Proteoform-specific insights into cellular proteome regulation

Norris, Emma, Headlam, Madeleine, , Smith, David, Bukreyev, Alexander, Singh, Toshna, Jayakody, Buddhika, Chappell, Keith, Collins, Peter, & Gorman, Jeffrey (2016) Proteoform-specific insights into cellular proteome regulation. Molecular and Cellular Proteomics, 15(10), pp. 3297-3320.

[img]
Preview
Published Version (PDF 3MB)
3297.full.pdf.
Available under License Creative Commons Attribution 2.5.

Open access copy at publisher website

Description

Knowledge regarding compositions of proteomes at the proteoform level enhances insights into cellular phenotypes. A strategy is described herein for discovery of proteoform-specific information about cellular proteomes. This strategy involved analysis of data obtained by bottom-up mass spectrometry of multiple protein OGE separations on a fraction by fraction basis. The strategy was exemplified using five matched sets of lysates of uninfected and human respiratory syncytial virus-infected A549 cells. Template matching demonstrated that 67.3% of 10475 protein profiles identified focused to narrow pI windows indicative of efficacious focusing. Furthermore, correlation between experimental and theoretical pI gradients indicated reproducible focusing. Based on these observations a proteoform profiling strategy was developed to identify proteoforms, detect proteoform diversity and discover potential proteoform regulation. One component of this strategy involved examination of the focusing profiles for protein groups. A novel concordance analysis facilitated differentiation between proteoforms, including proteoforms generated by alternate splicing and proteolysis. Evaluation of focusing profiles and concordance analysis were applicable to cells from a single and/or multiple biological states. Statistical analyses identified proteoform variation between biological states. Regulation relevant to cellular responses to human respiratory syncytial virus was revealed. Western blotting and Protomap analyses validated the proteoform regulation. Discovery of STAT1, WARS, MX1, and HSPB1 proteoform regulation by human respiratory syncytial virus highlighted the impact of the profiling strategy. Novel truncated proteoforms of MX1 were identified in infected cells and phosphorylation driven regulation of HSPB1 proteoforms was correlated with infection. The proteoform profiling strategy is generally applicable to investigating interactions between viruses and host cells and the analysis of other biological systems.

Impact and interest:

3 citations in Scopus
2 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

116 since deposited on 10 Oct 2019
12 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 133318
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
Measurements or Duration: 24 pages
Keywords: Concordance Analysis, Orbitrap-FT-MS, Proteoforms, Respiratory Syncytial Virus, pI-based OFFGEL
DOI: 10.1074/mcp.O116.058438
ISSN: 1535-9484
Pure ID: 33124066
Divisions: Past > QUT Faculties & Divisions > Faculty of Health
Past > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 10 Oct 2019 01:41
Last Modified: 01 Mar 2024 17:34