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NUMERICAL SIMULATION OF THE NONLINEAR FRACTIONAL
DYNAMICAL SYSTEMS WITH FRACTIONAL DAMPING FOR THE

EXTENSIBLE AND INEXTENSIBLE PENDULUM ∗

C. YIN† , F. LIU‡ § , AND V. ANH‡

Abstract. In this paper we consider a class of nonlinear dynamical systems with fractional
damping. The problem is transferred into a system of fractional-order differential equations. A
computationally effective fractional predictor-corrector method is used to simulate and examine
the effects and solution behavior of the nonlinear dynamical systems with fractional damping for
extensible and inextensible pendulum. The corresponding error analysis is derived. Finally, some
numerical examples are given. This method and technique can be applied to solve other fractional-
order ordinary differential equations.

Key words. Nonlinear fractional differential equation, Predictor-Corrector method, error anal-
ysis, fractional derivative, the extensible and inextensible pendulum.

1. Introduction. Various fields of science and engineering deal with dynamical
systems that can be described by fractional differential equations (FDEs) involving
derivatives and integrals of non-integer order [9]. For example, we may cite sys-
tem biology [16], physics [8], chemistry and biochemistry [17], hydrology application
[6], fractional-order controllers [15], polymer rheology [12] and viscoelasticity [10].
Nonlinear dynamical systems with fractional damping also play an important role in
engineering, seismic wave attenuation and polymer rheology [12]. Viscoelastic mod-
els involving fractional derivatives instead of ordinary derivatives are a new research
issue. The most important aspect of the fractional derivatives is that it represent the
singularity of a hereditary viscous kernel, and responsible for qualitative differences
between singular and regular memory models. Several papers of fractional viscoelas-
ticity are based on analytic methods, which are applicable to linear models [1, 10, 11].

Fractional differential equations have attracted the attention of many researchers.
But analytic solutions of most FDEs are not usually given explicitly, in particular, for
nonlinear fractional differential equations.

In this paper we consider the generic nonlinear initial-value problem with frac-
tional damping:

au′′ +
n∑

k=1

bkDαku + cu′ +
m∑

l=1

dlD
βlu + f(u) = g(t),(1.1)

u(0) = u0, u
′(0) = u1(1.2)

where t ∈ [0, T ], a, bk, c, dl, u0, u1 are constants, 0 < βl < 1, 1 < αk < 2, and
0 < β1 < β2 < · · · < βm < 1, 1 < α1 < α2 < · · · < αn < 2, g(t) is a continuous
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2 C. Yin, F. LIU, and V. ANH

function, f(u) is Lipschitz-continuous with respect to u, Dαku and Dβlu denote the
Caputo fractional derivatives of order αk, βl:

Dα
t u(t) =





1
Γ(m−α)

t∫
0

u(m)(τ)
(t−τ)α+1−m dτ, 0 ≤ m− 1 < α < m,

dmu(t)
dtm , m ∈ ℵ.

(1.3)

Wang [13] considered the (n,m) term fractional-order differential equation

D
n
m x(t) + a1D

n−1
m x(t) + · · ·+ an−1D

1
m x(t) + anx(t) = u(t)(1.4)

where n,m ∈ N, n,m > 0, ak, (k = 1, 2, · · · , n) are arbitrary constants, D
k
m is the

Caputo fractional derivative.
The equation (4) is equivalent to the system of equations





D
1
m x1(t) = x2(t),

D
1
m x2(t) = x3(t),

...
D

1
m xn−1(t) = xn(t),

D
1
m xn(t) = −a1xn(t)− · · · − an−1x2(t)− anx1(t),

x(t) = x1(t).

(1.5)

Diethelm [2] considered the general form of fractional differential equations

x(α)(t) = anDβnx(t) + an−1D
βn−1x(t) + · · ·+ a1D

β1x(t) + f(t)(1.6)

with α > βn > βn−1 > · · · > β1 and α− βn < 1, βj − βj−1 < 1, 0 < β1 < 1.
Let M be the least common multiple of the denominators of βn, βn−1, · · · , β1

written in the form n
m , n,m ∈ ℵ and let γ = 1

M and N = Mα. According to
Diethelm and Ford [2], the equation (6) is equivalent to a system similar to the
system (5). They discussed the existence and uniqueness of the solution, and proved
the convergence and stability of the numerical methods based on a nearly equivalent
system of fractional differential equations of order not exceeding βn. Seredyńska [12]
also used this technique for a generic nonlinear initial-value problem with fractional
damping.

It is worth to point out that M is very large usually. It is well known that the
system is difficult to solve when the number of a state variables becomes too large. To
overcome this disadvantage, it is necessary to develop new techniques. We introduce
a technique to transfer the multi-term fractional-order equation (1) into an equivalent
system, which is the more general form (5). A numerical approximation is constructed
by a decoupled method, then the predictor-corrector method is used for solving the
fractional differential equation of a single order.

This paper is organized as follows. In Section 2, some basic ideas and lemmas
are introduced. In Section 3, numerical simulation is proposed. In Section 4, error
analysis is derived. Some numerical methods of simulating inextensible pendulum and
extensible pendulum are presented in Sections 5 and 6, respectively. Finally, some
numerical examples are given to evaluate the performance of the methods.

2. Basic ideas and lemmas. The basic analytical results on existence and
uniqueness of solutions to fractional differential equations are given in [9, 12].



Numerical simulation of the nonlinear fractional dynamical systems 3

Lemma 2.1. Let
n∑

r=1
brt

αr−1/Γ(αr),
m∑

l=1

dlt
βl−1/Γ(βl) ∈ L1

loc. Equation (1) has a

unique solution u ∈ W 1
loc.

Proof. See Theorem 1 in [12].
Lemma 2.2. The differentiation operators Dα

t f(t) and Dm
t f(t) satisfy the inter-

change rule:

Dα
t (Dm

t f(t)) = Dm
t (Dα

t f(t)) = Dα+m
t f(t),

f (s)(0) = 0, s = n, n + 1, · · · ,m; (m = 0, 1, · · · ;n− 1 < α < n).

Proof. See [9].
Lemma 2.3. Let f ∈ Ck [0, T ] for some T > 0 and some k ∈ N, and let β /∈ N

such that 0 < β < k. Then, Dβ
t f(0) = 0.

Proof. See [3].
Let u ∈ C2[0, T ] for some T > 0. Using Lemma 2 and Lemma 3, we have

Dα−β
t (Dβ

t u) = Dα
t u.

We can rewrite the generic nonlinear initial-value problem with fractional damping
(1),(2) in the form of a system of fractional-order differential equations:





Dγ1
t u1(t) = Dβ1

t u1(t) = u2(t),
...
Dγm

t um(t) = D
βm−βm−1
t um(t) = um+1(t),

D
γm+1
t um+1(t) = D1−βm

t um+1(t) = um+2(t),
D

γm+2
t um+2(t) = Dα1−1

t um+2(t) = um+3(t),
...
D

γm+n+1
t um+n+1(t) = D

αn−αn−1
t um+n+1(t) = um+n+2(t),

D
γm+n+2
t um+n+2(t) = g(t)− f(u1)−

m∑
l=1

dlul+1 − cum+2 −
n∑

r=1
brum+r+2,

(2.1)

with initial conditions:

u1(0) = u
(1)
0 = u0, um+2(0) = u

(m+2)
0 = u1, ui(0) = u

(i)
0 = 0.(2.2)

Where 2 ≤ i ≤ m + n + 1, i 6= m + 2.
Using Lemmas 1, 2 and 3, we obtain the following theorem:
Theorem 2.4. The generic nonlinear initial-value problem with fractional damp-

ing (1),(2) is equivalent to the system of equations (7) together with the initial condi-
tions (8).

Proof. Using Lemma 1, we know the equation (1) has a unique solution.
Let u1(t) = u(t), u2(t) = Dγ1

t u1(t) = Dβ1
t u1(t) = Dβ1

t u(t),

u3(t) = Dγ2
t u2(t) = Dβ2−β1

t u2(t) = Dβ2−β1
t (Dβ1

t u1(t)) = Dβ2
t u(t),

...
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um+1(t) = Dγm

t um(t) = D
βm−βm−1
t um(t) = Dβm

t u(t),

um+2(t) = D
γm+1
t um+1(t) = D1−βm

t um+1(t) = u
′
(t),

um+3(t) = D
γm+2
t um+2(t) = Dα1−1

t um+2(t) = Dα1
t u(t),

...

um+n+2(t) = D
γm+n+1
t um+n+1(t) = D

αn−αn−1
t um+n+1(t) = Dαn

t u(t).

So equation (1) can be written as

Dm+n+2
t um+n+2(t) = D2−αn

t um+n+2(t) = u
′′
(t)

= g(t)− f(u1)−
m∑

l=1

dlul+1 − cum+2 −
n∑

r=1
brum+r+2.

It can be seen that 0 < γi < 1(1 < i < m + n + 2).
Therefore, we obtain that the equation (1) is equivalent to the system of equations

(7).
Let u(0) = u0,u1(0) = u

(1)
0 . We have u(0) = u1(0). Thus

u1(0) = u
(1)
0 , um+2(0) = um+2

0 = u
′
(0) = u1.

Using Lemma 3, we have

u
(i)
0 = ui(0) = D

γi−1
t ui−1(0) = 0, (2 ≤ i ≤ m + n + 1, i 6= m + 2).

This completes the proof.

3. Numerical simulation. In this section, a numerical technique for simulating
the generic nonlinear initial-value problem with fractional damping (1) and initial
conditions (2) is proposed.

Firstly, the generic nonlinear initial-value problem with fractional damping is
decoupled, which is equivalent to solving the following equations:





Dγ1
t u1(t) = g1(t, u1),

Dγ2
t u2(t) = g2(t, u2),

...
D

γm+n+2
t um+n+2(t) = gm+n+2(t, um+n+2).

(3.1)

Secondly, we propose a computationally effective fractional predictor-corrector
method for solving the following nonlinear initial-value problem:

{
Dγi

t ui(t) = gi(t, ui), (0 < γi < 1),
ui(0) = u

(i)
0 , (i = 1, 2, · · · ,m + n + 2).

(3.2)

It is well known that the nonlinear initial-value problem (10) is equivalent to the
Volterra integral equation:

ui(t) = u
(i)
0 +

1
Γ(γi)

t∫

0

(t− τ)γi−1[gi(τ, ui(τ))]dτ.(3.3)
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We assume that we are working on a uniform grid tj = jh, j = 0, 1, · · ·M ,
T = Mh, ui(tj) = ui,j . The issue of stability is very important when implement-
ing the method on a computer in finite-precision arithmetic because we must take
into account the effects introduced by rounding errors. It is known that the classical
Adams-Bashforth-Moulton method for first order ordinary differential equations is a
reasonable and practically useful compromise in the sense that its stability properties
allow for a safe application to mildly stiff equations without undue propagation of
rounding error, whereas the implementation does not require extremely time consum-
ing elements [5, 15]. Thus a fractional Adams-Bashforth method and a fractional
Adams-Moulton method are chosen as our predictor and corrector formulae. The
predictor is determined by the fractional Adams-Bashforth method [4, 15]:

uP
i,k+1 = u

(i)
0 +

1
Γ(γi)

k∑

j=0

bγi

j,k+1ui+1,j ,(3.4)

bγi

j,k+1 =
hγi

γi
[(k + 1− j)γi − (k − j)γi ].(3.5)

The corrector formula is determined by the fraction Adams-Moulton method [4,
15]:

ui,k+1 = u
(i)
0 +

1
Γ(γi)




k∑

j=0

aγi

j,k+1ui+1,j + aγi

k+1,k+1u
P
i+1,k+1


 ,(3.6)

aγi

j,k+1 =
hγi

γi(γi + 1)





kγi+1 − (k − γi)(k + 1)γi , j = 0,
(k − j + 2)γi+1 + (k − j)γi+1

−2(k − j + 1)γi+1, 1 ≤ j ≤ k,
1, j = k + 1.

(3.7)

We then obtain the following fractional predictor-corrector method for solving
the nonlinear initial-value problem (10).

Fractional predictor formulae:

uP
i,k+1 = u

(i)
0 +

1
Γ(γi)

k∑

j=0

bγi

j,k+1ui+1,j , (i = 1, 2, · · · ,m + n + 1),(3.8)

uP
m+n+2,k+1 = u

(m+n+2)
0 + 1

Γ(γm+n+2)

k∑
j=0

b
γm+n+2
j,k+1

1
a [g(tj)

− f(u1,j)−
m∑

l=1

dlul+1,j − cum+2,j −
n∑

r=1
brum+r+2,j ]

(3.9)

Fractional corrector formulae:

ui,k+1 = u
(i)
0 +

1
Γ(γi)




k∑

j=0

aγi

j,k+1ui+1,j + aγi

k+1,k+1u
P
i+1,k+1


 ,(3.10)
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where i = 1, 2, · · · ,m + n + 1

um+n+2,k+1 = u
(m+n+2)
0 + 1

Γ(γm+n+2)

k∑
j=0

a
γm+n+2
j,k+1

1
a [g(tj)− f(u1,j)

−
m∑

l=1

dlul+1,j − cum+2,j −
n∑

r=1
brum+r+2,j ]

+ 1
Γ(γm+n+2)

a
γm+n+2
k+1,k+1

1
a [g(tk+1)− f(uP

1,k+1)

−
m∑

l=1

dlu
P
l+1,k+1 − cuP

m+2,k+1 −
n∑

r=1
bru

P
m+r+2,k+1].

(3.11)

4. Error analysis. In this section we consider the error of our fractional predictor-
corrector method.

Lemma 4.1. Let u ∈ C1[0, T ].Then

|
tk+1∫

0

(tk+1 − t)β−1u(t)dt−
k∑

j=0

bβ
j,k+1u(tj) |≤ 1

β
‖ u

′ ‖∞ tβk+1 · h.(4.1)

Proof. See [4, 14].
Lemma 4.2. If u ∈ C2[0, T ], then there is a constant Cβ depending only on β

such that

|
tk+1∫

0

(tk+1 − t)β−1u(t)dt−
k+1∑

j=0

aβ
j,k+1u(tj) |≤ Cβ ‖ u

′′ ‖∞ tβk+1 · h2.(4.2)

Proof. See [4, 14].
Theorem 4.3. If Dγi

t ∈ C2[0, T ], then

max
0≤j≤M

1≤i≤n

| ui(tj)− ui,j |= O(hq)(4.3)

where q = 1 + min
1≤i≤n

γi

Proof. See [15].
From the above Theorem, the corresponding error can be estimated.

5. The inextensible pendulum with fractional damping. In this section,
we propose a numerical simulation of the inextensible pendulum with fractional damp-
ing using the predictor-corrector method which has been described in Section 3. The
inextensible pendulum with fractional damping is defined by the equation of motion
(see [12]):

φ′′ + (g/L) sin φ + µταDαφ + λτφ′ + ντβDβφ = 0,(5.1)

φ(0) = φ0; φ′(0) = φ1(5.2)

with the elastic energy:

E(t) = H(φ(t), φ′(t)) =
1
2
L2φ′2 + gL[1− cos(φ)](5.3)
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where 0 ≤ t ≤ T, 0 < β < 1, 1 < α < 2, Dαφ,Dβφ are the Caputo fractional
derivatives.

Let φ1(t) = φ(t) then we obtain




Dα1
t φ1(t) = Dβ

t φ1(t) = φ2(t),
Dα2

t φ2(t) = D1−β
t φ2(t) = φ3(t),

Dα3
t φ3(t) = Dα−1

t φ3(t) = φ4(t),
Dα4

t φ4(t) = D2−α
t φ4(t) = −(g/L) sin φ1 − µταφ4 − λτφ3 − ντβφ2,

(5.4)

with the following initial-value conditions:

φ1(0) = φ
(1)
0 = φ0, φ2(0) = φ

(2)
0 = 0, φ3(0) = φ

(3)
0 = φ1, φ4(0) = φ

(4)
0 = 0.(5.5)

Using Theorem 1 we know that the inextensible pendulum with fractional damp-
ing (23) and (24) are equivalent to (26) and (27). The inextensible pendulum with frac-
tional damping can be solved by using a decoupled technique and fractional predictor-
corrector method.

Fractional predictor formulae:

φP
i,k+1 = φ

(i)
0 + 1

Γ(αi)

k∑
j=0

bαi

j,k+1φi+1,j , i = (1, 2, 3),(5.6)

φP
4,k+1 = φ

(4)
0 +

1
Γ(α4)

k∑

j=0

bα4
j,k+1[−(g/L) sin φ1,j − µταφ4,j − λτφ3,j − ντβφ2,j ].(5.7)

Fractional corrector formulae:

φi,k+1 = φ
(i)
0 +

1
Γ(αi)




k∑

j=0

aαi

j,k+1φi+1,j + aαi

k+1,k+1φ
P
i+1,k+1


 , (i = 1, 2, 3)(5.8)

φ4,k+1 = φ
(4)
0 + 1

Γ(α4)

k∑
j=0

aα4
j,k+1[−(g/L) sin φ1,j − µταφ4,j

− λτφ3,j − ντβφ2,j ] + 1
Γ(α4)

aα4
k+1,k+1[−(g/L) sin φP

1,k+1

− µταφP
4,k+1 − λτφP

3,j − ντβφP
2,k+1].

(5.9)

The elastic energy can be obtained by the following equation:

E(tk+1) = H(φ(tk+1), φ
′
(tk+1))

= 1
2L2[φ

′
(t)]2 + gL[1− cos(φ(tk+1))]

= 1
2L2[φ3,k+1]2 + gL[1− cos(φ1,k+1)].

(5.10)

6. The extensible pendulum with fractional damping. In this section, we
propose numerical simulation for the extensible pendulum with fractional damping
using predictor-corrector method of Section 3.

The extensible pendulum is a mass m suspended on a string in a gravitational
field and allowed to move in a vertical plane. The spring is attached at the other end
and is assumed to satisfy the linear Hook’s law with the spring constant K. The rest
length of the string is L and its actual length, expressed in terms of elongation ξ,
equals the distance r = L(1 + ξ) of the bob from the suspension point.
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The equations of motion of a damped extensible elastic pendulum (see [12]) are:

φ′′ = −
[ g

L
sin(φ) + 2φ′ξ′

]
/(1 + ξ)− (µταDαφ + λτφ′ + ντβDβφ)/(1 + ξ)2,(6.1)

ξ′′ =
g

L
cos(φ) + (1 + ξ)φ′2 − K

m
ξ − µ1τ

αDαξ − λ1τξ′ − ν1τ
βDβξ,(6.2)

where τ is a positive constant with the dimension [T ], while µ, µ1, λ, λ1, ν, ν1 ≥ 0 are
dimensionless. The initial conditions are assumed as

φ(0) = 1; φ′(0) = ξ(0) = ξ′(0) = 0.(6.3)

The Hamiltonian is given by the formula:

H = 1
2 [(1 + ξ)2φ

′2 + ξ
′2]− (g/L)(1 + ξ) cos(φ) + (K/mL2)ξ2/2

= 1
2 [p2

φ/(1 + ξ)2 + p2
ξ ]− (g/L)(1 + ξ) cos(φ) + (K/mL2)ξ2/2,

(6.4)

where pξ := ξ
′
, pφ := (1 + ξ)2φ

′
.

An extensible pendulum without damping is an interacting system consisting of
two oscillators: the pendulum and the spring. The interaction is highly non-linear.
The extension of the string affects the period of the pendulum, which is a parametric
excitation. The angular deviation of the pendulum modulates the force acting on the
string (see [12]).

Let φ1(0) = φ(0), ξ1(0) = ξ(0), then we obtain




C
0 Dα1

t φ1(t) =C
0 Dβ

t φ1(t) = φ2(t),
C
0 Dα2

t φ2(t) =C
0 D1−β

t φ2(t) = φ3(t),
C
0 Dα3

t φ3(t) =C
0 Dα−1

t φ3(t) = φ4(t),
C
0 Dα4

t φ4(t) =C
0 D2−α

t φ4(t) = − [
g
L sin(φ1) + 2φ3ξ3

]
/(1 + ξ1)

− (µταφ4λτφ3 − ντβφ2)/(1 + ξ1)2

(6.5)

with the following initial-value conditions:

φ1(0) = φ
(1)
0 = 1, φ2(0) = φ

(2)
0 = 0, φ3(0) = φ

(3)
0 = 0, φ4(0) = φ

(4)
0 = 0,(6.6)

and




C
0 Dα1

t ξ1(t) =C
0 Dβ

t ξ1(t) = ξ2(t),
C
0 Dα2

t ξ2(t) =C
0 D1−β

t ξ2(t) = ξ3(t),
C
0 Dα3

t ξ3(t) =C
0 Dα−1

t ξ3(t) = ξ4(t),
C
0 Dα4

t ξ4(t) =C
0 D2−α

t ξ4(t) = g
L cos(φ1) + (1 + ξ1)φ2

3 − K
mξ1

− µ1τ
αξ4 − λ1τξ3 − ν1τ

βξ2

(6.7)

with the following initial-value conditions:

ξ1(0) = ξ
(1)
0 = 0, ξ2(0) = ξ

(2)
0 = 0, ξ3(0) = ξ

(3)
0 = 0, ξ4(0) = ξ

(4)
0 = 0.(6.8)

Fractional predictor formulae for φi(t):

φP
i,k+1 = φ

(i)
0 + 1

Γ(αi)

k∑
j=0

bαi

j,k+1φi+1,j , i = (1, 2, 3),(6.9)
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φP
4,k+1 = φ

(4)
0 + 1

Γ(α4)

k∑
j=0

bα4
j,k+1{−

[
g
L sin(φ1,j) + 2φ3,jξ3,j

]
/(1 + ξ1,j)

− (µταφ4,j + λτφ3,j + ντβφ2,j)/(1 + ξ1,j)2}.
(6.10)

Fractional predictor formulae for ξi(t):

ξP
i,k+1 = ξ

(i)
0 + 1

Γ(αi)

k∑
j=0

bαi

j,k+1ξi+1,j , i = (1, 2, 3),(6.11)

ξP
4,k+1 = ξ

(4)
0 + 1

Γ(α4)

k∑
j=0

bα4
j,k+1[

g
L cos(φ1,j) + (1 + ξ1,j)φ2

3,j

− K
mξ1,j − µ1τ

αξ4,j − λ1τξ3,j − ν1τ
βξ2,j ].

(6.12)

Fractional corrector formulae for φi(t):

φi,k+1 = φ
(i)
0 +

1
Γ(αi)




k∑

j=0

aαi

j,k+1φi+1,j + aαi

k+1,k+1φ
P
i+1,k+1


 , (i = 1, 2, 3),(6.13)

φ4,k+1 = φ
(4)
0 + 1

Γ(α4)

k∑
j=0

aα4
j,k+1{−

[
g
L sin(φ1,j) + 2φ3,jξ3,j

]
/(1 + ξ1,j)

− (µταφ4,j + λτφ3,j + ντβφ2,j)/(1 + ξ1,j)2}
+ 1

Γ(α4)
aα4

k+1,k+1{−
[

g
L sin(φP

1,k+1) + 2φP
3,k+1ξ

P
3,k+1

]
/(1 + ξP

1,k+1)
− (µταφP

4,k+1 + λτφP
3,k+1 + ντβφP

2,k+1)/(1 + ξP
1,k+1)

2}.

(6.14)

Fractional corrector formulae for ξi(t):

ξi,k+1 = ξ
(i)
0 +

1
Γ(αi)




k∑

j=0

aαi

j,k+1ξi+1,j + aαi

k+1,k+1ξ
P
i+1,k+1


 , (i = 1, 2, 3),(6.15)

ξ4,k+1 = ξ
(4)
0 + 1

Γ(α4)
{

k∑
j=0

aα4
j,k+1[

g
L cos(φ1,j) + (1 + ξ1,j)φ2

3,j

− K
mξ1,j − µ1τ

αξ4,j − λ1τξ3,j − ν1τ
βξ2,j ]

+ aα4
k+1,k+1[

g
L cos(φP

1,k+1) + (1 + ξP
1,k+1)(φ

P
3,j)

2

− K
mξP

1,k+1 − µ1τ
αξP

4,k+1 − λ1τξP
3,k+1 − ν1τ

βξP
2,k+1]}.

(6.16)

The energy can be obtained by the following equation:

H = 1
2 [(1 + ξ1,k+1)2φ2

3,k+1 + ξ2
3,k+1]

− (g/L)(1 + ξ1,k+1) cos(φ1,k+1) + (K/mL2)ξ2
1,k+1/2

= 1
2 [p2

φ/(1 + ξ1,k+1)2 + p2
ξ ]

− (g/L)(1 + ξ1,k+1) cos(φ1,k+1) + (K/mL2)ξ2
1,k+1/2

(6.17)

where pξ := ξ3,k+1, pφ := (1 + ξ1,k+1)2φ3,k+1.
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Fig. 7.1. Inextensible pendulum, when α = 1.5, β = 0.5.

7. Numerical examples. In this section, two examples are given to demon-
strate our theoretical analysis. The effects of fractional damping will be examined for
the extensible and inextensible pendulum.

Example 1. Inextensible pendulum: We take φ(0) = 1.0, φ
′
(0) = −0.3, g/L =

1.0, µ = 0.06, τ = 0.8, λ = 0.1, ν = 0.1.
The simulating results in Example 1 are shown in Figures 1-4. Figure 1 shows

the phase shift of oscillation of solution φ = φ1 of the inextensible pendulum with
α = 1.5, β = 0.5 and the fractional derivatives φi of order 0.5, 1, 1.5. Figure 2 exhibits
the elastic energy decay. From Figures 1-2, it can be seen that the elastic energy is
not a monotonic decay. In this case it exhibits stationary points corresponding to the
extremal positions of the pendulum. The fractional damping results in local energy
minima at the extrema of the inextensible pendulum. These results are in good
agreement with Seredyńska [12]. Figures 3 and 4 show the behaviors of the pendulum
when α = 1.5, β changes from 0 to 1 and β = 0.5, α changes from 1 to 2, respectively.

Example 2. Extensible pendulum: We take φ(0) = 1.0, φ
′
(0) = ξ(0) = ξ

′
(0) = 0,

g/L = 1.0, K/m = 1.3, µ = 0.1, τ = 0.8, λ = 0.1, ν = 0.1, µ1 = 0.2, λ1 = 0.1,
ν1 = 0.1.

An extensible pendulum is an interacting system consisting of two oscillators:
the pendulum and the spring. The extension of the string affects the period of the
pendulum, which is a parametric excitation. The simulating results in Example 2
are shown in Figures 5-10. Figure 5 shows the oscillations φ and ξ of the extensible
pendulum with α = 1.5, β = 0.5. Figure 6 shows the oscillation of solution φ = φ1

of the extensible pendulum with α = 1.5, β = 0.5 and the fractional derivatives φi of
order 0.5, 1, 1.5. Figure 7 shows the oscillation of solution ξ = ξ1 of the extensible
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Fig. 7.2. Energy of the inextensible pendulum, when α = 1.5, β = 0.5.
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Fig. 7.3. Inextensible pendulum, when α = 1.5, β changes from 0 to 1.
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Fig. 7.4. Inextensible pendulum, when β = 0.5, α changes from 1 to 2

spring with α = 1.5, β = 0.5 and the fractional derivatives ξi of order 0.5, 1, 1.5. From
Figures 5-7, it can be seen that during the pendulum swing the gravitational force
reaches its maximum four times. Resonant behavior is therefore expected if the ratio of
the string characteristic frequency to the pendulum characteristic frequencies is 2:1.
A resonant behavior is however observed in the extensible pendulum for arbitrary
frequencies of the linearized systems. Energy decay for extensible pendulum with
α = 1.5, β = 0.5 is shown in Figure 8. From Figure 8, it can be seen that it is a
non-monotone energy decay [12]. The behaviors of the extensible pendulum when
β changes from 0 to 1 or α changes from 1 to 2 are shown in Figures 9 and 10,
respectively. From Figures 9 and 10, we extract more property about the behaviors
of the extensible pendulum with any fractional-order damping.

8. Conclusions. In this paper, a computationally effective fractional predictor-
corrector method is used to simulate and examine the effects and solution behavior of
the nonlinear dynamical systems with fractional damping for extensible and inexten-
sible pendulum. Corresponding error analysis is derived. Some numerical examples
are given to demonstrate that the numerical method is a computationally efficient
method for this type of the systems. This method and technique can be applied to
solve other fractional-order ordinary differential equations.
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Fig. 7.5. Extensible pendulum and it’s elongation ξ, when α = 1.5, β = 0.5.
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Fig. 7.6. Extensible pendulum and the phase shift of the fractional derivatives φi of order 0.5,
1, 1.5., when α = 1.5, β = 0.5.
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Fig. 7.7. The elongation ξ of the extensible pendulum, when α = 1.5, β = 0.5.
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Fig. 7.8. The energy of the extensible pendulum, when α = 1.5, β = 0.5.
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Fig. 7.9. Extensible pendulum, when α = 1.5, β changes from 0 to 1.
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Fig. 7.10. Extensible pendulum, when β = 0.5, α changes from 1 to 2
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