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Abstract

In this paper, we propose a novel unstructured mesh control volume method to deal with the space fractional
derivative on arbitrarily shaped convex domains, which to the best of our knowledge is a new contribution to the
literature. Firstly, we present the finite volume scheme for the two-dimensional space fractional diffusion equation
with variable coefficients and provide the full implementation details for the case where the background interpolation
mesh is based on triangular elements. Secondly, we explore the property of the stiffness matrix generated by the
integral of the space fractional derivative. We find that the stiffness matrix is sparse and not regular. Therefore,
we choose a suitable sparse storage format for the stiffness matrix and develop a fast iterative method to solve
the linear system, which is more efficient than using the Gaussian elimination method. Finally, we present several
examples to verify our method, in which we make a comparison of our method with the finite element method for
solving a Riesz space fractional diffusion equation on a circular domain. The numerical results demonstrate that
our method can reduce CPU time significantly while retaining the same accuracy and approximation property as
the finite element method. The numerical results also illustrate that our method is effective and reliable and can
be applied to problems on arbitrarily shaped convex domains.

Keywords: control volume method, unstructured mesh, fast iterative solver, space fractional derivative, irregular
convex domains, two-dimensional

1. Introduction

In the past two decades, fractional differential equations have been applied in many fields of science [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12], in which space fractional diffusion equations are used to model the anomalous transport of solute
in groundwater hydrology [13, 14]. For space fractional diffusion equations with constant coefficients, analytical
solutions can be obtained by utilising the Fourier transform methods. However, many practical problems involve
variable coefficients [15, 16], in which the diffusion velocity can vary over the solution domain. The work involving
space fractional diffusion equations with variable coefficients is numerous. Meerschaert et al. [13, 17] considered
the finite difference method for the one-dimensional one-sided and two-sided space fractional diffusion equations
with variable coefficients, respectively. Zhang et al. [18] explored the homogeneous space-fractional advection-
dispersion equation with space-dependent coefficients. Ding et al. [19] presented the weighted finite difference
methods for a class of space fractional partial differential equations with variable coefficients. Moroney and Yang
[20, 21] proposed some fast preconditioners for the numerical solution of a class of two-sided nonlinear space-
fractional diffusion equations with variable coefficients. Chen and Deng [22] discussed the alternating direction
implicit method to solve a two-dimensional, two-sided space fractional convection-diffusion equation on a finite
domain. Wang and Zhang [23] developed a high-accuracy preserving spectral Galerkin method for the Dirichlet
boundary-value problem of a one-sided variable-coefficient conservative fractional diffusion equation. Liu et al.
[24] developed a new fractional finite volume method for solving the fractional diffusion equation with with a
spaceCtime dependent variable coefficien. Li et al. [25, 26] developed novel finite volume methods for Riesz space
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distributed-order diffusion equation and the Riesz space distributed- order advection-diffusion equation. Feng et al.
[27] proposed the finite volume method for a two-sided space-fractional diffusion equation with variable coefficients.
Chen et al. [28] considered an inverse problem for identifying the fractional derivative indices in a two-dimensional
space-fractional nonlocal model with variable diffusivity coefficients. Jia and Wang [29] presented a fast finite
volume method for conservative space-fractional diffusion equations with variable coefficients. In [30], Feng et al.
presented a new second order finite difference scheme for a two-sided space-fractional diffusion equation with variable
coefficients. Chen et al. [31] presented numerical methods and analysis for a multi-term time-space variable-order
fractional advection-diffusion equations and applications. Liu et al. [32] proposed numerical methods for solving
the multi-term time fractional wave equations.

In fact, many mathematical models and problems from science and engineering must be computed on irregular
domains and therefore seeking effective numerical methods to solve these problems on such domains is important.
Although existing numerical methods for fractional diffusion equations are numerous [33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43], most of them are limited to regular domains and uniform meshes. Research involving unstructured
meshes and irregular domains is sparse. Liu et al. [44] presented unstructured-mesh Galerkin finite element method
for the two-dimensional multi-term timeCspace fractional Bloch-Torrey equations on irregular convex domains.
Fan et al. [45] presented unstructured mesh finite element method for the two-dimensional multi-term time-space
fractional diffusion-wave equation on an irregular convex domain. Yang et al. [46] proposed the finite volume
scheme for a two-dimensional space-fractional reaction-diffusion equation based on the fractional Laplacian operator
−(−∇2)

α
2 , which was computed using unstructured triangular meshes on a unit disk. Burrage et al. [47] developed

some techniques for solving fractional-in-space reaction diffusion equations using the finite element method on
both structured and unstructured grids. Qiu et al. [48] developed the nodal discontinuous Galerkin method for
fractional diffusion equations on a two-dimensional domain with triangular meshes. Liu et al. [49] presented the
semi-alternating direction method for a two-dimensional fractional FitzHugh-Nagumo monodomain model on an
approximate irregular domain. Qin et al. [50] also used the implicit alternating direction method to solve a two-
dimensional fractional Bloch-Torrey equation using an approximate irregular domain. Karaa et al. [51] proposed a
finite volume element method implemented on an unstructured mesh for approximating the anomalous subdiffusion
equations with a temporal fractional derivative. Yang et al. [52] established the unstructured mesh finite element
method for the nonlinear Riesz space fractional diffusion equations on irregular convex domains. Fan et al. [53]
extended the unstructured mesh finite element method developed by Yang et al. [52] to the time-space fractional
wave equation. Feng et al. [54] investigated the unstructured mesh finite element method for a two-dimensional time-
space Riesz fractional diffusion equation on irregular arbitrarily shaped convex domains and a multiply-connected
domain. Le et al. [55] studied the finite element approximation for a time-fractional diffusion problem on a domain
with a re-entrant corner. To the best of our knowledge, the control volume finite element method (see Carr et al.
[56] for an illustration of the method applied to wood drying) has not been generalised to allow the solution of space
fractional diffusion equations with variable coefficients.

In this paper, we will consider the unstructured mesh control volume method for the following two-dimensional
space fractional diffusion equation with variable coefficients (2D SFDE-VC) [28] on an arbitrarily shaped convex
domain:

∂u(x, y, t)

∂t
=

∂

∂x

�
K1(x, y, t)

∂αu(x, y, t)

∂xα
−K2(x, y, t)

∂αu(x, y, t)

∂(−x)α

�
+

∂

∂y

�
K3(x, y, t)

∂βu(x, y, t)

∂yβ
−K4(x, y, t)

∂βu(x, y, t)

∂(−y)β

�
+f(x, y, t), (x, y, t) ∈ Ω× (0, T ], (1)

subject to the initial condition
u(x, y, 0) = φ(x, y), (x, y) ∈ Ω, (2)

and boundary conditions
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ], (3)

where 0 < α, β < 1, Ki(x, y, t) ≥ 0, i = 1, 2, 3, 4, f(x, y, t) and φ(x, y) are assumed to be two known smooth
functions. When the solution domain is rectangular Ω = (a, b)× (c, d), we define the Riemman-Liouville fractional
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derivative as [57]:

∂αu(x, y, t)

∂xα
= aD

α
xu(x, y, t) =

1

Γ(1− α)

∂

∂x

Z x

a
(x− s)−αu(s, y, t) ds,

∂αu(x, y, t)

∂(−x)α
= xD

α
b u(x, y, t) =

−1

Γ(1 − α)

∂

∂x

Z b

x

(s− x)−αu(s, y, t) ds,

∂βu(x, y, t)

∂yβ
= cD

β
yu(x, y, t) =

1

Γ(1− β)

∂

∂y

Z y

c
(y − s)−βu(x, s, t) ds,

∂βu(x, y, t)

∂(−y)β
= yD

β
du(x, y, t) =

−1

Γ(1− β)

∂

∂y

Z d

y

(s− y)−βu(x, s, t) ds.

a(y) b(y)

c(x)

d(x)

Figure 1: The illustration of a solution domain with curved boundary

When the boundary of the solution domain is nonconstant or curved, for example a convex domain shown in
Figure 1 with left boundary a(y), right boundary b(y), lower boundary c(x) and upper boundary d(x), we define
the Riemman-Liouville fractional derivative as [54]:

∂αu(x, y, t)

∂xα
= a(y)D

α
xu(x, y, t) =

1

Γ(1− α)

∂

∂x

Z x

a(y)
(x− s)−αu(s, y, t) ds,

∂αu(x, y, t)

∂(−x)α
= xD

α
b(y)u(x, y, t) =

−1

Γ(1− α)

∂

∂x

Z b(y)

x

(s− x)−αu(s, y, t) ds,

∂βu(x, y, t)

∂yβ
= c(x)D

β
yu(x, y, t) =

1

Γ(1− β)

∂

∂y

Z y

c(x)
(y − s)−βu(x, s, t) ds,

∂βu(x, y, t)

∂(−y)β
= yD

β
d(x)u(x, y, t) =

−1

Γ(1− β)

∂

∂y

Z d(x)

y
(s− y)−βu(x, s, t) ds.

Remark 1.1. When Ki(x, y, t) i = 1, 2, 3, 4 take the special form

K1(x, y, t) = K2(x, y, t) = − Kx

2 cos π(1+α)
2

,

K3(x, y, t) = K4(x, y, t) = − Ky

2 cos π(1+β)
2

,

equation (1) can be written as the following Riesz space fractional diffusion equation [49, 52]

∂u(x, y, t)

∂t
= Kx

∂1+αu(x, y, t)

∂|x|1+α
+Ky

∂1+βu(x, y, t)

∂|y|1+β
+ f(x, y, t), (4)
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where

∂1+αu(x, y, t)

∂|x|1+α
= − 1

2 cos π(1+α)
2

�
∂1+αu(x, y, t)

∂x1+α
+

∂1+αu(x, y, t)

∂(−x)1+α

�
,

∂1+βu(x, y, t)

∂|y|1+β
= − 1

2 cos π(1+β)
2

�
∂1+βu(x, y, t)

∂y1+β
+

∂1+βu(x, y, t)

∂(−y)1+β

�
.

One important application of equation (4) is in the study of cardiac arrhythmias. In two dimensions, the fractional
FitzHugh-Nagumo monodomain model can be rewritten as a two-dimensional Riesz space fractional reaction-diffusion
model, which can be used to describe the propagation of the electrical potential in heterogeneous cardiac tissue [49, 58].
This electrophysiological model of the heart can describe how electrical currents flow through the heart controlling
its contraction and can be used to ascertain the effects of certain drugs designed to treat heart problems.

The major contribution of this paper is as follows.

• Different from [46] and [51], we consider the control volume method for the two-dimensional space fractional
diffusion equation with variable coefficients, in which the space fractional operator is either the Riemman-
Liouville fractional derivative or Riesz space fractional derivative. To the best of our knowledge, this is a new
contribution to the literature.

• We propose a novel technique utilizing the control volume method implemented with an unstructured tri-
angular mesh to deal with the space fractional derivative on an irregular convex domain, which we believe
provides a very flexible solution strategy because our considered solution domain can be arbitrarily convex.
Compared to the finite difference method in [49, 50], our method requires fewer grid nodes to generate the
meshes in the solution domain partition.

• For the methods considered in this paper, we construct the control volumes using triangular meshes and
transform the problem (1) from the solution domain to a single control volume. Then we integrate problem
(1) over an arbitrary control volume and change the control volume integral to a line integral over the control
volume faces, which is approximated by the midpoint approximation. Moreover, we utilise the linear basis
function to approximate the fractional derivatives at the midpoints of the control volume faces, in which some
numerical techniques are used to handle the non-locality of the fractional derivative of the basis function.

• We explore the property of the stiffness matrix generated by the integral of the space fractional derivative.
We find that the stiffness matrix is sparse and not regular. Especially, the smaller the maximum edge of the
triangulation is, the more sparse of the stiffness matrix becomes. Therefore, we choose a suitable sparse storage
format for the stiffness matrix and utilise the bi-conjugate gradient stabilized method (Bi-CGSTAB) iterative
method to solve the linear system, which is more efficient than using the Gaussian elimination method.

• We present several examples to verify our method, in which we make a comparison of our method with the
finite element method proposed in [52] for solving the Riesz space fractional diffusion equation (4) on a circular
domain. In [52], the authors develop an algorithm to form the stiffness matrix and derive the bilinear operator
as

A(u, v) =
Kx

2 cos π(1+α)
2

n�
a(y)D

(1+α)
2

x u, xD
(1+α)

2

b(y) v
�
+
�
xD

(1+α)
2

b(y) u, a(y)D
(1+α)

2
x v

�o
+

Ky

2 cos π(1+β)
2

n�
c(x)D

(1+β)
2

y u, yD
(1+β)

2

d(x) v
�
+
�
yD

(1+β)
2

d(x) u, c(x)D
(1+β)

2
y v

�o
.

The bilinear form involves eight fractional derivative terms and the approximation of two-fold multiple in-
tegrals, which are approximated by Gauss quadrature. While for the control volume method, we use the
following form to generate the stiffness matrix form,

Kx

2 cos π(1+α)
2

I
Γi

�
∂αu(x, y, t)

∂xα
− ∂αu(x, y, t)

∂(−x)α

�
dy

− Ky

2 cos π(1+β)
2

I
Γi

�
∂βu(x, y, t)

∂yβ
− ∂βu(x, y, t)

∂(−y)β

�
dx,
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in which we only need to calculate 4 fractional derivative terms and the approximation of line integrals. The
numerical results demonstrate that our method can reduce CPU time significantly while retaining the same
accuracy and approximation property as the finite element method. The numerical results also illustrate that
our method is effective and reliable and can be applied to problems on arbitrarily convex domains.

The outline of this paper is as follows. In section 2, the unstructured mesh control volume method for the
problem (1) is proposed and the full implementation details are provided. Then the property of the stiffness matrix
is explored and a fast iterative solver is developed for the linear system. In section 3, several numerical examples are
presented to verify the effectiveness of the method and comparisons are made with existing methods to highlight
its computational performance. Finally, some conclusions of the work are drawn.

2. Control volume finite element method

In this section, we will generalise the control volume method to solve equation (1), placing particular emphasis
on the way the Riemman-Liouville fractional derivatives are discretised in space. Firstly, we divide the solution
domain Ω into a number of regular triangular regions. Let Th denote this triangulation and h be the maximum
diameter of the triangular elements. Then we introduce the control volumes, which are constructed as follows. Let
Mh be a set of vertices,

Mh = {Pi : Pi is a vertex of the element K ∈ Th and Pi ∈ Ω},

and M0
h be the set of interior nodes in Th. We denote P0 as the interior node of the triangulation Th and Pi (i =

1, 2, · · · ,m) as its adjacent nodes (see Figure 2 with m = 6). Let Si (i = 1, 2, · · · ,m) be the midpoints of the
line segments P0Pi and Qi (i = 1, 2, · · · ,m) the barycenters of the triangle ∆P0PiPi+1 with Pm+1 = P1. The
control volume K∗

P0
is constructed by joining successively S1, Q1, · · · , Sm, Qm, S1 (see Figure 2). We call the

line segments SiQi and QiSi+1 (i = 1, 2, · · · ,m and Sm+1 = S1) control volume faces. Consequently, each of
the triangular elements is divided into three sub-domains by these control surfaces. These quadrilateral shapes
are called sub-control volumes and are illustrated in Figure 2 (for example, the quadrilateral S1Q1S2P0). Thus, a
control volume consists of the sum of all neighbouring sub-control volumes that surround the given node P0. The
control volume is polygonal in shape and can be assembled in a straightforward and efficient manner at the element
level. The flow across each control surface must be determined by an integral. Therefore, the finite volume method
discretization process is initiated by utilising the integrated form of equation (1).

P0
P1

P2

P3

P4

P5 P6

S1

S2
S3

S4

S5

S6

Q1

Q2

Q3

Q4

Q5

Q6
K∗

P0

Figure 2: The illustration of a control volume

Integrating (1) over an arbitrary control volume Vi (i = 1, 2, · · · , Np), yieldsZ
Vi

∂u(x, y, t)

∂t
dVi =

Z
Vi

∂

∂x

�
K1(x, y, t)

∂αu(x, y, t)

∂xα
−K2(x, y, t)

∂αu(x, y, t)

∂(−x)α

�
dVi

+

Z
Vi

∂

∂y

�
K3(x, y, t)

∂βu(x, y, t)

∂yβ
−K4(x, y, t)

∂βu(x, y, t)

∂(−y)β

�
dVi

+

Z
Vi

f(x, y, t) dVi. (5)
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Utilising a lumped mass approach for the time derivative and source term and applying Green’s theorem to the
other two integral terms, gives

∆Vi
∂u(x, y, t)

∂t

����
(xi,yi)

=

I
Γi

�
K1(x, y, t)

∂αu(x, y, t)

∂xα
−K2(x, y, t)

∂αu(x, y, t)

∂(−x)α

�
dy

−
I
Γi

�
K3(x, y, t)

∂βu(x, y, t)

∂yβ
−K4(x, y, t)

∂βu(x, y, t)

∂(−y)β

�
dx

+∆Vif(xi, yi, t), (6)

where Γi is the boundary of control volume Vi. We assume the finite volume integration is an anticlockwise traversal
and the outward unit normal surface vector to the control surface is shown in Figure 3 with ∆x = xb − xa and
∆y = yb − ya. Denote ∆Vi and ∆Vij the area of the control volume and the sub-control volume surrounding the

∆y

∆x

(xa, ya)

(xb, yb)

ni

Figure 3: A control volume face and the outward normal unit vector

point (xi, yi), then we have

∆Vi =

miX
j=1

∆Vij ,

where mi is the total number of sub-control volumes that make up the control volume associated with the node
i. The integral term on the right-hand side of equation (1) is a line integral, which can be approximated by the
midpoint approximation for each control surface. Hence, the first integral term in equation (6) can be rewritten asI

Γi

�
K1(x, y, t)

∂αu(x, y, t)

∂xα
−K2(x, y, t)

∂αu(x, y, t)

∂(−x)α

�
dy

=

miX
j=1

2X
r=1

�
K1(x, y, t)

∂αu(x, y, t)

∂xα
−K2(x, y, t)

∂αu(x, y, t)

∂(−x)α

�����
(xr,yr)

∆yij,r, (7)

where (xr , yr) is the mid-point of the control face (CF) (see Figure 4). Similarly, for the second integral term in

CF2

CF1

(xr, yr)

Figure 4: The illustration of control faces with mid-points

equation (6), we have I
Γi

�
K3(x, y, t)

∂βu(x, y, t)

∂yβ
−K4(x, y, t)

∂βu(x, y, t)

∂(−y)β

�
dx

=

miX
j=1

2X
r=1

�
K3(x, y, t)

∂βu(x, y, t)

∂yβ
−K4(x, y, t)

∂βu(x, y, t)

∂(−y)β

�����
(xr,yr)

∆xi
j,r. (8)
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Substituting equations (7) and (8) into (6), we obtain

∆Vi
∂u(x, y, t)

∂t

����
(xi,yi)

=
miX
j=1

2X
r=1

�
K1(x, y, t)

∂αu(x, y, t)

∂xα
−K2(x, y, t)

∂αu(x, y, t)

∂(−x)α

�����
(xr,yr)

∆yij,r

−
miX
j=1

2X
r=1

�
K3(x, y, t)

∂βu(x, y, t)

∂yβ
−K4(x, y, t)

∂βu(x, y, t)

∂(−y)β

�����
(xr,yr)

∆xi
j,r

+∆Vif(xi, yi, t). (9)

To discretise the time derivative in equation (9) at t = tn, we use the backward Euler difference scheme

∂u(x, y, tn)

∂t
=

u(x, y, tn)− u(x, y, tn−1)

τ
+O(τ). (10)

In the following, we discuss the spatial discretisation of u(x, y, tn). We consider the computation process for
piecewise linear polynomials on the triangular element ep, p = 1, 2, ..., Ne, where Ne is the total number of triangles.
Then, within element ep, the field function up(x, y) can be written as

up(x, y) =
3X

j=1

uj ϕj(x, y) +O(h2),

where the triangle vertices are numbered in a counter-clockwise order as 1, 2, 3 and the basis function ϕj(x, y) is
defined as

ϕj(x, y)
���
(x,y)∈ep

=
1

2∆ep

(aj x+ bj y + cj), ϕj(x, y)
���
(x,y)/∈ep

= 0,

a1 = y2 − y3, a2 = y3 − y1, a3 = y1 − y2,

b1 = x3 − x2, b2 = x1 − x3, b3 = x2 − x1,

c1 = x2y3 − x3y2, c2 = x3y1 − x1y3, c3 = x1y2 − x2y1,

where ∆ep is the area of triangle element p. It is well-known that

ϕj(xi, yi) = δij , i, j = 1, 2, 3,

where δ is the Kronecker function. With these local field functions and basis functions, we can obtain a global
approximation of u(x, y) for the whole triangulation:

u(x, y) =

NpX
k=1

uk lk(x, y) +O(h2),

where lk(x, y) is the new basis function whose support domain is Ωek (see Figure 5 the green polygonal domain)
and Np is the total number of vertices on the convex domain Ω.

Now, we denote uh(x, y, tn) as the approximation solution of u(x, y, tn) and write uh(x, y, tn) in the form

uh(x, y, tn) =

NpX
k=1

un
k lk(x, y), (11)

where un
k are the coefficients that are to be solved for. Substituting equations (10) and (11) into equation (9), we

7



discretise equation (9) at t = tn as follows:

∆Vi

NpX
k=1

un
k − un−1

k

τ
lk(xi, yi)

=

NpX
k=1

miX
j=1

2X
r=1

un
k

�
K1(x, y, t)

∂αlk(x, y)

∂xα
−K2(x, y, t)

∂αlk(x, y)

∂(−x)α

�����
(xr,yr)

∆yij,r

−
NpX
k=1

miX
j=1

2X
r=1

un
k

�
K3(x, y, t)

∂βlk(x, y)

∂yβ
−K4(x, y, t)

∂βlk(x, y)

∂(−y)β

�����
(xr,yr)

∆xi
j,r

+∆Vif(xi, yi, tn). (12)

Using the fact that

lk(xi, yi) =

§
1, i = k,
0, i 6= k,

we obtain

∆Vi
un
i − un−1

i

τ

=

NpX
k=1

miX
j=1

2X
r=1

un
k

�
K1(x, y, t)

∂αlk(x, y)

∂xα
−K2(x, y, t)

∂αlk(x, y)

∂(−x)α

�����
(xr,yr)

∆yij,r

−
NpX
k=1

miX
j=1

2X
r=1

un
k

�
K3(x, y, t)

∂βlk(x, y)

∂yβ
−K4(x, y, t)

∂βlk(x, y)

∂(−y)β

�����
(xr,yr)

∆xi
j,r

+∆Vif(xi, yi, tn). (13)

Equation (13) can be written in the following matrix form

A
Un −Un−1

τ
= MUn +AFn, (14)

whereA =diag [∆V1,∆V2, . . . ,∆VNp ], U
n = [un

1 , u
n
2 , . . . , u

n
Np

]T , Fn = [f(x1, y1, tn), f(x2, y2, tn), . . . , f(xNp , yNp , tn)]
T .

Rearranging we obtain

(A− τM)Un = AUn−1 + τAFn. (15)

To form matrix M, we need to calculate the fractional derivative of the basis function lk(x, y). In the following, we

focus on the calculation of ∂αlk(x,y)
∂xα , ∂αlk(x,y)

∂(−x)α , ∂βlk(x,y)
∂yβ and ∂βlk(x,y)

∂(−y)β at (xr , yr). To evaluate ∂αlk(x,y)
∂xα

��
(xr,yr)

and
∂αlk(x,y)
∂(−x)α

��
(xr,yr)

, suppose that line y = yr intersects nq points with the support domain Ωek of lk(x, y) (see Figure 5

with nq = 5).
Then we have

∂αlk(x, y)

∂xα

����
(xr,yr)

=
∂αlk(x, yr)

∂xα

����
x=xr

,

∂αlk(x, y)

∂(−x)α

����
(xr,yr)

=
∂αlk(x, yr)

∂(−x)α

����
x=xr

.

Using the important observation that

lk(x, yr) =

8>>>><>>>>: 0, a ≤ x ≤ x1,
ϕk4(x, yr), x1 ≤ x ≤ x2,
ϕk3(x, yr), x2 ≤ x ≤ x3,
ϕk2(x, yr), x3 ≤ x ≤ x4,
ϕk1(x, yr), x4 ≤ x ≤ x5,

0, x5 ≤ x ≤ b,

8



k

e1
e2e3

e4

e5 e6
e7

(xr, yr)

x1 x2 x3 x4 x5a b

Figure 5: The illustration of line y = yr intersecting nq points with the support domain Ωek of lk(x, y), where
(xr , yr) locates out of Ωek

where ϕkp(x, y) is the basis function of node k on the triangular element ep, we obtain

∂αlk(x, yr)

∂xα

����
x=xr

=

�
1

Γ(1− α)

∂

∂x

Z x

a
(x− ξ)−αlk(ξ, yr)dξ

�����
x=xr

=

�
1

Γ(1 − α)

∂

∂x

�Z x1

a

+

Z x2

x1

+

Z x3

x2

+

Z x4

x3

+

Z x5

x4

+

Z x

x5

�
(x− ξ)−αlk(ξ, yr)dξ

�����
x=xr

=

�
1

Γ(1 − α)

∂

∂x

�Z x2

x1

+

Z x3

x2

+

Z x4

x3

+

Z x5

x4

�
(x− ξ)−αlk(ξ, yr)dξ

�����
x=xr

. (16)

As lk(x, yr) is a linear function on each sub integral interval, equation (16) can be evaluated using integration by
parts over each sub integral interval. For the right fractional derivative of lk(x, yr) at (xr , yr), we obtain

∂αlk(x, yr)

∂(−x)α

����
x=xr

=

� −1

Γ(1− α)

∂

∂x

Z b

x

(ξ − x)−αlk(ξ, yr)dξ

�����
x=xr

= 0. (17)

Now we consider the case that point (xr, yr) is in the support domain Ωek of lk(x, y). Suppose that line y = yr
intersects nq points with the support domain Ωek (see Figure 6 with nq = 4). In this case, we have

k

e1
e2e3

e4

e5 e6
e7

(xr, yr)

x1 x2 x3 x4a b

Figure 6: The illustration of line y = yr intersecting nq points with the support domain Ωek of lk(x, y), where
(xr, yr) locates in Ωek
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lk(x, yr) =

8>><>>: 0, a ≤ x ≤ x1,
ϕk5(x, yr), x1 ≤ x ≤ x2,
ϕk6(x, yr), x2 ≤ x ≤ x3,
ϕk7(x, yr), x3 ≤ x ≤ x4,

0, x4 ≤ x ≤ b.

Then

∂αlk(x, yr)

∂xα

����
x=xr

=

�
1

Γ(1− α)

∂

∂x

Z x

a
(x− ξ)−αlk(ξ, yr)dξ

�����
x=xr

=

�
1

Γ(1− α)

∂

∂x

�Z x1

a
+

Z x2

x1

+

Z x

x2

�
(x − ξ)−αlk(ξ, yr)dξ

�����
x=xr

=

�
1

Γ(1− α)

∂

∂x

�Z x2

x1

+

Z x

x2

�
(x− ξ)−αlk(ξ, yr)dξ

�����
x=xr

, (18)

and

∂αlk(x, yr)

∂(−x)α

����
x=xr

=

� −1

Γ(1 − α)

∂

∂x

Z b

x
(ξ − x)−αlk(ξ, yr)dξ

�����
x=xr

=

� −1

Γ(1− α)

∂

∂x

�Z x3

x
+

Z x4

x3

+

Z b

x4

�
(ξ − x)−αlk(ξ, yr)dξ

�����
x=xr

=

� −1

Γ(1− α)

∂

∂x

�Z x3

x
+

Z x4

x3

�
(ξ − x)−αlk(ξ, yr)dξ

�����
x=xr

. (19)

If line y = yr intersects zero points with the support domain Ωek , then we have

∂αlk(x, yr)

∂xα

����
x=xr

= 0,
∂αlk(x, yr)

∂(−x)α

����
x=xr

= 0. (20)

The calculation of ∂βlk(x,y)
∂yβ and ∂βlk(x,y)

∂(−y)β
at (xr, yr) can be derived in a similar manner for the y direction. Finally,

we summarise the whole computation process in the following algorithm (see Algorithm 1).

Algorithm 1 Unstructured mesh CVM for solving 2D SFDE-VC

1: Partition the convex domain Ω with unstructured triangular elements ep and save the element information
(node number, coordinates, and element number);

2: for p = 1, 2, · · · , Ne do
3: Find the barycenters of each triangular element ep, form the control faces, sub-control volumes and save

the sub-control volume information (the midpoint coordinates of each side of the triangular elements ep, the
midpoint coordinates (xr, yr) of each control faces, etc.);

4: Calculate the areas of the sub-control volumes and control volumes, form matrix A;
5: for k = 1, 2, · · · , Np do
6: Find the support domain Ωek ;

7: Find the points of intersection by y = yr with Ωek and calculate ∂αlk(x,y)
∂xα

��
(xr,yr)

,∂
αlk(x,y)
∂(−x)α

��
(xr,yr)

;

8: Find the points of intersection by x = xr with Ωer and calculate ∂βlk(x,y)
∂yβ

��
(xr,yr)

, ∂βlk(x,y)
∂(−y)β

��
(xr,yr)

;

9: end for
10: Form the matrix M;
11: Form the vector Fn;
12: end for
13: Solve the linear system (15) and obtain Un.

Remark 2.1. When the boundary of the solution domain is nonconstant or curved, all of the above calculation is
applicable as well.
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Here, we discuss the structure of matrix M. Firstly, the matrix M generated by scheme (13) is sparse and not
regular (see Figure 7). Then we explore the sparsity of matrix M for different h. Table 1 shows the size and density
(nonzero entries percentage) of matrix M for different h where we can observe that as h decreases the density of
matrix M reduces significantly. We can infer that when h is small enough, matrix M is extremely sparse and this
facilitates the use of a sparse matrix storage format to reduce the memory usage of our computational method.
Furthermore, we employ an efficient sparse iterative solver Bi-CGSTAB [59] to solve the linear system (15) (see
Algorithm 2), which is more efficient than using the Gaussian elimination method. The CPU time comparison of
the two methods is studied numerically in Example 3.1.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 7: Sparsity pattern of matrix M for h = 1.6759× 10−1. The size of M is 64×64. Blue points indicate the
nonzero entries

Table 1: The size and density of matrix M for different h on a square domain [0, 1]× [0, 1]

h Size Density
5.2693E-01 4×4 100%
3.1123E-01 15×15 86.667%
1.6759E-01 64×64 57.715%
8.6682E-02 258×258 34.002%
4.3719E-02 1115×1115 17.705%
2.3063E-02 5255×5255 8.517%

3. Discussion of Numerical Results

In this section, we provide some numerical examples to verify the effectiveness of our method presented in section
2. We adopt linear polynomials on triangles and define h as the maximum length of the triangle edges. Ne is taken
as the number of triangles in Th. Here, the numerical computations were carried out using MATLAB R2014b on
a Dell desktop with configuration: Intel(R) Core(TM) i7-4790, 3.60 GHz and 16.0 GB RAM. We use the following
formula to calculate the convergence order:

Order =
log(E(h1)/E(h2))

log(h1/h2)
,

where E is the L2 or L∞ error.

Example 3.1. Firstly, we consider the following 2D SFDE-VC on a rectangular domain

∂u(x, y, t)

∂t
=

∂

∂x

�
K1(x, y, t)

∂αu(x, y, t)

∂xα
−K2(x, y, t)

∂αu(x, y, t)

∂(−x)α

�
+

∂

∂y

�
K3(x, y, t)

∂βu(x, y, t)

∂yβ
−K4(x, y, t)

∂βu(x, y, t)

∂(−y)β

�
+f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

11



Algorithm 2 The Bi-CGSTAB algorithm

1: Define A0 = A− τM, use a sparse matrix storage format to store A0;
2: In each time level tn, x0 = Un−1, b = AUn−1 + τAFn;
3: Compute r0 = b−A0x0, r̂0 is an arbitrary vector, such that (r̂0, r0) 6= 0. We choose r̂0 = r0;
4: Let ρ0 = α0 = ω0 = 1, v0 = p0 = 0;
5: for i = 1, 2, 3, · · · , do
6: ρi = (r̂0, ri−1);
7: β0 = (ρi/ρi−1)(αi−1/ωi−1);
8: pi = ri−1 + β0(pi−1 − ωi−1vi−1);
9: vi = A0pi, αi = ρi/(r̂0,vi);

10: s = ri−1 − αivi, t0 = A0s;
11: ωi = (t0, s)/(t0, t0);
12: xi = xi−1 + αipi + ωis;
13: if xi is accurate enough then quit;
14: ri = s− ωit0;
15: end for
16: Un = xi.

subject to

u(x, y, 0) = x2(1− x)2y2(1− y)2, (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ].

where Ω = (0, 1)× (0, 1), T = 1,

f(x, y, t) = 2tx2(1− x)2y2(1− y)2 −
h∂K1(x, y, t)

∂x
· p(x, α) +K1(x, y, t) · p(x, 1 + α)

− ∂K2(x, y, t)

∂x
· p(1− x, α) +K2(x, y, t) · p(1− x, 1 + α)

i
y2(1− y)2(t2 + 1)

−
h∂K3(x, y, t)

∂y
· p(y, β) +K3(x, y, t) · p(y, 1 + β)− ∂K4(x, y, t)

∂y
· p(1− y, β)

+K4(x, y, t) · p(1− y, 1 + β)
i
x2(1− x)2(t2 + 1),

p(z, r) =
Γ(3)

Γ(3− r)
z2−r − 2Γ(4)

Γ(4− r)
z3−r +

Γ(5)

Γ(5− r)
z4−r.

This is a two-dimensional anomalous diffusion model, which can describe anomalous transport in heterogeneous
porous media and can be used to explain the region-scale anomalous dispersion with heavy tails [28].

The exact solution of this problem is given by u(x, y, t) = (t2 + 1)x2(1 − x)2y2(1 − y)2. Figure 8 shows the
rectangular domain partitioned by unstructured triangular meshes and control volumes for different h. Here, we
consider three different coefficient cases [30]: linear coefficients K1(x, y, t) = 2− x, K2(x, y, t) = 2+x, K3(x, y, t) =
2 − y, K4(x, y, t) = 2 + y, quadratic coefficients K1(x, y, t) = 2 − x2, K2(x, y, t) = 2 + x2, K3(x, y, t) = 2 − y2,
K4(x, y, t) = 2 + y2 and exponential coefficients K1(x, y, t) = 3 − ex, K2(x, y, t) = 3 + ex, K3(x, y, t) = 3 − ey,
K4(x, y, t) = 3 + ey. The numerical results are given in Tables 2 to 4. Table 2 illustrates the L2 error, L∞ error
and corresponding convergence order of h for the linear coefficient case for different α, β with τ = 10−3 at t = 1.
Tables 3 and 4 show the L2 error, L∞ error and corresponding convergence order of h for the quadratic coefficient
case and exponential coefficient case, respectively. From these tables we can see that the convergence order of both
the L2 error and L∞ error is 2 −max{α, β} order [27] and the numerical results are in excellent agreement with
the exact solution, which demonstrates the effectiveness of the numerical method. We can also observe that with
h deceasing, the CPU time grows considerably, which we believe is mainly due to the non-locality of the fractional
derivative of the basis function and the computational cost to generate the matrix M. In addition, we give a
comparison between the Bi-CGSTAB and Gaussian elimination. In the Bi-CGSTAB solver, we set 10−10 as the
stopping criterion and the maximum iteration number is 102. Table 5 displays the consumed CPU time of these
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two algorithms at t = 1 with τ = 10−3, α = 0.3, β = 0.5, K1(x, y, t) = 2−x, K2(x, y, t) = 2+x, K3(x, y, t) = 2− y,
K4(x, y, t) = 2 + y for different h. Compared to Gaussian elimination, Bi-CGSTAB has significantly reduced 90%
of the computational time for h = 4.3719 × 10−2. Another advantage of Bi-CGSTAB to be mentioned is that
the average iteration number does not appear to increase significantly as h decreases. Here, the average iteration
number is approximately 10 regardless of the model dimensions. We conclude that the Bi-CGSTAB solver is more
efficient than Gaussian elimination for solving this problem.
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Figure 8: The rectangular domain partitioned by unstructured meshes with control volumes for
h ≈ 3.1123× 10−1, 1.6759× 10−1, 8.6682× 10−2, 4.3719× 10−2, respectively

Table 2: The L2 error, L∞ error, convergence order and CPU time of h with τ = 10−3 for the linear coefficient
case at t = 1

h L2 error Order L∞ error Order Time
3.1123E-01 3.5684E-04 – 1.4774E-03 – 4.90s

α = 0.3 1.6759E-01 1.0880E-04 1.92 4.3735E-04 1.97 19.50s
β = 0.5 8.6682E-02 2.2391E-05 2.40 1.3895E-04 1.74 2.30min

4.3719E-02 6.9379E-06 1.71 3.7632E-05 1.91 28.42min
3.1123E-01 3.7935E-04 – 1.4827E-03 – 4.91s

α = 0.4 1.6759E-01 1.2435E-04 1.80 4.2971E-04 2.00 19.98s
β = 0.8 8.6682E-02 2.5152E-05 2.42 1.3725E-04 1.73 2.36min

4.3719E-02 7.2675E-06 1.81 3.5722E-05 1.97 28.56min
3.1123E-01 3.9259E-04 – 1.3844E-03 – 4.91s

α = 0.7 1.6759E-01 1.4100E-04 1.65 4.1957E-04 1.93 19.87s
β = 0.9 8.6682E-02 2.8670E-05 2.42 1.4117E-04 1.65 2.37min

4.3719E-02 7.5385E-06 1.95 3.3666E-05 2.09 28.47min

Example 3.2. Next, we consider the following two-dimensional Riesz space fractional diffusion equation on a
circular domain, which can be used to describe the propagation of the electrical potential in heterogeneous cardiac
tissue [49, 52, 58].8<: ∂u(x,y,t)

∂t = Kx
∂1+αu(x,y,t)

∂|x|1+α +Ky
∂1+βu(x,y,t)

∂|y|1+β + f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = (x2 + y2 − 1)2, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ],

(21)
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Table 3: The L2 error, L∞ error, convergence order and CPU time of h with τ = 10−3 for the quadratic coefficient
case at t = 1

h L2 error Order L∞ error Order Time
3.1123E-01 3.1608E-04 – 1.3430E-03 – 4.97s

α = 0.3 1.6759E-01 1.0064E-04 1.85 4.0906E-04 1.92 20.48s
β = 0.5 8.6682E-02 2.0661E-05 2.40 1.3852E-04 1.64 2.45min

4.3719E-02 6.2709E-06 1.74 3.7584E-05 1.91 28.69min
3.1123E-01 3.6299E-04 – 1.4108E-03 – 4.88s

α = 0.4 1.6759E-01 1.2145E-04 1.77 4.1614E-04 1.97 20.51s
β = 0.8 8.6682E-02 2.4646E-05 2.42 1.3823E-04 1.67 2.46min

4.3719E-02 6.7517E-06 1.89 3.3858E-05 2.06 28.78min
3.1123E-01 3.8524E-04 – 1.3424E-03 – 4.97s

α = 0.7 1.6759E-01 1.3952E-04 1.64 4.0669E-04 1.93 20.56s
β = 0.9 8.6682E-02 2.8522E-05 2.41 1.4126E-04 1.60 2.44min

4.3719E-02 7.1520E-06 2.02 3.1880E-05 2.17 28.68min

Table 4: The L2 error, L∞ error, convergence order and CPU time of h with τ = 10−3 for the exponential
coefficient case at t = 1

h L2 error Order L∞ error Order Time
3.1123E-01 5.1809E-04 – 1.9033E-03 – 4.97s

α = 0.3 1.6759E-01 1.6296E-04 1.87 5.3973E-04 2.04 20.62s
β = 0.5 8.6682E-02 3.8817E-05 2.18 1.6032E-04 1.84 2.45min

4.3719E-02 1.1574E-05 1.77 4.8226E-05 1.76 28.46min
3.1123E-01 4.5022E-04 – 1.6750E-03 – 4.93s

α = 0.4 1.6759E-01 1.4896E-04 1.79 1.0117E-04 2.01 20.52s
β = 0.8 8.6682E-02 3.4126E-05 2.24 4.8309E-04 1.84 2.45min

4.3719E-02 1.1238E-05 1.62 4.3016E-05 1.76 28.66min
3.1123E-01 4.2412E-04 – 1.4994E-03 – 4.93s

α = 0.7 1.6759E-01 1.5286E-04 1.65 4.6520E-04 1.89 20.50s
β = 0.9 8.6682E-02 3.3401E-05 2.31 1.4533E-04 1.76 2.45min

4.3719E-02 1.0565E-05 1.68 4.0322E-05 1.87 28.56min

where Ω = {(x, y)|x2 + y2 < 1}, Kx = 1, Ky = 1, T = 1,

f(x, y, t) = −e−t(x2 + y2 − 1)2

+
e−t

2 cos((1 + α)/2π)

��
f1(x, a0, α) + g1(x, b0, α)

�
+ (2y2 − 2)

�
f2(x, a0, α) + g2(x, b0, α)

�
+ (y2 − 1)2

�
f3(x, a0, α) + g3(x, b0, α)

��
+

e−t

2 cos((1 + β)/2π)

��
f1(y, c0, β) + g1(y, d0, β)

�
+ (2x2 − 2)

�
f2(y, c0, β) + g2(y, d0, β)

�
+ (x2 − 1)2

�
f3(y, c0, β) + g3(y, d0, β)

��
,

a0 = −
È
1− y2, b0 =

È
1− y2, c0 = −

p
1− x2, d0 =

p
1− x2,

f1(x, a, α) = aD
1+α
x (x4), f2(x, a, α) = aD

1+α
x (x2), f3(x, a, α) = aD

1+α
x (1),

g1(x, b, α) = xD
1+α
b (x4), g2(x, b, α) = xD

1+α
b (x2), g3(x, b, α) = xD

1+α
b (1).

The exact solution is given by u(x, y, t) = e−t(x2 + y2 − 1)2. Figure 9 shows the circular domain partitioned by
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Table 5: Comparison of the consumed CPU time of Gaussian elimination versus Bi-CGSTAB

Ne h Gauss elimination Bi-CGSTAB
44 3.1123E-01 4.90s 4.90s
158 1.6759E-01 22.57s 19.50s
578 8.6682E-02 5.39min 2.30min
2356 4.3719E-02 5.48h 28.42min

unstructured triangular meshes and control volumes for different h. In [52], Yang et al. applied the Galerkin finite
element method for solving the two-dimensional Riesz space fractional diffusion equation with a nonlinear source
term on convex domains. They developed an algorithm to form the stiffness matrix on triangular meshes, which
can deal with space fractional derivatives on any convex domain. Here, we will make a comparison between our
method (CVM) and Yang’s method (FEM) for solving the two-dimensional Riesz space fractional diffusion equation
(21) on a circular domain using the same triangular meshes. Firstly, we present a comparison of the density of the
two stiffness matrices generated by FEM and CVM for different h in Table 6. We can see that with h decreasing
the density of the two stiffness matrices reduces significantly. Compared to the stiffness matrix generated by FEM,
the stiffness matrix generated by CVM is slightly more sparse. Next, we present a comparison of the error and
convergence. Table 7 displays the L2 error, L∞ error and corresponding convergence order of h for different α, β
with τ = 10−3 at t = 1 by applying FEM. Table 8 highlights the error and convergence order by using FVM. We
can see that the accuracy of our method is similar to FEM, both of which are second order. Then, we present a
comparison of CPU time for the two methods in Table 9 both using the Bi-CGSTAB solver. We choose α = β = 0.8
and τ = 10−3 at t = 1 to observe the running time for different h. We observe that compared to the running time
of FEM, CVM can reduce the running time significantly, which illustrates that CVM is more effective for solving
the two-dimensional Riesz space fractional diffusion equation on convex domains. This is mainly due to the bilinear
form in [52] that involves 8 fractional derivative terms and the approximation of two-fold multiple integrals, which
are approximated by Gauss quadrature, while for CVM we only need to calculate 4 fractional derivative terms and
the approximation of line integrals. In addition, we give a comparison of the exact solution u(x, y, t) and numerical
solution uh(x, y, t) in Figure 10 and the error plot of u(x, y, t) − uh(x, y, t) in Figure 11 for h = 4.5873 × 10−2,
α = β = 0.8 with τ = 10−3 at t = 1 by applying CVM. We can see that the numerical solution is in excellent
agreement with the exact solution, which demonstrates the effectiveness of our numerical method again.

Table 6: The comparison of the density of stiffness matrix generated by FEM and CVM for different h

Ne h Size FEM CVM
174 2.8917E-01 74× 74 65.413 % 55.332%
570 1.6444E-01 260× 260 41.814 % 33.521%
2310 8.6550E-02 1104× 1104 22.233 % 17.469%
8744 4.5873E-02 4271× 4271 11.712 % 9.107%

Example 3.3. Finally, we consider the following 2D SFDE-VC without a source term on different convex domains

∂u(x, y, t)

∂t
=

∂

∂x

�
K1(x, y, t)

∂αu(x, y, t)

∂xα
−K2(x, y, t)

∂αu(x, y, t)

∂(−x)α

�
+

∂

∂y

�
K3(x, y, t)

∂βu(x, y, t)

∂yβ
−K4(x, y, t)

∂βu(x, y, t)

∂(−y)β

�
, (x, y, t) ∈ Ω× (0, T ],

subject to

u(x, y, 0) = 100, (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ].

where K1(x, y, t) = 2− x, K2(x, y, t) = 2 + x, K3(x, y, t) = 2− y, K4(x, y, t) = 2 + y, T = 0.5.
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Figure 9: The unstructured meshes with control volumes for
h ≈ 2.8917× 10−1, 1.6444× 10−1, 8.6550× 10−2, 4.5873× 10−2, respectively

Here, we choose α = β = 0.8 and τ = 10−3 to observe the diffusion behavior of u(x, y, t). Figure 12 shows
the different diffusion profiles of u(x, y, t) at t = 0.5 on different convex domains. We can see that the diffusive
behaviour of u(x, y, t) is different on different convex domains, in which the diffusive velocity on domain 1 is the
fastest and the diffusive velocity on domain 4 is the slowest. We also can observe that our method is effective and
is applicable for all these convex domains.

4. Conclusions

In this paper, we considered the unstructured mesh control volume method for the two-dimensional space
fractional diffusion equation with variable coefficients on convex domains. We partitioned the irregular convex
domain using triangular meshes. Then we constructed the control volumes and solved the space fractional diffusion
equation by utilising the finite volume method. Finally, numerical examples on irregular convex domains were
studied, which verified the effectiveness and reliability of the method. We concluded that the numerical method can
be extended to other arbitrarily shaped convex domains. Furthermore, according to the property of the stiffness
matrix generated by the finite volume method, we chose a suitable sparse matrix format for the stiffness matrix and
utilised the Bi-CGSTAB iterative method to solve the linear system, which is more efficient than using the Gauss
elimination method. In addition, we made a comparison of our method with the finite element method proposed
in [52], which demonstrated that our method can reduce CPU time significantly while retaining the same accuracy
and approximation property as the finite element method. In future work, we shall investigate the unstructured
mesh control volume method applied to other fractional problems on irregular convex domains, such as the two-
dimensional multi-term time-space fractional diffusion equation with variable coefficients, or three-dimensional space
fractional diffusion equations with variable coefficients.
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Table 7: The L2 error, L∞ error and convergence order of h for FEM with τ = 10−3 at t = 1

FEM h L2 error Order L∞ error Order
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