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Abstract

This paper proposes a novel decomposition of realized volatility (RV) into

moderate and extreme realized volatility estimates. These estimates behave like

long and short term components of volatility, and are very different from either

realized semi-variance or the continuous and jump components of volatility.

Within the standard linear HAR framework, a forecast comparison exercise

using index returns shows that employing the new decomposition leads to

forecasts that are often superior to the competing forecasts based on existing

realized measures.
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1. Introduction

Forecasting the volatility of financial asset returns is an important issue in

the context of risk management, portfolio construction, and derivative pricing.

As such, a great deal of research effort has focused on developing and evaluating

volatility forecasting models. With the widespread availability of high-frequency

financial data, the recent literature has focused on employing realized measur-

ers of volatility to build forecasting models. There is a wide range of realized

measures of volatility, building on the seminal work on realized volatility (RV)

by Andersen and Bollerslev (1998) and Andersen et al. (2001) among others.

The heterogeneous autoregressive (HAR) model of Corsi (2009) was designed to

parsimoniously capture the strong persistence typically observed in RV and has

become the workhorse of this literature due to its consistently good forecasting

performance, and that standard linear regression techniques can be used for its

estimation.

Moving beyond simple RV, there have been numerous developments in terms

of realized measures of volatility. For instance, Barndorff-Nielsen and Shephard

(2006) proposed decomposing RV into its continuous and jump components, and

Patton and Sheppard (2015) proposed a decomposition into positive and negative

semi-variance. The basic HAR structure has easily been extended to incorporate

these additional components of volatility. There have also been many extensions

to the HAR structure itself that have considered more complex models, Fengler

et al. (2015) proposed a non-parametric model, Audrino et al. (2018) considered

more flexible lag structures, and Bollerslev et al. (2016) and Buccheri and Corsi

(2017) considered estimation error and time-varying parameters.

The goal here is not to propose another extension to the basic HAR frame-

work, but to propose a novel but simple decomposition of RV to be used within

the existing linear HAR framework. A decomposition of RV into moderate and

extreme realized volatility estimates is proposed as an alternative to good and
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bad volatility of Patton and Sheppard (2015). By using moderate and extreme

volatility, it is possible to consider if the magnitude of returns, as opposed to their

sign, is important for constructing volatility estimates for forecasting purposes.

In comparison to existing RV, it is shown that these components of RV be-

have like long and short term components of volatility. It is also shown that

extreme volatility behaves very differently to the jump component of RV. A fore-

cast comparison exercise shows that employing the new decomposition within the

standard HAR framework leads to forecasts that are superior to the competing

forecasts based on existing realized measures.

2. Data and realized measures of volatility

The main empirical analysis presented below are based on the SPYDR ETF.

Five-minute intraday data for the S&P 500 SPYDR was downloaded from Thom-

son Reuters Datascope for the period 3 January 2000 to 28 June 2019, represent-

ing 4798 trading days. While not reported here in the main paper, results based

on other indices, Nasdaq, DAX and FTSE, are also presented in an online ap-

pendix.

The following realized measures of volatility are based on a single asset for

which the log-price process P within the active part of a trading day evolves in

continuous time as:

dPt = µtdt+ σtdWt, (1)

where µ and σ are the instantaneous drift and volatility processes, respectively,

and W is a standard Brownian motion (Wiener process). From prices, the ith

∆-period return within day t is defined as:

rt,i = Pt−1+i∆ − Pt−1+(i−1)∆, i = 1, 2, . . . ,M,

where M = 1/∆ is the sampling frequency.
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In the simplest case, the latent one-day integrated variance defined by:

IVt =

∫ t

t−1

σ2
sds, (2)

is unobservable, although it can be consistently estimated by the one-day realized

variance (RV):

RVt =
M∑
i=1

r2t,i,

as M → ∞ (Andersen and Bollerslev, 1998). Hence, the RV measure is defined as

the sum of the squared returns within day t. Given restrictions on the sampling

frequency M , Barndorff-Nielsen and Shephard (2002) show that the estimation

error in RV can be characterized by:

RVt = IVt + ηt, MN(0, 2∆IQt),

where MN denotes a mixed normal distribution and IQt =
∫ t

t−1
σ4
sds is the

integrated quarticity (IQ) which can be consistently estimated by the realized

quarticity (RQ):

RQt =
M

3

M∑
i=1

r4t,i. (3)

Extending the standard diffusion process in equation 1 to a jump-diffusion

process gives:

dPt = µtdt+ σtdWt + κtdqt, (4)

where the κtdqt term refers to a pure jump component, where κt is the size of a

jump and dqt = 1 if there is a jump at time t (and 0 otherwise). Under the jump

diffusion process, the IV can be estimated with bi-power variance

BVt ≡
π

2
(

M

M − 1
)

M∑
j=2

|rt,j||rt,j−1|. (5)
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The difference between the two estimators, RV and BV , can be used to es-

timate the contribution of the jump component to total variance. However, the

theoretical justification for equations (3) and (5) is based on the notion of increas-

ingly finer sampled returns, or M → ∞. Of course, any practical implementation

with a finite fixed sampling frequency, or M < ∞, is invariably subject to mea-

surement error, and hence, it is desirable to treat small jumps as measurement

error and only identify significantly large jumps. Barndorff-Nielsen and Shep-

hard (2006) developed such a test (BNS test), which is modified to account for

microstructure noise and improve the finite sample performance following Huang

and Tauchen (2005) as:

Zt ≡ ∆−1/2 × [RVt −BVt]RV −1
t

[(µ−4
1 + 2µ−2

1 − 5)max{1, TQtBV −2
t }]1/2

, (6)

with ∆ = 1/M and TQt+1 the realized tripower quarticity measure, defined as

TQt = ∆−1µ−3
4/3

M∑
j=3

|rt,j|4/3|rt,j−1|4/3rt,j−2|4/3, (7)

with µ4/3 ≡ E(|Z|4/3) = 22/3 ·Γ(7/6)·Γ(1/2)−1. The BV and TQ measures are

generated based on staggered returns to remove microstructure noise. At least

one significant jump on day t is identified by realizations of Zt in excess of some

critical value Φα, with α representing the significance level of the test applied to a

daily frequency, and set to be α = 1% in the subsequent empirical analysis. The

jump size for days with jumps detected are measured by the difference between

RV and BV and will be denoted as Jt, with the continuous BV denoted below

simply as Ct.

Patton and Sheppard (2015) proposed a very different decomposition of RV.

While most earlier realized measures only employed even powers of intraday re-

turns, Patton and Sheppard (2015) built on the semi-variance idea of Barndorff-

Nielsen et al. (2010) to consider the impact of signed returns on future volatility
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by using the realized semi-variance estimators:

RV −
t =

M∑
i=1

r2t,iIrt,i<0

RV +
t =

M∑
i=1

r2t,iIrt,i>0 (8)

The estimates of moderate and extreme volatility represent an alternative de-

composition of RV to that of Patton and Sheppard (2015), one based not on the

signs of intraday returns but their tail distribution. To begin, take the uncon-

ditional volatilities of intraday returns for each intraday period across all days,

σi, i = 1, 2 . . . ,M . Choose a tail probability of α upon which a negative and

positive threshold are defined, r−i = F−1(α)σi and r+i = F−1(1−α)σi where F is

the normal CDF. Based on these thresholds, three measures of realized volatil-

ity, extreme negative (REX−
t ) and positive (REX+

t ), and moderate (REXm
t )

volatility can be defined as follows:

REX−
t =

M∑
i=1

r2t,iIrt,i<=r−i

REX+
t =

M∑
i=1

r2t,iIrt,i>=r+i

REXm
t =

M∑
i=1

r2t,iIr−i >rt,i>r+i
(9)

The motivation behind this definition of extreme volatilities is as follows.

Assume for the moment that during periods of financial turmoil, returns rt,i

exhibit heavy tailed behavior as r+i → ∞, i.e.:

P
(
rt,i > r+i

)
∼ r+i

−γL
(
r+i
)
,
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where L
(
r+i
)
is some regularly varying function such that lim

t→∞
L(ts)
L(t) = 1, s > 0,

and γ is the tail index, which is related to the moments of the distribution

function. Then, from Feller’s convolution theorem, the tail of the distribution of

the sum of rt,i is given by:

M∑
i=1

P
(
rt,i > r+i

)
= P

(
M∑
i=1

rt,i > r+i

)
∼ Mr+i

−γL
(
r+i
)
,

while if these exhibit, for instance, a standard normal distribution then

M∑
i=1

P
(
rt,i > r+i

)
≥ P

(
M∑
i=1

rt,i > r+i

)
= P

(√
Mrt,i > r+i

)
∼

√
M

r+i
√
2π

exp

(
−
(
r+i
)2

2M

)
.

Thus, the probability of observing extreme positive volatility REX+
t is higher for

returns displaying a heavy tail behavior as r+i → ∞, and close to zero, for the nor-

mal distribution because the tails are exponentially bounded. As a consequence,

building volatility measures and forecasting models on extreme volatility, reflects

dynamic tail behavior while avoiding direct estimation of a tail index which can

be a difficult task. Similar results can be obtained for REX−
t .

Figure 1 plots RVt in the top panel (with the y-axis limited to highlight the

movements during lower periods). This behaviour of equity market RV is well

known, and is dominated by the period of the GFC. Periods of higher volatility

were also experienced around the collapse of the technology bubble early in the

sample (2000-2004) and again later surrounding the European debt crisis (2009-

2012). The middle panel of Figure 1 plots REXm
t . It is clear that REXm

t

behaves very differently from total RVt and appears to capture a long-term slow

moving component of volatility, similar to those contained in component models

for volatility proposed by Amado and Teräsvirta (2017). REXm
t moves with

the overall level in RVt, and was consistently higher during the 2000-2004, 2008-

2012 periods, but does not contain any of the larger spikes observed in RVt. The

bottom panel of Figure 1 plots both REX+
t (dashed line) and REX−

t (dot-dashed
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line). Both REX+
t and REX−

t behave in a similar fashion and are very different

from REXm
t , reflecting the more short-term behaviour of RVt. In comparison

to RVt, there are no fluctuations in the overall level of REX+
t and REX−

t (this

feature is captured by REXm
t ), they are generally very low and then spike during

periods of much higher volatility.
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Figure 1: Top panel: RVt. Middle panel: REXm
t . Bottom Panel: REX+

t (dashed line) and
REX−

t (dot-dashed line).

To gain a deeper understanding of the behaviour of the different realized

measures, Figure 2 plots the AutoCorrelation Functions (ACF) for the different

series out to a maximum of 50. In each panel, the ACF for RVt is shown as

a solid line as a point of reference. In the top panel, the ACFs for Ct (dashed

line) and Jt (dotted line) are shown along with that for RVt. This shows that

the persistence in the continuous diffusive volatility, Ct is very similar to that in

total RVt, while the jump component Jt exhibits consistently positive, though a

very small degree of autocorrelation. The middle panel plots the ACFs for RV −
t
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(dashed line) and RV +
t (dotted line), where it is clear that RV −

t exhibits a very

similar degree of persistence to RVt while the persistence in RV +
t is consistently

lower. Finally, the bottom panel plots the ACFs for REX−
t (dotted line), REXm

t

(dot-dashed line) and REX+
t (dashed line) against that from RVt which reveals

a very interesting pattern. REXm
t is consistently more persistent than RVt, with

the ACF decaying much slower than RVt. On the other hand, the persistence

in both REX−
t and REX+

t is consistently lower than that of RVt, with REX+
t

exhibiting the lowest persistence of all the components. These differences in

persistence, as reflected in the ACFs, indicate that by decomposing RV into

moderate and extreme volatility, longer- and shorter-term components of total

volatility are revealed.
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Figure 2: Autocorrelation function (ACF) plots to a maximum lag of 50. In each panel, the
ACF for RVt is shown as a solid line as a point of reference. Top panel: ACF for Ct (dashed
line) and Jt (dotted line). Middle Panel: ACF for RV −

t (dashed line) and RV +
t (dotted line).

Bottom panel: ACF for REX−
t (dotted line), REXm

t (dot-dashed line) and REX+
t (dashed

line).
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3. Methodology

This section outlines the HAR models that utilise the realized measures dis-

cussed in the previous section. This is followed by a brief description of the

approach used for forecast comparison.

3.1. HAR models

With the widespread availability of high-frequency intraday data, the recent

literature has focused on employing RV to build forecasting models for time-

varying return volatility. Among these forecasting models, the HAR model pro-

posed by Corsi (2009) has gained popularity due to its simplicity and consistent

forecasting performance in applications. The formulation of the HAR model is

based on a straightforward extension of the so-called heterogeneous ARCH, or

HARCH, class of models analyzed by Muller et al. (1997). Under this approach,

the conditional variance of the discretely sampled returns is parameterized as a

linear function of lagged squared returns over the same horizon together with the

squared returns over longer and/or shorter horizons.

The original HAR model specifies RV as a linear function of daily, weekly

and monthly realized variance components, and can be expressed (in logarithmic

form here) as:

ln(RVt) = β0 + β1 ln(RV d
t−1) + β2 ln(RV w

t−1) + β3 ln(RV m
t−1) + ut, (10)

where the βj (j = 0, 1, 2, 3) are unknown parameters that need to be estimated,

RVt is the realized variance of day t, and ln(RV d
t−1) = ln(RVt−1), ln(RV w

t−1) =

1
5

∑5
i=1 ln(RVt−i), ln(RV m

t−1) = 1
22

∑22
i=1 ln(RVt−i) denote the daily, weekly and

monthly lagged realized variance, respectively. This specification of RV parsimo-

niously captures the high persistence observed in most realized variance series.

This model will be denoted below as the HARRV model.

Bollerslev et al. (2016) recently proposed an easily implemented, and by OLS
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estimated, extension of the HARmodel dubbed the HARQmodel, which accounts

for the error with which RV is estimated by using RQ. Bollerslev et al. (2016) find

that, at least for short-term forecasting, a simplified version of the full HARQ

model is:

ln(RVt) = β0+(β1+β1Q(RV d
t−1/RQd

t−1)) ln(RV d
t−1)+β2 ln(RV w

t−1)+β3 ln(RV m
t−1)+ut,

(11)

where RQd
t−1 is the lagged quarticity, and RV d

t−1/RQd
t−1 represents the estimation

error associated with the logarithm of RV. Bollerslev et al. (2016) find that this

simplified model is useful as most of the attenuation bias in the forecasts (due

to RV being less persistent than unobserved IV) is due to the estimation error in

RV d
t−1. Overall, this framework allows for less weight to be placed on historical

observations of RV when the measurement error is higher. This model will be

denoted below as the HARQ model.

Patton and Sheppard (2015) use the concept of realized semi-variance (RSV)

of Barndorff-Nielsen et al. (2010) for forecasting total RV. Here, a fully flexible

version using all lags of the negative (RV −) and positive (RV +) semi-variances

is employed:

ln(RVt) = β0 + β1 ln(RV d−
t−1) + β2 ln(RV w−

t−1 ) + β3 ln(RV m−
t−1 )

+ β4 ln(RV d+
t−1) + β5 ln(RV w+

t−1 ) + β6 ln(RV m+
t−1 ) + ut (12)

where lags of the semiavariances are constructed in the same way as RV, as

discussed in the context of equation 10. This model will be denoted below as the

HARRSV model.

Andersen et al. (2007) utilised the continuous and jump components of RV

within the HAR framework for the purposes of forecasting total RV. The model

11
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estimated here based on the continuous component Ct and jumps Jt is:

ln(RVt) = β0 + β1 ln(C
d
t−1) + β2 ln(C

w
t−1) + β3 ln(C

m
t−1)

+ β4 ln(J
d
t−1) + β5 ln(J

w
t−1) + β6 ln(J

m
t−1) + ut. (13)

Lags of Ct are again constructed in the same way as RV in the context of equation

10. Lags of Jt are constructed in the following manner, ln(jdt−1) = ln(Jt−1 + 1),

ln(Jw
t−1) =

1
5

∑5
i=1 ln(Jt−i + 1), ln(Jm

t−1) =
1
22

∑22
i=1 ln(Jt−i + 1). This model will

be denoted below as the HARCJ model.

To harness the moderate and extreme volatility estimates from equation 9,

the following HAR structure is employed

ln(RVt) = β0 + β1 ln(REXd−
t−1) + β2 ln(REXw−

t−1) + β3 ln(REXm−
t−1 )

+ β4 ln(REXdm
t−1) + β5 ln(REXwm

t−1) + β6 ln(REXmm
t−1 )

+ β7 ln(REXd+
t−1) + β8 ln(REXw+

t−1) + β9 ln(REXm+
t−1 ) + ut. (14)

where again lags of REX−
t , REXm

t and REX+
t are constructed in the same

manner. This model will be denoted below as the HARRE model.

Define extreme (irrespective of positive or negative) volatility as REXt =

REX−
t +REX+

t . Based on total extreme volatility, a simplified version of equa-

tion 14 is estimated which utilises REXt, it is:

ln(RVt) = β0 + β1 ln(REXdm
t−1) + β2 ln(REXwm

t−1) + β3 ln(REXmm
t−1 )

+ β4 ln(REXd
t−1) + β5 ln(REXw

t−1) + β6 ln(REXm
t−1) + ut. (15)

Comparing the performance of equation 15 against that of equation 14 will in-

dicate if the signed extreme volatility (losses versus gains) contain valuable in-

formation for forecasting. This model will be denoted below as the HARRE∗

model.
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In the subsequent forecasting exercise, longer horizon forecasts are generated

by using direct forecasts based on the average of log RV over the horizon t to

t+ k − 1.

3.2. Comparing forecasts

Following (Patton, 2011; Patton and Sheppard, 2009), the empirical quasi-

likelihood (QLIKE) will be used to assess out-of-sample forecast accuracy and is

defined as:

QLIKE =
1

T

T∑
t=1

(
RVt

Ft

− log
RVt

Ft

− 1

)
, (16)

where T is the number of forecasts and Ft denotes a forecast of RVt.
1 Equation

(16) is easily modified for weekly, or longer horizon, volatility forecasts.

Statistically significant differences in forecast performance will be assessed

using the model confidence set (MCS) introduced by Hansen et al. (2011). The

MCS procedure avoids the specification of a benchmark model, and starts with

a collection of competing models (or approaches), M0, indexed by i = 1, . . . ,m0.

QLIKE based loss differentials dij,t between models i and j are computed, and

H0 : E(dij,t) = 0 for all i, j (the null hypothesis of EPA) is tested. If the null

hypothesis is rejected at the significance level α, the worst performing model is

eliminated and the process is repeated until non-rejection occurs with the set of

surviving models being the MCS, M̂∗
1−α. By using the same significance level

for all tests, M̂∗
1−α contains the best model(s) from M0 with a limiting (1 − α)

level of confidence.2 Here the results are reported based on both the range and

squared (SQ) statistics as described in Hansen et al. (2003).3

1Using the commonly employed empirical mean squared error (MSE) is also a possibility,
however, simulation based evidence by Patton and Sheppard (2009) suggests the use of QLIKE
rather than MSE due to the formers higher power in Diebold and Mariano (1995) and West
(1996) type tests for equal predictive accuracy (EPA).

2In this sense, the MCS at level α is similar to a (1−α)% confidence interval for an unknown
parameter.

3MCS code from the MFE toolbox of Kevin Sheppard, https://www.kevinsheppard.com/
MFE_Toolbox, was used.
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4. Results

This section presents the in-sample estimation results for the different HAR

models from Section 3.1. A comparison across the estimation results for the

different models will provide a deeper understanding of the information contained

in the different realized measures, including the new measures proposed here.

MCS results highlighting the out-of-sample forecasting performance will follow.

4.1. In-sample estimation

Table 1 reports in-sample estimation results for each of the HAR models dis-

cussed in Section 3.1 for a k = 1-day horizon. To begin, the coefficient estimates

for the original HARRV follow a familiar pattern. All three coefficients are sig-

nificant and reducing in magnitude from β1 through to β3. Estimates for the

HARQ model reflect a similar degree of persistence in β1 through β3 relative to

the HARRV model. In addition, the estimate of β1Q is negative and significant,

which is consistent with Bollerslev et al. (2016) and captures the attenuation bias

due to the estimation error in RQ. Estimation results for the HARRSV model

show that the coefficients β1 through β3 on the RV −
t are much stronger than β4

through β6 which relate to RV +
t . This result is consistent with those from Patton

and Sheppard (2015) who found that negative volatility is more important than

positive volatility. These results are consistent with the differences between the

ACFs presented earlier showing that RV −
t is more persistent, and hence is found

to be more important for explaining future volatility. Results for the HARCJ

show that the continuous component is important with estimates of β1 through

β3 very similar to those from the HARRV or HARQ models. Only one of the

coefficient estimates, β6, on the past jump components is significant. Here the

importance of Ct relative to Jt is consistent with the ACFs presented earlier in

that there is much less persistence in Jt and that in the continuous component

Ct is similar to RVt.

14
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To begin with the results for the HARRE model (with moderate and positive

and negative extreme volatility) consider the coefficient estimates for β4 through

β6 which relate to REXm
t . These estimates are stinkingly similar to those from

the standard HARRV model implying that the dominant feature in RVt driving

the standard model is similar to REXm
t . The large and significant β1 and β2

coefficient estimates from the day and week lags of REX−
t indicate there is a very

strong short-term effect from extreme negative volatility. In contrast, the effect

of REX+
t is less pronounced with only β7 being significant. For the final model

HARRE∗, the coefficient estimates for β1 through β3 on REXm
t are very similar

to those from the HARRE and standard HARRV models. The estimates on β4

through β6 relating to lags of REXt, combined positive and negative extreme

volatility, are all significant with much stronger effects evident at the 1-day lag

as evident with β4.

In summary, moderate and extreme volatility appear to play very different

roles in explaining future RV . These estimation results indicate that moderate

volatility may be the dominant feature in total RV within the standard HARRV

model. The influence of extreme volatility is felt more at shorter lags indicat-

ing that it may capture more short-term effects in volatility, a pattern broadly

consistent with the ACFs presented earlier. The question of whether this novel

decomposition is of value in the context of out-of-sample forecasting will now be

addressed.

4.2. Forecasting results

Table 2 presents the MCS results for three different horizons, k = 1, 5 and 22

days ahead, with the HARRE and HARRE∗ based on REX−
t , REXm

t and REX+
t

being determined using α = 0.025. This is the most extreme case considered

here. Beginning at the 1−day horizon, based on a 5% critical level, all forecasts

from all models with the exception of HARCJ are included in the MCS, with

the HARQ ranking first in terms of QLIKE loss. A very similar result is also
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HARRV HARQ HARRSV HARCJ HARRE HARRE∗

β1 0.4428
(0.0171)

0.4625
(0.0188)

0.2995
(0.0167)

0.4526
(0.0170)

0.6537
(0.0588)

0.4700
(0.0233)

β1Q −0.0026
(0.0010)

β2 0.3536
(0.0257)

0.3502
(0.0257)

0.3235
(0.0440)

0.3331
(0.0254)

0.7403
(0.1487)

0.3113
(0.0362)

β3 0.1619
(0.0199)

0.1601
(0.0199)

0.1327
(0.0881)

0.1575
(0.0199)

0.1103
(0.2805)

0.1837
(0.0309)

β4 0.1140
(0.0187)

−0.1062
(0.0884)

0.4797
(0.0231)

0.5772
(0.0367)

β5 0.0448
(0.0438)

0.4369
(0.2163)

0.3472
(0.0357)

0.4426
(0.0576)

β6 0.0420
(0.0859)

0.2766
(0.4124)

0.1962
(0.0300)

0.1570
(0.0493)

β7 0.1561
(0.0551)

β8 −0.1269
(0.1384)

β9 0.1332
(0.2688)

Table 1: Estimated HAR coefficients and associated standard errors for a 1-day forecast horizon.
REX−

t , REXm
t and REX+

t are determined based on α = 0.025.

found at the 5−day horizon. Moving to the longer 22−day horizon reveals a very

different pattern. The HARRE∗ model ranks best and is the only member of the

MCS if both test statistics are considered. The more flexible HARRE model and

HARRSV are narrowly included in the MCS under the Range statistic, and are

only rejected marginally under the SQ statistic.

k = 1 k = 5 k = 22

Range SQ Range SQ Range SQ

HARCJ 0.0000 0.0000 HARCJ 0.0020 0.0010 HARCJ 0.0490 0.0080

HARRE 0.1580 0.1340 HARRE 0.0910 0.0990 HARQ 0.0490 0.0150

HARRE∗ 0.3450 0.3170 HARRE∗ 0.5220 0.5120 HARRV 0.0540 0.0180

HARRSV 0.3450 0.3420 HARRV 0.6920 0.7330 HARRSV 0.0540 0.0360

HARRV 0.3450 0.3420 HARQ 0.9240 0.9240 HARRE 0.0540 0.0360

HARQ 1.0000 1.0000 HARRSV 1.0000 1.0000 HARRE∗ 1.0000 1.0000

Table 2: MCS results, p-values are reported. REX−
t , REXm

t and REX+
t are determined based

on α = 0.025.
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It is clear that a choice regarding the value of α needs to be made when

constructing REX−
t , REXm

t and REX+
t . To check the robustness of the fore-

casting results to the choice of α, Tables 3 and 4 present MCS results for the

cases when REX−
t , REXm

t and REX+
t are based on α = 0.05 and α = 0.1 re-

spectively. Overall, these two sets of results are consistent with those in Table 2.

The HARRE and HARRE∗ models continue to produce the best ranked forecasts

at the longer horizon. In fact, based on α = 0.1, HARRE and HARRE∗ produce

forecasts that are statistically superior to all other models. This result indicates

using somewhat less extreme, extreme volatility (and moderate volatility being

correspondingly wider) may be beneficial. The optimal choice of α however is

an interesting avenue for future research. Here the fact that the HARRE and

HARRE∗ forecasts are consistently the most accurate forecasts, across the full

range of forecast horizons, indicates the flexibility of the decomposition of total

RV into shorter and longer-term components is beneficial.

Results in the online appendix for other indices show very similar results

for the Nasdaq and DAX indices, though not quite as strong for the FTSE.

Experiments were also undertaken with a number five large U.S. individual stocks.

While HARRE was often found to be the most accurate forecast, the forecast

accuracy of HARRE (and HARRE∗) were not found to be statistically superior

to the competing models such as HARQ. The differences stronger performance

across in the context of indices relative to individual stocks seems to indicate

that there are important differences in the dynamics between the two. The most

likely reason is that the more persistent moderate volatility component is only

important in cases where there is an strong persistent common factor, present in

a well diversified index.
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k = 1 k = 5 k = 22

Range SQ Range SQ Range SQ

HARCJ 0.0000 0.0000 HARCJ 0.0020 0.0040 HARCJ 0.0930 0.0220

HARRE 0.3780 0.3100 HARRE 0.1130 0.1430 HARRV 0.0960 0.0490

HARRE∗ 0.4510 0.3940 HARRE∗ 0.4610 0.3930 HARQ 0.0960 0.0700

HARRSV 0.4510 0.3940 HARRV 0.6600 0.7100 HARRSV 0.0960 0.0900

HARRV 0.4510 0.3940 HARQ 0.9170 0.9170 HARRE 0.0960 0.0900

HARQ 1.0000 1.0000 HARRSV 1.0000 1.0000 HARRE∗ 1.0000 1.0000

Table 3: MCS results, p-values are reported. REX−
t , REXm

t and REX+
t are determined based

on α = 0.05.

k = 1 k = 5 k = 22

Range SQ Range SQ Range SQ

HARCJ 0.0000 0.0000 HARCJ 0.0020 0.0030 HARCJ 0.0300 0.0080

HARRSV 0.3180 0.3880 HARRV 0.3750 0.3700 HARQ 0.0300 0.0140

HARRE 0.3180 0.3880 HARRSV 0.3750 0.3700 HARRV 0.0300 0.0140

HARRV 0.3590 0.4780 HARQ 0.3750 0.3700 HARRSV 0.0300 0.0140

HARQ 0.7890 0.7890 HARRE 0.3750 0.3700 HARRE 0.5360 0.5360

HARRE∗ 1.0000 1.0000 HARRE∗ 1.0000 1.0000 HARRE∗ 1.0000 1.0000

Table 4: MCS results, p-values are reported. REX−
t , REXm

t and REX+
t are determined based

on α = 0.1.

5. Conclusion

This paper proposed a novel decomposition of realized volatility, into mod-

erate and extreme volatility on the basis of the magnitude of intraday returns.

This differs from existing approaches that are either based on formal statistical

tests to differentiate between the continuous and jump components of volatility,

or the sign of intraday returns. A simple inspection of the autocorrelations of

the realized measures showed that the proposed moderate and extreme compo-

nents behave quite differently to the continuous and jump components. Moderate
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volatility was found to be more persistent than total volatility and behaved like

a long-term component of volatility, while extreme volatility reflected short-term

persistence in volatility. Within the HAR forecasting framework, relative to mod-

els containing existing realized measures, models based on moderate and extreme

volatility often produced forecasts of equal quality at short horizons, and fore-

casts of superior quality at longer horizons. Given the forecasts were consistently

among the most accurate forecasts, across the full range of forecast horizons, the

flexibility of the proposed decomposition into moderate and extreme (short- and

long-term components) volatility seems beneficial. While the forecasting results

were robust across a range of thresholds for defining extreme volatility, a method

for formally choosing this threshold (or a more general structure), is a potentially

interesting agenda for future research.
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