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Rhythmic Representations: Learning Periodic Patterns for Scalable
Place Recognition at a Sub-Linear Storage Cost

Litao Yu, Adam Jacobson and Michael Milford

Abstract— Robotic and animal mapping systems share many
challenges and characteristics: they must function in a wide
variety of environmental conditions, enable the robot or animal
to navigate effectively to find food or shelter, and be computa-
tionally tractable from both a speed and storage perspective.
With regards to map storage, the mammalian brain appears to
take a diametrically opposed approach to all current robotic
mapping systems. Where robotic mapping systems attempt to
solve the data association problem to minimise representa-
tional aliasing, neurons in the brain intentionally break data
association by encoding large (potentially unlimited) numbers
of places with a single neuron. In this paper, we propose a
novel method based on supervised learning techniques that
seeks out regularly repeating visual patterns in the environment
with mutually complementary co-prime frequencies, and an
encoding scheme that enables storage requirements to grow
sub-linearly with the size of the environment being mapped.
To improve robustness in challenging real-world environments
while maintaining storage growth sub-linearity, we incorporate
both multi-exemplar learning and data augmentation tech-
niques. Using large benchmark robotic mapping datasets, we
demonstrate the combined system achieving high-performance
place recognition with sub-linear storage requirements, and
characterize the performance-storage growth trade-off curve.
The work serves as the first robotic mapping system with
sub-linear storage scaling properties, as well as the first large-
scale demonstration in real-world environments of one of the
proposed memory benefits of these neurons.

I. INTRODUCTION

Visual place recognition - recognising whether a current
camera image matches to those stored in a map or database
- is a fundamental component of most robotic mapping and
navigation systems[1]. These mapping systems are typically
developed and evaluated based on the quality of the map
they can produce, the robustness of representations and their
associated computational requirements. Much emphasis has
been placed on solving the “data association” problem -
making sure that there are no incorrectly or aliased map-
landmark associations.

Navigation neurons found in the brain of many mammals
such as rodents, known as “grid cells” [2] (see Fig. 1), have
highly aliased data associations with locations in the envi-
ronment - each cell encodes an arbitrary number of physical
locations laid out in a triangular tesselating grid [3], [4].
There has been much interest in the theoretical advantages
of such a neural representation including implications for
memory storage, error correction [5] and scalability that
could revolutionize how artificial systems including robots
are developed.

In this paper, we propose a novel approach to discover
regularly repeating visual patterns in an environment, and to

Fig. 1: Neurons in the mammalian brain known as grid cells
intentionally alias their representation of the environment;
each neuron represents an arbitrary number of places in a
regularly repeating pattern.

encode these regularly repeated patterns in frame sequences
(see Fig. 1). We adopt a supervised learning approach and
take advantage of statistical properties to identify periodicity
in the world being mapped. To perform place recognition, a
global location estimate is reconstructed from identifying the
phase of these learned patterns in a current camera image.
In this way, the storage requirements scale up sub-linearly
with the number of encoded places in the environment (or
better). Extensive experiments on three real-world datasets
demonstrate successful place recognition while retaining sub-
linear storage growth.

We present new research that significantly extends a pilot
study [6] by developing a number of new contributions that
address scalability to large, challenging real world environ-
ments, including:

• A method for actively finding and learning periodic
visual patterns from frame sequences using supervised
learning techniques and best practice for maximizing
their utility in sub-linear mapping,

• Techniques for optimizing for minimum storage require-
ments that balance the number of periodic patterns, their
period lengths and their separability,

• Development of a multi-exemplar training scheme that
improves place recognition performance in perceptu-
ally challenging environments where multiple training
examples are available, while maintaining sub-linear
storage growth,

• Visual data augmentation techniques for improving per-
formance when multiple-examples are not available, and

• Comprehensive performance evaluation on several large
benchmark datasets including characterizations of the
tradeoff between storage scalability and place recogni-
tion performance, and analysis of the benefits of multi-
exemplar and augmentation-based training.

Together these contributions represent a significant step



towards enabling a sub-linear, highly scalable map encoding
scheme for autonomous systems, and provide for the first
time a real-world data-based test of one of the primary
postulated memory benefits of this universal spatial encoding
scheme found in the mammalian brain.

The paper proceeds as follows. Section II provides an
overview of data compression in signal processing with
relevance to the approach presented here. Section III de-
scribes the components of our proposed approach in detail.
Experimental results and analysis are presented in section
IV, with Section V discussing the findings and future areas
of research.

II. BACKGROUND

Data compression has a broad range of applications in
signal processing, which is to encode data into compact rep-
resentations by taking advantage of perceptual and statistical
properties of data to provide superior analytical results. In
image processing, we can use cosine transform to compress
a BitMap (BMP) image as a JPEG format with a tolerable
information loss but a much smaller data size. In computer
vision, images and videos are usually represented as high-
dimensional visual feature vectors. The goal of encoding im-
ages into compact codes is to simultaneously reduce the stor-
age cost and accelerate the computation. To achieve this, the
most discriminant information contained in high-dimensional
data is usually embedded into a lower-dimensional space for
further analysis. Usually, the embeddings are in a discrete
format such as hashing [7]. However, the discrete data
representations suffer from data collisions when data size
is large, so it is not the best option for unique mapping
in visual place recognition. To avoid data collision, visual
information can also be embedded in continuous, rather than
discrete lower-dimensional spaces [8].

For multimedia data compression, there are two encod-
ing families based on machine learning techniques: binary
embedding and vector quantization, both of which are de-
signed to compress continuous sensor data into discrete
feature spaces. The idea of binary embedding is to represent
feature vectors as compact binary codes, so the Euclidean
distance between two vectors could be approximated by
Hamming distance in the binary space [7]. The advantage of
binary embedding is due to the efficient Hamming distance
computation, which can be implemented by the XOR and
POPCOUNT operations. Different from binary embedding,
vector quantization (VQ) adopts a codebook as a dictionary
to quantize the feature vectors into a set of codewords, and
the distances between any two codewords are pre-computed
and stored in a lookup table [9]. When the original feature
space is decomposed into the Cartesian product of sev-
eral low-dimensional subspaces, vector quantization becomes
product quantization (PQ) [10], [11], [12]. Compared with
binary embedding, PQ based encoding methods have a lower
information loss and thus can achieve a better accuracy, at
the cost of a slightly lower computational speed. Both binary
embedding and vector quantization are effective encoding
techniques with regards to calculation and storage costs.

Fig. 2: An illustrative scenario with only two visual patterns
available: buildings and trees, and both of them appear
periodically. Each column represents a frame, so the frame
sequence simulates a virtual camera moving forward. The
combination of the two landmarks can represent at most
3× 4 = 12 distinct locations.

Although binary embedding and vector quantization have
different encoding strategies, the underlying mechanism is
clustering, i.e., similar statistical patterns have the same
codes. Both of the two techniques suffer from code collisions
as the data size increases, and they have linear storage growth
with the number of data instances.

Computational and storage requirements are of particular
importance for mobile robotic and autonomous systems. It
is important to differentiate between at least three different
goals - achieving highly compact but ultimately linear stor-
age growth, achieving sub-linear computational requirements
(but with linear or worse storage growth), and achieving sub-
linear storage growth. For the first goal, various techniques
have been applied in robotic applications. For example,
Locality Sensitive Hashing (LSH) is used to deal with the
problem of stereo correspondence estimation [13], multi-
model fusion techniques are adopted in humanoid robots to
process large-scale language data [14], and Local Difference
Binary (LDB) descriptor is applied to obtain a robust global
image description for place recognition and loop closure
detection [15]. In [16] the authors proposed to compress
sensory data from tactile skins. Similarly, the distributed
sensor data with high-frequencies can be compressed as
coresets for streaming motion [17]. To achieve the sub-linear
computation, [18] builds an index on the original database
to reduce the computation cost. While significant effort
has been devoted towards efficient computation with low
absolute storage costs, there has been little work examining
how sub-linear storage growth might be achieved for SLAM
systems, or examining how natural systems achieve this sub-
linear storage growth with a unique one-to-many neuronal
mapping system.

III. APPROACH

In this section, we describe our proposed encoding model
for scalable place recognition, based on supervised learning
techniques. The system comprises a periodic template learn-
ing phase, a database encoding phase, and a global place
reconstruction phase.



A. Learning Periodic Patterns from Frame Sequences

For clarity, we start with a toy example, since in the
actual system we are looking for the underlying visual
patterns that are often not intuitive. In Fig. 2, we show an
illustrative scenario with only two visual patterns: different
buildings and different trees. In this example, each column
represents a frame in a sequence. By observing the frame
sequence, we can see the style of building cycles in every 3
frames, and the type of the tree regularly changes in every
4 frames, respectively. Consequently, the combination of the
two ideal periodic patterns can uniquely represent at most
3× 4 = 12 different locations. In place recognition systems,
if there are more than two periodic patterns with different
lengths, only storing the pattern information is sufficient for
global place estimation. For example, we can use periodic
landmarks and their positions to describe a frame, just like
the visual templates used to detect interesting points as SIFT
descriptors in image processing, and these descriptors can
be then aggregated into visual feature vectors for further
analysis. However, we will show that it is possible to learn
latent periodic patterns from a wide variety of data. To
enable the SLAM system to automatically analyse the feature
vectors, in [6] the authors proposed to apply spectrogram
to find the regularly repeated patterns in frame sequences.
The spectral methods assume the signal is composed of
phase-shifted sine and cosine curves with scaled factors and
offsets, but such a strong assumption is not valid in most real
applications. Also, the thresholds need to be neatly set for
signal discretization and template matching, because a high
threshold may lead to the loss of matched templates, while a
low threshold usually results in mismatches or redundancies.

In our proposed data compression model, temporally pe-
riodic patterns are learned from the frame sequence in a
database. Given an (integer) period τ , our system will look
for a linear separation for each possible (integer) phase of
that period that separates frames in that phase from frames in
all other phases. This allows us to train completely distinct
classifiers for each phase of a period, which is much less
restrictive than training a single template for all phases of
that period, as is implicit in spectral methods.

Let a location database be represented as a frame sequence
as X = {x1,x2, . . . ,xN} where N is the total number of
data instances, and xi is the i-th frame in the database (1 ≤
i ≤ N ). If each frame is represented as a d-dimensional
visual vector, i.e., xi ∈ Rd, the size of the database is RN×d.
When there is a cyclic visual pattern with the length τ , τ
templates are generated in each period. For the j-th template
within a period (1 ≤ j ≤ τ ), we assign a binary label y(j)i ∈
{1,−1} for each frame xi to indicate if it can match the j-th
template:

y
(j)
i =

{
1 i mod τ = j − 1,

−1 otherwise.
(1)

Consequently, the task of determining whether a frame xi
can match the j-th template in a period becomes a binary
classification problem. The weight vector wj and bias bj can

be simply obtained by solving a linear SVM as follows:

min
wj ,bj ,ξij

1

2
‖wj‖2 + C

N∑
i=1

ξij ,

s.t. y
(j)
i (w>j xi + bj) ≥ 1− ξij ,
ξij ≥ 0, 1 ≤ i ≤ N, (2)

where C is the penalty parameter to balance the hinge
loss and functional margin. Here we mainly focus on the
loss function to make the templates as linearly separable as
possible, and we can simply set C = logN .

Simultaneously considering τ templates within a period,
these binary classifiers can be integrated into a multi-class
SVM model:

min
wj ,bj ,ξij

1

2

τ∑
j=1

‖wj‖2 + C

τ∑
j=1

N∑
i=1

ξij ,

s.t. y
(j)
i (w>j xi + bj) ≥ 1− ξij ,
ξij ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ τ. (3)

This multi-class SVM can be efficiently computed by
some toolboxes such as scikit-learn1. The statistical prop-
erty of the weight vector wj is straightforward: when all
sequenced frames within the database are represented by
bN/τc periods and can be perfectly segmented by τ clas-
sifiers, each classifier has the minimum covariance with its
positively classified data instances. Thus, these classifiers can
be just considered as the templates within a period.

The optimised weight vector wj and bias bj (1 ≤ j ≤ τ )
are able to determine if a frame is at the j-th position within
a period with length τ , i.e., the template that can be matched
by a frame x is calculated by:

f(x|τ) = argmax
j

(w>j x+ bj), 1 ≤ j ≤ τ. (4)

Note that in order to keep the sub-linearity for data com-
pression, we do not use kernel SVMs. In the kernel case, the
weight vector in the decision function f(·) is represented as
a linear combination of support vectors. Although the kernel
decision function is more discriminative than the linear one,
it cannot achieve the sub-linear data compression, because
when either the dimension or the size of database increases,
the number of support vectors also increases accordingly.

B. Database Encoding

As we have seen, we can use linear SVMs to learn τ
periodic templates given a period tau and the N frames of a
dataset in which we wish to localise. However, unless τ > N ,
this is obviously not sufficient to uniquely identify a frame.
The core idea of our method is to learn two or more such
cyclic patterns {τ1, τ2, . . .}, such that frames can be uniquely
identified. In this subsection, we show how the periods τ can
be chosen to allow for unique identification while minimising
storage requirements.

Assuming there are several candidates for τ available, we
simply select r cyclic patterns with periods τ1, τ2, . . . , τr

1http://scikit-learn.org/



to estimate a frame position within a database when given
an arbitrary frame x from it. The position of x could be
determined by the phase matches, which are represented as
a candidate set {j1, j2, . . . , jr}, 1 ≤ jk ≤ τk. The possible
index i is calculated by:

i = ak · τk + jk, (5)

where k ∈ {1, . . . , r}, and ak is a natural number. To identify
xi with {j1, j2, . . . , jr}, its index i needs to be the unique
solution of Eq. (5). Thus the selections of τ1, τ2, . . . , τr
should satisfy:

lcm(τ1, τ2, . . . , τr) ≥ N, (6)

where lcm(·) is the least common multiple operator. This
condition guarantees the index mapping is unique, and there
are sufficient “slots” to store all frames in the database.

If we manage to make τ1, τ2, . . . , τr co-prime, then Eq. (6)

will be equivalent to
r∏

k=1

τk ≥ N . Given this constraint and

if r = 2, when given a τ1, τ2 needs to be at least N/τ1. In
Fig. 3, we illustrate how the selection of the period lengths
affects the total number of templates if N = 100 and r = 2.
For each τ1 on the x-axis, we found the smallest τ2 that is
both co-prime with τ1 and that satisfies τ1 × τ2 ≥ N . Then
on the y-aixs we report τ1+ τ2, which is proportional to the
storage cost. We can see the minimum storage for 100 place
estimations is 21 when r = 2, so τ1 = 10 and τ2 = 11
would be the best period pair.

Fig. 3: The minimum number of templates required when
N = 100 and r = 2.

Assuming that our place recognition algorithm could cor-
rectly identify the phase matches jk (see Eq. (5)) corre-
sponding to a query x, the memory requirements for our
system are to store the weight vectors w

(k)
1 ,w

(k)
2 , . . . ,w

(k)
j

and biases b(k)1 , b
(k)
2 , . . . , b

(k)
j for each possible k. In other

words, we need to allocate memory for
r∑

k=1

τk vectors of size

d+ 1. Thus, the minimal storage requirements are achieved

when
r∏

k=1

τk ≥ N . In unconstrained cases, the solution is
r
√
N , but τ1, τ2, . . . , τr also need to satisfy they are coprime

integers. Since we have not found a closed-form solution
to this constrained problem, we instead propose to sample
candidates from d r

√
Ne, d r

√
Ne + 1, . . . , d r

√
Ne + m with

the least training errors. The training error e is the fraction

of misclassified training samples of τ linear models among
the whole training set. Therefore, only storing r groups of
periodic templates can reduce the space complexity from
O(N) to O(r r

√
N).

C. Reconstructing a Global Place Estimate

The localisation of an arbitrary frame from the database
x is implemented by the intersection operation. We first
calculate the phase matches of r periodic patterns: jk =
f(x|τk) for k ∈ {1, 2, . . . , r} by applying Eq. (4) , and
then generate r candidate sets P1, P2, . . . , Pr, where Pk =
{f(x|τk), f(x|τk) + τk, . . . , f(x|τk) + bN/τkc}. The in-
dex of x in the original frame database is calculated by

f(x|τ1, τ2, . . . , τr) =
r⋂
l=1

Pk.

Before the online searching phase, given a query im-
age, the system should first determine if the location that
the image represents can be found in the database. Some
appearance-based SLAM systems such as [19], proposed
to set a lower bound of likelihood, which is calculated in
the training procedure and set by users. The low likelihood
that falls below the lower bound means the query image
cannot match any places in the database. Our proposal is
a deterministic approach, and there would be at least one
phase match when given a query even if it is actually an
outlier. So a lower bound of decision value can also be set
to determine if a query can match a template in a periodic
pattern. Alternatively, an auxiliary classifier could be trained
when there are negative exemplars available, which are not
descriptive to any locations in the database.

The retrieval of our method consists of r − 1 1d inter-
sections of r sets with size N/τ , which is lower than r

√
N .

Since the sets are already sorted, the 1d intersection can be
achieved in O(r r

√
N): the intersection of a pair of sorted

sets is linear in the sum of the sizes of both sets, so its time
complexity is O( r

√
N), and we only need to perform r − 1

such intersections on all sets.

D. Improving Robustness Through Multi-Exemplar Training
and Augmentation

A common method for improving the robustness of recog-
nition techniques is to use, where available, multiple different
examples of an object or place in training. For example,
ImageNet has over ten million images with one thousand
categories [20]. With large-scale and well-labelled training
images, the classifiers trained on such datasets have near-
human performance in very challenging recognition tasks.
For the mobile place localisation systems, the robot should
be able to memorise the scenes by revisiting the same places
multiple times from different perspectives, or under distinct
appearance conditions, to improve their discriminative power.
In this case, the periodic patterns are essentially learned in
a shared space rather than the original feature space.

Since our proposed data compression model for scal-
able place recognition is also based on supervised learning
techniques, using frames taken under different appearance
conditions has the potential to improve recognition accuracy



and robustness. However, there is not always multi-exemplar
training data available. In this case, we can apply image aug-
mentation methods such as Gaussian blur, flipping, random
cropping and elastic transformation to simulate the multi-
exemplar data environment.

IV. EXPERIMENT AND ANALYSIS

In this section, we describe the datasets used, the image
preprocessing methods, the evaluation metrics and the ex-
perimental results. We also provide analysis of our proposed
model, breaking down the performance contributions of the
core system, enhancements including multi-exemplar train-
ing and augmentation, and provide an analysis of the trade-
off between performance and storage scaling.

A. Datasets and Experiment Settings

To evaluate our proposed data compression model for
scalable visual place recognition, we experimented with three
different datasets: Nordland Train dataset, Aerial Brisbane
dataset and Oxford RobotCar dataset.

1) Nordland Train dataset: The Nordland Line2 is a 729-
kilometre railway between Trondheim and Bodø, Norway.
This dataset contains four long videos captured by placing a
camera at the front of a train facing forward along the railway
track. The four videos describe the front views in four
seasons, and each video is about ten hours long. This dataset
was first used for visual navigation across seasons[21], but
we only use it to test the compressibility of our proposed
model. In the first part of our evaluation, the queries are all
from the reference data, and the model aims to find the exact
positions of them in the database. To pre-process the video
data, we first extracted the keyframes, then used the optical
flow of the ground directly in front of the train to estimate the
velocity then normalised it. Finally, the four subsets contain
10,713, 7,403, 9,267 and 7,276 frames, respectively.

2) Aerial Brisbane dataset: The Aerial Brisbane dataset
is generated by taking a snapshot from NearMap3, which
describes the Brisbane region in Queensland, Australia. The
total size of the image is 7526× 6562, and each pixel is an
actual geographic area of 4.777× 4.777 square metres. The
image was then segmented to 224 × 224-pixel frames with
112-pixel strides, so in our setting the dataset can represent
3,705 different places.

We use this dataset to test if our model can recognise
locations in visual changing environment. To simulate the
environment, the query images and reference data are from
different sources. We collected several snapshots of the aerial
map taken at different times ranging from 19/05/2013 to
24/06/2017. One image was selected as the query to search
the absolute locations of the patches on the map, and the rest
reference frames are used to train the model.

2https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-
season-by-season/

3http://maps.au.nearmap.com/

3) Oxford RobotCar dataset: The Oxford RobotCar
dataset [22] contains over 100 repetitions of a consistent
route through Oxford, UK. The dataset captures many differ-
ent combinations of weather, traffic and pedestrians. For our
testing, we used 5 subsets of the Oxford RobotCar dataset
generated from a fixed route captured at different times of
day using images captured by the Point Grey Bumblebee
XB3. This dataset describes a small area with a limited
number of locations. Since the geographic positions are
described in consecutive northing and easting values as GPS
data, we applied KMeans on the normalised coordinates to
generate 100 clusters, so the GPS coordinates falling into the
same cluster are considered as a unique location on the map.
We ran our place recognition model to test if the periodic
encoding can successfully capture the cyclic properties of the
frame sequences to enable accurate reconstruct the location
estimation.

For all of the three datasets, we utilised the deep vi-
sual features extracted from popular ConvNet architecture
to describe the frames. Specifically, we used the second
output of the fully-connected layer of the VGG16 model
[23] and then applied L2 normalisation. Thus each frame is
represented by a 4,096d visual feature vector. On the Oxford
RobotCar dataset, each location is visually represented by
multiple frames. To reduce the noise and fit class conditional
densities to the data with multiple exemplars, we further
applied the Linear Discriminant Analysis (LDA) to reduce
the dimensionality to 64.

In our experiment, we compared our model with KD-
Tree[24], Iterative Quantization (ITQ)[25] and Optimised
Product Quantization (OPQ)[11] on Nordland Train and
Aerial Brisbane datasets. KD-Tree is a well-known method
for approximate nearest neighbour search, which builds a
binary search tree as the index for a fixed-sized database. Al-
though a KD-Tree can effectively accelerate the computation,
this technique does not compress the data. ITQ and OPQ
are discrete embedding approaches, which encode the high-
dimensional data into compact codes for fast computing.
However, they cannot achieve unique mapping for place
recognition because code collision is inevitable. Furthermore,
these techniques compress data in an absolute way, i.e., the
compressed data size is proportional to the actual data size,
which is not sub-linear.

Let T be the level of the period length, which is the
minimum value for τ in data encoding. Assume we set
T = 2

√
N and r = 2 for our model, and use a 256-bit

binary vector and a 256d integer vector to encode a 4,096d
visual instance for ITQ and OPQ, respectively. When data
size is comparably small, our proposed model has a higher
memory cost, but it increases sub-linearly when the database
becomes extremely large.

We used the compression ratio to demonstrate how our
model can achieve sub-linear storage and used the accuracy
metric to evaluate place recognition performance. We also
compared the computational speed of our model with the
baseline models.

Our experiment was conducted on a desktop with Intel(R)



Fig. 4: The training errors on Aerial Brisbane dataset when
setting different period lengths.

i7-7700K CPU 4.20GHz with 4 processors, 32GB RAM, and
Windows 10 operating system with a Python 3.6 computa-
tional environment.

B. Place Recognition Results When All Queries Are from
Reference Data

We first investigated how the period length τ affects the
training error. We tested different lengths of periods and
trained the linear SVMs on the Aerial Brisbane dataset, with
the training errors illustrated in Fig. 4. We can see longer
periods lead to a lower training error rate e and a higher
compression ratio when r is fixed. In the extreme case, when
a whole frame database has only one period, i.e., r = 1 and
τ = N , no data compression is implemented, and the model
reverts to brute-force search.

We then investigate the data compression results for
Nordland Train and Aerial Brisbane datasets when only two
periodic patterns are available, i.e., r = 2. We also tested
the training errors at two periodic levels: T =

√
N and

T = 2
√
N , respectively. For each subset of Nordland Train

dataset, as well as the Aerial Brisbane dataset, we tried seven
different values of τ in training the linear SVMs and recorded
the error rates, and then the system automatically selected
the best period pair. Based on the selection of periods, we
analyse the storage cost when applying our proposed data
compression approach and selecting the length of period T
at the level of

√
N on the two datasets. In a 32-bit operating

system, the memory cost for a float number is 4 bytes. The
storage comparison of the datasets is summarised in Table I.
From the table, we can see that our proposed model is able
to encode very large frame databases with high compression
ratios. If the data size increases linearly, applying two-period
values and several templates can make the storage increase
in a sub-linear manner. When the number of frames is more
than 10,000, our model only takes about 1/50 memory to
store all data instances.

We used the frames from the reference data as queries
and applied our models for location estimation. We show
the place recognition results of Nordland Train and Aerial
Brisbane datasets in Table II. In all of the four subsets of the
Nordland Train dataset, none of the accuracies falls below
98% even when we apply the extreme compression method.
For example, in the spring subset, 10,713 frames record
dierent views of places along the Norland railway. Applying
our proposed data compression model can still achieve
99.46% accuracy. If we set longer periods, i.e., T = 2

√
N ,

(a) Compression ratios (b) Accuracy comparisons

Fig. 5: The compression ratios and accuracy comparisons
when r changes. Note the queries are all from reference data.
(1. Nordland spring; 2. Nordland summer; 3. Nordland fall;
4. Nordland winter; 5. Aerial Brisbane)

the compression ratio doubles, but the recognition accuracy is
higher, which is very close to 100%. On the Aerial Brisbane
dataset, our system achieved the very near-perfect accuracy
of 99.92% (only 3 mismatches) when T =

√
N . When the

length of period doubles, the recognition accuracy is 100%.
We conducted an experiment using both Nordland Train

and Aerial Brisbane datasets evaluating the performance of
the KD-Tree, ITQ, OPQ, and the brute-force search tech-
niques, recording the average search time. The comparison
is displayed in Table III. By using a few learned periodic
templates and the matching approach introduced in section
III-C, the computational efficiency is significantly increased
compared to the exhaustive search, although it is a lower
than KD-Tree, ITQ and OPQ. However, KD-Tree only builds
an index on the database but does not implement the data
compression at all. Both ITQ and OPQ could compress
the data in an absolute manner, but they cannot achieve
the unique mapping required for place recognition, even
when the distance between a query and its matched frame is
zero. Considering the compression ratio, search accuracy and
speed, it is worth applying our proposed model to large-scale
place recognition systems.

Then we used more than two periods by setting r = 3
and r = 5 respectively and re-ran our model on Nordland
Train and Aerial Brisbane datasets. As is discussed in section
III-B, we can choose different available periods for data
compression. A larger value of r means the system can
achieve a lower compression ratio. Fig. 5 summarises the
compression ratios and the accuracy comparisons. From the
two figures, it can be seen that although applying more
periodic patterns can achieve an even higher compression
ratio, the recognition accuracy falls significantly, even though
the queries are all from reference data. The reason is that the
value of τ is in direct proportion to the number of negative
data instances in Eq. (1), i.e. when the number of templates
increases within a period, there are fewer positive-labelled
instances in the learning process, which makes the periodic
templates more linearly separable. By contrast, the training
error rate is higher on a more “balanced” dataset.

We tested our system using data from different times of
day for the Aerial Brisbane and Oxford Robotcar datasets.
For Aerial Brisbane dataset, we used one image from this



TABLE I: The data compression results (r = 2 and T =
√
N ). Note the 4097 in the Compressed size column comes from

4096 plus the bias.

Dataset Original size Original storage Compressed size Compressed storage Compression ratio
Norland (spring) R10713×4096 175,521,792 bytes R211×4097 3,457,868 bytes 0.0207

Norland (summer) R7403×4096 121,290,752 bytes R181×4097 2,966,228 bytes 0.0246
Nordland (fall) R9267×4096 151,830,528 bytes R201×4097 3,293,988 bytes 0.0217

Nordland (winter) R7276×4096 119,209,984 bytes R179×4097 2,933,452 bytes 0.0246
Aerial Brisbane R3705×4096 60,702,720 bytes R125×4097 2,048,500 bytes 0.0337

TABLE II: Best learned periods and place recognition results on Aerial Brisbane dataset and Nordland train dataset (r = 2
and T =

√
N ). Note all queries are from the reference data.

Dataset T =
√
N T = 2

√
N

τ1 e (×10−3) τ2 e (×10−3) Accuracy τ1 e (×10−3) τ2 e (×10−3) Accuracy
Norland (spring) 105 2.99 106 2.89 0.9946 211 0.84 212 0.65 0.9990

Norland (summer) 88 8.91 93 8.65 0.9846 179 2.70 180 2.30 0.9960
Norland (fall) 98 4.64 103 4.64 0.9912 197 0.54 200 0.22 0.9992

Norland (winter) 87 1.51 92 1.52 0.9971 174 0.27 175 0.00 0.9996
Aerial Brisbane 62 0.54 63 0.27 0.9992 122 0.00 123 0.00 1.0000

TABLE III: The comparisons of different search methods
(the seach time is recorded on Aerial Brisbane dataset).

Method Compressed scale Search time Unique mapping
KD-Tree No compression 0.000215 Yes

ITQ Linear 0.000116 No
OPQ Linear 0.000241 No

Brute-force No compression 0.125948 Yes
Ours Sub-linear 0.000503 Yes

dataset as queries, and used another image taken at a different
time as the reference. For Oxford RobotCar dataset, we used
the frames taken on a distinct date as queries to search
their locations. When applying the brute-force search, the
accuracy is 0.9582 on Aerial Brisbane dataset, and 0.236
on Oxford RobotCar dataset, respectively. Using our model
to compress the reference data, the accuracy dropped to
0.6835 and 0.183 on the two datasets. The result signifies
solely applying the data compression model cannot achieve a
satisfactory recognition accuracy under different appearance
conditions. As is introduced in Section III-D, we adopted
different data augmentation approaches, including Gaussian
blur, random cropping, flipping, elastic transformation, con-
trast normalisation, etc. We separately experimented with
these augmented data sources, then merged them as a whole
training set to train a unified place recognition model. Note
that for Oxford RobotCar dataset, we did not use channel
invert and grey-scale augmentations because the raw image
data is grey-scale. The accuracies are displayed in Fig. 6 for
the two datasets. It can be seen that although each single
augmented data source has limited power to help obtain a
discriminative model, their combination can effectively boost
the accuracy by 2% and 1% on the two datasets, respectively.

C. Results in Visually Changing Environments

Next, we trained the models with the multi-reference set,
where these frames are taken under different appearance
conditions. We used different combinations of reference
sources and evaluated their performance on Aerial Brisbane
and Oxford RobotCar datasets, and the accuracy curves are

plotted in Fig. 7. The accuracy improves steadily as the
number of data sources increases and learning with the
multi-source data and image augmentation enables the data
compression model to better deal with the various appearance
conditions while keeping the storage sub-linear.

As is discussed in Section III-B, we set longer periods
to further reduce the training error e, but with a lower data
compression ratio. We tested different lengths of periods by
setting T =

√
N , T = 2

√
N , T = 3

√
N , and T = 4

√
N

respectively, and the accuracy curve is plotted in Fig. 8. We
can conclude that setting a longer period can improve the
recognition accuracy, with the sacrifice of the compression
rate. In this real application scenario, if we set T = 4

√
N , the

data compression ratio is 0.131 on Aerial Brisbane dataset
and 0.81 on Oxford RobotCar dataset, respectively, but the
recognition performance is boosted.

(a) Aerial Brisbane (b) Oxford RobotCar

Fig. 6: The accuracies of different data augmentations.

V. DISCUSSIONS AND CONCLUSIONS

We have presented a novel image-based map encoding
scheme that deliberately seeks out and learns mutually
supportive visual pattern frequencies in the environment to
enable place recognition with sub-linear storage growth as
the environment size increases. The system is based on
the nature of neural mapping systems in the mammalian
brain that does not appear to approach the data association
problem central to most robotic mapping systems the same



(a) Aerial Brisbane (b) Oxford RobotCar

Fig. 7: The accuracy curves when there are multiple reference
data sources (r = 2).

(a) Aerial Brisbane (b) Oxford RobotCar

Fig. 8: The accuracy curve when setting different lengths of
periods (r = 2, 4 data sources with augmentation).

way; instead each neural map “unit” is associated with
an arbitrarily large number of places in the environment
distributed at regular intervals.

Results on large real-world datasets show that the fun-
damental premise is valid and that high-performance place
recognition can be achieved with a mapping system whose
map storage scales sub-linearly with environment size. The
system is agnostic of any particular types of features or
feature frequencies and its performance across a range of
environments shows that, perhaps surprisingly, repetitive
visual patterns can usually be found.

We applied the data augmentation and multi-source train-
ing data, which are generic methods for visual recognition
tasks, to make our model more applicable under differ-
ent appearance conditions. In future work, we could also
design a more sophisticated system by integrating some
advanced machine learning techniques to better capture the
spatial properties of the periodic patterns and improve the
recognition performance. Alternatively, we could apply some
existing matching schemes such as SeqSLAM [26], to further
improve the stability by taking consideration of multi-frame
integration.
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