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A novel unstructured mesh control volume method to deal with the space fractional
derivative on arbitrarily shaped convex domains is proposed.

The finite volume scheme for a 2D space fractional diffusion equ .tic> with variable
coefficients is presented.

A fast iterative method is developed.

Compared to the FEM, the FVM reduce CPU time significant’:

The FVM can be applied to problems on arbitrarily shaped c~~vex *omains.
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Abstract

In this paper, we propose a novel unstructured mesh control volu.~e method to deal with the space fractional
derivative on arbitrarily shaped convex domains, which to the best of « ur knowledge is a new contribution to the
literature. Firstly, we present the finite volume scheme for the tw. dir ensional space fractional diffusion equation
with variable coefficients and provide the full implementation det..'s for the case where the background interpolation
mesh is based on triangular elements. Secondly, we explc - vuc property of the stiffness matrix generated by the
integral of the space fractional derivative. We find that the 5 ‘ffness matrix is sparse and not regular. Therefore,
we choose a suitable sparse storage format for the stl ... —atrix and develop a fast iterative method to solve
the linear system, which is more efficient than using the - ussian elimination method. Finally, we present several
examples to verify our method, in which we make a . mpa.son of our method with the finite element method for
solving a Riesz space fractional diffusion equation on » c.. ~ular domain. The numerical results demonstrate that
our method can reduce CPU time significantly = -..l> =1 ~ining the same accuracy and approximation property as
the finite element method. The numerical results a. ~ illustrate that our method is effective and reliable and can
be applied to problems on arbitrarily shaped convex domains.

Keywords: control volume method, unstr- ctured 1esh, fast iterative solver, space fractional derivative, irregular
convex domains, two-dimensional

1. Introduction

In the past two decades, fracticaal du’>rential equations have been applied in many fields of science [1, 2, 3, 4, 5, 6,
7,8,9,10, 11, 12], in which spac _ .. “ctional diffusion equations are used to model the anomalous transport of solute
in groundwater hydrology [12 14] For space fractional diffusion equations with constant coefficients, analytical
solutions can be obtained b utw. ing the Fourier transform methods. However, many practical problems involve
variable coefficients [15, 16", in vhich the diffusion velocity can vary over the solution domain. The work involving
space fractional diffusion .~ ¢ion with variable coefficients is numerous. Meerschaert et al. [13, 17] considered
the finite difference met*~d 1. *ae one-dimensional one-sided and two-sided space fractional diffusion equations
with variable coefficie its, res vectively. Zhang et al. [18] explored the homogeneous space-fractional advection-
dispersion equation w.‘h spac :-dependent coefficients. Ding et al. [19] presented the weighted finite difference
methods for a clase ¢ spa.c ractional partial differential equations with variable coefficients. Moroney and Yang
[20, 21] proposed some . st preconditioners for the numerical solution of a class of two-sided nonlinear space-
fractional diffusio. equat ons with variable coefficients. Chen and Deng [22] discussed the alternating direction
implicit methrd to suive a two-dimensional, two-sided space fractional convection-diffusion equation on a finite
domain. Wang an. zuang [23] developed a high-accuracy preserving spectral Galerkin method for the Dirichlet
boundary-value | ‘oblem of a one-sided variable-coefficient conservative fractional diffusion equation. Liu et al.
[24] developed a new fractional finite volume method for solving the fractional diffusion equation with with a
spaceCtime dependent variable coefficien. Li et al. [25, 26] developed novel finite volume methods for Riesz space
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distributed-order diffusion equation and the Riesz space distributed- order advection-di .. ~ion equation. Feng et al.
[27] proposed the finite volume method for a two-sided space-fractional diffusion equation wiw. variable coefficients.
Chen et al. [28] considered an inverse problem for identifying the fractional derivati e 1 dices in a two-dimensional
space-fractional nonlocal model with variable diffusivity coefficients. Jia and V ang 29] presented a fast finite
volume method for conservative space-fractional diffusion equations with varial'a coc. Scients. In [30], Feng et al.
presented a new second order finite difference scheme for a two-sided space-fractional . “fusion equation with variable
coefficients. Chen et al. [31] presented numerical methods and analysis for a mu. “i-term time-space variable-order
fractional advection-diffusion equations and applications. Liu et al. [32] p: 'wos :d numerical methods for solving
the multi-term time fractional wave equations.

In fact, many mathematical models and problems from science and e iginee: ‘ng must be computed on irregular
domains and therefore seeking effective numerical methods to solve thes » proble ns on such domains is important.
Although existing numerical methods for fractional diffusion equatics a._ ~ .merous [33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43], most of them are limited to regular domains and un corm ... shes. Research involving unstructured
meshes and irregular domains is sparse. Liu et al. [44] presented uns. _cture [-mesh Galerkin finite element method
for the two-dimensional multi-term timeCspace fractional Bloch- "~rre, cquations on irregular convex domains.
Fan et al. [45] presented unstructured mesh finite element method for he two-dimensional multi-term time-space
fractional diffusion-wave equation on an irregular convex dome'~ Y .ng et al. [46] proposed the finite volume
scheme for a two-dimensional space-fractional reaction-diffusion. ~uation based on the fractional Laplacian operator
—(—=V?)%, which was computed using unstructured triang='=> ===~ s on a unit disk. Burrage et al. [47] developed
some techniques for solving fractional-in-space reaction di. -sion equations using the finite element method on
both structured and unstructured grids. Qiu et al. [4”! developed the nodal discontinuous Galerkin method for
fractional diffusion equations on a two-dimensional don. ir with triangular meshes. Liu et al. [49] presented the
semi-alternating direction method for a two-dimen: ~mal . actional FitzZHugh-Nagumo monodomain model on an
approximate irregular domain. Qin et al. [50] also u.»a “he implicit alternating direction method to solve a two-
dimensional fractional Bloch-Torrey equation usi=~ an a proximate irregular domain. Karaa et al. [51] proposed a
finite volume element method implemented on an u. “tructured mesh for approximating the anomalous subdiffusion
equations with a temporal fractional derivative. Yang et al. [52] established the unstructured mesh finite element
method for the nonlinear Riesz space fract’ .ua. diffusion equations on irregular convex domains. Fan et al. [53]
extended the unstructured mesh finite ele” 1ent me hod developed by Yang et al. [52] to the time-space fractional
wave equation. Feng et al. [54] investigated tu “ms ructured mesh finite element method for a two-dimensional time-
space Riesz fractional diffusion equatic . on irregular arbitrarily shaped convex domains and a multiply-connected
domain. Le et al. [55] studied the finiv. el men approximation for a time-fractional diffusion problem on a domain
with a re-entrant corner. To the be ¢ of o 'nowledge, the control volume finite element method (see Carr et al.
[56] for an illustration of the methe a . ~wlied to wood drying) has not been generalised to allow the solution of space
fractional diffusion equations with variab. coefficients.

In this paper, we will consic :r t. e unstructured mesh control volume method for the following two-dimensional
space fractional diffusion equc or with variable coefficients (2D SFDE-VC) [28] on an arbitrarily shaped convex
domain:

Calry, )0 { 0%u(z,y,t) 8au(m,y,t)}
oL _8.%' Kl(xayvt) Orc KQ(mvyat) 8(—1‘)0‘
0 0%u(z,y, ) 0u(z, yﬂf)}
K helid Sl R LAV °d ik Sl XA R
+ay|: 3(33,3/,15) 8y3 4(3?7?/775) 8(_y)ﬁ
+f(x7 y7 t)7 ('r7y7t) e Q X (07 T]7 (1)
subject to the initi.’ ~or Lition _
u(z,y,0) = d(z,y), (,y) €, (2)
and boundary co. ditions
u(z,y,t) =0, (x,y,t) €00 x[0,T], (3)

where 0 < «, B < 1, K;(z,y,t) > 0,1 = 1,2,3,4, f(x,y,t) and ¢(x,y) are assumed to be two known smooth
functions. When the solution domain is rectangular Q = (a,b) x (¢, d), we define the Riemman-Liouville fractional



derivative as [57]:

0%u(z,y,t) o _ g [ —a
aT_QD u(z, y,t)—m%/a (x —s) “u(e y,t ds,
6“u(a:,y,t) _ e _ -1 9 ’ —a R
“oa) = Dyu(z,y,t) = m@[g (s — @) %uls, . t) us,
Pulwyt) Lo,
oy Dyu(z,y,t) = ma—y[ (y—s, vz, s,t) ds,
OPu(z,y,t) 3 -1 0 /d
T\ I l)ux7 ’t: —_— S — b x,S,t dS
e e T A e
d(x)
aly) \b(y)
J
/
e

Figure 1: The illustration of a . 2. *ioi domain with curved boundary

When the boundary of the solution domain is now -nstant or curved, for example a convex domain shown in
Figure 1 with left boundary a(y), right bour v b(y), lower boundary ¢(x) and upper boundary d(x), we define
the Riemman-Liouville fractional derivativ as [54,

9%u(z,y,t) ) 19
B — e — —s5) t) d
Oz a(y) 7z U ;x7yab) 1_a Oz a(y) Z‘ 5 (57y7 ) S,
0%u(z,y,t) -1 0 b(y)
To—o)r D?(y)U(ay,t): %/ (s — ) %u(s,y, 1) ds,
OPu(z,y,t) 1 0
T = :L’Dﬂu 337y7t - _/ u\x, S,t dS7
OPu(z, j,t) —1 0 d(’”)
5 g)/ﬁ jd(m) u(z,y,t) = 8_/ (m s,t) ds.
Y
Remark 1.1. When K ‘=,y,v, = 1,2,3,4 take the special form
K,
Ki(z,y,t) = Ka(z,y,1) = 5 ogs FEA)”
K
Ks(z,y,t) = Ka(z,y,1) = —my

equation (1) cai. b written as the following Riesz space fractional diffusion equation [49, 52]

0" Pu(z,y,t)
dy|++8

au(x7y7t) _ K 81+au(x7y7t) +K
Y




where

oreu(e,y,t) B 1 [81+"u(x,y,t) 81+"u(x,g/_+w
3|x|1+a - 92 cos Tr(12+a) Orlta 5(—x)] a0

O Pu(x,y,t) 1 [81+'Bu(;v,y7t) O Byl y, 0
Y8 9o Tr(12+5) Ayl +h (=i |

One important application of equation (4) is in the study of cardiac arrhyth: 7ias. In two dimensions, the fractional
FitzHugh-Nagumo monodomain model can be rewritten as a two-dimensional Rie. ~ space fractional reaction-diffusion
model, which can be used to describe the propagation of the electrical poten .al in F 2terogeneous cardiac tissue [49, 58].
This electrophysiological model of the heart can describe how electrical urrents flow through the heart controlling
its contraction and can be used to ascertain the effects of certain druc< de. . to treat heart problems.

The major contribution of this paper is as follows.

e Different from [46] and [51], we consider the control volume . ethc ' .or the two-dimensional space fractional
diffusion equation with variable coefficients, in which the space *actional operator is either the Riemman-
Liouville fractional derivative or Riesz space fractional der. ~tive. To the best of our knowledge, this is a new
contribution to the literature.

e We propose a novel technique utilizing the control nume method implemented with an unstructured tri-
angular mesh to deal with the space fractional derivativ  on an irregular convex domain, which we believe
provides a very flexible solution strategy because ou.  “sidered solution domain can be arbitrarily convex.
Compared to the finite difference method in [49, 5! our method requires fewer grid nodes to generate the
meshes in the solution domain partition.

e For the methods considered in this paper -e co struct the control volumes using triangular meshes and
transform the problem (1) from the solution ~main to a single control volume. Then we integrate problem
(1) over an arbitrary control volume and change tue control volume integral to a line integral over the control
volume faces, which is approximated "y u. » midpoint approximation. Moreover, we utilise the linear basis
function to approximate the fraction: « derivai ves at the midpoints of the control volume faces, in which some
numerical techniques are used to bandic “*he aon-locality of the fractional derivative of the basis function.

e We explore the property of the tiffy :ss v atrix generated by the integral of the space fractional derivative.
We find that the stiffness matr'x 15 mar e and not regular. Especially, the smaller the maximum edge of the
triangulation is, the more spa = of the sviffness matrix becomes. Therefore, we choose a suitable sparse storage
format for the stiffness mati_x anu “tilise the bi-conjugate gradient stabilized method (Bi-CGSTAB) iterative
method to solve the linear ., ‘tem, which is more efficient than using the Gaussian elimination method.

e We present several exan,, 'es to verify our method, in which we make a comparison of our method with the
finite element method Lropose. in [52] for solving the Riesz space fractional diffusion equation (4) on a circular
domain. In [52], the .utb rs d~velop an algorithm to form the stiffness matrix and derive the bilinear operator
as

(A+o) (4o (+o)

(4o
(u,v) = L{(a(y)px T Dy v) + (+Dy) wawDe T v) )
92 cos 71'(1;-(1) () (v)

Ky (1455) (1455) (1455) (1Jgﬂ>
+ ~(1+8) {(C(ﬂc)Dy Uy Dy ”) + (de(z) U () Dy U) }
2 cos ——

The bili=~=r form involves eight fractional derivative terms and the approximation of two-fold multiple in-
tegrals, v hic'. are approximated by Gauss quadrature. While for the control volume method, we use the
following fo. u to generate the stiffness matrix form,

K, 7{ {8 u(r,y,t) 0 U(mvy,t)}dy
T

2 cos M Oz I(—z)*
2 cos w ; dy” (—y)? 7



in which we only need to calculate 4 fractional derivative terms and the approxir .. “on of line integrals. The
numerical results demonstrate that our method can reduce CPU time significantly wi.'» retaining the same
accuracy and approximation property as the finite element method. The numr .1c. ' results also illustrate that
our method is effective and reliable and can be applied to problems on arbit aril- convex domains.

The outline of this paper is as follows. In section 2, the unstructured mes.. ~onti ! volume method for the
problem (1) is proposed and the full implementation details are provided. The = e pre erty of the stiffness matrix
is explored and a fast iterative solver is developed for the linear system. In se ¢cion ,, . veral numerical examples are
presented to verify the effectiveness of the method and comparisons are maa. vith existing methods to highlight
its computational performance. Finally, some conclusions of the work are w.awn.

2. Control volume finite element method

In this section, we will generalise the control volume method to “ol* - eq ation (1), placing particular emphasis
on the way the Riemman-Liouville fractional derivatives are dis ~etised i~ space. Firstly, we divide the solution
domain §2 into a number of regular triangular regions. Let 7 deno. this triangulation and A be the maximum
diameter of the triangular elements. Then we introduce the co. *rol volh mes, which are constructed as follows. Let
My}, be a set of vertices,

My, ={P;: P, is a vertex of the e’ _.._.. v €Tpand P, € Q},

and M ,? be the set of interior nodes in 7. We denote P~ as the interior node of the triangulation 7, and P; (i =
1,2,---,m) as its adjacent nodes (see Figure 2 with n = o). Let S; (i = 1,2,---,m) be the midpoints of the
line segments PyP; and @; (i = 1,2,---,m) the b rycewn ers of the triangle APyP;P;+q with Pp,4+1 = P;. The

control volume K7, is constructed by joining success'vel = Sy, Q1, -+, Sm, Qm, S1 (see Figure 2). We call the
line segments S;Q; and Q;S;+1 (1 = 1,2,--- ;v and .'.,41 = S1) control volume faces. Consequently, each of

the triangular elements is divided into three sub-u mains by these control surfaces. These quadrilateral shapes
are called sub-control volumes and are illustrated in Figure 2 (for example, the quadrilateral S1Q152P). Thus, a
control volume consists of the sum of all ne’_uu. ring sub-control volumes that surround the given node Py. The
control volume is polygonal in shape and ¢ n be as: >mbled in a straightforward and efficient manner at the element
level. The flow across each control surface mu. * be determined by an integral. Therefore, the finite volume method
discretization process is initiated by ut’.usin ; the mtegrated form of equation (1).

Figure 2: The illustration of a control volume

Integratine ‘1) over an arbitrary control volume V; (i =1,2,--- , Np), yields
 Ou(x,y,t) 9 [ O%u(z,y,t) 8”‘U(m,y,t)]
———=d i = — | K ) 7t — - K ) 7t —— | d 7
N W /V oz B @ =53 2@y )| W
0 0P u(z,y,t) 3%(:5,2,/%)}
— | K- t)———— — K t)——————=| dV;
+/V7 ay |: S(xa Y, ) ayﬂ 4(1'7:% ) 8(—y)6 Vi
+ [ s v (5)
‘/’i



Utilising a lumped mass approach for the time derivative and source term and apply ..~ Green’s theorem to the
other two integral terms, gives

du(z,y,1) { 0%u(z,y,1) 0" u(z y,t)}
Ay, 28890 —¢ |Ki(z,y, — Ko(z,y,t) —
" ot (@i,y:) ﬁl 1(33 Y ) Oz 2(33 Y ) 9 m)a dy
%u(z,y,t) Loyt
_%i |:K3(£E7y,t) (9y _K4(xa.7/“/ Q(_y)g :|d(E
+AV: f(wi, 94, 1), (6)

where I'; is the boundary of control volume V;. We assume the finite volu «e inte-ravion is an anticlockwise traversal
and the outward unit normal surface vector to the control surface is s. own in Figure 3 with Ax = x, — z, and
Ay = yp — Yo. Denote AV; and AVj; the area of the control volume ana "o - ab-control volume surrounding the

Figure 3: A control volume face and the ~utward normal unit vector

point (z;,y;), then we have

AV; = Y _ AV,
7= 1

where m; is the total number of sub-control volumes vnat make up the control volume associated with the node

i. The integral term on the right-hand side o1 « “nation (1) is a line integral, which can be approximated by the

midpoint approximation for each control s rface. } =nce, the first integral term in equation (6) can be rewritten as

¢ ‘U(%y,r o 30‘“(337?/775)}
ﬁi |:K1(xay7t) e KQ(x7y7t) a(_x)a dy

S, y,t) 0%u(z,y,1)
_ZZ{K L e K T }

j=1r=1

Ay (7)
(Z'Tayr)

where (2,,y,) is the mid-point ot \1e control face (CF) (see Figure 4). Similarly, for the second integral term in

Figure 4: The illustration of control faces with mid-points

equation (6), we . ave

OPu(x,y,t) O u(x,y t)}
Ks(x,y,t)——"—= — Ky(z,y, t) ————=—|d
A e e e
m; 2
- OPu(z,y,t) OPu(z,y t)} ;
= E (,y,t)——=—="—= — Ky(z,y,t) ———— Az’ . 8
j=1r=1 { 3/ 0y” et 9(=y)? (zryr) " )




Substituting equations (7) and (8) into (6), we obtain

(@i,y:)
m; 2
: 0%u(x,y,t 0%u(z,y,t i
:ZZ [Kl(x,yj)% - Kz(:v,ynf)ﬁ}| AYj.,
j=1r=1 L7 oyy)
m; 2 :
- 85u Zz, at 85/” Zz, 7b/_" %
—ZZ [Kg(x,y,t)% _K4(x7yat) a((_ ij | ‘ ij;'r
j=1r=1 Y 9) (zr,yr)

To discretise the time derivative in equation (9) at ¢ = ¢,,, we use t! e bs .xv ard Euler difference scheme

au(‘rayvtn) _ u(xayvtn) - U(iv,yybn ‘)
ot T

+0(7). (10)

In the following, we discuss the spatial discretisation of w - y,1,,, We consider the computation process for
piecewise linear polynomials on the triangular element e,, p = 1,2, . N, where N, is the total number of triangles.
Then, within element e, the field function uP(x,y) can be -ritten as

3
Up(x,y) = ZU’] ®, & 7y) + O(h2)7
j=1

where the triangle vertices are numbered in a conter-c.ockwise order as 1, 2, 3 and the basis function ¢;(x,y) is
defined as

1
wilz,y = — ‘a;z+bjy+c pi(z,y =0,
i )(x,y)Eep oA, j i)y i )(W)%
a1 =Y2 — Y3, @G> =y, —V, a3 = Y1 — Y2,
by =23 — 22, 2= 2r1 —x3, b3 =22 — 71,

C1 = T2Y3 — T3y. C2 -T3Y1 — X1Y3, C3 = T1Y2 — T2Y1,
where A, is the area of triangle c.er. nt p. It is well-known that
ij(miayi) = 5ij7 ia j = ]-a 23 33

where 9 is the Kronecker fiactio.. With these local field functions and basis functions, we can obtain a global
approximation of u(x,y) fc. th. whole triangulation:

N,

wwy) = 3w () + O2),

k=1

where I;(x,y) is t'.e new basis function whose support domain is €., (see Figure 5 the green polygonal domain)
and N, is the tot. 1 numb: r of vertices on the convex domain €.
Now, we denote - (~ y,t,) as the approximation solution of u(x,y,t,) and write up(z,y,t,) in the form

Np
uh(x7yatn) = Zuz lk(mvy)a (]—]—)
k=1

where u} are the coefficients that are to be solved for. Substituting equations (10) and (11) into equation (9), we



discretise equation (9) at ¢ = t,, as follows:

n—1

AV, Z Ml (i, yi)
k=1 T
NP m;
0%k (,y) 0%l (z, u) ;
_Zzzuk[ (2,9, )T—Kﬂl‘,%ﬂ D= o ” Ay;
k=1 j=1r=1 4 e YUr)
Np m; 981 o981 ( i )
_Zzzuk[ x,Y, )# [(4(3j Y, ) /(_T ad | Ax};r
k=1 j=1r=1 Yy y (zr,yr)
+AVif (i, Yis tn)- (12)
Using the fact that
1, i=kF,
l (%7?}7) - { 0’ 7 /67
we obtain
vt
! T
Np m; 2
n 0%l aj,w) 0%y, x,Yy i
=3 > > [K1(ff7y,t) gia T"“(%yi)ﬁ} Ayj
k=1 j=1r=1 (Tr,yr)
m; 2
Ny i " Pl Pl (x,y i
- Uk |:K3 .’13 'Y, ) ;:B z K4(x7yat)ﬁ:| ij;r
k=1j=1r=1 l Yy (zr,yr)
+AVi f(2i, Yis tn)- (13)
Equation (13) can be written in the followi’ g me vix form
_ n -1
PV U Mo s AR, (14)
T

where A :dlag [A‘/la A‘/27 ceey AVNP] = [1/l7u57 e au?\‘]p]T7 F" = [f(xh Z/17tn)7 f(x27 Y2, tn)7 DRI f(pr;pr7tn)]T-
Rearranging we obtain

(A TM)U" = AU + 7AF". (15)

To form matrix M, we need tc calc Jlate the fractional derivative of the basis function lx(x,y). In the following, we

Yo B faYed
a;(lf%’f) |(ac 4y SuPpOSe t’at I"ae y = y, intersects n, points Wlth the support domain Q, of lx(z,y) (see Figure 5
with ng = 5).
Then we have
9%l (z,y) _ 0% (x,yr)
Oz (xr,yr) J 9c=:1¢r7
9%l (z,y) _ 0% (x,yr)
8(-1’)‘)‘ (Imyr) 8(-1’)‘)‘ T=x,
Using the impo. “a it observation that
) a<z<,
( 0 <<
i (pk4(‘ray1“)7 x1 <z < Zo,
<z<z
Le(z.y,) = Pr3(@Un), B2 S @<,
k(@ yr) { or2(T,yr), w3 < <2y,
i @kﬂ%%«)v e < < T5,
k 07 Ts S X S b7



‘ N

Figure 5: The illustration of line y = y, intersecting n, points wi.» “.e s pport domain €, of lx(z,y), where
(zr,yr) locates out o -,

where ¢, (z,y) is the basis function of node k on the triangular ('~ment e,, we obtain

6alk (xa yT)
ox™

T=x,

[ [ [ [ e
[ [ [ [ oo

As lp(2,y,) is a linear function on each sub inte _ral interval, equation (16) can be evaluated using integration by
parts over each sub integral interval. Tor t".e ri’ ht fractional derivative of Iy (z, y,) at (z,,y.), we obtain

[e3 €T - b
T = (raams [ )

|x:acr

T=x,

(16)

=T,

~0. (17)

T=Tr

Now we consider the case tha poi it (2,,y,) is in the support domain €, of l;(z,y). Suppose that line y = y,
intersects ny points with the sup, wt domain Q, (see Figure 6 with n, = 4). In this case, we have

P, TR S R, W G e 4

Figure 6: The illustration of line y = y, intersecting n, points with the support domain €2, of lx(z,y), where
(zr,yr) locates in Q.,



( 0, a<x <,
boors(z,yr), o1 <o <o,
lk(x7yT) = { (Pkﬁ(xayT)v 92 <z < w3,
Voorr(m,yy), w3 <x <y,

\ 0, ry < x <b.
Then
0%l (x, yr 1 a [* o
g(xa—y) :<r(1—a)%/ (&= &7 (8w )d ‘C\'
1 0
Y Ay A
1 g
~lramaa ([, [ e oo 08
and
0l (, yr) _(—712 "6 g)-oue )
a2 |,_, \TA-a) axL o Tutwd )]
[t o b) —a }
- [m-@%(ﬁ s / R |
-1 Q[ r* [ a
e SRR [ Arary (19)
If line y = y, intersects zero points with the supp. “t auv..ain €2, , then we have
6alk(x7 yr) | _ 8alk’(x7 yr) _
e T T F 2

s B
The calculation of 2 la’“y(ff’y) and aa(l"_' (5)’5’ ) at (x,,, ) can be derived in a similar manner for the y direction. Finally,
we summarise the whole computation »roc :ss i the following algorithm (see Algorithm 1).

Algorithm 1 Unstructured mesh VM for solving 2D SFDE-VC

1. Partition the convex domain €2 wit.. nstructured triangular elements e, and save the element information
(node number, coordinates anc element number);
2: for p=1,2,--- N, do
3:  Find the barycenters >f ea’ triangular element e,, form the control faces, sub-control volumes and save
the sub-control volu e ir iormation (the midpoint coordinates of each side of the triangular elements ey, the
midpoint coordinate. ‘- ., y,  of each control faces, etc.);

4:  Calculate the are- _ of the ub-control volumes and control volumes, form matrix A;

50 for k=1,2,-- | N, dc

6: Find the supp. vt dor ain 2, ;

7 Find the - vints ot mtersection by y = vy, with ., and calculate % |(m,,,,y,,,)788(li%’g) |(:rr,~,yr);
. ; oints ¢ i ecti — : %l (x,y) %y (x,y) .

8: Find the ~oints ¢ intersection by x = z, with ., and calculate By7 |(xT,yT)’ N e |(:cr,yr)’

9: end for

10:  Form the me ria M;

11:  Form the v ctor F";

12: end for

13: Solve the linear system (15) and obtain U™.

Remark 2.1. When the boundary of the solution domain is nonconstant or curved, all of the above calculation is
applicable as well.

10



Here, we discuss the structure of matrix M. Firstly, the matrix M generated by sc’.c me (13) is sparse and not
regular (see Figure 7). Then we explore the sparsity of matrix M for different h. Table 1 shov. - the size and density
(nonzero entries percentage) of matrix M for different h where we can observe the ., a. h decreases the density of
matrix M reduces significantly. We can infer that when £ is small enough, matri: M °, extremely sparse and this
facilitates the use of a sparse matrix storage format to reduce the memory uss 7e o1 ~ur computational method.
Furthermore, we employ an efficient sparse iterative solver Bi-CGSTAB [59] to so. ~ the linear system (15) (see
Algorithm 2), which is more efficient than using the Gaussian elimination w th¢ 1 The CPU time comparison of
the two methods is studied numerically in Example 3.1.

Figure 7: Sparsity pattern of matrix M for h = 1.6759 x 10 ~ The size of M is 64x64. Blue points indicate the
nonz. u .. '7ies

Table 1: The size and density of mat+ix M "r different & on a square domain [0, 1] x [0, 1]

h Size Density
5.26C 51 01 4x4 100%
3.1 23E-01 15x15 86.667%
1675.7-07 64x64 57.715%
5.6672E-02  258x258  34.002%
1.2,19F 02 1115x1115 17.705%
2.00774-02  5255%x5255  8.517%

3. Discussion of Numerica, R :sults

In this section, we prov’ ie sc.ne numerical examples to verify the effectiveness of our method presented in section
2. We adopt linear polyno. i# s on ¢riangles and define h as the maximum length of the triangle edges. N, is taken
as the number of triane’ 5 in ,, Here, the numerical computations were carried out using MATLAB R2014b on
a Dell desktop with cc afigura ‘on: Intel(R) Core(TM) i7-4790, 3.60 GHz and 16.0 GB RAM. We use the following
formula to calculate th ~ conve gence order:

log(E(hy)/E(h2))

Order =
log(h1/hs2)

where F is the s or L, error.

Example 3.1. ¥ stly, we consider the following 2D SFDE-VC on a rectangular domain

ou(z,y,t) _2{ O%u(z,y,t) 8au(m,y,t)}
ot _8.1' Kl(‘ra:%t) O KQ(mvyat) 8(—1‘)0‘

9 O u(z,y,t) 8%(%,?4775)}

K helid Sl R AN °d ik Sl X AR
+ay|: 3($,y,t) 82/6 4(3?7?/775) 8(_y)ﬁ

+f(z,y,t), (z,9,t) € Qx(0,T],
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Algorithm 2 The Bi-CGSTAB algorithm

1: Define Ag = A — 7M., use a sparse matrix storage format to store Ay;
2: In each time level ¢, xg = U~ b = AU ! 4+ 7AF";
3: Compute ro = b — Apxg, g is an arbitrary vector, such that (fo,ro) # 0. We hor se ¥ = ro;
4: Let pgo=ap =wp =1, vg = po = 0;
5: for 1=1,2,3,---, do
6:  pi = (To,Ti—1);
7 Bo = (pi/pi—1)(i—1/wi-1);
8 pPi=ri1+Po(Pi-1 —wi—1Vi—1);
9. vi=Aopi, o = pi/ (Yo, Vi);
10: S=r,_1 —q;V;, tg = A()S;
11: w; = (t07s)/(t0,t0);
12: X; = X1 + ;P + W;S;
13:  if x; is accurate enough then quit;
14: r; =s —w;ty;
15: end for
16: U" = x;.
subject to

w(z,y,0)=2*(1—2) *( -y (z,9)€Q,
w1 =0, (4, 1) eI x [0,T]

where 2 = (0,1) x (0,1), T' =1,

Pl t) = 21221 — )21 — 2 — [ZHEBD i o) 4K (@g8) - ple1 + )

ox
OKs(2,y,t
_%'p(* z,0) Koz, y,t) - p(l— 2,14+ a)|y2(1 — )2 (2 + 1)
OK3(z,y,t) DK (.t

+ Ku(z,y,” - p(1 —y, 1+ B)|22(1 — 2)*(#* + 1),

F(3) 2—r 2F(4) 3—r F(5) 4—r
S Yo S V7 S L
This is a two-dimensional - nomu. us diffusion model, which can describe anomalous transport in heterogeneous
porous media and can be v.ed 1, exvlain the region-scale anomalous dispersion with heavy tails [28].

The exact solution of this ~v plem is given by u(x,y,t) = (¢2 + 1)z%(1 — 2)?y*(1 — y)?. Figure 8 shows the
rectangular domain ps ctition *d by unstructured triangular meshes and control volumes for different h. Here, we
consider three differen coeffici mt cases [30]: linear coefficients Ki(z,y,t) = 2 —z, Ko(x,y,t) = 24z, K3(x,y,t) =
2 —y, Ky(z,y,t) = 2+, ,aadratic coefficients Ki(z,y,t) = 2 — 22, Ko(z,y,t) = 2 + 22, Kz(z,y,t) = 2 — 32,
Ky(z,y,t) = 2 + 4% and =xponential coefficients K1 (x,y,t) = 3 — €%, Ka(w,y,t) = 3 + €%, Kz(z,y,t) = 3 — e,
Ky(x,y,t) = 3+ Y. The numerical results are given in Tables 2 to 4. Table 2 illustrates the Lo error, Lo, error
and corresponding cu...crgence order of h for the linear coefficient case for different o, 8 with 7 = 1073 at t = 1.
Tables 3 and 4 sho', ._e Ly error, Lo, error and corresponding convergence order of h for the quadratic coefficient
case and expone. "l coefficient case, respectively. From these tables we can see that the convergence order of both
the Lo error and L . error is 2 — max{a, 8} order [27] and the numerical results are in excellent agreement with
the exact solution, which demonstrates the effectiveness of the numerical method. We can also observe that with
h deceasing, the CPU time grows considerably, which we believe is mainly due to the non-locality of the fractional
derivative of the basis function and the computational cost to generate the matrix M. In addition, we give a
comparison between the Bi-CGSTAB and Gaussian elimination. In the Bi-CGSTAB solver, we set 107'° as the
stopping criterion and the maximum iteration number is 102. Table 5 displays the consumed CPU time of these

12



two algorithms at ¢ = 1 with 7 = 1072, a = 0.3, 8 = 0.5, K1(z,y,t) = 2 —x, Ko(z,y,t) - 2+, K3(z,y,t) =2 —vy,
Ky(z,y,t) = 2+ y for different h. Compared to Gaussian elimination, Bi-CGSTAB has sigi.“cantly reduced 90%
of the computational time for h = 4.3719 x 1072, Another advantage of Bi-CGS 143 to be mentioned is that
the average iteration number does not appear to increase significantly as h decre <es. dere, the average iteration
number is approximately 10 regardless of the model dimensions. We conclude tFat the Ri-CGSTAB solver is more
efficient than Gaussian elimination for solving this problem.

b ~
0 01 02 03 04 05 06 07 08 09 1 o o1 03 04 "= 07 08 09 1

o
0 01 02 03 04 05 06 07 08 05 1 0 01 02 03 04 05 06 07 08 09 1

Figure 8: The rectangular domain partitionec. by anstructured meshes with control volumes for
h~3.1123 x 1071, 1.6759 x 1.7 -, 0.0 32 x 1072, 4.3719 x 1072, respectively

Table 2: The Ly error, L, error, convery mce orc ar and CPU time of h with 7 = 1073 for the linear coefficient
caseat t =1

h L~ error Order L error Order Time

3.1123 -01 3..084E-04 - 1.4774E-03 — 4.90s

a=0.3 167FJE-v. 1.0880E-04 1.92 4.3735E-04 1.97 19.50s
S =05 86F7"E-02 22391E-05 2.40 1.3895E-04 1.74 2.30min
4,719 02 6.9379E-06 1.71  3.7632E-05 1.91  28.42min

3.1.7 E-01 3.7935E-04 - 1.4827E-03 — 4.91s

a=04 1.6759r-01 1.2435E-04 1.80 4.2971E-04  2.00 19.98s
£ =0. 8,682:-02 25152E-05 242 1.3725E-04 1.73 2.36min
2”7 E-02 7.2675E-06 1.81  3.5722E-05 1.97  28.56min

2 1123E-01  3.9259E-04 - 1.3844E-03 — 4.91s

a=0.7 1,759E-01 1.4100E-04 1.65 4.1957E-04 1.93 19.87s
A — 0. J.6682E-02 2.8670E-05 2.42 1.4117E-04 1.65 2.37min
4.3719E-02 7.5385E-06 1.95  3.3666E-05 2.09  28.47min

Example 3.2. "ext, we consider the following two-dimensional Riesz space fractional diffusion equation on a
circular domain, w ich can be used to describe the propagation of the electrical potential in heterogeneous cardiac
tissue [49, 52, 58].

(Gt = K, Ot 4 K, Sl 4 f(y.), (w0,1) € Q% (0,7

o BlaliTe P
ium%m=W+f—w,@m6m (21)
u(z,y,t) =0, (x,y,t) € 0Q x[0,T],
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Table 3: The Ly error, Lo, error, convergence order and CPU time of h with 7 = 1073
case at t =1

= the quadratic coefficient

h Lo error Order Lo, error Ord t  Time

3.1123E-01  3.1608E-04 - 1.3430E-03 —  4.97Ts

a=0.3 1.6759E-01 1.0064E-04 1.85 4.0906E-04 1.92 20.48s
5=0.5 8.6682E-02 2.0661E-05 2.40 1.3852E-04 1.4 2.45min
4.3719E-02 6.2709E-06 1.74  3.7584E-0f 1 J1  28.69min

3.1123E-01  3.6299E-04 - 1.4108E-03 4.88s

a=0.4 16759E-01 1.2145E-04 1.77 4.1614F 04 .97 20.51s
5=0.8 8.6682E-02 2.4646E-05 2.42  1.3823F .04 167 2.46min
4.3719E-02 6.7517E-06 1.89  3.385%E-u,.  2£.06  28.78min

3.1123E-01  3.8524E-04 - 1.3 :24F .. - 4.97s

a=0.7 1.6759E-01 1.3952E-04 1.64 4.00.""£-04 1.93 20.56s
5=0.9 8.6682E-02 2.8522E-05 241 1..'26L .4 1.60 2.44min
4.3719E-02 7.1520E-06 2.02  3.188u.7%-05 2.17  28.68min

coefficient casc ~t ¢t =1

Table 4: The Ly error, L, error, convergence order and C'PT1 " me of h with 7 = 1072 for the exponential

flay,t) = e 4 y? - 1)?

T2 os((1- a)/2m)

4 (ag* 1,\? fg(x’a07a)+g3(l'7b0;a)
\

€7t

Joa(+B

- (.’L'Z—1)2(f3(y7007ﬁ)+93(y,d076)):|7
a():—\/].—yQ, b():\/l—yz7 Coz—m, dozm,

fl(xaava) = aD;:+a(x4)a fg((E,(LOz) = aD;’-i_a(xQ)v f3(xaava) = aD:}:-HI(l)v

gl(vaa a) = ED;+Q(‘T4)7 92(1'7b; a) = ID;+O‘(£L'2), gg((E,b, a) = ZL’D;+Q(1)'

14

h Lo error rdor L error Order Time

3.1123E-01 5.1809E-( 1.9033E-03 — 4.97s

a=0.3 1.6759E-01 1.6296E-04 " R 5.3973E-04  2.04 20.62s
8 =0.5 8.6682E-02 3.8817% N5 2.18 1.6032E-04 1.84 2.45min
4.3719E-02 1.1574k-0% 177  4.8226E-05 1.76  28.46min

3.1123E-01 4.5022E-04 - 1.6750E-03 — 4.93s

a=04 1.6759E-01 1 cov.™04 1.79 1.0117E-04 2.01 20.52s
8 =0.8 8.6682E-02 .4126E-)5 2.24 4.8309E-04 1.84 2.45min
4.3719E-02  1.1.°8F 05 1.62 4.3016E-05 1.76 28.66min

3.1123E-0" 4 24121-04 - 1.4994E-03 - 4.93s

a=0.7 16759E-,. ..52°0E-04 1.65 4.6520E-04 1.89 20.50s
8=0.9 8.6682F-02 .,”.01E-05 231 1.4533E-04 1.76 2.45min
4.3717 ™2 1.0565E-05  1.68  4.0322E-05 1.87  28.56min

where Q = {(z,y)|z? +y?* <1},. =1, K,=1,T=1,

[ (£100,0) + 91(,0,) + (20 = 2) (£o(, 00, 0) + g2l oy )

1727) [(fl(y, co, B) + g1(y, dmﬁ)) + (222 - 2) (fg(y, co, B) + g2(y, do, 5))

The exact solution is given by u(x,y,t) = e *(2% + y? — 1)2. Figure 9 shows the circular domain partitioned by



Table 5: Comparison of the consumed CPU time of Gaussian elimination ve . s Bi-CGSTAB

N, h Gauss elimination Bi-CGSTAF
44 3.1123E-01 4.90s 4.90s
158  1.6759E-01 22.57s 19.50~
578  8.6682E-02 5.39min 2.30min
2356 4.3719E-02 5.48h 28.4 zmi»

unstructured triangular meshes and control volumes for different 4. In [ 2], Yan " et al. applied the Galerkin finite
element method for solving the two-dimensional Riesz space fractional a.™sic'. equation with a nonlinear source
term on convex domains. They developed an algorithm to form th . stiff~=ss matrix on triangular meshes, which
can deal with space fractional derivatives on any convex domain. Tev_ we will make a comparison between our
method (CVM) and Yang’s method (FEM) for solving the two-dir. ~nsior=! tiesz space fractional diffusion equation
(21) on a circular domain using the same triangular meshes. Firstly, v. ~ present a comparison of the density of the
two stiffness matrices generated by FEM and CVM for differe. = h in T able 6. We can see that with h decreasing
the density of the two stiffness matrices reduces significantly. “omp._.d to the stiffness matrix generated by FEM,
the stiffness matrix generated by CVM is slightly more sparse. . ~xt, we present a comparison of the error and
convergence. Table 7 displays the Loy error, L., error ana ~rresponding convergence order of h for different «, 3
with 7 = 1073 at ¢ = 1 by applying FEM. Table 8 highlights v..~ error and convergence order by using FVM. We
can see that the accuracy of our method is similar to .’Wiv . _th of which are second order. Then, we present a
comparison of CPU time for the two methods in Table 9 be n using the Bi-CGSTAB solver. We choose a = 5 = 0.8
and 7 = 1072 at t = 1 to observe the running time t.~ '#ffex mt h. We observe that compared to the running time
of FEM, CVM can reduce the running time significant’v, which illustrates that CVM is more effective for solving
the two-dimensional Riesz space fractional diffusic. equ...on on convex domains. This is mainly due to the bilinear
form in [52] that involves 8 fractional derivative terms nd the approximation of two-fold multiple integrals, which
are approximated by Gauss quadrature, whil» “>» CVM we only need to calculate 4 fractional derivative terms and
the approximation of line integrals. In add’ ion, we give a comparison of the exact solution u(z,y,t) and numerical
solution up(x,y,t) in Figure 10 and the ei.r ple of u(x,y,t) — un(z,y,t) in Figure 11 for h = 4.5873 x 1072,
a=p=08with7=10"2at t = 1y anply. .g CVM. We can see that the numerical solution is in excellent
agreement with the exact solution, wh ch emeo .strates the effectiveness of our numerical method again.

Table 6: The comparison of t" e density of stiffness matrix generated by FEM and CVM for different h

N h Size FEM CVM
© 74 2.8917E-01 T4 x 74 65.413 % 55.332%
50 1.6444E-01 260 x 260  41.814 % 33.521%
2310 0.6550E-02 1104 x 1104 22.233 %  17.469%
£.44  4.5873E-02 4271 x 4271 11.712%  9.107%

Example 3.3. Finally, ~ve c-asider the following 2D SFDE-VC without a source term on different convex domains

du( ,y,t) Q{ 0%u(zr,y,t) 3“U(%y,t)}
), by o K1(1'7y,t) Oxc Kg(l',y,t) 8(—1‘)0‘
0%u(z,y, ) 8ﬂu(x,y,t)}
Z K 2t K conl Qx (0,7
+ay|: 3(3772%75) ay@ 4(3?7?/775) 8(_y)ﬁ ) (Z‘,y,t) S X (07 ]a

subject to

u(x,y,0) =100, (z,y) € 9,
u(z,y,t) =0, (z,y,t) €00 x[0,T].

where Ky (z,y,t) =2 —z, Ko(x,y,t) =2+, Ks(z,y,t) =2 —y, K4(z,y,t) =2+y, T =0.5.
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Figure 9: The unstructu: ! mes es with control volumes for
h =~ 2.8917 x 1071,1.6444 x 107, 6,70 x 1072, 4.5873 x 1072, respectively

Here, we choose o = # = 0.8 and 7 = "3 to observe the diffusion behavior of u(z,y,t). Figure 12 shows
the different diffusion profiles of u(x,y,t) « ¢ = .5 on different convex domains. We can see that the diffusive
behaviour of u(z,y,t) is different on differe..” con” ex domains, in which the diffusive velocity on domain 1 is the
fastest and the diffusive velocity on dor .ain 4 is .ae slowest. We also can observe that our method is effective and
is applicable for all these convex dom- ms.

4. Conclusions

In this paper, we consider'd v e unstructured mesh control volume method for the two-dimensional space
fractional diffusion equation . *th variable coefficients on convex domains. We partitioned the irregular convex
domain using triangular meses. 17 »n we constructed the control volumes and solved the space fractional diffusion
equation by utilising the “mnite volime method. Finally, numerical examples on irregular convex domains were
studied, which verified the <™ ctivr ness and reliability of the method. We concluded that the numerical method can
be extended to other e ".crarily, shaped convex domains. Furthermore, according to the property of the stiffness
matrix generated by t’ e finite rolume method, we chose a suitable sparse matrix format for the stiffness matrix and
utilised the Bi-CGSTA  iters .ive method to solve the linear system, which is more efficient than using the Gauss
elimination methe .. (n adaition, we made a comparison of our method with the finite element method proposed
in [52], which der onstrat d that our method can reduce CPU time significantly while retaining the same accuracy
and approximatioi. nrop rty as the finite element method. In future work, we shall investigate the unstructured
mesh control  'me method applied to other fractional problems on irregular convex domains, such as the two-
dimensional mu “i- erm time-space fractional diffusion equation with variable coefficients, or three-dimensional space
fractional diffusio. equations with variable coefficients.
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Table 7: The Ly error, Ly error and convergence order of h for FEM with - - 10 %att=1

FEM h Lo error Order L error . ler
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