population
outside of the hole and a zero population inside. We outline how sc.°-similar solutions (of the second kind) describe
both circular and non-circular fronts in the hole-closing liv. it. ' uiuler, we present new experimental and theoretical
evidence to support the use of nonlinear degenerate diffusion "1 models for collective cell motion. Our methodology
involves setting up a two-dimensional wound healing « s th.t has the geometry of a hole-closing problem, with
cells initially seeded outside of a hole that closes as cells . vigrate and proliferate. For a particular class of fibroblast
cells, the aspect ratio of an initially rectangular wou. 1 inuicases in time, so the wound becomes longer and thinner
as it closes; our theoretical analysis shows that this beha. iour is consistent with nonlinear degenerate diffusion but
is not able to be captured with commonly use” " ~ear diffusion. This work is important because it provides a clear
test for degenerate diffusion over linear diff «sion in -ell lines, whereas standard one-dimensional experiments are
unfortunately not capable of distinguishing be. '2en f e two approaches.

Keywords: nonlinear degenerate diffusi- n; P rous-Fisher equation; hole-closing problem; cell migration assays;
collective cell motion; wound healing: se.” wmil rity of the second kind

1. Introduction

The use of reaction-difb sion ey "ations in mathematical biology is widespread [1, 2], especially for models of
collective cell motion in ar plics .1ons of wound healing [3-5] and tumour invasion [6-8]. The most commonly used
type of diffusion in these mc ' s is ~ick’s first law, which gives rise to a linear diffusion term. However, a deficiency
in this approach is tha’ such go. .rning equations do not allow for explicit descriptions of invading fronts. In an
attempt to address thi deficier °y, some literature covering mathematical models of cell migration and proliferation
has included studies o1 =actic .-diffusion equations with nonlinear degenerate diffusion [9—16]. These models allow
for solutions with . well-denned moving boundary at the front of the invading cell population. An ongoing challenge
in this area of res *arch is \ » identify the most appropriate choice of nonlinear diffusion. We continue this work in the
present paper by a, ~lvinc analytical and numerical techniques to study a hole-closing problem in the plane, focussing
on the role o’ .. ~'inear degenerate diffusion and supporting our study with experimental results from an in vitro cell
migration assa, (t'.at complements our recent study [17]).

*Corresponding author: scott.mccue @qut.edu.au
“*SWM and W1 are joint first authors.
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In this paper we study the most simple nontrivial reaction diffusion equation with nonline .r degenerate diffusion
that describes cell proliferation and migration, namely the Porous-Fisher equation

n
%:DV~((%) Vu)+/iu(l—%). M
This is a parabolic partial differential equation with nonlinear degenerate diffusion and ~ log.. *~ growth term [18-27].
In cell biology, u represents the density of a particular cell type, while x € RY, where N = . ? or 3. The diffusion term
in (1) describes migration (or cell motility) of the cell population, with n > 0 co’ esp »ing to a scenario in which
cells are more likely to migrate if crowded, while the logistic growth component *f (1 moaels cell proliferation with
a carrying capacity K. The limiting case n = 0 reduces (1) to the well-known the “isher-Kolmogorov-Petrovski-
Piskunov (Fisher-KPP) equation

%:szmm(l—%), @
for which cell migration is due to random cell motility that is independe it of .." density. As mentioned above, there
are a plethora of studies in cell biology and ecology that use (2) or rel. « mor 2ls. In much of this vast literature,
the Fisher-KPP equation has proved effective, and can successfully rep. ~ducc cxperimental behaviours; however, the
choice of linear Fickian diffusion (or n = 0 in (1)) is often also made becaus. of its simplicity, not necessarily because
of its biological relevance.

The main goal of the present study is to explore the role of no. 'inear degenerate diffusion in a simple model of
collective cell motion. As such, it is important to emphasise *~~ '"~>- * iture of the Porous-Fisher equation (1) with
n > 0 is that, unlike the Fisher-KPP equation (2) with linear diti. ~ion, it allows solutions with compact support. This
is a direct consequence of the term (u/K)", which vanishe ‘= the linut u — 0* (the diffusion is said to be degenerate
in the sense that as u — 0", the diffusion itself vanishes, an'. the equation changes from being of parabolic type
to elliptic; to see this, write v = u” to give the eikor ' equw ‘on dv/0t ~ [Vv|? in the limit # — 0%). Therefore,
it is possible to use the Porous-Fisher equation (1) to n.xac” well-defined fronts of cell populations advancing on a
region of zero population. On the other hand, even ~ith in1.'al conditions that have compact support, solutions to the
Fisher-KPP equation (2) have u > 0 for all x and ¢ > v, meaning information is travelling infinitely fast, which strictly
speaking is not biologically realistic.

The application we have in mind is a two- “uuc. ~ional cell migration assay (x € R?), with an invading population
of cells moving over a substrate with a sharp ront, ah¢ 1d of which the cell population is essentially zero. In particular,
we focus on the geometry in which there i~ iniu. v r simply connected region devoid of cells, which we refer to as a
hole or a wound. The resulting hole-clos’.1g p- oblent is (1) subject to initial conditions

ux.7)=_x), with Ix)=0 for xeQ0), 3)

where the simple closed curved dC (U, 'escribes the initial shape of the hole (or wound). The challenge is to solve
for u, but also to track the shape »nd speeu of the boundary of the hole d€Q(¢), especially in the hole-closing limit
t — t;. We are motivated by c .r re ent ([17]) and new experimental data from a wound healing (sticker) assay, as
illustrated in Figure 1(a)-(b). 1. *hi, particular example, the initial wound is circular in shape; however, a feature of
our experimental design is tF it we aic ~ble to make the initial wounds any shape we choose. More generally, the study
of hole-closing problems 7« cel” bio'ngy has applications to a range of experimental wound healing scenarios, such
as the circular wounds creawc ~ by Farrier assays [28—30], in a mammal’s ear [31] or cornea [32, 33] or a human skin
equivalent construct [3 7, 1or exauple; similar mechanisms and geometry are involved in cell bridging experiments in
tissue engineering [35 . Furthc motivation for our study arises from the lack of consensus when using (1) to model
cell migration on the ap, oori- .e choice of the diffusion exponent n; we aim to shed light on this issue.

The outline of our pa»er is as follows. In the following section we set up our subsequent analysis by nondimen-
sionaling the pro: lem and jresenting illustrative numerical solutions for the radially symmetric case of a circular hole
(the numerical sche e i~ summarised in the Supplementary Material). In section 3, we argue that for times leading
up to the holt .. "=~ time 7., the asymptotic behaviour of (1)-(3) in the neighbourhood of the point at which the hole
closes x, is equ v .ent to that for the Porous Medium equation (which is (1) with 4 = 0). For the radially symmetric
case, we revisit the role of self-similarity of the second kind for solutions to the Porous Medium equation, reproducing
some existing results by using an approach which is in some sense more transparent than that documented in the liter-
ature [36-38]. Numerical solutions are presented that illustrate how solutions to (1)-(3) with k-fold symmetry may or
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Figure 1: Experimen’.a 1mages of hole-closing and numerical solutions. (a)—(b) Experimental images from a sticker assay with the position
of the leading edge I ghlighted y yellow circles. The circular holes at # = 0 and 48 h are shown. The scale bar corresponds to 500 um. (c)—(f)
Density profiles for th dimensic aless Porous-Fisher equation with n = 0.5, 1,2, and 3, respectively. The red solid line corresponds to the density
profile at focusing time z.. ~ .. black arrow indicate increasing time. (g)—(h) Time evolution of the position of the leading edge for n = 0.5, 1,2,
and 3. Dashed i “es ... 7 ~orrespond to straight lines that merge with the time evolution of the position of the leading edge. All the numerical
solutions are obtai. ~d yn 0 < r < 2 with a nonuniform mesh of 4001 nodes, with an initial circular-hole at R(0) = 0.5. Zero net flux boundary
conditions are impost ' at both boundaries » = 0 and 2.



may not evolve to a circle in the hole-closing limit, depending on the diffusion exponent n, as er the analogous case
of the Porous Medium equation [38, 39]. In section 4, we study solutions that are not self-si a.. ~ in the hole-closing
limit. In particular, we choose initial conditions for which the hole is initially rectangular and sh. v how the hole
becomes long and thin in the hole-closing limit, again following the behaviour of the Po ous vledium equation [40].
By comparing with new experimental data from recently developed sticker assays (de. -ibr d in the Supplementary
Material), we demonstrate how to estimate the exponent #z in (1). Finally, we close thc ~aper . ° section 5 with a sum-
mary and a discussion about how our results provide support for the use of nonline»r dege. ~rate diffusion in models
for collective cell motion.

2. Governing equations and preliminary numerical results

2.1. Nondimensionalisation

As discussed in the Introduction, the model we focus on is the Poro .s-Fish~r equation (1), which is the simplest
model for collective cell motion in a two-dimensional assay that incluc »< .onli1 ear degenerate diffusion. The only
dependent variable is the cell density and, as a consequence, this mod." impli~#*_y assumes that an excess of nutrients
is available so that cell migration and cell proliferation are not affected by . vy lack of nutrient availability [41].

We nondimensionalise (1) by scaling cell density with respect . carryir 2 capacity K and choosing the represen-
tative length and time scales to be VD/2 and 17!, respectively. A. <uch, _ar dimensionless Porous-Fisher equation,

%:V~(u”Vu)+u(l—u) m xeR2\ Q) @)

does not involve any parameters apart from the diffusion ¢ “oc ient n > 0. The dimensionless version of the initial
condition (3) will, however, depend implicitly on the d* ~ensic ‘al parameters. For example, as we discuss shortly, for
a wound that is initially circular, the density u = u(7, f) is 7 1. ~ction of r and ¢, and the relevant initial condition is

u(r,uv, = oy — R(0)), 5)

where H(r) is the Heaviside function and R(™ ‘- the initial radius of the wound. In this case, the dimensionless
quantity R(0) is the dimensional initial radiuc scaled . v VD/A.
We may formulate our hole-closing probic. ~ as a aoving boundary problem by coupling (4) with the conditions

A= @ =0 on dQ®), 6)
ov

where here du/dv is a normal deriv- a. > The second condition in (6) enforces conservation of mass at the interface.

2.2. Numerical results for radic vy s mmetric problem

We now provide numerical . ~v ¢s for radially symmetric hole closing, which is governed by

ou 10 ( ,0u
E—;a—r(ru E)-FM(]—M), r>R(t), (7)
uzu"a—u =0 on r=R(), 8)
or

subject to the ini‘.al condition (5). The numerical approach we use, based on applying a straight-forward finite-
difference schem on anu even grid, is summarised in the Supplementary Material.

In Figure 1(c)-\™ we resent density profiles for the four exponents n = 0.5, 1, 2 and 3, each with R(0) = 0.5. In
all four cases . -~ that the solutions have compact support so that u > O for r > R(¢). Further, we note that the radius
of the hole, R(:, r ccreases in time until R — 0 as ¢ — ¢, where ¢, is the hole-closing time. The dependence of R()
on ¢ is shown in b ~ure 1(g). We see here that the contact line » = R(f) moves more slowly as the diffusion exponent
n increases, which is to be expected, since, for a fixed u, the nonlinear diffusion term ©” decreases as n increases.



One interesting observation is that the slope of the density profiles at the contact line = 7 (¢) vanishes for n < 1,
is a nonzero constant for n = 1, and is infinite for n > 1 [15, 24]. Indeed, a simple leadir , ¢ Jer balance near the
contact line for R(¢) > 0 suggests that u ~ B(¢) (r — R(®)'/", which explains these qualitative behavio. :s.

Another observation about the propagation of the contact line is that R(¢) appears tc fol w a power-law R(f) ~
u(t. — ) in the hole-closing limit t — #,. This point is demonstrated in Figure 1(h, wk re the solid curves are
numerical results corresponding to Figure 1(g). As these curves appear to approach a1’ ~e on .” = log-log, a power-law
behaviour is anticipated. The slope § is dependent on n, as we discuss in detail in the follo.. ‘ng section.

3. Self-similar solutions

3.1. Similarity solutions for radially symmetric geometry
In the limit the hole closes, ¢ — -, we look for a similarity solution

4

u~ (. —0"U(p), where p=-—, ©)
(=¥
where at this stage the exponents @ and § are unknown. To proceed we ~qui.. e partial derivatives
ou 1 dU
—_— = tc —t a— _ U + —1. 10
ot (te =1) ( aUt by Gy ) (10)
au ATT
o =te—0) “—, 11
or ( / oo 11)
19 Ou +1)- 'd dU
— || =t~ T ——pU"— . 12
rar(m 6r) ( ) o dp P I (12)

We see that du/dt = O((t. — £)*Y), u = O((t. — H)*) anc « = U((t. — 1)**). Therefore, the source terms « and u? in
(7) do not contribute to leading order, and instead *he selt- “imilar behaviour is driven by nonlinear diffusion via the
Porous Medium equation

0 10 S
(')_Ltt:,_f‘_'f(runa_l:)’ r> R(1). (13)
Furthermore, we even can keep the first sour ‘e term u s0 that
‘u 1o ou
— -~ —— (" — | +u, R(); 14
PR e ar) u, r>R@ (14
in this case, the change of variables
.1
=y, F== (e 1) (15)
n
leads again to the Porous Medir n ec 1ation
on 10 o
— = ——|rid"—|, > R(7). 16
ot ror (ru 6r) r> R (16)

We shall continue with (13) v - sir ply note that our analysis of the Porous Medium equation holds exactly for (14).

By substituting (1( ) and (1) into (13), we find that

28— 1
o= (17)
n
28-1 du 1d dU
—(B—)U+Bp—=——(pU"—), P> (18)
do  pdp dp

Here the simila i, exponent S cannot be determined by dimensional analysis of the governing equation (13) or by
applying global ¢ nservation of mass; instead, it acts as an eigenvalue for a boundary-value problem associated
with (18), which we discuss below in some detail. This self-similarity of the second kind makes the problem rather
challenging.



3.2. Relationship to other studies

At this point it is worth making two comments on this formulation. First, the hole-closir , pi. “lem for the Porous
Medium equation (13) has been studied by a number of authors [36-39] (including for the s~ecial case n = 3 [42, 43],
which corresponds to an inwardly-filling viscous gravity current). In all of these studies. .he § >verning equation (13)
is rewritten using the so-called pressure variable v = " and the subsequent analysis inv. 'v s similarity solutions of
the form v = (7, — 1)1 V(p). Further changes of variables are required to complete w. ~ anai, “is, which to a certain
extent has the effect of hiding the physical interpretation.

Second, the hole-closing problem for the fourth-order analogue of (13), the th'. filr -« ™ation

3
Ou_ 190\ s R0 (19)
or3

o ror
has been studied recently by Zheng et al. [44, 45]. This analogue shares some 1. ~ture  of the hole-closing problem for
(13). In the spirit of [44], and in an attempt to provide a more transpare (t an»'_<is than that which uses the pressure
variable v = ", we shall concentrate on the dependent variable # (and no * .nd n ste some similarities and differences
with [44] later.

3.3. Far-field conditions

To formulate the appropriate boundary-value problem associa.. 1 wiui (18), we first derive the far-field condition
as p — 0. As we do not want du/0t — oo as t — ¢, for a fixed » >~ 0+ other words, our solution cannot blow up at
any point other than r = 0), we conclude from (10) and (17) tha.

28 -1 i,
_(ﬁ—)U+ﬁp°— % pow, 20)
n do

which implies
U~ac”m a5 p— co. 21

This argument is used extensively in dealing with simila. ‘ty solutions [46, 47]. The constant a in (21) is arbitrary;
however, the differential equation (18) is invari~~* nnder the transformation

U—e¢l, p-o e”/zp, (22)

thus, without loss of generality, we can sr . a = 1 ana recover any solution we like by stretching U and p appropriately.
Therefore we have as our far-field condi. ~r

U~ p® D a5 p— co. (23)

Numerically, we will need to trur =0 < p < 00 to 0 < p < pe, and then interpret (23) as two boundary conditions

U :pgﬂ_])/"ﬁ, on P =P, 24
du 26 -1 1
v _ (28 PRI on b = pe. (25)
do np

Thus we can treat (18) wvitn (24)-\25) as an initial-value problem starting at p = p,.

3.4. Shooting method «. 1 ner -field conditions

For a fixed n we ha 'e a one-parameter family of initial-value problems, each for a different value of 8. Our
strategy is to inte oret thes : via a shooting method, where we start at p = p, and shoot backwards until

U=0 on p=yu (26)
We wish to detei. ine the appropriate value of 8 for which (8) is satisfied, or alternatively,
dUu

U'— -0 as p—ou'. 27
dp

6



In addition to determining the appropriate value of 3, the parameter 4 must also be computed 7 , part of the numerical
solution. It will turn out that for each value of n, there are infinitely many pairs (u, 8) that s7 15" (24)-(25) and (26),
but only one pair (u., ;) which also satisfies (27). In order to proceed, we need to analyse possiu. > behaviours of
solutions to (18) as U — 0.

Case 1, 8 < B.. By considering (18) directly, we see that, provided u # 0, for (26) to hola ' must have

du d dU
— ~—|U"— *. 28
ﬂudp dp( dp) as p—ou (28)
Integrating, we find
v
pul ~ U”E +C as p—ou', (29)

where C is a constant. In the generic case where C # 0, the two terms or e richt-nand side balance, giving
U~Clp-w/™ as p—op. (30)

Following [44], we call this case generic touch-down.
Case 2, 8 = B.. For the special case in (29) in which C = 0, ‘~e le,. »~.d side must balance the first term on the
right-hand side, giving

U~ Bepe)"(p = ey as p— pl. (€29)
Note in this case, (27) is satisfied, so this is the physical' relevan. solution we are after. We call this nongeneric
touch-down [44].

Case 3, 8 > 8.. Here we now have u = 0, which mean. .. 2t ali *he terms in (18) balance in the limit. By employing a
power-law ansatz, we find that

\1/n
n \ T +
~ — 0", 2
U (4(n+1)/ P as p—0 32)

We call this touch-down at the origin [44].

In summary, the numerical task is to vaz_* 8 until 1e special borderline case 2 (nongeneric touch-down) is deter-
mined for 8 = . and u = u.. To ensure 'ie bo.~r! ae case is accurately identified, we utilise a high-order implicit
finite-difference scheme to discretise (1), w'.h local error tolerance set to near machine precision. The contrasting
touch-down behaviours of cases 1 and _ ~ ,vidr a convenient means of bracketing the critical value ., and hence
convergence to this value is achieved .terative.  chrough repeated bisection of the interval.

Some results of this task are pr .se..»d in Figure 2. In Figure 2(a) the plots are for n = 0.5. We can see clearly
see the two representative profiles for 8 < p. (generic touch-down) have infinite slope at p = u; indeed, for this value
of the diffusion exponent n, we 1ave U ~ C(p — u)*3. On the other hand, the two representative profiles for 8 > .
(touch-down at the origin) are .~ flat in the limit (here U ~ p*/144). The borderline case 8 = S. has U scaling
like (p — p)?, which also has a zero . e, but does not approach the origin. The other three examples of n, shown in
Figure 2(b)-(d), also show ,rofi’ zs fo- each of the three cases described above. We see that qualitatively the behaviour
changes, depending on the va. e of .ne exponents in (30)-(32). In Figure 2(e)-(f) we show only the physically relevant
similarity solutions wi*'. p = f3.. .1gain, the qualitative behaviour as these curves intersect the p-axis depends on the
exponent in (31). In j articular we observe that the similarity solutions for n = 0.5 and 0.75 have zero slope at the
contact line, while the s. "itior ; for n = 1.5, 2 and 3 have infinite slope. The borderline case is n = 1, where the slope
is finite.

As a check o our sin larity solutions, we present in Figure 3 profiles of U versus p (where we recall that U =
u(r, 0)/(t, — )#F-L. " and o = r/(t. — t)°) that are computed with our numerical scheme for various times. The figure
includes plot ... “>r values of n, namely n = 0.5, 1, 2 and 3. For each value of n, we see the initial condition is a
scaled version « € “ae Heaviside function (5), while as time increases, the numerical solutions of (7) (blue solid lines)
approach the simi. ‘rity solution (red dashed line) in the limit # — ¢ . This comparison between our numerical solution
and our similarity solution provides confidence that our analysis in Section 3 is correct. Note we had to rescale our
similarity solutions using (22) in order to match the point at which U = 0 with the numerical solution.

7



(a) 2.5¢ — nongeneric touch-down / .7’;’ (b) 2.5

--- generic touch-down /o
2 | _._touch-down at the origin ’,,0"

/

Figure 2: Similarity solutions ge .erat' 4 by the shooting method. (a) is for n = 0.5. Here the dashed (green) curves, for 8 = 0.6 and 0.75, are
examples of generic touch-down, *he ‘ Jlid (F ue) curve, for 8 = B, = 0.909, is the physically relevant nongeneric touch-down solution; while the
dot-dashed (magenta) curves, for 8 = * 05 and 1.2, are examples of touch-down at the origin. Using the same convention: (b) is for n = 1 and
B=0.6,0.7,0.856, 1 and 1.7, (c) is for n = 2 and B = 0.58, 0.65, 0.796, 0.9 and 1.5; while (d) is for n = 3 and 8 = 0.67, 0.7, 0.762, 0.85 and 1.5.
In (e)-(f), the physically rel vant nong 1eric touch-down solutions are shown for n = 0.5 (8 = 8. = 0.909), 0.75 (0.880), 1 (0.856), 1.5 (0.822), 2
(0.796) and 3 (0.762), with v. = black 2 .ow black arrows indicating increasing n.
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We close this subsection by recalling the analogue problem for the thin film equation 7.9). As explained by
Zheng et al. [44], the (circular) hole-closing problem for this fourth-order equation is simils. «. our problem (which
is essentially for the Porous Medium equation (13)) in that there are self-similar solutions of the seco. 1 kind. Further,
our procedure for computing these similarity solutions is based on that presented in [44]. 7.1 pa ticular, like in [44], we
use a type of shooting method to explore numerical solutions for a range of parameter v. e and choose the relevant
solution by ensuring the near-field limiting behaviour matches a physical constraint. T. » ma. Jifference between our
study and that in [44] is that we have one free parameter 8 and only three near-field ~ntion. ‘which we call case 1, 2
and 3). On the other hand, the thin film equation is higher order and so Zheng et al s stt ?_- is more complicated. They
have a free parameter in the far-field condition as well as the similarity exponent ." “nr, consequently, they have more
than three options for their near-field behaviour. Another further complicatior “~r the "“in film model in [44] is that
there needs to be a prewetting film which regularises a well-known singularif / in stre s at the moving contact line.

3.5. Similarity solutions with k-fold symmetry

For the Porous Medium equation, the stability of the radially symmet ic s° aila ity solutions (9) is known to depend
on the diffusion exponent n. In particular, if we consider stability of *he mnterfar : R(f) = u(t. — t)? by adding a small
perturbation y(¢) cos k6, then for each k > 3, the perturbed solution is stau.~ for n > n; and unstable for n < n;, where
ny is some borderline exponent that can be computed numericall - [38, 39 By stable, we mean that y/R — 0 as
t—1,.

We postulate that the same type of stability holds for the full r . ~ous Fisher equation (4), and now consider a
relevant example for k = 4. Suppose the initial condition is . square-shaped hole with a side of length unity. Here
the solution has a 4-fold symmetry, so there are two options for u.> shape of the interface in the limit it closes. The
first is for n > n4, where we assume ny = 0.32 [39]. For « vau,, = *n Figure 4(a) we show the shape of the interface
for a numerical solution with n = 0.5. Since the radially sy. » .etric similarity solution (9) is stable for n = 0.5 to a
4-fold perturbation, we expect the interface for the full " 'tion ‘o approach a circle at extinction. While it is difficult
to compute such two-dimensional solutions accurately ncr ¢..éinction, our numerical results in Figure 4(a) appears
to show the hole becoming more circular as it clos.~ <. = >port this idea, we have in Figure 4(b) plotted a kind of
aspect ratio A4, which is the ratio of the diagonal of the “ole to the x-intercept. Again, it is difficult to tell given the
scales involved, but it is not unreasonable to believe that Ay is tending to unity at extinction, which should happen if
it is becoming more circular.

Also shown in Figure 4 is an example fo. * < ny4, vhich demonstrates the second option for the shape of the hole
as it closes. In Figure 4(c)-(d) the result are fo. - = 0.2, for which we postulate the interface is unstable. Given
the solution is rotationally symmetric (* ith - -fold symmetry), this instability manifests itself by forcing the hole to
approach a (noncircular) 4-fold symm~tric 1ape at extinction, which is like a square with rounded corners. This type
of evolution is suggested in Figure 4 ). Furthe., such a 4-fold symmetric shape will have a value of Ay which is not
unity. The time-dependence of Ay .n k1 ve 4(d) appears to support the idea that Ay /4 1 in the hole-closing limit.

We expect that qualitatively <* ilar results could be presented for any k-fold symmetric initial condition, where
k > 3, with the hole approachi- g a r ircle in shape for n > n; and a k-fold symmetric shape (which is like a regular
k-sided polygon with rounded c. ~ ers) for n < n. On the other hand, for £k = 2 we expect the similarity solution
to unstable for all n, so that solutions vith 2-fold symmetric initial conditions are no longer self-similar in the hole-
closing limit [38, 40]; inst ad, t".e in’ rface becomes oval in shape with an increasingly large aspect ratio which scales
like A = O((t. —1)"'/?). We ar. s« this possibility further below in Section 4 where we focus on a rectangular-shaped
initial hole.

All of these stabii ty resuli , are analogous to those for contracting bubbles in a Hele-Shaw cell for which the
viscous fluid is of 2 po. ~='.w type [48, 49] or for which there is a competition between surface tension and a
kinetic-type bour sary cc. dition [50, 51]. For these problems, there are also linear stability results that show a circular
interface may be stable o unstable, depending on a parameter value, leading to the existence of noncircular self-
similar solutions (tu..” .olve to shapes which appear like k-sided polygons with rounded corners). Further, 2-fold
symmetric pe *uiu. .. s are unstable for these Hele-Shaw problems, leading to interfaces that approach a slit in the
hole-closing lin.*
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ime’ sionle s) Porous-Fisher equation on 0 < x < 2 and 0 < y < 2 with a 401 x 401 nonuniform mesh, with an
initial square hole of length 0.5 cenu. ‘at o .gin.
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4. Rectangular shaped wounds

As just discussed, linear stability analysis of the radial similarity solutions shows that 2-rold sy. metric perturba-
tions grow in time [40], which suggests that an initially rectangular hole will become lor _e1 nd thinner as it closes.
We use this property to demonstrate how the diffusion exponent n can be determined " v fit .ng to aspect ratio data
from a rectangular wound healing assay.

4.1. Sticker assays

We briefly summarise the sticker assays reported in [17]. These two-dime.. “or al wound healing assays were
performed using (NIH 3T3) fibroblast cells. A double-sided sticker was cut *> a . ticular wound shape (circle,
triangle or square) using a laser scribe, and then attached to a cell culture dis! . The f. roblast cells were placed in the
dish and incubated overnight. The sticker was removed to reveal the wound ‘rea of f e required shape. As the cells
migrated into the vacant space, images were taken at various discrete tie . ana s...sequently analysed using ImageJ
[52] to determine the wound area at each time point (see Supplementary Maf .1a.).

In [17], we simulated the sticker assays (with circular, triangular and sy.are w .unds), using a discrete random walk
model on a hexagonal lattice incorporating crowding effects via an exclu. ~n process [53-55] (whose continuum-limit
description is the two-dimensional Fisher-KPP equation). We estimated thc cell proliferation rate A = 0.036 /h and
the carrying capacity K = 1.4 x 1073 cells/um? by counting cel's in . ™p) regions of a corresponding proliferation
assay and calibrating to the logistic growth model. The random wa.- model was then used to estimate the diffusion
coefficient D = 1200 + 260 m?/h which can be used for the ™ _I._. 1L, . equation.

4.2. New experimental results

We now report on new sticker assays performed for rectan_~ iar-shaped wounds using the same protocols as in [17].
For example, in Figure 5(a) we show experimental ima_c. for . 1 initially rectangular wound whose aspect ratio is 2.
These three representative images are taken for times # = 4, 5 and 57 h. By approximating the wound boundary by
a rectangle at each time step (see Supplementary .. ~w..."* we are able to record the aspect ratio versus time for 3
replicates, and plot the result in Figure 5(d).

4.3. Fitting for the diffusion exponent n

To calibrate our experimental data with tu. Porov s-Fisher equation (1), we first take the values 4 = 0.036 /h and
K = 1.4 x 1073 cells/um? from our previ yus study 17] described above. Then, for each fixed value of n we choose
to deal with, we fit for D by comparing »ur * ame cal results of (7)-(8) with initial condition (5) with our previously
obtained experimental data for the wr ana .. =a " vith an initially circular wound [17]. We use a simple least-squares
error to identify the most appropriat. ~hoice for D. Our results give estimates of D and an interval of uncertainty in
our estimates (Supplementary Matcrial).

For each pair of n and D (to’ <. »r with 1 = 0.036 /h and K = 1.4 x 1073 cells/um?), we then solve the Porous-
Fisher equation (1) numericall> witl a rectangular-shaped hole that represents the new experimental results shown in
Figure 5(a). As time increasrs, tue hole begins to close, as expected. Representative numerical results are shown in
Figure 5(b)-(c) for n = 1 2 .d 2 {note that the initial condition for these numerical solutions involves setting u = 1
outside of the hole, trunca. 1f r nu .ierical purposes at finite values of x and y). Crucially, we plot the aspect ratio of
the closing hole in Figur= S(e) . - .arious values of n and also include the experimental data in the same image. This
strategy allows us to ¢ 100se t. > value of n which best matches the experimental data. A least-squares error between
the experimental aspec ratio ar 1 the numerical results is shown in Figure 5(f). We see that, of the values of n we have
simulated, the cho’- n = I appears to provide the closest match. Further details of the strategies employed in this
subsection are pr vided i, the Supplementary Material.

5. Discussic.

In this paper . = have studied various properties of solutions to the so-called hole-closing problem for the Porous-
Fisher equation (1). We have summarised self-similar solutions of the second kind, which apply in the neighbourhood
of the moving front in the limit the hole-closes. It turns out that the dynamics in this limit are governed by the
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n = 1,2, and 3, and the experimental data. (f) The least-squares differencc of the aspect ratio profile between the experimental data and simulation
results for n = 1,2, and 3. Black arrow indicates the direct’ .. “increasing n. All the numerical solutions are obtained by solving two-dimensional
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hole size is 4.20 mm X 2.22 mm. For each choice of n, “e value ¢ ’ D is estimated by calibrating the Porous-Fisher equation to the experimental
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Figure 6: Aspect ratio: >f level sets u = i for the Fisher-KPP equation. the Fisher-KPP equation (2) is simulated with the same initial condition
as the simulation in Figure 5. Here we have used D = 1000, 1 = 0.036 /h, K = 1.4 x 10 3cells/um?. 6x = 7.5, 6y = 5, and 6t = 5 x 1073,
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Porous Medium equation and therefore many results carry over from previous studies of the equation [36-39]. In
contrast to those studies, we have formulated our analysis in terms of the original depend .. ~ariable and not the
so-called pressure variable v = u”"; in this way our approach is more like the recent analogous . ady of the thin
film equation [44]. Stability analysis [40] shows that k-fold (with k£ > 3) symmetric init'al h le-shapes (like regular
polygons) may become circular in the hole-closing limit, or may evolve to other non-. ‘rcr ar shapes that keep the
symmetry, all depending on the value of the exponent n. Further, 2-fold symmetric in: ‘2l couw. “tions (like rectangles)
will become long and thin in the limit. Our numerical solutions confirm these predictions.

The present study is inspired by our recently published experimental data fre a a ' - ~-dimensional sticker assay
with circular, square and triangular shaped wounds [17]. These experiments are . ~oc :lled by hole-closing problems
as there is an initially vacant wound area which is ultimately closed up as the ~=lls 1.."~rate inwards and proliferate
to occupy the initial wound space. In this paper we have presented new ¢ (perime “tal results from sticker assays
with rectangular-shaped wounds. We find the aspect ratio of the wounds inc. =ases ir time in a way that agrees with
our model using the Porous-Fisher equation (1). For various values of », /e aic «ole to fit for the diffusivity D by
minimising the error between the numerically computed aspect ratio ar d th- co vesponding experimental data. Our
results suggest that, for this cell line, a reasonable estimate for the exponc... nis . = 1. This result is compatible with
other studies of cell migration using the Porous-Fisher equation [10, 15). ™rtuermore, this estimate for # is consistent
with our previous theoretical prediction [14], which suggests that for cells t. at themselves have an aspect ratio of N,
the appropriate choice of nis n = N — 1. While NIH 3T3 fibrob’ast ¢."'s a~. not at all the same shape, many have an
aspect ratio of roughly two.

To put these results in context, we recall how difficult it h- ~__.. .o .dentify an appropriate choice of the diffusion
exponent n in (1) when fitting with data from wound healing assa, or experiments with traditional wound shapes. For
example, for (approximately) one-dimensional fronts that ..” ~ from scratch assays with PC-3 prostate cancer cells,

Jin et al. [10] calibrated the Porous-Fisher equation to the a. te ior the examples n = 0.5, 1, 2, 3 and 4. While it was
concluded that the choice n = 1 outperforms the othe. . the ¢ idence was not straightforward as the corresponding
estimates for the diffusion coefficient D varied greatly ¢ 'e1 . range of initial conditions. In their study of circular
wounds, Sherratt & Murray [12] briefly comparecd .-~eric 1 simulations of the Porous-Fisher (1) with n = 4 with
experimental results from rabbit ears [31] and attemp.. 1 to fit the data for D. While they observed the fit was not
impressive, they did not attempt to vary n but instead added other features of the model (to account for biochemical
mediators). A further example is the study of “enge. ~ et al. [13], who concluded that MG-63 bone cancer cells spread
out radially in a way that was well represe: -=d by tt : Porous-Fisher with n = 1, but again they did not attempt to
fit the data with other values of the diffus’on ex, ~nr at. We conclude that our approach of using rectangular-shaped
wounds in a sticker assay has the attracti e fe' cure of providing an additional means to fit for the diffusion exponent n
which has thus far been missing in the .. == are.

It is worth reflecting on how pe rly the . sher-KPP equation (2) performs at identifying certain properties of
moving fronts at they evolve. As Jdis. “ssed above (and is well known), the Fisher-KPP equation does not allow
solutions with compact support and so struzgles to model scenarios with well-defined fronts. In particular, we are
concerned with experiments wt .re t dnts of cell populations invade an empty space, such as in our two-dimensional
wound healing assays. For this “vr > of experiment, in order to apply the Fisher-KPP equation one must arbitrarily
nominate a level set u = &1 as represe.. ‘ng the moving front and then track properties of that level set as it evolves. For
example, we have solved (") nu aerically for a case with a 2 X 1 rectangular shaped wound and plotted in Figure 6 the
aspect ratio of a number of u.” erer level sets versus time. In all cases, the aspect ratios start at approximately A = 2
and then increase monr .ouically vith time which is generally consistent with the experimental data (also included in
this figure for referen e). How ver, the actual values the aspect ratios take are very different for each level set and
clearly there is no obviu "< chr .ce as to which level set is most appropriate. As such, as a predictive tool, solutions to
the Fisher-KPP er uation ¢2) are not at all useful for describing this particular experimental property.

One possible eature o our experiments that is not included in the model (1) is chemotaxis, whereby cells produce
a chemical signal, ¢ ~he jo0attractant, with concentration g, which can promote directional motion as the cells prefer-
entially movc . - “own a gradient of g [56]. The inclusion of chemotaxis in mathematical models for wound healing
and tumour gro 't'.is commonplace [4, 5, 57, 58]. An extension of our model (1) which incorporates chemotaxis could
be

ou u\" u
—_ = . —_ il — y > —_— 33
” v (D(I() Vu /\/qu,)+/lu(1 K)’ (33)
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% = D, Vg + kju — kog, (34)
where y is the chemotactic sensitivity coefficient, D, is the diffusivity of the chemotactic chemicai, % is the rate at
which cells produce the chemotactic chemical, and k; is the rate at which the chemotactic che: ical undergoes natural
decay [59, 60]. One significant challenge would be to obtain reasonable estimates for t..~ fo .r additional parameters
Dy, x, ki and k; by calibrating the solution of the coupled system (33)-(34) with th.  expe. mental data. We have
not pursued this approach for two main reasons. First, we have already been able o obi. » a good match with the
data using the simpler model (1) and we were able to use this calibrated model o di - conclusions about the use
of degenerate diffusion for cell migration. Second, as is often the case with two- “m nsional wound healing assays,
we have not taken any measurements of concentrations of chemoattractants: *ithou. <uch measurements, there is
obvious metholodogy for estimating the four additional parameters in the e tended wodel (33)-(34). For this more
complicated modelling to be useful, we suggest experimentalists make such 1. easurer ents.

In summary, we have provided a range of evidence to support the uc  >f nu....uear degenerate diffusion via the
Porous-Fisher equation (1) for problems involving invading fronts. In pa' iicul ., v - comparing simulations with aspect
ratio data taken from sticker assays with rectangular wounds, our metho.ologv provides a clear test for degenerate
diffusion over linear diffusion in two-dimensional cell migration experiu. nts.
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1. Highlights

e The Porous-Fisher equation has a degenerate diffusion term and a 1o, *stic growth term

It allows for solutions with compact support and therefore ~an c. ~tn~_ moving fronts

Self-similar solutions of the second kind describe circul=r h~'~ -~ 3ing

Numerical hole-closing solutions compare with new experin.. ~tal wound healing assays

We provide a clear test for degenerate diffusion over L ‘e .r diffusion for cell migration
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