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Abstract
Most previous studies focused on the association between climate variables and 
seasonal influenza activity in tropical or temperate zones, little is known about the 
associations in different influenza types in subtropical China. The study aimed to 
explore the associations of multiple climate variables with influenza A (Flu-A) and B 
virus (Flu-B) transmissions in Shanghai, China. Weekly influenza virus and climate 
data (mean temperature (MeanT), diurnal temperature range (DTR), relative 
humidity (RH) and wind velocity (Wv)) were collected between June 2012 and 
December 2018. Generalized linear models (GLMs), distributed lag non-linear 
models (DLNMs) and regression tree models were developed to assess such 
associations. MeanT exerted the peaking risk of Flu-A at 1.4℃ (2-weeks’ cumulative 
relative risk (RR): 14.88, 95% confidence interval (CI): 8.67-23.31) and 25.8℃ (RR: 
12.21, 95%CI: 6.64-19.83), Flu-B had the peak at 1.4℃ (RR: 26.44, 95%CI: 
11.52-51.86). The highest RR of Flu-A was 23.05 (95%CI: 5.12-88.45) at DTR of 15.8℃, 
that of Flu-B was 38.25 (95%CI: 15.82-87.61) at 3.2℃. RH of 51.5% had the highest 
RR of Flu-A (9.98, 95%CI: 4.03-26.28) and Flu-B (4.63, 95%CI: 1.95-11.27). Wv of 
3.5m/s exerted the peaking RR of Flu-A (7.48, 95%CI: 2.73-30.04) and Flu-B (7.87, 
95%CI: 5.53-11.91). DTR ≥12℃ and MeanT <22℃ were the key drivers for Flu-A and 
Flu-B, separately. The study found complex non-linear relationships between climate 
variability and different influenza types in Shanghai. We suggest the careful use of 
meteorological variables in influenza prediction in subtropical regions, considering 
such complex associations, which may facilitate government and health authorities 
to better minimize the impacts of seasonal influenza.

Keywords: climate factors; influenza; subtropical area; Shanghai; China 
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1. Introduction

While vaccination can effectively prevent seasonal influenza, it remains epidemics 

and lead to approximately 3 to 5 million cases and 290,000 to 650,000 deaths 

annually worldwide (World Health Organization, 2018). Generally, influenza peak 

once in the winter in temperate areas (Finkelman et al., 2007), however, it seems 

that the seasonal patterns in tropical and subtropical zones are more complicated. 

Several previous studies reported that the peaking of seasonal influenza occurred 

once a year (in winter or spring/summer) in some subtropical areas (Cheng et al., 

2012), however, other studies found the peaks in subtropical regions were detected 

in both summer and winter (Iha et al., 2016; Liu et al., 2017). Furthermore, the 

transmission patterns of seasonal influenza were very diverse in China by region (Du 

et al., 2012; Shu et al., 2010; Yu et al., 2013). The seasonal patterns of seasonal 

influenza are driven by the complex interaction among influenza virus, climate 

factors and human activity patterns (Alonso et al., 2007; Surveillance and System, 

2012; Tamerius et al., 2013).

Recently, there has an increasing interest in the association between climate 

variables and seasonal influenza activity. Low temperature has been reported to 

favour the transmission of influenza in temperate and tropical climate (Huang et al., 

2017; Soebiyanto et al., 2014; Tsuchihashi et al., 2011; Xu et al., 2013), as well as to 

increase the mortality of influenza (Davis et al., 2012). A decrease of temperature 

during the preceding three days was correlated to an increased risk of influenza 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/vaccination
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infections in cold climate (Jaakkola et al., 2014). Other climate variables, such as 

absolute humidity, relative humidity and rainfall have also been reported to be 

associated with seasonal influenza infections (Gomez-Barroso et al., 2017; Shaman 

and Kohn, 2009; Shaman et al., 2010b; Tamerius et al., 2013). Moreover, the 

geographical variation of seasonal patterns of influenza indicates that climate factors 

may promote influenza infections with complex interactive effects, such as the 

significant interactive effect between temperature and relative humidity (Wang et al., 

2017). However, the majority of previous studies focused on tropical or temperate 

zones, little is known about the associations of multiple climate variables with 

different influenza types in subtropical regions.

Additionally, the transmission patterns of seasonal influenza can even be diverse in 

neighbouring regions sharing similar climate (Yu et al., 2013). It is necessary to 

specifically assess the response of influenza to climate variables by location. 

Understanding the relationship between climate factors and influenza can be seen as 

a foundation for developing early warning systems based on climate factors for 

seasonal influenza. This study aims to examine the associations of multiple climate 

factors (mean temperature (MeanT), diurnal temperature range (DTR), relative 

humidity (RH), and wind velocity (Wv)) with seasonal influenza A virus (Flu-A) and B 

virus (Flu-B) in subtropical Shanghai, China.
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2. Methods

2.1 Study site and data collection

This study was conducted in Pudong New Area, where is the largest district of 

Shanghai City, the one of the largest metropolis worldwide (Fig. 1).  To December 

2017, there are more than 5.5 million population in the area (Government, 2017). 

Shanghai has a subtropical climate with four distinct seasons (Ye et al., 2019). The 

vaccination of seasonal influenza has yet to be included in the national immunization 

programme (Feng et al., 2010), the coverage rate of influenza vaccination of China 

and Pudong is below 2% and 1.4%, separately (Feng et al., 2010; Ye et al., 2019).

Weekly laboratory-confirmed positive influenza virus data were collected from two 

sentinel hospitals between June 1st, 2012 and December 31st, 2018 in Pudong New 

Area. The detailed process of sample collection and laboratory testing were reported 

in our previous work, please see (Ye et al., 2019). Weekly data on climate variables 

including MeanT (℃), RH (%), and Wv (m/s) were obtained from National Oceanic 

and Atmospheric Administration (NOAA) (Zhang et al., 2019). Moreover, we 

collected weekly maximum and minimum temperatures to calculated diurnal 

temperature range (DTR, DTR=maximum temperature-minimum temperature) (℃). 

We also calculated absolute humidity (AH) using relative humidity (RH) and 

temperature, based on Clausius-Clapeyron relation (Shaman and Kohn, 2009).



6

2.2 Data analysis

2.2.1 Generalized linear models (GLMs) with climate variables

Firstly, we used GLMs to initially fit the relationship between climate variables and 

Flu-A and Flu-B, separately (Limper et al., 2016). Multicollinearity among climate 

variables was checked and avoid through performing Spearman correlation analysis 

and variance inflation factors (VIF). Only one of the highly-correlated variables (r > 

0.6 or VIF >5) was included in the model (Wu et al., 2015). AH was excluded in our 

final model, as this factor strongly associated with MeanT (Peci et al., 2019; Shaman 

et al., 2010b), with the Spearman correlation coefficient of 0.97 (p<0.05) (Table. S1). 

GLM with a negative binomial distribution was assumed to allow over-dispersion 

(Wang et al., 2018). We developed GLMs including all climate variables to adjust the 

relationships between climate factors and seasonal influenza. The model used in our 

study was given as follow:

log [𝐸(𝑌𝑡)] = 𝛽0 + 𝛽1(𝑀𝑒𝑎𝑛𝑇𝑡) + 𝛽2(𝐷𝑇𝑅𝑡) + 𝛽3(𝑅𝐻𝑡) + 𝛽4(𝑊𝑣𝑡) +𝑓𝑎𝑐𝑡𝑜𝑟(𝑊𝑂𝑌)

 +𝑓𝑎𝑐𝑡𝑜𝑟(𝐻𝑜𝑙𝑖𝑑𝑎𝑦) + 𝑒t

where E(Yt) is the expected weekly count of positive Flu-A or Flu-B on week t; β0 is 

the intercept; β1 (MeanTt), β2 (DTRt), β3 (RHt) and β4 (Wvt) denote the corresponding 

regression coefficients of MeanT, DTR, RH and Wv, respectively; Week of year (WOY) 

was included in the model adjusting for seasonality; Holiday refer to a binary 

variable for public holiday to control the impact of public holidays (Wang et al., 

2018); et is the error term.
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2.2.2 Distributed lag nonlinear models (DLNMs)

To better assess the potential non-linear impacts of climate factors on seasonal 

influenza transmission with delayed effects, DLNMs were developed for Flu-A and 

Flu-B, respectively (Gasparrini, 2011; Wood, 2006), with a negative binomial 

distribution to account for over-dispersion. The model were formulated as follow:

log [𝐸(𝑌𝑡)]~ 𝛼 + ∑𝑐𝑏(𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,𝑑𝑓1, 𝑙𝑎𝑔, 𝑑𝑓2) + 𝑓𝑎𝑐𝑡𝑜𝑟(𝑊𝑂𝑌)
+ 𝑓𝑎𝑐𝑡𝑜𝑟(𝐻𝑜𝑙𝑖𝑑𝑎𝑦)

where E(Yt) is the expected weekly count of positive Flu-A or Flu-B on week t; α is the 

intercept; cb(climate variables) represents the cross-basis matrix of climate factors 

to explore the potential cumulative and delayed effects with the corresponding df if 

applicable; WOY and Holiday represent indicator variables adjusting for seasonality 

and public holidays, separately.

The function in the cross-basis was chose as a natural cubic spline function to 

capture the potential non-linear associations (Dai et al., 2018). The maximum 

temporal lag was selected as 2 weeks, which based upon the potential lagged effects 

and the incubation period of influenza reported by previous studies (Dai et al., 2018). 

In order to better develop the models and assess the robustness of the models, the 

best df (from 3 to 6 df) for both climate variables and lag space in the cross-basis was 

chosen by the smallest Akaike information criterion (AIC). In our final model, 4 df 

was selected for both climate factors and lag space.

Then, we calculated the relative risk (RR) with corresponding 95% confidence 

interval (CI), relative to pre-determined reference value. The reference value in this 
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paper was defined as the lowest point in the curve of the fitted association using 

GLMs (Wang et al., 2018).

2.2.3 Regression tree analysis

We developed regression tree models to identified the threshold values of the 

climate factors, which are most likely to be correlated to influenza infections (Zhang 

et al., 2018). We used weekly climate variables at 2-week lag as the independent 

variables and weekly Flu-A and Flu-B as the dependent variables. The selection of the 

best tree size based on cross-validation by checking estimated prediction errors. The 

model with an estimated error rate within one standard error of the minimum and 

the smallest tree size was selected as the best model (Breiman, 2017).

All data analyses were conducted by using R software (version 3.5.1; R Development 

Core Team, Boston, MA).

3. Results

3.1Descriptive analysis

The total of 14,320 specimens were tested over the study period, with 2,405 positive 

specimens (Table S2). Most of the positive cases were detected as Flu-A (1,814, 

75.4%). The mean weekly positive Flu-A and Flu-B were 5.2 and 1.7, separately. The 

statistical characteristics of weekly positive seasonal influenza viruses and climate 

variables were summarized in Table 1. Fig. 2 showed that Flu-A had annual 

winter/spring peak with summer peak in several years. However, Flu-B generally 

peaked during winter/spring weeks.
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3.2GLMs with climate variability

The results indicated that MeanT and RH were negatively associated with Flu-A, DTR 

and Wv were positively correlated to Flu-A when we included all climate factors in 

the model (Fig. 3). Moreover, MeanT, DTR and RH were negatively associated with 

Flu-B, Wv was positively correlated to Flu-B. Both the risk of Flu-A and Flu-B was 

peaking at 1.4℃ with RRs of 5.89 (95%CI: 2.04-18.33) (Fig. 3a) and 4.61 (95%CI: 

1.49-13.57) (Fig. 3e), separately. However, there were inverse trends in the effects of 

DTR on Flu-A and Flu-B. The risks of Flu-A and Flu-B were significantly peaking at DTR 

of 15.8℃ (RR: 3.52, 95%CI: 1.88-7.13) (Fig. 3b) and 3.2℃ (RR: 7.46, 95%CI: 

3.66-16.72) (Fig. 3f), respectively. Moreover, low RH increased the risk of seasonal 

influenza, the largest risks were found at 51.5% for Flu-A (RR: 1.032, 95%CI: 

1.009-1.058) (Fig. 3c) and Flu-B (RR: 3.95, 95%CI: 2.00-6.98) (Fig. 3g). Additionally, 

high Wv posted risk to seasonal influenza, the largest RR were observed at 3.5m/s 

for Flu-A (RR: 1.68, 95%CI: 1.12-3.13) (Fig. 3d) and Flu-B (RR: 1.78, 95%CI: 1.04-3.02) 

(Fig. 3h).

3.3 Risk respond to climate variability by lag using DLNMs

Apparent non-linear cumulative associations between climate variables with Flu-A 

and Flu-B were observed when we applied DLNMs (Fig. 4). For MeanT, two peaks in 

the cumulative risk of Flu-A was found in the study, with the first peak at 1.4℃ (RR: 

14.88, 95%CI: 8.67-23.31) and second peak at 25.8℃ (RR: 12.21, 95%CI: 6.64-19.83) 

(Fig. 4a). Moreover, the peaking risk of Flu-B was at 1.4℃ (RR: 26.44, 95%CI: 
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11.52-51.86) (Fig. 4e). In term of DTR, high DTR of 15.8℃ exerted the highest risk of 

Flu-A (RR: 23.05, 95%CI: 5.12-88.45) (Fig. 4b), however, that of Flu-B was observed at 

low DTR of 3.2℃ (RR: 38.25, 95%CI: 15.82-87.61) (Fig. 4f). Additionally, both more 

Flu-A and Flu-B was observed at low RH (51.5%), with the RRs of 9.98 (95%CI: 

4.03-26.28) (Fig. 4c) and 4.63 (95%CI: 1.95-11.27) (Fig. 4g), separately. Furthermore, 

high Wv (3.5m/s) posted the highest risks to both Flu-A (RR: 7.48, 95%CI: 2.73-30.04) 

(Fig. 4d) and Flu-B (RR: 7.87, 95%CI: 5.53-11.91) (Fig. 4h).

Based on the findings above, we further analysed the lagged associations between 

climate variables at specific values and influenza by different time lag, relative to the 

reference values (Table 2). For low MeanT (1.4℃, the highest point in Fig. 4a and e) 

exerted the highest risk of Flu-A at 0-week lag (RR: 8.13, 95%CI: 2.44-18.83), but, 

Flu-B at 1-week lag (RR: 11.32, 95%CI: 8.84-14.58). Regarding DTR, the highest risk of 

Flu-A at DTR of 15.8℃ (the highest point in Fig. 4b) was observed at the lag of 

1-week (RR: 5.11, 95%CI: 2.06-12.66), similarly, that of Flu-B at DTR of 3.2℃ (the 

highest point in Fig. 4f) was found at 1-week lag (RR: 11.29, 95%CI: 8.06-15.13). In 

term of RH, low RH of 51.5% (the highest point in Fig. 4c and g) had the highest risks 

of Flu-A and Flu-B both at 1-week lag, with RRs of 3.01 (95%CI: 1.61-5.63) and 2.35 

(95%CI: 1.48-3.74), separately. Moreover, Wv of 3.5m/s (the highest point in Fig. 4d 

and h) at 0-week lag had the highest risk, with RRs of 6.10 for Flu-A (95%CI: 

3.15-11.81) and 5.68 for Flu-B (95%CI: 2.69-12.02), separately. The details of RRs by 

time lag are shown in Table 2. The trends of lag-response curves of Flu-A and Flu-B 

are illustrated in Supplementary Fig. S1.
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3.4 Regression tree analysis

Fig. 5 demonstrated that the climate variables played different roles in the 

occurrence of Flu-A and Flu-B in the study setting. DTR was the first classifying factor 

in the model of Flu-A, which indicated that DTR played the most important role in 

the occurrence of Flu-A. The mean weekly Flu-A increased by over 3.1-fold (44/14) 

when DTR was ≥ 12℃. However, the most significant climate factor in the 

occurrence of Flu-B was MeanT, which was identified as the first classifying factor in 

the model. An increase over 4.5-fold (19/4.2) in the mean weekly Flu-B was observed 

when MeanT was <22℃, as well as Wv was ≥1.6m/s and DTR was <8.7℃.

4 Discussion

To the best of our knowledge, this is the first attempt to assess the complex 

associations of multiple climate variables with different types of seasonal influenza 

viruses in subtropical China. Our study found that MeanT, DTR, RH and Wv were 

significantly associated with Flu-A and Flu-B by different time lags.

We found that MeanT was negatively associated with influenza, low temperature led 

to more influenza cases. This result is consistent with previous studies, cold 

temperature could lead to more influenza activity in China (Yu et al., 2013). A decline 

of 1°C in temperature increased influenza infections risk by 11% in Finland (Jaakkola 

et al., 2014). Moreover, 1°C decrease of temperature cased a rising of 8.55% in 

influenza cases in Hong Kong, and an increase of 32.14% in the UK (Wang et al., 

2017). Low temperature may lengthen the survival of influenza virus, and lead to 
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increasing contact rates through more people indoor crowding (Cheng et al., 2016; 

Liao et al., 2005). As a result, low temperature could contribute to the spread of 

influenza. It should be noted that another peak of RR in high temperature for Flu-A 

was observed in the study. This finding was supported by previous studies, which 

reported the semiannual epidemic in the summer in subtropical cities in China (Yang 

et al., 2018a; Yang et al., 2018b; Ye et al., 2019). The potential reasons for this 

semiannual epidemic required further research.

DTR was significantly associated with seasonal influenza in the study, with a positive 

relationship with Flu-A, and a negative relationship with Flu-B. In Beijing, an 

increased influenza cases in the elderly was associated with bigger DTR values (Lao 

et al., 2018). A study in Hong Kong found that DTR had positive impact on 

laboratory-confirmed influenza cases, the mean increase in weekly cases was 5.01% 

per 1°C increase in DTR, however, this study reported that the effect of DTR only 

exerted in dry period (when vapour pressure is less than 20 millibars (mb)), and the 

effect was not modified by influenza types (Li et al., 2018). The physiological 

mechanisms of DTR on the diseases were not elucidated, although there are several 

possible underlying mechanisms. Sudden temperature change may increase 

respiratory workload and induce the onset of a respiratory event (Imai et al., 1998), 

as well as influence humoral and cellular immunity (Bull, 1980).

Our study indicated that decline in RH promoted influenza activity, and the result is 

consistent with previous studies. Several previous studies indicated that low RH can 

favour the transmission of influenza (Hemmes et al., 1960; Lowen et al., 2007; 
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Schaffer et al., 1976; Sundell et al., 2016). Low RH can allow influenza virus particles 

to remain in the air for longer time because of the smaller size and lower velocity of 

settling (Yang and Marr, 2011). As a result, there is an increase of susceptibility to 

influenza infections (Eccles, 2002). Additionally, low RH can also preserve the 

viability of influenza virus. The infectivity can keep as 70.6-77.3% when RH was less 

than 23 % for 1 hour, however, the number decreased to 14.6-22.2% at RH ≥43% 

(Noti et al., 2013). Additionally, low AH could exert significant impact on influenza 

transmission. In China, the RR for influenza (H7N9) at low AH (5 mb) was 11.34 

(95%CI: 8.72-14.74) when compared to high AH (20 mb) (Liu et al., 2018). Moreover, 

low AH may contribute to the onset and peak of influenza epidemics (Murray and 

Morse, 2011). In the temperate regions of the US, AH was used to predicted the 

seasonal patterns of influenza (Shaman et al., 2010a; Shaman and Kohn, 2009).

Additionally, high Wv was found to increase the risk of influenza infections in the 

study. High Wv could lead to increased infections of influenza, respiratory syncytial 

virus and severe acute respiratory syndrome (SARS) virus (du Prel et al., 2009; 

Firestone et al., 2012; Yuan et al., 2006). A field study indicated that an increased risk 

of influenza in horses was associated with Wv of > 30km/h (Firestone et al., 2012). In 

India, Wv was positively correlated to an increase risk for influenza (H1N1) (linear 

regression coefficient: 1.02, p<0.05) (Lopez et al., 2014). This may due to the effects 

of high wind speed on the longer travel of air-borne aerosols, which contributed to 

the transmission of influenza virus (Ssematimba et al., 2012).
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There are different responses of influenza to climate factors in different climate 

zones. The area with temperate climate appeared to have greater risk in 

temperature and humidity, compared to subtropical regions (Wang et al., 2017). The 

author reported that this may due to a lower mean temperature and humidity in 

temperate areas than that in subtropical regions. Influenza virus can survive longer 

in low temperature, and cold weather also causes increased opportunity of infection 

by indoor crowding (Cheng et al., 2016; Liao et al., 2005). Furthermore, low outdoor 

temperature may lead to increased use of indoor heating facility, which would 

decline the indoor humidity and promote influenza infections (Chong et al., 2015).

Additionally, our results indicated that climate factors posted different effects on 

Flu-A and Flu-B activity. The previous results for the effects on two influenza types 

were not conclusive. A study from German observed a negative association of 

temperature with Flu-A hospitalization, but not with Flu-B (du Prel et al., 2009). The 

occurrence of Flu-B decreased when temperature increased in Hong Kong, however, 

no significant finding for Flu-A was reported in the study (Tang et al., 2010). Flu-A 

virus seems to change the antigen more frequently than Flu-B virus (Bouvier and 

Palese, 2008), which may influence the sensitivity to climate variability. Moreover, 

the different associations of Flu-A and Flu-B with DTR may partially resulted from the 

age distribution of influenza infections. Our previous study in Shanghai and other 

studies on a global scale showed that Flu-A virus is more transmissible among elderly 

than young children (FOX et al., 1982; FRANK et al., 1983; Longini Jr et al., 1982; Ye 

et al., 2019). It has been widely accepted that elderly people are more vulnerable to 
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DTR (Lim et al., 2012; Qiu et al., 2013), thus, Flu-A was positively correlate to DTR in 

the study. Additionally, the different seasonality of Flu-A and Flu-B may be another 

potential reason behind. Our previous work demonstrated that Flu-A peaked from 

December to January, while the peak of Flu-B can last to April (Ye et al., 2019). The 

effect of DTR on different influenza type is less well studied, further studies are 

required to explore such impact.

The regression tree models identified that DTR and MeanT were the key classifying 

factor in the models of Flu-A and Flu-B separately. This difference may reflect the 

nature of types of seasonal influenza viruses. In general, the results illustrated that 

the models could provide the threshold values of the climate variables in seasonal 

influenza activity linking with official surveillance data.

There are several strengths in the study. First, it is the first attempt to investigate the 

complex and delayed relationships between multiple climate factors and different 

types of seasonal influenza viruses in subtropical China. Second, this study based on 

the data of two sentinel hospitals, which have high surveillance coverage in the 

study area with well-trained clinicians (Ye et al., 2019). Third, our findings may also 

be relevant to the complex transmission patterns of influenza in other countries, 

especially for subtropical areas.

This study has several limitations. First, the accuracy of results might be impacted by 

age and sex, we hope can investigate such association by age and sex in our future 

work. Second, the data accuracy may influenced by the sample collection and 
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processing approaches, as well as patient health seeking behaviour (Dowell, 2001; 

Lofgren et al., 2007). Third, air pollutions, host susceptibility and viral migration may 

also affect the transmission of influenza (Dowell, 2001; Feng et al., 2016; Lofgren et 

al., 2007).

5 Conclusion

The study found complex non-linear relationships between climate variability and 

seasonal influenza with different risky windows by type in subtropical China. The 

findings may provide important information for developing early warning systems 

based on climate factors for seasonal influenza. We suggest the careful use of 

meteorological variables in influenza prediction in subtropical regions, considering 

such complex non-linear associations in different types, which may facilitate 

government and health authorities to better minimize the impacts of seasonal 

influenza.
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Fig. 1. The location of Pudong New Area in Shanghai, China.

Fig. 2. Weekly distribution of Flu-A, Flu-B and climate variables in Pudong New 

Area, from week 23, 2012 to week 52, 2018. 
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 Fig. 3.  The adjusted associations between climate variables with Flu-A and 

Flu-B using GLMs in Pudong New Area, week 23, 2012-week 52, 2018 (The 

results were adjusted by seasonality and holidays).

 

 Fig. 4. Cumulative associations between climate variables with Flu-A (upper 

panel) and Flu-B (lower panel) in Pudong New Area, week 23, 2012-week 52, 2018 

(Lag=2 weeks; The reference value (Ref) was the lowest point in the results of 

(a) (b) (c) (d)

(e) (f) (g) (h)

MeanTMeanT (℃ ) DTR (℃ ) RH (%)
Wv (m/s)

MeanT (℃ ) DTR (℃ ) RH (%) Wv (m/s)
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GLMs; Results were adjusted for seasonality and holidays).

      

Fig. 5. The regression tree modeling the hierarchical relationship between weekly 

climate variables with Flu-A and Flu-B in Pudong New Area, week 23, 2012-week 

52, 2018. (The regression trees showed the threshold values, mean weekly Flu-A 

and Flu-B; N is the percentage of entire data in the cell (the number of weeks)). 

Table 1. Descriptive summary of weekly positive seasonal influenza viruses and 

climate variables in Pudong New Area, from week 23, 2012 to week 52, 2018.

Mean (SD) Min. P (25th) Median P (75th) Max.

Flu-A 5.2 (7.6) 0 0 2 7 36

Flu-B 1.7 (3.9) 0 0 0 1 22

MeanT (℃) 17.4 (8.6) 1.4 9.3 18.0 24.3 33.4

DTR (℃) 7.5 (1.9) 3.2 6.2 7.3 8.9 15.8

RH (%) 74.3 (8.1) 51.5 68.6 74.7 80.2 91.6

AH (g/m3) 12.6 (6.5) 3.2 6.5 11.5 18.2 25.2

Wv (m/s) 1.5 (0.4) 0.7 1.2 1.4 1.7 3.5

       a P represents percentile

Table 2. The RRs with corresponding 95% CI of Flu-A and Flu-B associated with 

climate variables by time lag in Pudong New Area, week 23, 2012-week 52, 2018.

0-week lag 1-week lag 2-weeks lag

MeanT (℃ ) DTR (℃ ) Wv (m/s)

MeanT (℃ ) DTR (℃ ) RH (%) Wv (m/s)

(a) (b) (d)

(h)(g)(f)(e)

Ref=33.4℃

Ref=33.4℃

Ref=3.2℃

Ref=15.8℃ Ref=91.6%

Ref=0.7m/s

Ref=0.7m/s

(c)
Ref=91.6%

RH (%)

<22℃>=22℃

Overall mean Flu-A=14

N=100%

Overall mean Flu-B=4.2

N=100%
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MeanT

Flu-A (1.4 vs. 33.4℃) 8.13 (2.44-18.83)* 1.51 (1.07-3.82)* 1.08 (0.92-1.19)

Flu-B (1.4 vs. 33.4℃) 9.62 (6.75-13.90)* 11.32 (8.84-14.58)* 7.74 (5.24-10.44)*

DTR

Flu-A (15.8 vs. 3.2℃) 2.68 (1.07-6.71)* 5.11 (2.06-12.66)* 1.57 (0.69-3.60)

Flu-B (3.2 vs. 15.8℃) 6.35 (2.09-10.68)* 11.29 (8.06-15.13)* 5.94 (0.35-11.82)

RH

Flu-A (51.5 vs. 91.6%) 1.68 (1.09-3.15)* 3.01 (1.61-5.63)* 1.91 (1.03-3.54)*

Flu-B (51.5 vs. 91.6%) 1.27 (1.03-1.49)* 2.35 (1.48-3.74)* 1.77 (1.52-2.07)*

Wv

Flu-A (3.5 vs. 0.7m/s) 6.10 (3.15-11.81)* 1.72 (0.80-3.71) 0.86 (0.38-1.95)

Flu-B (3.5 vs. 0.7m/s) 5.68 (2.69-12.02)* 1.02 (0.41-2.51) 0.49 (0.19-1.26)

 *: Significant results

Exposure-response associations
X-axis: The value of climate variable; Y-axis: 2-weeks lagged cumulative relative risk (RR), indicating 

the number of times more likely to have influenza compared to reference value (Ref); Solid line: RR 
value; Grey shadow: 95% confidence interval (95% CI).
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Highlights

 High temperature only associated with influenza A occurrence.

 High diurnal temperature range (DTR) causes more influenza A cases.

 Low DTR causes more influenza B cases.

 High DTR and low temperature were the key drivers for influenza A and B 

separately.


