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Abstract

This dissertation reports the methods and results of an interdisciplinary research approach
of applied statistics, a supervised machine learning method and remotely sensed data to
develop a prediction model that addresses the challenging nature of spatial dependencies
and autocorrelation in spatial data sets. The project begins within a suitability study
to investigate if a Boosted Regression Tree (BRT) model can accommodate the charac-
teristics of the data, achieve a good model fit and yield a high prediction accuracy. In
a comparison with other regression tree methods namely Least Absolute Shrinkage and
Selection Operator, (LASSO) and Random Forest (RF), BRT outperformed those and
showed the highest prediction accuracy and best model fit.

To address the high data volume, spatial autocorrelation and local dependencies of re-
motely sensed data we investigated four spatial data aggregation and spatial smoothing
resolutions that simultaneously reduce computational cost and maintain local character-
istics of the underlying land cover information. Our aim was to identify how spatial
aggregation and spatial smoothing affects the intrinsic characteristics of green vegetation
cover and the prediction accuracy of a BRT model.

By analysing prediction accuracy, computational speed and prediction raster maps we
identified one resolution that best addressed the three criteria specified above. In the
next step, the best spatial resolution was used for a long-term study covering 30 years of
raster data on heterogeneous grazing land to investigate localised spatio-temporal trends
in green vegetation cover. The conclusion of the dissertation is that BRT is a robust
and accurate non-linear supervised machine learning method that addresses data-driven
challenges, offers a wide range of interpretation, visualisation and variable selection tools
and can deal with missing data by default, which is especially crucial in processing spatial
and raster data sets.
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1 Introduction

Statistical machine learning methods play an important role in analysing complex rela-

tionships, in extracting meaningful information and in providing predictive capabilities

and results that can assist in a better informed decision making process in real world

applications. The opening of the Landsat archive and a new open data policy have revo-

lutionised the use of Landsat data (Wulder, Masek, Cohen, Loveland, & Woodcock, 2012).

The Fractional Cover (FCover) (Scarth, 2012) product is a derived product from Land-

sat imagery and provides fractional cover representation of the proportions of green or

photosynthetic vegetation, non-photosynthetic vegetation, and bare surface cover across

the Australian continent in three separate layers (Guerschman et al., 2015; Muir et al.,

2011). Modelling spatial data for land use and land cover (LULC) analyses using Land-

sat imagery has great potential since the Landsat data are freely available, cover a wide

geographical area, and it avoids expensive, extensive and often impractical in-situ mea-

surements (Irons, 2018, December 10; J.Walsh, Crawford, Welsh, & A.Crews-Meyer, 2001)

In addition, the temporal resolution of Landsat imagery, meaning that every 16 days new

raster data are available, enables us to perform extensive spatio-temporal analysis on

LULC (Irons, 2018, December 10). In this thesis, attention is focused on the use of Land-

sat imagery for estimation and prediction of green vegetation, with the aim of providing

insight and evidence about its change, quality and quantity.

A common challenge in dealing with satellite imagery is its sheer data volume. A FCover

scene is about 350 MB and consists of 50 million pixels. One way of reducing the data

volume is to derive descriptive statistics from regularly or irregularly shaped polygons

comprising homogeneous pixels contained within the given extent. Spatial data possess

autocorrelation in that areas that are close together share similar characteristics. In this

thesis, this intrinsic characteristic is incorporated in a data reduction approach in which

we aggregated pixels contained in an evenly spaced spatial grid overlaid on our FCover

scene to delineate the arithmetic mean of the individual grid cells. Each spatial grid

cell accounts for spatial autocorrelation effects in remotely sensed data in four different

spatial resolutions in a given extent. To further refine the modified raster data and to ad-

dress issues of the signal-noise ratio, a spatial filter such as a moving kernel can be used

to smooth over the imagery to reduce the variance and improve the overall prediction

5
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accuracy. This results in a substantial volume reduction, but can still account for local

vegetation characteristics.

As noted above, there is a variety of machine learning methods that can be employed

for estimation and prediction of green vegetation and LULC analysis using Landsat data

(DeFries & Chan, 2000; Irons, 2018, December 10; Robinzonov, 2013; Rodriguez-Galiano,

Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012). In this thesis, a Boosted Re-

gression Tree (BRT) is adopted as the main methodology to address the challenges in

predicting green vegetation in this thesis (De’ath, 2007; De’ath & Fabricius, 2000; Elith

& Leathwick, 2017; Elith, Leathwick, & Hastie, 2008). BRT is a popular statistical, hi-

erarchical and supervised machine learning approach that has been applied to remotely

sensed data in various studies (De’ath, 2007; Elith et al., 2008). BRTs have only recently

been extended to incorporate spatial and temporal data features that are characteristic of

remotely sensed data (Elith & Leathwick, 2017; Elith et al., 2008; Emelyanova, McVicar,

Van Niel, Tao Li, & Van Dijk, 2013). A BRT consist of two algorithms, namely a binary

Regression Trees approach and a Boosting component and arguably yield higher predic-

tion accuracy than simple tree-based methods such as a Classification and Regression

Trees (CART) (Elith et al., 2008).

There are two major advantages of using BRT over more traditional regression methods.

First, it allows a more flexible partition of the feature space that is not as rigid as using

a simple linear regression. BRT combines simple binary partitions to form a complex

prediction rule that can more accurately identify small areas of interest. Second, it can

deal with missing values by default like masked out areas (clouds and cloud shadows),

water bodies or the Scan Line Error of Landsat 7 ETM+ (Irons, 2018, December 10).

In this thesis, we focus on a single study area to demonstrate and evaluate the proposed

methodology. The study area is located in the Northern Territory, Australia. The loca-

tion of the FCover scenes at the Landsat footprint of path 102 row 72 on the Worldwide

Reference System-2 (WRS-2) and covers an area of 185km x 185km. Our study area is

defined as “dry” with variations of “desert, hot arid” and “dry summer, hot arid” (BWh

and Bsh) based on the Koeppen-Geiger scheme and is very vulnerable with regard to cli-

mate variability (Chen, 2017). A quantitative estimation of green vegetation in semi-arid

grazing land is our primary interest in this case study and the results are important for

agricultural managers. Our study area is a heterogeneous region with a complex topogra-

phy of native grass types. To give insight in the topology we created a Digital Elevation

Model (DEM) using freely available Shuttle Radar Topography Mission (SRTM) data.

The highest point is 255m and the lowest is located at 23m above mean sea level (MSL)

referenced to the Australian Height Datum (AHD).
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This research will bring together the different domains of remote sensing, statistical meth-

ods, supervised machine learning algorithms, big data, geoscience, remote sensing and

agricultural and environmental sciences. We aim to develop a computationally efficient

modeling approach with the focus on prediction accuracy. The intent is to make processes,

patterns and relationships more transparent and enable more confident decision making

based on the improved predictions.

1.1 Research aim and objectives

The overarching aim of this PhD project is to develop spatio-temporal decision tree mod-

els using big spatial data, with applications to environment and agriculture. In particular,

the methodological focus will be Boosted Regression Trees (BRT), the data will be derived

from remotely sensed satellite images, and the applied focus will be on the estimation and

prediction of active photosynthetic land cover using geographic coordinates.

In order to achieve this aim, the project has three main methodological and four applied

objectives.

M1: Development of a customised BRT model that incorporates spatial data

sources with different granularities, data characteristics, noise and missing

data following a big data approach.

• A1: Application of the BRT model to Landsat image data and other environmental

and non-spatial agricultural data for estimation of grass biomass using a surrogate

variable

M2: Development of a customised BRT models using spatial aggregation and

spatial smoothing on aggregated green vegetation to assess the influence on

prediction accuracy.

• A2: Application of the BRT model by including aggregated spectral information of

remotely sensed green vegetation land cover data to assess the influence of a spatial

aggregation scheme on prediction accuracy, using centroid coordinates as surrogate

variables.

• A3: Analysis of spatial smoothing effects on green vegetation to improve prediction

accuracy using Boosted Regression Trees.

M3: Extension of BRT models developed in M2 to predict spatio-temporal

green vegetation trends as our newly created response variable in a long-term

time series approach on aggregated green vegetation fractions.
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• A4: Extension of the model to include location based slope regression trends to

understand the seasonal trends on aggregated green vegetation averaged over 30

years based on a spatial grid.

The aims M1 and A1 are addressed in chapter 3. Aim M2 and A2 are addressed in chapter

4. Aim M3 and A3 are addressed in chapter 5, and Aim M3 and A4 will be addressed in

chapter 6. The chapter overviews are displayed in Figure 1.1.

Figure 1.1: Overview of thesis objectives and chapters.

The results of this thesis will fill these significant gaps: 1.) Methods: Contribute to sta-

tistical and machine learning methods for big data showing different granularities, data

structures, data characteristics, spatial and temporal patterns and missingness. 2.) Ap-

plication: Analysis of suitability of using Landsat data and derived products for predicting

green vegetation cover in semi-arid heterogeneous land.

1.2 Thesis outline

This thesis is presented in the style of a traditional monograph where the chapters are

structured in the style of journal articles. Because the thesis is structured in this way,

there is some overlap in the introductions and concept descriptions within the chapters.

A separate set of references is provided for each chapter. A more comprehensive review

of the literature and set of references is presented in Chapter 2 and at the end of the thesis.

The objectives of the thesis are addressed as follows: Chapter 3 addresses the applied

aims A1 and M1 and resulted in my first published paper. Chapter 4 address the aim A2
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and M2 and resulted in my second published paper. Chapter 5 addresses aim A3 of M3

and resulted in my third published paper and Chapter 6 addresses the aim A4 of M3 and

is presented as a draft paper.

The literature review in Chapter 2 provides a summary of the current relevant literature

on big data challenges, remotely sensed data like Landsat imagery and its derived product

fractional cover data. Further, it addresses monitoring of spatio-temporal land use, land

change, and supervised statistical machine learning methods on large spatial data sets.

In Chapter 3 the goal was to establish a supervised statistical machine learning model

which incorporates various types of heterogeneous data, showing very different character-

istics and data granularities, directly observed or measured, e.g. stocking data, Landsat

Imagery, derived from existing data, e.g. Vegetation Indices, Fractional Cover, and Data

as an output from a model, e.g. AussieGRASS (Carter & Bruget, 2015). We investigated

the relationship between the variables in the data set that best predicts green vegetation.

In the exploratory data analysis we analysed the different data sets in order to summarise

their main characteristics. In further steps this new knowledge was combined with previ-

ous knowledge in order to refine the model successively and to gradually identify strong

predictors and remove weaker ones to decrease computational processing time. Altogether

four scenarios have been created to identify the best covariates for the following model

building process covering a time frame from 2006 to 2012.

Chapter 4 presents the development and application of a data reduction scheme applied

on FCover green vegetation data. Working with big spatial data processing is computa-

tionally expensive. The proposed data reduction scheme accounts for reduction scheme

that account for spatial autocorrelation by combining nearby pixels together to create

new FCover data in four different aggregation resolutions. Data reduction steps without

loss of information are a scientific and computational challenge but are critical to enable

effective data processing and information delineation in data-rich studies. We used all

four spatial aggregation resolutions in our BRT modelling approach to investigate the

influence of the aggregation and impact on prediction accuracy of green vegetation.

Chapter 5 presents a two step approach in using a combination of a simple linear re-

gression model to extract slope parameters that represent green vegetation trends and

those were used as our new response variable in the BRT to predict location based green

vegetation trends. The geographic coordinates of the extracted slope coefficients were

used to predict, visualise and understand the temporal and spatio-temporal variability

on aggregated green vegetation in a long-term time series approach on aggregated green

vegetation fractions covering 30 years.
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Chapter 6 proposes that applying a spatial filter reduce the noise in the imagery and

therefore spatial smoothing enhance the predictive performance of BRT. It is currently

set up as a draft version.

Chapter 7 provides a summary of the key implications from Chapters 3 to 6 and will

draw together these separate chapters and the body of research therein. The chapter also

discusses the strengths and limitations of the work presented, and outlines the significance

of the research completed and its implications for the field. Finally, the questions raised

as a result of this work will be outlined, presenting future avenues for research answering

these questions.

1.3 Scope of the study

The scope of the research presented in this thesis was determined largely by three factors:

the nature of the case study, the available remote sensing data and the chosen statistical

machine learning methodology. As described above, the case study focuses primarily on

estimating green vegetation cover. For the first paper we are using an hierarchical and

supervised machine learning method, namely Boosted Regression Tree. For the first paper

the study area spread from the Northern Territory to Central Queensland and showed

disjunct regions. For the remaining three papers the study was conducted on the case

study area in the Northern Territory, described above. This study area provides sufficient

challenges in methodology and variety in landscape to allow clear development of the aims

and objectives described above.

As discussed above, attention is confined to BRTs as the analytic tool. Comparison of

BRTs with other candidate statistical and machine learning methods is undertaken as

part of the literature review in Chapter 2, but is not a focus of the substantive research

in this thesis. Similarly, we focus on geographic coordinates as covariate information to

account for spatial dependencies and to obtain predictions that are location based. Since

the interest is on the utility of the geographic coordinates alone, other covariates such as

elevation, rainfall, temperature, etc are not considered.

The spatial data we used are satellite data such as MODIS (Wolfe, 2018, December 10)

and Landsat (Irons, 2018, December 10) and derived products such as Vegetation Indices,

and fractional cover data based on spectral values of optical Landsat imagery. Other spec-

tral data from optical sensors might also be suitable but have not been considered in our

study. Our focus was on prediction green vegetation such as grass and pasture.



2 Literature Review

In this literature review, the necessary background and state of current methods will be

detailed and critically reviewed to motivate the objectives previously defined in Section

1.1. The review is organised in three main sections. Section 2.1 will give an introduction

to big data, their properties, challenges and why we need to find non-traditional methods

to address those challenges to extract knowledge out of data. A literature review has

been undertaken in order to identify a method which can deal with big data challenges

and missing values by default without the need for infilling or interpolation. Data gaps

are common in satellite imagery and usually this is a result of data refinement, when

obscuring elements have been filtered or masked out. Section 2.2 will give background in-

formation of Landsat imagery and the derived product, namely fractional cover (FCover)

and how this data can be used to address our defined aims. We justify the suitability

in using Landsat imagery and FCover for predicting green vegetation and additionally

demonstrate that we yield satisfying prediction accuracy. Section 2.3 explains the impor-

tance of spatial modelling such as LULC studies for environmental purposes and identify

potential methods. The discussion of the current methodology and review of software

will be outlined in Section 2.5 and in Section 2.7 according to the aims explained in the

Introduction and in Figure 1.1.

2.1 Big data characteristics

“We are drowning in information but starved for knowledge” said by John Naisbitt in

1982 (Cressie, Shi, & Lang, 2010). This sentence is still valid and gets more important

with the beginning of processing large and diverse datasets, so called big data. “Advances

in data collection (. . . ) and computerization of many businesses and government trans-

actions have flooded us with data and generated an urgent need for new techniques and

tools that can intelligently and automatically assist in transforming this data into useful

knowledge” (Banerjee, Gelfand, Finley, & Sang, 2008).

There are many advantages in having access to those large data sets, but there are also

challenges in processing these data. One is dealing with the difficult demand to manage,

11
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process, analyse, extract, visualize and publish useful information out of large, diverse

heterogeneous and often widely distributed datasets. Many experts are convinced that

the era of big data has arrived and new approaches along with it. The expression “Big

Data” could be found in the 1990’s in formal literature and it refers not specifically to

large datasets only, but massive data collections and consolidations from multiple data

sources and even to the techniques to manage and analyse the data. However, not only

the volume is one of the challenging properties which define big data, also velocity, verac-

ity and variety will be taken into account for processing large datasets. Data scientists

break big data into four dimensions: Volume (scale of data), Velocity (refers to the speed

of data processing), Veracity (biases, noise and abnormality in data), Variety (different

forms of data). Moreover, (Rubin, 2014) claims that veracity is now considered the biggest

challenge which has not been acknowledged so far as important for successful applications

of big data. Spatial data like remotely sensed imagery possess the above mentioned four

dimensions of big data. We need to investigate new non-traditional approaches to over-

come the challenges of dealing with large and complex data. We are only at the beginning

of the new so called era of big data and much more can be expected in the next decades

(Wu & Kumar, 2009). A meaningful extraction of information out of rich and diverse

datasets to create new knowledge is limited and challenging. Therefore, we need new

tools to manage and process big data which are beyond the ability of existing software

tools to manage and process them within a tolerable elapsed time (Wu & Kumar, 2009)

and to gain knowledge that is needed for the future.

2.2 Monitoring land use and land change with Landsat

data

Landsat optical imagery has been extensively used for environmental monitoring (Guer-

schman et al., 2015; Lindquist & D’Annunzio, 2016; Reiche, de Bruin, Hoekman, Verbesselt,

& Herold, 2015; Rigge, Smart, Wylie, & Kamp, 2014; Sarker, Alvarez, & Woodley, 2016;

Schmidt, Thamm, Menz, & Bénes, 2003). With remote sensing data it is possible to

objectively observe and monitor land use and land change (LULC). Landsat imagery is

quantised in 8 bit, meaning that there are 256 different grey values for each pixel ranging

from black (0 – max absorption) to white (255 – max reflection). Behind each pixel is a nu-

merical integer value showing the individual reflectance of objects on the ground recorded

by the sensor. Landsat offers several spectral bands in the electromagnetic spectrum

where the reflectance of objects on the earth surface will be recorded. Since different

object reflect their properties differently, characteristic spectral curves can be plotted

throughout the electromagnetic spectrum and through all spectral channels. The spatial

resolution of the Landsat sensor is 30 x 30 m and the reflectance of all recorded objects

will be combined into one pixel. This leads to a mixture of spectral information repre-

sented in one pixel and is called a mixed pixel, or Mixel (Schmidt et al., 2003). Fractional

Cover data is derived from Landsat imagery and provides fractional cover representation
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of three ground cover classes across Australia (Scarth, 2012; Scarth, Röder, & Schmidt,

2010). The fractional cover spectral unmixing algorithm breaks the spectral information

stored in each pixels up into three parts of fractions represented as percentages. Those

are a.) Photosynthetic vegetation - includes leaves and grass, b.) Non-photosynthetic

vegetation - includes branches, dry grass, and dead leaf litter c.) Bare surface cover -

bare soil or rocks. Further descriptions of how FCover fractions can be derived can be

found in (Guerschman et al., 2015; Scarth et al., 2006, 2010; Schmidt, Carter, Stone, &

O’Reagain, 2016).

Analysing Landsat time series data can give insight into how knowledge of how the land

use has changed in the last years. (Schmidt et al., 2003) showed that the analysis of Land-

sat data is suitable to describe changes in the LULC pattern for three decades. However

this approach has its limitations. Therefore, (Pugh & Waxman, 2006) argues that multi-

spectral imagery from earth observation satellites, like Landsat, has been widely used for

land cover classification, but the outcomes in form of land use classifications have gener-

ally been limited to broad categories. The author (Pugh & Waxman, 2006) further argues

that a reliable classification of sub-categories in the monitoring of land cover is in high

demand. Nevertheless, there is a big advantage of using remotely sensed Landsat imagery

and applied spectroscopy for land use monitoring because the data are quickly available

and require no further costs in the acquisition since Landsat opened the archive for the

public. Therefore, it can be expected that sequential images of the Landsat satellite time

series data can be used as a basis for an assessment and estimation of existing green veg-

etation. Moreover, using freely available Landsat imagery avoids in-situ observation and

measurement. However, there is a trade-off between using Landsat imagery which shows

a moderated resolution and in-situ measurements which are expensive, time consuming

but offer a high localised accuracy. In conclusion, using Landsat imagery for monitoring

LULC is a valuable data source that can be used to address many ecological questions,

cover large regions and time periods and is freely available.

The importance of spatial modelling for environmental purposes (Mazzotti, Hughes, &

Harvey, 2007) can be demonstrated in revealing short and long term trends that can

lead to new knowledge, and a better understanding in complex relationships and de-

pendencies. This new knowledge can be used to revise policies as part of an iterative

learning development. Adaptive Management assists in learning of the effectiveness of

management decision by monitoring its outcomes (McCarthy & Possingham, 2007). It

is used with applications which possess a high degree of complexity since they involve

economic, institutional, and ecological linkages across large landscapes with high hetero-

geneity (B. K. Williams, 2011). One of the challenges of adaptive management can be

addressed with remote sensing techniques. Earth observation satellites like Landsat are

recording environmental information in a constant time interval for over four decades now.

Before management practices can be judged in regards of their effectiveness, a thorough
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data gathering of the ecological system needs to be conducted first. (Schmidt et al., 2003)

demonstrated on time series data that Landsat imagery is suitable to describe changes

in land-cover in Morocco, Africa. In addition, the Australian Collaborative Land Use

and Management Program (ACLUMP) highlights the value of monitoring land manage-

ment over time with imagery to observe ground cover and land management practices

in Australia (Forward, 2009). Further, a study in China describes the retrieval of grass-

land aboveground biomass based on satellite imagery in the time frame from 2006 to

2010 (Jin et al., 2014). Moreover, (Bastin, Denham, Scarth, Sparrow, & Chewings, 2014)

demonstrated in a Landsat time series the change of rangeland due to grazing effects in

Queensland between 1988 and 2005. In conclusion, it can be said that remotely sensed

imagery used for ecological LULC studies can assist in adaptive management practices to

ensure an iterative learning development based on monitoring green vegetation in time

series.

2.3 Statistical machine learning models

In the era of big data, statistical analysis of data has become an increasingly impor-

tant tool to quantitatively analyse complexity in spatial data, their relationships and

dependencies using statistical machine learning methods. Given this challenging need to

interpret data and create new knowledge, we use statistical concepts to learn from data

and their properties. All data have intrinsic characteristics (Jain, 2010) that can be de-

scribed as statistical concepts such as their distribution, data range or extreme values.

Consequently, when applying supervised machine learning methods we build a model that

learns from the data and use this model to predict events using data that have been ex-

cluded in the model building process. Supervised machine learning methods progressively

improve performance without being explicit programmed what to do since the analytical

model building process is based on the underlying data structure and the data charac-

teristics. (Box, 1979) stated that ”All models are wrong but some are useful”. There is

the trade-off with regards of over- and under-simplifying the complexity of certain local

characteristics described by the model. It is critical to keep certain local details, but also

it is important to create a model that ensures its transferability/generalizability. Further,

it should provides a level of detail and not exclude too much variability just to enhance

the goodness of model fit metrics when assessing the model. Generalisability describes to

which extent research findings can be applied to other settings and involves drawing broad

inferences in quantitative research (Brown & Raymond, 2007). If relevant components

are excluded the model is too simple and we don’t develop the understanding of local

characteristics. Whereas, if there is too much detail the model becomes too complex and

lacks transferability and generalizability to different regions and data sets.

There are many suitable statistical machine learning methods that address environmental

and ecological complexity. For example, (T. J. Hastie & Tibshirani, 1986) developed a
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Generalized Additive Model (GAM) that links a univariate response variable with pre-

dictor variables and allows exponential families distribution to unite characteristics of

a Generalised Linear Model with additive models. It is considered as a nonparametric

extension of Generalised Linear Models and also an extension of classical linear models

(Moisen et al., 2006). GAM’s have been widely used in ecological applications (Moisen

et al., 2006). In a study of (Moisen et al., 2006) GAM has been used to compile step-

wise unique models based on environmental covariates predicting tree species in Utah,

USA, and he further compared the results achieved by GAM with Stochastic Gradient

Boosting (SGB). The model performance was evaluated using independent test data set

including specificity, sensitivity, Kappa, and area under the curve (AUC). (Moisen et al.,

2006) concluded that SGB had higher values for the majority of species for näıve accu-

racy, specificity and kappa; while GAMs had higher values for a majority of the species

for sensitivity. Alternatively, (Leathwick, Elith, Francis, Hastie, & Taylor, 2006) used

GAM and BRT in comparison for analysis of relationships between demersal fish species

richness, environmental characteristics and trawl data around New Zealand. BRT are the

extension of the functionality of the regression trees by adding a second algorithm called

Boosting. Boosting is a machine learning algorithms used for reducing bias and variance

in supervised learning (Breiman, 1996). Based on the results he concluded that BRT is a

powerful analysis tools, which showed substantially superior predictive performance over

generalised additive models. Further, the BRT model had a greater predictive power and

explained 6 % more deviance than the GAM model (Leathwick et al., 2006). He used

mostly k-fold cross-validation as an evaluation method and demonstrated clearly that

BRT’s outperformed substantially in comparison with GAM.

We demonstrated that a BRT as a supervised machine learning approach achieves good

prediction results and is suitable for spatial and non-spatial data. In addition to BRT

there are many other supervised and unsupervised machine learning approaches that per-

form well in using satellite imagery for prediction purposes such as crop yield (Pantazi,

Moshou, Alexandridis, Whetton, & Mouazen, 2016) using the NDVI and understanding

variations in the yield based on soil data, drought assessments that causes crop failure

(Park, Im, Jang, & Rhee, 2016) using MODIS imagery, quantify aboveground biomass

(Dube, Mutanga, Elhadi, & Ismail, 2014) using RapidEye data and classify local for-

est communities (Li, Im, & Beier, 2013) using Landsat imagery. (Pantazi et al., 2016)

used three different Self Organizing Map models, namely, Counter-propagation Artificial

Neural Network (CPANN), Supervised Kohonen Network (SKN) and XY-fusion network

(XYF) to predict the field variation in wheat yield using the NDVI derived out of GeoEye

imagery and concluded that the SKN model demonstrated the best overall performance.

In a different study of (Park et al., 2016) the influence of temperature and evapotranspira-

tion in crop failure is investigated by monitoring meteorological and agricultural drought

factors in a temporal approach for different climate regions in the USA. The authors used

three machine learning approaches, namely Random Forest, Boosted Regression Trees,

and Cubist and concluded that the temperature and evapotranspiration showed higher
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relative influence for short-term meteorological drought while vegetation-related factors

contributed towards long-term effects. (Li et al., 2013) investigated in the identification of

forest type change using multi-temporal Landsat data covering a 20-year timeframe using

Random Forest, Decision Trees and Support Vector Machine approaches and concluded

that Support Vector Machine and Random Forest outperformed Decision Trees. Dube

et al. (2014) also used Stochastic Gradient Boosting and Random Forest to predict non-

linear intra- and inter- species biomass. The Stochastic Gradient Boosted outperformed

Random Forest and the authors emphasised the relevance of stochastic prediction models

in predicting aboveground biomass.

2.4 Benefits of using BRT

BRT consist of two algorithms: Decision Trees and Boosting. One of the advantages is,

that they are highly customisable to the specific requirement of the application (Natekin

& Knoll, 2013). BRT can perform regression (Elith et al., 2008) and classification (De’ath,

2007) and can deal with many data types such as categorical variables for classification

(De’ath, 2007; Jafari, Khademi, Finke, Van de Wauw, & Ayoubi, 2014; Rizzo, Martin, &

Wohlfahrt, 2014) or numeric variables for regression (De’ath, 2007; Elith & Leathwick,

2017), and the use of different loss functions (De’ath, 2007; De’ath & Fabricius, 2000).

BRT is beneficial for processing large spatial data sets for estimation and prediction pur-

poses (Elith & Leathwick, 2017; Leathwick et al., 2006) and is a statistical model that built

a series of regression trees, minimise errors through cross validation and avoids over fitting

which allows for more flexibility in the selection of environmental variables (Humphries,

2015). Further, BRT can account for non-linearities and interactions between variables

(Müller, Leitão, & Sikor, 2013). This makes BRT an appealing method that combine

high predictive accuracy where interactions can be quantified and visualised and offers

easy ways to interpret and diagnostics of the results (De’ath, 2007; Müller et al., 2013).

Moreover, a case study of (Crase, Liedloff, & Wintle, 2012) demonstrated that BRT can

account for spatial autocorrelation. Another feature the diagnostic capabilities of BRT is

a relative influence plot, listing all covariates in a descending order showing their contri-

bution as a percentage and their predictive power towards the response variable. Relative

influence plots enable a more confident variable selection to create a subset of strong

covariates without minimising the predictive capabilities of BRT. This is an important

analysis tool since variables that do not contribute significantly can be removed from the

modelling process and collinearity can therefore be avoided or minimised (George, 2000).

In comparison with other popular machine learning methods such as Artificial Neural

Networks (ANN) and SVM those methods don’t provide relative influence plots due their

multi- or high dimensional analysis. A basic linear separation of results provided by re-

gression analysis such as BRT, is not possible and therefore ANN and SVM lose their

ability of visualising dependencies and relationships of data.
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In a study of (Rizzo et al., 2014) they assessed the BRT predictions on location specific

features and location probabilities using relative influence plots to compare the strength

of the covariance with each other and concludes three variables were most influential in

successfully predict a special crop type used for bioenergy production. The case study of

(Jafari et al., 2014) evaluated the suitability and performance of BRT for soil mapping,

where added covariates where investigated with regard of their improvement of prediction

results . The authors concluded that by removing strong covariates the prediction accu-

racy strongly decreased, whereas adding strong covariates contributed importantly and re-

sulted in a better prediction accuracy. A similar study has been conducted by (Humphries,

2015) where the identified top predictor allowed a better understanding in seabird distri-

bution on a long term population monitoring in oceanographic regions. There are many

applied studies where BRT showed considerable advantages in showing the differences be-

tween cropland based on the influence of topography in agricultural cropland (Müller et

al., 2013), identify important regions using long-term time series on variations of seabird

population and success of population using gridded spatial data (Humphries, 2015) and

pixel-based classification of soil mapping (Jafari et al., 2014). (Leathwick et al., 2006)

analysed the relationship between fish richness, trawl characteristics and oceanic environ-

ment and concluded that BRT is a powerful tool, with superior predictive performance

to GAM. In Chapter 3 we investigated the suitability of BRT on spatial and non-spatial

data and we demonstrate the superior performance of BRT in comparison with two other

regression models, namely RF and LASSO. BRT outperformed RF and LASSO in the

predictive performance and visualisation of results and interpretation of results in general.

Another advantage in using BRT is the flexibility of performing a uni- or multivariate

analysis and the individual interpretation of their strength as a covariate on the response

variable or as a comparison of existing relationships or dependencies amongst each other.

2.5 Boosted Regression Trees

The principles behind a Decision Tree method is to divide the space of input covariates

through a binary rule based system. Those splitting rules use operators at the nodes of

the tree to split the data in if-else paths along tree branches. The data is split at several

nodes and result in most homogeneous groups in the leaves of the tree. At each node,

the ”error” between the predicted value and the actual values is squared to get a sum

of squared errors. At the first iteration, the split point errors across all the variables

are compared and the variable yielding the lowest sum of squared errors is chosen as the

root node point (J. Friedman, 2006; Tarling, 2009). In a regression tree, the standard

deviation (Robinzonov, 2013) is used to make that decision in place of information gain.

The disadvantage in using a regression tree method is the rigid binary partition of the

feature space. In order to capture features and their local characteristics better, a more

flexible approach is needed. Boosting performs binary splits also referred to as weak



Chapter 2. Literature review 18

learners/binary splits, and it combines them in an ensemble approach to create one com-

plex prediction rule. The partition of the feature space is based on the covariates. All

following partitions focus on the residual errors of the previous steps to iteratively create

new trees. In this way observations which are predicted poorly are given a higher weight

for the next iteration in creating a new tree. It goes on successively to generate each

new set of residuals until all trees have been created. The result from the single steps in

creating those trees is summed up to give a successive accumulative model. Boosting is

primarily used for reducing bias and variance in supervised learning and it converts weak

learner to strong ones. The idea behind boosting is that through combing the predictive

power of many weak classifiers, a classifier of arbitrary accuracy can be created (Breiman,

1997). This implies that even the simplest classifiers, with prediction only slightly better

than random, could be combined to create an excellent predictor.

BRT belongs to the family of greedy algorithms that aim to find the best choice in an

iteration by finding the local optima assuming that this will lead to a global solution.

To achieve a more stable convergence towards correct values, we can make smaller steps

by only adding a fraction of the result given by each tree. By forcing smaller conver-

gence steps, we slow down the greedy learning rate and this is controlled by the shrinkage

hyperparameter (Sancetta et al., 2016). Other important hyperparameters are the total

number of trees in the final model (tree complexity), interaction between different nodes

along the branch (interaction depth), and the minimum number of training set samples in

a node to commence splitting (minimum observations in node). Those four hyperparam-

eters are the most influential ones that prevents the BRT from overfitting, regulates the

bias-variance trade-off and ensures a good model generalisation ability to other data sets.

A feature of the BRT algorithm is that the performance can be tuned to accommodate

specific data structures and characteristics through specification of hyperparameters. For

our BRT model, the carat package (Kuhn, 2008) was employed to find optimal values for

the hyperparameters.

BRT also has limitations, namely overfitting and ensuring the generality capabilities of

the model through regularization (Natekin & Knoll, 2013). Empirically, it has been found

that using a small value for shrinkage results in impressive improvements in a model’s

generalisation ability (T. Hastie, Tibshirani, & Friedman, 2009). The drawback of a lower

learning rate is that more trees need to be generated, resulting in increased computational

time.

BRT, also known as Gradient Boosted Machine (GBM) or Stochastic Gradient Boosting

(SGB), is a non-parametric regression technique that combines a Regression Tree with a

boosting algorithm (J. Friedman, 2006) and is graphically explained in Figure 2.1. This
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extension to the classical regression tree allows greater flexibility and predictive perfor-

mance in modelling the data.

(a) (b)

Figure 2.1: Sub-figure (a) shows a graphical demonstration of the hierarchical regression and binary
splitting process at the nodes of the BRT and how the observed values will be transported along the tree
branches. In sub-figure (b) we demonstrate the ensemble approach of the boosting algorithm as part of
the BRT. Binary splits indicated as red straight lines separate the data in grey and white sections and
so called weak learners are created as seen in Equation (2.1). The combination of weak learners, to form
one strong prediction rule is managed by the boosting algorithm. The BRT method yield a more accurate
prediction accuracy through generating flexible boundaries and therefore allowing the identification of
small areas of interest. Adapted from (Matteson, 2013).

A regression tree partitions multivariate data with a hierarchy of binary splits that de-

fine regions of the covariate space in which the response variable has similar values. The

partitions of the feature space are defined by splitting rules in the nodes of the tree, a

distance metrics or by information gain. The partition can be illustrated as a tree-like

structure, comprising nodes representing the selected factors, branches acting as if-else

connectors between the nodes, and leaves representing terminal nodes containing the sub-

sets of responses as depicted in Figure 2.1 (Robinzonov, 2013; Tarling, 2009).

Boosting improved the performance, whereby a sequence of trees is grown, such that in

each subsequent tree a greater focus will be applied where observations showed a greater

prediction error by giving the observations a higher weight. This results that misclassified

or large residual errors in the current iteration will get prioritized in the next iteration.

The variance can be captured by growing the tree deeper, meaning that the tree accom-

modates more segments. The motivation behind boosting is that each tree can be quite

shallow (a weak classifier) and thus fast to estimate, but by combining the predictive

power of many weak classifiers, a classifier of arbitrary accuracy and precision can be

created (Breiman, 1998; Freund & Schapire, 1996; J. H. Friedman, 2002).

Here, we summarise the method, following Friedman (J. Friedman, 2006). Consider a

response variable y and a vector of predictor variables x that are connected via a joint

probability distribution P (x, y). Using a training sample {(x1, y1), . . . , (xn, yn)} of known
values of x and corresponding values of y, the goal is to find an approximation F (x) to a
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function F ∗(x) that minimises the expected value of a loss function ψ(y, F (x)). Boosting

approximates F ∗(x) by an additive expansion. The parameters {am}M0 and the expan-

sion coefficients are jointly fitted to the training data. This is done in a forward stage

wise manner. Gradient Boosting (J. Friedman, 2006) approximately solves differentiable

loss functions ψ(y, F (x)) with a two step procedure. First, the function h(x;a) is fit by

least squares to the current pseudo-residuals which represent the residuals from the given

stage of the tree building.

First, the model will be initialized with the mean of the training set that is defined through

{yi,xi1}Ni . Then we specify the number of trees/iterations shown as m in the for-loop

control structure. Friedman (J. Friedman, 2006) added a stochastic element by proposing

to draw a random subsample from the full training data set without replacement. This

subsample is then used to fit the base learners and compute the model update for the cur-

rent iteration. The random subsample of size Ñ < N is given by {yπ(i),xπ(i)}Ñ1 . Adding

randomness to the algorithm in this way has been shown to improve the performance of

Gradient Boosting (J. H. Friedman, 2002). In the last step of the algorithm the current

approximation of Fm−1 is updated in each corresponding region Rlm.

Next, the current approximation Fm−1(x) is individually updated in all of the correspond-

ing regions

Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm). (2.1)

The shrinkage parameter, ν, ranges from 0 to 1 and controls the learning rate γ, so each

gradient step is reduced by some factor between 0 and 1 of the learning rate. The value

of γ is influenced by the choice of loss function ψ.

Then, given h(x;am), the optimal value of the coefficient βm is calculated via

βm = argmin
β

N∑
i=1

ψ(yi, Fm−1(xi) + βh(xi;am)). (2.2)

Thus, at each iteration m, the tree partitions the feature space into L disjoint regions

{Rlm}Ll−1 and predicts a constant value, ȳlm, in each region. Gradient Boosting proceeds

in this way until the base learner h(x;a) is an L terminal node regression tree.

The parameters of the estimated tree are the splitting variables and corresponding split

points that define the tree, and this defines the corresponding regions {Rlm}L1 of the

partition at each iteration. These are accomplished in a hierarchical top-down approach

using a least squares splitting measure (J. Friedman, 2006). Equation 2.2 can be solved

individually within each region, Rlm defined by the corresponding terminal node l of the
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mth tree. Because the tree predicts a constant value ȳlm within each region, Rlm, the

solution to 2.2 reduces to a simple location estimate based on the criterion ψ

γlm = argmin
γ

∑
xi∈Rlm

ψ(yi, Fm−1(xi) + γ). (2.3)

The model fit is primarily analysed on the basis of the root mean square error (RMSE).

The RMSE is a measure of how well our model performs when using new data and mea-

sures the difference between values predicted by a model and the values actually observed

that is being modelled on the test dataset. In general, the RMSE is best when it is small,

but there is no absolute good or bad threshold.

2.6 Applications of BRT in agriculture and ecology

In a time series study of (Müller et al., 2013) BRT has been successfully used to identify

land use change of cropland abandonment in Albania and Romania based on Landsat

imagery. They concluded with analysing the spatial data mining pattern of change that

cropland abandonment was largely determined by the underlying topography in the two

countries. (Rizzo et al., 2014) proved that BRT can spatially map miscanthus, an emerging

bioenergy crop in France. The aim of this study was to detect regions of miscanthus based

on real spatial distribution data in order to identify areas where miscanthus is present or

absent. (Humphries, 2015) investigated in Generalized Boosted Regression modelling to

infer important oceanographic regions for seabirds using breeding sooty shearwaters in a

long time series in New Zealand. The goal was to identify the population and distribution

of Archival Geolocation (GLS) tagged seabirds in important regions around the islands.

He used a kernel density tool to delineate important foraging locations for the birds dur-

ing the breeding season. Where the recordings where dense he assumed that those areas

are important. He concluded that it is possible to combine spatial techniques with long-

term data sets to infer potential foraging areas using ecological data with ecological niche

modelling techniques via BRT. In addition, (Leathwick et al., 2006) used spatio-temporal

and spectral information out of Landsat imagery in BRT to identify high concentration

of chlorophyll which can be interpreted as primary productivity sites which attracts fish

in oceanic waters. The study concluded that BRT provide a powerful analysis tool, which

superior predictive performance over generalized additive models (Leathwick et al., 2006).

He demonstrates that the BRT is suitable for complex analysis. To sum up, BRT has been

successfully used in spatial, spatio-temporal and spectral studies which aim to address

specific ecological needs and yields superior results.
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In a very recent study of (Pourghasemi & Rahmati, 2018) compared the accuracy of 10

advanced machine learning techniques (Artificial Neural Networks (ANNs), Boosted Re-

gression Tree (BRT), Classification and Regression Trees (CART), Generalized Linear

Model (GLM), Generalized Additive Model (GAM), Multivariate Adaptive Regression

Splines (MARS), näıve Bayes (NB), Quadratic Discriminant Analysis (QDA), Random

Forest (RF), and Support Vector Machines (SVM) for modeling landslide susceptibility

and evaluating the importance of environmental variables. The aim of the study was

to identify landside prone areas in an semi-arid region of Ghaemshahr Region, Iran in

order to control land degradation. They concluded that RF and BRT have the best per-

formances comparison to other machine learning techniques used in this study by using

the Receiver Operating Characteristic curve (ROC) method to illustrate the ability to

separate classification results. Whist it has been shown that BRT perform well in gen-

eral studies (Jafari et al., 2014) and (S. E. Wang, 2013) further demonstrate successful

applications and high prediction accuracy achieved from BRT by using Landsat imagery

in semi-arid regions such as Iran, Australia and China. Surprisingly, spatial predictions

using FCover data in Australia using BRT can only be found in a study of (B. Wang

et al., 2018) where they used the FCover band ”bare soil” for predicting changes in soil

organic carbon in semi-arid rangelands in eastern Australia. They concluded that the

results of the study are important in Australian rangeland because they provide a statis-

tical basis for producing maps using remotely sensed data and have potential for further

use in similar rangeland condition across the globe.

2.7 Review of Software

There are many software products available for working with spatial, non-spatial and

raster data formats to perform tasks such as data pre-processing, storage and data man-

agement. To achieve our results we used the freely available software R and its extensive

libraries offering built-in functions of supervised machine learning algorithms, various

geo-spatial tools and geo-spatial drivers that can read and write raster and vector data

extensions, and extensive and flexible visualisation options. R is an open source scripting

language supported by the R Foundation for Statistical computing and is widely used for

data analysis and for developing statistical software. It is available for Linux, Mac (OS

X), Windows (R Core Team, 2013; R Development Core Team, 2008; Wikipedia, 2018,

December 26).

One of the biggest advantages in using R is, that the R environment and its libraries

can be extended through user-created software packages public available and published

through GitHub or the Comprehensive R Archive Network (CRAN). This allows the user

to apply specialised statistical tools, function and algorithms to existing data and also

enables to create new R packages to share with the R community. The packages are

developed mostly in R, but are also available in more efficient programming languages
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such as Java, C, C++ and Fortran (Wikipedia, 2018, December 26). R can be used with

the graphical user interface RStudio and the R functionally is accessible through several

object orientated and high-level programming such as Python that is predominantly used

in the proprietary ArcGIS suit. To combine the power of R and ArcGIS we used the

package R-ArcGIS Bridge that serves as an Application Programming Interface (API)

to read and write data to and from ArcGIS and R and run scripts within ArcGIS. By

combining R and ArcGIS we were able to use the statistical library of R and the exten-

sive geo-spatial data analysis capabilities of the ArcGIS suit. Other software available

to analyse and process big spatial data are Hadoop, System for Automated Geoscientific

Analyses (SAGA), SAS, SPSS and Stata (Wikipedia, 2018, December 26).





3 Using Boosted Regression Trees and Remotely

Sensed Data to Drive Decision-Making

Preamble

The primary purpose of this chapter is to introduce Boosted Regression Trees as our main

modelling technique and its suitability for our research aims.

In presenting this paper we contribute to our first aim A1, namely the suitability of BRT

of big noisy data showing missingness, different granularities and data characteristics

stored in monolithic hardware components and therefore imply the lack of interoperabil-

ity. Further, we demonstrate that BRT offer a wide range of visualisation possibility that

allow for a good interpretability of results. This is especially useful for a wide range

of data-driven decision for real word applications and in assisting in a better informed

decision making.

This chapter has been prepared as a paper and has been published.
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Abstract
Challenges in Big Data analysis arise due to the way the data are
recorded, maintained, processed and stored. We demonstrate that a hier-
archical, multivariate, statistical machine learning algorithm, namely Boosted
Regression Tree (BRT) can address Big Data challenges to drive de-
cision making. The challenge of this study is lack of interoperabil-
ity since the data, a collection of GIS shapefiles, remotely sensed im-
agery, and aggregated and interpolated spatio-temporal information, are
stored in monolithic hardware components. For the modelling pro-
cess, it was necessary to create one common input file. By merg-
ing the data sources together, a structured but noisy input file, show-
ing inconsistencies and redundancies, was created. Here, it is shown
that BRTs can process different data granularities, heterogeneous data
and missingness. In particular, BRTs have the advantage of deal-
ing with missing data by default by allowing a split on whether
or not a value is missing as well as what the value is. Most
importantly, the BRT offers a wide range of possibilities regarding
the interpretation of results and variable selection is automatically per-
formed by considering how frequently a variable is used to define a
split in the tree. A comparison with two similar regression mod-
els (Random Forests and Least Absolute Shrinkage and Selection Op-
erator, LASSO) show that BRT outperforms these in this instance.
BRT can also be a starting point for sophisticated hierarchical mod-
elling in real world scenarios. For example, a single or ensemble ap-
proach of BRT could be tested with existing models in order to im-
prove results for a wide range of data-driven decisions and applications.

Keywords
Boosted Regression Trees, remotely sensed data, Big Data modelling approach,
missing data.
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1. Background

Data are typically stored in various ways and various formats, mostly
in monolithic software architectures which do not allow for interoperabil-
ity. Analysis of data across multiple data sources is thus difficult,
since the functionality of the single data sources with respect to in-
put and output, maintenance, data processing, error handling and user
interface are all interwoven and act as architecturally separate compo-
nents. In order to create a basis for analysing the data considered
here, it was required to extract the datasets from their original databases
and combine them to form a common input file for the modelling pro-
cess. It was therefore inevitable that this resulted in a data file struc-
ture which showed missing data, inconsistencies, duplicates and redundan-
cies.

A case study is presented here to examine land use data sourced
from a GIS, direct observations from an agricultural company, and re-
motely sensed data. The data were extracted from a relational database,
Excel spreadsheets, remotely sensed imagery stored as raster data, and
vector data from a Geographic Information System (GIS), directly ob-
served and measured data in real-time and interpolated data. By com-
bining these data sources to form one common basis for our analy-
sis, issues of data volume, variety and veracity were encountered. Big
Data research clearly deals with issues beyond volume and belongs not
only to the ongoing digital revolution, but to the scientific revolu-
tion as well. The question posed of Big Data and illustrated in the
case study presented here, is whether new knowledge can be extracted
from various data sources that haven’t been analysed in combination be-
fore, and can thus assist in a better and more confident decision mak-
ing.

2. Introduction

There is an exponential increase in interest in the use of digital data
to improve decision making in a range of areas such as human sys-
tems, urban environments, agriculture and national security. For exam-
ple, decisions in the agricultural domain may require information based
on vegetation or land use change, estimation of crops or biomass, dis-
tribution of native or exotic species, livestock or weed assessment and
so on. One source of digital data that has generated intense interest
over the past decades is remotely sensed imagery. These data are avail-
able from a wide range of sources, ranging from satellites to drones, and
have been used for a very wide range of environmental applications [1–
8].

The availability and resolution of these data, combined with improved
computer storage and data management facilities, have greatly increased
the opportunity for mathematicians and statisticians to utilise this in-
formation in their models and analyses. The challenge in linking re-
motely sensed data to decision-making is that there are multiple steps
in the process. Here, we focus on an exemplar real-world problem
in the livestock industry: deciding on the allocation of animals to dif-
ferent paddocks and potentially different grazing properties based on the
predicted availability of grass over the year. This problem arose in
the context of collaboration between statisticians at the Queensland Uni-
versity of Technology and a large livestock organisation in Australia.
The specific aim of the project was to develop an ensemble of mod-
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els to predict the carrying capacity, that is, the number of animals
that can be sustained on a paddock. In order to achieve this goal
we utilised remote sensing data and supporting information about cli-
mate and paddock characteristics. Further, it was important to present
the results in a form that is useful for the agricultural decision mak-
ers.

Difficult or challenging decisions demand a thorough consideration and
even then they imply uncertainty, complexity and different levels of risk.
Making the right decisions at the right time can lead to success, increase
of profit or minimisation of risk. It is thus important that thought-
ful considerations are put into each decision. Figure 1 demonstrates the
workflow following a Big Data approach for our case study. Here, we
use structured but heterogeneous data sources that showed characteristics
like missing data, noise and redundancies. In the Appendix in Fig-
ure 6 we show a plot that demonstrates the data structure and miss-
ing values. All the data sources were used to create a BRT model
via an ensemble approach. The resulting model and its output serves
as a foundation for a better decision making. The steps involved in
the process are depicted in Figure 1. Due to commercial confidential-
ity concerns, the final results of the modelling workflow are not presented
here.

Heterogeneous
data sources

BRT model
ensemble

Model output
Decision
making

Figure 1: Modelling process for case study.

In this article we focus on one component of the ensemble mod-
elling approach employed in the project, namely the use of BRT to es-
timate so-called animal equivalents per paddock. Since calves, cows
and bulls of different ages consume different amounts of grass, these
animals are standardised to a reference animal which can then be
used as a common response variable in the analysis. An interest-
ing conundrum is that one of the major inputs into such a model
is the amount of grass, or more generally the biomass, in a pad-
dock. This can potentially be estimated directly from remote sensing,
but is confounded by the fact that animals are on the paddock eat-
ing the very thing that is being measured by the sensor. Moreover,
the decision maker may be interested in the biomass estimates them-
selves, either directly via the remotely sensed measurements or indirectly
via the animal equivalents based on animal weight and metabolic for-
mula.

A BRT is a popular statistical and machine learning approach that has not
yet seen much application in the analysis of remotely sensed data. Indeed,
although they were first defined two decades ago, BRTs have only recently
been extended to deal with the types of features that are characteristic of re-
motely sensed data, in particular its spatial and temporal dynamics. Most of
the activity around the use of BRT for agricultural and environmental appli-
cations does not appear in the mainstream mathematical and statistical litera-
ture.
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2.1. Case Study

The study area is located in the Northern Territory, Australia. The
main climate zone is identified as grassland with hot dry summers
and mild winters [9]. It is a heterogeneous region with a com-
plex topography and land cover and type of grassland. Identifica-
tion, differentiation and quantitative estimation of biomass is of pri-
mary interest in this case study. A range of data from differ-
ent sources was required for this problem. In this section, we de-
scribe the information derived from Landsat imagery and comment briefly
on other data. The reflectance recorded by the Landsat sensor is
stored as an 8 bit value, resulting in a scale of 256 different grey
values ranging from black (0 – max absorption) to white (255 –
max reflection). The electronically recorded data appear as an ar-
ray of numbers in digital format. In addition to the 8 bit quanti-
sation, Landsat offers several spectral bands in the electromagnetic spec-
trum in which each individual pixel shows different values across differ-
ent bands. This means that each pixel has a different dimension and
therefore will be represented differently in each spectral band. Raster
data are becoming increasingly common and increasingly large in vol-
ume, although it is possible to reduce file size with compression func-
tions.

There is a strong advantage in using remotely sensed Landsat im-
agery and applied spectroscopy for these types of analyses because
the data are freely available, the imagery covers a wide geographi-
cal range, and it avoids expensive, extensive and often impractical in-
situ measurement. However, the trade-off is in resolution: in-situ
measurements provide highly localised accuracy whereas a pixel in a
Landsat image covers an area of 30m × 30m. It is noted that
other satellites are now able to provide higher resolution, but these
are not yet freely available for the areas of interest in this case
study.

Estimation of biomass using satellite data is of ongoing global inter-
est. Grass biomass estimation is challenging since the phenological grow-
ing cycle of naturally existing grass is a dynamic process influenced by
many complex parameters, including grass type, soil, climate, topogra-
phy and land use. With the spectral information of remotely sensed
imagery it is possible to detect green vegetation, which is driven by
the photosynthetic biochemical process of grass biomass. However, since
raster imagery is only a two dimensional representation of the land cover
it is difficult to derive the quantity of the vertical grass biomass di-
rectly.

Fractional cover [10] data are often available as derived products; for
example Geoscience Australia (GA) who provides an Australian Reflectance
Grid 25 (ARG25) product which gives a 25m scale fractional cover rep-
resentation of underlying vegetation across Australia or Tern - Auscover
in 30m resolution of Landsat 5 and 7 covering the temporal extent from
2000 – 2011. Fractional cover unmixing algorithms use the spectral re-
flectance of a Landsat scene for a pixel to break it into three fractions
represented as percentage values. These are photosynthetic vegetation (in-
cludes leaves and grass), non-photosynthetic vegetation (includes branches,
dry grass, and dead leaf litter) and bare surface cover (bare soil or rocks)
[11].

In addition to fractional cover Vegetation Indices (VI) are commonly
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used to extract meaningful information out of the imagery through im-
age analysis techniques. To calculate VIs it is common to ap-
ply arithmetical methods in order to create additional artificial chan-
nels using existing spectral bands of the imagery. Other related data
were also available to support the analyses. For example, SILO (Sci-
entific Information for Land Owners) is a database of historical cli-
mate records for Australia. SILO provides daily datasets for a range
of climate variables and in formats suitable for a variety of applica-
tions. In addition, SILO datasets are constructed from observational
records provided by the Bureau of Meteorology (BOM). As another ex-
ample, the AussieGRASS spatial framework includes inputs of key cli-
mate variables (rainfall, evaporation, temperature, vapour pressure and so-
lar radiation), soil and pasture types, tree and shrub cover, domes-
tic livestock and other herbivore numbers. The derived results of
AussieGRASS data are spatially interpolated to construct gridded datasets
on a regular grid (approximately 5 km × 5 km) across Australia [12,
13].

2.2. Data-related challenges

The analysis of relationships in ecological data sets is not trivial [14].
In addition to the complexity of the processes being modelled, there is
the challenge of dealing with data dimensionality since it is often nec-
essary to combine various data sources. Moreover, the scale of spa-
tial data needs to be considered when there are differing granulari-
ties of spatial and temporal data. For example, SILO rainfall data
are reported at a 5 km × 5 km grid, whereas a Landsat pixel cov-
ers an area of 30m × 25m. The SILO data are stored in a tab-
ular data base format and the single measurement points to record
the precipitation independently from each other. In contrast, the de-
rived VI cover a whole Landsat scene of 185 km × 185 km and are
highly correlated. All our environmental data have been provided
from the Department of Science, Information Technology and Innova-
tion (DSITI). In addition to the environmental data we used opera-
tional data provided by a commercial entity under a confidential agree-
ment.

Another challenging characteristic of remotely sensed data is miss-
ing information. There are two major considerations in dealing with
this issue. The first is dealing with the missing values. Com-
mon options are to filter them out [15, 16], interpolate them or
increase the spatial aggregation. There are advantages and disad-
vantages to each of these approaches in terms of computational re-
sources, inferential capability, and precision and bias of the resultant
estimates [17]. The second consideration is whether to undertake
the chosen method as part of the pre-processing or post-processing
steps.

For our case study we performed a number of pre-processing steps
to prepare our data for the modelling process, namely data aggrega-
tion and data reduction for our predictor variables, as well as calcu-
lation of the response variable. Instead of working with single pixel
values we reduced the volume of data by deriving descriptive statistics
from Landsat, MODIS and SILO data, thereby obtaining paddock specific
means, medians, first quartile, third quartile, variance and Shannon En-
tropy. With respect to our response variable, we aggregated real-time
measurements to a monthly mean. In the next step we created a test
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and a training data set by partitioning the data to 20% and 80% re-
spectively. The training set was used to estimate the model parame-
ters. The test set was used for model performance evaluation on unseen
data.

3. Boosted Regression Trees

Boosted Regression Trees (BRT), also known as Gradient Boosted Machine
(GBM) or Stochastic Gradient Boosting (SGB), are non-parametric regres-
sion techniques that combine a regression tree with a boosting algorithm
[18]. This extension to the classical regression tree allows greater flexibil-
ity and predictive performance in modelling the data. The implementation
of these methods used in this study can be found in the gbm R pack-
age.

A regression tree partitions the data with a hierarchy of binary splits
that define regions of the covariate space in which the response vari-
able has similar values. These splits are defined by rules, distance met-
rics or information gain. The choice of variables and the value at
which the split point occurs is determined in a recursive manner at
each stage of the tree construction. The segmentation can be depicted
as a tree-like structure, comprising nodes representing the selected fac-
tors, branches acting as if-else connectors between the nodes, and leaves
representing terminal nodes containing the subsets of responses [19, 16,
20].

Boosting improves the performance of a simple base-learner by reweighting
observations that were misclassified or had large residual errors in the previ-
ous iteration. The deeper we grow the tree, the more segments we can ac-
commodate and thus more variance can be explained. This results in higher
model complexity and therefore higher risk of overfitting the model to the
data.

The motivation behind Boosting is that each tree can be quite shallow (a weak
classifier) and thus fast to estimate, but by combining the predictive power of
many weak classifiers, a classifier of arbitrary accuracy and precision can be cre-
ated [21–23].

3.1. Gradient Boosting

In this section we give a brief summary of the method, following Friedman [18].
This supervised machine learning approach deals with a response variables y and
a vector of predictor variables x that are connected via a joint probability distri-
bution P (x, y). Using a training sample (x1, y1), . . . , (xn, yn)} of known values of
x and corresponding values of y, the goal is to find an approximation F (x) to a
function F ∗(x) that minimises the expected value of a loss function ψ(y, F (x)),
i.e.

F ∗(x) = argmin
F (x)

Ey,xψ(y, F (x)). (1)

Boosting approximates F ∗(x) by an “additive” expansion in the form of

F (x)
M∑

m=0

βmh(x;am), (2)
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where the functions h(x;a) are generally simple functions of x with parame-
ters a = {a1, a2, . . . }. The parameters {am}M0 and the expansion coefficients
{βm}M0 are jointly fit to the training data. This is done in a forward stage wise
manner. Gradient Boosting [18] approximately solves differentiable loss functions
ψ(y, F (x)) with a two step procedure. First, the function h(x;a) is fit by least
squares to the current “pseudo”-residuals

ỹim = −
[
∂ψ(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(3)

which represent the residuals from the given stage of the tree building.

Then, given h(x;am), the optimal value of the coefficient βm is calculated via

βm = argmin
β

N∑
i=1

ψ(yi, Fm−1(xi) + βh(xi;am)). (4)

Gradient Tree Boosting performs this with a base learner h(x;a) of an L
terminal node regression tree. A regression tree partitions the feature space into L
disjoint regions {Rlm}Ll−1 and predicts a separate constant value at each iteration
m.

h(x; {Rlm})L1 =
L∑

l−1

ȳlm1(x ∈ Rlm). (5)

The parameters of the base learner are the splitting variables and corresponding
split points that define the tree, and this defines the corresponding regions {Rlm}L1
of the partition at each iteration. These are accomplished in a top-down “best-
first” approach using a least squares splitting measure [18]. Equation 4 can be
solved individually within each region Rlm defined by the corresponding terminal
node l of the mth tree. Because the tree in Equation 5 predicts a constant value
ȳlm within each region Rlm, the solution to 4 reduces to a simple location estimate
based on the criterion ψ

γlm = argmin
γ

∑
xi∈Rlm

ψ(yi, Fm−1(xi) + γ). (6)

Next, the current approximation Fm−1(x) is individually updated in all of the
corresponding regions

Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm). (7)

Friedman [18] added a stochastic element to the above boosting algo-
rithm by proposing to draw a random subsample from the full training
data set without replacement. This subsample is then used to fit the
base learner and compute the model update for the current iteration. By
adding randomness to the algorithm the performance of gradient boosting
was improved and this resulted in the stochastic Gradient Boosting ma-
chine (GBM) [23]. The Stochastic Gradient Boosting algorithm is sum-
marised as pseudo code below [15, 23]. The input training data is de-
fined through {yi,xi1}Ni and {π(i)}Ni is the random permutation of the in-
tegers 1, . . . , N . The random subsample of size Ñ < N is given by

{yπ(i),xπ(i)}Ñ1 .
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Algorithm 1 Stochastic Gradient Boosting algorithm

Training data {yi,xi1}Ni
Initialization
F0(x) = argminγ

∑N
i=1 ψ(yi, γ)

for m = 1 to M do
{π(i)}N1 = randperm {i}N1
Compute pseudo-residuals

ỹπ(i)m = −
[
∂ψ(yπ(i), F (xπ(i)))

∂F (xπ(i))

]
F (x)=Fm−1(x)

, i = 1, Ñ

Fit a base learner to pseudo-residuals

{Rlm}L1 = L -terminal node tree

({
ỹπ(i)m,xπ(i)

}Ñ
1

)
Compute multiplier γlm by solving optimization problem

γlm = argmin
γ

∑
xπ(i)∈Rlm

ψ
(
yπ(i), Fm−1(xπ(i)) + γ

)

Update the model
Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm)

4. Results

The data were presented as a set {(xi, yi) | 0 ≤ i < nsamples} with fea-
ture vector xi ∈ R

nfeatures , and the response yi ∈ R. All
the data we used for our case study were combined into a struc-
tured comma-separated values (CSV) file that consisted of 209 observa-
tions and 141 covariates. The machine friendly notation of our co-
variates are generated in the following manner. There are in to-
tal 5 different components for creating the covariate names. The first
shows whether the calculated summary statistics are for monthly values
of EOLW/D = end of last wet/dry, or WS = wet season; these are
then followed by whether it is an aggregated mean, minimum or max-
imum monthly values, followed by the nature of the descriptive statis-
tic: first quartile, median, mean, third quartile, variance and Shan-
non Entropy; next comes the name of data source (e.g. rain =
SILO data), and lastly the corresponding area in proximity to wa-
ter (3 km, 5 km, 99 km = whole paddock). The covariate name of
paha.99km/5km stores values for the whole paddock area measured in
hectare and the proximity of water e.g. 5 km radius or 99 km for the
whole extent of the paddock. As described in section 2.2, the data
set was partitioned by treating 80% as training data and the remain-
ing 20% as test data, resulting in 167 training and 42 test observa-
tions.

The computational environment was the R statistical modelling software ver-
sion 3.3.3 [24] running inside Windows 7 SP1 (64-bit) on a 2.60 GHz Intel i7 CPU
with 16GB of RAM. All of the results and illustrations were created in the R pro-
gramming language. The GBM model implementations for this article were taken
from the gbm packages. Table 1 show the distribution of the response variable
and the most influential covariates. Please see Figure 3 as a further reference in
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regards of their individual contribution in the splitting process.

Table 1: Distribution of the response variable and key predictors. Predictor names are described in text.

Covariates Min Median Mean Max Std Dev.

Response variable 8.33 7323.89 11 830.00 87 549.92 13 612.75
1st: paha.99km 310.30 11 400.00 12 670.00 43 710.00 10 856.50
2nd: paha.5km 310.30 7347.00 8569.00 28 200.00 7097.22
3rd: EOLW.q3.abrad.3km 34.56 235.40 235.10 374.80 94.81
4th: EOLD.mean.lgcg.99km 0.00 0.05 0.06 0.33 0.04
5th: WS.max.var.rain.99km 0.00 16.69 33.99 412.10 50.45

One way of showing the complex relationships of the joint probability and
contribution of each covariate in describing the response is through a relative in-
fluence plot. Relative influence measures are calculated by averaging the number
of times a covariate is used for splitting, weighted by the squared improvement
to the model as the result of each split. It is then scaled so the values sum to
100.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.01 0.10 1.00 10.00
Relative influence (%)
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Figure 2: Relative influence plots of all 141 covariates showing their contribution in the splitting process. The
horizontal axis indicates the frequency of the contribution with the maximum of 10.8%.
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Figure 3: Subset of a relative influence plots of covariates with a contribution greater than 2.9%. (log scale)
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In Figure 2 we present a relative influence plot for all of the avail-
able variables. The relative influence of the 141 variables varies consider-
ably, with some never contributing (0%) and only 20 variables having rela-
tive influence greater than 2.9% as depicted in Figure 3. The two variables
that contribute the most are paha.99km at 10.8%, followed by paha.5km with
9.56%. The third strongest variable is EOLW.q3.abrad.3km which contributes
with only %3.83. Figure 3 shows the top five contributors on a log scale
plot.

Regularisation methods are used to constrain the fitting procedure so
that it balances model fit and predictive performance [15]. Regularisa-
tion is particularly important for BRT because its sequential model fit-
ting allows trees to be added until the data are completely overfitted
[25]. As discussed in section 3, introducing some randomness into a
boosted model usually improves accuracy and speed and reduces overfitting
[23].
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Figure 4: Squared error loss for the training (blue) and test (red) data as the number of trees in the ensemble increases
to a maximum of 6000. The optimal tree size (2784) is shown with the dashed black line.

Figure 4 describes the effect of regularisation on the squared er-
ror loss. The blue line is the error in the training data, the red
line in the test data. The vertical dashed line indicates the opti-
mal number of iterations/trees provided by the gbm model where the
test data reaches its minimum, here at 2784 trees. After reach-
ing the minimum, the graph of the squared error loss starts to in-
crease again. This change of direction indicates the start of the model
overfitting the training data and therefore poorly explaining the varia-
tion seen in the test data. The bias-variance trade-off goal is to
find the optimal number of trees where the bias and the variance are
balanced and the error is minimised, since both under- and overfit-
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ting will have a negative effect on the predictive performance of the
model.

Histograms of the residuals for the test and training sets are shown in Fig-
ure 5. In comparison to the training data the test data does not have multi-
ple peaks – which often indicate that important variables are not yet accounted
for – but there are some large positive outliers in the training data, beyond
50000.

Test Training

−25000 0 25000 50000 −25000 0 25000 50000

0

20

40

Error

co
un

t

Figure 5: Histogram of residuals in the test and training sets at the optimal tree size.

Table 2 shows the results of the comparison of BRT and other methods. It is
seen that the BRT performed best in fitting the data according to the RMSE.

Table 2: Overall model average prediction performance, based on 500 cross-validations.

Method RMSE

Random Forest 0.48
BRT 0.38
LASSO 0.84

One of the biggest advantages in using a BRT is that it can han-
dle missing values in the predictors by default. As part of the
model diagnostics, we can plot how the data have been split, to
which node they have been assigned, and the reduction in error for
this single iteration/tree. If the tree is challenged with data that
are missing a variable, the split is decided based on a surrogate vari-
able, typically one that has a high correlation with non-missing observa-
tions.
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Table 3: Summary of gbm single tree prediction in pretty.gbm.tree.

ID SplitVar SplitCodePred Left Right Miss. Err.Red Wt Prediction

0 84 3.0117× 10+2 1 2 3 29.72521 466 −1.9659× 10−5

1 -1 1.8441× 10−3 -1 -1 -1 0.00000 6 1.8441× 10−3

2 -1 −1.5669× 10−4 -1 -1 -1 0.00000 274 −1.5669× 10−4

3 437 8.8800× 10−1 4 5 6 31.31934 186 1.2208× 10−4

4 -1 7.7070× 10−5 -1 -1 -1 0.00000 116 7.7070× 10−5

5 -1 3.3260× 10−3 -1 -1 -1 0.00000 3 3.3260× 10−3

The R function pretty.gbm.tree() returns a data frame in which
each row corresponds to a node in the tree (Table 3). Here, the
root node (indicated by the row number 0) is split by the 84th
SplitVar (splitting variable). Since the numbering starts with 0 the
split variable is the 85th column in the training set of our case
study. Rows in the table with a SplitVar of -1 are terminal nodes.
A SplitCodePred value of 301.171 denotes that all points less than
301.17 were allocated to the left node 1 (and hence all points greater
then 301.17 were allocated to the right node 2). All points that
had a missing value in this column were assigned to the missing
node 3. If the node is a terminal node then this is the pre-
diction. The error reduction (29.73) indicates the reduction in the
loss function as a result of splitting this node and there were 466
weights (weights will be on each node) in the root node. The
weight indicates the total weight of observations in the node. The
last column prediction of -0.000019659 denotes the value assigned to
all values at this node before the point was split. The predic-
tion column refers to individual trees and they are fit to predict
the gradient of the loss function evaluated in the current prediction
and the response. This is the gradient part of Gradient Boost-
ing.

5. Discussion

In this case study we demonstrated that BRTs are able to address
Big Data challenges, produce satisfying results and can deal with miss-
ing values by default. In addition, we obtained in-depth knowl-
edge of the diverse and heterogeneous data sources used in this study,
and identified key covariates that were most influential in describing
the response variable. Further, descriptive statistics has been used
to quantitatively describe our data and basic features of it by provid-
ing summaries that enables us to present our results in a meaning-
ful way and therefore allowed for a simpler interpretation. The his-
tograms of training and test data showed us the underlying frequency
distribution of our continuous data. In this case both histograms
are left skewed and demonstrate that the majority of data can be
found on the left hand side. Because histograms use bins to dis-
play data it is not possible to see exactly what the specific values
are for the minimum and maximum. However, we can see an ap-
proximation of the range of values, see how spread out the data are
and that there are not outliers that we need to take care of. One
of the biggest disadvantages of BRT is that they are prone to over-
fit the data thus appropriate settings for the hyperparameters need to
be set in order to control the model building process. It is there-
fore advisable to tune the model hyperparameters as part of a pre-
processing step in an iterative manner prior to performing the final mod-
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elling.

There are many features of BRT that are advantageous for the prob-
lem considered here. In addition to computational speed and accuracy
of estimation, they can describe complex nonlinearities and interactions be-
tween variables, accommodate missing data, include different types of in-
put variables without the need for transformations, perform well in high-
dimensional problems, and allow for different loss functions such as accu-
rate identification of small areas of interest. Moreover, they can be vi-
sualised and interpreted easily, thus facilitating the translation of the an-
alytic results to decision makers [18]. BRT have also been compared
favourably with other flexible regression approaches such as generalised ad-
ditive models [14]. An example of BRT models helping in develop-
ing an understanding of missingness structure in the data is given by
[26]. In this study Tierney [26] concluded that more knowledge was
gained about the origins of the data and the data collection process,
as well as the handling of missing values for future analysis. In an-
other study [14], the author took a different approach to deal with miss-
ing values by taking summary values such as the mean over grouped
data.

There are several challenges in using BRT for this case study. First,
the volume of one single satellite imagery is quite high even without ag-
gregating or combining them in a dense time series. One Landsat satel-
lite scene covers 185 km × 185 km of land and has a file size of about
300MB. The temporal resolution of Landsat is on average 16 days;
thus, in one year there are 22 scenes of the same area to computation-
ally process, analyse and store, a data volume of about 6.6GB. Ex-
amination of several years of satellite imagery yields in enormous geo-
temporal datasets. Given these specifications, a substantive challenge
is the storage, processing and management of massive volumes of raster
data information. This challenge is exacerbated when the other input
variables are also considered, especially since these are of different data
formats, sources, structure and spatial granularities. In order to de-
crease the volume we calculated descriptive statistics based on individ-
ual paddock information instead of using pixel information for our analy-
sis.

The second challenge is determining the geographic area to include
in the statistical models. The region of interest is spread over mul-
tiple stations, with multiple paddocks per station. However, not all
of the land in a paddock is grazable. Jansen [27] investigated the
quantification of livestock effects on the scalable, season specific met-
ric of Landsat imagery and biomass identification and development of
a model assessing spatial relationships between spectral indices and ru-
minants over a growing season. The focus was on finding signifi-
cant correlations between existing biomass, vegetation metrics and man-
agement practices to quantify changes in vegetation due to grazing.
Changes can be caused not only through overgrazing and loss but
also due to changes in penology caused by climate variability and
also availability of water. The spatial distribution of animal im-
pacts becomes organised along a utilisation gradient termed a pio-
sphere [28]. Moreover, since animals need access to water, concen-
tric rings can be calculated based on the distance from naturally oc-
curring water points in the paddocks. In the case study these were
of order 3km, 5km and the size of the whole paddock. The area
around those water locations is then deemed to be the available for-
aging area. In addition to the concentric rings there are also natu-
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ral water streams which attract the animals and provide biomass along
those linear features. So-called linear buffer zones can be calculated
along the streams to indicate grazing areas nearby the water, like the
concentric rings around the water points. The quantity and qual-
ity of biomass types can be extracted through the spectral values of
the Landsat pixels and with additional spatial data, in particular frac-
tional cover which identifies three categories of ground cover percent-
age (photosynthetic vegetation, non-photosynthetic vegetation and bare
soil).

The third challenge is incorporating spatial information with disjoint ge-
ographic areas (agricultural properties or stations), each of which comprises
regions (paddocks) of varying sizes. In the case study, the provided in-
formation was typically in the form of summary values per paddock per
month. Seasonal (wet and dry) indicators were also used to help quan-
tify the biomass [29] and define the spatial extent of the area due to vary-
ing rainfall. The beginning of the dry season is a critical time stamp in
terms of predicting the amount of grass that will be available during the dry
season and the corresponding decision regarding the number of animals to
be placed in paddocks to avoid the negative impact of over- or under graz-
ing.

There is a large literature on the predictive, methodological and
computational properties of decision trees, including the Random For-
est (RF) and Boosted Regression Tree (BRT) models used in this pa-
per. The predictive accuracy of these methods has been investigated
both theoretically [30–33] and in various applications [34]. The lat-
ter authors also compared modelling approaches considered in this pa-
per in the analysis of a large epidemiological dataset and concluded
that RF, BRT and LASSO outperformed the conventional logistic regres-
sion framework. Methodologically, decision tree approaches belong to
the family of greedy algorithms and select variables in a forward se-
lection manner. Both of these features strongly influence the conver-
gence speed and computational time [18, 23]. The computational time
is also influenced by the choice of model parameters such as the learn-
ing rate and tree complexity [25]. For example, while a smaller
shrinkage parameter slows down the learning rate and results in bet-
ter predictive performance, the trade-off is a larger number of itera-
tions in order to converge to a local minimum and therefore a longer
computational time. The total running time also depends on the
choice of loss function, regularisation method and the measure of con-
vergence [31]. Empirical comparisons of the running time of differ-
ent tree methods such as RF and BRT have also been published
[35].

This article has focused on the use of a modern statistical ma-
chine learning technique, namely Boosted Regression Trees, to address
a challenging real world problem in industry. We presented and
demonstrated the efficiency of BRT for addressing Big Data proper-
ties with environmental data, specifically remotely sensed data for de-
cision making. There are, of course, other methods that could be
used for this type of problem. An appealing alternative that also
deals with big, noisy and spatial data is the Bayesian additive re-
gression model [36], a Bayesian sum-of-tree model that generates sam-
ples from a posterior. Further, a sum-of-trees model is an addi-
tive model with multivariate components. Compared to generalized ad-
ditive models based on sums of low dimensional smoothers [37, 38],
these multivariate components can more naturally incorporate interac-
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tion effects. This approach enables full posterior inference includ-
ing point and interval estimates of the unknown regression function
as well as the marginal effects of potential predictors. Gathering
large and diverse environmental data is essential in this field and
analysing those covariates is challenging. Big data has notable ef-
fects on predictive analytic, knowledge extraction and interpretation tools
[39] and appropriate methods need to be applied in order to gain
new knowledge of data-driven discoveries that assist in decision mak-
ing.
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Figure 6: Missing data structure.
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5.1. Implementation

At first we split the data into training and test datasets using a random partition
that assigns 80% of the data in a training set and the remaining 20% to a test set.
In the next step we specified the hyperparameters for BRT modelling. Typical
hyperparameters include the

• the total number of trees in the final model, where each tree represents an
iteration

• interaction between the nodes along the tree branches

• shrinkage rate of how quickly the algorithm learn and reaches its local min-
imum

• minimum number of training set samples in a node to commence splitting.

The outcome of the tuning process for the model was a recommendation of
number of trees = 2500, interaction depth = 3, shrinkage = 0.01, and minimum
observations in node = 10. Those hyperparameters were then used to estimate
the coefficients using the training data. The prediction results are based on the
test data set and goodness of model fit was determined by the RMSE. Cross-
Validation (CV) methods were used for the tuning process to help identify the
hyperparameters and to restrict the number of iterations to avoid overfitting when
the local minimum has been reached. For resampling the CV method was applied.
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4 Effect of Spatial Aggregation on Prediction Ac-

curacy of Green Vegetation using Boosted Re-

gression Trees

Preamble

This paper focuses on aim A2 in which we investigate in four different spatial aggregation

scales and how the spatial aggregation effects the efficiency and prediction accuracy of

green vegetation using aggregated FCover data. For the BRT modelling approach we

used four spatial scales of four years that result in 16 different BRT models. The ag-

gregated FCover information serves as our new response variable and is included in the

modelling along with the latitude and longitude geographic coordinates. These corre-

sponding centroid grid cell coordinates serve as surrogates variables showing the gradient

in North-South and East-West direction.

This paper provides insight into the complexities and dependencies of smoothing features

in bigger grid cells on heterogeneous land and the resulting predictive performance of the

two gradients on green vegetation along with the recorded processing time. The result

of this paper as the best identified spatial scale with regards of accuracy and processing

time, is later used for chapter 5.
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Abstract: Data aggregation is a necessity when working with big data. Data reduction steps without
loss of information are a scientific and computational challenge but are critical to enable effective data
processing and information delineation in data-rich studies. We investigated the effect of four spatial
aggregation schemes on Landsat imagery on prediction accuracy of green photosynthetic vegetation
(PV) based on fractional cover (FCover). To reduce data volume we created an evenly spaced grid,
overlaid that on the PV band and delineated the arithmetic mean of PV fractions contained within
each grid cell. The aggregated fractions and the corresponding geographic grid cell coordinates were
then used for boosted regression tree prediction models. Model goodness of fit was evaluated by the
Root Mean Squared Error (RMSE). Two spatial resolutions (3000m and 6000m) offer good prediction
accuracy whereas others show either too much unexplained variability model prediction results or
the aggregation resolution smoothed out local PV in heterogeneous land. We further demonstrate the
suitability of our aggregation scheme, offering an increased processing time without losing significant
topographic information. These findings support the feasibility of using geographic coordinates in
the prediction of PV and yield satisfying accuracy in our study area.

Keywords: Boosted regression trees; green vegetation; fractional cover imagery; spatial aggregation;
data reduction

1. Introduction

A spatial aggregation of remotely sensed data results generally in a loss of spatial detail. If
the object of interest is, however bigger than the pixel resolution an optimal resolution needs to
be identified. In the case of monitoring heterogeneous land with Landsat (30m pixels) a spatial
aggregation and data reduction of remotely sensed information results in a smoothing effect and
with increasing coarseness small features will become lost or mixed into neighbouring pixels. This
is especially crucial when predicting green vegetation in different spatial aggregations resolutions
where spectral information of green vegetation will be averaged over large areas. However, an
increasing coarseness enables a faster processing time and is more efficient when dealing with big data
challenges.
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The Red and Near Infrared [1] spectral information of remotely sensed imagery have considerable
potential for monitoring green vegetation on a regional or local scale. Remote sensing measurement
devices are not in direct contact with the objects they sense and therefore offer great advantages
and potential in recording large areas. Remotely sensed data are available from a wide range of
sources, ranging from satellites to drones, and have been used for a very wide range of environmental
applications [2–10].

There is a strong advantage in using remotely sensed Landsat imagery for land use and land
cover (LULC) analyses [11,12]. Landsat data are freely available [13], the imagery covers a wide
geographical area, and it avoids expensive, extensive and often impractical in-situ measurement. The
spatial resolution of a satellite pixel combines the reflected or emitted radiation from different objects
on the earth surface, and this spectral mixing effect results in a so-called mixed pixel [14] or Mixel.
With the decrease of spatial resolutions, spectra from individual objects cannot be separated and
linked to specific features on the ground anymore. There is a range of earth observation satellites
available, with different spatial resolution, for example, MODIS (250, 500 and 1000m) with a high
temporal resolution to monitor vegetation health, Sentinel-2A/2B that simultaneously records land
surface reflectance with a spatial resolution starting from 10m up to 60m, Sentinel 3 (Full resolution:
300m and reduced resolution: 1.2km) primarily used for climate-related studies on sea-land-surface
temperatures, AVHRR (1.1km) to monitor clouds and the thermal emission of terrestrial land, and
SeaWiFS (1km) that can quantify chlorophyll produced by marine phytoplankton. We refer to high
resolution as <15m, moderate resolution as 15-100m, and low resolution as > 100m. LULC analysis
with low spatial resolution (hundreds of meters) is more suitable for studies related to climate change,
climate variability and environmental degradation.

Fractional cover (FCover) is a derived product based on Landsat 5 Thematic Mapper (TM) imagery.
In a spectral unmixing approach the Landsat mixel information is separated into assigned biophysical
variables, here bare soil, photosynthetic vegetation (green vegetation) and non-photosynthetic
vegetation [15–18]. A spectral unmixing technique was applied to estimate the proportion of
green vegetation (PV), senescent or non-photosynthetic active vegetation (nPV) and bare soil (BS)
represented in one pixel as percentages ranging from 0% (no representation of one ground cover type)
to 100% (full representation) [15], [18]. However, spectral unmixing is not limited to these fractions
and not to Landsat imagery. The spectral unmixing approach used for our FCover data is described in
[15,19,20].

Using FCover provides a major advantage over using spectral bands and their derived vegetation
indices like the NDVI. It is not required to perform an additional ground truth assessment since
an extensive data collection has been conducted to collect samples of ground cover that are used
for the spectral unmixing algorithm. The Australian FCover we are using for our case study is a
standardised and validated product on similar LULC types on heterogeneous land and provided by a
state government agency with an overall error of the fractional ground cover with an RMSE of 11.8%
[21]. A description of how the ground cover samples were collected is given in [19].

FCover imagery is a fundamental site and landscape scale measurement required by landholders,
non-government organizations and state and federal government departments in Australia [21]. PV,
nPV and BS are calculated using spectral unmixing models linked to an intensive field sampling
program whereby more than 600 sites covering a wide variety of vegetation, soil and climate types
were sampled to measure over-storey and ground cover [22]. Fractional cover mapping has been
applied in a number of rangeland systems [23–25].
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In Australia, FCover products are routinely produced using Landsat imagery and are available at
the Terrestrial Ecosystem Research Network (TERN) AusCover remote sensing data archive [26]. The
AusCover Data portal aims to deliver consistent national time-series of remotely sensed biophysical
parameters to support ecosystem research and natural resource management communities in Australia.
These remote sensing products are based on past, current and future satellite image data sets with
deliverables designed for Australian conditions. A similar and related product is persistent green
vegetation fractions, that focus on woody and mostly vertical vegetation like trees, tree cover, tree
density and canopy research [21].

One way to reduce data volume is to aggregate pixels, but this is at the potential expense of loss
of accuracy in assigning LULC types based on the coarser FCover values. In this paper, we investigate
this issue by creating four even spaced grids and overlaying these on the FCover scenes. All pixels
contained with the cell extent are then aggregated by calculating the arithmetic mean representing the
green vegetation of this specific grid cell. This aggregation adds an additional level of uncertainty
in the estimation of the coefficients of the model. However, by aggregating the fractions of green
vegetation we create a source of potential bias and uncertainty in statistical analyses at different spatial
resolutions. The modifiable area unit problem (MAUP) occurs when continuous measures of spatial
phenomena are aggregated into a higher order grid [27]. The association between variables depends
on the size of the grid cell extent over which the FCover fractions are averaged.

Ershadi et al [28] investigated the effect of aggregating heat surface flux from fine (<100m)
to medium (approx 1km) resolution using Landsat 5 imagery and indicated that aggregation
using simple averaging methods have limited effect on land surface temperature compared to
more sophisticated approaches. Moreover, by using the simple arithmetic mean to extract the
required fraction of each grid cell we preserve the spatial distribution over the whole FCover scene [29].

In this paper, we use a boosted regression tree (BRT) to link the response variable (FCover) to the
two covariates, namely latitude and longitude of the centroid of the area. A BRT is a popular statistical
and supervised machine learning approach that has been readily applied to remotely sensed data.
Indeed, although they were first defined two decades ago, BRTs have only recently been extended
to deal with the types of features that are characteristic of remotely sensed data, in particular, its
spatial and temporal dynamics. BRTs combine two algorithms (regression trees and boosting) and
arguably yield higher prediction accuracy than simple tree-based methods such as a Classification and
Regression Trees (CART) [30]. There are two major advantages of using BRT over more traditional
regression methods. First, it allows a more flexible partition of the feature space that is not as rigid as
using a simple linear regression. BRT combines simple binary partitions to form a complex prediction
rule that can more accurately identify small areas of interest. Second, it can deal with missing values
by default like masked out areas (clouds and cloud shadows), water bodies or the Scan Line Error of
Landsat 7 ETM+. This is a great advantage especially when using remotely sensed imagery that has
gone through several quality refinements and processing levels to filter out obscuring elements that
leave data gaps behind.

The aggregated fractions of green vegetation derived from the FCover scene serve as our response
variable. The delineated centroid coordinates from the midpoint of the spatial grid cells serve as
surrogates for other spatial covariates and represent a north-south gradient shown as a vector of
latitude coordinates and an east-west gradient shown as a vector of longitude coordinates. These
surrogate variables will be used to statistically analyse the relationship to our response variable and
the quantitative impact on prediction accuracy of different spatial aggregation schemes.
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The use of latitude and longitude as surrogates for other covariates is not uncommon. For
example, in a study of the geographic distribution of plant functional types [31] the authors examined
the relationship of precipitation and temperature on C3 and C4 grass types and shrubs using latitude
and longitude coordinates and concluded that latitude and longitude can be used as surrogate
variables for the main climatic dimensions in North America. The latitude and longitude explained a
substantial portion of the variability of the distribution of the relative abundance of shrubs, C3 grasses,
and C4 grasses. Along a given longitude, C3 grasses increased with latitude. As one moves westward,
C4 grasses are replaced by shrubs. In another study [32] the authors plotted latitude and longitude
coordinates and included these as surrogate variables to account for variation in climate associated
with geographic location within deciduous forested ecoregions. The response was an aggregated
NDVI variable used as an on-site quantification of vegetation in North America.

In summary, the objective of our study was to analyse the statistical dependence between our
two surrogates, the centroid coordinates in latitude and longitude, and their ability to predict the
aggregated fractions of green vegetation delineated from the FCover scene. The focus is on the
prediction accuracy achieved in four spatial resolutions and the preprocessing time needed to extract
and aggregate the green fractions out of the FCover scene. We use a BRT to link FCover with the two
covariates.

The paper is structured as follows. Section 2 presents the data and BRT methodology used for
predicting green vegetation using geographic centroid coordinates of evenly spaced spatial grid
cells, the relevance of the spatial aggregation measured as a model fit and a brief reminder about the
principles of spectral unmixing approaches and its outcome. Section 3 presents the results structured
in three groups: (1) the comparison of the model fit showing the distribution of the residuals around
the mean, (2) the variable interactions as the relative influence and partial dependencies of the
covariates on the response variable, the relationship and distribution of the predicted versus the
observed test data set in marginal plots and model diagnostics and (3) the aggregation and scaling
errors using different spatial resolutions. The outcome and the relevance of this work to real word
scenarios and limitations of BRT are discussed in Section 4.

2. Material and Methods

2.1. Case Study

The study area used in our assessment is located in the Northern Territory, Australia. Figure 1
shows the location of the FCover scenes at the Landsat footprint of path 102 row 72 on the Worldwide
Reference System-2 (WRS-2) and it is covering an area of 185 x 185km. The geographic coordinates
are given as centroids showing latitude -17.345 and longitude 135.587. For consistency over time, and
because the FCover in the study area is dominated by wet and dry seasons, only December scenes
indicating the very early period of the wet season have been used for this case study. Estimating FCover
at this time of the year is important for agricultural managers. The study area is a heterogeneous
region with a complex topography of native grass types.

Our study area is defined as "dry" with variations of "desert, hot arid" and "dry summer, hot arid"
(BWh and Bsh) based on the Koeppen-Geiger scheme and is very vulnerable with regard to climate
variability [33], [34]. The daily rainfall in December has been recorded as lowest at 16.2mm in 1990 and
highest at 96.4mm in 1989, and the monthly total ranged from 38.0mm in 1990 to 137.2mm in 1987 [34].
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Figure 1. FCover scene in the Northern Territory showing the Landsat footprint of path 102 row 72 at
the Worldwide Reference System-2 (WRS-2) and is covering an area of 185 x 185km.

We used a Digital Elevation Model (DEM) and generated equidistant contour lines in 50m
intervals. Two DEMs were merged and clipped together to the full extent of our spatial raster grid. We
used the freely available SRTM 90m resolution and used focal statistics on a 33 x 33 cell neighbourhood
to smooth the surface so that the spatial resolution of the DEM represents our aggregated green
vegetation fractions better. The highest point is 255m and the lowest is located at 23m (Δ232m) above
mean sea level (MSL) referenced to the Australian Height Datum (AHD). In Figure 2 we can see a
constant increase of about 15% of the elevation between the upper right corner (min 23m) to the lower
left corner (max 255m).
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Figure 2. SRTM DEM and calculated contour lines in 50m intervals showing the Landsat footprint of
path 102 row 72.

2.2. Data

2.2.1. Spectral unmixing approach

The opening of the Landsat archive and a new open data policy had have revolutionised the
use of Landsat data [13]. The Fractional Cover product is derived from Geoscience Australia and
the Australian Reflectance Grid 25 (ARG25) product and provides fractional cover representation
of the proportions of green or photosynthetic vegetation, non-photosynthetic vegetation, and bare
surface cover across the Australian continent. It is generated using the algorithm developed by
the Joint Remote Sensing Research Program (JRSRP) and described in [19]. FCover is available for
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Landsat Thematic Mapper (Landsat 5), Enhanced Thematic Mapper (Landsat 7) and Operational
Land Imager (Landsat 8). FCover was made possible by new scientific and technical capabilities,
the collaborative framework established by the Terrestrial Ecosystem Research Network (TERN)
through the National Collaborative Research Infrastructure Strategy (NCRIS), and the leadership and
capabilities of Geoscience Australia and the Joint Remote Sensing Research Program [35].

The spectral unmixing approach aims to separate the spectral reflectance of one pixel into its
single ground cover components to determine the proportions of each of three classes PV, nPV and
BS. The result of spectral unmixing is a series of three layers showing the fraction of each abundance
images corresponding to each class and an image depicting the root mean square error (RMSE). Our
FCover scene is located in the Northern Territory where the land is mainly used for grazing. It is rare
to find a pure pixel in heterogeneous grazing land [19]. Further information about how the field
data collection has been conducted and how to derive spectral endmembers using spectral unmixing
approaches is provided in [36].

Figure 3. A multilayer FCover composite derived from Landsat 5 and available at the Terrestrial
Ecosystem Research Network (TERN) AusCover remote sensing data archive [26].

Figure 3 shows a national FCover product for Australia. The triangular ternary diagram can be
read anti-clockwise between PV, nPV and BS. The interpretation of the colour coded fractions is based
on the additive colour coding principle showing the relationship between the three endmembers. A
quantitative Attribute Accuracy Assessment of the spectral unmixing approach and the overall error
of the fractional ground cover RMSE is 11.8%, while the error margins vary for the three different
layers where green vegetation has an RMSE of 11.0%, non-green vegetation 17.4%, and bare soil 12.5%.
The validated Landsat derived fractional cover products are now used as key indicators for a range of
environmental monitoring and management activities [26].

2.3. Data exploration for FCover imagery

A FCover scene consists of three layers showing the fractions of each ground cover class in each
layer. As part of our explanatory data analysis, we plotted histograms for all four years of the study
period to review the distributions of PV, nPV and BS. Figure 4 shows the ground cover classes of the
Landsat FCover bands combined in one histogram, along with the frequencies. We can clearly see that
green vegetation has the least fractions but a high frequency, whereas non-green vegetation has higher
fractions presented in one pixel.
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(a) December 1987.

(b) December 1988.

(c) December 1989.

(d) December 1990.

Figure 4. Kernel Density plots of all Landsat FCover bands representing the individual fractions of bare
soil in red, green vegetation in green, not green vegetation in blue in one pixel. Subfigure a) December
1987, b) December 1988, c) December 1989 and d) December 1990.
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(a) December 1987.

(b) December 1989.

(c) December 1988.

(d) December 1990.

Figure 5. FCover of Landsat Thematic Mapper (Landsat 5) scenes of four years showing white data
gaps caused by masking out clouds and clouds shadows.

The histograms indicated a roughly normal distribution for each of the classes. It can be seen
that the green photosynthetic vegetation has the smallest fractions. In 1988, 1989 and 1990 the green
photosynthetic vegetation was represented as the smallest fraction but with the highest frequency,
except in 1987 where the bare soil has the lowest percentages and the mode (represented as the highest
bar) of the green vegetation shifts towards 20% and higher. This is an indicator that in 1987 the PV is
more strongly represented than in the rest of the three years and therefore, we can infer that December
1987 was our wettest month. This is in accordance with the recorded rainfall data, described in the
case study, where the monthly total is the highest in all of our FCover scenes. Moreover, the mode of
green vegetation is smallest (around 12.5%) in 1990 and this reflects the lowest recorded monthly total
and the lowest recorded daily rainfall in December 1990 as described earlier. Hence, 1990 is described
as our driest year [34]. Figure 5 shows the four FCover scenes and their masked out areas.
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2.4. Data pre-processing and spatial aggregation

The aggregation involved several pre-processing steps. As one of the pre-processing steps, we
created four evenly spaced spatial grid cell layers in four different spatial resolutions, showing the
same geographic reference as the FCovers scenes and overlaid this on the raster image. The spatial
grid layers were used as a vector overlay on the FCover scene showing varying coarseness of the grid
cells extents ranging from the spatial resolution of 12000m, 6000m, 3000m and 1500m. In addition, we
ensured that the edges of the spatial grids lined up with the edges of the FCover pixels. Further, all
missing values were removed and the arithmetic mean was calculated for each spatial grid cell. Figure
6 shows the spatial grid on top of the FCover scene at a resolution of 3000m. The figure also shows the
extent of missing data, due to masking out obscuring elements such as cloud and cloud shadow.

Figure 6. Spatial grid cells at a resolution of 3000m. The total number of cells 5530. The FCover data
are mapped to a even spaced grid where each grid cell contains 100 x 100 pixels and covers an area of
3000 x 3000m. Please refer to Figure 3 for the triangular ternary diagram for the coloured relationships
of the three ground cover types.

The spatial resolution determines the geographic extent of each spatial grid cell in the FCover
scene. One spatial grid cell in 12000m contained 400 x 400 FCover pixels each having a geographic
resolution of 30 x 30m and covering a total area of 12000 x 12000m on the ground (400 x 30m = 12000m).
In contrast, the spatial grid resolution of 1500m contains 50 x 50 pixels and covers an area of 1500
x 1500m within the spatial grid cell. Table 1 lists all the spatial resolutions used in this study, the
number of pixels contained within a spatial grid cell as an overlay on the FCover scene, the total area
covered on the ground and the total number of spatial grid cells in the overlay used for the proposed
aggregation scheme. The choice of the spatial resolutions allows for consistent arithmetic averages of
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FCover to be taken over the aggregated cells.

Table 1. Table of proposed data reduction scheme. The table shows the smallest resolution of 12000m
up to the largest resolution of 1500m and resulting total number of spatial grid cells used for the
following spatial aggregation steps. By proposing our data reduction scheme we are not dealing with
the original number of 54 million pixels per FCover scene organised in about 7000 rows and 8000
columns.

Number of pixels Ground covered Total number Coloured outline
Spatial resolution (m) in grid each cell by each grid cell (m) of grid cells of spatial grids

original 1 x 1 30 x 30 54 million FCover pixel
12000 400 x 400 12000 x 12000 360 black
6000 200 x 200 6000 x 6000 1400 green
3000 100 x 100 3000 x 3000 5530 red
1500 50 x 50 1500 x 1500 21980 grey

Figure 7. Combination of all four spatial grids used as an overlay for the data delineation of green
vegetation fractions out of FCover scenes. The thick black outline shows the resolution in 12000m,
green in 6000m, red in 3000m and thin grey in 1500m.

The four spatial grids demonstrated in Figure 7 were obtained using the open source software
GME (Geospatial Modelling Environment). GME currently has dependencies on ArcGIS and R where
it uses the statistical engine to drive some of the analysis tools.

Each individual grid cell was used to calculate the arithmetic mean as a measure of central
tendency of all the pixels contained within the spatial grid cell extent. As a result, one aggregated
value of all green vegetation fractions contained within the grid cell extent represented each individual
grid cell with the aggregated PV fraction. Since the spatial grid cells line up with the edges of the
FCover pixels, adjacent and overlapping pixels will not be considered in the aggregation process.

In addition to aggregating fractions of green vegetation spatial grid cells sizes we delineated the
centroid coordinates as geographic latitude and longitude coordinates of each grid cell. The resultant
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csv file contained the response variable of aggregated fractions of green vegetation and the centroid
coordinates in latitude (North-South direction) and in longitude (East-West direction). As discussed in
the Introduction, no additional environmental data were used for the following modelling process
using BRT. Altogether 16 csv files were created representing four spatial aggregations scheme for four
years. Table 2 shows further details.

Table 2. The size of the pre-processed data set varies according to coarseness of the spatial aggregation
resolutions.

Spatial resolution (m) Number of grid cells in overlay Length of aggregated response variable

12000 360 360
6000 1400 1400
3000 5530 5530
1500 21980 21980

2.5. Boosted regression trees

A boosted regression tree (BRT), also known as gradient boosted machine (GBM) or stochastic
gradient boosting (SGB), is a non-parametric regression technique that combines a regression tree with
a boosting algorithm [37]. This extension to the classical regression tree allows greater flexibility and
predictive performance in modelling the data. The implementation of these methods used in this
study can be found in the gbm R package [38].

A regression tree partitions multivariate data with a hierarchy of binary splits that define regions
of the covariate space in which the response variable has similar values. These splits are defined
by rules, distance metrics or information gain. The choice of variables and the value at which the
split point occurs are determined in a recursive manner at each stage of the tree construction. The
segmentation can be depicted as a tree-like structure, comprising nodes representing the selected
factors, branches acting as if-else connectors between the nodes, and leaves representing terminal
nodes containing the subsets of responses [39–41].

The performance of the simple base learner is improved by boosting, whereby a sequence of
trees is grown, such that in each subsequent tree greater attention is paid to observations with greater
prediction error. This is achieved by iteratively shifting the focus towards those observations until a
stopping rule is reached. The shift is effected by up-weighting observations that were misclassified or
had large residual errors in the previous iteration. The deeper tree accommodates more segments
and hence captures more variance. This results in higher model complexity but also higher risk of
overfitting the model to the data. The motivation behind boosting is that each tree can be quite shallow
(a weak classifier) and thus fast to estimate, but by combining the predictive power of many weak
classifiers, a classifier of arbitrary accuracy and precision can be created [42–44].

Next, the current approximation Fm−1(x) is individually updated in all of the corresponding
regions

Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm). (1)

The shrinkage parameter, ν, ranges from 0 to 1 and controls the learning rate γ, so each gradient
step is reduced by some factor between 0 and 1 of the learning rate. The value of γ is influenced by the
choice of loss function ψ.

The Stochastic Gradient Boosting algorithm is summarised as pseudo code in algorithm 1 [44,45].
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Algorithm 1 Stochastic Gradient Boosting algorithm

Training data {yi, xi1}N
i

Initialization
F0(x) = arg minγ ∑N

i=1 ψ(yi, γ)

for m = 1 to M do

{π(i)}N
1 = �������� {i}N

1
Compute pseudo-residuals

ỹπ(i)m = −
[

∂ψ(yπ(i), F(xπ(i)))

∂F(xπ(i))

]
F(x)=Fm−1(x)

, i = 1, Ñ

Fit a base learner to pseudo-residuals

{Rlm}L
1 = L �	���
��� ���� 	���

({
ỹπ(i)m, xπ(i)

}Ñ

1

)
Compute multiplier γlm by solving optimization problem

γlm = arg min
γ

∑
xπ(i)∈Rlm

ψ
(

yπ(i), Fm−1(xπ(i)) + γ
)

Update the model
Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm)

(a) Binary splits indicated as red straight
lines separate the data in grey and
white sections and create weak learners
as seen in equation (1). BRT as
an ensemble approach combines them
to create complex prediction rules.
Adapted from [46].

(b) Hierarchical regression and binary splitting process
showing observations in the nodes, predicted values in
the terminal nodes and splitting criteria along the tree
branches.

Figure 8. Figure 8a shows the combination of weak learners to one strong prediction rule used in
the BRT ensemble approach and Figure 8b illustrated the hierarchical regression and binary splitting
process along the branches of the decision tree.

Figure 8a shows four splits of the whole feature space of the data where the goal is to predict the
plus symbols (+). The first three are binary splits that will be combined into one complex splitting rule
(bottom). This yields a more accurate prediction result by separating the data allowing for flexible
splitting boundaries. The first binary split (left) shown as the red vertical line has incorrectly predicted
three observations indicated with a plus symbol. The misclassified observations get a higher weight to
make sure those are favoured in the next splitting iteration (middle). The plot in the middle shows
that three observations indicated with a minus symbol (-) are now misclassified. In the following step
those misclassified observations will get higher weights again to be prioritised in the next splitting
process. This time a horizontal line is generated. BRT is an ensemble approach and combines the first
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three binary splits above into one in order to create a complex prediction rule to split data allowing for
identification of small areas of interests. This is the boosting part of BRT.

2.6. Implementation

The R package caret [47] was used for two tasks. The first was to split the data into training and
test datasets (random partition that assigns 80% of the data in a training set and the remaining 20% to
a test set) and the second task was to tune the hyperparameters for BRT modelling.
Typical hyperparameters include the

• shrinkage; (how quickly the algorithm adapts)
• tree complexity; the total number of trees in the final model (number of iterations)
• interaction depth; interaction between different nodes along the branch
• minimum observations in node; minimum number of training set samples in a node to commence

splitting.

A feature of the BRT algorithm is that the performance can be tuned to accommodate
specific data structures and characteristics through specification of hyperparameters. For our BRT
model, the carat package was employed to find optimal values for the hyperparameters listed
above. We used the automatic grid search method for searching optimal parameters, combined with
other methods for estimating the performance of our gbm model based on our aggregated FCover data.

The outcome of the tuning process for all the 16 models was a recommendation of number
of trees = 2500, interaction depth = 5, (only data of 1987 in 12000m recommended 3), shrinkage =
0.01, and minimum observations in node = 10. Those hyperparameters were then used to estimate
the coefficients using the training data, and the prediction results are based on the test data set.
Cross-Validation methods were used for the tuning process to help identify the hyperparameters and
to restrict the number of iterations (hyperparameter tree complexity) to avoid overfitting when the
local minimum has been reached. Empirically, it has been found that using a small value for shrinkage
results in impressive improvements in a model’s generalisation ability [45]. The drawback of a lower
learning rate is that more trees need to be generated, resulting in increased computational time. As
described above, 16 BRT models were created showing four years in four spatial resolutions; see Table
1.

2.7. Quantitative assessment of the model fit

The accuracy of the 16 BRT models was primarily analysed on the basis of the root mean square
error (RMSE), the mean absolute error (MAE) and the median absolute error (MDAE), where we
measured the difference between values predicted by a model and the values actually observed from
the environment that is being modelled on the test dataset. In general, the RMSE is best when it is
small, but there is no absolute good or bad threshold. The RMSE ranging between 3.3 and 1.1 indicates
a good model fit throughout all resolutions.

3. Results

The computational environment was the R statistical modelling software version 3.3.3 [48]
running inside Windows 7 SP1 (64-bit) on a 2.60 GHz Intel i7 CPU with 16GB of RAM. All of the plots
were generated in the R programming language [48] and maps throughout this paper were created
using ArcGIS R© software by Esri. The GBM model implementations were taken from the gbm package
[38]. We structure our results in three main groups. Since we want to investigate prediction accuracy
using different spatial aggregations we first checked the residuals and how they spread around the
mean of the regression line and the model fit in all the 16 models. Second, we evaluated the influence
of each covariate on the response, shown by relative influence plots, or the functional relationships
between the covariates and the prediction outcome indicated by partial dependency plots. Further, we
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investigated the relationship and distribution of the observed versus the predicted values in marginal
plots. Last, we visualised the absolute error rate depending on the spatial resolution in all years and
compared those with the elapsed time.

3.1. Comparison of model fit at different spatial resolutions

3.1.1. Deviation of residuals around the mean

Summary statistics and plots revealed that the residuals of the fitted models were relatively
unbiased and homoscedastic. The residual plot of the worst model fit of the year 1988 in 1500m
and 12000m showed a slight tendency to heteroscedasticity due to a larger variance of the fitted
values towards the maximum number of observations and further the resolution 12000m showed
an unbalanced spread around the regression line towards under-predicted values shown in Figure
9. These effects were not visible in any of the residual plots for the best model fit in the year 1990
demonstrated in Figure 10.

Figure 9. Deviation of residuals around the mean of 1988 in all four resolutions as worst model fit.

Figure 10. Deviation of residuals around the mean of 1990 in all four resolutions as best model fit.

Figure 11 shows the combined residuals over all years for all resolutions on the left and the
corresponding box plots on the right.

The box plots show that the deviation of the residuals within the Inter Quartile Range (IQR),
indicated as the white box around the zero line, is similar regardless of the spatial aggregation.
However, there is more variation in the resolution of 1500m than in any other resolutions. This can be
explained by the argument that the loss function ψ used in the BRT and the weighting of problematic
observations result in a similar deviation of the residuals at all aggregated spatial resolutions.
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Figure 11. Deviation of residuals in all resolutions combined in one plot (left) and corresponding box
plots (right).

We can see that the 6000m resolution has the least error rates and is most symmetrically
distributed around the black line showing the mean of the residuals. We conclude that aggregating
from an initial geographic resolution of 30 x 30m to 6000m resolution results in the largest reduction in
data volume without sacrificing precision of the prediction.

Table 3 shows the RMSE error rates for the four resolutions and four years. In general the smaller
the RMSE error, the better the model fit.

Table 3. Comparison of the RMSE in all four years and resolutions.

Spatial resolution (m) Year RMSE

12000

1987 3.0583
1988 3.9691
1989 3.0056
1990 1.6151

6000

1987 2.8583
1988 3.1428
1989 3.1591
1990 1.9577

3000

1987 3.1120
1988 3.2134
1989 3.1543
1990 2.0731

1500

1987 3.4241
1988 3.8306
1989 3.4500
1990 2.3348

3.1.2. RMSE Comparisons between BRT and Linear Model (LM)

In order to evaluate the comparative performance of the BRT results, the data were also analysed
using a linear regression model. The R package lm.br [49] was used to fit the model. We assume that
green vegetation, denoted as Yi, is linearly related to the covariates latitude and longitude, denoted
as X1 and X2 respectively, and the residuals εi are distributed N(0, σ2). The LM was formulated as
follows: Yi = β0 + β1 ∗ X1i + β2 ∗ X2i + εi.
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Table 4. Comparison of RMSE of LM and BRT on worst (1988) and best (1990) model fit.

1988 1990

Spatial resolution (m) Linear Model BRT Linear Model BRT

12000 4.0551 3.9691 2.7933 1.6151
6000 4.9710 3.1428 3.0449 1.9577
3000 5.3688 3.2134 3.3028 2.0731
1500 5.5863 3.8306 3.5676 2.3348

The comparative goodness of fit of the LM and the BRT is shown in Table 4. It is clear that under
all four spatial resolutions, the BRT delivers a smaller RMSE. Based on this measure of performance,
the BRT is argued to be an attractive alternative to the more common LM approach for analysing these
types of data.

3.1.3. Mean absolute error (MAE) and median absolute error (MDAE)

In addition to the RMSE, we calculated the mean absolute error (MAE) and the median absolute
error (MDAE) shown in Table 5. MAE computes the average absolute difference between observed
and predicted values as the vertical or horizontal distance between each point in a scatter plot.
MDAE computes the median absolute difference between the two variables. In section 3.2.4 we see
in the marginal plots that BRT under-predicts peak values. In section 3.3 we use the absolute error
to quantitatively assess the difference between observed and predicted values for all four spatial
resolutions and all four years.

Table 5. MAE and MDAE of the worst (1988) and best model fit (1990) in four resolutions.

Spatial resolution (m) Mean Absolute Error (worst/best) Median Absolute error (worst/best)

12000 2.752/1.236 2.236/0.836
6000 2.370/1.500 1.909/1.185
3000 2.489/1.613 2.053/1.305
1500 2.925/1.808 2.398/1.467

3.2. Variable importance

3.2.1. Relative influence of covariates at different resolutions

One way of showing the relationships of the joint probability and contribution of our geographic
coordinates in describing the response is through a relative influence plot. The relative influence is
calculated by averaging the number of times a covariate is used in the tree building process, weighted
by the squared improvement to the model as the result of each split. It is then scaled so the values
sum to 100 [50]. Relative influence plots were used to compare the covariates with respect to their
explanatory power. Regardless of the spatial resolution, among the two covariates used in the BRT
model, the latitude (CenterY) is always more dominant than the longitude (CenterX). Moreover, the
influence of the longitude (East/West direction) reduces as the spatial resolution is decreased towards
12000m. However, this is not a consistent reduction. In Figure 12 we demonstrate the influence
of CenterX and CenterY covariates and their contribution towards predicting the aggregated green
vegetation in the year 1989. The plots show the contribution at the best-estimated number of trees of
2500 iterations starting at 73.91% in 1500m and reaching the maximal influence of 83.15% in 12000m.
The relative influence of latitude (CenterY) dominates considerably over longitude (CenterX).
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Figure 12. Relative influence plots of December 1989 in all four resolutions showing the contribution
of the centroid coordinate of the latitude (CenterY) and longitude (CenterX).

3.2.2. Prediction raster maps

The Prediction Raster Maps clearly demonstrate a change in the marginal effect across spatial
resolutions, seen as a smoothing effect towards the 12000m resolution; see Figure 13.
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(a) December 1990 in the resolution of 12000m.

(b) December 1990 in the resolution of 6000m.

(c) December 1990 in the resolution of 3000m.

(d) December 1990 in the resolution of 1500m.

Figure 13. Prediction raster maps for the year 1990. a) 12000m, b) 6000m c) 3000m and d) 1500m.

3.2.3. Prediction Surface Plots

As fractional cover varies with the geographic coordinates, the partial dependence can be shown
as a prediction surface plot. Here, the independent variables CenterX and CenterY are plotted against
the model outcome ȳ after considering the average effect of the other independent variable in the
model. Since we only have geographic coordinates as covariates we get a prediction surface plot
showing the comparative influence of the latitude and the longitude as seen in Figure 14.
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Figure 14. Prediction surface of 1990 in the resolution of 3000m.

3.2.4. Marginal influence plots

Marginal plots help in understanding the interaction effects of two variables by displaying the
marginal relationship between the predicted aggregated fractions and the observed values of the test
data set. Marginal plots also provide useful diagnostic information about the fitted model.

Figure 15 shows the marginal plots for the best model fit in the year 1990. The plots indicate that
the BRT model under-predicts high observed values throughout all resolutions. This is especially
apparent in the longer tails of the right-skewed histogram and density curves shown on the observed
axis. In general, all plots exhibit a positive and relatively strong relationship, with a tendency towards
clustering at the predicted values as seen by the vertical multi-modal histogram and density plot on
the predicted axis. This is especially true in the resolution of 12000m where three clusters are evident,
whereas in the resolution of 1500m it seems there is more smoothing present. This is a feature of the
BRT design, as described in Section 2.5.
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Figure 15. Marginal plots in the four different spatial aggregation resolutions showing the predicted
PV fractions on the y-axis and the observed values on the x-axis.

3.3. Aggregation and scaling error

We investigated the effect of spatial aggregation on prediction accuracy and compared the
predictive outcome to the computational time to extract aggregated means out of the FCover band
for green vegetation. We argue that a full FCover scene is not required in order to achieve satisfying
prediction results and therefore investigated finding a threshold of a spatial resolution that yields
acceptable results but is also computationally inexpensive. For this, we recorded the elapsed time to
generate the mean of the spatial grid cells and the time required to write the calculated mean to a csv
file.

Figure 16 provides comparative information about computational time for the different spatial
resolutions. The dominant factor in computing time was extracting the aggregated means from the
FCover band for PV. The resultant values are and depicted in Figure 16.
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Figure 16. Comparative information about computational time on a) the delineation of green vegetation
out of FCover imagery and b) writing to a csv file that will be used as an input file for BRT modelling.

The effect of the four aggregation resolutions on the prediction accuracy is depicted in Figure
17. For this plot, we calculated the absolute difference between the observed and the predicted
values for all the years present in this case study. The largest and smallest error rates were observed
at the resolution of 12000m, whereas the resolutions of 3000m and 6000m showed the most stable
performance. It should be noted that the resolution of 1500m also yielded lower absolute error rates,
but there was a trend towards higher rates in 1988 and 1990. Overall, the 3000m resolution showed
the best error rates, followed by 6000m. These resolutions also have a reasonable processing time as
shown in Figure 16.

Figure 17. Quantitative assessment of absolute error rates in the four spatial aggregations.

The overall conclusion based on the inspection of the times is that the resolution of 3000m is
best, followed by 6000m with regards of processing time, prediction accuracy, the strong and positive
interaction effect shown in the marginal plots and a significant relative influence of the contribution of
CenterY in the splitting process of min 52% and max 75%.

4. Discussion

The goal of this paper was to investigate how spatial aggregation affects prediction accuracy
of green vegetation using a BRT model. We focused our evaluation on a case study and chose
four aggregation schemes that follow a linear scale. Aggregating the fractions of green vegetation
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and calculating the mean does alter the original fractions of PV. This alteration can be seen as the
consequence of data compression. In our case, we introduced a compression that causes loss since the
original fractions cannot be recovered by decompression. The results show that it is not necessary to
compute FCover at full (30m) spatial resolution to obtain satisfactory predictions. This is an important
outcome since the computational time will be significantly reduced by spatially aggregating the
fractions of the FCover scene. Figure 16 shows the reduction of time needed for the data generation
process in extracting the means. This is especially important when more than one FCover scene is
used. However, comparisons between aggregations are not straightforward, particularly because
the data quality (large data gaps) and green vegetation cover differs between the scenes. Further
investigation is still necessary to test BRT on homogeneous land to assess whether the best spatial
aggregation resolution identified here as 6000m is still the same and whether the prediction accuracy is
affected by a different topography. We demonstrated that the BRT outperformed the LM by achieving
much better RMSE rates.

In this paper, we first demonstrated that the distribution of residuals around the mean is relatively
consistent throughout the resolutions. Moreover, in our study latitude and longitude coordinates
alone were shown to be able to effectively predict FCover. We showed the strong relationship between
latitude and longitude in the marginal plots in Figure 15.

In the relative influence plots we demonstrated that the centroid of the latitudes (indicating
North-South direction) are far more dominant in describing the aggregated FCover mean values.
For reasons discussed in Section 2.2 it is not surprising that the latitude dominates over longitude
with regard to green vegetation. What is surprising though is the high contribution and very strong
influence of around 80% as shown in Figure 12.

The marginal plots illustrate that BRT under-predicts high peak values throughout all resolutions.
We argue that 72 FCover mean values of 12000m can represent the existing green vegetation in one
scene. Further, we could demonstrate that the scene offered enough heterogeneous land cover and the
Landsat footprint of 185 x 185km was sufficient to show the targeted and generalisable results.

Another interesting investigation would be to use multi-sensory imagery and multi-granularity
pixel sizes as additional covariates in the modelling process. We focused on the exact alignment of
pixel edges to the spatial grid by choosing a resolution that incorporates full pixels. However, before
we used the resolutions here, we had more common ones in 1000m, 5000m and 10000m and the data
extraction time was significantly increased due to the effect of incorporating adjacent pixels that
overlapped with the spatial grid cell.

Limitations of our approach can be found in the aggregation scheme using the arithmetic mean.
When extracting the mean of a spatial grid cell we don’t know the distribution of fractions within the
grid cell since we only obtain one value representing the aggregated fractions. Different methods of
aggregating values may provide better capture of cell statistics and data structure within a spatial grid
cell.

An alternative way of using FCover fractions is to sum all the vegetation (nVP and VP) and
compare those values with the fraction of bare soil in a presence/absence study. This could be useful
in time series analysis, such as an investigation of an increase or decrease of vegetation versus bare
soil. This is of particular interest with ongoing climate change towards desertification in arid or
semi-arid areas. A potential approach is to use indicator functions that can encode logical and simple
calculations by defining thresholds in order to investigate if fractions of the combined vegetation
versus bare soil represent values greater than the set threshold of both classes. Depending on the
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magnitude of a fraction, the pixel could be mapped to categorical values used in the modelling process
instead of our approach using continuous values. BRT can deal with continuous and categorical
response values.

There are many features of BRT that are advantageous for the problem considered here. The BRT
model itself comprises a flexible regression structure with improved predictive performance effected
through boosting. Boosting is an adaptive method for combining many simple models to give an
improved predictive performance. In addition to the computational speed and accuracy of estimation,
they can describe complex non-linearities and interactions between variables, accommodate missing
data, include different types of input variables without the need for transformations or elimination of
outliers, perform well in high-dimensional problems, and allow for different loss functions such as
accurate identification of small areas of interest. Moreover, they can be visualised and interpreted
easily, thus facilitating the translation of the analytic results to decision makers [44]. The predictive
accuracy of BRT has been investigated both theoretically [42,43] and in various applications [51].
Although BRT models are complex, they can be summarized in ways that give powerful ecological
insight, and their predictive performance is superior to most traditional modelling methods.

To sum up, BRT is a very flexible, statistical and hierarchical machine learning approach that can
be used in various remote sensing aspects. In a study by Kotta [52] the author combined hyperspectral
remote sensing and BRT to test their ability to predict macrophyte and invertebrate species cover in
the optically complex seawater of the Baltic Sea and concluded that there is a strong potential for
BRT in modelling aquatic species. Further, Jafari et al [5] evaluated the suitability and performance of
BRT for soil mapping using a limited point dataset in an arid region of Iran. The performance was
tested in two scenarios: (i) using only the DEM and remote sensing covariates and (ii) additionally
using the geomorphology map. Results showed that the geomorphology map contributed importantly
to the prediction accuracy. In addition, Colin et al [50] combined a collection of GIS shapefiles,
remotely sensed imagery, and aggregated and interpolated spatio-temporal information to one input
file that resulted in a structured but noisy input file, showing inconsistencies and redundancies. It
was shown that BRT can process different data granularities, heterogeneous data and missingness.
A comparison with two similar regression models (Random Forests and Least Absolute Shrinkage
and Selection Operator, LASSO) showed that BRT outperforms these in this instance. Last but not
least, Pittman [53] investigated coral reef ecosystems that are topographically complex environments
and possess structural heterogeneity that influences the distribution, abundance and behaviour of
marine organisms. They used BRT and LIDAR data that provided high resolution digital bathymetry
from which the topographic complexity was quantified at seven spatial resolutions of 4, 15, 25, 50, 100,
200 and 300m [53]. They concluded that the combination of BRT and LIDAR has great utility in the
future development of benthic habitat maps and faunal distribution maps to support ecosystem-based
management and marine spatial planning.

5. Conclusions

A data reduction scheme on FCover showing only the green vegetation fractions, and using
BRT to assess the influence of the data reduction on the predictive power of BRT is proposed in this
paper. The first step of the proposed method aims to reduce the heterogeneous green vegetation cover
through aggregation based on an evenly spatial grid that served as an overlay for the delineation of
the green vegetation fractions. This was performed at four spatial resolutions of 1500m, 3000m, 6000m
and 12000m and resulted in 16 input files for the BRT modelling approach. The files were split into
training and test set and BRT was then applied to identify the influence of the spatial resolution on
prediction accuracy for BRT models. To validate the performance of the proposed method, the RMSE,
MAE and MDAE were considered. Further, the predictive performance of the BRT was compared with
that of the more common linear regression model and was found to consistently deliver smaller RMSE
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values at all four spatial aggregations. The analysis showed that the proposed method can also provide
useful visual interpretations by showing, for example, the prediction raster map and the smoothing
factor for each spatial resolution. Based on these results, we conclude that boosted regression trees
are an appealing method for estimating green vegetation from remotely sensed images and that an
appropriate aggregation scale can be identified that balances computational demand with acceptable
loss of predictive accuracy.
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7. Supplementary Material

7.1. Mathematical explanation of the BRT method

Here, we summarise the method, following Friedman [37]. Consider a response variable y and a
vector of predictor variables x that are connected via a joint probability distribution P(x, y). Using a
training sample {(x1, y1), . . . , (xn, yn)} of known values of x and corresponding values of y, the goal is
to find an approximation F(x) to a function F∗(x) that minimises the expected value of a loss function
ψ(y, F(x)). Boosting approximates F∗(x) by an additive expansion. The parameters {am}M

0 and the
expansion coefficients are jointly fit to the training data. This is done in a forward stage wise manner.
Gradient Boosting [37] approximately solves differentiable loss functions ψ(y, F(x)) with a two step
procedure. First, the function h(x; a) is fit by least squares to the current pseudo-residuals which
represent the residuals from the given stage of the tree building.

Then, given h(x; am), the optimal value of the coefficient βm is calculated via

βm = arg min
β

N

∑
i=1

ψ(yi, Fm−1(xi) + βh(xi; am)). (2)

Thus, at each iteration m, the tree partitions the feature space into L disjoint regions {Rlm}L
l−1 and

predicts a constant value, ȳlm, in each region. Gradient Boosting proceeds in this way until the base
learner h(x; a) is an L terminal node regression tree.

The parameters of the estimated tree are the splitting variables and corresponding split points
that define the tree, and this defines the corresponding regions {Rlm}L

1 of the partition at each iteration.
These are accomplished in a hierarchical top-down approach using a least squares splitting measure
[37]. Equation 2 can be solved individually within each region, Rlm defined by the corresponding
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terminal node l of the mth tree. Because the tree predicts a constant value ȳlm within each region, Rlm,
the solution to 2 reduces to a simple location estimate based on the criterion ψ

γlm = arg min
γ

∑
xi∈Rlm

ψ(yi, Fm−1(xi) + γ). (3)

First, we initialize the model. To minimize the square error we initialise F∗(x) with the mean
of the training set that is defined through {yi, xi1}N

i and the learning rate γ. At the beginning of the
algorithm we specify the number of trees/iterations shown as m in the for-loop control structure.
Friedman [37] added a stochastic element by proposing to draw a random subsample from the full
training data set without replacement. This subsample is then used to fit the base learners and
compute the model update for the current iteration. The random subsample of size Ñ < N is given
by {yπ(i), xπ(i)}Ñ

1 . Adding randomness to the algorithm in this way has been shown to improve the
performance of gradient boosting [44]. In the last step of the algorithm the current approximation of
Fm−1 is updated in each corresponding region Rlm.

7.2. Limitation

Another limitation is that the absolute error between model prediction and actual observation
contains the model error due to the spatial aggregation as demonstrated in Table 5. The error rates are
similar and it is difficult to separate those from each other.

7.3. Partial Dependency Plots

[H] Partial dependency plots (PDP) are graphical visualizations of the marginal effect of a given
variable (or multiple variables) on an prediction outcome.
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Figure 18. Partial dependency plots in 1500m to 12000m from top to bottom of best year 1990. The
effect of latitude (CenterY) show similar patterns for the resolution of 3000m and 6000m, with a steep
linear increase in FCover after a threshold latitude.
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5 Analysis of spatial smoothing effects on green

vegetation to improve prediction accuracy using

Boosted Regression Trees

Preamble

This chapter addresses the fourth research objective and we investigate when spatial

smoothing is incorporated into a BRT what effect this has on the model fit, estimation

of green vegetation fractions and prediction accuracy. Spatial smoothing accounts for

spatial autocorrelation by smoothing the estimates of a spatial random field towards the

arithmetic mean of the adjacent pixels around a centre point of the neighbourhood matrix.

The neighbourhood is defined in the form of matrix of equal weights. The statistical model

developed in this chapter can be viewed as an extension of the model developed in chapter

2.
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5.1 Introduction

Spatial data are becoming increasingly prevalent in many domains. Many current meth-

ods for analysing spatial data use smoothing kernels such that the number of parameters

are fixed a-priori and hyperparameters, such as the width of the neighbourhood specifica-

tions are pre-defined. In this paper a non-parametric Gaussian Process (GP) is proposed.

GP are used for mathematical and statistical modelling such as kriging (Karnieli et al.,

2008) and in supervised machine learning approaches (Ak, Ergönül, Şencan, Torunoğlu,

& Gönen, 2018). In order to improve the signal-to-noise ratio in fractional cover (FCover)

data, spatial techniques can be used.

In many spatial models, of image data represented as pixels, a neighbourhood matrix

(also known as spatial filter) is often defined in terms of cells gathered around a midpoint

that share the same edges as the centre pixel (also known as the centroid) or are within a

specified boundary of the centroid (Owen, 1984). A moving window smoothing kernel ap-

plies an aggregation function to all cell values within the specified neighbourhood matrix,

calculates the mean and creates a new smoothed output value for the centroid, and moves

on to the next cell. The simplest smoothing technique uses unweighted averaging over a

fixed neighbourhood size such as the Box filter (Lopes, Touzi, & Nezry, 1990). Smoothing

is sometimes referred to as filtering, because smoothing has the effect of suppressing high

frequency signal (fast variations) and enhancing low frequency signal (slow variations).

The non-linear Gaussian Process provides an alternative method to smoothing, whereby

the smoothness of the (non-linear) regression is defined by a covariance function that

ensures that values that are close together will produce a function that matches our data.

This covariance function, along with a mean function defines a Gaussian Process.

Boosted Regression Trees (BRT) are a popular non-parametric decision tree method in

statistical and machine learning approaches (Freund & Schapire, 1996; J. Friedman, 2006;

J. H. Friedman, 2002). BRT works very well with large datasets, allowing for inconsisten-

cies, missing data, and different data granularities allowing a variety of distributions (Elith

& Leathwick, 2017). Moreover, BRT can deal with skewed and multi-model distributions

as well as categorical data. However, past applications of the method for spatial data have

generally ignored spatial autocorrelation, i.e., that locations closer to each other exhibit

similar characteristics than those further apart and are related through their geographic

location (Dubin, 1988; F. Dormann et al., 2007; Miller, 2004).

In this paper we focus on a challenging example of spatial data analysis, namely prediction

of green vegetation using remotely sensed data showing heterogeneous land cover char-

acteristics that violate the key assumptions of standard statistical analyses, that each

random variable is independent and identically distributed (i.i.d) (F. Dormann et al.,
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2007; Jacobs, 1992).

To address those challenges we perform a Gaussian smoothing kernel appraoch to cope

with green vegetation cover which is changing in space, and is also corrupted by random

noise. By using smoothing kernels we capitalise on the assumption that nearby points

measure nearly the same underlying value and averaging can reduce the level of noise with-

out unduly biasing the value obtained (Miller, 2004). The drawback is a loss of spatial

variation due to homogenising local characteristics. By applying a Gaussian smoothing

kernel on our Fraction Cover (FCover) data a new raster data set will be calculated show-

ing the smoothed values of green vegetation cover. In our case study we investigate four

different sizes of the Gaussian smoothing kernel and the effect of this choice on prediction

accuracy when fed into the BRT as the new response variable .

5.2 Material

5.2.1 Case Study

Our case study is located in the Northern Territory, Australia and shows a heterogeneous

topology of native grass types. The prediction and quantitative estimation of biomass is

of primary interest. We use FCover scene of the Landsat footprint of path 102 row 72

at the Worldwide Reference System-2 (WRS-2) that cover the extent of 185 x 185 km of

commercial grazing land and contain over 50 million pixels. Our study area is defined as

“dry” with variations of “desert, hot arid” and “dry summer, hot arid” (BWh and Bsh)

based on the Koeppen-Geiger scheme and is very vulnerable (Bureau of Meteorology,

2016; Chen, 2017). The highest point is 255 m and the lowest is located at 23 m (232 m)

above mean sea level (MSL) referenced to the Australian Height Datum (AHD). There is

a constant increase of about 15 % of the elevation between the upper right corner (min

23 m) to the lower left corner (max 255 m).

5.2.2 Fractional Cover Data

Landsat satellite data offer great benefits for monitoring vegetation (Gallo, Easterling, &

Peterson, 1996; J.Walsh et al., 2001) since one Landsat footprint covers an area of 185

x 185 km2, is freely available (Wulder et al., 2012) and it avoids expensive, extensive

and often impractical in-situ measurement. One Landsat pixel covers an area of 30 x 30

m2 on the ground and represents the reflected or emitted radiation from several different

objects on the Earth’s surface. The combined individual spectra of objects represented

in one pixel cannot discriminated anymore and results in mixed pixel or Mixel (Kamal

& Phinn, 2011; Malenovskỳ et al., 2007; Zhang, Li, Lei, Du, & Wei, 2015). A spectral

unmixing approach separates the spectral reflectance of one pixel into its single ground
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cover components to determine the proportions of each of the three endmembers as graph-

ically demonstrated in Figure 5.1. In our case the endmembers are photosynthetic/green

vegetation (PV), non-photosynthetic vegetation (nPV) and bare soil (BS). Further infor-

mation about how to derive spectral endmembers using a spectral unmixing approach is

provided in (Kamal & Phinn, 2011; Scarth et al., 2006).

Figure 5.1: Spectral unmixing approach explained graphically using the Instantaneous Field of View
(IFOV) as the geometric resolution of one FCover pixel where the spectral information and the fractions
of three objects on the ground are combined together. The spectral unmixing approach aims to separate
the unique reflected or emitted radiations and to derive three map layers for each endmember, here
photosynthetic/green vegetation (PV), non-photosynthetic vegetation (nPV) and bare soil (BS) (Kamal
& Phinn, 2011).

Our FCover data set is geo-referenced to the Worldwide Reference System 2 (WRS-2)

and the pixels are described using geographic coordinates in latitude and longitude. The

two-dimensional feature space is represented through a x-value and a y-value, where x

describes the East-West direction (latitude) and y describes the North-South direction

(longitude). The pair of latitude and longitude are numeric values, representing a unique

location within our study area showing green vegetation fraction present in each individ-

ual pixel.

5.3 Research design

We used two approaches to developing a non-linear BRT algorithm to predict green veg-

etation fractions. First, we investigated how the prediction accuracy is affected using the

non-smoothed and smoothed green vegetation fractions as alternating response variables

on latitude and longitude. Second, we added the smoothed green vegetation fractions as

additional covariates to the latitude and longitude and extended the list of input variable

in the BRT model. To smooth the green vegetation fractions, a non-linear covariate-driven
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Gaussian Process was applied as a smoothing kernel to the FCover data. We used four dif-

ferent kernel sizes with varying widths of the neighbourhood matrix around the centroid

pixel to define those pixels that were to be incorporated in the Gaussian smoothing pro-

cess. Then we compared the prediction results and goodness of model fit using the RMSE.

5.3.1 Neighbourhood analysis

The application of Gaussian smoothing kernels on the green vegetation fractions provides

an output raster where the value for each output cell is a function of the values of all the

input cells that are in the specified neighbourhood. It calculates the average of all green

vegetation fractions encountered in the defined kernel size via a neighbourhood matrix.

The centroid for which the average is being calculated is referred to as the processing cell.

The value of the processing cell, as well as all the cell values in the identified neighbour-

hood, is included in the neighbourhood statistics calculation. The neighbourhoods can

overlap so that cells in one neighbourhood may also be included in the neighbourhood of

another processing cell. Missing values are excluded in the calculation. In our case we

use a low-pass or smoothing filter that removes extreme values. By contrast, high-pass

filters accentuate features (Kumar, 2013).

5.3.1.1 Gaussian smoothing kernels

The extent of the Gaussian smoothing kernel is defined by a parameter sigma (σ). The

smoothing parameter σ is defined by a bandwidth and the extent of the bandwidth con-

trols the smoothing effect. Smoothing is also called low pass filtering since it removes

high spatial frequency noise and fine details. The Gaussian smoothing kernel operates

like a moving window that affects each individual fractional cover value at a time. For

our case study we defined four different kernel sizes and applied those on the observed

green vegetation fractions: σ = 0.2 performs the most smoothing, σ = 1 and σ = 10 both

will apply moderate smoothing and σ = 20 will perform the least smoothing. When using

Gaussian smoothing kernels the value of σ defines the range of a pixel’s ability to move,

therefore a larger σ captures more variance and patterns in the data and the magnitude

of the smoothing approximate the original green vegetation fractions. Thus larger the

value of sigma, the lower the smoothing effect (Kumar, 2013).

5.3.2 Gaussian Processes

Gaussian processes are stochastic process and aim to fit a multivariate normal distribution

to the (continuous) FCover data. The Gaussian Process is often denoted as f ∼ GP (μ, k),

where the function f is distributed as a Gaussian Process with a mean function μ(x)and
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covariance function k(x, x) (Kumar, 2013; Wilson & Adams, 2013).

Using the Gaussian Process, one can find a distribution over the possible smooth func-

tions f(x) that are consistent with the observed data. We choose the covariance function

such that values that are close together in input space will produce output values that

are close together.

In a simple linear regression setting, we have a dependent variable y and we assume that

it can be modelled as a function of an independent variable x, y = f(x)+ ε, where ε is the

error rate. We assume further that the function f defines a linear relationship so the aim

is to find the parameters θ0 and θ1 which define the intercept and slope of the regression

line as y = θ0 + θ1x+ ε.

In contrast, a Gaussian Process has relaxed assumption about the form of f(x), allowing

it to be distributed: f(x) ∼ GP (μ(x), k(x, x′)) where μ(x) is represented as N(x) = 0

and k(x, x′) is the kernel and x1, x2, ...xn ∈ R
n, in ∈ {1, 2, ...}.

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣
f(x1)

f(x2)
...

f(xn)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ ∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
μ(x1)

μ(x1)
...

μ(x1)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
μ∼∈Rn

, σ2

⎡
⎢⎢⎢⎢⎣
k(x, x1) k(x, x1)

k(x, x2) k(x, x2)
...

...

k(x, xn) k(x, xn)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
K∈Rn×n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.1)

The kernel k(x1, x2) = σ2e−
(x1−x2)

2

2l2 , where l defines the standard deviation of the Gaus-

sian kernel. If l ∼ 0 we get a very complex function and risk overfitting , if l � 0 we

get a very smoothed function and risk underfitting. An appropriate l can be determined

by cross validation as part of hyperparameter tuning (Banerjee et al., 2008; Gelfand,

Schmidt, Banerjee, & Sirmans, 2004; Wilson & Adams, 2013)

Further, the range of the values in the kernel is 0 ≤ K(ij) ≤ 1. Alternatively, we can select

hyperparameters such that they maximise the likelihood that a certain choice of function

produced the data. Due to the Gaussian nature of the GP, this likelihood has an explicit

form,

logL = −1

2
yTK−1y − 1

2
log(det(K))− 1

2
log2π (5.2)
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where the first term is the fit of the data, the second is the complexity and so maximising

the likelihood balances between over- and underfitting (C. K. Williams & Rasmussen,

2006).

We use the Gaussian kernel as our covariance function, with the geographic coordinates as

our covariates x in a 2-dimensional case, defined by latitude and longitude. The Gaussian

kernel function k(G)(., .) between two green vegetation fraction pixels xi and xj can be

defined as follows (Ak et al., 2018):

k(G)(xi,xj) = exp(−‖xi − xj)‖22 /s2), (5.3)

ks(sl − sm) = k(G)(sl − sm) (5.4)

and the kernel width parameter is chosen as the mean of the Euclidean distances (Ak et

al., 2018).

5.3.3 Boosted Regression Tree

Boosted Regression Tree (BRT) models are a combination of two techniques: decision

tree algorithms and boosting methods. BRT repeatedly fit many basic decision trees to

improve the accuracy of the model by taking a random subset of a training data set al-

lowing for replacement. By building the subsequent trees BRT uses a boosting algorithm

in which the drawn samples are weighted, where a higher weight will be given to poorly

modelled decision trees. The higher weight is used in the next tree to prioritise the mis-

specified observations. The boosting part of BRT takes into account the previous fits of

the decision trees, and sequentially builds new models focusing on the errors to improve

the overall prediction accuracy of BRT.

BRT have four hyperparameters that significantly impact the performance, namely (1)

the shrinkage (how quickly the algorithm adapts); (2) tree complexity, the total number

of trees in the final model (number of iterations); (3) interaction depth, the interaction

between different nodes along the branch and minimum observations in node, and (4) min-

imum number of training set samples in a node to commence splitting (Kuhn, 2008, 2015;

Kuhn & Johnson, 2013). For the BRT algorithm, we use the gbm R package (Ridgeway,

2005) with 10-fold cross validation, introducing randomness by setting the bag.fraction

to 0.75, and using a Gaussian distribution. The following tuned hyperparameters as used

by Kuhn (Kuhn, 2008, 2015) were:

• bagging fraction; 0.75

• shrinkage; 0.01
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• tree complexity; 2500

• interaction depth; 5

• minimum number of training set samples in a node; 10

• all other values were held at their default values.

5.4 Results

5.4.1 Gaussian Kernel smoothing

Figure 5.2: The magnitude of the smoothing is depicted in red on the original data in black using four
kernel sizes from ranging from σ = 0.2 (most smoothing) at the top to σ = 20 (least smoothing) on
the bottom. The y-axis shows the green vegetation fractions and the x-axis demonstrates their unique
location ID’s plotted as a 1-dimensional vector from top left to bottom right.

Figure 5.2 shows four smoothing lines as a 1-dimensional plot where the smoothed values

are shown in red and the original green vegetation fractions are shown in black. We can

see that the smaller the value of σ, the stronger the approximation of the kernel towards
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the observed data. When σ is set to 0.2 the red smoothed line fails to capture the peak

values and hence loses most of the local characteristics. The corresponding 2-dimensional

smoothed outcomes depicted as raster maps are shown in Figure 5.4 where the kernel

sizes with the defined values of σ show the effect or magnitude of smoothing. Figure 5.3

shows the original raster image prior to the smoothing. The data gap, shown in white,

at the upper right side of the imagery results from data refinement procedures such as

masking out obscuring elements like clouds and cloud shadows.

Figure 5.3: Original Raster image (not smoothed) showing the green vegetation fractions where higher
values represent a higher fraction of green vegetation represented in the individual pixel.
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(a) (b)

Figure 5.4: Plots of the Gaussian smoothing showing (a) smoothed raster maps on the left and (b)
raster maps of the distribution of the residuals on the right. The top panel shows the kernel size σ = 0.2
(maximum smoothing), followed by σ = 1, the third shows the smoothing using σ = 10 and the last panel
was performed using σ = 20 (the least smoothing).

By comparing the four smoothed raster maps, we can see that in the case of σ = 0.2 all

local features are smoothed out whereas the raster map corresponding to a kernel size of
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σ = 20 shows smoothed values where local features were maintained. The corresponding

residual map shows that most noise has been smoothed or filtered out whereas in case

of σ = 0.2 a pattern of distinctive and strong residuals is clearly visible. Further, local

characteristics are maintained with σ = 10 and σ = 20 but are lost with σ = 1. In all

residual plots we can see very distinctive features at the bottom of the imagery in pink

demonstrating a high residual error around +20.

Figure 5.5 presents boxplots that describe the distribution of the smoothed green vegeta-

tion fraction in comparison with the original values on the very right. A boxplot describes

the dispersion of the data via the upper and lower whiskers, the inter quartile range (IQR)

and the median. The IQR, indicated as the grey box around the black median line in

the middle is very similar throughout all boxplots regardless of the size of the Gaussian

smoothing kernel. It can be clearly seen that the smoothing eliminated the outliers.

Figure 5.5: Boxplots of the four different Gaussian smoothing kernels and the original values. From
left to right: σ = 0.2, σ = 1, σ = 10, σ = 20 and the original values of not smoothed green vegetation
fractions.

5.4.2 Effect of smoothing on BRT prediction results

After performing the Gaussian smoothing using four different kernels sizes the smoothed

values were fed into the BRT and we investigated two scenarios as described in 6.3; The

two scenarios resulted in altogether 13 prediction results. Table 5.1 presents the predic-

tion results and the RMSE as a goodness of fit for the BRT model outcome along with the

contribution of the covariates listed in terms of their relative influence on the response.

In order to enable a better comparison between the assessment of the model fit we added

the RMSE for scenario 1, and to the smoothed data (second column), and to the orig-

inal green vegetation fractions (third column), both Scenario 1, and the original green

vegetation fractions using the smoothed values as covariates (sixth column) for Scenario 2.
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Scenario 1 Scenario 2
latitude + longitude covariate + latitude + longitude

RMSE rel. influence in % RMSE rel. influence in %

kernel smoothed original lat long original covariate lat long

original 3.1836 - 56.37 43.63 - - - -
σ = 0.2 0.1679 4.452 71.22 28.78 3.2359 66.14 18.85 15.01
σ = 1 0.5637 3.791 61.76 38.24 3.2092 79.94 11.31 8.74
σ = 10 1.4436 3.414 58.53 41.47 2.7231 93.78 3.51 2.71
σ = 20 1.6872 2.698 58.94 41.06 2.5251 95.16 2.46 2.38

Table 5.1: BRT prediction results on two scenarios. Scenario 1: only latitude and longitude have been
used as covariates. Scenario 2: latitude, longitude and the smoothed values have been used to predict the
observed green vegetation fractions (original values). The best RMSE is printed in bold numbers and the
significance of the covariate in predicting the response and their importance in the splitting process of the
BRT is depicted as their relative influence in %.

Analysis of the residual plots (Figure 5.4 b) and the RMSE (Table 5.1) reveals that the

RMSE corresponding to σ = 10 in Scenario 1 is better than that for σ = 20 in Scenario 2.

Both residual maps demonstrate that noise was smoothed out in the imagery adequately

without showing a pattern in the residuals. Also shown in Figure 5.2 we see that σ =

10 has smoothed the data and the magnitude of the smoothing is sufficiently, whereas

σ = 20 approximates very close to the real data. Therefore the preference is on σ =

10. The RMSE of Scenario 1 shows a strong improvement using the smoothed values in

comparison with the original green vegetation fractions.

We also quantitatively assessed the utility of Gaussian smoothing as a data pre-processing

step. By analysing Figure 5.4 and comparing the RMSE of the original values of the two

scenarios we can demonstrate that smoothing as an applied pre-processing step helps

to obtain better prediction accuracy and a better model fit as described in column 3

(original) and 6 (original) of Table 5.1 and compared with column 2 (smoothed). This

can be explained as outliers and extreme values are smoothed out and the data follow

a more symmetrical distribution than the original green vegetation fractions (shown in

Figure 5.5) by comparing the IQR of all four kernels with the original, not smoothed or

pre-processed data on the very right.

Marginal plots were also produced to facilitate comparison of the predicted and the ob-

served values and provide diagnostic information about the fitted model. Figure 5.6 shows

the marginal plots for all four Gaussian smoothing kernels. All plots indicate that the BRT

model under-predicts high observed values as shown in the long tail of the correspond-

ing right-skewed histogram. This is as expected. In general, all plots exhibit a positive

and relatively strong relationship, with a tendency towards a stronger correlation using
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a higher value of σ. The predicted values show a light tendency of a bi-modal distribution.

(a, σ = 0.2 ) (b, σ = 1)

(c, σ = 10) (d, σ = 20)

Figure 5.6: Marginal plots of the four different Gaussian kernels show that BRT under-predicts the
green vegetation fractions shown on the y-axis in comparison to the observed values on the x-axis in (a)
σ = 0.2 (maximum smoothing); (b) σ = 1; (c) σ = 10 (d) σ = 20 (the least smoothing). The distribution
of the observed values are positively skewed and show a long tail starting at about 130 up to 140 and
higher whereas the predicted values are less skewed and reach the maximum of 130 in histogram of the
margin of the plot.

We also investigated the influence of the covariates on the prediction of green vegetation

fractions. In Table 5.1 we list the relative influence of our smoothed covariates, measured

as a percentage in both scenarios. The relative influence measures the contribution of

the covariates in the splitting process of the BRT modelling process. Figure 5.7 shows

graphically the very strong influence of the smoothed values in predicting the original

green vegetation fraction as our response variable (Scenario 2). We can see the larger the

value of σ, the smaller the contribution of the geographic coordinates on the response and

the stronger the influence of the smoothed green vegetation fractions.
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This is not surprising, since σ = 20 approximates the real data very well and its inclusion

as a covariate also comes closer to simply providing the BRT with the actual data set as

a covariate; this explains the contribution of 95.16 % as listed in Table 5.1. Surprisingly,

even in these low-smoothing cases the BRT prediction accuracy suffered compared to the

use of only latitude and longitude in Scenario 1.

(a, σ = 0.2) (b, σ = 1)

(c, σ = 10) (d, σ = 20)

Figure 5.7: Relative Influence plots of the four Gaussian smoothing kernels showing the influence of the
three covariates in predicting the green vegetation fractions (response variable) on the x-axis where (a)
used σ = 0.2 (maximum smoothing); (b) σ = 1; (c) σ = 10 (d) σ = 20 (the least smoothing).

5.5 Discussion

The goal of this paper was to investigate two scenarios of smoothing kernels applied to

green vegetation fraction data as a pre-processing step or as calculating a new response

variable, and its effect on prediction accuracy using BRT. Spatial filtering blurs the edges

of the pixels and the overall image quality deteriorates but the signal-to-noise-ratio will

be improved by suppressing change in high frequency signals and enhancing low frequency
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signals (Kumar, 2013). We used four Gaussian smoothing kernels, but many other sta-

tistical operations are also possible as described by Simonoff (2012).

We considered the effects of different values of the parameter σ that controls the level of

smoothing applied. Our recommendation for the best suitable sigma is σ = 10 for our

data set obtained in our study area. It would be interesting to find a suitable value of σ

when smoothing on a regional level where several FCover scenes are combined and cover

a large area. Also interesting to analyse further is the relative influence of the covariates

on the response when smoothing larger areas. A drawback of our study is that for each

scale and new FCover scene the value of σ needs to be tuned. We focused on one FCover

scene only since it contained sufficient heterogeneity of geographic features to serve our

inferential purpose. Our goal was not to find the most appropriate Gaussian smoothing

kernel and its bandwidth for FCover data, but to investigate in neighbourhood depen-

dencies of the existing topography present in this FCover image.

The focus of our study was to investigate the prediction capabilities of BRT and the effect

of incorporating neighbourhood information in the spatial prediction on green vegetation

fractions. In Table 5.1 we can see that by adding an additional covariate of green vege-

tation fractions, the prediction accuracy was positively affected and resulted in a smaller

RMSE as this is an interesting outcome and provides reassurance in a better model fit

and yields a higher prediction accuracy. Also very significant is the relative influence of

the additional covariate in explaining the response variable as shown in Table 5.1 and

Figure 5.7. We can see that in using σ = 20 the influence of the added smoothed green

vegetation fractions is strongest, with a relative contribution of 95.16 %. The contribution

of the added covariate significantly increases as σ increases, whereas the contribution of

the latitude and longitude becomes insignificant and negligible.

In the marginal plots it was apparent that the predicted values showed a light tendency

of a bi-modal distribution. In Chapter 4 of the thesis we showed marginal plots of BRT

predictions of the same data set and the bi-modal distribution was stronger and indicated

clustering in the data. Here, after smoothing the green vegetation fractions, the predicted

values showed no clustering and a more symmetric, unimodal distribution in predicted

values. We can conclude that in using a Gaussian smoothing kernel our prediction results

follow a nearly unimodal distribution and clusters within the data have been resolved.

Furthermore, a significant under or over prediction of peak values in the observed data

is clearly visible when using smaller values of σ, and a stronger relationship between ob-

served and predicted values is obtained when using larger values of σ. The BRT did not

predict peak values very well, matching the results seen in Chapter 4 of this thesis, where

we investigated spatial aggregation and where four different spatial aggregation schemes

were applied on the same data set used here in Chapter 4. We can therefore conclude

that applying Gaussian smoothing kernels as a pre-processing step prior BRT modelling,
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should be favoured over spatial aggregation.

5.6 Future Work

A qualitative and qualitative assessment of the suitable size of the smoothing parameter

σ in the kernel of the Gaussian has been used in this case study by comparing raster maps

that demonstrate the magnitude of the smoothing and the corresponding residual maps.

We can see that the value of σ is scale dependent and larger areas would profit from a

smaller σ, whereas using one FCover scene the σ = 0.2 smoothed out too many local

characteristics. Since our focus was on the investigation of prediction accuracy obtained

using BRT and different smoothed green vegetation values, we refrained from performing

cross validation to find the most suitable value of σ, although this could be undertaken

in an obvious manner. CV tries to choose the value of σ to fit the smoothed data to

the original, which is a separate issue to the question of using four different extents of

smoothing that either assist or hinder the predictive capabilities using BRT.

Another possibility would be to use our approach on remotely sensed data showing data

gaps for predictions and infilling purposes. Data gaps could be filled with prediction of

the smoothed surface to ensure a smooth transition of raster values over time and/or space.





6 Estimating Spatial and Temporal Trends in En-

vironmental Indices Based on Satellite Data: A

Two-Step Approach

Preamble

This paper focuses on the applied aim 4 in which we investigate in different regression

slope trends on green vegetation on the best identified scale of chapter 4. For this we

used the scale 1:3000 and performed a linear regression in each grid cell to delineate

the slope coefficient out of the model summary. Each grid cell with the corresponding

slope coefficient is visualised as a raster tile showing negative trends, neutral trend on

positive trends on the FCover on a colour range. Monitoring long term trends of green

vegetation in a semi-arid region gives valuable insight into dependencies and changing

quantities influenced by climate variability. For our study we investigated in the spatio-

temporal trends of green vegetation using 3 scenarios, namely a data set covering 30 years

of data, three consecutive decades analysed individually, and 30 years of data exploring

four segments of the divided FCover scene.

This paper provides insight into spatio-temporal trends of green vegetation based on three

scenarios and resulting predictive accuracy.
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Abstract: This paper presents a method for employing satellite data to evaluate spatial and temporal
patterns in environmental indices of interest. In the first step, a linear regression coefficients are
extracted for each area in the image. These coefficients are then employed as a response variable in
a boosted regression tree with geographic coordinates as explanatory variables. Here, a two-step
approach is described in the context of a substantive case study comprising 30 years of satellite
derived fractional green vegetation cover for a large region in Queensland, Australia. In addition to
analysis of the entire image and timeframe, separate analyses are undertaken over decades and over
sub-regions of the study region. The results demonstrate both the utility of the approach and insights
into spatio-temporal trends in green vegetation for this site. These findings support the feasibility of
using the proposed two-step approach and geographic coordinates in the analysis of satellite derived
indices over space and time.

Keywords: Boosted Regression Tree; spatio-temporal analysis; fractional cover data; prediction of
location-based vegetation trends

1. Introduction

Remotely sensed data are available from a wide range of sources, ranging from satellites to
drones, and have been used for a very wide range of environmental applications and analysis of
spatial and temporal trends. For example, Landsat data are freely available [1]; the imagery covers a
wide geographical area, and it avoids expensive, extensive and often impractical in-situ measurement.
There is a strong advantage in using remotely sensed Landsat imagery for land use and land cover
(LULC) analyses in detecting and estimating the magnitude of spatio-temporal trends in measures of
the quantity of green vegetation [2,3]. Monitoring long term trends of green vegetation in a semi-arid
region gives valuable insight into dependencies and changing quantities influenced by climate
variability. For monitoring and analysis of green vegetation, the infrared (IR) and near infrared (NIR)
spectral channels are best suited since they discriminate between green and active vegetation versus
woody vegetation or organic litter [4]. Fractional cover (FCover) data is a derived product out of
Landsat imagery and shows the fractions of existing land cover in one pixel as percentages that are
contained within the pixel. A satellite pixel combines the reflected radiation from different objects
on the earth surface, and this spectral mixing effect results in a so called mixed pixel, or Mixel [5].
In a spectral unmixing approach the Landsat pixel is divided into assigned biophysical variables
[6–9]. For example, in our study described below, we used only the band that shows the fractions for
green vegetation out of a three layer composite containing two additional layers for bare soil and for
non-green vegetation. The derivation of FCover is described in [6,10,11].
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Environmental Modelling is important when we want to understand and monitor the local
variability and spatial trends over time of green vegetation. Instead of applying our method to the full
resolution we used aggregated FCover pixels showing a much coarser resolution to examine green
vegetation trends. The aggregation scheme, the best resolution for LULC studies and it is suitability
are described in our paper [12]. The goal is to detect spatial and temporal trends based on 30 years
of data. More specifically, we want to understand how the linear trend in FCover changes over the
spatial region, and how well this can be described by geographic coordinates. For this, we specify
qualitative factor levels showing six categories of green vegetation trends that are listed and further
described in Table 2. Then we model these trends using latitude and longitude coordinates that serve
as a North-South gradient (latitude) and East-West gradient (longitude).

The use of latitude and longitude as surrogate covariates is not uncommon. For example,
in a study of [13] the authors used latitude and longitude coordinates as surrogate variables for
North-South and East-West gradients to account for the variation in deciduous forested ecoregions.
The response was an aggregated Normalized Difference Vegetation Index (NDVI) variable used as
an on-site quantification of vegetation in North America. Similarly, in a study of the geographic
distribution of plant functional types [14] the authors examined the relationship of precipitation
and temperature on C3 (cool-season grasses) and C4 (more drought resistant warm-season grasses)
grass types and shrubs using latitude and longitude coordinates. Along a given longitude, C3
grasses increased with latitude and as one moved westward, C4 grasses were replaced by shrubs.
They concluded that latitude and longitude can be used as surrogate variables for the main climatic
dimensions of the area. The latitude and longitude explained a substantial portion of the variability of
the distribution of the relative abundance of shrubs, C3 grasses, and C4 grasses.

In general, there are many methods using machine learning approaches for predicting temporal
and spatio-temporal trends that are not limited to green vegetation. Examples include long term
seasonal changes of the Danube River eco-chemical status [15], epidemiology studies and analysis of
disease processes in public health [16], spatial and temporal trends of birds over France [17], long
term trends in dryland vegetation variability in Ethiopia [18], and identification of environmental
controls in fire-prone biome and spatial patterns at several spatial scales in the Canadian boreal forest
[19]. In a previous paper, we evaluated the performance of a popular machine learning technique,
namely boosted regression trees, and concluded that BRT can perform well in high-dimensional and
complex problems, deal with missing data by default without the need for interpolation/infilling,
describe complex non-linearity and interactions between variables, deal with spatial and non-spatial
data and different data granularities, and reduce data complexity without negatively affecting
prediction performance [20]. However, the focus of that paper was on spatial estimation of
environmental indices at a single point in time. In this paper, we focus on estimation over both
space and time. We do this by proposing a two-step approach comprising the extraction of slope
coefficients out of the model summary and the predictions of the extracted slope coefficients using
BRT. The combination of a linear regression and a non-linear BRT model defines our two step approach.

The detection of trends in change of green vegetation over time is essential for the assessment of
the impacts of climate variability on the LULCC (Land Use Land Cover Change) of a region. The study
described in this paper aims to determine the annual trends of slope coefficients over a semi-arid
region. Long term (1987–2017) gridded aggregated FCover fractions of green vegetation data are used
to spatially divide the FCover scene. Historical trends are examined using a linear model to regress the
aggregated green fraction over time for each grid cell. The extracted grid-specific slope coefficients are
then used as a response variable, with the corresponding latitude and longitude as covariates, in the
hierarchical supervised machine learning BRT model. The BRT results thus provide an evaluation of
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the spatial nature of the overall temporal trend in green vegetation over time.

The paper is structured as follows. Section 1 provides background information, places our study
in the context to other studies and demonstrates why there is a gap we need to fill. Section 2 introduces
the study area and presents the context of the other linear model approach to extracting the slope
coefficient. In Section 3 we introduce the BRT modelling approach and describe the hyperparameter
tuning steps and the model goodness of fit. Section 4 presents the results of the two stages of the
analysis. The implications of the data and the output of the prediction of the BRT, as well as strengths
and limitation measures of BRT are discussed in Section 5.

2. Data description

2.1. Case Study

The FCover scene of our study area is located the Northern Territory, Australia, in the Landsat
footprint of path 102 row 72 according to the Worldwide Reference System-2 (WRS-2). The scene
covers an area of 185 x 185 km and the elevation is ranging from 50 m to 213 m. The location of
our study area is classified as “Dry” with variations of “desert, hot arid” and “dry Summer, hot
arid” (BWh and Bsh) based on the Köppen-Geiger scheme and presents heterogeneous and complex
topography of native grass types. Arid and semi-arid areas cover a large part of the earth’s surface
and are located around the tropics at 23◦ north and south of the equator. According to the commonly
used Köppen-Geiger climate classification these areas are defined by limited precipitation and high
potential evaporation rates. Further, our study area is used for commercial grazing purposes and is
highly dependent on grazing practices that ensure future sustainable land use [21].

2.2. Fractional cover data

There is a strong advantage in using Landsat satellite data for monitoring vegetation trend
in land use and land cover (LULC) studies [2,3]. The imagery covers a wide geographical area; it
avoids expensive, extensive and often impractical in situ measurement and it is freely available [1].
The spatial resolution of a Landsat pixel combines the reflected or emitted radiation from different
objects on the Earth’s surface and, as described in the Introduction above, this spectral mixing effect
results in a so-called mixed pixel or Mixel where individual spectra of objects cannot be separated
[5]. Fractional cover (FCover) data is a derived product based on Landsat 5 Thematic Mapper (TM)
imagery. An extensive ground cover sampling study [10] was used to inform a spectral unmixing
algorithm [6,10,11].

2.3. Data pre-processing

In Colin et al. [12] we investigated spatial aggregation schemes that are best suited for this study
site with regard to up-scaling FCover data and maintaining sufficient local characteristics for accurate
prediction of green vegetation. Instead of dealing with the original amount of 54 million pixels we
thus reduced the data volume to 5530 individual spatial grid cells containing 100 x 100 pixels in each
as demonstrated in Figure 1.
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Figure 1. The FCover data are overlaid with an evenly spaced grid where each grid cell contains
100 x 100 pixels and covers an area of 3000 x 3000m. Each of the total 5530 grid cells will be used
to delineate the slope coefficients showing green vegetation trend on unique locations of the spatial
grid. The FCover scene shows the relationship of the three ground cover classes of green vegetation
(green), non-photosynthetic vegetation (blue) and bare soil (red) referenced on the Worldwide Reference
System-2 [12].

Missing data are common in remotely sensed imagery. As part of enhancing data quality
obscuring elements such as clouds and cloud shadows are filtered out, resulting in data gaps. The
amount of missing data can be substantial and often imagery can not be used at all due to too much
data gaps as demonstrated in Figure 2a in the year 1992 and 2000. Further, Figure 1 shows a FCover
scene with an overlaid evenly spaced grid where we can see that we have empty grid cells and data
gaps where no information of green vegetation fractions is present.

For studies on marine and vegetation monitoring using remotely sensed imagery from earth
observation satellites a geographic scale of 1km and finer is mostly used, for example MODIS, Landsat
and ENVISAT MERIS. For climate related studies a coarser spatial resolution is preferred. The
Meteosat Second Generation (MSG) deliver data recorded in 12 channels with a spatial resolution of
3km. MSG data are primarily designed for meteorological observations of the atmosphere, but there
are land use applications based on MSG data as well [22,23]. In a particularly interesting investigation
[24], the authors used a spatial scale of 3km to present the first results of NDVI for the whole of the
African continent.
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2.4. Data Exploration

Table 1. Descriptive statistics of the green vegetation fractions for the whole data set covering 30 years

.
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.00 11.64 17.03 18.37 23.16 73.92 0

Summaries of the data extracted from the FCover scenes covering a 30 year time frame for this
case study are presented in Table 1 and Figure 2. Table 1 presents overall summary statistics for the
observed grid-level values of green vegetation fraction. Figure 2 summarises the spatio-temporal
nature of the data, through boxplots of the annual distribution of the grid-level values as well as three
trends over time.

(a) Boxplots showing a strong variation of
green vegetation for each year over the 30 year
timeframe, 1987-2016. For consistency over
time, and because the FCover in the study area
is dominated by wet and dry seasons, only
December scenes have been used for this case
study.

(b) Trend of green vegetation in a 30 years time
frame overlaid with a blue linear regression line
showing the direction of trends. Top) most neutral,
middle) maximum positive slope and bottom)
minimum negative slope. Only sites with at
least 15 observations over the time period were
considered for this plot.

Figure 2. Development of green vegetation fractions and their trends over time shown as boxplots in
Figure 2a or as the three most distinctive trends in Figure 2b.

3. Methods

Our goal for this study is to evaluate the spatial, temporal and spatio-temporal nature of
vegetation trends in FCover data. For this we followed a two-step approach comprising a linear model
for the extraction of the slope coefficients (serving as trends in vegetation) followed by the prediction
of those extracted slope coefficients using geographic coordinates through a BRT model.
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Figure 3. Two-step modelling approach to predict extracted slope coefficients (as spatial trends) using
a BRT model.

3.1. Linear Model

3.1.1. Extraction of slope coefficients

In the first step, for each grid cell, we extracted linear slope estimates from least squares linear
regression models for which we used a continuous response variable showing the aggregated fraction
of green vegetation and a discrete predictor variable indicating the years from 1987 to 2017. (This
was performed using the lm package in R, with the formula: green vegetation fractions ∼ years).
A positive (negative) slope coefficient indicates an increasing (decreasing) trend and increasing
(decreasing) quantity in green vegetation fractions over time. The R software [25] and its basic linear
model function was used to fit the model. Each individual grid cell is indexed as i and our data set
comprise 5530 individual grid cells per year and FCover scene as demonstrated in Figure 1. We further
assume that green vegetation, denoted as Yi, is linearly related to the covariates year, denoted as
X, and that the residuals εi are distributed N(0, σ2). A linear regression model with one predictor
variable can be expressed with the following equation: Yi = β0 + β ∗ Xi + εi. The parameters in the
model are β0 as the Y-intercept and β as the regression coefficient (the slope coefficient representing
the linear trend over time) which we extract from the model summary.

Table 2 shows the different slope coefficients that were calculated. It can be seen that there are
three dominating slope coefficient classes ranging from a negative trend of -0.5 up to a positive trend
of 1. Further, we can see that the most extreme values are exclusively found on the outer rim of the
rastermap shown in Figure 4 a and their overall representation/contribution is marginal (0.02 %
and 0.03 %) as demonstrated in Table 2. We suspect this is based on the natural shift of the Landsat
footprint recording which therefore results in extreme data gaps that adversely influence the linear
regression analyses and hence the accuracy of the estimates of the corresponding slope coefficients. By
visualising all six categories of our extracted slope coefficients, we can see that the three strongest
categories ranging from negative -0.5 up to a positive trend of 1, together comprise 99.93 % of the
slope coefficients as demonstrated in Figure 4a.

Table 2. Six categories of slope coefficients with corresponding numbers of observations in the data set,
and their overall representation/contribution as percentages in the case study.

Slope coefficient categories Observations Percentages %

slope coefficient >1 14 0.02 %
slope coefficient >= 0.5 and slope coefficient <1 5088 5.44 %
slope coefficient >= 0 and slope coefficient <0.5 79032 84.48 %
slope coefficient >= -0.5 and slope coefficient <0 9364 10.01 %
slope coefficient >= -0.5 and slope coefficient <-1 30 0.03 %
slope coefficient <-1 19 0.02 %

The extracted and categorised slope coefficients were plotted using their geographic centroid
coordinates from the overlaid spatial grid. This resulted in the Figure 4a showing six categories and
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their location-based slope coefficients based on a 30 year time frame. Further, we can see that the most
extreme values are exclusively found on the outer rim of the plot. We suspect this is based on a natural
shift of the Landsat footprint and therefore extreme data gaps and in general a lower availability of
FCover fractions to sufficiently estimate reliable slope coefficients. Statistically significant trends were
assumed to exist if the p-values of the slope coefficient were different from zero at a level of 5% (p <
0.05) or smaller. The levels of statistical significance for each grid cells are shown in Figure 4b where
the p-values >0.05 are most common.

(a) Rastermap of categorised slope coefficients. (b) Rastermap of categorised p-values.

Figure 4. Location of p-values and of slope coefficients categories.

(a) P-values between 1 - 5 % (b) P-values <1 %. (c) P-values >5 %.

Figure 5. Comparison of the three p-value categories with their associated slope coefficients.

Figure 5 shows the extracted three categories of p-values, their slope coefficients and associated
statistically significant localised effect. We can clearly see that the p-values >5% are most common. In
the second step of our two-step approach, we used the estimated slope coefficients for each grid cell
as our new response variable in a BRT model to predict green vegetation trends using geographic
coordinates. The model is described in detail below.

3.2. Boosted Regression Tree

Our research aim was to investigate in spatial, temporal and spatio-temporal trends in green
vegetation. The methodological aim was the extension of the created BRT model to predict quantitative
long-term trends of green vegetation cover in a semi-arid region that is vulnerable and sensitive to
climate variability. For this we used 30 years of data and a 2-step approach comprising the extraction
of the slope coefficients (our trends) using a linear model, and use those slope coefficients as our new
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response variable for the BRT modelling.

A BRT is a flexible supervised machine learning method that consists of two algorithms: first a
regression tree approach and second boosting. In a regression tree, the feature space is divided in
binary trees as shown in Figure 6a, whereas Boosting combines several single binary trees to create a
more flexible partition of the feature space Figure 6b. Boosting proceeds by fitting another regression
tree to the residuals, until a stopping criteria is reached, or when an acceptable goodness of fit for
predictive accuracy is achieved. Details of BRTs are provided in [26].

(a) Regression Trees: Hierarchical regression
and binary splitting process showing
observations in the nodes, predicted values in
the terminal nodes and splitting criteria along
the tree branches [12].

(b) Boosting: BRT as an ensemble approach
combines several binary splits to create
complex prediction rules that offer more
flexibility in dividing the feature space than a
single regression tree. Boosting additively fits
binary trees and gradually prioritise poorly
modelled data to produce a set of binary splits
that maximally reduce the BRT loss function.
Adapted from [27], [12].

Figure 6. Combination of two algorithms, namely Boosting and linear regression tree within a BRT.

There is a number of statistical machine learning methods for fitting complex regressions
of the type considered here. For example, generalised additive models (GAM) [28] provide a
flexible extension of well known generalised linear models and have been widely used in ecological
applications, for example to predict tree species in Utah [29]. This author also compared GAM with
stochastic gradient boosting (SGB) and found that both had merits with respect to predictive fit. Using
another ecological case study, [30] compared GAM and BRT and found that BRT showed substantially
superior predictive performance. Further, in our paper we compared three different regression
methods (Random Forests and Least Absolute Shrinkage and Selection Operator, LASSO) with each
other and evaluated their predictive performance on heterogeneous spatial data and concluded that
BRT outperformed these in this instance [20].

3.2.1. Hyperparameter tuning and goodness of fit evaluation

The R package caret [31] was used to determine the hyper-parameters for the BRT model and split
the dataset into training data to train the model and a test set to validate the predictive performance
of the created model on unseen data. The goodness of fit of the model was evaluated using the
root mean square error (RMSE). The results are summarised in Table 3. The final suggestions of the
hyper-parameter tuning process were number of trees (n.trees = 2500), interaction depths between
nodes in the tree branches (interaction.depth = 5), learning rate or shrinkage (shrinkage = 0.01) and a
set number of minimum observations in the splitting node (n.minobsinnode = 10).
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The BRT model was fit using the gbm package [32].We set the formula parameter to "slope
coefficents ∼ latitude + longitude" to describe the model, set the hyperparameters as described above
and held all other parameters at their default values. The computational environment was the R
statistical modelling software version 3.3.3 [33] running inside Windows 7 SP1 (64-bit) on a 2.60 GHz
Intel i7 CPU with 16GB of RAM. All of the plots were generated in the R programming language [33].

4. Results

4.1. BRT predictions

4.1.1. Overall results of the whole data set

The marginal plot in Figure 7a shows a strong linear relationship between the observed values
and the corresponding predicted values obtained under the BRT model. It also shows the marginal
distributions of the two sets of values, reflecting a relatively normal distribution for the observed
values and a bimodal distribution for the predicted values. This is also shown in the histograms
in Figures 7b and 7c. We can see somewhat unexpected slightly positive trends in the quantity of
green vegetation cover in our study area throughout the years. This phenomenon is not unusual for
tree-based models.

(a) The BRT performance
on predicting the slope
coefficients strongly relate
with the observed values.

(b) Histogram showing
distribution of observed
values.

(c) Histogram showing
distribution of predicted
values.

Figure 7. Data set showing 30 years in a) marginal effects, b) histogram of observed values and c) of
predicted values.

4.1.2. Decadal analyses

The linear model captures only an overall monotonic rate of change over all 30 years and can not
detect changing trends over time. To overcome this, we subdivided the 30 years into three 10-year
time frames to investigate if changing trends within the decades could be detected individually.
Figure 8 shows the comparison of our results and demonstrate, that there is no significant difference.
The analysis over three 10 year time frames showed a very similar temporal trend and a slightly
increasing vegetation cover as in using the whole data set covering 30 years demonstrated in Figure
7. The scatterplot shows a strong positive correlation between the predicted values and the original
measurements. You can see that BRT has the tendency to under- and over- predict extreme values
demonstrated here on the predicted values following along the blue line of equality.
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Figure 8. Plots of the decades showing a) marginal effects, b) histogram of observed values and c) of
predicted values. The top panel shows the decade starting at 1987, the middle panel starting at 1997,
and the last panel starts with 2007.

The decade-specific models displayed a similar fit to the overall model, with respect to RMSE
(Table 3).

4.1.3. Segmented areas

In addition to splitting the data into decades we used all 30 years and divided our study area into
four even segments, namely upper left corner, lower left corner, upper right corner, and lower right
corner. Altogether the splits resulted in eight scenarios comprising 1) the whole data set described in
4.1.1, 2) three decades described in 4.1.2 and 3) four segmented areas of the whole data set described
here. The overall model fit of all eight scenarios is shown in Table 3.

Partial dependency plots (PDP) are graphical visualizations of the marginal effect of our latitude
and longitude covariates on the predicted response, here the extracted slope coefficients from the linear
model described in 3.1.1. The Figure 9 shows all eight scenarios. On the left hand side we can see
PDP showing the longitude. The general pattern shows an increase starting at the lower left corner at
about the geographic coordinate of 8000000◦ reaching its peak and then decreasing slowly again. The
only exception can be seen on segment upper right corner. On the right hand side we see the latitude
starting high at 450000◦ and falling and increasing again at 520000◦ with the exception of the lower left
corner. Please see Figure 4 for further details on the categories of slope coefficients and their associated
p-values with geographic coordinates.

To investigate the model fit we used the Root Mean Square Error (RMSE) as shown in Table 3 All
eight scenarios were created using 80 % of data for training the model and the remaining 20 % of data
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for testing the model performance on unseen data. The Table shows the RMSE for the predicted values
on the test data.

Table 3. RMSE on the test data using all 30 years, first 10 years, middle 10 years and last 10 years and
in four segmented areas comprising a 30 year time frame.

Scenario RMSE

All 30 years 0.1150
First 10 years 0.1112
Middle 10 years 0.1214
Last 10 years 0.1063

Four segments
1 - Upper left 0.1076%
2 - Upper right 0.0915%
3 - Lower left 0.1112%
4 - Lower right 0.1265%
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Figure 9. Partial dependency plots (PDP) of all eight scenarios in the order from top to bottom. All
30 years, first 10 years, middle 10 years, last 10 years, segment 1 (upper left), segment 2 (upper right),
segment 3 (lower left), segment 4 (lower right). On the left there is the PDP of the latitude (North-South
gradient) and the right shows the longitude (East-West gradient).

4.2. Relative influence

The spatial pattern of the trend values over the case study image can be further assessed by
evaluating the relative influence of each of the covariates, latitude and longitude, in the BRT analysis.
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The North-South gradient was slightly more influential than the East-West gradient. This pattern
persisted in the decade analyses as well (Table 4).

Table 4. Relative influence of the longitude in explaining the response using all 30 years, first 10 years,
middle 10 years, last 10 years, and in all four segments of the FCover scene.

Scenario North-South gradient

All 30 years 56.77%
First 10 years 57.04%
Middle 10 years 55.68%
Last 10 years 57.67%

Four segments
1 - Upper left 34.63%
2 - Upper right 47.71%
3 - Lower left 40.79%
4 - Lower right 43.24%

5. Discussion

In this paper we have proposed a two-step method for evaluating the spatial patterns of linear
trends across a landscape, based on the geographic covariates latitude and longitude. The relative
importance of these covariates, combined with the trend estimates themselves, can provide a deeper
understanding of environmental impacts on the target response. For instance, in the case study
considered here, the analyses allow insight into whether climate variability appears to have little to no
impact on the existing green vegetation our study area. In Figure 2a we show the distribution of green
vegetation fractions in boxplots covering 30 years and visualising the inter quartile range, minimum
and maximum values. We can see an increase in the median especially in the year 2011 and 2014 the
highest fraction of green vegetation of 70% and higher. This is surprising because in many studies a
general trend of desertification in semi-arid regions around the word could be found. However, our
results demonstrate that 84.48 % of all extracted slope coefficient show a neutral to a slightly positive
trend in green vegetation as shown in Table 2.

We conducted a temporal and spatio-temporal investigation on one overall data set or on three
data sets covering one decade each to get a better understanding if there are seasonal patterns that
will not be captured by the overall 30 year time frame. Our findings are demonstrated in Figure 7,
and 8. The RMSE error listed in Table 3 indicate that there is no significant influence in dividing the
data set to improve prediction accuracy. In addition, it can be seen that BRT under-predicts the slope
coefficient when using geographic coordinates as spatial gradients.

By plotting the p-values using their geographic coordinates we can demonstrate a spatial trend of
significant strong p-values associated with the extracted slope coefficients as demonstrated in Figure 5.

Further, we demonstrate a stronger influence of the longitude coordinates in explaining our
response variable as demonstrated in Table 4. To get insight in temproal and spatio-temporal trends,
we split up the FCover scene and investigates several scenarios, namely the whole data set, the
three decades and 30 years in four even segments of the FCover scene. We investigated if there
are spatial trends in the slope coefficients and trends of green vegetation in each scenario. Figure 9
shows the influence of latitude and longitude in all 8 scenarios as partial dependency plots. We can
clearly see that each segment and each decade differ from each other and affirm our approach in
using consecutive time intervals to investigate in spatial green vegetation trends individually to get
spatio-temporal insight in the amount of green vegetation fractions and how the greenness developed
over space and time.
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Using a linear model to extract slope coefficients allows formal, statistical investigation of the
vegetation trends and associating p-values. However, it only considers trends as a linear monotonic
trends of green vegetation. We tried to overcome this by dividing the data set into three decades, but it
has been demonstrated that it did not improve prediction accuracy substantially. Further, no turning
points or extreme events were taken into consideration that would have described changes in green
vegetation fractions since the linear approach could not have detected them. As seen in Figure 8 we
used this to split the data in three decade shows that there were no other significant trends captured.
We only used geographic surrogate gradients without adding any other environmental covariates
to the BRT model. In addition, no further testing using other FCover scene of a different Landsat
footprint was taken to determine if the results are restricted to our location only.

There are many generalisations of the approach presented here. For example, while this paper
has intentionally focused on a single analytic method for each of the two steps in the proposed
approach, it is clear that these methods could be replaced by any one – or indeed a number – of a
wide variety of statistical machine learning methods designed for estimation and/or prediction. For
example, instead of the linear regression and BRT approaches illustrated here, one could consider
other regression models that capture temporal and spatial correlation (e.g., exponentially weighted
moving average models, Markov random field models, respectively) or other non-linear models such
as neural networks or support vector machines. It is also valuable to look to the literature in other
domains that evaluate and compare these and other methods for spatial and temporal estimation and
prediction, such as [34–36]. Generalising in another direction, although this paper has focused on a
single output from the first step (the estimated regression coefficient) and used this as a univariate
response for the analysis in the second step, a multivariate approach could be adopted whereby the
outputs from the first step (and inputs for the second step) are the regression estimates and their
associated standard errors and/or RMSE, or estimates of multiple coefficients in a multiple regression,
or parameter estimates and associated goodness of fit estimates from an alternative supervised
learning method such as a neural network.

6. Conclusions

In this study, we demonstrated that a localised and quantitative distribution of temporal and
spatio-temporal trends of green vegetation cover can be predicted using BRT. All together eight
scenarios have been investigated, namely the whole data set covering 30 years, then three data sets
covering a decade each, then the four quadrants of the image over all years. We showed that the
prediction of location-based trends of green vegetation achieved good results by using the RMSE
as goodness of model fit by combining a linear model and BRT. The extracted slope coefficient and
p-values were categorised and further analysed by their direction of their increase of the quantity in
green vegetation and their associated statistical significance through the p-values. A limitation can be
found that 84% of the slope coefficients were positive but most were associated with non-significant
p-values. In our paper [12] we concluded that a North-South gradient is dominating over the
East-West gradient in predicting the quantity of green vegetation fractions used in a spatial context.
Here, we are using the same data and we can see that the North-South gradient does not contribute
on the rate of change in green vegetation and its influence for temporal trends based on the three
decades. Our results confirm the results of the author [13] where they concluded that latitude and
longitude can be used to explain the spatial variability in the distribution of C3 and C4 grass along
North-South and East-West gradients. In analysing 30 years as a spatio-temporal aspect in the four
segments demonstrated in Table 4 we show an decrease of the influence of the North-South gradient
and an increase of the East-West gradient as the relative influence of predicting vegetation trends. By
analysing the data using either the whole data set of 30 years, three decades or four segments that
show 30 years in each quadrant, we can conclude that in the shorter time frames no temporal trends

110



Version July 25, 2019 submitted to Sensors 15 of 17

were observed and the overall linear trend of 30 years seems sufficient.

7. Appendix

It is also apparent that very few locations have a strictly non-zero gradient. In most of
the cases the overall trend of green vegetation is not strong. One proposal is to transform the
green vegetation fractions or use p-values as an additional covariate to weight observations for the BRT.

Table 5. Comparison of RMSE on the test data using all 30 years, first 10 years, middle 10 years and
last 10 years and in four segmented areas comprising a 30 year time frame.

Scenario RMSE of extracted slope coefficients RMSE of extracted t-values

All 30 years 0.1150 2.8308
First 10 years 0.1112 0.9805
Middle 10 years 0.1214 0.7128
Last 10 years 0.1063 0.4465

Four segments
1 - Upper left 0.1076 0.9719
2 - Upper right 0.0915 1.1589
3 - Lower left 0.1112 0.3884
4 - Lower right 0.1265 0.3884
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7 Discussion

The overall aims of this thesis were to develop spatio-temporal decision tree models using

big spatial data and geographic coordinates as surrogate variables, with application to

the estimation of green vegetation cover using remotely sensed imagery. In this chapter,

we review the major findings and contributions of the thesis and discuss their significance

in the context of the current state of the art. These contributions will be mapped back

to our research questions and aims outlined in Chapter 1. The chapters build upon each

other and results from previous chapter will be incorporated in the following work. In

summary, in Chapter 3 we assessed the general suitability of BRT for addressing our

research aims. In Chapter 4 we aggregated green vegetation fractions to find a suitable

spatial resolution for BRT to predict with satisfying accuracy and without loss of local

characteristics of the study area. The identified best resolution was then used for Chapter

5 where we proposed a two-step approach to evaluate trends in green vegetation using

extracted slope coefficients output from a linear model. Finally we presented in Chapter

6 an alternative aggregation, using spatial smoothing to increase the signal-to-noise ratio

in the underlying green vegetation fractions. The chapter concludes with a discussion of

strengths and limitations of the work presented in the thesis and areas of possible future

research.

Chapter 3 presented an evaluation of BRT as a statistical machine learning algorithm

that can address big data challenges to enable data-driven decisions and applications.

Comparison with other regression methods such as Random Forest and Least Absolute

Shrinkage and Selection Operator show that BRT outperforms these with respect to good-

ness of fit. Since BRT is often considered as a black box method, where little knowledge

is known about its internal process and details of the implementation, it is important

to stress that the BRT model offers a wide range of powerful methods to interpret the

results. One example is a list of all covariates ranked in hierarchical order along with

their contribution to explaining the response variable used in the splitting process. By

identifying the individual relative influence of each covariate we can filter out less influ-

ential variables that can significantly decrease complexity and computational processing

time while simultaneously maintaining a good model fit and low error rates.
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Aim 1 was successfully completed by the research presented in this chapter. The encour-

aging results regarding the utility of BRTs for the problems considered in this thesis agree

with previous studies also demonstrating the successful application of BRTs in ecology

(Jafari et al., 2014; Leathwick et al., 2006; Stohlgren et al., 2010). This motivated the

use of BRT for the following research aims addressed in the subsequent chapters.

Chapter 4 presented a data aggregation scheme to enable effective data processing of data-

rich studies and we investigated how spatial aggregation affects prediction accuracy. A

case study showed that the spatial resolution of 3000m achieved better prediction accuracy

over the finer scale of 1500m. However, it was apparent that peak values were consistently

under-predicted in all four spatial resolutions. BRT, as an ensemble approach, allows for

a flexible partition of the feature space and therefore fine-scale characteristics in green

vegetation cover could be maintained and predicted well, while the aggregation scheme

significantly reduced the data volume. The computational cost of the delineation of green

vegetation fractions was significantly reduced from 4 hours in the spatial aggregation res-

olution of 1500m to the next smaller resolution of 3000m to only 45 minutes. This is a

significant decrease of computational cost and especially beneficial when dealing with a

larger number of FCover scenes without the necessity of using high performance capabil-

ities. In addition, we demonstrated that there is a stronger influence of the North-South

gradient dominating the influence of the East-West direction. The proposed data reduc-

tion scheme is applicable more generally for studies where a spatio-temporal approach is

desired because this requires processing of the scenes for each point in time, significantly

increasing computational cost. In summary, Aim 2 was successfully completed and the re-

search presented in this chapter demonstrates that it is not necessary to compute FCover

imagery at full (30m) spatial resolution to achieve high predictive accuracy. The R code of

the data delineation is published on my GitHub page: https://github.com/BrigitteColin

Chapter 5 presents an approach to using a Gaussian smoothing kernel on green fractional

cover data to improve the signal-to-noise ratio in our green vegetation FCover data. Our

aim is to gain better estimates and prediction results using smoothed data and we in-

vestigated in two scenarios; quantitatively by assessing the RMSE and qualitatively by

comparing raster maps showing the smoothed imagery. Scenario 1 assess the RMSE on

replacing the response variable with the smoothed values and concludes that the magni-

tude of the smoothing influences the goodness of fit. The RMSE starts to worsen when

using a high value of sigma after reaching a minimum. In scenario 2 the smoothed green

vegetation fractions were added as additional covariates to latitude and longitude and the

response variable remained the same. We demonstrate that by adding an extra covariate

to the BRT the prediction accuracy increases.

In the 2-dimensional raster maps we can see the magnitude of smoothing as either a very

homogenised imagery showing less local features or as a smoothed imagery where local

characteristics are maintained and where the signal-to-noise ratio has been improved and
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extreme outliers were smoothed out. We can also prove that smoothing as a pre-processing

step resolved any clusters in the data and the distribution of the smoothed values follow

a now a unimodal and more symmetric distribution. With the application of a Gaussian

smoothing kernel we demonstrates the successful completion of Aim 4.

Chapter 6 presented the idea of evaluating spatio-temporal patterns by first fitting a lin-

ear regression to each area to identify the temporal trend, and then assessing the spatial

nature of these trends by using a BRT with the extracted slope coefficients as the response

and geographic coordinates as predictors. At first the whole data set was used covering

30 years. However, a linear model captures only an overall monotonic rate of change over

all 30 years and can not detect changing trends over time. To overcome this, we subdi-

vided the 30 years to investigate if there are changing trends within the three decades that

could be detected individually. A comparison of our results demonstrates, that there is no

significant difference. However, we could see unexpected results showing slightly positive

trends in the quantity of green vegetation cover in our study area. The estimated slope

coefficients extracted from the linear model were then fed into the BRT to operate as our

new response variable. Only geographic coordinates were used to predict spatio-temporal

trends. In the next step, the FCover scene was divided in four even segments for which

we investigated the spatio-temporal trajectories in the segments. By plotting the p-values

gained from the linear model we discovered a gradient of statistically strong p-values as

a North-South gradient across our FCover scene. We then inferred that there is variation

of vegetation trends in the individual segments, which could be confirmed by plotting

them separately as individual trajectories for each decade. With the completion of Aim

4, the method extends the modelling approach of Chapter 4 by a two step approach that

resulted in a better understanding of the quantity of green vegetation over time and space,

including localised spatial trends and their trajectories in our study area.

The combination of the four aims provide a methodology for a spatio-temporal analysis

of FCover data in predicting green vegetation cover using geographic coordinates as co-

variates. By achieving Aim 1 we demonstrated the suitability of BRT as a strong and

flexible statistical machine learning method addressing various spatial data sets and data

characteristics, achieving satisfying prediction accuracy and allowing insight in complex

spatial relationships of data-driven analyses.

The methodology developed in Aim 2 demonstrates a successful data reduction scheme

that achieved satisfying prediction results despite a massive decrease of data volume.

Most importantly, one aggregation scheme was most suitable for BRT prediction and

achieved the highest prediction accuracy by maintaining local characteristics in our het-

erogeneous region. We demonstrate that information delineation in data-rich studies is

feasible and variability in our data set can be explained by the BRT model. Further, we

gained location-based prediction densities shown as prediction raster maps that confirm
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that our data reduction scheme enables an effective data processing in an decreased com-

putational time. Aim 3 addresses spatial smoothing using Gaussian Processes and the

investigation of the impact on prediction accuracy using smoothed versus non-smoothed

data in two scenarios. Applying Gaussian smoothing kernels homogenise the imagery and

the overall quality deteriorates due to suppressing change in high frequency signals and

enhancing low frequency signals (Kumar, 2013). Extreme outliers were smoothed out and

this resulted in a more symmetric and near Gaussian distribution in the smoothed data

sets. We demonstrate that in replacing the response variable with the smoothed values

(scenario 1) the prediction accuracy first increase, but when the value of σ is to high and

only minimum smoothing is be applied, the RMSE starts to worsen. In scenario 2 we

demonstrate that smoothing applied as a pre-processing step has a positive effect on the

BRT predictions as supported in Figure 5.1. Aim 4 demonstrates that location based

green vegetation trends will certainly be useful in other LULC analyses where remotely

sensed imagery is used to detect spatio-temporal trends and their trajectories.

With the four aims it is possible to comprehensively describe the influence of spatial gra-

dients such as the dominate North-South gradient on green vegetation, the influence of

spatial aggregation and spatial smoothing on prediction accuracy and lastly the detection

of spatio-temporal local trend in green vegetation using a two step approach. By satis-

fying all the aims we enable a better informed decision process with implications to the

future by identifying areas that are sensitive to environmental impacts such as climate

variability in semi-arid land. prone to change.

By meeting these research aims, several gaps in the literature were addressed and the

overall aim of this thesis was accomplished. The research presented in this thesis also

identified new directions for future research. BRT could be applied to other types of re-

motely sensed data. Examples include active sensors such as TerrSAR-S Radar, LIDAR,

Laser altimeter, Sentinel 1, or passive sensors like Landsat, Spot, or MODIS. We have

already mentioned other statistical models that could be used on remotely sensed data,

such as other regression methods like GAM, LASSO, GLM, CART, NB, MARS and RF.

There are however some limitations to this research which must be outlined and discussed,

and which may present future directions for research. Firstly, we only used geographic

coordinates as covariates and no other environmental information has been added to

enhance/support prediction accuracy. It is expected that with the addition of further

covariates such as rainfall, soil type, vegetation indices et cetera. the prediction accuracy

will be improved. A second important limitation is that we did not test our approaches on

different locations using other FCover scenes in other climate zones, topology on different

green vegetation characteristics. Our results and conclusions are restricted to our study

area. Thirdly, the methods presented here have a substantial computational cost. Due

do interaction effects between the tree nodes, BRT cannot be run in parallel. However,
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it was possible to run our code in two individual R sessions by using each available core

separately. Specification of the computational utility are described in paper 3 in Section

1.5.1 Hyperparameter tuning. Lastly, BRT offers a set of different loss functions. For

our continuous response and its distributions we used the squared error loss, but there

are alternatives to extend and improve the basic framework. For example, the absolute

deviation and Huber loss function could be used to investigate if a different loss function

minimizes the expectation further (Ridgeway, 2007).
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