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Forecasting the number and distribution of new bidders 1 

for an upcoming construction auction 2 

Pablo Ballesteros-Pérez, Ph.D.1 ;  Martin Skitmore, Ph.D.2 ; 3 

Enoc Sanz-Ablanedo Ph.D.3* ;  Peter Verhoeven, Ph.D.4 4 

Abstract 5 

Estimating the number of new bidders in construction auctions is relevant for both 6 

private companies and contracting authorities. For private companies, it allows the total 7 

number of competing bidders to be estimated which may lead to better adjustments of future 8 

bids. For contracting authorities, it allows the population size of all potential bidders’ to be 9 

estimated and thus to implement better awarding criteria. Mathematical models for forecasting 10 

the number of new bidders and the population size of all potential bidders are, however, very 11 

scarce in the construction management literature. 12 

In this paper, we propose an Exponential model for predicting the average number of 13 

new bidders based on an urn analogy. The model allows the number of new bidders to be 14 

estimated as a function of new versus total participating bidders observed in previous auctions. 15 

The parameter estimates obtained from the model also allow the statistical distribution of the 16 

number of potential new bidders to be modelled using a sum of Binomial distributions. We 17 

validate the Exponential model on three published construction auction datasets, showing that 18 

the proposed model significantly outperforms the most advanced model for performing similar 19 

tasks – the Multinomial model proposed by Ballesteros-Pérez & Skitmore (2016). 20 
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Introduction 22 

A ubiquitous feature of the construction industry worldwide is the use of tendering for 23 

the simultaneous selection of contractors and soliciting a competitive price. This generally 24 

involves a sealed bid auction, in which the number of bidders is taken to be a proxy of the level 25 

of competition in the market. It is not surprising therefore that both the number and the identity 26 

of potential competitors are among the most relevant factors when a bidder is deciding whether 27 

to submit a bid or not (Ahmad and Minkarah 1988; Shash 1993).  28 

The number of bidders and their dominant competitive profiles greatly condition 29 

several auction outcomes (e.g. Dyer, Kagel, & Levin 1989; Hu, 2011; Levin & Ozdenoren 30 

2004; Takano, Ishii, & Muraki 2014). The winner’s curse, in which an unaware bidder submits 31 

an abnormally low bid that is eventually awarded, is one of the most celebrated (Capen et al. 32 

1971). Indeed, research confirms that while experienced bidders are more successful on 33 

average (Fu, Drew, & Lo 2002, 2003), inexperienced bidders are more prone to submit 34 

abnormally high or low bids (Ballesteros-Pérez et al. 2015b).  35 

All these facts are clearly relevant to competing bidders in assessing a more realistic 36 

level of competition and their competitors’ pricing strategies. But they are also relevant to 37 

owners in designing their awarding criteria (Liu et al. 2015), as those that restrict market entry 38 

make markets less efficient (the opportunity cost is greater, with prices higher than in perfect 39 

competition). On the other hand, awarding contracts to bidders who cannot cover their costs 40 

may create serious problems down the production line, and may even lead to project failure. 41 

Bidding models have been developed to aid decision making by both owners and 42 

bidders. They are usually statistical in nature, making full use of random variables as a 43 

simplification mechanism by means of agglomerating the considerable uncertainties involved 44 

in construction tendering. A fundamental simplification applied to many theoretical treatments 45 



is to avoid the complexities involved in having to deal with different bidders’ profiles by 46 

assuming that bidders’ bids are independently and identically distributed (iid) (see Klemperer 47 

(2004) for a review of the main contributions). However, empirical studies of construction bids 48 

by Oo, Drew, & Lo (2010) and Skitmore (1991) have demonstrated the untenability of iid in 49 

real construction auctions. 50 

Other, more serious, Bid Tender Forecasting Models (BTFMs) analyze bidders’ 51 

competitive profiles separately (e.g. Pablo Ballesteros-Pérez, González-Cruz, & Cañavate-52 

Grimal 2013; Carr 1982; Friedman 1956; Gates 1967; Skitmore & Pemberton 1994). This is 53 

done from historical auction data, while bidders with no past record are modeled as “average” 54 

bidders. However, quantifying the number of these new bidders in advance of the auction has 55 

other problems, such as inferring their potential participation when there is no previous 56 

available information about them (Runeson and Skitmore 1999). 57 

The result is that BTFMs normally work well in auction datasets with a high proportion 58 

of regular bidders. Unfortunately, this is again not the case in the construction industry, where 59 

there is usually a large population of bidders with varied and partially overlapping areas of 60 

expertise, and where an irregular few bid or are selected to bid (Skitmore 2013b). BTFMs that 61 

take into consideration different bidding profiles, despite being more information-demanding, 62 

are generally the most accurate (Ballesteros-Pérez et al. 2016a). These BTFMs can vary in 63 

complexity, from considering just two competitive bidding profiles (e.g. regular vs new 64 

bidders) to treating every single bidder’s identity separately (Ballesteros-Pérez et al. 2016c). 65 

Irrespective of how many and which bidding profiles are considered, however, they all need to 66 

quantify how many bidders of each bidding category (profile) will submit a bid. Without this 67 

information and considering the number of new bidders is a significant proportion of the total 68 

number of bidders as discussed earlier, these BTFMs cannot produce reliable estimates. 69 



However, apart from Mercer & Russell's (1969) (unsuccessful) attempt to infer the 70 

appearance of new bidders from the periodicity of bid submissions of frequent bidders, and 71 

Ballesteros-Pérez & Skitmore's (2016) recent Multinomial model, no other methods have been 72 

published for predicting the number of new bidders.  73 

In this paper, we propose an Exponential model for anticipating the number of new 74 

participating bidders in an upcoming auction based around the Binomial distribution. We 75 

provide not only the statistical distribution of the number of new bidders but also an improved 76 

estimate of the size of the population of potential bidders. We estimate the model on three sets 77 

of construction bidding data and find the proposed model to be twice as accurate as the 78 

Multinomial model, the only previous known model available. The approach suggested in this 79 

paper is relevant to practice for both open and selective tendering schemes. 80 

This paper is structured as follows. In the literature review section, we briefly 81 

summarize the major works on anticipating the number of bidders and the population size of 82 

potential bidders. Due to its relevance, the Multinomial model, the only existing model for 83 

anticipating the number of new bidders, is described in detail. In the materials and methods 84 

section, we describe the proposed Exponential model from an urn analogy, its constituent 85 

equations, and how to implement the model for forecasting purposes. In the model validation 86 

section, we apply the Exponential model to three datasets of construction auctions, and 87 

compare the model’s performance with that of the Multinomial. A dedicated section on the 88 

distribution of the number of new bidders follows where we show how the Binomial 89 

distribution can be used to estimate the number of new bidders in an upcoming auction. In the 90 

population of bidders section, we illustrate how the population of bidders grows in the three 91 

auction datasets. In the discussion section, we consider the practical relevance of the proposed 92 

model, as well as how the model may be improved. Finally, the conclusions section 93 



summarizes the major contributions of the paper, including limitations and avenues for future 94 

research. 95 

 96 

Literature review 97 

The number of new bidders participating in an upcoming auction can be inferred from 98 

the proportion of past new bidders divided by the total number of participating bidders, as well 99 

as from the population size of potential bidders. However, neither obtaining, nor interpreting 100 

these variables turns out to be a trivial task. 101 

Friedman (1956) was among the first researchers to suggest that the Poisson 102 

distribution may provide a suitable model to estimate the total number of participating 103 

bidders. The Poisson distribution depends on a single parameter  whose best unbiased 104 

estimate corresponds to the average number of participating bidders in previous auctions. 105 

Much empirical work, however, has found both supportive and unsupportive evidence of 106 

such a fit. A further assertion by Friedman is that the Poisson distribution may model the 107 

errors (deviations) of the number of bidders instead – both claims being rejected by 108 

Skitmore's (1986) empirical analysis of three sets of real UK construction data. 109 

Since Friedman’s work, a plethora of statistical distributions (e.g. Normal, Log-110 

Normal, Uniform, Weibull, Gamma, and Laplace) have been proposed for modelling the total 111 

number of participating bidders (Ballesteros-Pérez, Skitmore, et al. 2015; Engelbrecht-112 

Wiggans, Dougherty, & Lohrenz 1986; Skitmore 2013a; Stark & Rothkopf 1979). In this 113 

regard, Ballesteros-Pérez et al. (2015) performed an extensive fit analysis spanning 12  datasets 114 

of construction tenders from four continents. They conclude that, on average, the lognormal 115 

distribution performs best, closely followed by the Normal, Logistic, and Log-Logistic 116 

distributions. 117 



Despite the generally poor performance in terms of modelling the number of 118 

construction bids, the Poisson model has endured in practice. It is still the most popular model, 119 

not just in construction auctions, but also in other settings such as online auctions (Mohlin et 120 

al. 2015) and numerical simulations (Takano et al. 2014). 121 

Alternative proposals to treat the number of bidders participating in an auction 122 

stochastically have been made by Rubey & Milner (1966), who suggested resorting to 123 

experience and observation to anticipate the average value of the participants in upcoming 124 

auctions. This approach has been refined by many other researchers who confirmed that, 125 

indeed, the number of bidders is different depending on other aspects such as project type and 126 

size (Azman 2014; Drew and Skitmore 2006), client (Ballesteros-Pérez, González-Cruz, 127 

Pastor-Ferrando, & Fernández-Diego 2012), geographical location (Al-Arjani 2002; Benjamin 128 

1969) and market conditions (Ngai et al. 2002; Skitmore 1981). 129 

However, most of these aspects are quite difficult to standardize (Lan Oo et al. 2007; 130 

Oo et al. 2010a; b) and/or are strongly context-specific (their regression relationships remain 131 

valid providing the region, client, economic context, and/or the type of projects are similar) 132 

(Ballesteros-Pérez et al. 2015a). The only refinement (to having purely random variables) that 133 

works in most contexts has been to resort to the contract size (project budget) as a proxy for 134 

the total number of participating bidders. In particular, by classifying past auctions into 135 

homogeneous categories (same or similar project type, client, and location), this involves 136 

exploiting the generally moderate correlation between contract size and the number of bidders 137 

to make better predictions of (Rickwood 1972; Wade and Harris 1976). However, the 138 

proposed model focuses on forecasting the number of new bidders in an upcoming auction, not 139 

the total number of participating bidders. The latter has been the subject of other recent analyses 140 

by Ballesteros-Pérez et al (2015a). Furthermore, we express the number of new bidders as a 141 



proportion of the total participating bidders. This will allow the forecasting of both variables 142 

to be treated as separate, independent, problems.  143 

Estimating the population size of all potential bidders has proven even more elusive 144 

than the number of participating bidders per auction. So far, only Ballesteros-Pérez & Skitmore 145 

(2016) have successfully attempted this in an approach proposed in parallel with their 146 

Multinomial model. This basically resorts to dividing the total amount of different bidders 147 

identified so far (the size of the bidders’ identities database) by the proportion of new versus 148 

total bidders in the last auction. This estimate provides a reasonably close approximation, but 149 

has the disadvantage of suffering high variability. Therefore, a large number of auctions is 150 

generally required to obtain accurate estimates. 151 

Finally, concerning the number of new bidders, researchers to date have only produced 152 

one model: the Multinomial model described in the next subsection. The advanced reader, 153 

though, may also think of other alternative routes to derive a relatively good estimate of the 154 

number of new bidders in an upcoming auction. For example, subtracting the number of 155 

frequent bidders (those who have already been identified in the database) from the population 156 

size of all potential bidders, and then estimating how likely it is that a proportion of those will 157 

submit a bid again in upcoming auctions. However, this approach has several problems. First, 158 

it requires classifying the identities of bidders in relatively homogeneous groups (Ballesteros-159 

Pérez, Skitmore, Pellicer, & Gutiérrez-Bahamondes 2016; Shaffer & Micheau 1971; Wade & 160 

Harris 1976). This can be very misleading as bidders may bid for different types of work (multi-161 

market scheme) (Morin and Clough 1969) or stop bidding altogether when all their resources 162 

are busy (Lan Oo et al. 2012; Skitmore 1988). As both act in opposite directions, analyzing 163 

bidders in homogeneous groups can be very unreliable. Second, it still requires an estimate of 164 

the total number of participating bidders in an upcoming auction. So far, there are no reliable 165 

models to accomplish this task. There are no other alternatives so far. 166 



 167 

The multinomial model 168 

Currently, only one model has been proposed to estimate the number of new bidders. 169 

This model is an implementation of the multinomial distribution for construction auctions 170 

proposed by Ballesteros-Pérez & Skitmore (2016). It contains two variants, a trinomial model 171 

for forecasting the total number of different bidders for auction i+1 (the current auction is 172 

indexed as auction i), and a Binomial model for forecasting the current number of once bidders 173 

for auction i+1. The difference between the Trinomial and the Binomial models is that when 174 

bidders become twice bidders, they are promoted to a different category and are no longer 175 

counted the Binomial model, only by the Trinomial model. This is the reason why the 176 

Trinomial model will be the one compared later. 177 

The Multinomial model works by applying random walks to sets of nonce-, once-, 178 

twice-, thrice-bidders, etc. up to the maximum possible number of bids submitted by each 179 

bidder up to and including auction i. All subgroups of bidders who have been bidding more 180 

frequently in the past are also assumed proportionally more likely to submit another bid in 181 

auction i+1. Therefore, the Multinomial model basically counts how many once-, twice-, 182 

thrice-bidders and so on, have been currently identified in the tender dataset. Next, it estimates 183 

how likely it is that each of these bidders will submit another bid, and sums these estimates to 184 

provide an overall estimate of the total (probabilistic) number of (new and frequent) bidders. 185 

This capability allows the multinomial model to forecast the total number of bidders 186 

participating in an upcoming auction and not just the new bidders (although not that 187 

accurately). For that purpose, the model resorts to a regression-based estimate of the population 188 

size of all potential bidders. This is also possible by the urn model described later. Indeed, we 189 

will show that the urn model estimates compare favorably with the Multinomial estimates. 190 



The Multinomial model is substantially more mathematically complex than the 191 

Exponential model we propose. This is partially unavoidable as the former includes other 192 

capabilities that are of no interest when forecasting the number of new bidders. Our analysis 193 

here focuses on comparing the Multinomial and Exponential models in terms of predicting the 194 

number of new bidders in an upcoming auction as well as in estimating the population size of 195 

all potential bidders. 196 

 197 

Materials and methods 198 

In this section, we present the Exponential model, as well as the representative urn 199 

analogy upon which the model is built. 200 

 201 

Notation 202 

The proposed model makes use of the following terminology, some of which has 203 

already been presented: 204 

i The ith auction 205 

N Total population of all potential bidders. 206 

Ni Number of bidders participating in auction i. 207 

1 *iN  Number of different bidders participating in auctions 1 to i. 208 

Ni* Number of new bidders in auction i (they had not submitted a single bid in auctions 1 209 

to i-1). It can be calculated as 1
1 1* * *i i

iN N N   . By definition, 0Ni*Ni. 210 

 211 

  212 



An urn analogy 213 

The number and proportion of new bidders found in an auction i (or i+1) can be 214 

assimilated to an urn containing N different balls (each one representing one bidder). Each 215 

auction i is represented by a draw of Ni balls (total number of participating bidders in that 216 

auction). After each draw, all balls are returned to the urn and they can be drawn again in future 217 

(sampling with replacement after each draw).  218 

As successive auctions (draws) take place (i=1,2,3…), the number of balls that have 219 

not been drawn before are quantified as new bidders (Ni*). If we simulate the proportion of 220 

new balls versus the total number of balls drawn, that is Ni*/Ni, the expected values of these 221 

ratios are represented in Figure 1.  222 

Figure 1 was generated using 12,000 (Monte Carlo) simulations assuming a population 223 

of N=100 bidders (balls). Each line represents the successive values of Ni*/Ni as auctions 224 

(trials) progress (i=1,2,3…) and for different number of bidder (balls drawn) per auction (Ni=1, 225 

2, 3, …, 100 bidders). 226 

[Insert Figure 1 here]. 227 

Similar results are obtained with alternative population sizes, irrespective of the total 228 

number of trials (i) or the size of each draw (Ni). From the graph it appears that the average 229 

values of  Ni*/Ni are well represented by an Exponential function. These empirically obtained 230 

expressions all have the same generic form if we choose the Euler’s number as the logarithmic 231 

base: 232 

* b ii

i

N
a e

N
         (1) 233 

where a and b are the two coefficients that define the Exponential regression line.  234 



All lines cross the same point (i=1, Ni*/Ni=1), as all bidders (balls) are necessarily new 235 

(Ni*=Ni) in the first auction (i=1). By exploiting this boundary condition and taking log values, 236 

one of the regression parameters can be expressed as a function of the other as follows: 237 

b LN a        (2) 238 

where LN a is the natural logarithm of a.  239 

Next, by substituting (2) into (1) we obtain: 240 

* i LNai

i

N
a e

N
         (3) 241 

Therefore, in terms of bidding, when using expression (3) to forecast the proportion of 242 

new bidders in an upcoming auction, it will be necessary to compute the value of a from 243 

previous auctions. Fortunately, the value of a can be easily obtained from expression (3) taking 244 

log values: 245 

1

1* i
i

i

N
a

N

 
  
 

      (4) 246 

where Ni*/Ni is the observed value of new versus total bidders participating in auctions up to i.  247 

Inserting expression (4) into (3), the mathematical expression for the proportion of new 248 

bidders in auction i+1 is therefore: 249 

 

1
*1

1
111

1

* * i

i

Ni
LNi

i Ni LNai i

i i

N N
a e e

N N

 
  

  



 
    

 
   (5) 250 

Analogously, if the total number of participating bidders in auction i+1 could be 251 

somehow anticipated, expression (5) can be reorganized to compute, instead of the proportion, 252 

the number of new bidders: 253 



 

1
*1

1
11

1 1 1

*
*

i

i

Ni
LNi

i Ni LNa i
i i i

i

N
N N a e N e

N

 
  

  
  

 
     

 
   (6) 254 

Finally, the previous expressions also allow the population size of potential bidders, 255 

that is N, to be estimated. The exponents of the three regression equations in Figure 1 of 0.01 256 

(for Ni =1), 0.02 (for Ni =2), and 0.03 (for Ni=3) were obtained assuming a bidder population 257 

of 100 (N=100), indicating that a, Ni and N are empirically related as follows: 258 

iN
N

LN a
       (7) 259 

Again, this expression is identical for alternative sets of a, Ni and N values in the urn 260 

model. However, despite the fact that expressions (5) to (7) depend on a parameter which is 261 

(theoretically) constant (parameter a can be obtained with expression (4) by means of a single 262 

auction), a more accurate estimate of a can be obtained by analyzing a larger number of 263 

auctions. Similarly, in practice, neither the number of participating bidders (Ni) nor the 264 

population size of all potential bidders (N) are constant for all auctions over long periods of 265 

time. Therefore, it is practical to resort to “average” values of a and Ni to improve the quality 266 

of the estimates of (5) to (7), namely: 267 

1
avg i

i

a a
i

        (8) 268 

1
avg i

i

N N
i

        (9) 269 

This leads to the following expressions that can be used for forecasting purposes: 270 

 11

1

*
avgi LNai

avg
i

N
a e

N




      (10) 271 

 1

1*
avgi LNa

i avg avgN N a e 
        (11) 272 



avg

avg

N
N

LN a
        (12) 273 

Among other applications described earlier, expression (12) can be used to monitor the 274 

time-varying population size of potential bidders (N) as more auctions are completed. 275 

 276 

Model validation 277 

We empirically test the proposed Exponential model on three published datasets of 278 

construction auctions. The three datasets, containing all economic bids (not used in this study) 279 

and the numerical codes representing the bidders’ identities, are provided in the Supplemental 280 

Online Material file.  281 

Table 1 shows that the major features of the three datasets are vastly different. Dataset 282 

1 contains bidder data in the London area over a short period of time. Dataset 2 contains bidder 283 

data in a wider area of the north of England for much smaller projects and over a longer time 284 

period. Dataset 3 contains bidder data in the highly competitive Hong Kong construction 285 

market, where as many as 33 bidders may be bidding for a single contract.  286 

[Insert Table 1 here] 287 

For all tender datasets, we forecast the proportion (when Ni+1 is assumed known) and 288 

the number (when Ni+1 is assumed unknown) of new bidders in auction i+1 using the proposed 289 

Exponential model. To make the best forecasts possible for auction i+1, all information up to 290 

and including auction i is utilized. 291 

Table 2 compares the performance of the proposed Exponential model versus the 292 

Multinomial model of Ballesteros-Pérez & Skitmore (2016). The detailed auction-by-auction 293 

results of the Exponential model can be found in the Supplemental Online Material file. For 294 

the performance evaluation, the absolute, instead of squared, errors are preferred since absolute 295 



errors allow the error magnitude to be expressed in a more meaningful way, i.e. number of 296 

bidders (instead of number of bidders squared).  297 

[Insert Table 2 here] 298 

The results shows that the proposed Exponential model is superior to the Multinomial 299 

model, generating less than half the (sum and mean) absolute estimation errors. Given that the 300 

Exponential model is mathematically significantly simpler, this improvement is remarkable.  301 

 302 

Distribution of the number of new bidders 303 

So far we have implicitly made the assumption that Ni* is a deterministic variable 304 

whose average proportion or quantity can be approximated respectively by the Exponential 305 

regression line described in equations (10) and (11). However, it is clear that given any number 306 

of participating bidders Ni >0, Ni* can also take on different values. Particularly, Ni*=0,1,2, … 307 

Ni. 308 

Anticipating the distribution of possible Ni* outcomes is equally important. First, to 309 

anticipate how likely it is that each outcome happens. Second, because future bidding models 310 

that incorporate randomly generated artificial bids will require a clear set of rules for modelling 311 

different number of new bidders. 312 

Further analysis from the simulation results from the urn model reveals that, for any 313 

given value of Ni and i, the (unconditional) probability of Ni*=0, 1, 2, … Ni follows a Binomial 314 

distribution with a number of trials n=Ni and probability of success p=Ni*/Ni, obtained from 315 

expression (10). That is: 316 

  *
* , i

i i
i

N
Distribution N Binomial n N p

N

 
   

 
    (13) 317 



Proof of this can be found in the Supplemental Online Material file (“Binomial fit” tab), 318 

which provides a number of examples of the simulations used to create Figure 1.  319 

In the urn analogy, however, we assumed that Ni is constant throughout all auctions. 320 

This is not usually the case in real auctions, where this number tends to vary substantially and, 321 

most of the time, is difficult to anticipate. Hence, it remains necessary to check whether a 322 

Binomial distribution can simulate closely enough the number of new bidders in real auctions. 323 

Doing this involves converting expression (13) to a sum of Binomials, where each Binomial 324 

contributes in the same proportion as auctions with different values of Ni appear in the dataset: 325 

 1
1

*
* ,

iN
i

i j
j i

N
Distribution N Freq Binomial n j p

N


        
   

   (14) 326 

Freqj represents then the proportion of auctions with j=Ni bidders in the tender dataset. By 327 

definition, the sum of all Freqj values from 1 to Ni must equal 1.  328 

The application of expression (14) to dataset 1 is shown in Figure 2. Shown are the 329 

distribution fits for different auction group sizes. The figure shows that the average number of 330 

new bidders (Ni+1*) tends to decrease over time (as we analyze more auctions). Although not 331 

reported, the results for datasets 2 and 3 are similar to those of dataset 1 (see Supplemental 332 

Online Material file for results of those datasets). 333 

[Insert Figure 2 here] 334 

It is worth noting that the curves in Figure 2 are the result of a multitude of relatively 335 

heterogeneous auctions. Each auction has a different number of participating bidders, Ni, and 336 

population of bidders, N, that is constantly growing (see later) which affects the number of new 337 

bidders, Ni*, per auction. This causes both the number of trials, n, and the probability of 338 

success, p, to change in each of the Binomial distributions (as per expression (14)). 339 

Nevertheless, the visual appearance of the goodness of fit of the binomial expressions is 340 



excellent. Similarly, all things considered, the p-values provided also seem to suggest a 341 

satisfactory fit. 342 

Finally, when introducing equation (13), we mentioned that it corresponds to the 343 

unconditional probability of finding a given number of new bidders in the next auction. This 344 

means that that expression is valid when the actual numbers of new bidders observed in 345 

previous auctions are considered in average (expected) terms. In general, this is a necessary 346 

assumption, as the population size of all potential bidders (N) is not known. However, if N was 347 

indeed known it would be possible to resort to a more accurate model than the one offered by 348 

the Binomial. That model corresponds to the Hypergeometric distribution, which actually fully 349 

represents the urn analogy, presented earlier. Because it is rare for N to be known (or to be 350 

accurately estimated) before the auction takes place, that model has been relegated to the 351 

Appendix. 352 

 353 

The population of bidders 354 

As described earlier in expression (12), the population size of all potential bidders (N) 355 

can be approximated as a function of the average values of a and Ni (aavg and Navg). Estimates 356 

of N have many applications, probably the most important estimating the market size of 357 

different construction sectors. 358 

Calculating the value of N is mathematically very simple with the Exponential model. 359 

When describing the urn analogy, we assumed that the population of bidders remained 360 

constant. That is how we obtained the straight lines presented in Figure 1 (in log scale). 361 

However, this is not usually the case in real auctions, where the identity of participating bidders 362 

changes over time, and the total number of participating bidders either increases, remains 363 

stable, or decreases as auctions are completed. 364 



Monitoring potential variations in N in the proposed model is straightforward. All that 365 

is necessary is to plot the values of the N estimates by applying expression (12) after the 366 

completion of each auction i. By observing the trend line, it is possible to infer whether the 367 

population of bidders is shrinking, remaining stable, or increasing. Another sign of a significant 368 

change in the population size is the coefficient a in expression (3) or aavg in expressions (10) 369 

and (12) changing across auctions. These variations can also be plotted, but its application has 370 

no physical meaning beyond serving as a proxy of N changes. 371 

Figure 3 plots the estimates of a and N over time for the three datasets. It shows that 372 

for all three datasets, the population of potential bidders has been growing over time. A few 373 

regression lines fitting the values of N as a function of i are also included for illustrative 374 

purposes to better visualize the major trends in successive N estimates. 375 

[Insert Figure 3 here] 376 

Of particular interest is the plot of N in dataset 1. A similar regression line was also 377 

shown by Ballesteros-Pérez & Skitmore (2016) for their Multinomial model (Figure 2 in their 378 

paper). Whilst their regression model produced a similar curve (y=N=38.477·x 0.396) as ours, 379 

their estimate of N had a high variation (i.e. R2=0.5611). Fortunately, the proposed Exponential 380 

model is capable of producing substantially more accurate estimates of N using a significantly 381 

smaller database (number of auctions) and with higher coefficients of determination (i.e. 382 

R2=0.9639). 383 

 384 

Discussion 385 

Since Friedman (1956) and Gates’ (1967) seminal work on Bid Tender Forecasting, 386 

many other forecasting models have followed. Most of these try to anticipate the probability of 387 

several bidding-related outcomes (the number of participating bidders, lowest and/or average 388 



bids submitted, the presence of abnormally high or low bids, etc.), all with the intention of 389 

either gaining a competitive edge (from the contractor’s perspective) or implementing better 390 

awarding criteria (from the contracting authority’s perspective). 391 

The construction industry is currently becoming both more competitive and more 392 

specialized. Additionally, there is increasingly easier, quicker, cheaper, and more transparent 393 

access to all kinds of information. Bidding information is the same. For example, the United 394 

States (with the data.gov website), the UK (with data.gov.uk), and the European Union (with 395 

the European Public Sector Information Platform), are examples of entities that have recently 396 

launched initiatives to make non-personal government data available as open data. Each of 397 

these platforms provides access to tens of thousands of governments-related datasets. The 398 

procurement and bidding information of local, regional, and national contracting authorities 399 

constitute a significant proportion of these datasets. Moreover, these datasets are constantly 400 

growing and periodically updated. 401 

In this context, Bid Tender Forecasting Models (BTFMs) are very likely to thrive and 402 

become essential tools for enhancing construction projects and services procurement. BTFMs 403 

work with historical information to make predictions about the future. Companies and 404 

governments that take advantage of this increasingly massive amount of information will be 405 

able to make much better decisions. For construction contractors this might mean making more 406 

profits by being awarded more contracts and/or anticipating the contracts for which the 407 

competition may be less intense. For contracting authorities, this might mean fine-tuning the 408 

contract awarding criteria and allow a higher discrimination power over a population of 409 

potential bidders whose size and composition can be monitored.  410 

These are just a few examples of inferences that BTFMs implementing the variables 411 

analyzed in this study will allow. Mathematical expressions have been provided for each of 412 

those variables. Further contexts, implications, and limitations are also discussed here. 413 



In particular, an urn model is proposed to model the number of new bidders in an 414 

upcoming auction, Ni+1*. Despite assuming a series of relatively stable conditions ‒ a constant 415 

number of bidders per auction, Ni, and a constant population of potential bidders, N ‒ the model 416 

is empirically accurate at anticipating Ni+1* both when Ni+1 is known and unknown. 417 

Anticipating the total number of participating bidders in upcoming auctions (Ni+1) to 418 

make better estimates of Ni+1*, though, is not always possible. As noted in the literature review 419 

section, most models for anticipating Ni+1 have not gained significant improvements over the 420 

pure random case, even when contract sizes of future auctions are known in advance. However, 421 

it is relatively common, from past records or just because bidders regularly meet each other, to 422 

know the number of future competitors with varying degrees of certainty. There are also 423 

situations when the number of bidders is certain. This happens, for instance, when the owner 424 

shortlists a specified number of bidders from some prequalification stage.  425 

Finally, there are situations when either the maximum or minimum number of bidders 426 

is known. This usually happens, respectively, when the total number of invitations extended 427 

by the owner is known (although not all bidders may submit a bid), or when the owner states 428 

that unless there is a minimum level of competition (a minimum number of bids received), the 429 

contract will not be awarded. Therefore, both Ni+1 known and unknown cases are worth 430 

considering and predictions may require complementary information from both cases 431 

sometimes. 432 

Finally, the advanced reader may think that, once a first estimate of the population of 433 

potential bidders N is available, this variable can be used in turn to improve future Ni+1* 434 

estimates. This is, for example, a necessary assumption to implement the Hypergeometric 435 

model presented in the Appendix. Indeed, there is apparently no reason why forecasting future 436 

values of N should not be possible, as the growth of N in Figure 3 tends to be mostly relatively 437 



smooth. However, addressing this problem this way involves additional complexities and 438 

limitations.  439 

Concerning the additional complexities, once a series of (past) N estimates is available, 440 

it is necessary to find out how to forecast the value of N accurately in auction i+1. This may 441 

need to be achieved in a number of ways as the N estimates generally experience some degree 442 

of (local) volatility. Possible approaches may involve weighting more heavily the most recent 443 

estimates of N, or just taking a linear regression estimate of the value of N at auction i+1. 444 

Obviously, constant updates of the latest N estimates may be necessary after every new auction 445 

has been completed. 446 

There are two further limitations. First, a relatively large number of past auctions may 447 

be required to obtain a relatively stable estimate of N (between 20 and 30 in the three auction 448 

datasets analyzed). This could make it impractical, as it would be significantly more 449 

information-greedy than the model proposed in this paper. Second, even if we tried to forecast 450 

Ni+1* using N, it would still be necessary to resort to expressions (10) to (12), as these provide 451 

the only means of updating the N estimates. Therefore, any future model that tries to take 452 

advantage of N estimates will need to make use of the model presented here first. 453 

 454 

Conclusions 455 

We propose an Exponential model based on an urn analogy to predict the number of 456 

new bidders that will participate in an upcoming auction. This, or alternatively predicting the 457 

proportion of the new versus total number of bidders participating in the next auction, is of 458 

significant value to a number of construction stakeholders, mostly to enhance competitiveness. 459 

Tests on three construction auction datasets shows that the absolute deviation errors of 460 

the proposed Exponential model are around 50% smaller than those produced by Ballesteros-461 



Pérez & Skitmore's (2016) Multinomial model – the only model with a similar aim found in 462 

the literature. Moreover, the proposed model is mathematically simpler and has a much lower 463 

computational cost. Indeed, the calculations could be carried out manually if necessary. 464 

Furthermore, we show that the statistical distribution of new bidders closely resembles the sum 465 

of a series of Binomial distributions. We also analyzed the variation (growth) of the population 466 

of potential bidders by means of the same Exponential model. Finally, we briefly outlined a 467 

number of applications of the model. 468 

Regarding the model limitations, the exponential model heavily relies on a relatively 469 

accurate estimate of the total number of participating bidders in the upcoming auction. That is 470 

not a problem when we are only interested in the proportion of new versus total bidders, but it 471 

is certainly limiting when we are interested in the absolute number of new bidders. Many 472 

models in the past have attempted to come up with reliable estimates of the total number of 473 

participating bidders and some examples have been reviewed in this paper. Besides the early 474 

Poisson distribution model, many of them have resorted to multivariate regression. However, 475 

most of these models have shown to be strongly context-specific (same country, economic 476 

environment, client, type of project, etc.) and hardly provide reliable results in more generic 477 

settings. Hence, future research may investigate multivariate approaches, particularly on trying 478 

to accommodate the information of subsequent bids from previous bidders.  479 

 480 

Appendix 481 

The (conditional) probability of k new bidders participating in auction i+1 (i.e., Ni+1*) 482 

in the urn analogy actually follows a Hypergeometric distribution. The Hypergeometric 483 

distribution is a discrete distribution that describes the probability of getting k successes 484 

(drawing k objects with a particular feature) in n draws, without replacement, from a finite 485 



population of size N. That population N contains exactly K objects with that feature (in this 486 

case that the bidder is new). Therefore, each draw is either a success or a failure.  487 

Using the previous notation, the Probability Mass Function (PMF) of the 488 

Hypergeometric can be expressed as follows: 489 
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 (15) 490 

The problem when implementing expression (15) is, obviously, that N is generally not 491 

known, what is more, it may be changing over time. If we try to infer N from the random 492 

observations (number of new bidders from past auctions) we face another problem. The mean 493 

of the Hypergeometric distribution corresponds to n·(K/N). Note that this mean coincides with 494 

the mean of the Binomial distribution, which is n·p. Thus, as from expression (13) we can infer 495 

that 496 
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       (16) 497 

Therefore, when implementing the Binomial model suggested earlier when trying to 498 

infer the probabilities of finding a given number of new bidders in the next auction we are 499 

already using the best estimates we have available. These estimates will be very accurate as 500 

long as Ni<<N, which is generally the case in real contexts. 501 



However, the Hypergeometric model also offers a new way of estimating N after each 502 

auction has occurred. Working with expression (16) we can infer that once auction i has been 503 

completed, the best estimate of N corresponds to the one that fulfils the following equality: 504 
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Therefore, by obtaining the variable N using expression (17) we can infer that the best 506 

estimate of N after auction i corresponds to: 507 
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     (18) 508 

The problem with this expression is that it suffers from high volatility. It is almost 509 

identical to that proposed by Ballesteros-Pérez & Skitmore (2016), which has proven to be 510 

more disadvantageous than the ones proposed in expressions (7) and (12). Therefore, as a 511 

general rule, the latter are preferred over expression (18). 512 
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Dataset Source Description Period Nº bids Nº contracts Navg 

1 Skitmore (1986) London building contracts 1976-77 1,915 373 5.13 

2 Skitmore (1986) 
North of England public 

works contracts 
1979-82 1,235 218 5.67 

3 Fu (2004) 
Hong Kong Administrative 

Services Dept. contracts 
1991-96 3,445 266 13.30 

Table 1: Descriptive summary of the datasets of construction tenders 645 



Dataset Absolute deviations Ni+1 known Ni+1 unknown   

 
 Exponential Multinomial Exponential  Multinomial   

 
1 
 

Sum 50.53 103.22 280.96 497.50   

Average 0.14 0.28 0.76 1.33   

Maximum 1.00 1.28 4.36 5.85   

 
2 
 

Sum 25.64 32.39 144.25 274.32   

Average 0.12 0.15 0.67 1.26   

Maximum 0.74 0.90 5.09 5.11   

 
3 
 

Sum 8.63 10.15 124.94 144.54   

Average 0.03 0.05 0.47 0.65   

Maximum 0.67 0.77 8.87 10.17   

Table 2: Performance of the Exponential and Multinomial models. 646 
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 648 

Fig. 1. Urn analogy with N=100 bidders and Ni curves 1 to 100. 649 
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 651 

 652 

Fig. 2. Binomial distribution fit to the Ni+1* values when auctions are analyzed in groups of 653 

1, 10, 50 and 100.  654 
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 657 

Fig. 3. Variation of a coefficients and population of bidders, N, for the three datasets of 658 

construction tenders. 659 
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