
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Wee, Chee & Nayak, Richi
(2019)
Adaptive database’s performance tuning based on reinforcement learning.
In Ohara, Kouzou & Bai, Quan (Eds.) Knowledge Management and Ac-
quisition for Intelligent Systems: 16th Pacific Rim Knowledge Acquisition
Workshop, PKAW 2019, Proceedings (Lecture Notes in Computer Sci-
ence, Volume 11669).
Springer, Switzerland, pp. 97-114.

This file was downloaded from: https://eprints.qut.edu.au/132510/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1007/978-3-030-30639-7_9

https://eprints.qut.edu.au/view/person/Wee,_Chee.html
https://eprints.qut.edu.au/view/person/Nayak,_Richi.html
https://eprints.qut.edu.au/132510/
https://doi.org/10.1007/978-3-030-30639-7_9

Adaptive Database’s Performance Tuning based on
Reinforcement learning

Chee Keong Wee1, Richi Nayak2
12Science and Engineering Faculty, Queensland University of Technology,

Brisbane, Queensland 4001, Australia

Abstract - Database (DB) performance tuning is a difficult task that requires a vast
amount of skill, experience and efforts in tweaking a DB for optimum results. With
the hundreds of parameters to be considered under the diverse application
configurations, business logic and software technology, getting a true global
optimum setting is difficult for a DB adminstrator. We propose a novel approach
based on Reinforcement Learning to tune a DB adaptively with minimum risk to the
production setup. It results in a new set of parameters tailored to the production DB.
Empirical results show that there is a significant gain in performance for the DB in
its overall efficiency while reducing the IO overheads, based on a set of key
performance statistics collected before and after the optimization process.

1. Introduction

Database (DB) tuning is complex and tedious where an alteration to its configuration can
have a big impact on its performance, especially for a large-scale database. The tuning task
is undertaken by a DB administrator (DBA) that has the skills, experience, and knowledge
on database tuning [1]. A DBA tunes the DB parameters in accordance with the operation
that is posed by depending applications to get the right balance. Getting the balance
between control and performance is difficult and it requires numerous iterations of trials
before it can be balanced. However, it is very time-consuming to perform this through
trials and errors. Moreover, it is risk sensitive if the underlying database supports a
mission-critical system as the system cannot tolerate any downtime nor degradation in its
performance and functionality.

We propose a novel approach of DB performance tuning based on Reinforcement
Learning (RL), named as Adaptive DB Performance Tuning (ADPT). The conjecture is that
ADPT will follow the process what a sentient being will do in performing tasks in the real
world. We propose a customized process that presents a workload duplication process
between production and test environment to mitigate the risk in the tuning process. Several
Oracle’s features are used in ADPT, primarily to simulate actual production workload in the
test environment. The guiding principle of RL is to learn what actions work and what’s not
for the underlying DB environment, then build up the agent experience until it can work
positively with the environment with minimum penalty or faults. The length of training is
dependent on the duration of the DB workload replay and the number of iterations required
[2]. In our experiments with the 374MB size of replay, the RL agent managed to achieve an
expert level in the test environment within 2 days. The experimental results show that
ADPT can improve the DB’s IO performance by a factor of 25%.

This RL-based tuning can be regarded as self-learning and correcting while performing
the tuning process which sets ADPT apart from prior methods [3]. One major distinction
from existing works [4-9] is that the tuning is adaptive and able to incorporate higher
realism into the processes instead of relying on artificially simulated loads from the load
test tools.

2. Related Works

Database tuning is considered as a challenging task for a DBA [10]. The DB vendors
support the customers with training, knowledge, and software [11] that can assist the DBAs
in monitoring and identify bottlenecks in the DB. But these tools require manual
interventions to extract and initiate the diagnostic process [12]. The recommendations
provided by these tools are up to the DBA’s discretion including the risk involved in
implementing them on the production systems.

In recent times, there has been a surge in the interest of automating the database tuning
process with a variety of methods that are statistical, heuristic, rule-based or machine
learning based [4-9]. A common statistical tuning method is to use cost-benefit analysis
[13] to locate cost savings for DB’s components using estimates from the correlation of the
accumulated processing time to the parameters’ values. However, the results are reported
not to be optimum as the parameters alteration is dependent on the window period setting;
the size of the window’s time has an impact on the possibility of excessively tuned
parameters [13]. A genetic algorithm was used as part of the DB performance predicting
model’s configuration search strategy in conjunction with a neural network to find the
optimum setting for a system that runs on a NoSQL database [7]. The concept is to build a
subset of the data derived from the main system and the tuning system will loop through the
configuration search, invoking performance prediction checks in a hill climbing approach to
find the best parameter settings.

A series of machine learning algorithms were used to tune an MYSQL database that
supports a complex protein synthesizing system [8]. Starting with the use of clustering, it
finds the most significant parameters against the captured data from different workloads
that have been executed with different settings. Next, the lasso regression is used to identify
the important parameters, or knobs, based on their changes against the variation
encountered in the DB’s statistics. They are then passed to the next tuning process. Several
iterations of the DB workloads are acquired to calculate each knob measurement, followed
by the application of Gaussian regression to locate the best configuration. This entire
process is repeated until an optimal DB performance outcome is achieved.

We summarised a list of DB tuning methods that span from the manual techniques to
artificial intelligence approach in Table 1. Delphi technique [14] is used to gather the
information from a group of DBAs that are currently working for a power utility company.
These methods are ranked in term of their complexity, capability, scalability and time
requirement based on their collective feedback. Each one of them come with their own
strength and weakness, starting with the manual methods that are the most tedious to use, to
the most effective methods that use machine learning and DB supplied tools.

Existing works display the following shortcoming; (1) Existing methods assume a
consistent, stable and well-defined DB in operation that doesn’t vary in workload
behaviour. They rely on this DB to collect statistics and data to support their models’

training dataset, but they ignore the level of uncertainties. (2) Existing methods focus on
achieving the optimum parameters settings for a consistent and stable DB that operated
under the simulated workload which is not a clear reflection of the real-world DB scenario.
(3) Majority of these works handle DBs with Online Transaction Processing (OLTP)
operation and do not emphasize on another form of data operations such as Online
Analytical Processing (OLAP) or Decision Support System (DSS). (4) These works operate
against a small set of workloads and cover a small subset of the vast number of DB
initialization parameters. The optimum parameters may not yield the same result when it is
applied in the production environment due to different workload and operations. (5) Some
methods depend on hand-crafted fuzzy rules or machine generated guidelines which are
inflexible and narrowly scoped, that constraint them to adapt with the constant changing
conditions that will occur in real-world DBs.

Table 1 - database’s performance tuning techniques (low 1 to high 10)

Method Complexity Effort Remark
Manual [15] 9 9 Require in-depth knowledge and skill. Passive, very time consuming, error-prone and may

not get optimum result. Most economical of all. Not scalable.
DB tuning tool[15] 4 3 Require average/good DBA knowledge and skill, less error-prone and faster than manual.

Passive and require DBA to operate. Tools may be costly. Limited scalability.
Rule-Based [15] 7 6 Passive to semi-proactive. Only as good as its knowledge rule-based. Built into monitoring

tool. Scalability is low.
Heuristic fuzzy
based [6, 16]

8 8 Semi-active. Need a lot of prior statistics data. May not achieve the global optimum.
May need a reset if schema changes. Use benchmark workloads. Scalability is low.

Statistical-based[5] 5 7 Semi-active. Need a lot of prior statistics data. May not achieve the global optimum. May
need a reset if schema changes. Scalability is medium.

Other ML
models[7, 8]

4 6 Semi-active. Need a lot of prior statistics data. May not achieve global optimum, adaptive to
schema changes. Scalability is medium.

The best way to tune a mission-critical DB is to learn and adapt the changes in its

parameters that are suited for the real production workload. We propose the ADPT method
to perform adaptive database tuning focusing on the IO that is based on deep reinforcement
learning on a sandpit setup that we can replicate and replay the production workload on it.
To our knowledge, ADPT is one of the first method using RL in DB tuning.

3. Adaptive DB Performance Tuning (ADPT)

Since the major DB performance relies strongly on the underlying IO throughput, ADPT
focuses predominantly on DB’s IO tuning. As shown in Figure 1, the main component is
the reinforcement learning (RL) agent that interacts directly with the test DB setup. It
iterates through a series of activities that can be described as phases of learning and tuning
in its course of DB optimization. The RL agent starts off as a “young model” with no
knowledge and learns through a series of trial-and-error. As it gets more experienced in
interacting with the test DB on parameter settings versus performance achieved, it will start
to predict the outcome and choose the best outcome. However, being a “young apprentice”,
the RL agent has much to learn so its prediction will not be accurate and needs correction.
Towards the end of the tuning iteration, it will achieve the “adult” experience of the system
and will be able to know precisely what action it should take for certain states in order to
achieve optimum results.

3.1. Process of ADPT

The process of ADPT starts by setting the length of a workload period that should be used.
This period should represent the time when meaningful activities are present in the DB that
can form a substitute model for the test environment. A backup is taken via Recovery
Manager (RMAN) and is used to clone the test DB. When the DB-Replay has captured
enough workload, its files are transferred to the test environment. DB Flashback is enabled
on the test DB so that it can revert the DB back to the original state once the workload is
replayed. This keeps the test DB in its pristine state before any changes were made.
 The copied workload files are pre-processed to set them ready for replay. The first DB-
Replay’s run sets the baselines. Both the AWR statistics and parameters are obtained and
used for later reference. Scoring of the DB is done by a process that summarizes the eight
major fields as shown in Table 3 in the DB’s statistics report to produce a final score. These
fields have been identified as the key anchors that determine each aspect of the DB’s
individual subsystem performances such as memory, IO, SQL and overall efficiency [15].
In the next iteration, new parameters’ values are applied to the DB and the workload is
replayed. It is followed by scoring and the results are recorded by the RL agent in its
knowledge-base. The process is repeated until the output of the DB’s score has reached an
optimum value or the iteration count set at the beginning has been reached.
 This process is outlined in algorithm 1 and figure 1.

Figure 1 – Adaptive DB Tuning model overview

Figure 2 – Different phases of RL agent learning

3.2. Database’s Tools

Oracle database is selected to support the implementation of the method. The following
describes the various Oracle’s features that have been used in ADPT;
Flashback DB: This feature enables the DB to be restored back to a point in time by rolling
back all the changes that have occurred since then [17].
Automatic Workload Repository (AWR): AWR is commonly used to report on the DB’s
performance statistics which covers wait events, time model statistics, active session, object
user and expensive SQL statements. The outputs that AWR produces identify the
bottleneck, waits, and other performance issues that are associated with them. We use a
subset of the results that have been aggregated from different groups of statistics as listed in
Table 2 [18].
DB Replay: This is one of the components of Oracle’s Real Application Testing suite [2]. It
captures the workloads from a source DB and then replays it on a target DB. [18].

 Replay workload in
Test DB

Apply parameter
changes to DB

Obtain Test DB
Perform statistics

RL agent does trial-
and-error on action on
state to find reward

Capture workload
from Prod DB

RL
Agent

use NN prediction to
find best reward &
actions for states

Use knowledge to
supply best action to
states

High
Learning rate

Test DB

Medium
Learning rate

Low
Learning rate

Routine A

Zero - Very low
= no knowledge

Choose to
appropriate state

Determine learning rate

Medium – high
= some knowledge

Very high
= expert knowledge

Q table (state, action,
reward, new state)

knowledge

Routine B

Routine B(without
init reset)

Routine C
(prediction model)

Automatic Big table Caching: This feature enables Oracle to reserve part of the buffer
cache to cache data for table scans by using temperature and object-based Algorithm to
track medium to large tables. It is to allow queries to be made against memory which is
much faster [19].
In-Memory Column Store: This feature enables the DB to allows the user to store tables
and other objects in a columnar-format instead of the common row format [19].

3.3. Subroutines for the RL agent

There are activities that need to be executed sequentially between the DB and the RL
agent. For the test environment preparation, we duplicate the production workload onto the
test DB by using DB-Replay to capture the workload in the production system during the
busy period for a certain duration. A suitable period is chosen for the scale of the
anticipating tuning process. The DB-Replay’s captured files are copied over to the test
environment. The test DB is cloned from the production DB’s backup using the recovery
tool called RMAN [20]. The DB is configured for the flashback, followed by setting the
baseline initialization parameter. The next step is to capture the DB’s performance
statistics with the first replayed workload, as a baseline. Only the dynamic parameters are
considered in this tuning process scope.

Algorithm 1: Main DB optimizing Algorithm Algorithm 2 - Routine A
Input: The state of DB from the AWR report and computed rewards
Output: The action of new parameters’ value for the database
Initialization1: set value for learning, reward preference and exploration rate, for
exploration, learning, and exploitation, decay_rate
Initialization2: initialize memory, Q-table collection and respective counters

Get a baseline of DB from routine A
Acquire the state from the AWR report
Set the learning rate to zero, med_learning to 30%, high_learning to 90%
Loop the iteration process
 Check the learning rate.
 If learning <= med_learning, do the exploration phase
 /* exploration phase */
 Generate random initialization configuration.
 Run Routines A and B
 /*reset DB environment. Run Action against Environment and get a new
 state. find the score as a reward. Store knowledge of
 state, action, reward, and new_state to knowledgebase */
 If learning is > med_learning and < high_learning, then do
 /* learning phase */
 Run Routine C
 /* reset the DB by flashback and flush memory.
 Predict new action for state and potential reward.
 Apply Action to Environment and get new state plus reward.
 Correct the reward and store information into knowledgebase */
 If learning > high_learning,
 /*refer to the knowledgebase for action to state. */
 If exploration_rate < exploration_limit then
 Exploits the knowledgebase to find optimum action for given state that
 Gives best rewards
 Else
 Go to exploration phase – Routine A
learning rate +=1
exploration rate= exploration_rate *=decay_rate

Input: baseline init file, captured replay log files.
Output: statistics report for baseline, s0.
Initialization 1: create flashback restore point.
Initialization 2: reset init parameter, a flush memory, clear old
snapshots.

Create “before” snapshot.
Run DB Replay to play the workload.
Create “after” snapshot.
Run awrreport.sql for the statistics report as the baseline state, s0.
Flashback DB
Execute command to flush memory
Reset the DB’s init parameter
Drop and clear all snapshots.

There are three DB-based routines that will be performed throughout the different

learning phases in the tuning process, and they alter the DB’settings for the RL support.
Routine A sets the DB to baseline through flashback and parameter reset. It replays the
workload and acquires its stats score at baseline, s0. Routine B scores the DB statistics
difference between the previous state and the current one, s, after applying the parameters
change. The results are kept in the knowledgebase. Routine C predicts the scores based on

parameters change and state, followed by self-correction. The results are added into the
knowledgebase. At the end of routine C, we conjecture that the prediction model in the RL
agent will achieve a high degree of accuracy, due to the acquisition of a large
knowledgebase including information on various states, actions, and rewards. When the
process reaches the high learning phase, the RL agent is assumed to achieve an expert level
where it can refer to this knowledgebase to find the best global actions. For a single state of
the test DB, the RL agent can traverse down the relationship of a sequence that leads from
one state to another. It will result in finding the optimum choice of an action that yields the
best rewards and the RL agent will use that action to apply to the test DB which eventually
will achieve the best-performing state.

The routines A, B, and C are described in Algorithms 2, 3 and 4, respectively.

Algorithm 3 – Routine B Algorithm 4 – Routine C
Input: Captured replay log files, baseline statistics reports
Output: statistics report new state, s’, reward, r’, update knowledgebase
Initialization 1: randomize configuration file. Flush memory, flashback DB,
reset init.

Perform Routine A.
Create “before” snapshot.
Select one of the parameters’ set values from the config file.
Apply the action with parameter set.
Run DB Replay to play the workload.
Create “after” snapshot.
Run awrreport.sql for statistics report for the state, s’.
Consolidate and differentiate both old and new states, s and s’.
Score the changes.
Record the result into the knowledgebase.

Input: Captured replay log files, statistics reports,
 knowledgebase
Output: statistics report new state, s’, reward, r’,
 Update knowledgebase.
Initialization 1: randomize configuration file.
 Flush memory, flashback DB, reset init.
Initialization 2: NN predicting model.

Perform Routine A but without init reset.
Train NN and then use it to predict action and reward.
Create “before” snapshot.
Apply the action.
Run DB Replay to play the workload.
Create “after” snapshot.
Run awrreport.sql for statistics report for the state, s’.
Consolidate and differentiate both old and new states, s and s’.
Score the changes and correct the reward, r.
Record the result of the new state, old state, action,
 predicted reward, actual reward into the knowledgebase.

3.4. RL for DB tuning: Q Learning

For a typical RL model, the agent interacts with the environment and perceives the state of
the environment to take actions and receive rewards [21]. The goal is to choose actions to
maximize rewards. As seen in Figure 3, at time t, the agent observes the environment which
gives the state, st, and the agent executes an action, at, and receives a reward, rt. from the
environment. The environment then changes and reaches a new state, st+1.. This cycle
repeats until the goal is achieved. The optimal behaviour π is based on past actions and the
agent tries to maximize the expected cumulative rewards over time [21]. In this method, the
environment refers to the DB, a state refers to the DB’s performance in response to the
workload replayed after experiencing the DB parameters’ values, and an action refers to the
process of changing the DB’s initialization parameters.

As the test DB environment has a big combination of parameters versus workloads,
there is no true model that the agent can rely on. Therefore, it relies on trial-and-error to
find the action. For the proposed self-tuning approach, the agent learns by interacting with
the DB. Action, at, will be performed by applying the parameter change for an epoch t then
receive reward or penalty rt, that is derived by the scoring of the DB performance after the
workload is replayed and the AWR report is generated. The agent will be able to judge
whether the last change made is for the better or worse. However, it is not able to reason
about the long-term effects of the actions it takes. Delay to feedback is acceptable in this
case as there is no need for immediate response.

Table 2 – Selected Oracle’s initialization parameters
Parameters Description
Memory_target It enables automatic memory management (AMM) which

allocate memory dynamically as required by the DB for all
the main important memory parameters such as
DB_CACHE_SIZE, SHARED_ POOL_SIZE,
PGA_AGGREGATE _TARGET, LARGE_POOL_SIZE,
and JAVA_POOL_SIZE.

Optimizer_mode Set the optimization approach for the instance to the option
of FIRST_ROWS, FIRST_ROWS_n, or ALL_ROWS

Optimizer_index_
cost_adj

Set the relative costs of full scan versus index operations.
OLTP queries gain better performance with lower settings.

Optmizer_index_
caching

Set the amount of an index will reside in the data buffer
which also determines the cost of an index probe in a
nested loop join.

Db_file_multi_
block_read_count

Sets the value of blocks to read in a single IO which
determines the efficiency of a full table scan.

Log_buffer Set the buffers for the uncommitted transaction in memory.
It affects DB performance when there are high updates but
less on queries.

Db_keep_cache_
size

Set the size of the KEEP buffer pool which retains data in
the memory so that the queries read from memory and less
from disk.

Db_recycle_
cache_size

Set the size of the RECYCLE buffer pool and keep data in
the memory for a longer period instead of ageing out.

Db_big_table_cache
_percent_target

Set the percentage of the buffer cache for automatic big
table caching. This is only activated from a DB restart.

Inmemory_size Set the size of the in-memory column store to keep tables
that use this feature.

Table 3 - Performance statistics report from AWR.
Statistics Description
Cache sizes Information on the system global area (SGA).
Load profile Information about the data workload for the

selected period between the snapshots.
Instance
efficiency
percentage

Information about the memory usage ratio for the
buffer, library, sorting, redo, latch and parsing.

Shared pool
statistics

information on the system’s memory usage for
shared pool and SQL execution

Top ten
foreground event

information on the top wait events that cover
details such as DB CPU, amount of IO used by
SQL, type of reading (sequential or parallel), log
synchronization.

Top SQL
ordered by
Elapsed Time

information on those SQL queries that took a long
time to run

Top SQL
ordered by CPU
time

Information on those expensive SQL queries that
consume the most CPU time.

IO statistics information on the tablespaces’ IO activities

 Figure 3 – RL agent’s processes

The agent’s objective is to learn about its current situation and try to maximize the
chance to score more rewards through trial-and-error by the exploration of other actions as
well as exploitations. This ensures that all variation of parameters-changing actions and the
rewards that they will get from the environments’ state . Once the optimum actions have
been identified, the agent will exploit them. It also finds a balance by choosing between the
exploring and exploiting actions using a ε-greedy action selection algorithm with a random
number between 0 and 1 [21].

In this paper, we propose to use Q-learning, a model-free learning algorithm [21], that
explores the environment and exploits the current knowledge simultaneously via trial-and-
error to find both good and bad actions. At each step, it looks forward to the next state and
observes the best possible reward for all available actions in that state. It uses the
knowledge to update the action-value of the corresponding action in the current state with
the learning rate α (0 ≤ α ≤1). The Q(s,a) value becomes a combination of immediate
reward and discounted future reward. It is expressed [21] as:

 Q(s, a)← Q(s, a) +α{r+ γ maxa' Q(s', a')-Q(s, a)} (1)

Where α is the learning rate, γ is the discount factor, r is the reward, s is the state of the DB
performance result, a is the action on the parameter changes, a’ is the new action, s’ is the
new state. Maxa’ Q(s’,a’) is the expected optimal value, Q(s,a) is the old value. Eq (1)
begins using random conditions at the start and iterates to converge to the optimum
function, Q*(s,a). The entire process is iterative and is driven by the optimal policy as in Eq
(2):

 Π*=argmaxaQ*(s,a) (2)

Environment

Agent

Action at
Reward rt

Reward rt+1
State st+1

State st

The Q-learning Algorithm starts with the initialization of Q table (Q(s,a)) to zero for all
state-action pairs (s, a). It will observe the state, s, of the DB at the beginning followed by
iterating actions until it converges. The agent will need to choose between exploration and
exploitation as some changes can achieve local maxima. We propose to use the ε greedy
algorithm [21] that randomly chooses the action whether to explore or to exploit. The ε
value can decrease over time when the agent becomes more confident with its estimate of
Q-values using a value of range 0.8-0.9. This is to minimize the agent’s chance of getting
skewed toward a single set of action for a given Q-value and persistently reusing the actions
for a given state. The state is ambiguous and can only relate to the performance statistics
produced by the AWR report.
Approximation of states and actions – Both the optimum value and optimal policy can be
used if the states and actions are small in numbers. However, a DB has many possible states
and actions which cannot simply be determine by Eqs (1) and (2). For example, if we
consider the state of DB’s statistics (as listed in Table 4), the combination can range up to
5n and the combination of the actions’ parameters (as listed in Table 5) can exceed 10m
where n and m are the possible combinations of permutation that can possibly exist. The
sheer number, of the parameter’s permutation and combination reaching into hundreds of
thousands, exhibits the typical problem of curse dimensionality. To mitigate this problem,
we use a neural network model [22] as illustrated in figure 3a, which uses inputs as states s
which are aggregated sums of DB statistics n, a scalar reward r as a target value, and the
possible m number of parameter values of actions, a, of that attribute to the final Q-value
derivation in Eq (3). sn refers to the state of the DB comprising of n statistics, am is the
action that applies parameter change of the m combinations and i is the iteration. Figure ;

Figure 3a - NN function approxmiation of states
vs rewars and actions

Predicted reward, r =f1(s1,..sn)t

Predicted action, a =f2(s1,..sn)t (3)

The data set used for NN training is from the knowledge-base that the RL agent builds
up at the start with its trial-and-error testing. To simplify our approach, we focus on the
current reward and equate reward to Q-value. The predicted reward from the NN versus
the actual reward will form the mean square error function for the NN for optimization in
Eq (4). Within the NN model, there are several predictions of the score and actions
required for the state. The maximum sets that give the best scores are selected, followed
by a discount from the previous score. The calibrate reward function uses the action,
apredict, and find the real reward, rpredict against the state, s.

 MSE = rpredict – calibrate_reward (s’, apredict) (4)

In the proposed implementation, the Q-value is a normalized and calculated value of
reward r for an action between two states. Normalization is done in order to bring all AWR
statistics in the same range, as some measuremnets generate values in percentage and some
in millions. The NN training process, to produce the predicted optimum reward, continues
until the reward (or Q-value) meets the requirement of maxa Q(s’,a’). The predicted action
at each iteration in the medium learning phase is re-validated by the agent against the

state, s
(group

statistics, n) Action, a
(parameters
values, m)

Predicted
reward, r

environment to derive the real reward. The validated information of Q(s,a,r,s’), which
refers to the normalized Q value of the reward for the action applied to the existing state
and bring it to a new state, s’, is then added to the knowledge base for the next iteration of
NN training. Figure 4 shows the flow of the RL agent in finding the optimum route along
with the DB’s states and best actions that yield the optimum reward. The Q value is the
computed normalized value that takes into consideration the current and future rewards. ߛ is
set to 0.1 for consideration of future states-actions but the emphasis is still on the current
states.

Figure 4 – RL process of discovering optimum DB’s state-action-reward path

Scoring the environment’s state - The AWR report will generate and consolidate the
statistics which are used to calculate the overall score for the DB’s performance as shown
in Table 4;

Table 4 - DB’s consolidated main statistics
Statistics Description
Oracle
Instance
Efficiency

Contained the statistics on the memory components in the
SGA such as buffer, sort, library, and execution ratio.

Shared Pool
stats

contained the summary of the percentage of memory usage
of the shared pool for executing SQL.

Timed
Events stats

Showed the most significant waits contributing to the DB
Time. Waits such as DB or log file read/write, CPU time,
latch, sort.

SQL stats A summary of a list of top expensive SQL that occurred
and their values in term of elapsed time read and write. For
the intent of this score calculation, only the category of top
SQL that consumed the most CPU time will be considered.

Disk IO stats Listed the IO values for all the tablespaces in the DB.

Table 5- Actions’ configuration parameters spec
VarInitialization Parameters Range
p1 Memory_target (mt) 1000 ≤ MT ≤ 3000
p2 Optimizer_mode (om) {first_rows_N| first_rows|

all_rows}
p3 Log_buffer (lb) 100 ≤ lb ≤ 500
p4 Optimizer_index_cost_adj (oica) 0 ≤ oica ≤ 100
p5 Optimizer_index_caching (oic) 0 ≤ oic ≤ 100
p6 Db_file_multiblock_read_count (dfmrc) 4 ≤ dfmrc ≤ 128
p7 Db_keep_cache_size (dkcs) 0 ≤ dkcs ≤ 1000
p8 Db_recycle_cache_size (drcs) 0 ≤ drcs ≤ 1000
p9 Db_big_table_cache_percent_target (btcpt)0~40% of p1
p10 Inmemory_size (inms) 0~40% of p1

The value among the group statistics varies widely, some are in percentage,
milliseconds, counts, etc. We propose to normalize the accumulated statistics from the new
state st+1, after the parameter change in relation to the previous state st. A weight is
associated with the statistics’ ratio if further tuning is required to emphasize a difference
among them as shown in Eq (5). A score for the new state is calculated as follows,

 st+1 =
ଵ

௞௦
∑ ሺ	ா೔

ாబ
ாݓ ൅	

௉೔
௉బ
௉ݓ ൅

்೔

బ்
்ݓ ൅

ொ೔
ொబ
ொݓ ൅

஽೔
஽బ
஽ሻݓ

௞
௜ୀଵ (5)

where k is the number of statistics considered, i is the instance in the loop that the agent
uses to learn the optimum configuration, E is the summation of the Oracle instance
efficiency percentage on all the memory components in the System Global Area (SGA), P
is the summed value of the shared pool statistics of memory usage for the SQL execution, T
is the summed value of the top 5 wait event statistics that occurred, Q is the summed value

 ଴݁ݐܽݐݏ
(DB stats)

 ଴௠݊݋݅ݐܿܽ
(param change)

 ଴ଵ݊݋݅ݐܿܽ
(param change)

′ଵ௠݁ݐܽݐݏ
(DB stats)

ݐܽݐݏ ଵ݁ଵ
ᇱ

(DB stats)

 ଵ௠݀ݎܽݓ݁ݎ

݁ݐܽݐݏଵ௠

 ܤܦ
 ݕ݈ܽ݌ܴ݁

DB
 ݕ݈ܽ݌ܴ݁

…

ଵ௠݊݋݅ݐܿܽ
(param change)

ଶ௠݁ݐܽݐݏ
ᇱ

(DB stats)

ଶ௠݀ݎܽݓ݁ݎ

݁ݐܽݐݏଶ௠

ଵܳ	 ൌ maxሺ݀ݎܽݓ݁ݎଵ௠ሻ ∗ ݉ܽݔሺ݀ݎܽݓ݁ݎଶ௠) ܳଶ ൌ maxሺ݀ݎܽݓ݁ݎଶ௠ሻ ∗ ݉ܽݔሺ݀ݎܽݓ݁ݎଷ௠)

ଵଵ݊݋݅ݐܿܽ
(param change)

ଶଵ݁ݐܽݐݏ
ᇱ

(DB stats)

ଵ௠݊݋݅ݐܿܽ
(param change)

ଶ௠݁ݐܽݐݏ
ᇱ

(DB stats)
݁ݐܽݐݏଶଵ

ଵଵ݊݋݅ݐܿܽ
(param change)

ଶଵ݁ݐܽݐݏ
ᇱ

(DB stats)
ܤܦ
ݕ݈ܽ݌ܴ݁

…

…

…

…

…

select	path	of	action	that	gives	best	reward

ܤܦ
ݕ݈ܽ݌ܴ݁

ܤܦ
ݕ݈ܽ݌ܴ݁

ܤܦ
ݕ݈ܽ݌ܴ݁

of the top expensive SQL’s execution statistics and D is the summed value of the disk IO
statistics of the tablespaces. W is the weight that emphasizes the importance of the
individual statistics group. E0, P0, T0, Q0, and D0 refers to the initializing values which are
used as the baseline reference.

We also introduce another scaling factor against the statistics group to mitigate the basis
of excessive value increment versus diminishing performance returns. For example, a
choice is needed to be made between +60% increase in memory to get 20% DB
performance returns and +20% increase for 12% return. Therefore, the scaling factor is
presented as followed,

 Scaling factor, di =
௦೔శభି௦೔

௦೔
/ሺ

ଵ

௡
∑ ሺ	

௣೔శభି௣೔ሻ

௣೔
ሻ௠

௜ୀଵ) (6)

where s is the state, i is the iteration of the environment instances, m is the number of
parameters that will be modified, p is the parameter of change. So, the new value for st+1

will be st+1 * di

Action for the Environment - Table 2 lists the top important initialization parameters that
have a major impact on DB performance [23]. In this paper, we propose to use them to
form the actions of change that the presented RL agent will employ against the database
environment. The action for the environment is a compound configuration set of DB’s
initialization parameters as shown in Table 5. For action, Ai = {p1i, p2i, p3i, p4i, p5i, p6i, p7i,
p8i, p9i, p10i } where p1..10 are the parameters and i is the iteration in the learning loop.
Each parameter has its own unique value, limit, and literals that cannot be inter-exchanged.
An extra routine of parameters generation must be created to ensure that each one of them
not only has to abide within the value limits but also ensures that it has sufficient interval
block ranges to avoid unnecessary iterations within the training loop. It is not feasible to
test all permutation and combination of the parameters due to exponential computation
efforts involved. To reduce the range of testing, we use a series of parameters values
combination as a single set of action instead adjusting the parameter value one by one
individually .

4. Empirical Analysis

The purpose of experiments is to determine the effectiveness of ADPT for tuning the DB
for optimum performance. The experiment starts by capturing workloads from a DB that
supports transactional processing for a period of several hours during office hours. The files
are then transferred to the test environment which is in turn processed and primed for
replay. As for the test DB, it was cloned from the source DB and configured with the exact
configuration like memory setting, tablespaces block allocation, and other parameters. The
source DB has 2 schemas and there are over 50+ objects such as tables, views, and
procedures which reside in two tablespaces. It has a peak of 18 users during peak hours, all
of which use dedicated connections. The volume of transaction is estimated to be around
10GB+ per week. As modern DBs are complex in design with hundreds of parameters and
a wide range of features plus option, we must narrow the scope of test down to a
manageable size; the 380+ initialization parameters of a typical Oracle 12c DB has been
scaled to the top ten most influential ones as shown in table 2 [23]. In the test environment,
ADPT goes through the tuning process, iterating through and writing the results of each

iteration out to the display and log files. By the end of the experiment, we expect the RL
agent to find new parameters’ values that can improve the DB efficiency and balance other
performance statistics.

The main difference between the proposed test setting versus existing works [5, 6, 16,
24-26] is that (1) ADPT derives the results from the AWR outputs which contain detailed
information on the performance statistics, and (2) ADPT uses a production workload to
replay against the target database which keeps the test environment very close to the
production. Whereas the common practice in existing works [5, 6, 16, 24-26] is to use a set
of SQL samples to simulate the DB load which does not reflect the types of SQL executed
in the production environment. They used readings from the database’s dynamic views such
as library or buffer hit ratio which may not have the capacity to capture the statistics for the
entire test duration. Other statistics from the CPU, IO or memory utilization from the OS
are also commonly used. ADPT finds the best combination of parameter values that suit the
source DB. We do not stress the DB setup to the limit which is not practical.

The experiment runs on a Linux virtual machine which runs the production standard
Oracle DB with 2 CPUs each with 2 cores, has 12Gb of RAM and 500GB of storage with
100GB that is managed by Oracle’s ASM. The Oracle version used is 12cR2 enterprise
edition. As for the RL agent’s predicting model, ADPT uses a neural network that
comprised of 3 hidden layers of 100 nodes. It is trained with data in 50 batches and 100
epochs. Different configurations and combinations of neural networks have been tested,
but, this setup was selected based on the better results with the least fluctuations.

3.5. ADPT performance & results

This section details the outcome of the tuned DB. Figures 5 to 11 showed the results of the
DB’s performance statistics between two types of tunings made against the same DB and
the workload. For one DB tuning, the big table in-memory caching initialization parameter
is turned on that allows the DB to make more use of onboard memory to cache all of its
tables. Without this parameter, the DB operates on the basis of caching only those rows of
data that have been most recently used. The graphs values in Figures 5 to 8, 10 have been
normalized to bring all variables in a common range. Figure 5 shows that the overall
efficiency improvement in the Oracle instance efficiency ratio, timed event statistics and
disk IO statistics. The shared pool and SQL statistics showed incurring extra loads in their
performance as compared to before. There is high probability that the contest of buffer
cache for both in-memory and big table caching demand more from the overall instance’s
memory pool. But, as shown by the improvement in the overall instance efficiency, the
overall results were improved.

Figures 5 to 11 showed that the three phases of the RL learning process start with the
number of iterations below 40 as the exploration phase and followed by the iteration of 90+
onwards as expert learning. Those that are in between is regarded as the learning-predicting
phase where the RL agent learns to adjust its prediction. Figure 6 showed the difference
between the actual versus the predicted rewards between 30th and 90th iteration band. For
the Oracle instance efficiency ratio, shared pool statistics, timed event statistics and SQL
statistics in Figures 7, 8, 9 and 10 respectively, a strong fluctuation is shown in the
parameters’ values assigned by the RL agent. The degree of change was evident in the
middle phase until the final state, where the RL has to rely primarily on its knowledge for
assigning the actions to the state. Disk IO statistics in Figure 11 takes a more volatile

fluctuation especially for the DB that is tuned without the big table caching. However, the
DB’s disk IO statistics were reduced to the lowest readings toward the final.

Figures 12 and 13 showed the trends in the changes of the ten parameters throughout the
tuning iterations for the DB’s when the big table caching was turned on and off. The
balancing process toward the latter state of the middle phase is leading toward a lower set
of values that the RL agent has regarded to be the best. The final values were decided by
the agent at the last phase.

Figure 5- DB Performance difference (with
and without Automatic Big table Caching).

Figure 6 – Tuning runs’ reward prediction
deviations

Figure 7 – Instance efficiency ratio trend

Figure 8 – Shared pool statistics

Figure 9 – Timed event statistics

Figure 10 – SQL statistics

Figure 11- Disk IO statistics

Figure 12- Parameters values trend for DB
without big table caching setting

Figure 13 - Parameters values trend for DB
with big table caching setting

3.6. ADPT’s comparative performance on OLTP, DSS and Hybrid DBs

Another set of tests were conducted to validate the ADPT efficacy in tuning DBs with
different types of usage like DSS which has more select queries and experience more IO or,
Hybrid DB which has a combination of OLTP and DSS operation. The experiments are
repeated by capturing workloads from the DBs of three other IT systems each with a
different workload. Figure 14 showed the DBs’ performance in accordance with the
captured statistics before and after they have been tuned with the ADPT. OLTP DB#1 and
#2 serve the different applications and both have their unique set of user-base, schemas and
transaction operations. DB#1 has a higher workload with more inserts transactions and
DB#2 has a mixed of insert-updates. Improvement in performance of OLTP DB#2 is
significant when the ADPT tuned the parameters in accordance to suit the current operation
of OLTP particularly in the reduction of IO stats. The hits on shard pool stats metric has
improved with an optimum sized SGA, which attributes to higher SQL stats and gives
overall DB’s efficiency.

0.0

0.5

1.0

Oracle
instance

efficiency

Shared Pool
statistics

Timed Event
statistics

SQL
statistics

Disk IO
statistics

Percent% DB Performance difference
Before w/ BT caching w/o BT caching

0.0

0.1

0.2

0.3

0.4

1 6
1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Norm
value

Iterations

Reward Predictions' deviations

70

80

90

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percent%

Iterations

Instance Efficiency Percentage
w/o bt cache w/ bt cache

60

75

90

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percent%

Iterations

Shared Pool statistics
w/o bt cache w/ bt cache

75

80

85

90

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percent%

Iterations

Timed event statistics
w/o bt cache w/ bt cache

0

20

40

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percent%

Iterations

SQL statistics
w/o bt cache w/ bt cache

150

200

250

300

350

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

IO reads
Millions

Iterations

Disk IO Statistics
w/o bt cache w/ bt cache

0.0

0.2

0.4

0.6

0.8

1.0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Norm
values

Iterations

Parameters values trend #1
MEMORY_TARGET

OPTIMIZER_INDEX_COST_ADJ

OPTMIZER_INDEX_CACHING

DB_FILE_MULTI_BLOCK_READ_COUNT

LOG_BUFFER

DB_KEEP_CACHE_ SIZE

DB_RECYCLE_ CACHE_SIZE

INMEMORY_SIZE

0.0

0.2

0.4

0.6

0.8

1.0

1 6 1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Norm
values

Iterations

Parameters values trend #2
MEMORY_TARGET

OPTIMIZER_INDEX_COST_ADJ

OPTMIZER_INDEX_CACHING

DB_FILE_MULTI_BLOCK_READ_COUNT

LOG_BUFFER

DB_KEEP_CACHE_ SIZE

DB_RECYCLE_ CACHE_SIZE

INMEMORY_SIZE

Same results can be seen in the DB’s results with the DSS load. Overall DB’s efficiency
has seen improvement with an increase in memory hit, reduction in IO while working
increasing the cost of the SQL execution. The DB with the mixed workload has
experienced lesser improvement as compared to the others. Mainly parameters set for
OLTP are usually not optimum for DSS and vice versa. This resulted in a compromise in
the operation improvement when ADPT tried to bring a common configuration setting to
meet the hybrid operation. It is then settled for less optimal.

Figure 14– ADPT test against DBs with OLTP DB#1, OLTP DB#2, DSS and mixed workloads

Table 6– benchmarking RL tuning with other methods

M
et

ho
d

C
om

p
le

x/

S
k

ill

ne
ed

ed

E
ff

or
t/

la

bo
u

r

T
he

 r
is

k
to

 P
ro

d
D

B

A
d

ap
ti

ve

to

ch
an

ge
s

T
u

n
in

g
C

ov
er

ag
e

A
ch

ie
ve

op

t
re

su
l t

D
u

pl
ic

at
e

to
 o

th
er

D

B
s

Manual tuning method[15] High Very high High No limited Low Very slow
Use DB tuning packages[15] High High- v high High No limited Med Slow
Performance tuning software[15] Med Med Med No Med High Med
Rule-based tuning[15] Low-Med low Med-high limited high Med-high Fast
Heuristic-based tuning[6, 16] Med-high Low- Med Med-high limited Med-high High Fast
NN based tuning(need large dataset) [7, 8] Med Low- Med Med-high limited High High Fast
RL tuning Low- Med Low- Med Very low yes High High Fast

3.7. Discussion

One observation made during experiments was that the state produced by the DB
environment may not generate a consistent reaction to the actions as there are numerous
other Oracle’s background processes running which may impact on the final score. The
current way to mitigate this is to run the learning process with a large number of iterations
so that the variation of states’ value will be reduced to a point where the magnitude is small
and acceptable. Another observation, on the future reward and action predicted from the Q-
learning’s NN model, is that the reward has a higher error rate as compared to the realistic
environment state’s rewards. The MSE function is managed by another routine that verifies
the real reward that the predicted action will produce, then add them back incrementally
into the knowledge-base to enrich it. As more information about the actual state versus the
action of the DB including the actual reward is made available to the NN model, the better
the prediction it will make. The final Q-table contains a list of states, actions and Q-value.
There will be several states that are either similar or nearly identical, and each of them has
their own actions. The associated Q-value will be the referencing point in which the agent
will choose the optimum Q-value and the associated actions for that state of interest. The
actions used here is a compound set of values combined with pre-selected parameters as
listed in Table 5 for our experiments which have the most significant impact on the DB.
There is no granularity or how each parameter will impact on the DB’s state.

Existing methods require the effort of collecting large workloads under different
configurations setting before they engage their tuning process [8]. Whereas ADPT operates
on the assumption that there is no prior knowledge or datasets to learn from. It must learn
from scratch by interacting with the DB adaptively of what works and what not. The goal is

0.0

1.0

Oracle
Instance

Efficiency

Shared
Pool

Statistics

Timed
Events

statistics

SQL
Statistics

Disk IO
statistics

N
or

m
 v

al
ue

s

OLTP type DB #1

Before After

0.0

1.0

oracle
instance

efficiency

shared
pool stats

timed
event
stats

SQL stats Disk IO
stats

N
or

m
 v

al
ue

s

OLTP type DB #2

before after

0.0

1.0

oracle
instance

efficiency

shared
pool stats

timed
event
stats

SQL stats Disk IO
stats

N
or

m
 v

al
ue

s

DSS type database

before after

0.0

1.0

oracle
instance

efficiency

shared
pool stats

timed
event
stats

SQL stats Disk IO
stats

N
or

m
 v

al
ue

s

Hybrid type database

before after

not to do testing for extreme high one-dimensional load variation, but multi-dimensional
that include changes in application structure too. The space of complexities in DB tuning is
high; there are over 380+ major and minor parameters in a DB, over 500+ readings that are
related to a DB’s performance statistics plus DB’s usage that has additional features. It
becomes impossible to factor all these in academic experiments. Therefore, we narrow
down the problem’s scale to a manageable size.

From a common DBA’s perspective, the transactional output and latency are a one-
dimensional measure of DB and SQL performance. We need to cater for a wider variety of
DB usage instead of confining the measurement to just pure transactional which are always
in demand in OLTP systems. How can one tune a DB that has a combination of order
processing, geospatial, reporting and ETL combined? Modern DB’s landscapes are
complex and ADPT proves to be effective in finding a matching set of parameters that is
topical to a real system and not some simulated fictitious load. Table 6 gives a qualitative
evaluation of the ADPT with other methods. As shown by experiments, ADPT can help the
organization to optimize its DBs.

4. Conclusion

We present a novel machine learning-based approach, ADPT, using RL to optimize DB
performance under a changing workload throughout the period. ADPT safeguards the
stability and privacy of the DB by conducting the regressive tuning process onto a test
environment that has duplicate setup with production workload activities replayed there.
The RL agent learns what works and what does not on the parameters versus the outcome
of the DB’s statistics after workload replay in an iterative way. The reward is calculated
from the difference between the DB’s statistics before and after the parameter changes.
Upon the completion of the performance tuning process, each state instances have multiple
different actions and rewards associated with it. The RL agent uses the neural network
model which learns to predict the rewards-actions. It recognizes the error gap between its
predictions versus the actual rewards from the environment and it recalibrates through error
correction. It then adds these instances to the training dataset cumulatively, thereby re-train
and improves on its overall prediction accuracy. The empirical analysis was conducted
using ADPT to learn and adapt to the workload replayed from the production DB’s image.
The results showed improvement in the performance results in the five DB statistics group
areas while reducing unnecessary excessive value increases on the initialization parameters.

This paper uses the top significant initialization parameters to develop the prototype.
There are over 650+ parameters initialization parameters that have other minor influences
on the DB’s performance, but they should be included in the future works. Another area to
incorporate is the SQL tuning part which has a large impact on the DB’s throughput,
especially on the IO part. There are many other types of relational databases and each has
its own unique set of configuration and administration. The work to adapt ADPT into
another DB platform will require some effort to learn and understand their mode of
operation first. Any IT systems’ requirement changes throughout its lifespan and having an
adaptive and intelligent tuning system to optimize them is the best approach to gain the best
return of investment and performance from it.

References

1. Hoffer, J., V. Ramesh, and H. Topi, Modern database management. 2015: Prentice Hall.
2. Colle, R., et al., Oracle database replay. Proceedings of the VLDB Endowment, 2009. 2(2): p. 1542-1545.
3. Mellouk, A., Advances in Reinforcement Learning. 2011.
4. Ding, Z., Z. Wei, and H. Chen, A software cybernetics approach to self-tuning performance of on-line

transaction processing systems. Journal of Systems and Software, 2017. 124: p. 247-259.
5. Rabinovitch, G. and D. Wiese. Non-linear optimization of performance functions for autonomic database

performance tuning. in Autonomic and Autonomous Systems, 2007. ICAS07. Third International Conference
on. 2007. IEEE.

6. Rodd, S. and U.P. Kulkarni, Adaptive self-tuning techniques for performance tuning of database systems: a
fuzzy-based approach with tuning moderation. Soft Computing, 2015. 19(7): p. 2039-2045.

7. Mahgoub, A., et al. Rafiki: a middleware for parameter tuning of NoSQL datastores for dynamic
metagenomics workloads. in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference. 2017.
ACM.

8. Van Aken, D., et al. Automatic database management system tuning through large-scale machine learning.
in Proceedings of the 2017 ACM International Conference on Management of Data. 2017. ACM.

9. Corporation, O., Master Note: Database Performance Overview (Doc ID 402983.1). 2018.
10. Antognini, C., Troubleshooting Oracle Performance. 2014: Apress.
11. Coronel, C. and S. Morris, Database systems: design, implementation, & management. 2016: Cengage

Learning.
12. Alapati, S.R., et al., Oracle Database 12c performance tuning recipes : a problem-solution approach. The

expert's voice in Oracle. 1 online resource (li, 581 pages).
13. Kans, M. and A. Ingwald, Common database for cost-effective improvement of maintenance performance.

International journal of production economics, 2008. 113(2): p. 734-747.
14. Habibi, A., A. Sarafrazi, and S. Izadyar, Delphi technique theoretical framework in qualitative research. The

International Journal of Engineering and Science, 2014. 3(4): p. 8-13.
15. Alapati, S., D. Kuhn, and B. Padfield, Oracle Database 12c Performance Tuning Recipes: A Problem-

Solution Approach. 2014: Apress.
16. Wei, Z., Z. Ding, and J. Hu. Self-tuning performance of database systems based on fuzzy rules. in Fuzzy

Systems and Knowledge Discovery (FSKD), 2014 11th International Conference on. 2014. IEEE.
17. Kuhn, D., S. Alapati, and A. Nanda, Performing Flashback Recovery, in RMAN Recipes for Oracle

Database 12c. 2013, Springer. p. 395-442.
18. Ngai, G., et al., Automatic workload repository battery of performance statistics. 2009, Google Patents.
19. Corporation, O., Oracle Database 12c Release 2 (12.2) New Features. 2018.
20. Kuhn, D., et al., RMAN recipes for Oracle Database 12c : a problem-solution approach. 2nd ed. The

expert's voice in Oracle. 2013, Berkeley, Calif.: Apress. 1 online resource (730 p.).
21. Mellouk, A., Advances in reinforcement learning. 2011, InTech.
22. Van Hasselt, H., A. Guez, and D. Silver. Deep Reinforcement Learning with Double Q-Learning. in AAAI.

2016.
23. Gryglewicz-Kacerka, W. and J. Kacerka. Analysis of the Effect of Chosen Initialization Parameters on

Database Performance. 2015. Cham: Springer International Publishing.
24. Sharma, H.K. and S. Nelson, Performance Enhancement using SQL Statement Tuning Approach. Database

Systems Journal, 2017. 8(1): p. 12-21.
25. Wiese, D. and G. Rabinovitch. Knowledge management in autonomic database performance tuning. in

Autonomic and Autonomous Systems, 2009. ICAS'09. Fifth International Conference on. 2009. IEEE.
26. Zhou, J., et al. Improving database performance on simultaneous multithreading processors. in Proceedings

of the 31st international conference on Very large data bases. 2005. VLDB Endowment.

