
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Wei, Chen, Hu, Zhi Hua, & Wang, You Gan
(2020)
Exact algorithms for energy-efficient virtual machine placement in data
centers.
Future Generation Computer Systems, 106, pp. 77-91.

This file was downloaded from: https://eprints.qut.edu.au/136095/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial-No Derivative
Works 4.0

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.future.2019.12.043

https://eprints.qut.edu.au/view/person/Wang,_You-Gan.html
https://eprints.qut.edu.au/136095/
https://doi.org/10.1016/j.future.2019.12.043


1 

 

Future Generation Computer Systems, accepted on 27 Dec 2019 

Exact algorithms for energy-efficient virtual machine placement in 

data center 
Chen Wei1, Zhi-Hua Hu1*, You-Gan Wang2 

1 Logistics Research Center, Shanghai Maritime University, Shanghai 200135, China 
2 School of Mathematical Sciences, The University of Queensland of Technology, Brisbane, 

Queensland 4001, Australia 
 

 
Abstract 
Virtual machine placement (VMP) and power management are important topics in the development 
of cloud computing and data center. The assignment of virtual machine to physical machine impacts 
the energy consumption, the makespan and the idle time of physical machines. In this paper, we 
formulate the problem as a three-dimension bin-packing optimization to minimize the energy cost 
of working machines and idle machines. By considering the CPU and memory requirements from 
virtual machine, the assignment is constrained under the capacities of physical machine. Inspired 
by the best-fit decreasing algorithm, four variants of this exact algorithm are developed to address 
the multiple-objective problem under multiple-capacity constraints. The effectiveness of the 
proposed algorithms is demonstrated by experimental results on small-, medium- and large-scale 
instances profiled from data centers. The results indicate that the algorithms assigning virtual 
machines to the physical machines of best-fit hosting time is competitive in instances with loose 
capacity constraints, and the energy-efficiency best-fit algorithm produces efficient assignments 
when a makespan limit is required on the physical machines. The algorithm combining the fit rules 
has a linear computing time with respect to the numbers of physical and virtual machines, and a 
stable performance that obtains gaps of results lower than 5.8% compared to an on-the-shelf mixed-
integer linear program solver.  
Keywords 
Virtual machine placement; data center; computational service supply chain; bin packing problem; 
first-fit algorithm 
 
1. Introduction 

Cloud computing has activated a new supply chain, namely the computational service supply 
chain, between suppliers of computational resources and customers with computational demands. 
In the context of cloud computing industry, the computational services are materialized as 
infrastructure, platforms and software applications. Servicers adopt a computing framework of 
virtual machines (VMs) and physical machines (PMs) based on virtualization technology to provide 
customers’ demands [1]. A VM is a computing unit of deploying customer’s computing requests in 
PMs for satisfying the constraints of customized computational resources, including the demands 
of computing time, CPUs and memory sizes. Then these user-defined VMs are assigned to PMs 
under the constraints of CPUs and memory sizes [2]. Many organizations or companies have 
established their cloud computing facilities, e.g., big data centers acting as computational service 
providers to produce attractive benefits, such as reliability, quality of service and robustness [3]. 
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The computational resources are centrally and specially controlled and managed, while the 
computational services can be accessed friendly by distributed customers with lower costs because 
the resources can be scheduled and utilized efficiently. To reduce the investment and maintenance 
costs, some big cloud data centers emerge and even the market of computational service supply 
chains has been created. In the context of cost reduction, a fine placement of VMs to PMs is 
important for improving the computational service quality. In the perspective of computational 
service providers, active placement of VMs to PMs impacts their profits, energy and operating costs. 

Energy management in cloud data centers is a crucial issue since it directly constitutes the 
operational costs and environmental impacts [4, 5]. Serious energy issues including carbon dioxide 
consumption and system reliability will rise due to electricity power consumption. The emergence 
of cloud data centers makes significant impacts on the information technology industry over the 
past years and enables the business models of computational service supply chains, which become 
industrial standards of using and maintaining computational resources and capabilities. Thus, many 
big cloud data centers make the energy management even more challenging. In data centers, PMs 
are managed under groups in the purpose of facilitating power supply, and a PM must stay idle in 
power-on state when the member PM in its group is working. From the perspective of energy 
consumption, PMs dominate about 60% of the total energy consumption in a data center [6]. The 
energy consumption of a PM varies depending on its computational capacity and the computational 
requirement of the assigned VMs. Idle PM still require approximately 70% of its power 
consumption in full speed state with tasks [7]. Therefore, an optimal management of the PMs is key 
to efficiently controlling the power consumption and reducing the number of idle PMs. By 
optimizing the VMP schedules, the VMs can be assigned to energy-efficient PMs while minimizing 
the superfluous consumption of idle PMs.  

The VMP problem can be formulated to bin-packing models. The energy concerns may 
introduce a non-linear component to the optimization objectives of the models and make the solution 
methods challenging. Besides, the quality of service is also a general objective, which is usually 
represented by completion time of the VMs. Therefore, the VMP problems can be formulated as 
multi-objective optimization models. In placement models, CPUs and memory of computing 
resources are general demands of VMs and they also represent resource limits provided by PMs, 
which are mathematically formulated as constraints. Evenly the simplest one-dimensional bin-
packing models present the nature of computational complexity – it is a NP hard problem. To 
decompose the complexity, various heuristics and intelligent algorithms are developed for the VMP 
problem and its variants (see Table 1 in Section 2). Three streams of algorithms are involved: 
heuristics based on exact scheduling rules, intelligent algorithms based on solution encoding and 
decoding schemes, and model-based algorithms for mathematical programs.  

In this study, the VMP considering energy consumption is formulated as a mixed-integer linear 
program (MILP), whose single-objective model can be solved efficiently by on-the-shelf MILP 
solvers, e.g., Cplex and Gurobi. The energy cost is a function of assignments of VMs to PMs and 
the number of active PMs. The model is further investigated mathematically, which contributes to 
develop the heuristic solution method. Medium- and large-scale instances are generated from 
profiles originally shared by the Google Data Center [8] and solved efficiently.  

The remainder of this paper is organized as follows. In Section 2, we provide an overview of 
the VMP problem, the bin-packing problem and solution algorithms. In Section 3, the features of 
the energy-efficient VMP problem are depicted and described. Section 4 formulates the VMP and 
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the model is analyzed. In Section 5, exact algorithms based on best-fit the first scheduling rule and 
greedy strategy are presented. The computational results on benchmark problems are given in 
Section 6. We conclude in Section 7. 
2. Related studies 
2.1. Virtual machine placement 

Virtualization technology enables computational service providers to package various 
computing requests into VMs and implement these VMs in physical machines, such as computer 
servers or clusters, in the purpose of sharing the relative enormous computational resources among 
the tasks and reducing the computational costs. Several reviews have been carried out on the 
optimization of VMPs in the perspective of cost saving, energy saving, task workflow efficiency, 
service quality and resource transmission [7, 9-11]. In the pioneering review [9], cost optimization 
approaches for scientific workflow scheduling in cloud and grid computing were reviewed. Eight 
aspects of cost optimization are discussed, including optimization methods and criteria. In this 
classification system, our study built multi-objective model, and developed mathematical program 
and heuristics algorithms. In the reviewed papers, only one paper used mathematical program as a 
solution method. The review also asserted that meta-heuristic methods are efficient with some 
compromise on the execution time, while heuristics are popular and effective although their 
optimality generally can not be guaranteed and proved. In this study, we try to make contributions 
to VMP and especially the modeling and solution methods.  

In the Scopus database, using “virtual machine placement” as the keyword in querying English 
journal papers, 147 papers are found (April 2, 2019). Most mathematical programs developed in the 
studies are used to describe the objectives and constraints, and generally not solved. Mazumdar and 
Pranzo [12] solved the MILP by Cplex, while arbitrary time limits are set for medium- and large-
scale instances in their study. Besides, various meta-heuristics and intelligent algorithms are 
developed. Although these algorithms are flexible to cope with the complex objectives and 
constraints, and can improve the solutions continuously, they cannot guarantee the solution 
optimality. First-fit heuristics are most popular algorithms used to solve the problems exactly and 
efficiently. So, it is usually used in the comparison studies of most papers. 

Totally 25 studies on VMP problems are reviewed in Table 1 by summarizing the distinct 
features, the model types and the employed algorithms. Distinct features are coupled in different 
studies, mainly including energy and resource utilization degrees. Additionally, the general VMP 
problems are also studied by considering load balance, machine consolidation and migration of VMs. 
Among these studies, some just describe the problems and then developed algorithms to solve 
simulated instances; other studies developed MILPs or non-linear MILPs (NMILPs). Generally, the 
complicate energy functions result in making the models non-linear ones. Most studies mainly use 
non-linear expressions to elucidate the complicate constraints, and these NMILPs were not directly 
solved or the solution methods were not developed based on these models. As for the algorithms 
developed in these studies, three types are involved. First, various exact heuristics are developed, 
e.g., round robin (RR), greedy, first-fit decreasing (FFD) and best-fit decreasing (BFD); these 
algorithms are generally used for comparison studies where intelligent algorithms are developed. 
However, few studies focused on these algorithms and their improvements, although they are most 
efficient in computing times. Second, although ant colony optimization (ACO), cuckoo search 
optimization (CSO) and genetic algorithm (GA) are primarily used, we can conclude that any 
intelligent algorithms can be tested for the VMP problems. These algorithms can gradually improve 
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the solutions while their computing performances are not competitive and their solutions are not 
stable. Third, a few studies begin to consider model-based heuristics. However, few studies 
developed such algorithms. In these studies, Mazumdar and Pranzo [12] developed formal and 
solvable MILPs, and the results of solving the models are compared with BFD heuristics that are 
extensively improved from basic ones. 
Table 1. Studies on the VMP problems 

No. Study Features Model Algorithm 
1 An, Shekhar, Caglar, 

Gokhale and Sastry [13] 
1) Develop a framework for VM replica deployment; 
2) Number of PMs is minimized 

MILP* - 

2 Tavana, Shahdi-Pashaki, 
Teymourian, Santos-
Arteaga and Komaki 
[14] 

1) Assignments among PMs, VMs, tasks and subtasks; 
2) Task migration among VMs 
3) Minimize the migration, energy and penalty cost 

NMILP* CSO  GA, FF and 
RR 

3 Gutierrez-Garcia and 
Ramirez-Nafarrate [15] 

1) Balance workloads of PMs by VM migration 
2) Minimize the migrations 

NMILP* RR, Greedy, FFD, 
BFD 

4 Gao, Guan, Qi, Hou and 
Liu [16] 

1) Mapping VMs to PMs; 
2) Minimize the power consumption and the resource wastage 

NMILP* ACO GA 

5 Riahi and Krichen [17] 1) Minimize the PMs and total resource wastage 
2) Load balance is considered in algorithms 

NMILP* MOGA 

6 Baalamurugan and Vijay 
Bhanu [18] 

Minimize the power consumption and the resource wastage NMILP* Krill herd MOPGA, 
ACO and FFD 

7 Alharbi, Tian, Tang, 
Zhang, Peng and Fei [19] 

Minimize the total energy consumed by VMs and the PMs’ idle time Descriptive ACOFFD 

8 Liu, Zhan and Zhang 
[20] 

1) Consider the energy save and VM migration; 
2) Formulate the dynamic VM consolidation and VMP. 

NMILP* ACO 

9 Malekloo, Kara and El 
Barachi [21] 

1) VMs placement and consolidation by migration 
2) Minimizing resource wastage, communication energy cost and energy 
consumption 

NMILP* ACO 

10 Stolyar [22] 1) real-time assignment of VMs to PMs; 
2) minimize the increment of the objective function caused by each new 
assignment 

Descriptive Greedy 

11 Kim, Jeon, Lee and Yang 
[23] 

Parallelize migrations to reduce the time required for VM relocation Descriptive Simulation 

12 Zhu, Zhuang and Zhang 
[24] 

1) Consider three dimensions (CPU, memory and bandwidth) 
2) Minimize energy savings 

Descriptive Allocation strategies 
heuristics 

13 Li, Yan, Yu and Yu [25] 1) VMs’ migration and placement criterion are presented. Descriptive Hybrid Bayesian 
network 

14 Li, Li, Yuan, Chen and 
Jiang [26] 

Minimize the energy consumption and maximize the resource utilization MILP* CROCSO, GA, FFD 
and BFD 

15 Satpathy, Addya, Turuk, 
Majhi and Sahoo [27] 

1) A queueing structure is used to manage and schedule VMs.  
2) Minimize the resources wastage and power consumption 
3) Migration strategies (serial, parallel, improved serial) were tested. 

Descriptive Crow search 

16 Sait, Bala and El-Maleh 
[28] 

Power consumption and Resource wastage are minimized NMILP* CSOGA and FFD 

17 Ding, Gu, Luo, Chang, 
Rugwiro, Li and Wen 
[29] 

1) Establish the energy consumption and resource loss model; 
2) multi-objective: system security and efficiency 

NMILP* Discrete firefly 
algorithm 

18 Hallawi, Mehnen and He 
[30] 

Minimize PMs and resource wastage MILP* GAFF and FFD 

19 Mazumdar and Pranzo 
[12] 

1) mapping incoming and failing VMs;  
2) Reducing a total number of VM migrations; 
3) Consolidate running server workloads. 

MILP Compared with BFD 

20 Vasudevan, Tian, Tang, 
Kozan and Zhang [31] 

1) A profile-based dynamic energy management framework is presented; 
2) The study estimates application finishing times and addresses real-time 
issues in application resource provisioning; 
3) Optimize energy efficiency and resource utilization 

Descriptive Repairing GA 

21 Zhao, Liu, Wang, Zhang 
and Zuo [32] 

1) Private cloud is considered; 
2) heterogeneous and multidimensional VMP; 
3) Minimize the datacenter scale and decrease the upfront cost of PMs. 

NMILP* BaB 

22 Gupta and Amgoth [33] Minimize the power consumption by reducing active PMs and minimize 
the unbalanced utilization of resources among the active PMs.  

MILP* Resource-aware 
heuristics 

23 Canali and Lancellotti 
[34] 

Using behavioral similarities to develop the solution algorithm. ILP* Class-Based placement 
technique 

24 Zheng, Li, Li, Shah, 
Zhang, Tian, Chao and 
Li [35] 

1) Incremental placement and consolidated placement of VMs; 
2) Minimize power consumption, resource wastage, server loads, inter-
VM and storage network traffic. 

NMILP* biogeography-based 
optimization 
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25 Terra-Neves, Lynce and 
Manquinho [36] 

Minimize the energy consumption, resource wastage and migration costs. MILP* Constraint-based MOO 

*the model is not solved and is mainly a descriptive model. GA=genetic algorithm, ACO=Ant Colony Optimization, FFD=Fit-

First Decreasing, MOO=Multi-Objective Optimization, BaB=branch-and-bound algorithm, CSO=Cuckoo Search Optimization, 

BFD=Best-Fit Decreasing, RR=round robin, CRO=Chemical reaction optimization, =[compared with]. 

 
2.2. Bin-packing problem and algorithms 

The baseline model of bin-packing problem packs the items into bins under the minimization 
of used bins. So, the decision is to assign the items to bins. In the most typical and simplest cases, 
the items and bins are all of one dimension. Therefore, the model is constructed as a set-covering 
model. The bin-packing problem has many applications and variants, including the VMP problem. 
Like the algorithm classes discussed for the VMP problem in Section 2.1, exact heuristics, intelligent 
algorithms and model-based solution algorithms are typically used in the studies in Table 2.  
Table 2. Studies on the bin-packing problem and solution algorithms 

No. Study Feature Model Algorithm Application 
1 Johnson [37] Compare the efficiency of fit rules Descriptive  First fit, best fit, linear-time 

approximation 
Project Schedule 

2 Fernandez de la Vega and 
Lueker [38] 

Prove the computation time of 
solving bin packing  

MILP Reduction Algorithm design 

3 Fekete and Schepers [39] Provide an asymptotic worst-case 
performance of 3/4 for a bound 

MILP Elementary bounds, dual 
feasible functions 

generating fast lower 
bounds 

4 Valério De Carvalho [40] - MILP, LP Review Vehicle routing problem 
5 Fleszar and Hindi [41] Meta-Heuristics MILP Variable neighborhood search Material wastage 
6 Alvim, Ribeiro, Glover and 

Aloise [42] 
Hybrid improvement procedure MILP 

 
Lower bounding strategies, 
dual min-max solution, load 
redistribution 

Multiprocessor 
scheduling problem 
 

7 Byholm and Porres [43] Fragmentable items MILP Approximation, metaheuristic 
algorithms 

Shared resources 

8 Abdel-Basset, Manogaran, 
Abdel-Fatah and Mirjalili 
[44] 

Nature inspired heuristics MILP Whale optimization algorithm Bin packing problem 
case study 

9 Ritt and Costa [45] consider the precedence 
constraints and the station limits 
in assembly line 

MILP Linear relaxation Assembly line 

10 Wang, Han, Dósa and Tuza 
[46] 

Game, interest matrix MILP, game 
theory 

Nash Equilibrium Item grouping 

 
2.3. Contributions 

The VMP is a NP-hard problem due to its complicated capacity constraints and the numerous 
candidate assignments of VMs to PMs. The energy consumption of idle and active PMs makes the 
VMP further complicate: the energy consumption of idle PMs is dynamically determined by the 
resultant makespan of the placement scheduling; the energy consumption of active PMs is non-
linear to the ratios of PMs’ resources occupied by the VMs. The basic FFD and BFD algorithms 
lose their effectiveness since the criteria (e.t, energy, execution time, CPUs, memory and other 
computing resources) of fitting are various in the assignments of VMs to PMs. Although most 
pioneering studies had used FFD and/or BFD algorithms as the baselines, we can not find the exact 
implementations of them in the papers in Table 1. The optimality degrees are different when using 
different criterion of fitting in the assignment process.  

To address the research gaps as elucidated above, the following endeavors are made to 
contribute to the literature. First, the idle time and non-linear energy consumption function of PMs 
are formulated in the proposed VMP model. The objective is to minimize the energy consumption 
of the idle and active PMs, and the makespan of the computing tasks of VMs. Second, a MILP is 
developed to formulate the energy-efficient VMP. The proposed MILP is solvable for schedules 
with hundreds of PMs and thousands of VMs. Third, we improve the FFD and BFD algorithms by 
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integrating the fitting criteria to solve the VMP. The solution algorithms are mathematically 
analyzed. Fourth, the proposed algorithms are analyzed by using experimental comparisons. The 
results indicate that the improved algorithms are efficient and the proposed MILP model has 
advantage when a makespan upper boundary is predetermined. 
3. Energy-efficient virtual machine placement 

The assignments of VMs to PMs in VMP dominate the energy consumption in data centers. 
When a data center receives a computational request, the request is deployed in a VM with specific 
configuration of computational resources (typically, execution time, CPUs and memory size). Then, 
the VM is assigned to a PM and executed on the PM. The energy consumption of the executions is 
determined by the VP and PM simultaneously. Additionally, the PMs are organized in groups such 
as computer server or cluster and the PMs group is powered off until all the VMs are completed; 
frequent shutdown and startup of a PM will damage the system and incur serious energy 
consumption; however, even idle PM that does not host a VM will consume much energy. To provide 
efficient computing solutions to customers, the computational service providers usually consider 
the makespan (completion time) of the computing tasks as service quality, and energy consumption 
as service cost when they develop the schedules.  
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(     )

VM 4
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Figure 1. Virtual machine placement diagram 

Figure 1 depicts the placement constraints of VMs (𝑉𝑉) to PMs (𝑃𝑃), and two quality of service 
(QoS) objectives: the makespan and the energy consumption. In the VMP schedule, a set of VMs 
are hosted by a set of PMs, constrained by the CPU and memory. In a feasible placement of a VM 
𝑣𝑣 to a PM 𝑝𝑝, the CPU demand of the VM (𝐶𝐶𝑣𝑣𝑉𝑉) must be under the CPU capacity provided by the 
PM (𝐶𝐶𝑝𝑝𝑃𝑃), e.t., 𝐶𝐶𝑣𝑣𝑉𝑉 ≤ 𝐶𝐶𝑝𝑝𝑃𝑃; similarly, the VM’s memory demand (𝑀𝑀𝑣𝑣

𝑉𝑉) should meet the PM’s capacity 
(𝑀𝑀𝑝𝑝

𝑃𝑃), 𝑀𝑀𝑣𝑣
𝑉𝑉 ≤ 𝑀𝑀𝑝𝑝

𝑃𝑃. A PM can host a sequence of VMs. Considering CPU, memory and time, the 
placements of VMs to PMs can be visualized as a three-dimension bin-packing problem, while a 
PM can only host a VM at a time interval (when the time is discretized into a set of time intervals), 
and a VM computes for 𝑇𝑇𝑣𝑣𝑉𝑉 time intervals. Active PM and VM consume energy in two levels. The 
PM 𝑝𝑝 will consume energy in the range �𝐸𝐸𝑝𝑝−,𝐸𝐸𝑝𝑝+�, which depends on the energy efficient (𝐸𝐸�𝑝𝑝𝑝𝑝) of 
the hosted VM 𝑣𝑣. 

The features of the VMP problem are summarized as follows: 
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1) The placements of VMs to PMs are constrained by the PMs’ CPUs and memory capacities, 
𝐶𝐶𝑣𝑣𝑉𝑉 ≤ 𝐶𝐶𝑝𝑝𝑃𝑃  and 𝑀𝑀𝑣𝑣

𝑉𝑉 ≤ 𝑀𝑀𝑝𝑝
𝑃𝑃  for all feasible placement 𝑥𝑥𝑝𝑝𝑝𝑝 , which is binary decision variable and 

equals one when 𝑣𝑣 is hosted by 𝑝𝑝. 
2) The placement of a VM to a PM is preemptive, which means that a PM can only host one 

VM at any time, ∑ 𝑥𝑥𝑝𝑝𝑝𝑝𝑣𝑣 ≤ 1 at any time 𝑡𝑡 for a PM 𝑝𝑝. 
3) If a PM in the placements starts, it must be on before all VMs finish. The earliest time of 

shutting down the PM is the makespan of the placements, equally ∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑥𝑥𝑝𝑝𝑝𝑝𝑣𝑣 . 
4) Two kinds of energy consumption are considered: the working energy of PM for executing 

VMs, denoted by 𝑓𝑓𝐸𝐸; the energy when a PM is active and does not host a VM, entitled as idle 
energy and denoted by 𝑓𝑓𝐼𝐼. The total energy consumption (𝑓𝑓 = 𝑓𝑓𝐸𝐸 + 𝑓𝑓𝐼𝐼) is minimized in the model. 

5) The working energy 𝑓𝑓𝐸𝐸 depends on the energy efficiency (𝐸𝐸�𝑝𝑝𝑝𝑝) and the VM’s execution 
time (𝑇𝑇𝑣𝑣𝑉𝑉). 

6) The energy efficiency (𝐸𝐸�𝑝𝑝𝑝𝑝) of a VM (𝑣𝑣) to a PM (𝑝𝑝) is formulated as (1), where �𝐸𝐸𝑝𝑝−,𝐸𝐸𝑝𝑝+� 
are the minimum and maximum energy for one hour. Equation (1) is a typical function of energy 
consumption reported in [3]. 

7) The idle energy of a PM (𝑝𝑝) is determined by 𝑡𝑡, 𝑡𝑡𝑝𝑝 and 𝐸𝐸𝑝𝑝−, namely the idle time and the 
minimum energy consumption per hour. 

𝐸𝐸�𝑝𝑝𝑝𝑝 = 𝐸𝐸𝑝𝑝− + �𝐸𝐸𝑝𝑝+ − 𝐸𝐸𝑝𝑝−� ⋅ 𝑒𝑒
−𝐶𝐶𝑣𝑣

𝑉𝑉

𝐶𝐶𝑝𝑝𝑃𝑃 (1) 

 
4. Formulation 
4.1. Notations 

To facilitate the modeling process and increase the notations’ readability, the sets, parameters 
(known data) are denoted by capital letters while the variables and indices are lower-case letters; 
the superscripts of notations are used to describe the meanings by using capitals while the subscripts 
are member indices of sets. 

The notations used in the paper are summarized as follows. Sets 𝑉𝑉𝑝𝑝  and 𝑃𝑃𝑣𝑣  are used to 
represent the feasible placements, which help reduce the number of CPU and memory constraints. 
𝑇𝑇𝑝𝑝𝑃𝑃 is the pre-occupied time of the PM 𝑝𝑝, which contributes to build a rolling-horizon placement 
schedule. Based on 𝑥𝑥𝑝𝑝𝑝𝑝, the binary variable 𝑦𝑦𝑝𝑝 represents that the PM is activated or not. Four 
time-related notations, 𝑇𝑇, 𝑡𝑡, 𝑡𝑡𝑝𝑝 and 𝑡𝑡𝑝𝑝𝐼𝐼  denote the time limit of the placement, the makespan, the 
active time and idle time of PM 𝑝𝑝. 

Set  
𝑃𝑃 A set of physical machines, indexed by 𝑝𝑝. 
𝑉𝑉 A set of VMs, indexed by 𝑣𝑣. 

Data  
𝐶𝐶𝑝𝑝𝑃𝑃 CPU capacity (MIPS) of PM 𝑝𝑝. 
𝐶𝐶𝑣𝑣𝑉𝑉 CPU requirement (MIPS) of VM 𝑣𝑣. 
𝑀𝑀𝑝𝑝
𝑃𝑃 Memory capacity (GB) of PM 𝑝𝑝. 

𝑀𝑀𝑣𝑣
𝑉𝑉 Memory capacity (GB) required by VM 𝑣𝑣. 
𝑉𝑉𝑝𝑝 The set of VMs that can be hosted by PM 𝑝𝑝, 𝑉𝑉𝑝𝑝 = �𝑣𝑣|𝐶𝐶𝑣𝑣𝑉𝑉 ≤ 𝐶𝐶𝑝𝑝𝑃𝑃,𝑀𝑀𝑣𝑣

𝑉𝑉 ≤ 𝑀𝑀𝑝𝑝
𝑃𝑃,𝑣𝑣 ∈ 𝑉𝑉�. 

𝑃𝑃𝑣𝑣 The set of PMs that can host VM 𝑣𝑣, 𝑃𝑃𝑣𝑣 = �𝑝𝑝|𝐶𝐶𝑣𝑣𝑉𝑉 ≤ 𝐶𝐶𝑝𝑝𝑃𝑃,𝑀𝑀𝑣𝑣
𝑉𝑉 ≤ 𝑀𝑀𝑝𝑝

𝑃𝑃,𝑝𝑝 ∈ 𝑃𝑃�. 
𝑇𝑇𝑣𝑣𝑉𝑉 Execution time (hour) of VM 𝑣𝑣. 
𝑇𝑇𝑝𝑝𝑃𝑃 Pre-occupied time of the PM 𝑝𝑝. 
𝐸𝐸𝑝𝑝+ Maximum energy consumption (kWh) of PM 𝑝𝑝. 
𝐸𝐸𝑝𝑝− Minimum energy consumption (kWh) of PM 𝑝𝑝. 
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𝐸𝐸𝑝𝑝𝑝𝑝 Energy consumed by PM 𝑝𝑝 for placing VM 𝑣𝑣 on it: 𝐸𝐸𝑝𝑝𝑝𝑝 = 𝐸𝐸�𝑝𝑝𝑝𝑝 ⋅ 𝑇𝑇𝑣𝑣𝑉𝑉. 
𝑇𝑇 Given makespan limit. 
𝛼𝛼 Makespan scale that is used to adjust the makespan limit. 

Variable  
𝑥𝑥𝑝𝑝𝑝𝑝 𝑥𝑥𝑝𝑝𝑝𝑝 ∈ {0,1}. 𝑥𝑥𝑝𝑝𝑝𝑝 is 1, if VM 𝑣𝑣 is assigned to PM 𝑝𝑝; otherwise, 0. 
𝑦𝑦𝑝𝑝 𝑦𝑦𝑝𝑝 ∈ {0,1}. 𝑦𝑦𝑝𝑝 is 1, if PM 𝑝𝑝 is power on and used; otherwise, 0. 
𝑡𝑡 Makespan of the VMs’ executions. 
𝑡𝑡𝑝𝑝 Time of PM 𝑝𝑝 that is power on and hosting VMs. 
𝑡𝑡𝑝𝑝𝐼𝐼  Idle time of PM 𝑝𝑝, when the PM is not occupied by any VM. 
𝑓𝑓𝐸𝐸 Total energy consumed by the VMs’ placements. 
𝑓𝑓𝐼𝐼 Total energy consumed by idle times of the PMs. 

 
4.2. Models 

A multi-objective optimization model [M1] is developed under the minimization of energy cost 
and makespan, followed by an energy minimization model [M2] constrained by the makespan upper 
bound. The energy consumption and its two parts, working energy and idle energy, are computed 
by (3)-(5). The total makespan (𝑡𝑡) is an upper bound of the makespans (𝑡𝑡𝑝𝑝) of all PMs, as constrained 
by (6) and (7). A VM must be placed on a PM and the PMs with VMs are active ones consuming 
energy, as constrained by (8) and (9). The idle energy consumption of a PM is determined by the 
idle time, which is computed by (10). The placement variable (𝑥𝑥𝑝𝑝𝑝𝑝) and the PM usage variable (𝑦𝑦𝑝𝑝) 
are binary integers, as denoted by (11). 

[M1] min(𝑓𝑓, 𝑡𝑡) (2) 
Where:  

𝑓𝑓 = 𝑓𝑓𝐸𝐸 + 𝑓𝑓𝐼𝐼 (3) 
𝑓𝑓𝐸𝐸 = � 𝑥𝑥𝑝𝑝𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝

𝑝𝑝;𝑣𝑣∈𝑉𝑉𝑝𝑝

 (4) 

𝑓𝑓𝐼𝐼 = �𝑡𝑡𝑝𝑝𝐼𝐼𝐸𝐸𝑝𝑝−
𝑝𝑝

 (5) 

𝑡𝑡 ≥ 𝑡𝑡𝑝𝑝,∀𝑝𝑝 (6) 

𝑡𝑡𝑝𝑝 = � 𝑇𝑇𝑣𝑣𝑉𝑉𝑥𝑥𝑝𝑝𝑝𝑝
𝑣𝑣∈𝑉𝑉𝑝𝑝

+ 𝑇𝑇𝑝𝑝𝑃𝑃,∀𝑝𝑝 (7) 

Subject to:  
� 𝑥𝑥𝑝𝑝𝑝𝑝
𝑝𝑝∈𝑃𝑃𝑣𝑣

= 1,∀𝑣𝑣 (8) 

� 𝑥𝑥𝑝𝑝𝑝𝑝
𝑣𝑣∈𝑉𝑉𝑝𝑝

≤ 𝑦𝑦𝑝𝑝 ⋅ 𝑀𝑀1,∀𝑝𝑝,𝑀𝑀1 = |𝑉𝑉| (9) 

𝑡𝑡𝑝𝑝𝐼𝐼 ≥ �𝑡𝑡 − 𝑡𝑡𝑝𝑝�+ �𝑦𝑦𝑝𝑝 − 1� ⋅ 𝑀𝑀2,∀𝑝𝑝;𝑀𝑀2 = �𝑇𝑇𝑣𝑣𝑉𝑉
𝑣𝑣

 (10) 

𝑥𝑥𝑝𝑝𝑝𝑝,𝑦𝑦𝑝𝑝 ∈ {0,1}, 𝑡𝑡𝑝𝑝 ≥ 0, 𝑡𝑡 ≥ 1,∀𝑝𝑝, 𝑣𝑣 (11) 
Based on [M1], considering the QoS objective of the VMP, the makespan upper bound is 

directly formulated as a hard constraint (12). The makespan limit 𝑇𝑇 is calculated by equation (13) 
and controlled by a makespan scale denoted by 𝛼𝛼. 

[M2] min{𝑓𝑓|𝑡𝑡 ≤ 𝑇𝑇, (3)− (11)} (12) 
𝑇𝑇 = 𝛼𝛼 ⋅�𝑇𝑇𝑣𝑣𝑉𝑉

𝑣𝑣∈𝑉𝑉

/|𝑃𝑃| (13) 

 
4.3. Analyzing the models 

In [M1] and [M2], the possible placements are determined by the combinations of 𝑥𝑥𝑝𝑝𝑝𝑝 . 
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Considering (8) and (9), the models are set-covering and one-dimensional bin-packing ones. So, 
they are NP hard problems and generally difficult to solve. In this section, the models are 
investigated mathematically, as baseline principles for developing exact algorithms. 

Without loss of generality, let ℒ = {𝑣𝑣1, … ,𝑣𝑣𝑛𝑛} be the list of VMs sorted in non-increasing 
order of execution time, i.e., 𝑇𝑇𝑣𝑣𝑖𝑖

𝑉𝑉 ≥ 𝑇𝑇𝑣𝑣𝑖𝑖+1
𝑉𝑉 , 𝑖𝑖 ∈ ℒ. Let 𝑇𝑇𝑖𝑖 denote the total execution time of a subset 

of VMs; 𝐾𝐾 = {1,2,⋯ } denotes a set of all these subsets; Let 𝒯𝒯 = {𝑇𝑇1,𝑇𝑇2, … }, which is sorted in 
non-decreasing order, i.e., 𝑇𝑇𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖+1. Additionally, in a feasible solution of the VMP, let 𝑝𝑝1 and 
𝑝𝑝2 denote two PMs, 𝑉𝑉𝑝𝑝1 ⊃ 𝑉𝑉𝑝𝑝2, and the hosting time of them are 𝛽𝛽1 ∙ 𝑇𝑇 and 𝛽𝛽2 ∙ 𝑇𝑇, respectively, 
𝛽𝛽1, 𝛽𝛽2 ∈ (0,1).  

In the following, besides the nature of the models, the bounds of the makespan, number of 
active PMs, idle time and energy efficiency are investigated. 
 
Proposition 1. The studied VMP problem is NP-hard. 
Proof. The problem is a generalization of the one-dimensional bin packing problem (BPP), where 
a set of VMs need to be assigned to PMs with limited makespan 𝑇𝑇 and assignment constraints, 
characterized by memory and CPU capacities. An optimal solution is to pack all the VMs into PMs 
with the minimum energy consumption. The studied problem is reduced to BPP when 𝑇𝑇 is given 
in advance and the capacities of different PMs are identical. Therefore, the problem is NP-hard since 
the BPP is such. □ 
 
Proposition 2. In the optimal solution, the makespan 𝑇𝑇 is in 𝒯𝒯, i.e., 𝑇𝑇 ∈ 𝒯𝒯. 
Proof. Consider a solution with makespan 𝑇𝑇′ ∉ 𝒯𝒯, without loss of generality, 𝑇𝑇′ satisfies 𝑇𝑇𝑖𝑖 <
𝑇𝑇′ < 𝑇𝑇𝑖𝑖+1, 𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖+1 ∈ 𝒯𝒯. According to 𝑡𝑡𝑝𝑝 ∈ 𝒯𝒯 and hosting time definition 𝑡𝑡𝑝𝑝 ≤ 𝑇𝑇′, we have 𝑡𝑡𝑝𝑝 ≤
𝑇𝑇𝑖𝑖, ∀𝑝𝑝 ∈ 𝑃𝑃. By decreasing 𝑇𝑇′ to 𝑇𝑇𝑖𝑖, the solution is unchanged and the objective is reduced since 
saving the idle times of PMs. Therefore, 𝑇𝑇𝑖𝑖 is the makespan of the solution. The proposition is 
proved. □ 
 
Proposition 3. For identical PMs, the lower bound of PM number is ⌈∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉 /𝑇𝑇⌉.  
Proof. By relaxing the VMs to fractional items, the minimum number of PMs is ⌈∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉 /𝑇𝑇⌉. 
Therefore, the lower bound of PM number is ⌈∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉 \𝑇𝑇⌉. □ 
 
Proposition 4. For heterogeneous PMs, the number of PMs is |𝑉𝑉|  if ⋂ 𝑉𝑉𝑝𝑝𝑝𝑝∈𝑃𝑃′ = ∅ , 𝑝𝑝′ =
�{𝑖𝑖, 𝑗𝑗}: 𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃, 𝑖𝑖 ≠ 𝑗𝑗�.  
Proof. ⋂ 𝑉𝑉𝑝𝑝𝑝𝑝∈𝑃𝑃 = ∅ indicates that any two VMs cannot be assigned to one identical PM. Therefore, 
the number of PMs equals to the number of VMs. □ 
 
Proposition 5. Given the makespan 𝑇𝑇 and used PMs number |𝑃𝑃|, any feasible solution has a total 
idle time 𝑡𝑡𝐼𝐼 = 𝑇𝑇 ∙ |𝑃𝑃| −∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉 .  
Proof. The total hosting time of PMs is 𝑇𝑇 ∙ |𝑃𝑃| , and the summation of VM execution times is 
∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉 . Therefore, the total idle time is the unused time of PM, i.e., 𝑇𝑇 ∙ |𝑃𝑃|− ∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉 . □ 
 
Proposition 6. Given a set of identical PMs and the makespan 𝑇𝑇, the total idle time of the solution 
is decided by |𝑃𝑃|. 
Proof. According to 𝑡𝑡𝐼𝐼 = 𝑇𝑇 ∙ |𝑃𝑃|− ∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉 , 𝑇𝑇 and ∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉  is given in advance, therefore, the 
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idle time depends on |𝑃𝑃|. □ 
 
Proposition 7. Given a makespan 𝑇𝑇, let 𝑇𝑇𝐿𝐿 denote a lower bound of total idle time for a set of 
identical PMs. Then, 

𝑇𝑇𝐿𝐿 = max �𝐿𝐿1(𝛼𝛼) + 𝐿𝐿2(𝛼𝛼):𝛼𝛼 ∈ {0,𝑇𝑇𝑣𝑣 , |𝑇𝑇 − 𝑇𝑇𝑣𝑣|},𝑣𝑣 ∈ 𝑉𝑉, 0 ≤ 𝛼𝛼 <=
𝑇𝑇
2
� 

where 

𝐿𝐿1(𝛼𝛼) = � (𝑇𝑇 − 𝑇𝑇𝑣𝑣𝑉𝑉)
𝑣𝑣∈𝑁𝑁1

,𝑁𝑁1 = {𝑣𝑣 ∈ 𝑉𝑉:𝑇𝑇𝑣𝑣𝑉𝑉 > 𝑇𝑇 − 𝛼𝛼} 

𝐿𝐿2(𝛼𝛼) = 𝑇𝑇 ∙ �
∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑁𝑁2

𝑇𝑇
� − ∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑁𝑁2 ,𝑁𝑁2 = {𝑣𝑣 ∈ 𝑉𝑉:𝑇𝑇 − 𝛼𝛼 ≥ 𝑇𝑇𝑣𝑣𝑉𝑉 ≥ 𝛼𝛼}. 

Proof. Each VM in 𝑁𝑁1 requires one single PM so that each of them has an idle time 𝑇𝑇 − 𝑇𝑇𝑣𝑣𝑉𝑉. As 
for the VMs in 𝑁𝑁2, no one of them can be assigned to the PMs used by VMs in 𝑁𝑁1 according to 
the makespan limit. The minimal number of PMs required for 𝑁𝑁2 is �∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑁𝑁2 /𝑇𝑇�, when the VMs 
in 𝑁𝑁2 can be exactly grouped into these PMs. So the lower bound of total idle time in 𝑁𝑁2 is 𝑇𝑇 ⋅
�∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑁𝑁2 /𝑇𝑇� − ∑ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑁𝑁2  . By relaxing 𝑉𝑉  with 𝑁𝑁1 ∪ 𝑁𝑁2 , the total idle time is obtained by 
𝐿𝐿1(𝛼𝛼) + 𝐿𝐿2(𝛼𝛼). Therefore, the proposition is proved. □ 
 
Proposition 8. In an optimal solution of identical PMs, there exists at most one PM of less than half 
makespan. 
Proof. When there exists two PM of half makespan, these two PMs can be merged into one to reduce 
the used PM number and the energy consumption. □ 
 

Proposition 9. In an optimal solution with 𝛽𝛽1 + 𝛽𝛽2 ≤ 1, we have ∑ (𝐸𝐸𝑝𝑝1𝑣𝑣 − 𝐸𝐸𝑝𝑝2𝑣𝑣) ⋅ 𝑇𝑇𝑣𝑣𝑉𝑉𝑣𝑣∈𝑉𝑉𝑝𝑝2
′ + 𝑇𝑇 ⋅

𝛽𝛽2 ⋅ (𝐸𝐸𝑝𝑝2
− − 𝐸𝐸𝑝𝑝1

− )− 𝑇𝑇 ⋅ 𝐸𝐸𝑝𝑝2
− > 0. 

Proof. Let 𝑉𝑉𝑝𝑝1
′  and 𝑉𝑉𝑝𝑝2

′  denote the set of VMs that are assigned to 𝑝𝑝1 and 𝑝𝑝2. The total cost is 

𝑓𝑓 = � � 𝐸𝐸𝑝𝑝𝑝𝑝 ⋅ 𝑇𝑇𝑣𝑣𝑉𝑉

𝑣𝑣∈𝑉𝑉𝑝𝑝′𝑝𝑝∈{𝑝𝑝1,𝑝𝑝2}

+ 𝑇𝑇 ⋅ (1− 𝛽𝛽1) ⋅ 𝐸𝐸𝑝𝑝1
− + 𝑇𝑇 ⋅ (1− 𝛽𝛽2) ⋅ 𝐸𝐸𝑝𝑝2

− . 

After merging the VMs of 𝑝𝑝2 into 𝑝𝑝1, the total cost is  

𝑓𝑓′ = � 𝐸𝐸𝑝𝑝1𝑣𝑣 ⋅ 𝑇𝑇𝑣𝑣
𝑉𝑉

𝑣𝑣∈𝑉𝑉𝑝𝑝1
′ ⋃𝑉𝑉𝑝𝑝2

′

+ 𝑇𝑇 ⋅ (1− 𝛽𝛽1 − 𝛽𝛽2) ⋅ 𝐸𝐸𝑝𝑝1
− . 

If 𝑓𝑓′ ≥ 𝑓𝑓, the total cost of using both PMs is lower than the cost of 𝑝𝑝1. □ 
 
Proposition 10. For a set of PMs with identical 𝐸𝐸𝑝𝑝−, the hosting time of the PM with lowest energy 
efficiency is 𝑇𝑇. 
Proof. Let 𝑝𝑝1 denote the lowest energy efficiency PM, i.e., 𝐸𝐸𝑝𝑝1,𝑣𝑣 ≤ 𝐸𝐸𝑝𝑝,𝑣𝑣, 𝑝𝑝 ∈ 𝑃𝑃, 𝑣𝑣 ∈ 𝑉𝑉. 𝑝𝑝𝑚𝑚 is 
the PM with 𝑇𝑇 . The sets of VMs assigned to 𝑝𝑝1  and 𝑝𝑝𝑚𝑚  are denoted by 𝑉𝑉𝑝𝑝1  and 𝑉𝑉𝑝𝑝𝑚𝑚 , 
respectively. Let 𝑡𝑡𝑝𝑝1 = 𝑇𝑇′  and 𝑡𝑡𝑝𝑝𝑚𝑚 = 𝑇𝑇 , 𝑇𝑇′ < 𝑇𝑇 . The working energy consumption is 𝑓𝑓𝐸𝐸 =
∑ 𝐸𝐸𝑝𝑝1𝑣𝑣 ∙ 𝑇𝑇𝑣𝑣𝑣𝑣∈𝑉𝑉𝑝𝑝1 + ∑ 𝐸𝐸𝑝𝑝𝑚𝑚𝑣𝑣 ∙ 𝑇𝑇𝑣𝑣𝑣𝑣∈𝑉𝑉𝑝𝑝𝑚𝑚 . By swapping the VMs in 𝑉𝑉𝑝𝑝1 and 𝑉𝑉𝑝𝑝𝑚𝑚, the working energy 

consumption is 𝑓𝑓𝐸𝐸′ = ∑ 𝐸𝐸𝑝𝑝𝑚𝑚𝑣𝑣 ∙ 𝑇𝑇𝑣𝑣𝑣𝑣∈𝑉𝑉𝑝𝑝1 + ∑ 𝐸𝐸𝑝𝑝1𝑣𝑣 ∙ 𝑇𝑇𝑣𝑣𝑣𝑣∈𝑉𝑉𝑝𝑝𝑚𝑚 . The changed energy consumption ∆𝑓𝑓𝐸𝐸 
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is calculated by 
∆𝑓𝑓𝐸𝐸 = 𝑓𝑓𝐸𝐸′ − 𝑓𝑓𝐸𝐸 

= � �𝐸𝐸𝑝𝑝𝑚𝑚𝑣𝑣 − 𝐸𝐸𝑝𝑝1𝑣𝑣� ∙ 𝑇𝑇𝑣𝑣
𝑣𝑣∈𝑉𝑉𝑝𝑝1

+ � �𝐸𝐸𝑝𝑝1𝑣𝑣 − 𝐸𝐸𝑝𝑝𝑚𝑚𝑣𝑣� ∙ 𝑇𝑇𝑣𝑣
𝑣𝑣∈𝑉𝑉𝑝𝑝𝑚𝑚

 

= �𝐸𝐸𝑝𝑝𝑚𝑚𝑣𝑣 − 𝐸𝐸𝑝𝑝1𝑣𝑣� ∙ � � 𝑇𝑇𝑣𝑣
𝑣𝑣∈𝑉𝑉𝑝𝑝1

− � 𝑇𝑇𝑣𝑣
𝑣𝑣∈𝑉𝑉𝑝𝑝𝑚𝑚

� 

= �𝐸𝐸𝑝𝑝𝑚𝑚𝑣𝑣 − 𝐸𝐸𝑝𝑝1𝑣𝑣� ∙ (𝑇𝑇′ − 𝑇𝑇) 
where 𝐸𝐸𝑝𝑝𝑚𝑚𝑣𝑣 − 𝐸𝐸𝑝𝑝1𝑣𝑣 > 0  and 𝑇𝑇′ − 𝑇𝑇 < 0 . Therefore, ∆𝑓𝑓𝐸𝐸 < 0  which implies a reduction of 
energy consumption by adding the hosting time of PM with lowest energy-efficiency. □ 
 
Proposition 11. For the set of PMs with identical energy efficiency, the idle time of lowest 𝐸𝐸𝑝𝑝− PM 
is maximized. 
Proof. Similar with the previous proof of Proposition 10. □ 
 
5. Exact solution algorithms 

As reviewed in Table 1, the nature-inspired intelligent algorithms are the main stream of 
algorithms applied to VMP, while most of these algorithms are compared with exact heuristics 
algorithms, mainly including FFD and BFD. Generally, the FFD and BFD are fast while they are 
not competitive comparing with the intelligent algorithms in terms of optimality. Even so, few 
studies elaborate the procedures of FFD and BFD although the makespan and energy cost are 
generally involved as criteria of choosing VMs for placements. Generally, two kinds of exact 
algorithms can be developed, namely model-based heuristics and meta-heuristics. In this study, the 
branch-and-bound (BaB) is taken as the first kind of exact algorithms, which are implemented in 
on-the-shelf MILP solvers, e.g., Cplex and Gurobi. As for the second kind, three algorithms (the 
Algorithms 1-3) are developed here using the notations in Section 4. 

The Algorithm 1 is a detailed design of BFD heuristic which is popular in the research 
community of bin-packing problems. We improve the basic BFD by designing sorting rule and fit 
criteria based on hosting time and energy efficiency, and integrating the fit criteria in the procedure 
of the algorithms. The algorithm is developed with the following considerations. First, the algorithm 
selects the best-fit criterion that determines the inserting order of VMs and the priority order of PMs. 
Second, the sorted VMs are selected sequentially and assigned to the first active PM that satisfies 
the CPU and memory requirements. Finally, the algorithm selects a serviced PMs more 
preferentially than an empty PMs for hosting VMs to reduce the number of PMs in usage. If no 
serviced PM satisfies the CPU and memory requirements of the selected VM, the algorithm assign 
the VM to the empty PM of the lowest energy efficiency. As a summary, the Algorithm 1 constructs 
a solution of VMP by inserting VMs sequentially into the schedules of PMs. 
 

Algorithm 1 Best-Fit Decreasing heuristic algorithm (BFD) 
Input 𝑉𝑉, 𝑃𝑃, 𝑇𝑇𝑣𝑣𝑉𝑉, 𝐸𝐸𝑝𝑝+, 𝐸𝐸𝑝𝑝−, 𝐸𝐸𝑝𝑝𝑝𝑝, 𝐶𝐶𝑝𝑝𝑃𝑃, 𝐶𝐶𝑣𝑣𝑉𝑉, 𝑀𝑀𝑝𝑝

𝑃𝑃, 𝑀𝑀𝑣𝑣
𝑉𝑉, 𝑇𝑇 

Output 𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝, 𝑡𝑡 
Step 1 Initialize 𝑥𝑥𝑝𝑝𝑝𝑝 = 0, 𝑦𝑦𝑝𝑝 = 0, 𝑡𝑡𝑝𝑝 = 0, 𝑡𝑡 = 0, 𝑝𝑝 ∈ 𝑃𝑃, 𝑣𝑣 ∈ 𝑉𝑉 
Step 2 Execute [VA] or [VD]: 
 [VA] Sort 𝑉𝑉 into 𝑉𝑉′ by 𝑇𝑇𝑣𝑣𝑉𝑉 in ascending order; 
 [VD] Sort 𝑉𝑉 into 𝑉𝑉′ by 𝑇𝑇𝑣𝑣𝑉𝑉 in decreasing order. 
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Step 3 Initialize a set 𝒫𝒫 holding the serviced PM, 𝒫𝒫 = ∅ 
Step 4 For 𝑣𝑣 in 𝑉𝑉′ 
Step 4.1 Set 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
Step 4.2 Execute [PE] or [PT]: 
 [PE] Sort 𝒫𝒫 into 𝒫𝒫′ by 𝐸𝐸�𝑝𝑝𝑝𝑝 in ascending order, 𝑝𝑝 ∈ 𝒫𝒫. 
 [PT] Sort 𝒫𝒫 into 𝒫𝒫′ by 𝑡𝑡𝑝𝑝 in ascending order, 𝑝𝑝 ∈ 𝒫𝒫. 
Step 4.3 For 𝑝𝑝 in 𝒫𝒫′ 
Step 4.3.1 If 𝑡𝑡𝑝𝑝 + 𝑇𝑇𝑣𝑣𝑉𝑉 ≤ 𝑇𝑇 and 𝐶𝐶𝑣𝑣𝑉𝑉 ≤ 𝐶𝐶𝑝𝑝𝑃𝑃 and 𝑀𝑀𝑣𝑣

𝑉𝑉 ≤ 𝑀𝑀𝑝𝑝
𝑃𝑃 

Step 4.3.1.1 Assign 𝑣𝑣 to 𝑝𝑝: 𝑥𝑥𝑝𝑝𝑝𝑝 ← 1, 𝑦𝑦𝑝𝑝 ← 1, 𝑡𝑡𝑝𝑝 ← �𝑡𝑡𝑝𝑝 + 𝑇𝑇𝑣𝑣𝑉𝑉� 
Step 4.3.1.2 Set 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
Step 4.3.1.3 Break 
 End if 
 End for 
Step 4.4 If 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is True 
Step 4.4.1 Go to Step 4 
 end If 
Step 4.5 Set 𝒫𝒫� = 𝑃𝑃\𝒫𝒫 
Step 4.6 [PE] Sort 𝒫𝒫�  into 𝒫𝒫′ by 𝐸𝐸�𝑝𝑝𝑝𝑝 in ascending order, 𝑝𝑝 ∈ 𝒫𝒫� . 
Step 4.7 For 𝑝𝑝 in 𝒫𝒫�′ 
Step 4.7.1 If 𝑡𝑡𝑝𝑝 + 𝑇𝑇𝑣𝑣𝑉𝑉 ≤ 𝑇𝑇 and 𝐶𝐶𝑣𝑣𝑉𝑉 ≤ 𝐶𝐶𝑝𝑝𝑃𝑃 and 𝑀𝑀𝑣𝑣

𝑉𝑉 ≤ 𝑀𝑀𝑝𝑝
𝑃𝑃 

Step 4.7.1.1 Assign 𝑣𝑣 to 𝑝𝑝: 𝑥𝑥𝑝𝑝𝑝𝑝 ← 1, 𝑦𝑦𝑝𝑝 ← 1, 𝑡𝑡𝑝𝑝 ← �𝑡𝑡𝑝𝑝 + 𝑇𝑇𝑣𝑣𝑉𝑉� 
Step 4.7.1.2 Go to Step 4. 
 End if 
 End for 
 End for 
Step 5 𝑡𝑡 = max

𝑝𝑝∈𝑃𝑃
𝑡𝑡𝑝𝑝 

Step 6 Output 𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝, 𝑡𝑡 
 
The Algorithm 1 has four variants considering choices in the Steps 2 ([VA] or [VD]) and 4.2 

([PE] or [PT]).  
1) VAPE. The algorithm sorts the unassigned VMs in a descending order by execution time 

and assigns VMs to active PMs with the lowest energy efficiency.  
2) VAPT. The algorithm sorts the unassigned VMs in a descending order by execution time, 

and inspired by Proposition 10, assigns VMs to active PMs with the shortest hosting time.  
3) VDPE. The algorithm sorts the unassigned VMs in an ascending order by execution time 

and assigns VMs to active PMs with the lowest energy efficiency. 
4) VDPT. The algorithm sorts the unassigned VMs in a descending order by execution time, 

and inspired by Proposition 10, assigns VMs to active PMs with the shortest hosting time. 
In the following, use the Algorithm 1 [*] to represent the Algorithm 1 using the choice [*]; for 

simplicity, [*] can also be used to represent the Algorithm 1 [ *] when it will not produce confusions. 
 
Proposition 12. The working energy consumption of the solution returned by the Algorithm 1 [PE] 
is a lower bound of the working energy consumption of [M2] when the makespan is unlimited (𝑇𝑇 =
+∞) and the resultant PMs in the solutions of the Algorithm 1 and [M2] are same. 
Proof. The set of PMs in the optimal solutions is denoted as 𝑃𝑃∗. In the solution, each VM of the set 
𝑉𝑉  must be assigned to a PM in 𝑃𝑃∗ . The Algorithm 1 [PE] selects a PM with minimal energy 
consumption for each VM, resulting in a total working energy consumption 𝑓𝑓𝐸𝐸,𝑃𝑃𝑃𝑃,  

𝑓𝑓𝐸𝐸,𝑃𝑃𝑃𝑃 = ∑ min
𝑝𝑝∈𝑃𝑃∗

�𝐸𝐸𝑝𝑝𝑝𝑝�𝑖𝑖∈𝑉𝑉 . 
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On the other hand, for a VM 𝑖𝑖, its minimal working energy consumption is denoted by min
𝑝𝑝∈𝑃𝑃∗

�𝐸𝐸𝑝𝑝𝑝𝑝�, 

and thus the total working energy consumption (𝑓𝑓𝐸𝐸) in the optimal solution is not lower than the 
total of minimal working energy consumption. So, we have the inequality:  

𝑓𝑓𝐸𝐸 ≥ ∑ min
𝑝𝑝∈𝑃𝑃∗

�𝐸𝐸𝑝𝑝𝑝𝑝�𝑖𝑖∈𝑉𝑉 = 𝑓𝑓𝐸𝐸,𝑃𝑃𝑃𝑃. 

Therefore, the working energy consumption from the Algorithm 1 [PE] is a lower bound of the 
working energy consumption of [M2]. □ 
 
Proposition 13. The solutions of the Algorithm 1 [PE] and Algorithm 1 [PT] cannot dominate each 
other when the objective is to minimize 𝑓𝑓 = 𝑓𝑓𝐸𝐸 + 𝑓𝑓𝐼𝐼 or 𝑓𝑓𝐼𝐼.  
Proof. Without loss of generality, we assume that two PMs, 𝑝𝑝1 and 𝑝𝑝2 satisfying 𝑡𝑡𝑝𝑝 = 𝑡𝑡𝑝𝑝1 = 𝑡𝑡𝑝𝑝2 
and they must host two VMs with execution time 𝑡𝑡 = 𝑇𝑇𝑣𝑣, which is denoted by 𝑣𝑣. Therefore, the 
sequence of selecting VMs makes no difference on the solution. Given that the PM 𝑝𝑝1 is more 
efficient than the PM 𝑝𝑝2, the working energy consumption of VM on 𝑝𝑝1 and 𝑝𝑝2 are denoted as 
𝐸𝐸�𝑝𝑝1,𝑣𝑣 and 𝐸𝐸�𝑝𝑝2,𝑣𝑣. The minimum idle energy of 𝑝𝑝1 and 𝑝𝑝2 are denoted as 𝐸𝐸𝑝𝑝1

−  and 𝐸𝐸𝑝𝑝2
− . 

By using [PE], the two VMs are assigned to the efficient PM, namely 𝑝𝑝1. The working energy and 
idle energy consumptions, and the total energy consumption are calculated by 

𝑓𝑓𝐸𝐸,𝑃𝑃𝑃𝑃 = 2 ⋅ 𝐸𝐸�𝑝𝑝1,𝑣𝑣 ⋅ 𝑡𝑡, and 𝑓𝑓𝐼𝐼,𝑃𝑃𝑃𝑃 = 2 ⋅ 𝐸𝐸𝑝𝑝2
− ⋅ 𝑡𝑡, 

𝑓𝑓𝑃𝑃𝑃𝑃 = 2 ⋅ 𝐸𝐸�𝑝𝑝1,𝑣𝑣 ⋅ 𝑡𝑡 + 2 ⋅ 𝐸𝐸𝑝𝑝2
− ⋅ 𝑡𝑡. 

By using [PT], the two VMs are equal assigned to PM 𝑝𝑝1 and 𝑝𝑝2, so the assignment produces no 
idle time. The total energy consumption is then calculated by 

𝑓𝑓𝑃𝑃𝑃𝑃 = 𝐸𝐸�𝑝𝑝1,𝑣𝑣 ⋅ 𝑡𝑡 + 𝐸𝐸�𝑝𝑝2,𝑣𝑣 ⋅ 𝑡𝑡. 
By comparing the total energy consumptions of using [PE] and [PT], we found that 

𝐸𝐸�𝑝𝑝1,𝑣𝑣 + 2 ⋅ 𝐸𝐸𝑝𝑝2
− �

>
=
<
�𝐸𝐸�𝑝𝑝2,𝑣𝑣 ⟹ 𝑓𝑓𝑃𝑃𝑃𝑃 �

>
=
<
�𝑓𝑓𝑃𝑃𝑃𝑃. 

The result indicates that the dominance of [PE] on [PT] is determined by the efficiency of the used 
PMs and the idle energy efficiency of the lower efficient PM. The proposition is proved. □ 
 
Proposition 14. When [PT] is chosen, [VA] and [VD] cannot dominate each other when the 
objective is to minimize 𝑓𝑓 = 𝑓𝑓𝐸𝐸 + 𝑓𝑓𝐼𝐼 or 𝑓𝑓𝐼𝐼. 
Proof. Assume that two PMs (𝑝𝑝1  and 𝑝𝑝2 ) have the same energy parameters, 𝐸𝐸𝑝𝑝+  and 𝐸𝐸𝑝𝑝− , and 
three VMs (𝑣𝑣1, 𝑣𝑣2 and 𝑣𝑣3) are to be assigned. The execution times of these VMs are denoted as 
𝑡𝑡1 , 𝑡𝑡2 , 𝑡𝑡3 , 𝑡𝑡1 < 𝑡𝑡2 < 𝑡𝑡3  and 𝑡𝑡1 + 𝑡𝑡2 > 𝑡𝑡3 . By using [VA], 𝑣𝑣1  is first assigned to 𝑝𝑝1 ; 𝑣𝑣2  is 
assigned to 𝑝𝑝2 and finally 𝑣𝑣3 is assigned to 𝑝𝑝1. Thus, the executing times of 𝑝𝑝1 and 𝑝𝑝2 for the 
VMs are  

𝑡𝑡𝑝𝑝1 = 𝑡𝑡1 + 𝑡𝑡3, and 𝑡𝑡𝑝𝑝2 = 𝑡𝑡2. 
So, the total energy consumption of using [VA] is 

𝑓𝑓𝑉𝑉𝑉𝑉 = (𝑡𝑡1 + 𝑡𝑡2 + 𝑡𝑡3) ⋅ 𝐸𝐸𝑝𝑝𝑝𝑝 + |𝑡𝑡1 + 𝑡𝑡3 − 𝑡𝑡2| ⋅ 𝐸𝐸𝑝𝑝1
− . 

By using [VD], firstly 𝑣𝑣3 is assigned to 𝑝𝑝1; secondly, 𝑣𝑣2 is assigned to 𝑝𝑝2; and finally, 𝑣𝑣1 is 
assigned to 𝑝𝑝2. Similar with the calculation of energy consumption in using [VA], we obtain 

𝑓𝑓𝑉𝑉𝑉𝑉 = (𝑡𝑡1 + 𝑡𝑡2 + 𝑡𝑡3) ⋅ 𝐸𝐸𝑝𝑝𝑝𝑝 + |𝑡𝑡3 − 𝑡𝑡1 − 𝑡𝑡2| ⋅ 𝐸𝐸𝑝𝑝2
−  

By comparing 𝑓𝑓𝑉𝑉𝑉𝑉 and 𝑓𝑓𝑉𝑉𝑉𝑉, we found that  
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𝐸𝐸𝑝𝑝1
−

𝐸𝐸𝑝𝑝2
− �

>
=
<
� t1+t3−t2
t3−t1−t2

⟹ 𝑓𝑓𝑉𝑉𝑉𝑉 �
>
=
<
�𝑓𝑓𝑉𝑉𝑉𝑉. 

The result indicates that the idle energy consumption is affected by the differences of execution 
times among VMs. It proves that the strategy of scheduling the VMs with long execution times in 
advance is not always effective when the PMs’ active times are to be balanced. The proposition is 
proved. □ 
 
Proposition 15. When [PE] is chosen, (1) the impacts of [VA] and [VD] on the total energy 
consumption are same when the makespan is unlimited (𝑇𝑇 = +∞), and (2) [VA] and [VD] cannot 
dominate each other when the makespan is limited (𝑇𝑇 < +∞).  
Proof. (1) The proof by contradiction is used here. When [VA] and [VD] are used to schedule the 
VM 𝑖𝑖 , the PMs 𝑝𝑝1  and 𝑝𝑝2  are chosen individually. Assume that 𝑝𝑝1  is different from 𝑝𝑝2 , and 

𝐸𝐸𝑝𝑝1,𝑖𝑖 ≠ 𝐸𝐸𝑝𝑝2,𝑖𝑖. However, considering that [PE] is chosen in advance, we obtain 𝐸𝐸𝑝𝑝1,𝑖𝑖 = min
𝑝𝑝∈𝑃𝑃

�𝐸𝐸𝑝𝑝𝑝𝑝� 

and 𝐸𝐸𝑝𝑝2,𝑖𝑖 = min
𝑝𝑝∈𝑃𝑃

�𝐸𝐸𝑝𝑝𝑝𝑝�, which is conflict with 𝐸𝐸𝑝𝑝1,𝑖𝑖 ≠ 𝐸𝐸𝑝𝑝2,𝑖𝑖. Therefore 𝑝𝑝1 and 𝑝𝑝2 must be same. 

Proved. □ 
(2) Introduce an example first. The execution times of three VMs (𝑣𝑣1,𝑣𝑣2,𝑣𝑣3) are denoted by 𝑡𝑡1, 𝑡𝑡2, 
𝑡𝑡3, where 𝑡𝑡1 < 𝑡𝑡2 < 𝑡𝑡3, 𝑡𝑡1 + 𝑡𝑡2 > 𝑡𝑡3; Given two PMs (𝑝𝑝1, 𝑝𝑝2), 𝑝𝑝1 is more efficient than 𝑝𝑝2; a 
makespan 𝑇𝑇 is given and 𝑡𝑡1 + 𝑡𝑡2 < 𝑇𝑇, 𝑇𝑇 < 𝑡𝑡1 + 𝑡𝑡3. 
By using [VA], 𝑣𝑣1  and 𝑣𝑣2  are assigned to 𝑝𝑝1  because 𝑡𝑡1 + 𝑡𝑡2 < 𝑇𝑇 , 𝐸𝐸𝑝𝑝1,𝑣𝑣1 < 𝐸𝐸𝑝𝑝2,𝑣𝑣1  and 
𝐸𝐸𝑝𝑝1,𝑣𝑣2 < 𝐸𝐸𝑝𝑝2,𝑣𝑣2 , then 𝑣𝑣3  has to be assigned to 𝑝𝑝2  because 𝑇𝑇 < 𝑡𝑡1 + 𝑡𝑡3 . The total energy 
consumption 𝑓𝑓𝑉𝑉𝑉𝑉 is  

𝑓𝑓𝑉𝑉𝑉𝑉 = 𝐸𝐸𝑝𝑝1,𝑣𝑣1 + 𝐸𝐸𝑝𝑝1,𝑣𝑣2 + 𝐸𝐸𝑝𝑝2,𝑣𝑣3 + |𝑡𝑡1 + 𝑡𝑡2 − 𝑡𝑡3| ⋅ 𝐸𝐸𝑝𝑝2
− . 

By using rule VD, 𝑣𝑣3 is assigned to 𝑝𝑝1, then 𝑣𝑣2 and 𝑣𝑣1 are assigned to 𝑝𝑝2 because 𝑇𝑇 < 𝑡𝑡1 +
𝑡𝑡3. The total energy consumption 𝑓𝑓𝑉𝑉𝑉𝑉 is  

𝑓𝑓𝑉𝑉𝑉𝑉 = 𝐸𝐸𝑝𝑝1,𝑣𝑣3 + 𝐸𝐸𝑝𝑝2,𝑣𝑣2 + 𝐸𝐸𝑝𝑝2,𝑣𝑣1 + |𝑡𝑡1 + 𝑡𝑡2 − 𝑡𝑡3| ⋅ 𝐸𝐸𝑝𝑝1
− . 

To compare 𝑓𝑓𝑉𝑉𝑉𝑉 and 𝑓𝑓𝑉𝑉𝑉𝑉, we relax the difference of 𝐸𝐸𝑝𝑝1,𝑖𝑖 and 𝐸𝐸𝑝𝑝2,𝑖𝑖, 𝑖𝑖 ∈ {𝑣𝑣1,𝑣𝑣2,𝑣𝑣3}. We obtain 

𝐸𝐸𝑝𝑝1
− �

<
=
>
�𝐸𝐸𝑝𝑝2

− ⟹ 𝑓𝑓𝑉𝑉𝑉𝑉 �
>
=
<
�𝑓𝑓𝑉𝑉𝑉𝑉. 

The result indicates that [VA] and [VD] can not dominate each other. It proves that the strategy of 
scheduling the VMs with long execution times in advance is not always effective when the energy-
efficient PMs are to be scheduled with higher priorities. The proposition is proved. □ 

As a summary of Proposition 14 and Proposition 15, the most popular FFD and BFD criteria 
are not always effective when the working and idle energy consumption, and the makespan are 
simultaneously optimized. 

The Algorithms 2-3 are greedy algorithms while they use different assessment criteria of PM 
schedules when the VMs are chosen for insertion to these schedules. In the Algorithm 2, the total 
energy cost including 𝑓𝑓𝐸𝐸  and 𝑓𝑓𝐼𝐼  is tried to be minimized, while the Algorithm 3 mainly 
minimizes the working energy consumption 𝑓𝑓𝐸𝐸. 

In the Algorithm 2, the following steps are refined. First, the assessment criteria of matching 
VM to PM is the increment of summation of 𝑓𝑓𝐸𝐸 and 𝑓𝑓𝐼𝐼, as evaluated through step 2.1.1-2.1.5. 
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Second, for an unassigned VM, the candidate PMs are sorted by the increment of total energy 
consumption in an ascending order, as described in step 2.2. Third, the PM that has the lowest energy 
increment and satisfies the requirement is selected to service the chosen VM, as described in step 
2.3.  

In the Algorithm 3, the following additional features are implemented. First, the assessment 
criterion of the PM is the energy efficiency 𝐸𝐸�𝑝𝑝𝑝𝑝. Second, the algorithm sorts the candidate PMs by 
𝐸𝐸�𝑝𝑝𝑝𝑝 in an ascending order, as described in step 2.1. Third, the first PM satisfying the requirement 
in the sorted PMs is assigned to host the selected VM, as described in step 2.2. 

 
Algorithm 2 Greedy placement, 𝐺𝐺(𝑓𝑓) 
Input 𝑉𝑉, 𝑃𝑃, 𝑇𝑇𝑣𝑣𝑉𝑉, 𝐸𝐸𝑝𝑝+, 𝐸𝐸𝑝𝑝−, 𝐸𝐸𝑝𝑝𝑝𝑝, 𝐶𝐶𝑝𝑝𝑃𝑃, 𝐶𝐶𝑣𝑣𝑉𝑉, 𝑀𝑀𝑝𝑝

𝑃𝑃, 𝑀𝑀𝑣𝑣
𝑉𝑉, 𝑇𝑇 

Output 𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝, 𝑡𝑡 
Step 1 Initialize 𝑥𝑥𝑝𝑝𝑝𝑝 = 0, 𝑦𝑦𝑝𝑝 = 0, 𝑡𝑡𝑝𝑝 = 0, 𝑡𝑡 = 0, 𝑓𝑓𝐼𝐼 = 0, 𝑓𝑓𝐸𝐸 = 0, 𝑝𝑝 ∈ 𝑃𝑃, 𝑣𝑣 ∈ 𝑉𝑉 
Step 2 For 𝑣𝑣 in 𝑉𝑉 
Step 2.1 For 𝑚𝑚 in 𝑃𝑃 
 Calculate the increment of 𝑓𝑓𝐼𝐼 and 𝑓𝑓𝐸𝐸 by assigning 𝑣𝑣 to 𝑚𝑚: 
Step 2.1.1 𝑡𝑡𝑝𝑝′ ← 𝑡𝑡𝑝𝑝,𝑝𝑝 ∈ 𝑃𝑃 
Step 2.1.2 𝑡𝑡𝑚𝑚′ ← 𝑡𝑡𝑚𝑚′ + 𝑇𝑇𝑣𝑣𝑉𝑉 
Step 2.1.3 𝑡𝑡′ = max

𝑝𝑝∈𝑃𝑃
𝑡𝑡𝑝𝑝′  

Step 2.1.4 𝑓𝑓𝑚𝑚𝐼𝐼 = �𝐸𝐸𝑝𝑝− ∙ �𝑡𝑡′ − 𝑡𝑡𝑝𝑝′ �
𝑝𝑝∈𝑃𝑃

− 𝑓𝑓𝐼𝐼 

Step 2.1.5 𝑓𝑓𝑚𝑚𝐸𝐸 = 𝐸𝐸�𝑚𝑚𝑚𝑚 
 End for 
Step 2.2 Sort 𝑃𝑃 into 𝑃𝑃′ by (𝑓𝑓𝑝𝑝𝐼𝐼 + 𝑓𝑓𝑝𝑝𝐸𝐸) in ascending order, 𝑝𝑝 ∈ 𝑃𝑃 
Step 2.3 For 𝑝𝑝 in 𝑃𝑃′ 
Step 2.3.1 If 𝑡𝑡𝑝𝑝 + 𝑇𝑇𝑣𝑣𝑉𝑉 ≤ 𝑇𝑇 and 𝐶𝐶𝑣𝑣𝑉𝑉 ≤ 𝐶𝐶𝑝𝑝𝑃𝑃 and 𝑀𝑀𝑣𝑣

𝑉𝑉 ≤ 𝑀𝑀𝑝𝑝
𝑃𝑃 

Step 2.3.1.1 Assign 𝑣𝑣 to 𝑝𝑝: 𝑥𝑥𝑝𝑝𝑝𝑝 ← 1, 𝑦𝑦𝑝𝑝 ← 1, 𝑡𝑡𝑝𝑝 ← �𝑡𝑡𝑝𝑝 + 𝑇𝑇𝑣𝑣𝑉𝑉� 
Step 2.3.1.2 Break 
 End if 
 End for 
Step 2.4 𝑡𝑡 = max

𝑝𝑝∈𝑃𝑃
𝑡𝑡𝑝𝑝 

Step 2.5 𝑓𝑓𝐼𝐼 = �𝐸𝐸𝑝𝑝− ∙ �𝑡𝑡 − 𝑡𝑡𝑝𝑝�
𝑝𝑝∈𝑃𝑃

 

 End for 
Step 3 Output 𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝, 𝑡𝑡 

 
Algorithm 3 Choose most energy-efficient PM from available PMs, 𝐺𝐺(𝑓𝑓𝐸𝐸) 
Input 𝑉𝑉, 𝑃𝑃, 𝑇𝑇𝑣𝑣𝑉𝑉, 𝐸𝐸𝑝𝑝+, 𝐸𝐸𝑝𝑝−, 𝐸𝐸𝑝𝑝𝑝𝑝, 𝐶𝐶𝑝𝑝𝑃𝑃, 𝐶𝐶𝑣𝑣𝑉𝑉, 𝑀𝑀𝑝𝑝

𝑃𝑃, 𝑀𝑀𝑣𝑣
𝑉𝑉, 𝑇𝑇 

Output 𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝, 𝑡𝑡 
Step 1 Initialize 𝑥𝑥𝑝𝑝𝑝𝑝 = 0, 𝑦𝑦𝑝𝑝 = 0, 𝑡𝑡𝑝𝑝 = 0, 𝑡𝑡 = 0, 𝑝𝑝 ∈ 𝑃𝑃, 𝑣𝑣 ∈ 𝑉𝑉 
Step 2 For 𝑣𝑣 in 𝑉𝑉 
Step 2.1 Sort 𝑃𝑃 into 𝑃𝑃′ by 𝐸𝐸�𝑝𝑝𝑝𝑝 in ascending order, 𝑝𝑝 ∈ 𝑃𝑃.  
Step 2.2 For 𝑝𝑝 in 𝑃𝑃′ 
Step 2.2.1 If 𝑡𝑡𝑝𝑝 + 𝑇𝑇𝑣𝑣𝑉𝑉 ≤ 𝑇𝑇 and 𝐶𝐶𝑣𝑣𝑉𝑉 ≤ 𝐶𝐶𝑝𝑝𝑃𝑃 and 𝑀𝑀𝑣𝑣

𝑉𝑉 ≤ 𝑀𝑀𝑝𝑝
𝑃𝑃 

Step 2.2.1.1 Assign 𝑣𝑣 to 𝑝𝑝: 𝑥𝑥𝑝𝑝𝑝𝑝 ← 1, 𝑦𝑦𝑝𝑝 ← 1, 𝑡𝑡𝑝𝑝 ← �𝑡𝑡𝑝𝑝 + 𝑇𝑇𝑣𝑣𝑉𝑉� 
Step 2.2.1.2 Break 
 End if 
 End for 
 End for 
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Step 3 𝑡𝑡 = max
𝑝𝑝∈𝑃𝑃

𝑡𝑡𝑝𝑝 
Step 4 Output 𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 

 
Computational complexity of the exact algorithms is analyzed as follows: 
Algorithm 1. We use the bubble sort to rank the VMs in Step 2 and the PMs in Step 4.2 and 

4.6. Therefore, in the worst case, the computational complexity of the sorts is 𝑂𝑂(|𝑉𝑉|2 + |𝑉𝑉| ⋅ |𝑃𝑃|2). 
The assignment is completed by comparing the cost of assigning one VM to every PM, thus in the 
worst case, the computational complexity of the assignment is 𝑂𝑂(|𝑉𝑉| ⋅ |𝑃𝑃|) . So, the overall 
computational complexity of the Algorithm 1 is 𝑂𝑂(|𝑉𝑉|2 + |𝑉𝑉| ⋅ |𝑃𝑃|2 + |𝑉𝑉| ⋅ |𝑃𝑃|). 

Algorithm 2. The computational complexity of the incremental energy consumption of PMs 
hosting the VMs is 𝑂𝑂(|𝑉𝑉| ⋅ |𝑃𝑃|) in Step 2.1 and the one of sort is 𝑂𝑂(|𝑉𝑉| ⋅ |𝑃𝑃|2) in Step 2.2. The 
assignment of VMs to PMs in Step 2.3 is 𝑂𝑂(|𝑉𝑉| ⋅ |𝑃𝑃|) in the worst case. Therefore, the overall 
computational complexity is 𝑂𝑂(2 ⋅ |𝑉𝑉| ⋅ |𝑃𝑃| + |𝑉𝑉| ⋅ |𝑃𝑃|2). 

Algorithm 3. The computational complexity of sort in Step 2.1 is 𝑂𝑂(|𝑉𝑉| ⋅ |𝑃𝑃|2) . The 
assignment in Step 2.2 is 𝑂𝑂(|𝑉𝑉| ⋅ |𝑃𝑃|). Therefore, the overall computational complexity is 𝑂𝑂(|𝑉𝑉| ⋅
|𝑃𝑃| + |𝑉𝑉| ⋅ |𝑃𝑃|2). 

Considering the above analysis of computational complexity, the three algorithms are 
polynomial algorithms that can be effectively executed when the problem scales are increasing. 
6. Experiments 

Experimental instances are solved by the MILP solver (Gurobi 6.0, www.gurobi.com) and the 
proposed algorithms. The MILP model and algorithms are programmed by using Python and 
implemented on a desktop computer with dual core 2.4 GHz CPU, 8.0 GB RAM and an operation 
system of windows 10. 
6.1. Data sets and assessments 

As studied in Section 4.1, the parameters of the proposed models [M1] and [M2] can be 
incorporated into a data vector, �𝐶𝐶𝑝𝑝𝑃𝑃,𝐶𝐶𝑣𝑣𝑉𝑉,𝑀𝑀𝑝𝑝

𝑃𝑃,𝑀𝑀𝑣𝑣
𝑉𝑉 ,𝑉𝑉𝑝𝑝,𝑃𝑃𝑣𝑣,𝑇𝑇𝑣𝑣𝑉𝑉 ,𝑇𝑇𝑝𝑝𝑃𝑃,𝐸𝐸𝑝𝑝+,𝐸𝐸𝑝𝑝−,𝐸𝐸𝑝𝑝𝑝𝑝,𝑇𝑇,𝛼𝛼� . Based on the 

data set provided by the Google Data Center [8], the statistical distributions of the first ten 
components can be configured as Table 3 and 4. Using these settings, the dataset “𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃” is created 
so that it contains 𝑥𝑥 PMs and 𝑦𝑦 VMs in scenario 𝑧𝑧, where 𝑧𝑧 = 𝑙𝑙 represents a loose CPU and 
memory requirements of VMs, and 𝑧𝑧 = 𝑡𝑡  represents a tight CPU and memory requirements of 
VMs. Small-, medium- and large-scale instances are generated with 𝑥𝑥 differing from 10 to 500 and 
𝑦𝑦 differing from 50 to 5000. The CPU capacity, memory capacity and energy consumption of the 
PMs are generated according to the data distributions in Table 3, where U represents “uniform 
distribution”. These distributions are summarized with extensions from [19]. Furthermore, in the 
loose scenario, the requirements of the VMs are generated so that every VM can be deployed in all 
the PMs, while in the tight scenario, every VM can be deployed in only several certain PMs (less 
than ten). The distribution of VM requirements is displayed in Table 4. 

 
Table 3. Data distribution revised from data center profiles 

𝐶𝐶𝑝𝑝𝑃𝑃 ← 𝑈𝑈[10,20] 𝐶𝐶𝑣𝑣𝑉𝑉 ← 𝑈𝑈[1,8] 
𝑀𝑀𝑝𝑝

𝑃𝑃 ← 𝑈𝑈[20,40] 𝑀𝑀𝑣𝑣
𝑉𝑉 ← 𝑈𝑈[10,20] 

𝑇𝑇𝑣𝑣𝑉𝑉 ← 𝑈𝑈[1,12] ⋅ 100/3600 𝑇𝑇𝑝𝑝𝑃𝑃 ← 𝑈𝑈[0, 6] ⋅ 100/3600 
𝐸𝐸𝑝𝑝+ ← �𝐶𝐶𝑝𝑝𝑃𝑃 ⋅ 20 + 𝑀𝑀𝑝𝑝

𝑃𝑃 ⋅ 3� ⋅ 𝑈𝑈[0.8,1.2] 𝐸𝐸𝑝𝑝− ← �𝐶𝐶𝑝𝑝𝑃𝑃 + 𝑀𝑀𝑝𝑝
𝑃𝑃� ⋅ 𝑈𝑈[0.9,1.1] 
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Table 4. The CPU and memory requirements of VMs in loose and tight scenarios 
Loose scenario 𝐶𝐶𝑣𝑣𝑉𝑉 ← 𝑈𝑈[1,8] 𝑀𝑀𝑣𝑣

𝑉𝑉 ← 𝑈𝑈[10,20] 
Tight scenario 𝐶𝐶𝑣𝑣𝑉𝑉 ← 𝑈𝑈[1,15] 𝑀𝑀𝑣𝑣

𝑉𝑉 ← 𝑈𝑈[10,30] 
 
Table 5. Experiment settings  

No. Purpose Datasets 𝛼𝛼 
1 Demonstrate the Algorithms 1-3 

and [M2] in loose scenario. 
𝑃𝑃50𝑉𝑉100𝑙𝑙 𝛼𝛼 = 5 

2 Analyze CPU, memory and PM 
utilization of the Algorithms 1-3 
and [M2] in tight scenario. 

𝑃𝑃10𝑉𝑉(50/100/200)𝑡𝑡, 
𝑃𝑃100𝑉𝑉(500/800/1000)𝑡𝑡, 
𝑃𝑃500𝑉𝑉(1000/2000/5000)𝑡𝑡 

𝛼𝛼 = ∞ 

3 Compare the Algorithms 1-3 and 
[M2] in terms of optimality and 
computing time. 

𝑃𝑃10𝑉𝑉(50/100/200)𝑡𝑡, 
𝑃𝑃100𝑉𝑉(500/800/1000)𝑡𝑡, 
𝑃𝑃500𝑉𝑉(1000/2000/5000)𝑡𝑡, 
𝑃𝑃10𝑉𝑉(50/100/200)𝑙𝑙, 
𝑃𝑃100𝑉𝑉(500/800/1000)𝑙𝑙, 
𝑃𝑃500𝑉𝑉(1000/2000/5000)𝑙𝑙 

𝛼𝛼 = ∞ 

4 Study the impacts of 𝛼𝛼  on the 
performances of the Algorithms 1-
3 and [M2]. 

𝑃𝑃50𝑉𝑉100𝑙𝑙, 𝑃𝑃50𝑉𝑉100𝑡𝑡 
𝛼𝛼 = �

1.5,2,2.5,
3,3.5,

4,4.5,5
� 

 
6.2. Experimental settings 

In the experiments, the VMP is studied by using the Algorithms 1-3 and [M2]. The experiments 
are designed to evaluate the quality of solutions and the performances of the algorithms and MILP. 
The computing time of MILP solver is limited under 3600 seconds. Table 5 lists the experiment 
settings of experimental purpose, instances, and the corresponding configurations.  
6.3. Results and discussion 
6.3.1. Loose scenario results 

The solution methods (the Algorithm 1-3 and [M2]) are tested on instance 𝑃𝑃50𝑉𝑉100𝑙𝑙 under 
a makespan limit of 1.11 hour (𝛼𝛼 = 3). The results are displayed in Table 6. Comparing the minimal 
(MIN1), the second-minimal (MIN2) and the maximal hosting time (MAX) of the resultant PMs, we 
analyze that every solution contains at most one PM that has a hosting time (MIN1) of more than 
half of the makespan, which is consistent with Proposition 8. Among the exact algorithms, VDPE 
obtains the lowest total energy consumption, using 17 PMs to host all the VMs. Compared with 
VDPE, VDPT generates a lower idle energy consumption. However, its higher working energy 
consumption results in a higher total energy consumption. VAPT and VAPE obtain a higher total 
energy consumption than VDPT and VDPE, and they generate high consumption of both working 
and idle energy. 𝐺𝐺(𝑓𝑓𝐸𝐸) produces the minimum working energy consumption among all the exact 
algorithms, while the time difference between MIN1 and MIN2 is the largest and it uses 20 PMs, 
which is three more than the optimal number of used PMs. 𝐺𝐺(𝑓𝑓)  has the highest total energy 
consumption and uses all the PMs to host the VMs, leading to the lowest makespan (0.39 hour) in 
the algorithms. Solving [M2] obtains the lowest total energy consumption with both lowest working 
and idle energy consumptions. In the perspective of computing time, VAPT, VAPE, VDPT, VDPE 
and 𝐺𝐺(𝑓𝑓𝐸𝐸) spend less than one second to generate the solutions. 𝐺𝐺(𝑓𝑓) requires less than 3 seconds 
to solve the result. However, the MILP solver requires much computing time for solving [M2], it 
runs to the computing time limit of one hour, which is notably higher than the exact algorithms. 
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Table 6. Result of [M2] and algorithms on instance 𝑃𝑃50𝑉𝑉100𝑙𝑙 with 𝛼𝛼 = 5 
Methods 𝑓𝑓 𝑓𝑓𝐸𝐸  𝑓𝑓𝐼𝐼  PMs MIN1 (h) MIN2 (h) MAX (h) CT (s) 
[M2] 2203.39 2198.42 4.97 17 1.02 1.08 1.10 3600.35 
VDPE 2254.52 2242.35 12.17 17 0.96 1.09 1.11 0.07 
VDPT 2255.39 2243.23 12.16 17 1.07 1.07 1.11 0.08 
VAPE 2358.54 2279.57 78.97 19 0.84 0.84 1.08 0.06 
VAPT 2358.54 2279.57 78.97 19 0.84 0.84 1.08 0.06 
𝐺𝐺(𝑓𝑓𝐸𝐸) 2377.17 2238.53 138.64 20 0.33 0.66 1.08 0.19 
𝐺𝐺(𝑓𝑓) 2572.15 2527.07 45.08 50 0.22 0.25 0.39 3.00 

Note: MIN1 = min 𝑡𝑡𝑝𝑝𝑦𝑦𝑝𝑝; MIN2 = min�𝑡𝑡𝑝𝑝𝑦𝑦𝑝𝑝: 𝑡𝑡𝑝𝑝𝑦𝑦𝑝𝑝 > 𝑀𝑀𝑀𝑀𝑁𝑁1�; MAX = max 𝑡𝑡𝑝𝑝𝑦𝑦𝑝𝑝; CT=Computing 
time. 
 
6.3.2. Tight scenario results  

The solutions of instance 𝑃𝑃100𝑉𝑉500𝑡𝑡 solved by the algorithms and [M2] are examined for 
analyzing the algorithm performances. The energy consumptions of the results are displayed in 
Figure 2. 𝐺𝐺(𝑓𝑓) and the Algorithm 1 using [PT] generate low idle energy consumptions as well as 
the total consumption. And the [VAPT] obtains the minimal total consumption among the exact 
algorithms. Compared to [VAPT], the Algorithm 1 [PE] and 𝐺𝐺(𝑓𝑓𝐸𝐸) obtain lower working energy 
consumptions, while they incur significantly high idle energy consumptions.  
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Figure 2. Comparisons of energy consumption obtained by the algorithms on 𝑃𝑃100𝑉𝑉500𝑡𝑡 
The CPU, memory and PM time utilizations of the results from the algorithms are displayed in 

Figure 3. The CPU utilization is calculated by ∑ (𝐶𝐶𝑣𝑣𝑉𝑉 ⋅ 𝑇𝑇𝑣𝑣𝑉𝑉)𝑣𝑣∈𝑉𝑉 /∑ (𝐶𝐶𝑝𝑝𝑃𝑃 ⋅ 𝑡𝑡𝑝𝑝)𝑝𝑝∈𝑃𝑃 , and the utilizations 
of memory and PM are calculated similarly. [VAPT], which outperforms other exact algorithms, 
gives solution with a higher memory utilization than the solution from MILP, while with less PM 
time utilization. For [VDPE] and [VAPE] that use [PE] as inserting criterion, their CPU and memory 
utilizations is higher than the ones of [VAPT], however, their PM time utilization is significantly 
lower. By considering both the idle and energy consumption, 𝐺𝐺(𝑓𝑓)  obtains a higher PM time 
utilization than 𝐺𝐺(𝑓𝑓𝐸𝐸). 



19 

 

0

20

40

60

80

100

M2 VAPT VDPT G(f) VDPE VAPE G(fE)

Re
so

ur
ce

 u
til

iz
at

io
n 

(%
)

CPU
Memory
PM Time

𝐺𝐺 𝑓𝑓 ( )EG f( )G f
 

Figure 3. Utilizations in solutions generated from different algorithms on 𝑃𝑃100𝑉𝑉500𝑡𝑡 
 

6.3.3. Algorithm performances 
The performances of solution methods are examined in both tight and loose scenarios. The 

small-, medium- and large-scale instances are tested when 𝑇𝑇 is set to infinite (𝑇𝑇 ← +∞). 
Table 7 shows the results in the loose scenario and the gaps of the total energy consumption 

resulted from the Algorithms 1-3 and [M2]. Solving [M2] can obtain the optima for the instances in 
such loose scenario. [VDPT] and [VDPE] obtain the same solutions, while [VAPT] and [VAPE] 
also generate the equal objective values. These same solutions indicate that the inserting criterion 
of PMs affects little on the total energy consumption. Among the instances, [VDPT] and [VDPE] 
solve 6 instances with gaps lower than 1.00% compared with the results from [M2], and [VAPT] 
and [VAPE] solve 5 instances. 𝐺𝐺(𝑓𝑓𝐸𝐸) generates the optimal solutions of the small-scale instances. 
However, nearly 20% gaps are observed in the medium- and large-scale instances. The gaps of 
solution from 𝐺𝐺(𝑓𝑓) are higher than 15% for all the instances. 
 
Table 7. Comparison of algorithm and MILP results in loose scenario when 𝑇𝑇 is set to infinite 

Instance VDPT  VDPE  VAPT  VAPE  𝐺𝐺(𝑓𝑓𝐸𝐸)  𝐺𝐺(𝑓𝑓)  [M2] 
𝑓𝑓 Gap 𝑓𝑓 Gap 𝑓𝑓 Gap 𝑓𝑓 Gap 𝑓𝑓 Gap 𝑓𝑓 Gap CT/s 

P10V50 1056.55  0.00  1056.55  0.00  1056.55  0.00  1056.55  0.00  1056.55 0.00 1235.18 16.91 0.03  
P10V100 2384.83  0.00  2384.83  0.00  2384.83  0.00  2384.83  0.00  2384.83 0.00 2773.85 16.31 0.04  
P10V200 5867.26  31.17  5867.26  31.17  4473.05  0.00  4473.05  0.00  4473.05 0.00 5202.27 16.30 0.05  
P100V500 9383.67  0.00  9383.67  0.00  13009.54  38.64  13009.54  38.64  11576.89 23.37 12246.69 30.51 1.65  
P100V800 19193.98  30.99  19193.98  30.99  20307.24  38.59  20307.24  38.59  18167.49 23.99 19136.61 30.60 3.95  
P100V1000 18173.00  0.00  18173.00  0.00  25242.07  38.90  25242.07  38.90  22435.15 23.45 23694.01 30.38 5.35  
P500V1000 17826.67  0.89  17826.67  0.89  23605.77  33.59  23605.77  33.59  20958.00 18.61 23564.68 33.36 107.46  
P500V2000 35916.81  0.89  35916.81  0.89  35819.47  0.62  35819.47  0.62  42020.26 18.04 47193.15 32.57 127.36  
P500V5000 121805.82  35.40  121805.82  35.40  90541.67  0.65  90541.67  0.65  105456.55 17.23 118852.80 32.12 514.69  

Note: Gap(algorithm) = (𝑓𝑓(algorithm) − 𝑓𝑓([M2]))/𝑓𝑓([M2]) ⋅ 100%; CT=Computing time. 

 
Table 8. Comparison of algorithm and MILP results in tight scenario when 𝑇𝑇 is set to infinite 

Instance VDPT   VAPT  VDPE  𝐺𝐺(𝑓𝑓)  VAPE  𝐺𝐺(𝑓𝑓𝐸𝐸)  [M2] 
𝑓𝑓 Gap 𝑓𝑓 Gap 𝑓𝑓 Gap 𝑓𝑓 Gap 𝑓𝑓 Gap 𝑓𝑓 Gap CT/s 

P10V50 1360.60  0.82  1375.60  1.93  1360.60  0.82  1531.15  13.46  1421.70  5.35  1609.68  19.28  0.19  
P10V100 2945.14  1.68  3055.16  5.48  3932.68  35.78  3175.61  9.64  3741.91  29.19  4137.39  42.85  0.33  
P10V200 6044.25  1.96  6079.56  2.55  7803.09  31.63  6523.62  10.04  7612.33  28.41  8326.62  40.46  0.81  
P100V500 14451.35  5.88  14272.67  4.57  16897.77  23.81  16724.47  22.54  22022.99  61.36  25521.03  86.99  168.46  
P100V800 23512.90  5.66  23241.30  4.44  27401.37  23.14  27192.90  22.20  36489.00  63.97  41162.56  84.97  216.17  
P100V1000 28995.32  5.38  28809.61  4.71  33561.56  21.98  33636.82  22.25  45210.19  64.32  51532.47  87.30  763.41  
P500V1000 26874.17  1.83  27221.42  3.15  33289.22  26.14  33642.08  27.48  44754.68  69.59  76121.21  188.44  3600.00  
P500V2000 52587.42  3.60  52767.11  3.96  65535.13  29.11  66004.67  30.04  82593.29  62.72  150718.37  196.93  3600.00  
P500V5000 129880.54  2.94  131348.40  4.11  161299.51  27.85  161746.14  28.20  220349.34  74.65  371405.76  194.38  3600.00  

Note: Gap(algorithm) = (𝑓𝑓(algorithm) − 𝑓𝑓(MILP))/𝑓𝑓(MILP) ⋅ 100%; CT=Computing time. 

 
The results of instances in tight scenario are compared in Table 8. In term of the total energy 

consumption, [VDPT] outperforms other exact algorithms and gets gaps lower than 6.00% 
compared to [M2]. [VAPT] performs 1.00% higher gap than [VDPT] in most instances, while it gets 
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1.00% better results than [VDPT] in medium-scale instances. The good performances of these two 
algorithms are resulted from the criterion that selects the PM with lowest hosting time to host the 
VMs. And better solution is achieved by prior inserting the VMs with longer execution time. VDPT 
generates good solutions only in small instance, and its gap rises to higher than 20% when the 
problem scale increases. The gaps of 𝐺𝐺(𝑓𝑓) become larger when the number of VMs increases. 
When the number of VMs increases, the gaps of 𝐺𝐺(𝑓𝑓) fluctuate within 5%, which indicates the 
stability of 𝐺𝐺(𝑓𝑓). The performance of [VAPE] deteriorate with increasing problem scale, and its 
gap reaches 69.59% which is the highest in variants of the Algorithm 1. 𝐺𝐺(𝑓𝑓𝐸𝐸) performs the worst 
on the instances with infinite 𝑇𝑇, since it aims at minimizing the working energy consumption when 
insert an unassigned VM. 𝐺𝐺(𝑓𝑓𝐸𝐸) is not competitive for solving the problem that its gap exceeds 
100% when the problem grows to 500 PMs and 1000 VMs. 

The scalability of the algorithms is demonstrated through solving the instances whose problem 
size (represented by |𝑉𝑉| ⋅ |𝑃𝑃|) differs from 500 to 2,500,000 in tight scenario. The computing times 
of algorithms with respect to the problem size are displayed in Figure 4. The computing time of 
solving [M2] is lower than 1 seconds for small-scale problem. However, when the problem size is 
larger than 50000, the computing time increases dramatically. The Algorithms 1-3 show a linear 
computing time with respect to the problem size. The computing times of variants of the Algorithm 
1 are always lower than 2 seconds. They show more scalable than 𝐺𝐺(𝑓𝑓𝐸𝐸) for the differing problem 
size.  
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Figure 4. The scalability of the algorithms for differing size problems in tight scenario 

 
6.3.4. Impact of makespan scale 

The results of the Algorithms 1-3 and solving [M2] on the tight instance 𝑃𝑃50𝑉𝑉100𝑙𝑙  are 
displayed in Table 9. [VDPE] and [VDPT] outperform other exact algorithms in most instances 
when the makespan scale increases from 1.5 to 5. Especially, they get gaps smaller than 4% when 
the makespan scale is lower than 5. 𝐺𝐺(𝑓𝑓𝐸𝐸) performs the best when the makespan scale is 5. But 
compared to [VDPE] and [VDPT] in other instances, 𝐺𝐺(𝑓𝑓𝐸𝐸) performs worse, as well as 𝐺𝐺(𝑓𝑓). 
[VAPT] and [VAPE] always generate the same results, and the gaps of their solutions trend to 
decrease with 𝛼𝛼 increasing. In the perspective of computing time, exact algorithms except 𝐺𝐺(𝑓𝑓) 
solve the problem in less one second. Despite solving [M2] incurs a plenty computing time (more 
than one hour) required by the MILP solver, the results from [M2] are the lowest in all the solutions.  

Table 10 displays the results of the Algorithms 1-3 and [M2] on instance 𝑃𝑃50𝑉𝑉100𝑡𝑡 with the 
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makespan scale increasing from 1.5 to 5. Although the solver for solving [M2] is terminated at the 
computing time limit, it still generates feasible solutions for all the instances. [VDPE] and [VDPT] 
outperform other exact algorithms when 𝛼𝛼 is lower than 3.5, while [VAPT] and [VAPE] perform 
better when 𝛼𝛼 increases. Notably, [VDPE] always obtains a gap of solution within 2% compared 
to the best objective values returned by other solution methods. 𝐺𝐺(𝑓𝑓𝐸𝐸) and 𝐺𝐺(𝑓𝑓) performs worse 
and the gap of 𝐺𝐺(𝑓𝑓) increases when the makespan scale grows larger. 

The numbers of active PMs resulted from solving [M2] and the variants of the Algorithm 1 are 
displayed in Figure 5. [VAPE] and [VAPT] always require the highest number of PMs to host the 
VMs, while [VDPE] and [VDPT] need less PMs which is close to the result of solving [M2]. The 
number of PMs decreases when the makespan scale increases, and the number of PMs of most 
algorithms drops to 11 when the makespan scale reaches 5. 

 
Table 9. Comparison of results on 𝑃𝑃50𝑉𝑉100𝑙𝑙 under different makespan scale 

𝛼𝛼 VDPE  VDPT  VAPT  VAPE  𝐺𝐺(𝑓𝑓𝐸𝐸)  𝐺𝐺(𝑓𝑓)  [M2] 
Gap CT/s Gap CT/s Gap CT/s Gap CT/s Gap CT/s Gap CT/s CT/s 

1.5 2.19 0.14 2.97 0.14 18.54 0.10 18.54 0.10 16.93 0.19 8.45 2.89 3600 
2 3.32 0.11 3.30 0.11 10.29 0.08 10.29 0.08 9.23 0.19 12.51 2.99 3600 
2.5 2.63 0.09 2.99 0.09 10.17 0.07 10.17 0.07 10.25 0.19 14.74 2.93 3600 
3 2.32 0.07 2.36 0.08 7.04 0.06 7.04 0.06 7.89 0.19 16.74 3.00 3600 
3.5 3.82 0.06 3.70 0.06 5.78 0.05 5.78 0.05 6.53 0.19 17.54 2.93 3600 
4 3.35 0.06 3.51 0.06 6.21 0.05 6.21 0.05 7.32 0.19 18.79 3.01 1971 
4.5 4.11 0.05 4.21 0.05 4.58 0.04 4.58 0.04 9.16 0.19 19.24 2.91 3600 
5 4.25 0.05 4.26 0.05 3.84 0.04 3.84 0.04 3.10 0.20 19.82 3.03 3600 

Note: Gap(algorithm) = (𝑓𝑓(algorithm) − 𝑓𝑓(MILP))/𝑓𝑓(MILP) ⋅ 100%; CT=Computing time. 

 
Table 10. The comparison of results on 𝑃𝑃50𝑉𝑉100𝑡𝑡 under different makespan scale 

𝛼𝛼 VDPE  VDPT  VAPT  VAPE  𝐺𝐺(𝑓𝑓𝐸𝐸)  𝐺𝐺(𝑓𝑓)  [M2] 
Gap CT/s Gap CT/s Gap CT/s Gap CT/s Gap CT/s Gap CT/s CT/s 

1.5 2.65 0.18 2.69 0.23 14.18 0.14 14.11 0.13 15.73 0.29 9.48 4.23 3600 
2 4.20 0.22 4.15 0.14 8.44 0.20 7.57 0.14 8.48 0.32 12.23 4.44 3600 
2.5 4.39 0.11 4.63 0.11 8.97 0.09 9.04 0.09 7.70 0.24 14.01 4.18 3600 
3 5.58 0.09 5.71 0.10 9.95 0.07 8.74 0.07 8.69 0.24 15.47 4.14 3600 
3.5 8.40 0.08 7.27 0.08 6.63 0.06 7.11 0.06 10.19 0.25 16.40 4.17 3600 
4 7.52 0.07 7.79 0.07 8.83 0.06 6.05 0.06 11.65 0.24 17.31 4.17 3600 
4.5 7.73 0.07 8.90 0.07 5.28 0.05 7.87 0.05 10.37 0.24 17.77 4.17 3600 
5 7.29 0.06 9.61 0.06 6.65 0.05 5.46 0.05 9.62 0.24 18.29 4.17 3600 

Note: Gap(algorithm) = (𝑓𝑓(algorithm) − 𝑓𝑓(MILP))/𝑓𝑓(MILP) ⋅ 100%; CT=Computing time. 
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Figure 5. The impact of makespan scale on the number of PMs from different algorithms 
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The total energy consumptions resulted from the Algorithms 1-2 and [M2] are displayed in 
Figure 6. The results of [VDPT] and [VAPT] present decreasing trends in the energy consumptions 
when the makespan scale increases. The results of [VAPE] and 𝐺𝐺(𝑓𝑓𝐸𝐸)  present high total 
consumptions at makespan scale 1.5 and the consumptions drop down when 𝛼𝛼 increases. [VDPE] 
presents a stable total consumption with less fluctuation compared to other algorithms. The total 
energy consumption returned by solving [M2] decreases gradually and it holds a gap between other 
solution methods. 
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Figure 6. Impact of makespan scale on total energy consumption resulted from algorithms 
The idle energy consumption solved by the Algorithm 1 and [M2] are depicted in Figure 7. 

High idle energy consumptions of [VAPT] and [VAPE] are observed at 𝛼𝛼 = 1.5. With the makespan 
scale increasing, the idle energy consumptions of [VAPT] and [VAPE] trend to decrease, while the 
ones of [VDPT] and [VDPE] trend to increase. The idle energy consumption returned by solving 
[M2] becomes stable when the makespan scale grows above 3.5. 
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Figure 7. Impact of makespan scale on idle energy consumption resulted from algorithms  

 
6.3.5. Discussion 

(1) The results of the instances demonstrated the effectiveness of the Algorithm 1. The 
proposed propositions help to determine the insert criteria based on energy efficiency of PMs and 
hosting time of PMs. Near-optimal results are generated by the variants of the Algorithm 1 with 
small gaps that are lower than 5.8% compared to the ones from solving [M2]. In the perspective of 
scalability, the Algorithm 1 requires a linear computing time to solve the problem with respect to 
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the numbers of PMs and VMs.  
(2) The performances of the variants of the Algorithm 1 depends on the capacities of the PMs. 

In the loose scenario, the algorithm preferentially assigning VM with short execution time performs 
better than the one assigning VM with long execution time; while in the tight scenario, assigning 
VM with long execution time prior to short execution time helps to reduce the total energy 
consumption. The variants with better performance show advantages in decreasing the idle energy 
consumption. 

(3) The pre-determined makespan limit affects the total energy consumption and significantly 
worsens the performance of the Algorithms 2-3 that uses incremental energy consumption as the 
inserting criterion. The low objective values of [VDPE] indicate that for the makespan limited VMP, 
the best strategy is to preferentially assign VM with long execution time into PM with best-fit energy 
efficiency. 

(4) Although the Algorithm 1 can solve the problem with small gap compared to the results of 
solving [M2], there still exist gaps between the variants of the Algorithm 1 using different 
combinations of strategies [VA], [VD], [PE] and [PT]. [VD] is effective for the problem with 
makespan limit on PM schedule, while [VA] performs better in loose scenario with unlimited 
makespan. [PE] incurs additional idle energy consumptions compared to the Algorithm 1 using [PT], 
however, [PE] saves working energy consumptions so that the total consumption is reduced when 
the makespan is limited. 

(5) Different combinations of [VA], [VD], [PE] and [PT] produce different optimality. The 
gaps to the results of solving [M2] even range from 0 to 75%. Therefore, different implementations 
of the FFD and BFD heuristics presents big differences in terms of optimality. The comparisons to 
the FFD and BFD can not stand when these variances are not implemented and specified.  
7. Conclusion 

This study devised a MILP for the VMP problem considering the makespan, the energy 
consumption and the idle energy of active PMs. To solve the energy-efficient model by MILP solvers 
using Branch and Bound algorithms, in the context of QoS management, the makespan upper bound 
is formulated as a constraint. The model is then investigated mathematically to reveal the model 
nature, and the bounds of PMs and energy related to the makespan. Three exact heuristics algorithms 
are developed based on first-fit and best-fit criteria, and greedy strategies of minimizing the energy 
consumption. Data sets are generated based on data center profiles. The numerical results indicate 
that the MILP can be solved within a reasonable time for small-scale instances and be used to 
compute the ideal lower bounds for the heuristics algorithms; the exact heuristics algorithms are 
competitive for solving medium- and large-scale instances; especially, the algorithms that 
preferentially assign VMs with short execution time outperforms other algorithms when the capacity 
of PMs satisfies most VMs, and criterion of energy consumption outweighs the one of hosting time 
when the placement is limited under given makespan. These insights can be used for combining fit 
rules and criteria according to the PM capacities and makespan limits.  

Inspired by the reviews as presented in Table 1, this study is a start to apply exact algorithms 
for VMP problems. In real-world data centers, stable and fast solution algorithms are important to 
ensure the QoS in the computational service supply chains and save energy. Although the devised 
models and exact algorithms can solve large-scale instances in this study, they cannot capture the 
future mega-scale data centers. As for researches on the way, exact heuristics algorithms based on 
model decompositions and dynamic solution methods based on machine learning algorithms will 
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be developed and tested. Additionally, this study focused on the basic VMP while the solution 
methods can be extended for more general and practical scenarios. Variants of basic VMP emerge 
when the data centers become acceptable to various organizations and companies. For example, 
thread-based VMP may challenge the bin-packing model because the memory may be shared among 
cores and even threads; the VMs may migrate among PMs to reduce energy consumption and 
increase service quality. New extended features of the VMP will be studied in the future.  
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