QUT Digital Repository:

http://eprints.qut.edu.au/ QIJT

McCue, Scott W. and Johnpillai, I. Kenneth and Hill, James M. (2005) Symmetry
analysis for uniaxial compression of a hypoplastic granular material. Zeitschrift fur
angewandte Mathematik und Physik (ZAMP) 56(6):pp. 1061-1083.

© Copyright 2005 Springer
The original publication is available at SpringerLink http://www.springerlink.com




Symmetry analysis for uniaxial compression
of a hypoplastic granular material
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Abstract. A variety of modelling approaches currently exist, and continue to be devel-
oped, to describe and predict the diverse behaviours of granular materials. One of the
more sophisticated theories is hypoplasticity, which is a stress-rate theory of rational con-
tinuum mechanics with a constitutive law expressed in a single tensorial equation. In this
paper, a particular version of hypoplasticity, due to Wu [2], is employed to describe a class
of one-dimensional granular deformations. By combining the constitutive law with the
conservation laws of continuum mechanics, a system of four nonlinear partial differential
equations is derived for the axial and lateral stress, the velocity and the void ratio. Under
certain restrictions, three of the governing equations may be combined to yield ordinary
differential equations, whose solutions can be calculated exactly. Several new analytical
results are obtained which are applicable to oedometer testing. In general this approach
is not possible, and analytic progress is sought via Lie symmetry analysis. A complete
set or “optimal system” of group-invariant solutions is identified using the Olver method,
which involves the adjoint representation of the symmetry group on its Lie algebra. Each
element in the optimal system is governed by a system of nonlinear ordinary differential
equations which in general must be solved numerically. Solutions previously considered
in the literature are noted, and their relation to our optimal system identified. Two il-
lustrative examples are examined and the variation of various functions occuring in the

physical variables is shown graphically.
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1 Introduction

The constitutive modelling of granular materials has proven to be a challenging problem
for engineers and applied mathematicians. A relatively new path for this research has pro-
duced hypoplasticity, a continuum theory formulated as an alternative to the traditional
approaches of plasticity and elastoplasticity, and pioneered by Kolymbas [1] and many
co-workers originally based at the University of Karlsruhe. The characterising feature of
all hypoplastic theories is that the constitutive law can be written in a single nonlinear
tensorial equation for the stress-rate as a function of the stress and the rate-of-deformation
tensor, without reference to a yield condition or a flow rule. With hypoplasticity there is
no need to decompose deformations into elastic and plastic regimes a priori, or to distin-
guish between loading and unloading, since all these notions are automatically built into
the theory, and arise as a consequence. A further property of hypoplasticity is that the
governing tensorial equation involves only a small number of material parameters.

The success of hypoplasticity and consequent popularity among researchers and prac-
titioners can be attributed to its elegance, relative simplicity, and that the theory is
deeply rooted in experimental fact. However, it is certainly a sophisticated constitutive
theory, which results in complicated nonlinear mathematical relations. When combined
with the governing equations of continuum mechanics, there is little hope of solving real-
life boundary-value problems analytically, and progress is usually made via numerical
schemes. As a result, it is often difficult to grasp the underlining mathematical structure
of the equations. Here, we shed light on this aspect with the use of Lie point symmetry
methods. To a limited extent, this approach has been employed by Hill [3, 4, 5] and Hill
and Williams [6] for the particular hypoplastic model, originally proposed by Wu [2]. For
uniaxial, axially symmetric and radially symmetric deformations, certain group-invariant
solutions to the governing partial differential equations were identified, including some
similarity solutions, travelling wave solutions, and hot-spot solutions (solutions for which
the stresses become infinite in a finite time). These solutions were used to model com-
paction problems in one dimension and symmetrical cavity expansion problems in two

and three dimensions.



In the present study we extend the work of Hill and Williams [6], who restricted
the analysis to one-dimensional deformations and uniaxial compaction. Here, for the
same deformations, we use Lie symmetry analysis to consider all possible group-invariant
solutions to the governing equations, and classify them into equivalence classes. A set
containing a single member from each of these classes is a minimal set or “optimal system”
of group-invariant solutions. We show that this optimal system contains the families of
solutions considered by Hill and Williams [6], as well as certain new families not previously
examined. For each member of the optimal system, we list the corresponding system of
nonlinear ordinary differential equations, and in two of the cases we solve the equations
numerically to illustrate particular behaviour.

In the following section we give a brief outline of the theory of hypoplasticity, and
present the particular version of the theory of Wu [2] which is used here. In Section 3,
we list the governing equations for uniaxial deformations of a granular material, which
include the hypoplastic constitutive equations in one spatial dimension, as well as the
conservation laws of continuum mechanics. Under certain conditions, we may manipulate
three of these equations to produce ordinary differential equations, which can be integrated
analytically. These calculations lead to exact relations between the axial stress, the lateral
stress and the void ratio, and the results are discussed in the context of oedometer tests
in Section 4. The symmetry analysis for the full system of nonlinear partial differential
equations is detailed in Section 5, where we derive the optimal system of Lie generators.
Each generator in this optimal system corresponds to a family of group-invariant solutions,
which are considered in varying detail in Section 6. We close in Section 7 with some final

remarks.

2 Brief outline of hypoplasticity
The original versions of hypoplasticity involve a constitutive equation of the form

o =H(o,d), (1)



where H is a tensorial function, o is the Cauchy stress tensor, and d is the rate-of-
deformation tensor (otherwise known as the stretching tensor or the rate-of-strain tensor).

The tensor & is the co-rotational or Jaumann stress rate, defined by

o DO’+
g = — ow — Wo
Dt ’

where w is the skew-symmetric spin tensor, and the notation D/Dt is used to denote the

material time derivative
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Both d and w can be defined in terms of the velocity vector v as

v-V). (2)

d=3[(Vv)+(VV)'], w=3[(VVv)—(VV)],

: 3
where the superscript 1" denotes a transposition.

There are a number of additional restrictions which hypoplasticity imposes on the
function H in (1), and we briefly list them here. First it is assumed that H is a con-
tinuously differentiable function of d, except at d = 0. The theory is to be applied to
rate-independent material behaviour, so that H must be positively homogeneous of the
first order in d. Therefore H(o, A\d) = AH(o, d), where A is a positive constant. It is also
assumed that H is homogeneous in o, so that the material conforms with Goldscheider’s
principle [7]. Experiments suggest that this homogeneity can be taken to be of the first
order, at least as a first approximation, implying H(Ao,d) = AH(o,d). Finally, it is
required that the constitutive equation (1) be objective, a condition which is satisfied if
H is chosen according to the representation theorem for isotropic tensor-valued functions
of two symmetric tensors (Wang [8]). We note that a full description of the history and
development of these ideas can be found in Kolymbas and Wu [9], Kolymbas [10], Wu
and Kolymbas [11], and the references therein.

It is common to consider a class of functions H which can be written as the sum of

two terms

H(o,d) = L(o,d) + N(o)||d]], 3)

where ||d|| denotes the Euclidean norm ||d|| = y/tr(d?). The second term in (3) is non-

linear in d, and represents irreversible behaviour of the granular material. The other term
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L(o,d) taken to be linear in d, and represents reversible behaviour. (This representation
may be contrasted with hypoelasticity, proposed by Truesdell [12], for which the function
H is linear in d.) There are a number of specific versions of (3). In the present study we

choose to use the form

tr(ad) 2 *2 ﬁ
tI‘(O’) o+ (030' + 040' )tr(a')’ (4)

proposed by Wu [2]. Here o* denotes the deviatoric stress tensor, defined by o* =

H = Citr(e)d + C;

o — tr(o)I/3, where I is the unit tensor. The four constants Ci, Cs, C5 and Cy, which
depend on the inital void ratio, are dimensionless material parameters, which can be
determined with a single triaxial compression test. They are related to the well-known
parameters of initial tangential stiffness, initial Poisson ratio, angle of internal friction
and angle of dilatancy, as detailed in Wu and Bauer [13]. These authors also show that
this model captures the prominent behaviour of granular materials, and as such, will serve
the purposes of this study. Typical numerical values for the constants C,Cy, C3 and C}
are given in Table 1. The first row of data is taken from Wu et al. [14], while the rest

comes from Wu and Bauer [13].

of) Cy Cs Cy
Karlsruhe medium sand —-106.5 —=801.5 —=797.1 1077.7

Karlsruhe medium sand (loose) | —69.4 —673.1 —655.9 699.6

Karlsruhe medium sand (dense) | —101.2 —962.1 —877.3 1229.2

Undrained Castro sand (loose) | —20.0 —193.2 —193.2  190.0
Undrained Castro sand (dense) | —33.3 —279.2 —279.2 3545
Erksak medium sand (dense) | —200.0 —1572.5 —1572.5 2583.3
Leighton Buzzard sand (dense) | —73.3 —542.2 —542.2 719.5
Toyoura sand (loose) —123.3 —1162.5 —1162.5 1494.2
Toyoura sand (dense) —130.0 —984.9 —984.9 1374.9

Table 1: Typical values for the parameters C;, i = 1, ..., 4, in the constitutive equation (4)

We note that while (4) has proven to be an effective constitutive law for granular
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materials under many circumstances, it does have has some deficiencies (as do other
models of the form (1)), such as the fact that the function H does not depend explicitly
on the void ratio e, but the constants C; do. Ideally H would incorporate a dependence of
e, and any parameters would be identified for one void ratio e only, and remain constant
when e varies. This goal has motivated the research of Wu and Bauer [15], Wu et al. [14],
Wu [16] and others, who improve on (4) by multiplying the nonlinear terms by a density
index, which depends explicitly on the void ratio. Such an approach builds in the concept
of a critical state into the constitutive equation. Another example of an extension to (4)
has been suggested by Bauer and Wu [17], who also incorporate the effects of cohesion into
the model. These additional modifications to the original model reduce the possibility of
analytic progress in determining group-invariant solutions, and thus at present we restrict

ourselves to the simpler constitutive law (4).

3 Governing equations for uniaxial deformations

We are concerned here with granular deformations in one spatial direction. A Cartesian
coordinate system (x,y,z) is introduced so that the z-axis points in the direction of
gravity, and it is assumed all physical quantities are independent of the y and z directions.

The components of the Cauchy stress tensor o are assumed to be of the form

Oz Ogy Oxz T 0 0
Oy Oy Ozz | =1 0 S 0 [,
Ous Ozz Ozz 0o 0 S

where T = T'(z,t) and S = S(z,t), and the component of velocity in the z-direction is

denoted by v = v(z,t). It follows that the constitutive equation (4) in component-form

becomes
or  aT T 70w T2 AT — 8)27 | 0w
o= = T 149 - | = i
ot oz [Cl( * S)+CZT+QS] oz * [C3T+2S+C49(T+28)} oz |
s 8s ST v S (T - 5)2 10w
at TV = 27T+2sa_x+[C3T+2S+C49(T+2S)} prk (6)




These two equations are to be supplemented with the usual conservation laws from con-

tinuum mechanics. In one dimension, these are mass conservation

Oe Oe ov
_+U_x_(1+e)6_x’ (7)

and the conservation of momentum

1 T

R AL ®
where p; is the material density of the grains in the granular material, g is the acceleration
due to gravity, and e = e(z, t) is the void ratio. The latter quantity is defined as the ratio
of the void volume to the solid volume within the granular material, and in deriving

(7)-(8) it has been tacitly assumed that p; < p,, where p, is the density of the voids.
Hill and Williams [6] considered the above equations in the context of dynamical
uniaxial compaction. A blast of air is used to compress moulding sand around a pattern
with the intention that the compressed sand is sufficiently strong to allow the pattern to
be removed so that molten metal can be poured into the mould. The air pressure impact
produces a compaction shock front travelling downwards such that behind the front the
sand density and strength are increased. When the shock front reaches either the mould
base or the pattern, a second shock front is generated which travels upwards and further
compacts the and strengthens the sand. We discuss the relevant group-invariant solution

to this problem in Subsection 6.2.

4 Some exact results

4.1 Thecasee+1=FE), S=G() and T = F(§)

This subsection is concerned with the special case for which e, S and 1" are of the form

e(r,t) +1=E(), S,t)=G(¢), T(xt)=F(), (9)



where £ = £(x,t) is some function of z and ¢. In this case equations (5)-(7) can be

rewritten as

DT () O

D T ity Way (10
DS g(x) v
Dt  1+2y F(e) oz’ (11)
De ov
oo = EOS5 (12)
where x denotes the ratio
_ S(z,t) _ G (13)
T(z,t) F(&)

and D/Dt is defined as in (2). The functions f and g used in (10) and (11) each take
different forms depending on whether the derivative 0v/0x is positive or negative. For

example, f is given by

Ci(1+2x)* +(Cy = C3) — 5Cu(1 = x)?, 52 <0
Ci(142x)*+ (Co+ C3) + 2C4(1 — x)?, 22 >0.
By combining (10), (11) and (13) we arive at

Dx _ g(x) —xf(x) ov
Dt 1+2y Oz’
where
—Cix(1+2x)* + Csx(1 — x) — $C:(1 —4x)(1 — x)?, £ <0

g(x) = xf(x) = {

Dividing (10) by this equation produces the ordinary differential equation

e f(X)
dx  g9(x) —xf(x)

which can readily be solved to give

Fl&)=Toexp {/ e ) (16)

where initially /' = T, and x = xp. The right-hand side of (16) may be evaluated

F(), (15)

explicitly with the use of partial fractions. Suppose that the roots of

gx) = xf(x) =0 (17)
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are y = Ky, a =13, where Ky, o and 3 are real (this is the case for each set of parameter
values in Table 1, except for loose undrained Castro sand, where the three roots are real).

It thus follows that

ron () (R o (5],

where for dv/dz < 0 the real constants m, a and b are given by

K2(36C, — 4C,) + Ko(36C, + 8Cy) + 9C, + 9C, — 9C; — 4C,
3K2(36C, — 4Cy) + 2Ko(36C; 4 9Cs + 9C,) + 9C; — 9C5 — 6C,°

m =

(a+1iB)*(36C, — 4C4) + (a +18)(36C, + 8Cy) + 9C; + 9Cy — 9C3 — 4C,
(Of + 15)2(3601 - 404) -+ 2(0[ + Z,B) (3601 + 903 + 904) + 901 - 903 - 604 ’

There are analogous results for m, a and b for Ov/0x > 0, but we omit the details.

b —
a-+1 3

In a similar way, equations (12) and (14) combine to yield

dE _ 142y
dx — 9(x) = xf(x)

which can be integrated to give
1+e { / X 142y J ,}
—— =exp X
1+eg xo 90¢) = X' f(X)

(SR (825 oo (i)

where for 0v/0z < 0 the real constants n, ¢ and d are given by

E(é‘)’

. 9(1 + 2K,)
~ 3KZ(36C, — 4Cy) + 2K, (36C, + 9Cs + 9Cy) + 9C, — 9C3 — 6C,’
et id = 9+ 18(a+iB)
N 3(a + 15)2(3601 — 404) + 2(a + Zﬁ) (3601 + 903 + 904) + 901 — 903 — 604’

and K and « + i are the roots of (17) (again, similar results for n, ¢ and d hold when
ov/oz > 0).

Figure 1 shows some trajectories in (7, S) space for the case in which (9) holds under
the further assumption that dv/dx < 0. Here we have used the values C; = —106.5,
Cy = —801.5, C3 = —797.1 and C, = 1077.7, which are for Karlsruhe medium sand (see

Table 1). From top to bottom, the solid curves in this figure are for the initial values
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Xo = So/To = 2, 1 and 1/6. The dashed curve is the straight line S = KT, where K
is the real root of (17) with dv/dz < 0. Note that these curves have been drawn using
equation (18), and do not come from integrating (5)-(6) explicitly with respect to time
t. We should also mention that the results of this subsection are independent of |0v/dz]|,

which is a well-known consequence of rate-independence.

Ty
Figure 1: Stress paths resulting from an oedometer test. The solid curves are for xo = 1/6,
1 and 2, while the dashed curve is for xo = Ky. In all cases Cy = —106.5, C, = —801.5,
C3=-797.1 and C, = 1077.7.

4.2 Results for oedometer tests

An important uniaxial deformation occurs when granular materials are subject to oe-
dometer tests. During these tests, sometimes referred to as one-dimensional compression
tests, a stress T is applied in a vertical axis, but movement in the lateral direction is
prevented. The lateral stress S and the axial strain € are measured as functions of 7'

A key point is that the deformation is assumed to be homogeneous, so that e = e(t),
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S =8(t) and T = T(t), and thus (9) and the analysis of Subsection 4.1 holds. We can
therefore think of the curves in Figure 1 as describing oedometer tests under loading.

In oedometer tests, it is found that, regardless of the initial values of the stresses,
the curves in stress space approach the line S = KT asymptotically for large 7. Here
the special constant Ky for dv/0x < 0 is referred to by engineers as the coefficient of
lateral stress at rest. The point x = K, is a fixed point of (14), which means that if
the relationship S/T = K holds initially, then it holds throughout the deformation. For

large T' /Ty we may invert (18) to give the asymptotic behaviour

A(xo — Ko) 1

S/TO - KO(T/TO) + (T/To)(lim)/m + 0 ((T/TO)(Qm)/m

) as T/Ty — oo,  (20)

where ) is a constant given by

A= (((fxf :222:@22>A/m o {% aretan ((XO —ﬁa()f({fo(; —X?x)> + 52> } |

It is clear from (20) that, provided 0 < m < 1, the predicted behaviour for large T/T;

from the hypoplastic theory is consistent with experimental observations. For the set of
material parameters used to draw Figure 1, the computed value of m is 0.77 and therefore
(1 = m)/m = 0.30. It follows that the stress paths approach the line S = KT slowly as
T /Ty increases, which is evident from Figure 1.

The curve for xp = 2 in Figure 1 has the feature that as the axial stress T/T} is
increased from 1, the measured lateral stress S/T, decreases at first, and then increases,
approaching the line S/T = K, as T — oo. This feature is is evident for all values of xq

greater than yr, where xr, is the positive root of
9Cx — 9Csx* — Cu(1 — x)* =0,

which comes from forcing dS/dT = 0. For the set of material parameters used in Figure 1,
we have xy = 1.0055. It would be interesting to see whether this behaviour could be
observed in experiments.

A characteristic of hypoplasticity is its ability to describe the anelastic behaviour of
granular materials. This is possible because of the inclusion of the nonlinear term ||d||

in (4), which leads to |0v/0x| appearing in (5)-(6). Figure 2 shows a stress path for
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Ov/0x < 0 with xo = So/Tp = 1. This is the bottom solid curve, and represents loading
in an oedometer test (this curve is also given in Figure 1). When 7/Ty = 10.47, the
material is unloaded with dv/0z > 0, and this behaviour is described by the top solid
curve. The trajectories for loading (0v/0x < 0) and unloading (Ov/0x > 0) are different,
illustrating the anelastic behaviour of granular materials. The dotted curve in Figure 2

is the same as the dotted curve in Figure 1, and is included for reference.

5
4
ST, °
2 4
1,
3 4 5 5 10
an

Figure 2: Stress paths for loading (bottom solid curve) and unloading (top solid curve) in
an oedometer test, where initially Sy/7y = 1. The constants C1,Cy, C3 and Cy take the

same values as in Figure 1.

In Figure 3 we present the relationship between the void ratio e and the applied stress
T /Ty, where the initial void ratio is given by eq = 0.5. Here the top curve is for loading and
the bottom curve for unloading. Again it is clear that these curves differ, demonstrating
the ability of this constitutive theory to predict plastic behaviour.

While Figures 1-3 have been described in the context of oedometer tests, it should

be understood that they are valid provided (9) holds. Other families of solutions which
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2 4 6 8 10
T/To
Figure 3: The dependence of the void ratio e on the axial stress T' for an oedometer

test. The top curve is for loading and the bottom curve is for unloading. The constants

C4, Cy, C5 and Cy take the same values as in Figure 1, and initially Sy /7y = 1 and eq = 0.5.

are of the form (9) are described later in the paper. For oedometer tests with e = e(t),
S = S(t) and T = T(t) we may go further. From (7) or (12) we see that dv/dz is a

function of ¢ alone, which means we may integrate (14) directly to give

co [T gy /X LA o <1+6)
= 9. = ! ! ! X = ’
) O o 90 = X100 E\1+e

where ¢ is the axial strain. We have therefore derived exact relationships between the two

stresses S and 7', the void ratio e and the axial strain ¢.

It should be mentioned that plots similar to those drawn in Figures 1-3 are presented
in Wu and Bauer [13] and Wu et al [14], who use the same hypoplastic equation (4). These
authors also include experimental results in their figures, which are in close agreement with
the numerical predictions. We emphasise that all the data in Figures 1-3 are computed
via exact results such as (18) and (19). They are not found by setting the left-hand sides
of (5) and (6) to be dT'/dt and dS/dt respectively, arbitrarily choosing negative values
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of dv/dz for loading and positive values for unloading, and then treating (5) and (6)
as coupled ordinary differential equations with the dependent variable ¢, which is the
standard practice. In fact, conservation of momentum (8) predicts that the velocity fields

for oedometer tests are not arbitrary, but are of the form

v(z,t) = (z + 591" + ghikat + k) , (21)

1
t+ kq

t+k
(0 =10 (1),

where k; and ko are constants, both of which appear not to have been identified in the

with the axial strain given by

literature.

5 Lie point symmetry analysis

5.1 Symmetry algebra of (5)-(8)

On using the algebraic package DIMSYM, we find the system of equations (5)-(8) ad-

mits a 6-parameter Lie transformation group with the 6 associated linearly independent

operators
0 0 0 0 0 0 0
Fl_%’ Fg—a, Fg—taﬁ-%, F4—T8—T+S%—(1+€)%
0 0 0 0 0 0 0
[y =t— 2 4+ (29t —v)=— —2(1 —, Te=1t= Lgth) — —. (22
P =gy T, 0t ), m Aty To=tn +(dagt)g, +atp, (22)

For any linear combination of these operators we may determine five invariants of the
particular transformation group and hence derive functional forms for the four dependent
variables T', S, v and e. There are infinitely many of these linear combinations, so we seek
to classify the set of all functional forms into families whose members are all equivalent
to each other.

The operators in (22) form a basis for the Lie algebra corresponding to (5)-(8). Of
course this basis is not unique, and so while Hill and Williams [6] present a different basis
for the Lie algebra (in fact they use two different bases, one for g # 0, and one for g = 0),

it can easily be shown that each basis spans the same algebra.
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5.2 Optimal system of generators

We define a relation between two invariant solutions to hold true if the first one can
be mapped to the other by applying a transformation group generated by a linear com-
bination of the operators in (22). Since these mappings are reflexive, symmetric and
transitive, the relation is an equivalence relation, which induces a natural partition on
the set of all group invariant solutions into equivalence classes. We need only present one
solution from each equivalence class, as the rest may be found by applying appropriate
group symmetries; a complete set of such solutions is referred to as an “optimal system”
of group invariant solutions.

The problem of deriving an optimal system of group invariant solutions is equivalent
to finding an optimal system of generators (or subalgebras spanned by these operators).
The method used here is that given by Olver [18], which basically consists of taking linear
combinations of the generators in (22), and reducing them to their simplest equivalent

form by applying carefully chosen adjoint transformations
Ad(exp(ely))T; = T; — [T, T;] + %em, ] - ...
Here [I';, I';] is the usual commutator, given by
;0] =00 =T,

the list of adjoint operators is shown in Table 2. For brevity we omit the details, and just

state the result that an optimal system of generators is
{Fz +al's+ BTy, Te+al'y+pls, T'e—I's+ al'y+ Bl (ﬁ #* 0), I'g+al'y+T,

Is+al'y+ 0y, Ts+aly, TI'i+al'y, T4}, (23)

where o and 8 denote arbitrary constants.

6 Complete set of group-invariant solutions

For each of the generators in (23) it is straightforward to derive the corresponding func-

tional forms. Again, the reader is referred to Olver [18], or any standard text on Lie
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| T, ry, T, T, Ty — e,
- N b, p, Tem ey Tyl
+€%gl'y +3€2gT
;| Iy [y + €l'y I3 Iy [s+€l's [
L, | Iy Ty Iy Iy s g
Is| Iy eTy+glef—e )y e Ty Ty [ s
e | ey  eTy+gef — 1) s Iy [s L

Table 2: Table of adjoint operators. The (7, j)th entry is Ad(exp(el’;))I';, where the I';
are given by (22).

symmetry methods applied to differential equations. We note that Iy does not corre-
spond to any group-invariant solution, so there are seven families of functional forms in
our optimal system.

In this section we consider each of the seven families of functional forms, and present
the associated system of ordinary differential equations which govern their solution. Fam-
ilies 1 and 2 include solutions examined previously in Hill and Williams [6] at least implic-
itly; the connection between these families and elements of our optimal system is explained
below. The remainder of the solution families given are new, and two illustrative examples

of numerical solutions are given.

6.1 Family 1 and travelling wave solutions

The functional forms corresponding to the operator I'y; + al's + Ty in (23) are
e(z,t) +1=eP'E(), wv(z,t)=at+ H(E),

S(x,t) = e’'G(£), T(x,t) =P F(€), (24)

16



where E, H, G and F are arbitrary functions of £ = x — %atQ. Upon substitution of these

functional forms into (5)-(8), we obtain the system of ordinary differential equations

HE'— EH' = BE, (25)
EF'
a+ HH' = P +9, (26)
(F +2G)(BF + HF') = H'{C\(F +2G)* + (Cy — C3)F? — (4C4/9)(F — G)*}, (27)
(F +2G)(BG + HG") = H'{C,FG — C3G* — (Cy/9)(F — G)?}, (28)

where here 0v/0x < 0, and the primes denote differentiation with respect to £&. The
corresponding system for dv/dz > 0 is the same as (25)-(28), except that the negative
signs in front of the constants C3 and C; will be positive.

The functional forms (24) can be thought of representing accelerating travelling waves,

with speed at. For 8 = 0 we have
e(z,t) +1=FE(¢), v(z,t)=at+ H(E), S(z,t)=G(E), T(z,t)=F(§),

where £ = x — %atQ, and so the exact solutions of Section 4 hold, which means that we
know how e(z,t), T'(x,t) and S(z,t) depend on each other. However, even in this case the
only way to determine the dependence of E, H, G and F on the independent variable £ is
to solve (25)-(28) numerically, since analytic solutions of the full system (25)-(28) are not
possible. Figure 4 shows the dependence of E, H,G and F on the invariant £ for the two
values 8 = 0 (dashed lines) and 3 = —0.005s™* (solid lines) with o = 1m/s”. This solution
has been computed with the initial conditions E(0) = 3/2, F(0) = G(0) = —100kN/m’
and H(0) = 1lm/s using the algebraic package MAPLE. The material constants used
are for Karlsruhe medium sand, as with the previous figures, with p; = 0.8g/cm3 and
g = 10m/52. The curves in Figure 4 are initial profiles for e + 1, v, S and T. As time
evolves, these profiles are adjusted via the exponential terms in (24), and progagate with
speed at.

Hill and Williams [6] considered traditional travelling wave solutions (those for which
the wave speed is a constant) of (5)-(8), which corresponds to the symmetry groups

generated by the linear combination I's + £I'; of space and time translational symmetries,
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Figure 4: The dependence of E, H, G and F for family 1 on the independent variable £ is
shown for 8 = 0 (dashed lines) and 5 = —0.005s~! (solid lines). In each case C; = —106.5,
Cy=—-801.5,C3 =—-797.1, C, = 1077.7, a = 1m/s2, Ps = 0.8g/cm3 and g = 1Om/s2.

where £ is the speed of the wave. We denote these solutions by e+1 = E(x,t), v = H(x,t),
S = G(z,t) and T = F(x,t). Referring to Table 2, we find that

Ad(exp(—kl'3))(Ty + kT'1) =Ty,

so that the travelling wave solutions £, H, G and F can be recovered from the stationary
solutions e + 1 = E(z), S = G(z), T = F(z), and v = H(x), which are invariant under
the group generated by I'; (and correspond to Family 1 with o = 3 = 0). The travelling

wave solutions
e(z,t) = E(z,t) = E(z — kt), v(x,t) = H(z,t) = H(z — kt) + k,
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S(z,t) = G(x,t) = G(x — kt), and T'(x,t) = F(z,t) = F(z — kt),
are therefore derived via invariant transformations of the symmetry I's with the wave

speed k.

6.2 Family 2 and similarity solutions

The functional forms for the operator I's + al'y + SI'5 in (23) are

(a+28)

e(e,t)+1=t" 21 E(E), v(z,t)=gt+t FH(E),

S(z,t) = t71G(€), T(x,1) =7 F(E), (29)
where E, H,G and F are arbitrary functions of & = tfﬁ(x — %th), provided § # —1.
Upon substitution of these functional forms into (5)-(8), we obtain for dv/0x < 0 the
system of ordinary differential equations
(@ +28)E+EE" = (B+1)(HE - EH'),
(BH+¢H') = (B+1)(HH' — EF'/p,),
(aF —EF' + (B+1)HF')(F+2G) = (B+1)H{Ci(F +2G)* 4 (Co — C3)F?
—(4C4/9)(F = G)*},
(@G —£G'+ (B+1)HG(F +2G) = (B+1)H'{CoFG — C3G? — (Cy/9)(F — G)?*},
where the primes denote differentiation with respect to . Again, the system for dv/0z > 0

is obtained by replacing the negative signs in front of the constants C5 and C; by positive

ones. For the case f = —1, the functional forms become
e(z,t) +1=(z — Lgt?) “DE®), v(z,t)=gt+ (z— Lgt)H(?),
S(z,t) = (z — 39°)°G(t), T(x,t) = (z — 39t")*F (1), (30)

where now E, H, G and F are governed for dv/0z < 0 by

E' = (a—1)EH, (31)

(H'+ H?)ps = aEF, (32)
(F'+aFH)(F+2G) = H{Ci(F +2G)* + (Cy — C3)F? — (4C4/9)(F — G)?}, (33)
(G'+aGH)(F +2G) = H{Co,FG — C3G? — (C4/9)(F — G)*}. (34)
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The case § = —1 was discussed in Hill and Williams [6] and the functional forms and
corresponding system of ordinary differential equations may be derived from (30) and
(31)-(34) if @ = 3/2, and g = 0.

The similarity solutions of Family 2 are invariant under the transformations
T=Xr— (gt?/2)( A= NP 1 pe= )1 1), §=)S, T =\T,
5= vXP 4 gtV = \7F), 1= )\, (35)

where A is a small parameter. In can be seen that by setting 8 = —1/2, these transfor-
mations are the same as those given by equations (3.10)-(3.11) in Hill and Williams [6].
It must be that & = 1 — a, where a is a parameter used in Hill and William’s paper.

Hill and Williams [6] investigated similarity solutions under (35) with 8 = —1/2. One
of these (with @ = —1/2) was utilized to examine the application to the problem of

compaction by air pressure impact. They derived the functional forms

6(33, t) +1= $(1—a)5(5), U('T’t) = ml/ZH(g)a S(‘T’t) = xag(g)’ T($,t) = xaf(f)a

with € defined below, which appear to be different to the functional forms (29) with
B = —1/2, namely

e(z,t) +1=CYE©), v(z,t)=tlg+H), S(z,t)=1t*G(&), T(z,t)=1t"F(&),

where £ = z/t? — g/2. It should be clear that these different sets of functional forms are

equivalent to each other, and in fact the relevant functions are related by

E(€) =79, HE)=EPH(E) —g, GE)=£EG(E), F(E) =EF©E), E=¢+g/2.

We note that there are many types of solutions from Family 2, other than that those
considered by Hill and Williams [6], but we do not investigate these solutions further

here.

6.3 Family 3
The operator I's — I's + al'y + T2 (8 # 0) in (23) yields the functional forms
e(z,t) +1=e EE), v(z,t)=g(t+ ) +ePH(E),
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S(x,t) = ePG(€), T(z,t)=e"PF(),

where E, H,G and F are arbitrary functions of £ = [x — 1g((t + 8)? + %)]e ¥/#, noting
that the case 8 zero is embodied in the previous example. For 0v/0z < 0 we find that E,

H, G and F satisfy the system of ordinary differential equations

(e —2)E+¢E' = B(HE' — EH'),

(1+BH)H —¢H' = ﬁfF/,
oF —EF' + BHF' = LH’{CI (F +2G)* 4 (Cy — C3)F% — (4C4/9)(F — G)*}
F+2G ’
KI
oG — €G! + BHG' = Fi GG~ G5 — (Cu/9)(F — G,

where the primes indicate the differentiation with respect to £. For dv/dz > 0, we arrive
at the same equations, with the negative signs in front of the constants C'3 and C; changed

to positive.

6.4 Family 4

The corresponding functional forms for the operator I's + al'y = I's in (23) are
e(,t) + 1=t B(g), v(z,t) = gt +logt + H(¢),

S(z,t) = t°G(€), T(z,t) = t*F(€), (36)

z 1
where E, H,G and F are arbitrary functions of ¢ = te” ¢ 729", The following system of
ordinary differential equations is obtained on substitution of these functional forms into

(5)-(8), under the assumption dv/dzx > 0:

aF +&(H—-1+10gé)E' = EEH,
1+ (1—logé—H)H' = _§EF”

(aF + (1 —logé& — H)EF')(F +2G) = —5{68‘1(F +2G)? + (Cy + Cs) F?
+(4C4/9)(F - G)*},

(@G + (1 —logé — H)EG')(F +2G) = —E{CoFG + C3G* + (C4/9)(F — G)*}. (37)
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Here the primes denote differentiation with respect to £. For dv/dz < 0 the signs of the
constants C3 and C, should be changed.

Suppose a piston is being thrusted into a semi-infinite vertical cylinder of material
with constant applied stress T;. Suppose also that at the piston level, which we denote
by = = q(t), the lateral stress is Sy and the void ratio is eg. Then, providing the piston
follows the path

q(t) = tlog(t/v) + 59t°
for some constant «y, then the solution is of the form (36) with = 0. The functions
E,H,G and F are determined by the system (37) (with a = 0) with the initial conditions
E(y)=ey+ 1, H(v) =1 —logvy, G(v) = Sy and F(v) = Ty. Furthermore, since a = 0,

the functional forms satisfy (9), and so the exact results of Section 4.1 apply.

6.5 Family 5
The functional forms for the operator I's + oI’y + ST'; in (23) are
e(z,t) +1=t"EE), wv(z,t)=gt+L1H(E),
S(z,t) =t*G(), T(x,t) =t*F(¢), (38)

where £, H,G and F' are arbitrary functions of £ = =z — %th — Blogt. By substituting
these forms in (5)-(8) we obtain for dv/dz < 0

(a+2)E+BE = HE — EH,
(H_B)HI_H = EpF,,
(aF 4+ (H — B)F)(F +2G) = H'{Cy(F +2G)*+ (Cy — C3)F?

—(4C4/9)(F - G)*},
(aG+ (H — B)G")(F +2G) = H'{C,FG — C5G? — (C4/9)(F — G)?},
where the primes indicate differentiation with respect to &, and for dv/0x > 0 we obtain
the same equations with the negative signs in front of C3 and Cy positive. The functional

forms (38) represent some sort of travelling waves with speed gt + §/t. For 8 = 0 these

travelling waves’ acceleration is due to gravity.
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6.6 Family 6

The functional forms corresponding to I's + oI’y are

e(x,t) +1=e“'E(t), wv(zx,t)= S+ H(1),

S(x,t) = e**'G(t), T(x,t) = e*/'F(t). (39)

For time ¢ < 0 we have 0v/0z < 0, and here E, H, G and F satisfy the coupled system

tE' = (1+aH)E,
t(H —g)+H = afF’
(tF'+aFH)(F+2G) = {Ci(F+2G)*+ (Cy — C3)F? — (4C4/9)(F — G)*}

(tG'+ aGH)(F 4+ 2G) = {C,FG — C3G* — (Cy/9)(F — G)?}, (40)

where the primes denote differentiation with respect to ¢.

Now for o = 0 the functional forms (39) are appropriate to describe deformations which
occur in oedometer tests, as described in Section 4. In figure 5 we show the dependence
of E,H,G and F on t for o = 0 (dashed line) and o = 1sm™! (solid line), found by
solving (40) numerically (with MAPLE) subject to the initial conditions £ = 3/2, H = 0,
G=F= —100kN/m2 when ¢t = —1s. This figure simulates loading. We see that the
curves for the stresses G and F' are almost identical for each value of «, but the functions
E and H are sensitive to the choice of a. Recall that from (21) that the function H for
a = 0 is given exactly by

H(t) = 39(t - 1/1),

the form of which is difficult to appreciate from the scale in the figure.

6.7 Family 7

Finally, the functional forms for I'y + al'y in (23) are

e(z,t) +1=e *E(t), v(z,t)=H(t), S(z,t)=e"G(t), T(x,t) =e*"F(t).
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Figure 5: The dependence of E, H, G and F' for family 6 on time ¢ is shown for @ = 0
(dashed lines) and o = 1sm™! (solid lines). In each case C; = —106.5, Cy = —801.5,
Cs = —797.1, C, = 1077.7, p, = 0.8g/cm® and g = 10m/s”.

Here the term Ov/0x vanishes, and so the partial differential equations (5)-(8) reduce

considerably to

E'=aFH, H —g=

, F'=—aFH, G'=—aGH.

In this instance we are able to solve the equations analytically, and the solutions are

e(z,t) + 1 = Eyexp{—a(z — L Hit* — Hyt)},

U(.’L‘, t) = Hlt + HQ,

S(z,t) = Grexp{a(z — $Hit* — Hot)}, T(z,t) = Fy exp{a(z — 1 Hit* — Hst)},



where Ey, F1,G1, H; are H, are constants of integration, with H; given by H; = g +
p—sE1F1-

7 Discussion

Hypoplasticity is a sophisticated continuum theory for granular materials whose consti-
tutive law can be expressed in a single tensorial equation. The theory differs from the
classical elastoplasticity theories in that the concept of a yield condition is not used a
priori, and that there is no need to either decompose deformations into elastic and plastic
parts, nor to distinguish explicitly whether the material is experiencing loading or un-
loading. These characteristics, coupled with the fact that the tensorial equation contains
few material parameters, make hypoplasticity an attractive practical constitutive theory
for engineers.

Many versions of hypoplasticity have been developed, and at each stage these have
been rigorously tested against experimental data, with considerable success. The experi-
ments used are typically in the form of element tests, such as triaxial or simple shearing
tests. The reason is that the stress fields resulting from element tests are homogeneous
(functions of time only), and the material time derivative of the stresses reduces to a nor-
mal derivative. The constitutive equations can then be integrated numerically, without
reference to the momentum equation. The particular hypoplastic law used in the present
study is due to Wu [2], and has been tested against experimental data in Wu et al. [14]
and Wu and Bauer [13].

In general, stress fields for deformations of hypoplastic granular materials are not
homogeneous, and are described by a nonlinear system of partial differential equations
consisting of the hypoplastic equations and the conservation laws of continuum mechanics.
These equations are mathematically complicated, with analytic progress unlikely for most
realistic boundary-value problems. With this in mind, the goal of Hill and Williams [6]
was to examine granular deformations in one spatial deformation, and to derive certain
group-invariant solution using Lie symmetry methods. We have extended this work by

considering all such group-invariant solutions in a systematic way, and classifying them
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into equivalence classes using the established concept of an “optimal system”. It has been
found that there are seven independent families of group-invariant solutions, in each case
governed by ordinary differential equations, which can be easily solved numerically.

For some of the more complicated families considered in Section 6, it is not immedi-
ately clear to which physical situation they correspond. An example is family 3, whose
similarity-type variable is £ = [z — 1g((t + B)? + 8%)]e"*/#. However, we have derived
a variety of travelling wave solutions, such as those of families 1 and 5, which are of
interest. A subset of the similarity solutions of family 2 have already been applied to
an air compaction problem in Hill and Williams [6], and solutions of family 4 can be
applied to a compacting piston problem. Furthermore, in a practical context, solutions
in family 6 describe deformations which occur in oedometer tests, which we briefly dis-
cuss below. In any event, it is always advantageous to obtain any simplified solutions to
nonlinear systems of partial differential equations, and all the solution families considered
in this paper could be exploited to test numerical schemes for the full system of partial
differential equations.

Finally, we mention that for the class of solutions (9), we have been able to derive
several exact results, as presented in Section 4. Within this class are those which describe
oedometer tests, which are used by engineers to test theories for granular deformations,
including hypoplasticity. In this context these exact results are interesting, since they
appear to have been overlooked. The usual practice when dealing with these equations is
to assign arbitrary values of Jv/0x for loading and unloading, and then solve the remaining
coupled ordinary differential equations numerically. Our exact results are entirely in

accord with results obtained in this manner.
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