Single phase limit for melting nanoparticles

Wu, Bisheng, , Tillman, Pei, & Hill, James (2009) Single phase limit for melting nanoparticles. Applied Mathematical Modelling, 33(5), pp. 2349-2367.

[img]
Preview
Accepted Version (PDF 334kB)
14114a.pdf.

View at publisher

Description

The melting of a spherical or cylindrical nanoparticle is modelled as a Stefan problem by including the effects of surface tension through the Gibbs-Thomson condition. A one-phase moving boundary problem is derived from the general two-phase formulation in the singular limit of slow conduction in the solid phase, and the resulting equations are studied analytically in the limit of small time and large Stefan number. Further analytical approximations for the temperature distribution and the position of the solid-melt interface are found by applying an integral formulation together with an iterative scheme. All these analytical results are compared with numerical solutions obtained using a front-fixing method, and are shown to provide good approximations in various regimes. The inclusion of surface tension, which acts to decrease the melting temperature as the particle melts, is shown to accelerate the melting process. Unlike the classical one-phase Stefan problem without surface tension, the solid-melt interface exhibits blow-up at some critical radius of the particle (which for metals is of the order of a few nanometres), a phenomenon that has been observed experimentally. An interesting feature of the model is the prediction that surface tension drives superheating in the solid particle before blow-up occurs.

Impact and interest:

34 citations in Scopus
32 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

434 since deposited on 21 Jul 2008
15 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 14114
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
McCue, Scottorcid.org/0000-0001-5304-2384
Measurements or Duration: 19 pages
Keywords: Nanopartical Melting, One-Phase Limit, Stefan Problem, Surface Tension
DOI: 10.1016/j.apm.2008.07.009
ISSN: 0307-904X
Pure ID: 31921918
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Australian Research Centre for Aerospace Automation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 21 Jul 2008 00:00
Last Modified: 03 Mar 2024 13:46