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Abstract - Database (DB) performance tuning is a difficult task that requires a vast 
amount of skill, experience and efforts in tweaking a DB for optimum results. With 
the hundreds of parameters to be considered under the diverse application 
configurations, business logic and software technology, getting a true global 
optimum setting is difficult for a DB adminstrator. We propose a novel approach 
based on Reinforcement Learning to tune a DB adaptively with minimum risk to the 
production setup. It results in a new set of parameters tailored to the production DB. 
Empirical results show that there is a significant gain in performance for the DB in 
its overall efficiency while reducing the IO overheads, based on a set of key 
performance statistics collected before and after the optimization process.  

1. Introduction 

Database (DB) tuning is complex and tedious where an alteration to its configuration can 
have a big impact on its performance, especially for a large-scale database. The tuning task 
is undertaken by a DB administrator (DBA) that has the skills, experience, and knowledge 
on database tuning [1]. A DBA tunes the DB parameters in accordance with the operation 
that is posed by depending applications to get the right balance. Getting the balance 
between control and performance is difficult and it requires numerous iterations of trials 
before it can be balanced. However, it is very time-consuming to perform this through 
trials and errors. Moreover, it is risk sensitive if the underlying database supports a 
mission-critical system as the system cannot tolerate any downtime nor degradation in its 
performance and functionality. 

We propose a novel approach of DB performance tuning based on Reinforcement 
Learning (RL), named as Adaptive DB Performance Tuning (ADPT). The conjecture is that 
ADPT will follow the process what a sentient being will do in performing tasks in the real 
world. We propose a customized process that presents a workload duplication process 
between production and test environment to mitigate the risk in the tuning process. Several 
Oracle’s features are used in ADPT, primarily to simulate actual production workload in the 
test environment. The guiding principle of RL is to learn what actions work and what’s not 
for the underlying DB environment, then build up the agent experience until it can work 
positively with the environment with minimum penalty or faults. The length of training is 
dependent on the duration of the DB workload replay and the number of iterations required 
[2]. In our experiments with the 374MB size of replay, the RL agent managed to achieve an 
expert level in the test environment within 2 days. The experimental results show that 
ADPT can improve the DB’s IO performance by a factor of 25%.  



This RL-based tuning can be regarded as self-learning and correcting while performing 
the tuning process which sets ADPT apart from prior methods [3]. One major distinction 
from existing works [4-9] is that the tuning is adaptive and able to incorporate higher 
realism into the processes instead of relying on artificially simulated loads from the load 
test tools. 

2. Related Works   

Database tuning is considered as a challenging task for a DBA [10]. The DB vendors 
support the customers with training, knowledge, and software [11] that can assist the DBAs 
in monitoring and identify bottlenecks in the DB. But these tools require manual 
interventions to extract and initiate the diagnostic process [12]. The recommendations 
provided by these tools are up to the DBA’s discretion including the risk involved in 
implementing them on the production systems. 

In recent times, there has been a surge in the interest of automating the database tuning 
process with a variety of methods that are statistical, heuristic, rule-based or machine 
learning based [4-9].  A common statistical tuning method is to use cost-benefit analysis 
[13] to locate cost savings for DB’s components using estimates from the correlation of the 
accumulated processing time to the parameters’ values. However, the results are reported 
not to be optimum as the parameters alteration is dependent on the window period setting; 
the size of the window’s time has an impact on the possibility of excessively tuned 
parameters [13]. A genetic algorithm was used as part of the DB performance predicting 
model’s configuration search strategy in conjunction with a neural network to find the 
optimum setting for a system that runs on a NoSQL database [7]. The concept is to build a 
subset of the data derived from the main system and the tuning system will loop through the 
configuration search, invoking performance prediction checks in a hill climbing approach to 
find the best parameter settings.  

A series of machine learning algorithms were used to tune an MYSQL database that 
supports a complex protein synthesizing system [8]. Starting with the use of clustering, it 
finds the most significant parameters against the captured data from different workloads 
that have been executed with different settings. Next, the lasso regression is used to identify 
the important parameters, or knobs, based on their changes against the variation 
encountered in the DB’s statistics. They are then passed to the next tuning process. Several 
iterations of the DB workloads are acquired to calculate each knob measurement, followed 
by the application of Gaussian regression to locate the best configuration. This entire 
process is repeated until an optimal DB performance outcome is achieved.  

We summarised a list of DB tuning methods that span from the manual techniques to 
artificial intelligence approach in Table 1. Delphi technique [14] is used to gather the 
information from a group of DBAs that are currently working for a power utility company. 
These methods are ranked in term of their complexity, capability, scalability and time 
requirement based on their collective feedback. Each one of them come with their own 
strength and weakness, starting with the manual methods that are the most tedious to use, to 
the most effective methods that use machine learning and DB supplied tools. 

Existing works display the following shortcoming; (1) Existing methods assume a 
consistent, stable and well-defined DB in operation that doesn’t vary in workload 
behaviour. They rely on this DB to collect statistics and data to support their models’ 



training dataset, but they ignore the level of uncertainties. (2) Existing methods focus on 
achieving the optimum parameters settings for a consistent and stable DB that operated 
under the simulated workload which is not a clear reflection of the real-world DB scenario. 
(3) Majority of these works handle DBs with Online Transaction Processing (OLTP) 
operation and do not emphasize on another form of data operations such as Online 
Analytical Processing (OLAP) or Decision Support System (DSS). (4) These works operate 
against a small set of workloads and cover a small subset of the vast number of DB 
initialization parameters.  The optimum parameters may not yield the same result when it is 
applied in the production environment due to different workload and operations. (5) Some 
methods depend on hand-crafted fuzzy rules or machine generated guidelines which are 
inflexible and narrowly scoped, that constraint them to adapt with the constant changing 
conditions that will occur in real-world DBs.  

Table 1 - database’s performance tuning techniques (low 1 to high 10) 

Method Complexity Effort  Remark 
Manual [15] 9 9 Require in-depth knowledge and skill. Passive, very time consuming, error-prone and may 

not get optimum result. Most economical of all. Not scalable.
DB tuning tool[15] 4 3 Require average/good DBA knowledge and skill, less error-prone and faster than manual. 

Passive and require DBA to operate. Tools may be costly. Limited scalability. 
Rule-Based [15] 7 6 Passive to semi-proactive. Only as good as its knowledge rule-based. Built into monitoring 

tool. Scalability is low.
Heuristic fuzzy 
based [6, 16] 

8 8 Semi-active. Need a lot of prior statistics data. May not achieve the global optimum.  
May need a reset if schema changes. Use benchmark workloads.  Scalability is low. 

Statistical-based[5] 5 7 Semi-active. Need a lot of prior statistics data. May not achieve the global optimum. May 
need a reset if schema changes. Scalability is medium.

Other ML 
models[7, 8] 

4 6 Semi-active. Need a lot of prior statistics data. May not achieve global optimum, adaptive to 
schema changes. Scalability is medium. 

 
The best way to tune a mission-critical DB is to learn and adapt the changes in its 

parameters that are suited for the real production workload. We propose the ADPT method 
to perform adaptive database tuning focusing on the IO that is based on deep reinforcement 
learning on a sandpit setup that we can replicate and replay the production workload on it. 
To our knowledge, ADPT is one of the first method using RL in DB tuning. 

3. Adaptive DB Performance Tuning (ADPT) 

Since the major DB performance relies strongly on the underlying IO throughput, ADPT 
focuses predominantly on DB’s IO tuning. As shown in Figure 1, the main component is 
the reinforcement learning (RL) agent that interacts directly with the test DB setup. It 
iterates through a series of activities that can be described as phases of learning and tuning 
in its course of DB optimization. The RL agent starts off as a “young model” with no 
knowledge and learns through a series of trial-and-error. As it gets more experienced in 
interacting with the test DB on parameter settings versus performance achieved, it will start 
to predict the outcome and choose the best outcome. However, being a “young apprentice”, 
the RL agent has much to learn so its prediction will not be accurate and needs correction. 
Towards the end of the tuning iteration, it will achieve the “adult” experience of the system 
and will be able to know precisely what action it should take for certain states in order to 
achieve optimum results.   

 



3.1. Process of ADPT 

The process of ADPT starts by setting the length of a workload period that should be used. 
This period should represent the time when meaningful activities are present in the DB that 
can form a substitute model for the test environment. A backup is taken via Recovery 
Manager (RMAN) and is used to clone the test DB. When the DB-Replay has captured 
enough workload, its files are transferred to the test environment. DB Flashback is enabled 
on the test DB so that it can revert the DB back to the original state once the workload is 
replayed. This keeps the test DB in its pristine state before any changes were made.  
 The copied workload files are pre-processed to set them ready for replay. The first DB-
Replay’s run sets the baselines. Both the AWR statistics and parameters are obtained and 
used for later reference. Scoring of the DB is done by a process that summarizes the eight 
major fields as shown in Table 3 in the DB’s statistics report to produce a final score. These 
fields have been identified as the key anchors that determine each aspect of the DB’s 
individual subsystem performances such as memory, IO, SQL and overall efficiency [15]. 
In the next iteration, new parameters’ values are applied to the DB and the workload is 
replayed. It is followed by scoring and the results are recorded by the RL agent in its 
knowledge-base. The process is repeated until the output of the DB’s score has reached an 
optimum value or the iteration count set at the beginning has been reached.  
 This process is outlined in algorithm 1 and figure 1. 
 

 
 
 
 
 
 
 
 
 

 
Figure 1 – Adaptive DB Tuning model overview 

 
 
 
 
 
 
 
 
 
 

Figure 2 – Different phases of RL agent learning 

 
3.2. Database’s Tools 

Oracle database is selected to support the implementation of the method. The following 
describes the various Oracle’s features that have been used in ADPT; 
Flashback DB: This feature enables the DB to be restored back to a point in time by rolling 
back all the changes that have occurred since then [17].  
Automatic Workload Repository (AWR): AWR is commonly used to report on the DB’s 
performance statistics which covers wait events, time model statistics, active session, object 
user and expensive SQL statements. The outputs that AWR produces identify the 
bottleneck, waits, and other performance issues that are associated with them. We use a 
subset of the results that have been aggregated from different groups of statistics as listed in 
Table 2 [18]. 
DB Replay: This is one of the components of Oracle’s Real Application Testing suite [2]. It 
captures the workloads from a source DB and then replays it on a target DB. [18].  

 Replay workload in 
Test DB 

Apply parameter 
changes to DB 

Obtain Test DB  
Perform statistics 

RL agent does trial-
and-error on action on 
state to find reward 

Capture workload 
from Prod DB 

RL 
Agent 

use NN prediction to 
find best reward & 
actions for states 

Use knowledge to 
supply best action to 
states 

High 
Learning rate 

Test DB 

Medium 
Learning rate 

Low 
Learning rate 

Routine A 

Zero - Very low  
= no knowledge

Choose to 
appropriate state 

Determine learning rate 

Medium – high  
= some knowledge 

Very high  
= expert knowledge 

Q table (state, action, 
reward, new state)

knowledge 

Routine B 

Routine B(without 
init reset) 

Routine C 
(prediction model) 



Automatic Big table Caching: This feature enables Oracle to reserve part of the buffer 
cache to cache data for table scans by using temperature and object-based Algorithm to 
track medium to large tables. It is to allow queries to be made against memory which is 
much faster [19]. 
In-Memory Column Store: This feature enables the DB to allows the user to store tables 
and other objects in a columnar-format instead of the common row format [19]. 
 
3.3. Subroutines for the RL agent 

There are activities that need to be executed sequentially between the DB and the RL 
agent. For the test environment preparation, we duplicate the production workload onto the 
test DB by using DB-Replay to capture the workload in the production system during the 
busy period for a certain duration. A suitable period is chosen for the scale of the 
anticipating tuning process. The DB-Replay’s captured files are copied over to the test 
environment. The test DB is cloned from the production DB’s backup using the recovery 
tool called RMAN [20]. The DB is configured for the flashback, followed by setting the 
baseline  initialization parameter. The next step is to capture the DB’s performance 
statistics with the first replayed workload, as a baseline. Only the dynamic parameters are 
considered in this tuning process scope.  

 
Algorithm 1: Main DB optimizing Algorithm Algorithm 2 - Routine A
Input: The state of DB from the AWR report and computed rewards 
Output: The action of new parameters’ value for the database 
Initialization1: set value for learning, reward preference and exploration rate, for 
exploration, learning, and exploitation, decay_rate 
Initialization2: initialize memory, Q-table collection and respective counters 
 
Get a baseline of DB from routine A 
Acquire the state from the AWR report 
Set the learning rate to zero, med_learning to 30%, high_learning to 90% 
Loop the iteration process 
     Check the learning rate.  
     If learning <= med_learning, do the exploration phase 
          /* exploration phase */ 
          Generate random initialization configuration. 
          Run Routines A and B 
              /*reset DB environment. Run Action against Environment and get a new 
               state. find the score as a reward. Store knowledge of  
               state, action, reward, and new_state to knowledgebase */                        
      If learning is > med_learning and < high_learning, then do  
          /* learning phase */ 
          Run Routine C 
          /* reset the DB by flashback and flush memory.  
              Predict new action for state and potential reward. 
             Apply Action to Environment and get new state plus reward. 
              Correct the reward and store information into knowledgebase */ 
     If learning > high_learning,  
          /*refer to the knowledgebase for action to state. */ 
          If exploration_rate < exploration_limit then  
               Exploits the knowledgebase to find optimum action for given state that 
              Gives best rewards 
          Else 
               Go to exploration phase – Routine A 
learning rate +=1 
exploration rate= exploration_rate *=decay_rate

Input: baseline init file, captured replay log files. 
Output: statistics report for baseline, s0. 
Initialization 1: create flashback restore point.  
Initialization 2: reset init parameter, a flush memory, clear old 
snapshots. 
 
Create “before” snapshot. 
Run DB Replay to play the workload. 
Create “after” snapshot. 
Run awrreport.sql for the statistics report as the baseline state, s0. 
Flashback DB 
Execute command to flush memory 
Reset the DB’s init parameter 
Drop and clear all snapshots. 

 
There are three DB-based routines that will be performed throughout the different 

learning phases in the tuning process, and they alter the DB’settings for the RL support. 
Routine A sets the DB to baseline through flashback and parameter reset. It replays the 
workload and acquires its stats score at baseline, s0. Routine B scores the DB statistics 
difference between the previous state and the current one, s, after applying the parameters 
change. The results are kept in the knowledgebase. Routine C predicts the scores based on 



parameters change and state, followed by self-correction. The results are added into the 
knowledgebase. At the end of routine C, we conjecture that the prediction model in the RL 
agent will achieve a high degree of accuracy, due to the acquisition of a large 
knowledgebase including information on various states, actions, and rewards. When the 
process reaches the high learning phase, the RL agent is assumed to achieve an expert level 
where it can refer to this knowledgebase to find the best global actions. For a single state of 
the test DB, the RL agent can traverse down the relationship of a sequence that leads from 
one state to another. It will result in finding the optimum choice of an action that yields the 
best rewards and the RL agent will use that action to apply to the test DB which eventually 
will achieve the best-performing state. 

The routines A, B, and C are described in Algorithms 2, 3 and 4, respectively. 
 
Algorithm 3 – Routine B Algorithm 4 – Routine C
Input: Captured replay log files, baseline statistics reports 
Output: statistics report new state, s’, reward, r’, update knowledgebase 
Initialization 1: randomize configuration file. Flush memory, flashback DB, 
reset init. 
 
Perform Routine A. 
Create “before” snapshot. 
Select one of the parameters’ set values from the config file. 
Apply the action with parameter set. 
Run DB Replay to play the workload. 
Create “after” snapshot. 
Run awrreport.sql for statistics report for the state, s’. 
Consolidate and differentiate both old and new states, s and s’. 
Score the changes.  
Record the result into the knowledgebase. 

Input: Captured replay log files, statistics reports,  
     knowledgebase 
Output: statistics report new state, s’, reward, r’,  
     Update knowledgebase. 
Initialization 1: randomize configuration file.  
     Flush memory, flashback DB, reset init. 
Initialization 2: NN predicting model. 
 
Perform Routine A but without init reset. 
Train NN and then use it to predict action and reward. 
Create “before” snapshot. 
Apply the action. 
Run DB Replay to play the workload. 
Create “after” snapshot. 
Run awrreport.sql for statistics report for the state, s’. 
Consolidate and differentiate both old and new states, s and s’. 
Score the changes and correct the reward, r. 
Record the result of the new state, old state, action,  
    predicted reward, actual reward into the knowledgebase. 

 
3.4. RL for DB tuning: Q Learning 

For a typical RL model, the agent interacts with the environment and perceives the state of 
the environment to take actions and receive rewards [21]. The goal is to choose actions to 
maximize rewards. As seen in Figure 3, at time t, the agent observes the environment which 
gives the state, st, and the agent executes an action, at, and receives a reward, rt. from the 
environment. The environment then changes and reaches a new state, st+1.. This cycle 
repeats until the goal is achieved. The optimal behaviour π is based on past actions and the 
agent tries to maximize the expected cumulative rewards over time [21]. In this method, the 
environment refers to the DB, a state refers to the DB’s performance in response to the 
workload replayed after experiencing the DB parameters’ values, and an action refers to the 
process of changing the DB’s initialization parameters. 

As the test DB environment has a big combination of parameters versus workloads, 
there is no true model that the agent can rely on. Therefore, it relies on trial-and-error to 
find the action. For the proposed self-tuning approach, the agent learns by interacting with 
the DB. Action, at, will be performed by applying the parameter change for an epoch t then 
receive reward or penalty rt, that is derived by the scoring of the DB performance after the 
workload is replayed and the AWR report is generated. The agent will be able to judge 
whether the last change made is for the better or worse. However, it is not able to reason 
about the long-term effects of the actions it takes. Delay to feedback is acceptable in this 
case as there is no need for immediate response.  

 
 



Table 2 – Selected Oracle’s initialization parameters 
Parameters Description 
Memory_target It enables automatic memory management (AMM) which 

allocate memory dynamically as required by the DB for all 
the main important memory parameters such as 
DB_CACHE_SIZE, SHARED_ POOL_SIZE, 
PGA_AGGREGATE _TARGET, LARGE_POOL_SIZE, 
and JAVA_POOL_SIZE. 

Optimizer_mode Set the optimization approach for the instance to the option 
of FIRST_ROWS, FIRST_ROWS_n, or ALL_ROWS

Optimizer_index_ 
cost_adj 

Set the relative costs of full scan versus index operations. 
OLTP queries gain better performance with lower settings.

Optmizer_index_ 
caching 

Set the amount of an index will reside in the data buffer 
which also determines the cost of an index probe in a 
nested loop join. 

Db_file_multi_ 
block_read_count

Sets the value of blocks to read in a single IO which 
determines the efficiency of a full table scan.

Log_buffer  Set the buffers for the uncommitted transaction in memory. 
It affects DB performance when there are high updates but 
less on queries. 

Db_keep_cache_ 
size 

Set the size of the KEEP buffer pool which retains data in 
the memory so that the queries read from memory and less
from disk. 

Db_recycle_ 
cache_size 

Set the size of the RECYCLE buffer pool and keep data in 
the memory for a longer period instead of ageing out.

Db_big_table_cache 
_percent_target 

Set the percentage of the buffer cache for automatic big 
table caching. This is only activated from a DB restart.

Inmemory_size Set the size of the in-memory column store to keep tables 
that use this feature.  

 

Table 3 - Performance statistics report from AWR. 
Statistics  Description 
Cache sizes Information on the system global area (SGA). 
Load profile Information about the data workload for the 

selected period between the snapshots. 
Instance 
efficiency 
percentage

Information about the memory usage ratio for the 
buffer, library, sorting, redo, latch and parsing. 

Shared pool 
statistics

information on the system’s memory usage for 
shared pool and SQL execution 

Top ten 
foreground event

information on the top wait events that cover 
details such as DB CPU, amount of IO used by 
SQL, type of reading (sequential or parallel), log 
synchronization.

Top SQL 
ordered by 
Elapsed Time

information on those SQL queries that took a long 
time to run 

Top SQL 
ordered by CPU 
time

Information on those expensive SQL queries that 
consume the most CPU time. 

IO statistics information on the tablespaces’ IO activities 

 
 
 
 
 
         Figure 3 – RL agent’s processes 

The agent’s objective is to learn about its current situation and try to maximize the 
chance to score more rewards through trial-and-error by the exploration of other actions as 
well as exploitations. This ensures that all variation of parameters-changing actions and the 
rewards that they will get from the environments’ state . Once the optimum actions have 
been identified, the agent will exploit them. It also finds a balance by choosing between the 
exploring and exploiting actions using a ε-greedy action selection algorithm with a random 
number between 0 and 1 [21]. 

In this paper, we propose to use Q-learning, a model-free learning algorithm [21], that 
explores the environment and exploits the current knowledge simultaneously via trial-and-
error to find both good and bad actions.  At each step, it looks forward to the next state and 
observes the best possible reward for all available actions in that state. It uses the 
knowledge to update the action-value of the corresponding action in the current state with 
the learning rate α (0 ≤ α ≤1). The Q(s,a) value becomes a combination of immediate 
reward and discounted future reward. It is expressed [21] as: 

 Q(s, a)← Q(s, a) +α{r+ γ maxa' Q(s', a' )-Q(s, a)}   (1) 

Where α is the learning rate, γ is the discount factor, r is the reward, s is the state of the DB 
performance result, a is the action on the parameter changes, a’ is the new action, s’ is the 
new state. Maxa’ Q(s’,a’) is the expected optimal value, Q(s,a) is the old value. Eq (1) 
begins using random conditions at the start and iterates to converge to the optimum 
function, Q*(s,a). The entire process is iterative and is driven by the optimal policy as in Eq 
(2): 

 Π*=argmaxaQ*(s,a)            (2) 

Environment 

Agent 

Action at 
Reward rt

Reward rt+1
State st+1

State st



The Q-learning Algorithm starts with the initialization of Q table (Q(s,a)) to zero for all 
state-action pairs (s, a). It will observe the state, s, of the DB at the beginning followed by 
iterating actions until it converges. The agent will need to choose between exploration and 
exploitation as some changes can achieve local maxima. We propose to use the ε greedy 
algorithm [21] that randomly chooses the action whether to explore or to exploit. The ε 
value can decrease over time when the agent becomes more confident with its estimate of 
Q-values using a value of range 0.8-0.9. This is to minimize the agent’s chance of getting 
skewed toward a single set of action for a given Q-value and persistently reusing the actions 
for a given state. The state is ambiguous and can only relate to the performance statistics 
produced by the AWR report. 
Approximation of states and actions – Both the optimum value and optimal policy can be 
used if the states and actions are small in numbers. However, a DB has many possible states 
and actions which cannot simply be determine by Eqs (1) and (2). For example, if we 
consider the state of DB’s statistics (as listed in Table 4), the combination can range up to 
5n and the combination of the actions’ parameters (as listed in Table 5) can exceed 10m 
where n and m are the possible combinations of permutation that can possibly exist. The 
sheer number, of the parameter’s permutation and combination reaching into hundreds of 
thousands, exhibits the typical problem of curse dimensionality. To mitigate this problem, 
we use a neural network model [22] as illustrated in figure 3a, which uses inputs as states s 
which are aggregated sums of DB statistics n, a scalar reward r as a target value, and the 
possible m number of parameter values of actions, a, of  that attribute to the final Q-value 
derivation in Eq (3). sn refers to the state of the DB comprising of n statistics, am is the 
action that applies parameter change of the m combinations and i is the iteration. Figure ; 

 

Figure 3a - NN function approxmiation of states 
vs rewars and actions 

Predicted reward, r =f1(s1,..sn)t 

Predicted action, a =f2(s1,..sn)t                                 (3) 

The data set used for NN training is from the knowledge-base that the RL agent builds 
up at the start with its trial-and-error testing. To simplify our approach, we focus on the 
current reward and equate reward to Q-value. The predicted reward from the NN versus 
the actual reward will form the mean square error function for the NN for optimization in 
Eq (4). Within the NN model, there are several predictions of the score and actions 
required for the state. The maximum sets that give the best scores are selected, followed 
by a discount from the previous score. The calibrate reward function uses the action, 
apredict, and find the real reward, rpredict against the state, s. 

 MSE = rpredict – calibrate_reward (s’, apredict)     (4) 

In the proposed implementation, the Q-value is a normalized and calculated value of 
reward r for an action between two states. Normalization is done in order to bring all AWR 
statistics in the same range, as some measuremnets  generate values in percentage and some 
in millions. The NN training process, to produce the predicted optimum reward, continues 
until the reward (or Q-value) meets the requirement of maxa Q(s’,a’). The predicted action 
at each iteration in the medium learning phase is re-validated by the agent against the 

state, s 
(group 

statistics, n) Action, a 
(parameters 
values, m)

Predicted 
reward, r 



environment to derive the real reward. The validated information of Q(s,a,r,s’), which 
refers to the normalized Q value of the reward for the action applied to the existing state 
and bring it to a new state, s’, is then added to the knowledge base for the next iteration of 
NN training. Figure 4 shows the flow of the RL agent in finding the optimum route along 
with the DB’s states and best actions that yield the optimum reward. The Q value is the 
computed normalized value that takes into consideration the current and future rewards. ߛ is 
set to 0.1 for consideration of future states-actions but the emphasis is still on the current 
states. 
 

 

 

 

 

 

 

Figure 4 – RL process of discovering optimum DB’s state-action-reward path 

Scoring the environment’s state - The AWR report will generate and consolidate the 
statistics which are used to calculate the overall score for the DB’s performance as shown 
in Table 4; 

Table 4 - DB’s consolidated main statistics 
Statistics Description 
Oracle 
Instance 
Efficiency 

Contained the statistics on the memory components in the 
SGA such as buffer, sort, library, and execution ratio. 

Shared Pool 
stats 

contained the summary of the percentage of memory usage 
of the shared pool for executing SQL.

Timed 
Events stats 

Showed the most significant waits contributing to the DB 
Time. Waits such as DB or log file read/write, CPU time, 
latch, sort. 

SQL stats A summary of a list of top expensive SQL that occurred 
and their values in term of elapsed time read and write. For 
the intent of this score calculation, only the category of top 
SQL that consumed the most CPU time will be considered.

Disk IO stats Listed the IO values for all the tablespaces in the DB.
 

Table 5- Actions’ configuration parameters spec 
VarInitialization Parameters Range 
p1 Memory_target (mt) 1000 ≤ MT ≤ 3000 
p2 Optimizer_mode (om)   {first_rows_N| first_rows| 

all_rows} 
p3 Log_buffer (lb) 100 ≤ lb ≤ 500 
p4 Optimizer_index_cost_adj (oica) 0 ≤ oica ≤ 100 
p5 Optimizer_index_caching (oic) 0 ≤ oic ≤ 100 
p6 Db_file_multiblock_read_count (dfmrc) 4 ≤ dfmrc ≤ 128 
p7 Db_keep_cache_size (dkcs) 0 ≤ dkcs ≤ 1000 
p8 Db_recycle_cache_size (drcs) 0 ≤ drcs ≤ 1000 
p9 Db_big_table_cache_percent_target (btcpt)0~40% of p1 
p10 Inmemory_size (inms) 0~40% of p1 

 

  

The value among the group statistics varies widely, some are in percentage, 
milliseconds, counts, etc. We propose to normalize the accumulated statistics from the new 
state st+1, after the parameter change in relation to the previous state st. A weight is 
associated with the statistics’ ratio if further tuning is required to emphasize a difference 
among them as shown in Eq (5). A score for the new state is calculated as follows, 

 st+1 = 
ଵ
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where k is the number of statistics considered, i is the instance in the loop that the agent 
uses to learn the optimum configuration, E is the summation of the Oracle instance 
efficiency percentage on all the memory components in the System Global Area (SGA), P 
is the summed value of the shared pool statistics of memory usage for the SQL execution, T 
is the summed value of the top 5 wait event statistics that occurred, Q is the summed value 
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of the top expensive SQL’s execution statistics and D is the summed value of the disk IO 
statistics of the tablespaces. W is the weight that emphasizes the importance of the 
individual statistics group. E0, P0, T0, Q0, and D0 refers to the initializing values which are 
used as the baseline reference. 

We also introduce another scaling factor against the statistics group to mitigate the basis 
of excessive value increment versus diminishing performance returns. For example, a 
choice is needed to be made between +60% increase in memory to get 20% DB 
performance returns and +20% increase for 12% return. Therefore, the scaling factor is 
presented as followed,   

 Scaling factor, di = 
௦೔శభି௦೔
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where s is the state, i is the iteration of the environment instances, m is the number of 
parameters that will be modified, p is the parameter of change. So, the new value for st+1 

will be st+1 * di 

Action for the Environment - Table 2 lists the top important initialization parameters that 
have a major impact on DB performance [23]. In this paper, we propose to use them to 
form the actions of change that the presented RL agent will employ against the database 
environment. The action for the environment is a compound configuration set of DB’s 
initialization parameters as shown in Table 5. For action, Ai = {p1i, p2i, p3i, p4i, p5i, p6i, p7i, 
p8i, p9i, p10i } where p1..10 are the parameters and i is the iteration in the learning loop. 
Each parameter has its own unique value, limit, and literals that cannot be inter-exchanged. 
An extra routine of parameters generation must be created to ensure that each one of them 
not only has to abide within the value limits but also ensures that it has sufficient interval 
block ranges to avoid unnecessary iterations within the training loop. It is not feasible to 
test all permutation and combination of the parameters due to exponential computation 
efforts involved. To reduce the range of testing, we use a series of parameters values 
combination as a single set of action instead adjusting the parameter value one by one 
individually . 

4. Empirical Analysis 

The purpose of experiments is to determine the effectiveness of ADPT for tuning the DB 
for optimum performance. The experiment starts by capturing workloads from a DB that 
supports transactional processing for a period of several hours during office hours. The files 
are then transferred to the test environment which is in turn processed and primed for 
replay. As for the test DB, it was cloned from the source DB and configured with the exact 
configuration like memory setting, tablespaces block allocation, and other parameters. The 
source DB has 2 schemas and there are over 50+ objects such as tables, views, and 
procedures which reside in two tablespaces. It has a peak of 18 users during peak hours, all 
of which use dedicated connections. The volume of transaction is estimated to be around 
10GB+ per week. As modern DBs are complex in design with hundreds of parameters and 
a wide range of features plus option, we must narrow the scope of test down to a 
manageable size; the 380+ initialization parameters of a typical Oracle 12c DB has been 
scaled to the top ten most influential ones as shown in table 2 [23]. In the test environment, 
ADPT goes through the tuning process, iterating through and writing the results of each 



iteration out to the display and log files. By the end of the experiment, we expect the RL 
agent to find new parameters’ values that can improve the DB efficiency and balance other 
performance statistics.  

The main difference between the proposed test setting versus existing works [5, 6, 16, 
24-26] is that (1) ADPT derives the results from the AWR outputs which contain detailed 
information on the performance statistics, and (2) ADPT uses a production workload to 
replay against the target database which keeps the test environment very close to the 
production. Whereas the common practice in existing works [5, 6, 16, 24-26] is to use a set 
of SQL samples to simulate the DB load which does not reflect the types of SQL executed 
in the production environment. They used readings from the database’s dynamic views such 
as library or buffer hit ratio which may not have the capacity to capture the statistics for the 
entire test duration. Other statistics from the CPU, IO or memory utilization from the OS 
are also commonly used. ADPT finds the best combination of parameter values that suit the 
source DB. We do not stress the DB setup to the limit which is not practical.  

The experiment runs on a Linux virtual machine which runs the production standard 
Oracle DB with 2 CPUs each with 2 cores, has 12Gb of RAM and 500GB of storage with 
100GB that is managed by Oracle’s ASM. The Oracle version used is 12cR2 enterprise 
edition. As for the RL agent’s predicting model, ADPT uses a neural network that 
comprised of 3 hidden layers of 100 nodes. It is trained with data in 50 batches and 100 
epochs. Different configurations and combinations of neural networks have been tested, 
but, this setup was selected based on the better results with the least fluctuations.  

 
3.5. ADPT performance & results 

This section details the outcome of the tuned DB. Figures 5 to 11 showed the results of the 
DB’s performance statistics between two types of tunings made against the same DB and 
the workload. For one DB tuning,  the big table in-memory caching initialization  parameter 
is turned on that allows the DB to  make more use of onboard memory to cache all of its 
tables. Without this parameter, the DB operates on the basis of caching only those rows of 
data that have been most recently used. The graphs values in Figures 5 to 8, 10 have been 
normalized to bring all variables in a common range. Figure 5 shows that the overall 
efficiency improvement in the Oracle instance efficiency ratio, timed event statistics and 
disk IO statistics. The shared pool and SQL statistics showed incurring extra loads in their 
performance as compared to before. There is high probability that the contest of buffer 
cache for both in-memory and big table caching demand more from the overall instance’s 
memory pool. But, as shown by the improvement in the overall instance efficiency, the 
overall results were improved.  

Figures 5 to 11 showed that the three phases of the RL learning process start with the 
number of iterations below 40 as the exploration phase and followed by the iteration of 90+ 
onwards as expert learning. Those that are in between is regarded as the learning-predicting 
phase where the RL agent learns to adjust its prediction. Figure 6 showed the difference 
between the actual versus the predicted rewards between 30th and 90th iteration band. For 
the Oracle instance efficiency ratio, shared pool statistics, timed event statistics and SQL 
statistics in Figures 7, 8, 9 and 10 respectively, a strong fluctuation is shown in the 
parameters’ values assigned by the RL agent. The degree of change was evident in the 
middle phase until the final state, where the RL has to rely primarily on its knowledge for 
assigning the actions to the state. Disk IO statistics in Figure 11 takes a more volatile 



fluctuation especially for the DB that is tuned without the big table caching.  However, the 
DB’s disk IO statistics were reduced to the lowest readings toward the final.  

Figures 12 and 13 showed the trends in the changes of the ten parameters throughout the 
tuning iterations for the DB’s when the big table caching was turned on and off. The 
balancing process toward the latter state of the middle phase is leading toward a lower set 
of values that the RL agent has regarded to be the best. The final values were decided by 
the agent at the last phase.  

Figure 5- DB Performance difference (with  
and without Automatic Big table Caching). 

 
Figure 6 – Tuning runs’ reward prediction 
deviations 

 
Figure 7 – Instance efficiency ratio trend 

 
Figure 8 – Shared pool statistics 

 
Figure 9 – Timed event statistics 

 
Figure 10 – SQL statistics 

 
Figure 11- Disk IO statistics 

 
Figure 12- Parameters values trend for DB  
without big table caching setting 

Figure 13 - Parameters values trend for DB  
with big table caching setting 

3.6. ADPT’s comparative performance on OLTP, DSS and Hybrid DBs 

Another set of tests were conducted to validate the ADPT efficacy in tuning DBs with 
different types of usage like DSS which has more select queries and experience more IO or, 
Hybrid DB which has a combination of OLTP and DSS operation. The experiments are 
repeated by capturing workloads from the DBs of three other IT systems each with a 
different workload. Figure 14 showed the DBs’ performance in accordance with the 
captured statistics before and after they have been tuned with the ADPT. OLTP DB#1 and 
#2 serve the different applications and both have their unique set of user-base, schemas and 
transaction operations. DB#1 has a higher workload with more inserts transactions and 
DB#2 has a mixed of insert-updates. Improvement in performance of OLTP DB#2 is 
significant when the ADPT tuned the parameters in accordance to suit the current operation 
of OLTP particularly in the reduction of IO stats. The hits on shard pool stats metric has 
improved with an optimum sized SGA, which attributes to higher SQL stats and gives 
overall DB’s efficiency.  
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Same results can be seen in the DB’s results with the DSS load. Overall DB’s efficiency 
has seen improvement with an increase in memory hit, reduction in IO while working 
increasing the cost of the SQL execution. The DB with the mixed workload has 
experienced lesser improvement as compared to the others. Mainly parameters set for 
OLTP are usually not optimum for DSS and vice versa. This resulted in a compromise in 
the operation improvement when ADPT tried to bring a common configuration setting to 
meet the hybrid operation. It is then settled for less optimal.   

 
Figure 14– ADPT test against DBs with OLTP DB#1, OLTP DB#2, DSS and mixed workloads 
 
Table 6– benchmarking RL tuning with other methods 
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3.7. Discussion  

One observation made during experiments was that the state produced by the DB 
environment may not generate a consistent reaction to the actions as there are numerous 
other Oracle’s background processes running which may impact on the final score. The 
current way to mitigate this is to run the learning process with a large number of iterations 
so that the variation of states’ value will be reduced to a point where the magnitude is small 
and acceptable. Another observation, on the future reward and action predicted from the Q-
learning’s NN model, is that the reward has a higher error rate as compared to the realistic 
environment state’s rewards. The MSE function is managed by another routine that verifies 
the real reward that the predicted action will produce, then add them back incrementally 
into the knowledge-base to enrich it. As more information about the actual state versus the 
action of the DB including the actual reward is made available to the NN model, the better 
the prediction it will make. The final Q-table contains a list of states, actions and Q-value. 
There will be several states that are either similar or nearly identical, and each of them has 
their own actions. The associated Q-value will be the referencing point in which the agent 
will choose the optimum Q-value and the associated actions for that state of interest. The 
actions used here is a compound set of values combined with pre-selected parameters as 
listed in Table 5 for our experiments which have the most significant impact on the DB. 
There is no granularity or how each parameter will impact on the DB’s state.  

Existing methods require the effort of collecting large workloads under different 
configurations setting before they engage their tuning process [8]. Whereas ADPT operates 
on the assumption that there is no prior knowledge or datasets to learn from. It must learn 
from scratch by interacting with the DB adaptively of what works and what not. The goal is 
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not to do testing for extreme high one-dimensional load variation, but multi-dimensional 
that include changes in application structure too. The space of complexities in DB tuning is 
high; there are over 380+ major and minor parameters in a DB, over 500+ readings that are 
related to a DB’s performance statistics plus DB’s usage that has additional features. It 
becomes impossible to factor all these in academic experiments. Therefore, we narrow 
down the problem’s scale to a manageable size. 

From a common DBA’s perspective, the transactional output and latency are a one-
dimensional measure of DB and SQL performance. We need to cater for a wider variety of 
DB usage instead of confining the measurement to just pure transactional which are always 
in demand in OLTP systems. How can one tune a DB that has a combination of order 
processing, geospatial, reporting and ETL combined? Modern DB’s landscapes are 
complex and ADPT proves to be effective in finding a matching set of parameters that is 
topical to a real system and not some simulated fictitious load. Table 6 gives a qualitative 
evaluation of the ADPT with other methods. As shown by experiments, ADPT can help the 
organization to optimize its DBs. 

4. Conclusion 

We present a novel machine learning-based approach, ADPT, using RL to optimize DB 
performance under a changing workload throughout the period. ADPT safeguards the 
stability and privacy of the DB by conducting the regressive tuning process onto a test 
environment that has duplicate setup with production workload activities replayed there. 
The RL agent learns what works and what does not on the parameters versus the outcome 
of the DB’s statistics after workload replay in an iterative way. The reward is calculated 
from the difference between the DB’s statistics before and after the parameter changes. 
Upon the completion of the performance tuning process, each state instances have multiple 
different actions and rewards associated with it. The RL agent uses the neural network 
model which learns to predict the rewards-actions. It recognizes the error gap between its 
predictions versus the actual rewards from the environment and it recalibrates through error 
correction. It then adds these instances to the training dataset cumulatively, thereby re-train 
and improves on its overall prediction accuracy. The empirical analysis was conducted 
using ADPT to learn and adapt to the workload replayed from the production DB’s image. 
The results showed improvement in the performance results in the five DB statistics group 
areas while reducing unnecessary excessive value increases on the initialization parameters.  

This paper uses the top significant initialization parameters to develop the prototype. 
There are over 650+ parameters initialization parameters that have other minor influences 
on the DB’s performance, but they should be included in the future works. Another area to 
incorporate is the SQL tuning part which has a large impact on the DB’s throughput, 
especially on the IO part. There are many other types of relational databases and each has 
its own unique set of configuration and administration. The work to adapt ADPT into 
another DB platform will require some effort to learn and understand their mode of 
operation first.  Any IT systems’ requirement changes throughout its lifespan and having an 
adaptive and intelligent tuning system to optimize them is the best approach to gain the best 
return of investment and performance from it. 
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