
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Feng, Libo, Liu, Fawang, Turner, Ian, & Zheng, Liancun
(2018)
Novel numerical analysis of multi-term time fractional viscoelastic non-
Newtonian fluid models for simulating unsteady MHD Couette flow of a
generalized Oldroyd-B fluid.
Fractional Calculus and Applied Analysis, 21(4), pp. 1073-1103.

This file was downloaded from: https://eprints.qut.edu.au/150891/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1515/fca-2018-0058

https://eprints.qut.edu.au/view/person/Feng,_Libo.html
https://eprints.qut.edu.au/view/person/Liu,_Fawang.html
https://eprints.qut.edu.au/view/person/Turner,_Ian.html
https://eprints.qut.edu.au/150891/
https://doi.org/10.1515/fca-2018-0058


Novel numerical analysis of multi-term time fractional viscoelastic

non-Newtonian fluid models for simulating unsteady MHD Couette flow of a

generalized Oldroyd-B fluid

Libo Fenga, Fawang Liua,∗, Ian Turnera,b, Liancun Zhengc

aSchool of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia
bAustralian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Queensland University of

Technology (QUT), Brisbane, Australia
cSchool of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Abstract

In recent years, non-Newtonian fluids have received much attention due to their numerous applications, such as
plastic manufacture and extrusion of polymer fluids. They are more complex than Newtonian fluids because the
relationship between shear stress and shear rate is nonlinear. One particular subclass of non-Newtonian fluids is
the generalized Oldroyd-B fluid, which is modelled using terms involving multi-term time fractional diffusion and
reaction. In this paper, we consider the application of the finite difference method for this class of novel multi-term
time fractional viscoelastic non-Newtonian fluid models. An important contribution of the work is that the new
model not only has a multi-term time derivative, of which the fractional order indices range from 0 to 2, but also
possesses a special time fractional operator on the spatial derivative that is challenging to approximate. There
appears to be no literature reported on the numerical solution of this type of equation. We derive two new different
finite difference schemes to approximate the model. Then we establish the stability and convergence analysis of these
schemes based on the discreteH1 norm and prove that their accuracy is ofO(τ+h2) and O(τmin{3−γs,2−αq,2−β}+h2),
respectively. Finally, we verify our methods using two numerical examples and apply the schemes to simulate an
unsteady magnetohydrodynamic (MHD) Couette flow of a generalized Oldroyd-B fluid model. Our methods are
effective and can be extended to solve other non-Newtonian fluid models such as the generalized Maxwell fluid
model, the generalized second grade fluid model and the generalized Burgers fluid model.

Keywords: multi-term time derivative, finite difference method, fractional non-Newtonian fluids, generalized
Oldroyd-B fluid, Couette flow, stability and convergence analysis

1. Introduction

Generally, a constitutive equation is used to specify the rheological properties of a material, which is a relation
between the stress and the local properties of the fluid. Some common fluids, such as water, oil, air, ethanol
and benzene, exhibit a linear relationship between the stress tensor and the rate of deformation tensor, which
are called Newtonian fluids. The Newtonian constitutive equation is the simplest linear viscoelastic model. For
small deformations, low stress, low rate, and linear materials, linear viscoelasticity is usually applicable. However,
some fluids produced industrially do not obey the Newtonian postulate, such as molten plastics, slurries, emulsions,
pulps, and these are termed as non-Newtonian fluids. This means that the rapport between the stress tensor
and the rate of deformation tensor is not linear but is non-linear. In reality about 90% of fluids are nonlinear
with large deformations, therefore nonlinear viscoelastic mathematical models are needed. Research related to
non-Newtonian fluid mechanics is of great realistic significance to industry. Since a rheometer can not provide
the necessary information of important rheological properties, the constitutive equations are the best available
tools for understanding the complex behaviour of a material. Due to the nonlinear relationship between stress
and deformation and there being no standard form universally valid for each non-Newtonian fluid, the constitutive
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equation of non-Newtonian fluids is much more complex than its Newtonian counterpart. The constitutive equations
involving fractional calculus have proved to be a valuable tool for handling viscoelastic properties [1, 2] and some
results are obtained that are in good agreement with experimental data [3, 4].

One particular subclass of non-Newtonian fluids is the generalized Oldroyd-B fluid, which has been found to
approximate the response of many dilute polymeric liquids. Consider the flow of an incompressible Olyroyd-B fluid
bounded by two infinite parallel rigid plates. Initially, the whole system is at rest and the upper plate is fixed.
Then at time t = 0+, the lower plate starts to move with some acceleration. Due to the shear effects, the fluid over
the plate is gradually disturbed. The fundamental equations of an incompressible fluid are

divV = 0, ρ
dV

dt
= divT,

where div is the divergence operator, ρ is the density of the fluid, T is the Cauchy stress tensor and d
dt is the

material time derivative. The constitutive equation for a generalized Oldroyd-B fluid is defined as [5]:

T = −pI+ S,

Å
1 + λ

Dα

Dtα

ã
S = µ

Å
1 + θ

Dβ

Dtβ

ã
A,

where p is the pressure, I is the identity tensor, S is the extra-stress tensor, λ is the relaxation time, µ is the
dynamic viscosity coefficient of the fluid, θ is the retardation time, and A = L + LT (L = ∇V) denotes the first

Rivlin-Ericksen tensor. The operators Dα

Dtα and Dβ

Dtβ
are material derivatives and can be expressed as

DαS

Dtα
= Dα

t S+ (V · ∇)S− LS− SLT ,

DβA

Dtβ
= Dβ

t A+ (V · ∇)A− LA−ALT ,

where Dα
t and Dβ

t are the time fractional derivative operators of order α and β, respectively. Assume that the
velocity field and stress has the form

V = u(y, t)i, S = S(y, t).

Taking into account the initial condition S(y, 0) = 0 and in absence of the pressure gradient, one can obtain the
following equation with fractional derivative of the velocity of the main flow [6, 7]

(1 + λDα
t )

∂u(y, t)

∂t
= ν(1 + θDβ

t )
∂2u(y, t)

∂y2
, (1)

where ν = µ
ρ
. When a magnetic field is imposed on the above flow under the assumption of low magnetic Reynolds

number, the following velocity equation can be derived [8, 9]

(1 + λDα
t )

∂u(y, t)

∂t
= ν(1 + θDβ

t )
∂2u(y, t)

∂y2
−K(1 + λDα

t )u(y, t), (2)

where K =
σB2

0

ρ
, B0 is the magnetic intensity and σ is the electrical conductivity. When the fluid medium is porous,

the following magnetohydrodynamic (MHD) flow of a generalized Oldroyd-B fluid with an effect of Hall current can
be obtained [10]

(1 + λDα
t )

∂u(y, t)

∂t
= ν(1 + θDβ

t )
∂2u(y, t)

∂y2
−

νϕ1

k
(1 + θDβ

t )u(y, t)−
σB2

0

ρ(1− iφ)
(1 + λDα

t )u(y, t), (3)

where k is the permeability of the porous medium, ϕ1 is the porosity of the medium, and φ is the Hall parameter.
As Eqs.(1)-(3) contain similar terms, they can be expressed in a generalised form.

In this paper, we will consider the following novel multi-term time fractional non-Newtonian diffusion equation:

s
∑

j=1

bj D
γj

t u(x, t) + a1
∂u(x, t)

∂t
+

q
∑

l=1

cl D
αl

t u(x, t) + a2u(x, t)

= a3
∂2u(x, t)

∂x2
+ a4D

β
t

∂2u(x, t)

∂x2
+ f(x, t), (x, t) ∈ Ω, (4)

2



subject to the initial conditions

u(x, 0) = φ1(x), ut(x, 0) = φ2(x), 0 ≤ x ≤ L, (5)

and the boundary conditions:
u(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ T, (6)

where ai > 0, i = 1, 2, 3, 4, bj ≥ 0, j = 1, 2, . . . , s, cl ≥ 0, l = 1, 2, . . . , q, 1 < γ1 < γ2 < . . . < γs < 2,

0 < α1 < α2 < . . . < αq < 1 and Ω = (0, L)× (0, T ]. The Caputo time fractional derivative Dβ
t u(x, t) (0 < β < 1)

and Dγ
t u(x, t) (1 < γ < 2) are given by [11, 12]

Dβ
t u(x, t) =

1

Γ(1− β)

∫ t

0

(t− s)−β ∂u(x, s)

∂s
ds, 0 < β < 1,

Dγ
t u(x, t) =

1

Γ(2− γ)

∫ t

0

(t− s)1−γ ∂
2u(x, s)

∂s2
ds, 1 < γ < 2.

The general multi-term time fractional diffusion equation only contains the multi-term time fractional derivative

terms without the special term Dβ
t
∂2u
∂x2 . Its solution has been investigated both theoretically and numerically. Some

authors used the method of separating variables to obtain analytical solutions of the multi-term time fractional
diffusion-wave equations and the multi-term time fractional diffusion equation [13, 14, 15]. Numerical solutions
for the multi-term time fractional diffusion-wave equation can be found in [16, 17] and for the multi-term time
fractional diffusion equation can be found in [18, 19, 20], respectively. There is also some research on the numerical
solution of the multi-term time fractional diffusion equation, of which the indices belong to (0, 2) or greater than 2
[21, 22].

Different to the general multi-term time fractional diffusion equation, the new model (4) not only has a multi-
term time derivative, of which the fractional order indices are from 0 to 2, but also possesses a special time
fractional operator on the spatial derivative, which is challenging to approximate. Although there is some literature
[8, 9, 23] involving the exact solution of the generalized Oldroyd-B fluid, the solution is typically given in series form
with special functions, such as the Fox H-function or the multivariate Mittag-Leffler function, and both of these
functions are difficult to express explicitly. Therefore, numerical solution of (4) is a promising tool to provide insight
on the behaviour of the model. In [24], Bazhlekova and Bazhlekov presented a finite difference method to solve the
viscoelastic flow of a generalized Oldroyd-B fluid (1). They utilised the Grünwald-Letnikov formula to approximate
the Riemann-Liouville time fractional derivative, which has first order accuracy, however no theoretical analysis
was given. Recently, Feng et al. [25] proposed a finite difference method for the generalized fractional Oldroyd-B
fluid (1) between two rigid plates and gave the stability and convergence analysis, which has low order accuracy
as well. To the best of the authors’ knowledge, there is no literature reported on the numerical solution of Eqs.(2)
and (3). Therefore, the numerical solution of Eq.(4) has also not appeared. For the two kinds of time fractional
derivatives in the L.H.S. of Eq.(4), the so-called L1 or L2 scheme can be used for approximation. For the coupled
operator (time fractional operator on the spatial derivative) in the R.H.S. of Eq.(4), few techniques can be applied.
As Eq.(4) involves these terms simultaneously, the derivation of the numerical solution becomes difficult and it is
more challenging to establish the theoretical analysis. The main contributions of this paper are as follows:

• We propose two new different finite difference schemes to approximate the coupled operator Dβ
t
∂2u
∂x2 , in which

the mixed L scheme is used to discretise the equation at mesh point (xi, tn− 1
2
) directly. We also establish

the L2 scheme for the term Dγ
t u(x, t) with first order accuracy. In addition, we give an important and useful

lemma, which can be extended to other multi-term time fractional diffusion problems;

• We derive two different finite difference schemes for problem (4) with accuracyO(τ+h2) andO(τmin{3−γs,2−αq,2−β}

+h2), respectively and establish the stability and convergence analysis. We prove our method is uncondition-
ally stable and convergent under the discrete H1 norm;

• Our numerical methods are robust and flexible, which can be used to deal with problem (4) with different
initial and boundary conditions, for which an analytical solution may be not feasible;

• Our numerical solution is more general and can be used to solve other time fractional diffusion problems, such
as the generalized Oldroyd-B fluid model with or without a magnetic field effect, the generalized Maxwell
fluid model, the generalized second grade fluid model and the generalized Burgers’ fluid model.
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The outline of the paper is as follows. In Section 2, some preliminary knowledge is given, in which two numerical
schemes to discretise the time fractional derivative are proposed. In Section 3, we develop the finite difference
schemes for Eq.(4). We proceed with the proof of the stability and convergence of the scheme using the energy
method and discuss the solvability of the numerical scheme in Section 4. In section 5, we present two numerical
examples to demonstrate the effectiveness of our method and some conclusions are summarised.

2. Preliminary knowledge

For convenience, in the subsequent sections, we suppose that C,C1, C2, . . . are positive constants, whose values
will be implicitly determined by the surrounding context.

Firstly, in the interval [0, L], we take the mesh points xi = ih, i = 0, 1, · · · ,M , and tn = nτ , n = 0, 1, · · · , N ,
where h = L/M , τ = T/N are the uniform spatial step size and temporal step size, respectively. Denote Ωτ ≡
{tn| 0 ≤ n ≤ N} and Ωh ≡ {xi| 0 ≤ i ≤ M}. Define the grid function un

i = u(xi, tn) and fn
i = f(xi, tn). We

introduce the following notations:

∇tu
n
i =

un
i − un−1

i

τ
, u

n− 1
2

i =
un
i + un−1

i

2
, ∇xu

n
i =

un
i − un

i−1

h
, δ2xu

n
i =

un
i−1 − 2un

i + un
i+1

h2
.

Denote

Vh = {v | v is a grid function on Ωh and v0 = vM = 0}.

For any χ, v ∈ Vh, we define the following discrete inner products and induced norms:

(χ, v) = h
M−1
∑

i=1

χivi, 〈∇xχ,∇xv〉 = h
M
∑

i=1

∇xχi · ∇xvi,

||v||0 =
»
(v, v), ||v||∞ = max

0≤i≤M
|vi|,

|v|1 =
»
〈∇xv,∇xv〉, ||v||1 =

»
a2||v||20 + a3|v|21.

It is straightforward to check that

(δ2xv
k, vn) = −〈∇xv

k,∇xv
n〉, (7)

(δ2xv
k,∇tv

n) = −
1

τ
〈∇xv

k,∇xv
n −∇xv

n−1〉 = −〈∇xv
k,∇t(∇xv

n)〉. (8)

To discretise the time fractional derivative Dγ
t u(x, t) (1 < γ < 2) at (xi, tn), we have

Dγ
t u(xi, tn) =

1

Γ(2− γ)

∫ tn

0

(tn − s)1−γ ∂
2u(xi, s)

∂s2
ds

=
1

Γ(2− γ)

n
∑

k=1

∫ tk

tk−1

(tn − s)1−γ ∂
2u(xi, s)

∂s2
ds

=
1

Γ(2− γ)

n
∑

k=1

∫ tk

tk−1

(tn − s)1−γ ·
uk
i − 2uk−1

i + uk−2
i

τ2
ds+ rn

=
τ1−γ

Γ(3− γ)

[

a
(γ)
0 ∇tu

n
i −

n−1
∑

k=1

(a
(γ)
n−k−1 − a

(γ)
n−k)∇tu

k
i − a

(γ)
n−1

∂u(xi, 0)

∂t

]

+ rn,

where u−1
i = u0

i − τ ∂u(xi,0)
∂t

and a
(γ)
k = (k + 1)2−γ − k2−γ , k = 0, 1, 2, . . . For the truncation error rn, we have [26]

|rn| ≤
CT 2−γ

Γ(3− γ)
max
0≤t≤T

∣

∣

∣

∣

∂3u(xi, t)

∂t3

∣

∣

∣

∣

· τ +O(τ2).
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Then we can obtain the discrete scheme for the time fractional derivative Dγ
t u(x, t) at mesh points (xi, tn)

Dγ
t u(xi, tn) =

τ1−γ

Γ(3− γ)

[

a
(γ)
0 ∇tu

n
i −

n−1
∑

k=1

(a
(γ)
n−k−1 − a

(γ)
n−k)∇tu

k
i − a

(γ)
n−1

∂u(xi, 0)

∂t

]

+R1, (9)

where |R1| ≤ Cτ .
To discretise the time fractional derivative Dγ

t u(x, t) (1 < γ < 2) at (xi, tn− 1
2
), we have the following so-called

L2 formula [27]

Dγ
t u(xi, tn− 1

2
) =

τ1−γ

Γ(3− γ)

[

a
(γ)
0 ∇tu

n
i −

n−1
∑

k=1

(a
(γ)
n−k−1 − a

(γ)
n−k)∇tu

k
i − a

(γ)
n−1

∂u(xi, 0)

∂t

]

+R2, (10)

where |R2| ≤ Cτ3−γ .

Lemma 1. For 1 < γ < 2, define a
(γ)
k = (k + 1)2−γ − k2−γ , k = 0, 1, 2, . . . , n and vector S = {S1, S2, S3, . . . , SN}

and constant P , then it holds that

τ1−γ

Γ(3− γ)

N
∑

n=1

[

a
(γ)
0 Sn −

n−1
∑

k=1

(a
(γ)
n−k−1 − a

(γ)
n−k)Sk − a

(γ)
n−1P

]

Sn

≥
T 1−γ

2Γ(2− γ)

N
∑

n=1

S2
n −

T 2−γ

2τΓ(3− γ)
P 2, N = 1, 2, 3, . . .

Proof. See [27].

To discretise the time fractional derivative Dβ
t u(x, t) (0 < β < 1) at (xi, tn), we have the following so-called L1

formula [27]

Dβ
t u(xi, tn) =

τ−β

Γ(2− β)

[

d
(β)
0 un

i −
n−1
∑

k=1

(d
(β)
n−k−1 − d

(β)
n−k)u

k
i − d

(β)
n−1u

0
i

]

+R3

=
τ1−β

Γ(2− β)

n
∑

k=1

d
(β)
n−k∇tu

k
i +R3, (11)

where d
(β)
k = (k + 1)1−β − k1−β, k = 0, 1, 2, . . . , n and |R3| ≤ Cτ2−β . It is straightforward to derive the following

lemma on the properties of d
(β)
k [28].

Lemma 2. For 0 < β < 1, define d
(β)
k = (k + 1)1−β − k1−β, k = 0, 1, 2, . . . then

1. d
(β)
k > 0, d

(β)
0 = 1, d

(β)
k > d

(β)
k+1, lim

k→∞
d
(β)
k = 0,

2.
n−1
∑

k=0
(d

(β)
k − d

(β)
k+1) + d

(β)
n = 1,

3. d
(β)
k+1 − 2d

(β)
k + d

(β)
k−1 ≥ 0, k ≥ 1.

Since

∂2u(xi, tn)

∂x2
= δ2xu

n
i −

h2

12

∂4u(ξi, tn)

∂x4
,

then we have

Dβ
t

∂2u(xi, tn)

∂x2
=

τ−β

Γ(2− β)

[

d
(β)
0 δ2xu

n
i −

n−1
∑

k=1

(d
(β)
n−k−1 − d

(β)
n−k)δ

2
xu

k
i − d

(β)
n−1δ

2
xu

0
i

]

+R4

=
τ1−β

Γ(2− β)

n
∑

k=1

d
(β)
n−k∇t(δ

2
xu

k
i ) +R4, (12)

where |R4| ≤ C(τ2−β + h2).

5



Lemma 3. For 0 < β < 1, it holds that

τ1−β

Γ(2− β)

n
∑

k=1

d
(β)
n−k

(

∇t(δ
2
xu

k),∇tu
n
)

= −
τ1−β

Γ(2− β)

n
∑

k=1

d
(β)
n−k

〈

∇t(∇xu
k),∇t(∇xu

n)
〉

.

Proof. Combining (8) and (12), we obtain

τ1−β

Γ(2− β)

n
∑

k=1

d
(β)
n−k

(

∇t(δ
2
xu

k),∇tu
n
)

=
τ−β

Γ(2− β)

[

d
(β)
0

(

δ2xu
n,∇tu

n
)

−

n−1
∑

k=1

(d
(β)
n−k−1 − d

(β)
n−k)

(

δ2xu
k,∇tu

n
)

− d
(β)
n−1

(

δ2xu
0,∇tu

n
)]

=−
τ−β

Γ(2− β)

[

d
(β)
0

〈

∇xu
n,∇t(∇xv

n)
〉

−
n−1
∑

k=1

(d
(β)
n−k−1 − d

(β)
n−k)

〈

∇xu
k,∇t(∇xv

n)
〉

− d
(β)
n−1

〈

∇xu
0,∇t(∇xv

n)
〉]

=−
τ−β

Γ(2− β)

〈

d
(β)
0 ∇xu

n −
n−1
∑

k=1

(d
(β)
n−k−1 − d

(β)
n−k)∇xu

k − d
(β)
n−1∇xu

0,∇t(∇xv
n)
〉

=−
τ1−β

Γ(2− β)

n
∑

k=1

d
(β)
n−k

〈

∇t(∇xu
k),∇t(∇xu

n)
〉

.

Now we consider the discretization of Dβ
t u(x, t) at grid points (xi, tn− 1

2
). From (11), we have

Dβ
t u(xi, tn− 1

2
) ≈

1

2

[

Dβ
t u(xi, tn) +Dβ

t u(xi, tn−1)
]

=
τ1−β

2Γ(2− β)

[

n
∑

k=1

d
(β)
n−k∇tu

k
i +

n−1
∑

k=1

d
(β)
n−1−k∇tu

k
i

]

+R3. (13)

Similarly, we have

Dβ
t

∂2u(xi, tn− 1
2
)

∂x2
≈
1

2

[

Dβ
t

∂2u(xi, tn)

∂x2
+Dβ

t

∂2u(xi, tn−1)

∂x2

]

=
τ1−β

2Γ(2− β)

[

n
∑

k=1

d
(β)
n−k∇t(δ

2
xu

k
i ) +

n−1
∑

k=1

d
(β)
n−1−k∇t(δ

2
xu

k
i )
]

+R4. (14)

Lemma 4. [29] Let {g0, g1, . . . , gn, . . .} be a sequence of real numbers with the properties

gn ≥ 0, gn − gn−1 ≤ 0, gn+1 − 2gn + gn−1 ≥ 0.

Then for any positive integer M , and for each vector [V1, V2, . . . , VM ] with M real entries,

M
∑

n=1

Å n−1
∑

p=0

gp Vn−p

ã
Vn ≥ 0.

Now we will prove a very important and useful lemma.

Lemma 5. For 0 < β < 1, define d
(β)
k = (k + 1)1−β − k1−β, k = 0, 1, 2, . . . , n, then for any positive integer N and

vector Q = [v1, v2, . . . , vN−1, vN ] ∈ RN , we have

N
∑

n=1

n
∑

k=1

d
(β)
n−k v

kvn ≥ 0, (15)

N
∑

n=1

n
∑

k=1

d
(β)
n−k v

kvn +
N
∑

n=1

n−1
∑

k=1

d
(β)
n−1−k v

kvn ≥ 0. (16)
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Proof. It is easy to check that

N
∑

n=1

n
∑

k=1

d
(β)
n−k v

kvn =
N
∑

n=1

Å n−1
∑

k=0

d
(β)
k vn−k

ã
vn.

Then using Lemmas 2 and 4, we have

N
∑

n=1

Å n−1
∑

k=0

d
(β)
k vn−k

ã
vn ≥ 0,

i.e.,

N
∑

n=1

n
∑

k=1

d
(β)
n−k v

kvn ≥ 0.

For the sum in (16), we can rewrite it in the following form

N
∑

n=1

n
∑

k=1

d
(β)
n−k v

kvn +

N
∑

n=1

n−1
∑

k=1

d
(β)
n−1−k v

kvn = QAQT ,

where

A =



























d
(β)
0 0 0 · · · 0 0

d
(β)
0 + d

(β)
1 d

(β)
0 0 · · · 0 0

d
(β)
1 + d

(β)
2 d

(β)
0 + d

(β)
1 d

(β)
0 · · · 0 0

d
(β)
2 + d

(β)
3 d

(β)
1 + d

(β)
2 d

(β)
0 + d

(β)
1 · · · 0 0

...
...

...
. . .

...
...

d
(β)
N−3 + d

(β)
N−2 d

(β)
N−4 + d

(β)
N−3 d

(β)
N−5 + d

(β)
N−4 · · · d

(β)
0 0

d
(β)
N−2 + d

(β)
N−1 d

(β)
N−3 + d

(β)
N−2 d

(β)
N−4 + d

(β)
N−3 · · · d

(β)
0 + d

(β)
1 d

(β)
0



























.

We can notice that to prove (16) is equivalent to proving the matrix A is positive definite. Therefore we only need

to prove HN = A+AT

2 is positive definite [30]. HN is a real symmetric Toeplitz matrix and has the form

HN =
1

2



























2d
(β)
0 d

(β)
0 + d

(β)
1 d

(β)
1 + d

(β)
2 · · · d

(β)
N−3 + d

(β)
N−2 d

(β)
N−2 + d

(β)
N−1

d
(β)
0 + d

(β)
1 2d

(β)
0 d

(β)
0 + d

(β)
1 · · · d

(β)
N−4 + d

(β)
N−3 d

(β)
N−3 + d

(β)
N−2

d
(β)
1 + d

(β)
2 d

(β)
0 + d

(β)
1 2d

(β)
0 · · · d

(β)
N−5 + d

(β)
N−4 d

(β)
N−4 + d

(β)
N−3

d
(β)
2 + d

(β)
3 d

(β)
1 + d

(β)
2 d

(β)
0 + d

(β)
1 · · · d

(β)
N−6 + d

(β)
N−5 d

(β)
N−5 + d

(β)
N−4

...
...

...
. . .

...
...

d
(β)
N−3 + d

(β)
N−2 d

(β)
N−4 + d

(β)
N−3 d

(β)
N−5 + d

(β)
N−4 · · · 2d

(β)
0 d

(β)
0 + d

(β)
1

d
(β)
N−2 + d

(β)
N−1 d

(β)
N−3 + d

(β)
N−2 d

(β)
N−4 + d

(β)
N−3 · · · d

(β)
0 + d

(β)
1 2d

(β)
0



























.

In the following, we will prove det(HN ) > 0. It is straightforward to verify that det(H1) = d
(β)
0 > 0, det(H2) =

(d
(β)
0 )2 −

(d
(β)
0 +d

(β)
1 )2

4 > 0. For a finite integer N , we can explicitly calculate the value of det(HN ) > 0. When N is
a sufficiently large, according to [31] (Propositions 10.2 and 10.4), we have

det(HN )

det(HN+1)
> 0.

Then we can conclude that det(HN+1) > 0. To illustrate this, we give a figure plot of det(HN )
det(HN+1)

with different β

and N (see Fig. 1). We can see that det(HN )
det(HN+1)

> 0, particularly, when almost N > 250, det(HN )
det(HN+1)

≈ Cβ > 0.

As matrix Hi, i = 1, 2, . . . , N are the principal minors of matrix HN+1 and det(Hk) > 0, k = 1, 2, . . . , N + 1,
then the real symmetric Toeplitz matrix HN+1 is positive definite. The proof is completed.
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Figure 1: Figure plot of
det(HN )

det(HN+1)
with different β and N .

To derive the finite difference scheme we also need the following lemma.

Lemma 6. [32] If u(x, t) ∈ C0,3
x,t (Ω), then we have

u(xi, tn− 1
2
) =

u(xi, tn) + u(xi, tn−1)

2
+O(τ2), (17)

∂

∂t
u(xi, tn− 1

2
) =

u(xi, tn)− u(xi, tn−1)

τ
+O(τ2). (18)

For the discretization of the time fractional derivative Dα
t u(x, t) (0 < α < 1), it is the same with Dβ

t u(x, t).

3. Derivation of the numerical schemes

In this section, we will give two different finite difference schemes of Eq.(4).

3.1. Scheme I: first order implicit scheme

Assume that u(x, t) ∈ C4,3
x,t (Ω), from Eq.(4), we have

s
∑

j=1

bj D
γj

t u(xi, tn) + a1
∂u(xi, tn)

∂t
+

q
∑

l=1

cl D
αl

t u(xi, tn) + a2u(xi, tn)

=a3
∂2u(xi, tn)

∂x2
+ a4D

β
t

∂2u(xi, tn)

∂x2
+ f(xi, tn). (19)

Using Eqs.(9), (11) and (12), we obtain

s
∑

j=1

bjµ1,j

[

a
(γj)
0 ∇tu

n
i −

n−1
∑

k=1

(a
(γj)
n−k−1 − a

(γj)
n−k)∇tu

k
i − a

(γj)
n−1φ2(xi)

]

+a1∇tu
n
i +

q
∑

l=1

clµ2,l

n
∑

k=1

d
(αl)
n−k∇tu

k
i + a2u

n
i

=a3δ
2
xu

n
i + a4µ3

n
∑

k=1

d
(β)
n−k∇t(δ

2
xu

k
i ) + fn

i +Rn
1,i, (20)
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where µ1,j = τ
1−γj

Γ(3−γj)
, µ2,l =

τ1−αl

Γ(2−αl)
, µ3 = τ1−β

Γ(2−β) and |Rn
1,i| ≤ C(τ + h2), in which C is independent of τ and h.

Then, omitting the error term and denoting Un
i as the numerical approximation to un

i , the implicit finite difference
scheme for Eq.(4) at point (xi, tn) is given by

s
∑

j=1

bjµ1,j

[

a
(γj)
0 ∇tU

n
i −

n−1
∑

k=1

(a
(γj)
n−k−1 − a

(γj)
n−k)∇tU

k
i − a

(γj)
n−1φ2(xi)

]

+a1∇tU
n
i +

q
∑

l=1

clµ2,l

n
∑

k=1

d
(αl)
n−k∇tU

k
i + a2U

n
i

=a3δ
2
xU

n
i + a4µ3

n
∑

k=1

d
(β)
n−k∇t(δ

2
xU

k
i ) + fn

i , (21)

with initial and boundary conditions

U0
i = φ1(xi), 0 ≤ i ≤ M, Un

0 = Un
M = 0, 1 ≤ n ≤ N.

3.2. Scheme II: mixed L scheme

Assume that u(x, t) ∈ C4,3
x,t (Ω), from Eq.(4), we have

s
∑

j=1

bj D
γj

t u(xi, tn− 1
2
) + a1

∂u(xi, tn− 1
2
)

∂t
+

q
∑

l=1

cl D
αl

t u(xi, tn− 1
2
) + a2u(xi, tn− 1

2
)

=a3
∂2u(xi, tn− 1

2
)

∂x2
+ a4D

β
t

∂2u(xi, tn− 1
2
)

∂x2
+ f(xi, tn− 1

2
). (22)

Applying Eqs.(10), (13) and (14) and Lemma 6, we have

s
∑

j=1

bjµ1,j

[

a
(γj)
0 ∇tu

n
i −

n−1
∑

k=1

(a
(γj)
n−k−1 − a

(γj)
n−k)∇tu

k
i − a

(γj)
n−1φ2(xi)

]

+ a1∇tu
n
i

+

q
∑

l=1

clµ2,l

2

[

n
∑

k=1

d
(αl)
n−k∇tu

k
i +

n−1
∑

k=1

d
(αl)
n−1−k∇tu

k
i

]

+ a2u
n− 1

2

i (23)

=a3δ
2
xu

n− 1
2

i +
a4µ3

2

[

n
∑

k=1

d
(β)
n−k∇t(δ

2
xu

k
i ) +

n−1
∑

k=1

d
(β)
n−1−k∇t(δ

2
xu

k
i )
]

+ f
n− 1

2

i +Rn
2,i,

where |Rn
2,i| ≤ C(τmin{3−γs,2−αq,2−β} + h2). Then, omitting the error term, we obtain the mixed L finite difference

scheme for Eq.(4) at point (xi, tn− 1
2
)

s
∑

j=1

bjµ1,j

[

a
(γj)
0 ∇tU

n
i −

n−1
∑

k=1

(a
(γj)
n−k−1 − a

(γj)
n−k)∇tU

k
i − a

(γj)
n−1φ2(xi)

]

+ a1∇tU
n
i

+

q
∑

l=1

clµ2,l

2

[

n
∑

k=1

d
(αl)
n−k∇tU

k
i +

n−1
∑

k=1

d
(αl)
n−1−k∇tU

k
i

]

+ a2U
n− 1

2

i (24)

=a3δ
2
xU

n− 1
2

i +
a4µ3

2

[

n
∑

k=1

d
(β)
n−k∇t(δ

2
xU

k
i ) +

n−1
∑

k=1

d
(β)
n−1−k∇t(δ

2
xU

k
i )
]

+ f
n− 1

2

i .

Remark 1. Compared to scheme I, scheme II has high order accuracy. However, more terms are added in the
scheme II.
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4. Theoretical analysis

4.1. Solvability

Firstly, we discuss the solvability of the finite difference scheme (21).

Theorem 1. The finite difference scheme (21) is uniquely solvable.

Proof. At each time level, the coefficient matrix B is linear tridiagonal

B =



















d1 + 2d2 −d2 0 · · · 0 0
−d2 d1 + 2d2 −d2 · · · 0 0
0 −d2 d1 + 2d2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · d1 + 2d2 −d2
0 0 0 · · · −d2 d1 + 2d2



















,

where d1 =
s
∑

j=1

bjµ1,j

τ
+ a1

τ
+

q
∑

l=1

clµ2,l

τ
+ a2 > 0 and d2 = a3

h2 + a4µ3

τh2 > 0. Then B is a strictly diagonally dominant

matrix. Therefore B is nonsingular, which means that the numerical scheme (21) is uniquely solvable.

The solvability of the finite difference scheme (24) is similar.

4.2. Stability

Here, we will analyze the stability of the schemes (21) and (24) using the energy method.

Theorem 2. The implicit finite difference scheme (21) is unconditionally stable and it holds that

||UN ||21 ≤ ||U0||21 +
s

∑

j=1

bjT
2−γj

Γ(3− γj)
||φ2||

2
0 +

T

2ε0
max

1≤n≤N
||fn||20,

where ε0 =
s
∑

j=1

bjT
1−γj

2Γ(2−γj)
+ a1 and UN = [UN

1 , UN
2 , . . . , UN

M−1]
T is the solution vector of (21).

Proof. Multiplying Eq.(21) by hτ∇tU
n
i and summing i from 1 to M − 1 and n from 1 to N , we obtain

τ
s

∑

j=1

bjµ1,j

N
∑

n=1

M−1
∑

i=1

h
[

a
(γj)
0 ∇tU

n
i −

n−1
∑

k=1

(a
(γj)
n−k−1 − a

(γj)
n−k)∇tU

k
i − a

(γj)
n−1φ2(xi)

]

∇tU
n
i

+a1τ
N
∑

n=1

M−1
∑

i=1

h(∇tU
n
i )

2 + τ

q
∑

l=1

clµ2,l

N
∑

n=1

M−1
∑

i=1

h
n
∑

k=1

d
(αl)
n−k∇tU

k
i ∇tU

n
i + a2τ

N
∑

n=1

M−1
∑

i=1

hUn
i ∇tU

n
i

=a3τ
N
∑

n=1

M−1
∑

i=1

hδ2xU
n
i ∇tU

n
i + a4µ3τ

N
∑

n=1

M−1
∑

i=1

h
n
∑

k=1

d
(β)
n−k∇t(δ

2
xU

k
i )∇tU

n
i + τ

N
∑

n=1

M−1
∑

i=1

hfn
i ∇tU

n
i . (25)

Using Lemma 1, we have

τ
s

∑

j=1

bjµ1,j

N
∑

n=1

M−1
∑

i=1

h
[

a
(γj)
0 ∇tU

n
i −

n−1
∑

k=1

(a
(γj)
n−k−1 − a

(γj)
n−k)∇tU

k
i − a

(γj)
n−1φ2(xi)

]

∇tU
n
i

≥

s
∑

j=1

bj

Å
τT 1−γj

2Γ(2− γj)

N
∑

n=1

M−1
∑

i=1

h(∇tU
n
i )

2 −
T 2−γj

2Γ(3− γj)

M−1
∑

i=1

hφ2(xi)
2

ã

=
s

∑

j=1

bj
τT 1−γj

2Γ(2− γj)

N
∑

n=1

||∇tU
n||20 −

s
∑

j=1

bj
T 2−γj

2Γ(3− γj)
||φ2||

2
0. (26)
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For the second term, we have

a1τ
N
∑

n=1

M−1
∑

i=1

h(∇tU
n
i )

2 = a1τ
N
∑

n=1

||∇tU
n||20. (27)

Using (15), we obtain

τ

q
∑

l=1

clµ2,l

N
∑

n=1

M−1
∑

i=1

h
n
∑

k=1

d
(αl)
n−k∇tU

k
i ∇tU

n
i = τ

q
∑

l=1

clµ2,l

N
∑

n=1

n
∑

k=1

d
(αl)
n−k(∇tU

k,∇tU
n) ≥ 0. (28)

Utilising the inequality a(a− b) ≥ 1
2 (a

2 − b2), we have

a2τ
N
∑

n=1

M−1
∑

i=1

hUn
i ∇tU

n
i = a2

N
∑

n=1

(Un, Un − Un−1)

≥
a2
2

N
∑

n=1

(||Un||20 − ||Un−1||20) =
a2
2
(||UN ||20 − ||U0||20). (29)

Applying (8) and the inequality a(a− b) ≥ 1
2 (a

2 − b2) again, we obtain

a3τ
N
∑

n=1

M−1
∑

i=1

hδ2xU
n
i ∇tU

n
i = a3τ

N
∑

n=1

(δ2xU
n,∇tU

n) = −a3

N
∑

n=1

〈∇xU
n,∇xU

n −∇xU
n−1〉

≤ −
a3
2

N
∑

n=1

(|Un|21 − |Un−1|21) =
a3
2
(|U0|21 − |UN |21). (30)

Combining (8), (16) and Lemma 3, we have

a4µ3τ
N
∑

n=1

M−1
∑

i=1

h
n
∑

k=1

d
(β)
n−k∇t(δ

2
xU

k
i )∇tU

n
i = a4µ3τ

N
∑

n=1

n
∑

k=1

d
(β)
n−k

(

∇t(δ
2
xU

k),∇tU
n
)

=− a4µ3τ

N
∑

n=1

n
∑

k=1

d
(β)
n−k

〈

∇t(∇xU
k),∇t(∇xU

n)
〉

≤ 0. (31)

Using the important inequality ab ≤ εa2 + b2

4ε (ε > 0), we have

τ
N
∑

n=1

M−1
∑

i=1

hfn
i ∇tU

n
i ≤ τε0

N
∑

n=1

M−1
∑

i=1

h(∇tU
n
i )

2 +
τ

4ε0

N
∑

n=1

M−1
∑

i=1

h(fn
i )

2

=τε0

N
∑

n=1

||∇tU
n||20 +

τ

4ε0

N
∑

n=1

||fn||20 ≤ τε0

N
∑

n=1

||∇tU
n||20 +

T

4ε0
max

1≤n≤N
||fn||20, (32)

where ε0 =
s
∑

j=1

bjT
1−γj

2Γ(2−γj)
+ a1. Substituting (26)-(32) into (25), we have

τε0

N
∑

n=1

||∇tU
n||20 −

s
∑

j=1

bjT
2−γj

2Γ(3− γj)
||φ2||

2
0 +

a2
2
(||UN ||20 − ||U0||20)

≤
a3
2
(|U0|21 − |UN |21) + τε0

N
∑

n=1

||∇tU
n||20 +

T

4ε0
max

1≤n≤N
||fn||20,

then rearranging gives

a2||U
N ||20 + a3|U

N |21 ≤ a2||U
0||20 + a3|U

0|21 +
s

∑

j=1

bjT
2−γj

Γ(3− γj)
||φ2||

2
0 +

T

2ε0
max

1≤n≤N
||fn||20, (33)
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namely,

||UN ||21 ≤ ||U0||21 +

s
∑

j=1

bjT
2−γj

Γ(3− γj)
||φ2||

2
0 +

T

2ε0
max

1≤n≤N
||fn||20,

which proves that the scheme (21) is unconditionally stable.

Theorem 3. The implicit finite difference scheme (24) is unconditionally stable and it holds that

||‹UN ||21 ≤ ||‹U0||21 +
s

∑

j=1

bjT
2−γj

Γ(3− γj)
||φ2||

2
0 +

T

2ε0
max

1≤n≤N
||fn− 1

2 ||20,

where ε0 =
s
∑

j=1

bjT
1−γj

2Γ(2−γj)
+ a1 and ‹UN = [UN

1 , UN
2 , . . . , UN

M−1]
T is the solution vector of (24).

Proof. Multiplying Eq.(24) by hτ∇tU
n
i and summing i from 1 to M − 1 and n from 1 to N , we obtain

τ

s
∑

j=1

bjµ1,j

N
∑

n=1

M−1
∑

i=1

h
[

a
(γj)
0 ∇tU

n
i −

n−1
∑

k=1

(a
(γj)
n−k−1 − a

(γj)
n−k)∇tU

k
i − a

(γj)
n−1φ2(xi)

]

∇tU
n
i + a1τ

N
∑

n=1

M−1
∑

i=1

h(∇tU
n
i )

2

+τ

q
∑

l=1

clµ2,l

2

N
∑

n=1

M−1
∑

i=1

h
[

n
∑

k=1

d
(αl)
n−k∇tU

k
i +

n−1
∑

k=1

d
(αl)
n−1−k∇tU

k
i

]

∇tU
n
i + a2τ

N
∑

n=1

M−1
∑

i=1

hU
n− 1

2
i ∇tU

n
i

=a3τ

N
∑

n=1

M−1
∑

i=1

hδ2xU
n− 1

2

i ∇tU
n
i +

a4µ3τ

2

N
∑

n=1

M−1
∑

i=1

h
[

n
∑

k=1

d
(β)
n−k∇t(δ

2
xU

k
i ) +

n−1
∑

k=1

d
(β)
n−1−k∇t(δ

2
xU

k
i )
]

∇tU
n
i

+τ
N
∑

n=1

M−1
∑

i=1

hf
n− 1

2

i ∇tU
n
i . (34)

Using (16), we obtain

τ

q
∑

l=1

clµ2,l

2

N
∑

n=1

M−1
∑

i=1

h
[

n
∑

k=1

d
(αl)
n−k∇tU

k
i +

n−1
∑

k=1

d
(αl)
n−1−k∇tU

k
i

]

∇tU
n
i

=τ

q
∑

l=1

clµ2,l

2

[

N
∑

n=1

n
∑

k=1

d
(αl)
n−k

(

∇t
‹Uk,∇t

‹Un
)

+
N
∑

n=1

n−1
∑

k=1

d
(αl)
n−1−k

(

∇t
‹Uk,∇t

‹Un
)]

≥ 0. (35)

For the fourth term, we have

a2τ

N
∑

n=1

M−1
∑

i=1

hU
n− 1

2

i ∇tU
n
i =

a2
2

N
∑

n=1

(‹Un + ‹Un−1,‹Un − ‹Un−1)

=
a2
2

N
∑

n=1

(||‹Un||20 − ||‹Un−1||20) =
a2
2
(||‹UN ||20 − ||‹U0||20). (36)

For the fifth term, we obtain

a3τ

N
∑

n=1

M−1
∑

i=1

hδ2xU
n− 1

2

i ∇tU
n
i = a3τ

N
∑

n=1

(δ2x‹Un− 1
2 ,∇t

‹Un)

=−
a3
2

N
∑

n=1

(|‹Un|21 − |‹Un−1|21) =
a3
2
(|‹U0|21 − |‹UN |21). (37)
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Combining (8), (16) and Lemma 3, we have

a4µ3τ

2

N
∑

n=1

M−1
∑

i=1

h
[

n
∑

k=1

d
(β)
n−k∇t(δ

2
xU

k
i ) +

n−1
∑

k=1

d
(β)
n−1−k∇t(δ

2
xU

k
i )
]

∇tU
n
i

=
a4µ3τ

2

N
∑

n=1

[

n
∑

k=1

d
(β)
n−k

(

∇t(δ
2
x
‹Uk),∇t(‹Un)

)

+

n−1
∑

k=1

d
(β)
n−1−k

(

∇t(δ
2
x
‹Uk),∇t(‹Un)

)]

=−
a4µ3τ

2

[

N
∑

n=1

n
∑

k=1

d
(β)
n−k

〈

∇t(∇x
‹Uk),∇t(∇x

‹Un)
〉

+
N
∑

n=1

n−1
∑

k=1

d
(β)
n−1−k

〈

∇t(∇x
‹Uk),∇t(∇x

‹Un)
〉]

≤ 0. (38)

Using the important inequality ab ≤ εa2 + b2

4ε (ε > 0), we have

τ
N
∑

n=1

M−1
∑

i=1

hf
n− 1

2

i ∇tU
n
i ≤ τε0

N
∑

n=1

||∇t
‹Un||20 +

τ

4ε0

N
∑

n=1

||fn− 1
2 ||20

≤ τε0

N
∑

n=1

||∇t
‹Un||20 +

T

4ε0
max

1≤n≤N
||fn− 1

2 ||20, (39)

where ε0 =
s
∑

j=1

bjT
1−γj

2Γ(2−γj)
+ a1. Substituting (26), (27) and (35)-(39) into (34), we have

τε0

N
∑

n=1

||∇t
‹Un||20 −

s
∑

j=1

bjT
2−γj

2Γ(3− γj)
||φ2||

2
0 +

a2
2
(||‹UN ||20 − ||‹U0||20)

≤
a3
2
(|‹U0|21 − |‹UN |21) + τε0

N
∑

n=1

||∇t
‹Un||20 +

T

4ε0
max

1≤n≤N
||fn− 1

2 ||20,

then we have

a2||‹UN ||20 + a3|‹UN |21 ≤ a2||‹U0||20 + a3|‹U0|21 +
s

∑

j=1

bjT
2−γj

Γ(3− γj)
||φ2||

2
0 +

T

2ε0
max

1≤n≤N
||fn− 1

2 ||20,

namely,

||‹UN ||21 ≤ ||‹U0||21 +

s
∑

j=1

bjT
2−γj

Γ(3− γj)
||φ2||

2
0 +

T

2ε0
max

1≤n≤N
||fn− 1

2 ||20,

which proves that the scheme (24) is unconditionally stable.

4.3. Convergence

Now we discuss the convergence of the schemes (21) and (24).

Theorem 4. Suppose that the solution of problem (4)-(6) satisfies u(x, t) ∈ C4,3
x,t (Ω). Define un = [un

1 , u
n
2 ,

. . . , un
M−1]

T as the exact solution vector, Un = [Un
1 , U

n
2 , . . . , U

n
M−1]

T as the numerical solution vector of (21),

and ‹Un = [Un
1 , U

n
2 , . . . , U

n
M−1]

T as the numerical solution vector of (24), respectively. Then there exists two positive
constants C1 and C2 independent of h and τ such that

||un − Un||1 ≤ C1

 
TL

2ε0
(τ + h2),

||un − ‹Un||1 ≤ C2

 
TL

2ε0
(τmin{3−γs,2−αq,2−β} + h2),

where ε0 =
s
∑

j=1

bjT
1−γj

2Γ(2−γj)
+ a1.
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Proof. Denote eni = un
i − Un

i , e
n = [en1 , e

n
2 , . . . , e

n
M−1]

T . Subtracting (21) from (20), we have

s
∑

j=1

bjµ1,j

[

a
(γj)
0 ∇te

n
i −

n−1
∑

k=1

(a
(γj)
n−k−1 − a

(γj)
n−k)∇te

k
i

]

+a1∇te
n
i +

q
∑

l=1

clµ2,l

n
∑

k=1

d
(αl)
n−k∇te

k
i + a2e

n
i

=a3δ
2
xe

n
i + a4µ3

n
∑

k=1

d
(β)
n−k∇t(δ

2
xe

k
i ) +Rn

1,i,

with e0i = 0, en0 = enM = 0. Then from (32) and (33), we have

a2||e
n||20 + a3|e

n|21 ≤
τh

2ε0

n
∑

k=1

M−1
∑

i=1

(Rn
1,i)

2 ≤
τh

2ε0

n
∑

k=1

M−1
∑

i=1

C2
1 (τ + h2)2 ≤

C2
1TL

2ε0
(τ + h2)2,

namely,

||un − Un||21 ≤
C2

1TL

2ε0
(τ + h2)2.

Similarly, we can obtain

||un − ‹Un||21 ≤
C2

2TL

2ε0
(τmin{3−γs,2−αq,2−β} + h2)2.

5. Numerical examples

Example 1 We consider the following multi-term time fractional viscoelastic non-Newtonian fluid model.















Dγ
t u(x, t) +

∂u(x,t)
∂t

+Dα
t u(x, t) + u(x, t) = ∂2u(x,t)

∂x2 +Dβ
t
∂2u(x,t)

∂x2 + f(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = sinπx, ut(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1,

where 0 < α, β < 1, 1 < γ < 2,

f(x, t) = sinπx
[Γ(4)t3−γ

Γ(4− γ)
+ 3t2 +

Γ(4)t3−α

Γ(4− α)
+ (1 + π2)(t3 + 1) +

π2Γ(4)t3−β

Γ(4− β)

]

and the exact solution is u(x, t) = (t3 + 1) sinπx.
Firstly, we use the implicit finite difference scheme (21) (Scheme I) to solve the equation and the numerical

results are given in Table 1. The table lists the L2 error and L∞ error and the convergence order of τ for different
α, β, γ with h = 1/1000 at t = 1. We can see that the numerical results are in perfect agreement with the exact
solution and the convergence order reaches the expected first order. Then we apply the mixed L scheme (24)
(Scheme II) to the equation. Table 2 displays the L2 error and L∞ error and convergence order of τ for different α,
β, γ with h = 1/1000 at t = 1. We can observe that the numerical results are in excellent agreement with the exact
solution and the convergence order attains the expected min{3− γ, 2−α, 2− β} order. Compared to scheme I, the
results of scheme II are more accurate. In addition, we present a comparison of CPU time for two schemes in Table
3. Here the numerical computations were carried out using MATLAB R2014b on a Dell desktop with configuration:
Intel(R) Core(TM) i7-4790, 3.60 GHz and 16.0 GB RAM. We choose α = 0.7, β = 0.6, γ = 1.5 and h = 1/1000 at
t = 1 to observe the running time for different τ . We observe that the running time of Scheme II is more than that
of scheme I, which dues to the fact that more terms are added in Scheme II.
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Table 1: The temporal error and convergence of Scheme I for different α, β and γ with h = 1/1000.

α = 0.7, β = 0.6, γ = 1.5 ||E(h, τ)||0 Order ||E(h, τ)||∞ Order

1/40 7.0478E-03 9.9671E-03
1/80 3.2211E-03 1.13 4.5553E-03 1.13
1/160 1.4899E-03 1.11 2.1071E-03 1.11
1/320 6.9792E-04 1.09 9.8700E-04 1.09
1/640 3.3092E-04 1.08 4.6799E-04 1.08

α = 0.7, β = 0.8, γ = 1.6 ||E(h, τ)||0 Order ||E(h, τ)||∞ Order

1/40 1.0895E-02 1.5408E-02
1/80 5.0166E-03 1.12 7.0946E-03 1.12
1/160 2.3164E-03 1.11 3.2759E-03 1.11
1/320 1.0742E-03 1.11 1.5191E-03 1.11
1/640 5.0073E-04 1.10 7.0814E-04 1.10

α = 0.5, β = 0.3, γ = 1.6 ||E(h, τ)||0 Order ||E(h, τ)||∞ Order

1/40 5.5522E-03 7.8520E-03
1/80 2.6575E-03 1.06 3.7583E-03 1.06
1/160 1.2862E-03 1.05 1.8190E-03 1.05
1/320 6.2820E-04 1.03 8.8841E-04 1.03
1/640 3.0906E-04 1.02 4.3707E-04 1.02

Table 2: The temporal error and convergence of Scheme II for different α, β and γ with h = 1/1000.

α = 0.7, β = 0.6, γ = 1.5 ||E(h, τ)||0 Order ||E(h, τ)||∞ Order

1/40 2.8002E-03 3.9601E-03
1/80 1.0828E-03 1.37 1.5313E-03 1.37
1/160 4.1712E-04 1.38 5.8989E-04 1.38
1/320 1.6057E-04 1.38 2.2708E-04 1.38
1/640 6.2009E-05 1.37 8.7694E-05 1.37

α = 0.7, β = 0.8, γ = 1.6 ||E(h, τ)||0 Order ||E(h, τ)||∞ Order

1/40 6.7356E-03 9.5256E-03
1/80 2.9253E-03 1.20 4.1370E-03 1.20
1/160 1.2677E-03 1.21 1.7928E-03 1.21
1/320 5.4905E-04 1.21 7.7648E-04 1.21
1/640 2.3795E-04 1.21 3.3652E-04 1.21

α = 0.5, β = 0.3, γ = 1.6 ||E(h, τ)||0 Order ||E(h, τ)||∞ Order

1/40 8.8331E-04 1.2492E-03
1/80 3.0948E-04 1.51 4.3767E-04 1.51
1/160 1.0881E-04 1.51 1.5388E-04 1.51
1/320 3.8658E-05 1.49 5.4671E-05 1.49
1/640 1.4074E-05 1.46 1.9904E-05 1.46

Table 3: The running time of Scheme I and II for different τ , with α = 0.7, β = 0.6, γ = 1.5, h = 1/1000 at t = 1.

τ Scheme I Scheme II

1/40 2.9279s 3.5410s
1/80 9.5444s 10.6752s
1/160 33.2557s 35.8488s
1/320 123.4362s 130.4436s
1/640 475.8209s 492.6424s
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Example 2 Next, we consider the following unsteady MHD Couette flow of a generalized Oldroyd-B fluid [8].










(1 + λαDα
t )

∂u(x,t)
∂t

= (1 + θβDβ
t )

∂2u(x,t)
∂x2 −K(1 + λαDα

t )u(x, t), (x, t) ∈ (0, 1)× (0, 2]

u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 2tp, 0 ≤ t ≤ 2,

where 0 < α, β < 1, λ is the relaxation time, θ is the retardation time, K =
σB2

0

ρ
, ρ is the density of the fluid, B0 is

the magnetic intensity and σ is the electrical conductivity, and λ, θ,K ≥ 0.
This model describes the flow of an incompressible Olyroyd-B fluid bounded by two infinite parallel rigid plates

in a magnetic field. Initially, the whole system is at rest and the lower plate is fixed. Then at time t = 0+, the
upper plate starts to slide with some velocity 2tp in the main flow direction, which is termed as the plane Couette
flow. Due to the influence of shear, the fluid is gradually in motion.

In the calculations, we choose h = 1/1000, τ = 1/100. In order to observe the effects of different physical
parameters on the velocity field, we plot some figures to demonstrate the dynamic characteristics of the generalized
Oldroyd-B fluid. Fig. 2 shows the effects of power-law index p and constant K on the velocity. We can see that
the velocity increases with increasing power-law index p and the magnetic body force is favorable to the decays of
the velocity. We can clearly find that the greater K is, the more rapidly the velocity decays. Fig. 3 exhibits the
effects of the relaxation time λ and the retardation time θ on the velocity. We can see that the smaller the λ, the
more slowly the velocity decays. However, an opposite trend for the variation of θ can be seen. Fig. 4 illustrates
the change of the velocity with different parameters α and β. It is seen that the larger the value of α, the more
rapidly the velocity decays. The effect of β is contrary to that of α. Fig. 5 depicts the influence of time on the
velocity and we can observe that the flow velocity increases with increasing time.
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Figure 2: Numerical solution profiles of velocity u(x, t) for different p (K = 2) and K (p = 1) with λ = 3, θ = 4, α = 0.5, β = 0.6 at
t = 2.

6. Conclusions

In this paper, we proposed the finite difference method to solve the novel multi-term time fractional viscoelastic
non-Newtonian fluid model. We not only presented an implicit difference scheme with accuracy of O(τ + h2), but
also give a high order time scheme with accuracy of O(τmin{3−γs,2−αq,2−β} + h2). In addition, we established the
stability and convergence analysis of the finite difference schemes. Two numerical examples were exhibited to verify
the effectiveness and reliability of our method. We can conclude that our numerical methods are robust and can
be extended to other multi-term time fractional diffusion equations, such as the generalized Oldroyd-B fluid in a
rotating system, the generalized Maxwell fluid model, the generalized second grade fluid model and the generalized
Burgers’ fluid model. In future work, we shall investigate the application of the these methods and techniques to
the novel multi-term time fractional viscoelastic non-Newtonian fluid model in high dimensional cases.
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