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Abstract

Quantum Cognition has delivered a number of models for semantic memory,

but to date these have tended to assume pure states and projective measure-

ment. Here we relax these assumptions. A quantum inspired model of human

word association experiments will be extended using a density matrix represen-

tation of human memory and a POVM based upon non-ideal measurements.

Our formulation allows for a consideration of key terms like measurement and

contextuality within a rigorous modern approach. This approach both provides

new conceptual advances and suggests new experimental protocols.
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1. Introduction

How should we model memory? As Shiffrin states:

None of the models we use in psychology or cognitive science, at least

for any behavioral tasks I find to be of any interest, are correct. We

build models to increase our understanding of, and to slightly better

approximate, the incredibly complex cognitive systems that determine

behavior. (Shiffrin, 2003)

However, this pragmatism raises an interesting point. What do our models of

memory assume? And how do they limit the way in which we can formulate a

given memory model?

Currently many models of Quantum Cognition (QC) apply a single state

vector that assumes a system in a pure state (Aerts, 2011; Bruza, Kitto, Nelson

& McEvoy, 2009; Nelson, Kitto, Galea, McEvoy & Bruza, 2013; Pothos & Buse-

meyer, 2013; Bruza, Kitto, Ramm & Sitbon, 2015). However, when we perform

memory experiments we obtain ensemble data for a collection of subjects. This

cannot be modeled with a pure state, rather a mixed state is required. In this

work we will make use of the density matrix representation to model ensembles

of human subjects in word association experiments. At first, we will provide a

detailed technical description of Von-Neumann projective valued measurement

(PVM). Although PVM measurement has been used in QC before, especially

in the recall experiment of Bruza et al. (2009), a better technical description

is necessary to describe measurement on ensembles of subjects. Here we will

make use of a more precise notation for the specific case of two observables in

the recall experiment, and then we will generalize this notation for more pos-

sible senses. This will enable us to describe scenarios that have more possible

outcomes for each observable.

Another limitation of previous models for semantic memory in QC centers

around the usage of projective measurement for cognitive systems. This is highly

restrictive because QC (i) does not necessarily assume an orthogonal relationship

between operators, and (ii) sometimes entails violations of repeatability. An

2



analysis of these restrictions associated with the PVM formalism will lead us

to introduce the more modern and general positive operator valued measure

(POVM). We will show that this non-orthogonal measurement provides new

understandings and extensions of the standard advantages of quantum inspired

models of memory.

Some existing research has already applied POVM in the construction of

quantum models of cognition. For example, Khrennikov, Basieva, Dzhafarov

& Busemeyer (2014) used POVM to model different arrangements of questions

in opinion polling, including “response (non)replicability” and “question or-

der effect”. In another work, Khrennikov & Basieva (2014) employed POVM

to describe a situation in which there are not sharp “Yes/No” answers to di-

chotomous decision observables. Yearsley (2017); Yearsley & Busemeyer (2016)

provide a detailed tutorial for using POVM to model noisy and imperfect mea-

surement, and their structure was used by Denolf, Mart́ınez-Mart́ınez, Josephy

& Barque-Duran (2017) to model the prisoners dilemma experiment. During

this period of emerging interest, we recognized that POVM could provide a nat-

ural model of the process of conceptual combination (Aliakbarzadeh & Kitto,

2016), and introduced a generalised Bell inequality, where POVMs were used

to represent joint nonideal measurement for two observables. The current work

will extend this early promising result, additionally describing a more general

form of POVM for one observable.

We will show that the density matrix representation and POVM formula-

tion suggest new sources of contextuality in the preparation and measurement

processes respectively. This allows us to reconsider the interpretation of context

within these new models. Although it is important to explain existing contextu-

ality in cognitive experiments using better mathematical methods, we believe it

is also essential to consider other sources for contextuality in those experiments;

sources of contextuality that were ignored in previous work.

We also introduce another application of POVM in the modeling of memory.

We will use Neumarks dilation theorem to relate the full cognitive state of a

subject to a restricted substate which represents only those cognitive processes
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through which a subject participates in an experiment.

At the end of the paper, we will discuss a future direction that we believe

will contribute to better understanding of cognitive states. We will point to

a possible application in using Quantum Tomography to characterize the un-

known state of a cognitive system. Using the insights that we gain from this

characterization, we will suggest that a new experimental protocol could be

created based on repeating projective measurements on similar ensembles of a

subject to specify the unknown state of that subject. In an idealized situation,

the whole parameters of an unknown cognitive state could be specified using a

single POVM.

2. The Quantum Model of Memory

Quantum Models of Memory (Bruza et al., 2009; Nelson et al., 2013; Bruza

et al., 2015) treat words as states in a Hilbert space. The combined activation of

words in memory is modeled using an entangled state, where an associative net-

work is either fully activated, or not. In Nelson et al. (2013), it was argued that

associative semantic networks are constructed through the complex set of expe-

riences that people undergo throughout their lifetime, and so are closely related

to episodic memory, a point that opens up the possibility for linking episodic

and semantic models of memory if we can construct more plausible relationships

between them in our formalism. In particular, episodic memories beyond the

boundaries of an experiment can be considered a form of experimental noise, a

point that we will return to shortly.

Semantic associative models imply that the way in which a subject responds

to a prime will affect their ability to recall other words not directly connected

to that prime in e.g. a semantic network Nelson, McEvoy & Schreiber (2004).

This assumption can be tested experimentally, and in Bruza et al. (2015) a

framework is provided for considering whether conceptual combination can be

considered compositionally or not. Two tests are used to established compo-

sitionality; Marginal selectivity (Dzhafarov & Kujala, 2012) and a Bell type
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inequality. A number (21 from a total of 24) of conceptual combinations in that

paper violated the marginal selectivity condition, while one of the combinations

(BATTERY CHARGE) appears to satisfy marginal selectivity but violates a

Bell-type inequality. More data is required before these results can be consid-

ered definitive. However, at this juncture it is a good idea to reconsider the

theoretical apparatus of that model. Its reliance upon standard quantum mod-

els leaves it open to a number of criticisms from the perspective of psychology.

Indeed, for a number of reasons that will become apparent shortly we consider

it important to extend that model to a more general and modern formulation.

We will begin this extension with a move to the density matrix formulation.

2.1. Constructing a density matrix

We start with a consideration of the way in which a subject might recall an

ambiguous word A when cued with a particular prime. In quantum memory

models this prime is represented as a basis state (i.e. a measurement context).

Here we will use the eventualities {a′, a′′} to describe a subject’s responses to a

concept A, which can be interpreted according to one of two possible dominant

and subordinate senses. When the dominant sense of concept A is primed,

and A is interpreted in that sense by the human subject, then we designate

a′ = +1. If A is not interpreted in that sense after priming the dominant sense,

then we write a′ = −1. Similarly, a′′ = {1,−1} relates to situations where the

subordinate sense of concept A primed, and either recalled (+1) or not (−1).

An example will help to make this formalism clear. Consider an experimental

protocol where a subject cued with a concept A (e.g. BOXER) using a word on

a screen “boxer”. According to the USF free association norms (Nelson et al.,

2004), a subject is more likely to interpret BOXER in the sport sense than

the animal sense. We term the sporting sense dominant and the animal sense

subordinate. If a subject is first primed with the dominant sense of BOXER

using the word “glove”, and then asked to interpret the concept BOXER, there

is high possibility that they will recall a word that has a sport sense. This

measurement process is represented by A′, the result given by the subject is
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represented with a′, and a′ = +1, as the response agrees with the way in which

the subject was primed. If the subject interprets BOXER in another sense,

then we write a′ = −1. Conversely, if at first the subject is shown the word

“vampire”, then this is likely to awake the animal sense in the mind of human

subject. When the subject responds in a way that agrees with the animal sense

of the priming we write a′′ = +1, but if the concept is not interpreted in this

subordinate sense, we use a′′ = −1.

Adopting von Neumann’s approach to the quantum measurement of an ide-

alised system using self-adjoint linear operators, we assume that an orthonormal

basis exists. We can now construct a Hermitian matrix A as a series of projection

operators (Bruza et al., 2009)

A =
∑
k

akPk (1)

where Pk is the projector onto the eigenspace of A with eigenvalue ak, and each

ak corresponds to the results of the measurement A. As an example, for two

eigenvalues a1 and a−1, we can rewrite the Von-Neumann measurement as

A = a1P1 + a−1P−1, (2)

where P1 and P−1 are the projectors onto the eigenspace of A for those two

eigenvalues.

For the case of the concept A discussed above, we can therefore write out

two noncommuting measurement operators {A′,A′′} for the two different cases

of priming (dominant and subordinate)

A′ = a′1P′1 + a′−1P′−1 (3)

= a′1|a′1〉〈a′1|+ a′−1|a′−1〉〈a′−1|, (4)

A′′ = a′′1P′′1 + a′′−1P′′−1 (5)

= a′′1 |a′′1〉〈a′′1 |+ a′′−1|a′′−1〉〈a′′−1|. (6)

where |a′k〉 and |a′′k〉 both represent potentialities of a subject’s state of mind

after priming. It is reasonable to consider these two operators {A′,A′′} as
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noncommuting because we cannot prime with both dominant and subordinate

senses simultaneously. This implies that the related projectors are noncommut-

ing across the two primes.

If we consider |ψ〉 as the cognitive state of a subject, then the probability of

obtaining result k is

p(k) = 〈ψ|Pk|ψ〉 = Tr(Pk|ψ〉〈ψ|), (7)

and the subject’s post-measurement state is

Pk|ψ〉√
p(k)

. (8)

This is known as a Projective Valued Measurement (PVM) in Quantum Me-

chanics (QM), a special class of general measurement which has the following

properties (Wheeler, 2012):

I. Hermitian: P† = (PT )∗

A square matrix P is Hermitian if it is equal to its transposed complex

conjugate. This leads to an important property for operator P, that its

eigenvalues are real (not complex).

II. Positive: 〈α|Pi|α〉 ≥ 0 (all α)

Positivity allows us to treat the results of measurements as probabilities

when coupled with the next property.

III. Complete:
∑
i Pi = I

The eigenvalues of a complete set of observables fully specify the state of

a system.

IV. Orthogonal: PiPj = δijPi
The results of measurement are completely independent from each other.

Returning to the scenario of priming the dominant sense, the probabilities of

the measurement of A′ are given as follows:

|ψ〉 Prime with the−−−−−−−−−→
dominant sense


a′ = +1 with probability |〈a′1|ψ〉|2 = 〈ψ|P+1|ψ〉

a′ = −1 with probability |〈a′−1|ψ〉|2 = 〈ψ|P−1|ψ〉

(9)
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Repeating this measurement multiple times allows us to calculate an expected

value (Wheeler, 2012):

Definition 1. The expected value of operator A acting on state |ψ〉 is calculated

as

〈A〉ψ =
∑
k

ak〈ψ|Pk|ψ〉 = 〈ψ|A|ψ〉, where k ∈ {+1,−1}. (10)

We should note that any of the two measurement operators defined in (3–6) can

be placed instead of the operator A in this definition.

At this point we should ask whether such an experiment could be completed

multiple times. The state |ψ〉 denotes a cognitive state for a subject, and once

we have performed the experiment we have irrevocably changed the state of our

subject’s mind to the state represented by (8). We will need an ensemble of

subjects to repeat our experiment, but the proposition that even two subjects

would share the same initial state |ψ〉 is highly unlikely. Although we might try

to provide the same experimental conditions as we prepare our different subjects,

we can not assume that they will all be in exactly the same state |ψ〉, this can

happen because of unwanted priming effects or even the different dynamics of

those subjects. Summing up all of our subjects, we can represent a scenario

where some proportion of them are in the state |ψ1〉, another proportion are

in the state |ψ2〉 and so on. Averaging these proportions with reference to our

total subject pool would give us a scenario where

ε(S(ψ1, ψ2, ...))


|ψ1〉 with probability p1

|ψ2〉 with probability p2

...

(11)

where we use ε as an abbreviation for ensemble and S for subject (Wheeler,

2012).

For this expanded scenario, we can now rewrite the expected value for all

of our measurements over this ensemble of subjects (using a standard approach

that can be found in any QM text e.g. Wheeler (2012), or indeed in standard

texts on QC e.g. Busemeyer & Bruza (2012)).
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Definition 2. The expected value for measurements over ensemble of subjects

is calculated as

〈A〉ε =
∑
v

pv〈A〉ψv

=
∑
v

pv〈ψv|A|ψv〉

=
∑
j

∑
v

pv〈ψv|A|ej〉〈ej |ψv〉

=
∑
j

∑
v

〈ej |ψv〉pv〈ψv|A|ej〉

= Tr(ρεA) where ρε =
∑
v

|ψv〉pv〈ψv|.

(12)

While we started with orthogonal measurements, it is interesting that the state

|ψv〉 which is used in the construction of the density matrix ρε is not required to

be orthogonal. As a result the different ensembles of states can lead to the same

density matrix. The density matrix is mathematically equivalent to the vector

representation of states, but provides a more convenient way to deal with some

scenarios in QM, including the representation of ensembles of states (Nielsen

& Chuang, 2010). The density matrix should have the following properties

(Wheeler, 2012):

I. Hermitian: ρ† = (ρT )∗

II. Positive: 〈α|ρ|α〉 ≥ 0 (all α)

III. Have unit trace: Trρ =
∑
v pv = 1

The density matrix ρε in (12) becomes a pure state ρψ, when one of the

probabilities pv becomes equal to unity and the others vanish. This signifies a

return to the scenario where all subjects are prepared in the same initial state,

i.e. we have

ρψ = |ψ〉〈ψ|. (13)

When we cannot make this simplifying assumption, we must consider ρε to be

mixed. In general, given a specific density matrix, we can discover if it is mixed
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or pure using the Trace, as Tr(ρ2) = 1 for pure states and Tr(ρ2) < 1 for mixed

ones. When a system is in a pure state, both state vector and density matrix

representations of a given system provide the same results (Nielsen & Chuang,

2010).

Until now our description has been based on an idealized assumption that

measurements are performed on the pure state |ψ〉 for each subject. In other

words we have assumed that the cognitive state of a subject who recalls a

concept A can be represented by a pure state |ψ〉. But in reality we can not

guarantee that the subject will adhere to our designed experimental protocol;

it is clear that the human mind can process different concepts or events other

than our intended concept A during the experiment. The cognitive state of a

human mind does not relate only to the process of recall. If we can represent

the general state of the mind with a pure state |ψ〉, then the state that we use to

model the recall process should be a subsystem of that pure state. In physics,

as we mentioned earlier, we can use the density matrix to represent ensembles

of states, however the density matrix can also be used to represent a subsystem

of a pure state (Nielsen & Chuang, 2010).

Elaborating, we will denote this extension of our formalism by rewriting the

cognitive state of our subject as a composition of states labeled by R and E,

where R denotes that part of the cognitive state that is directly influenced by

the recall experiment and E relates to the remainder. In physics, if a composite

state can be represented as a pure state, then we cannot represent its subsystems

using a pure state (Nielsen & Chuang, 2010). We can apply the reduced density

matrix as

ρR ≡ TrE(ρRE), (14)

where ρRE describes the state of the composite system, and TrE is an operator

known as a partial trace on operator E. For example, to obtain the density

matrix of subsystem R, we use the partial trace over subsystem E (Nielsen &
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Chuang, 2010)

TrE(|r1〉〈r2| ⊗ |e1〉〈e2|) ≡ |r1〉〈r2|Tr(|e1〉〈e2|). (15)

where {|r1〉, |r2〉} and {|e1〉, |e2〉} are spanning vectors in the state space of R,

and E respectively, and the standard trace operator Tr(|e1〉〈e2|) = 〈e2|e1〉 has

been applied on the right hand side.

Now we can rewrite equations (7) and (8) using the density matrix ρ of the

ensemble of subjects or the subsystem R. The probability of obtaining the result

k becomes

p(k) = Tr(ρPk), (16)

and the state after measurement is

Pk†ρPk
p(k)

. (17)

We note that the Hermitian matrix A that was defined in (1) and used to con-

struct the density matrix is not particularly comprehensive in its representation

of memory, which makes it largely uninteresting in its current form. However,

at this point it is possible to extend the basic approach, which considered only

two possible senses.

To this end, we note that it is frequently the case that more than two in-

terpretations are possible for one lexical observable, a situation that can be

represented by extending the set of projectors from our PVM measurement (2)

as

Set of projectors for a PVM measurement



...

Pk1
Pk2
Pk3
...

(18)

For example, returning to the BOXER case discussed above, it is possible to

interpret this ambiguous word in a third, clothing related, sense (e.g. BOXER
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SHORTS). This gives us three possible senses: “sport”,“animal” and “clothing”

(but it is important to emphasize that this word could be interpreted in even

more than these three senses). Similar to the original example, we can use

the observable A′ to represent a measurement process when the subject is first

primed with the dominant sense and then asked to interpret the word BOXER.

In this case, a′1 represents a case where the subject’s response agrees with the

primed sense, while a′2 and a′3 relate to two other possible responses in “animal”

and “clothing” senses, and a′4 represents all other possible senses. Then as in

(3) the Von-Neumann measurement for the observable A′ becomes

A′ = a′1P1 + a′2P2 + a′3P3 + a′4P4, (19)

where P1, P2, P3 and P4 are the projectors onto the eigenspace of A′ for four

eigenvalues a′1, a′2, a′3 and a′4. We will use this description of multiple senses to

construct the generalized form of non-ideal measurement in the next section.

This section has presented a much more technical introduction to the model

presented in Bruza et al. (2009). We have shown that it is possible to generalize

the standard quantum probability model using density matrices. This allows

for the representation of scenarios where we cannot guarantee that an ensemble

of subjects have all been prepared with the same pure cognitive state. This is

an important consideration in psychology, the assumption that all subjects pre-

pared in the same way are in the same pure cognitive state is a very strong one

and does not match with reality. We have also introduced a second application

of this density matrix apparatus to describe part of a larger cognitive system.

The density matrix operator is capable of dealing with far more complexity in

the quantum model of memory, that is, it can fully characterize the state of a

cognitive system. This means that once we are given the density matrix we can

predict the outcome of any measurement on that state. But how we can access

this knowledge about our system? In QM, the standard way to characterize

the complete quantum state of a particle is by using quantum state tomogra-

phy (Wootters, 2004; Thew, Nemoto, White & Munro, 2002). We will briefly

describe how this method might be introduced to the field of QC in Section 4.1,
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which identifies an unknown quantum state using a set of measurements. In the

next section we will keep using the density matrix, where we will introduce a

more general formalism for measurement in QC, demonstrating the specifics of

how it can be used in quantum memory models.

2.2. Non-ideal measurement (POVM)

In reality, the process of recall does not always create sharp results like the

von Neumann measurement described in the previous section assumes. This

happens because of unwanted effects in the process of measurement. For exam-

ple, there is no guarantee that a human subject will actually give a response

corresponding to what they recalled. Despite the best experimental instruc-

tions, humans will be noisy in their responses. Thus, in the recall experiment

described earlier for the word BOXER, a subject may be primed with the sport

sense (the word “glove” was used in the previous example), think of “Muham-

mad”, but censor their response giving a response with an animal sense instead

(e.g.“dog”) with a probability ξ. This can be modelled using inefficient detec-

tors. If we prepare the system in the state | + 1〉 (corresponding to the sport

sense), then the result of measurement will be |+ 1〉 with the probability 1− ξ

and | − 1〉 with the probability ξ. To model this inefficiency, physicists often

apply an unsharp measurement instead of an ideal von Neumann measurement

(Barnett, 2009; Wheeler, 2012; de Muynck, 2002).

Returning to the scenario where we prime the dominant sense (observable

A′), an ideal PVM measurement is described by the two projectors P+1 and

P−1 introduced in (2). The possibility of imprecision arising in all subjects’

recall processes is represented with the probability ξ. This means that if the

result of measurement in the ideal situation was +1, a non-ideal situation would

return +1 with the probability 1− ξ and −1 with the probability ξ. If the state

of our system is described by the density matrix ρ, then the probability that

the subjects recall words with the same sense as the prime is given by Barnett

(2009)

p(+1) = (1− ξ)Tr(ρP+1) + ξTr(ρP−1). (20)
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By defining a new operator P̃+1 as

P̃+1 = (1− ξ)P+1 + ξP−1, (21)

we can use the technique in Barnett (2009) to write the probability for the

measurement outcome +1 in a manner similar to the PVM case (7)

p(+1) = Tr(ρP̃+1). (22)

This P̃ is a new type of operator. It is not required to be orthogonal and is

used to describe this non-ideal situation. The operator is called a “Positive

Operator-Valued Measure” or POVM.

It is possible to extend this situation, and to incorporate the multiple senses

described earlier to reach the most general theoretical formulation using non-

ideal measurement. As occurred for the case with two possible responses, we

have to define probabilities for each non-ideal measurement. In this general case

with j possible responses, if the result of measurement in the ideal situation was

k, a non-ideal situation would have the result j with the probability wj|k where∑
j wj|k = 1 for all k (Wheeler, 2012). For a system in a state ρ, the probability

of finding result k after a non-ideal measurement would be represented by the

following formula (Wheeler, 2012)

p(k) =
∑
j

wj|kTr(ρPj)

= tr(ρP̃k) where P̃k =
∑
j

wj|kPj
(23)

The general form of equation (23) can be reduced to the simple form of equation

(22) if we have only two results, +1 and −1, where wj|k can take two values p

and 1− p. Thus it is possible to recover the simple scenario discussed above.

Similar to the way in which the set {P1,P2, ...} was a complete set of ideal

measurements, the set {P̃1, P̃2, ...} is a complete set of non-ideal measurements,

but this time with the following properties (Wheeler, 2012)

I. Hermitian: P̃† = (P̃T )∗
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II. Positive: 〈α|P̃i|α〉 ≥ 0 (all α)

III. Complete:
∑
i P̃i = I

IV. Typically non-projective and non-orthogonal: P̃iP̃j 6= δijP̃i

Any operators P̃1, P̃2, ... that satisfy these properties are POVM.

The non-orthogonality of POVMs is a highly desirable feature in QC, espe-

cially for semantic memory models where there is no guarantee that the natural

representation of multiple senses of a word should be orthogonal. Indeed, the

senses of many words overlap to a degree often owing to shared background

etymology. This makes the assumption of orthogonal projective measurements

in this class of model highly restrictive. Because of this desirable property

of orthogonality, POVMs can bring new opportunities to model psychological

phenomena that have not previously been modeled in PVM approaches. For ex-

ample, it is possible that subjects give different responses to the same repeated

cue, a scenario that could be termed “non-repeatability”. We have already

modeled this property for recall experiment in an earlier work (Aliakbarzadeh

& Kitto, 2016). Interestingly, Khrennikov et al. (2014) also used POVM in opin-

ion polling to demonstrate non-repeatability in an evolution-free framework.

To mathematically illustrate how non-repeatability arises within the POVM

approach, we can rewrite P̃k = A†kAk where Ak is called a measurement decom-

position operator (Jaeger, 2009). In this case the state after measurement can

be written

Ak†ρAk√
p(k)

, (24)

This post-measurement state indicates that unlike projective measurement, a

repeated application of the POVM does not lead to the same result. We can

quickly see this result if we apply the POVM observable once more on the

post-measurement state of (24), the result becomes

Ak†Ak†ρAkAk
Tr(Ak†Ak†ρAkAk)

. (25)

which is not necessarily equal to the previous state. It will be equal only if the

POVM elements are idempotent (P̃2 = P̃). In this situation, POVM is reduced
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to a projective measurement. Despite this difference, there is a way to relate

these two measurements to each other using Neumark’s Theorem, which we will

discuss in section 3.1.

Experimental scenarios can rapidly become very complex in the case of word

association experiments. As we explained above, subjects may not report the

word that sprang immediately to mind. A further complexity emerges where

we consider the overarching social setting in which experimental priming is

carried out (Aliakbarzadeh & Kitto, 2016). Even if we try our best to design an

experiment with equally weighted primes for each possible sense, some primes

are more dominant. For example, during an election period the “political” sense

of the word PARTY may become stronger. A similar shift in weight towards the

alternative sense might occur for a subject who went to a party the night before

the experiment. We can apply this complexity to describe a non ideal choice

of measurement settings in the generalized Bell-type experiments in cognition.

In this case the priming with different senses occurs with different probabilities

(Aliakbarzadeh & Kitto, 2016).

The ideal Bell experiment modeled by Bruza et al. (2015) assumes an equal

choice of the different settings for any given subject (two operators {A′,A′′}

in (3–6) which relate to the priming of two senses). It is possible to relax

this assumption using the generalized Bell experiment. This is analogous to a

situation where a biased interferometer leads a photon arriving at one of two

detectors with different probabilities, which can be expressed by a bivariate

POVM (de Muynck, 2002). The model in that approach provides a joint non-

ideal measurement of two observables, where for simplicity de Muynck (2002)

assumes 100% efficient detectors. This simplification removes the need to con-

sider the possibility that the subject’s response is not what first sprang to mind

(i.e. the complexity of an inefficient detector). This allows us to assume ideal

measurements for each observable separately and non-ideal measurement for the

joint observable. We need the following definitions from de Muynck & Martens

(1989) to construct POVM as a jointly non-ideal measurement of observables.
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Definition 3. A POVM {M̃m} is a nonideal measurement of the observable

POVM {Ñn} if

M̃m =
∑
n

λmnÑn, λmn ≥ 0,
∑
m

λmn = 1. (26)

Definition 4. Two observables M̃m and Ñn are simultaneously, or jointly mea-

surable if a bivariate POVM R̃mn exists such that its marginals {
∑
n R̃mn} and

{
∑
m R̃mn} are POVMs and representing non ideal measurements of M̃m and

Ñn respectively.

As was shown in Aliakbarzadeh & Kitto (2016), this approach can be applied

to the experiment discussed by Bruza et al. (2015). Denoting the probability

γ for priming with the sense A′, and the probability 1 − γ for the priming

with sense A′′, to represent the above scenario. As was the case in (3–6), our

observables {A′,A′′} can be represented using two projectors P1,P−1. We can

write the set of PVMs for the first and second observables as (P′n,P′′m) where n

and m take the values in {+1,−1}. The joint non ideal measurement for PVMs

(P′1,P′−1) and (P′′1 ,P′′−1), can be constructed as a bivariate POVM (de Muynck,

2007; Aliakbarzadeh & Kitto, 2016):

R̃γmn =

 0 γ(P′1)

(1− γ)(P′′1) γ(P′−1) + (1− γ)(P′′−1),

 (27)

The probability for this joint nonideal measurement is pmn = TrρR̃γmn, as was

the case for (7). The top left hand corner of this matrix is equal to zero because

the subject cannot be primed with two senses for a word at the same time.

The marginals of R̃γmn are the POVMs {M̃m} = {γP′1, I−γP′1} and {Ñn} =

{(1− γ)P′′1 , I − (1− γ)P′′1} which can be re+presented in matrix form as ∑
n R̃

γ
1n∑

n R̃
γ
−1n

 =

 γ 0

1− γ 1

 P′1
P′−1

 (28)

 ∑
m R̃

γ
m1∑

m R̃
γ
m−1

 =

1− γ 0

γ 1

 P′′1
P′′−1

 (29)
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These marginals satisfy Definitions 3 and 4. It is clear that the operators M̃m

are Ñn are not commuting because P′n and P′′m are not commuting. So we do

not necessarily need commutativity of operators to construct non-ideal joint

measurements (de Muynck, 2007). Note that R̃γmn only describes one concept

(e.g. A or B). This is unlike the scenario that arises for the standard Bell-type

inequalities that were constructed using ideal joint measurements on commuting

observables for both concepts A and B (Bruza et al., 2015).

The direct product of the bivariate POVMs (27) for two concepts A and

B in the Bell-type experiment of Bruza et al. (2015) leads to a quadrivariate

POVM, which can be written as

R̃γAγBmAnAmBnB
= R̃γAmAnA

R̃γBmBnB
. (30)

In this scenario there is no disturbing influence arising on the marginals of

one concept when we change the measurement settings for another concept

(de Muynck, 2007). The measurement results of each concept are influenced by

the measurement settings of that concept (complementarity). This enables the

POVM formalism to model contextual behavior without making use of nonlocal-

ity. Complementarity then provides us with a local explanation for violations

of the generalized Bell inequality which is expressed using the quadrivariate

probability distribution (de Muynck, 2007)

pγAB
mAnAmBnB

= TrρR̃γAmAnA
R̃γBmBnB

. (31)

Recall in this generalized form of the Bell experiment, each subject comes to

the experiment with a different historical context. This context affects the way

in which subjects are primed, as the semantic network will activate differently

in response to the prime (Nelson et al., 2013). This activation relates to the

probability γ that we used to construct the POVM in (27). A violation of

the generalized Bell inequality would occur because of each subject’s unique

historical context.

In this section we have described two methods for constructing a POVM, the

first for one observable and the second for two. While we have shown that it is
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possible to construct different POVMs for these specific experimental scenarios,

note that the properties of POVMs mentioned earlier imply that each POVM

P̃ is unique to the relevant experimental context. Much more work remains to

catalog other psychologically plausible mechanisms that can arise in quantum

memory experiments, and to demonstrate how they might be modelled using

an approach based upon POVM.

3. Advantages of using a density matrix and POVM approach

At this point we have described the two processes of preparation and mea-

surement for a quantum memory model. In QM they are considered as separate

processes. For example, as Isham (2001, p.154–p.155) states:

A measurement is an operation on a system that probes that quantum

state immediately before the measurement is made... state prepara-

tion is an operation whose aim is to force the system to be in some

specified state immediately after the operation.

In this paper we introduced the density matrix as a practical tool for describ-

ing preparation when dealing with an ensemble of subjects (in Section 2.1).

This operator ρ most generally represents a mixed state and it contains all the

information necessary to predict any possible measurement outcome. For the

measurement process we introduced a POVM which gives us a more realistic

depiction of word association experiments than an approach based on standard

projective measurement (as defined in Section 2.2). Franco (2016) recently con-

structed a quantum inspired model of decision making which follows a similar

methodology; treating preparation as a process where information is provided

to a subject, and the measurement stage as a process of testing subjects at the

end of this preparation phase.

Preparation and measurement have other more specific applications. For

example, as we described in the previous section, Muynck’s joint non-ideal mea-

surement can be used to describe the situation of complementarity as it arises
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in the generalized Bell inequality. We will now introduce some more specific

applications, explaining how they can serve to advance the field of QC.

3.1. Neumark’s theorem

To draw attention to the different roles of PVM and POVM measurements

in a cognitive experiment we can use Neumark’s Theorem (Peres, 1990). This

theorem provides a tool for dealing with noise in a cognitive experiment (of the

type that was described in Section 2). In that experiment we considered the

state of a subject’s mind as the composition of two states “R” and “E”, where

“R” denotes that part of the cognitive state related to recall experiment, and

“E” is considered as the remainder, which we will refer to as noise. Noise arises

from events or thoughts outside the defined bounds of the experiment (e.g. what

the subject ate for breakfast, or an accident they witnessed on the way to the

experiment).

Neumark’s theorem relates the POVM of state “R” to a projective measure-

ment on the composition of states “R” and “E” (de Muynck, 2002). In other

words, it extends the Hilbert space of “R” to the tensor product space of “R”

and “E”.

Theorem 1 (Neumark). An arbitrary POVM on a Hilbert space HR can be

expressed using a PVM in a larger Hilbert space H containing HR.

The inverse situation arises in a similar manner to the partial trace that we

introduced in (14): Given any PVM on a Hilbert space H, we can find a POVM

on a subspace HR. In fact, we create the POVM on a sub-system when we do

not need to consider the extra information contained within the higher dimen-

sional Hilbert space. Tracing out this noise using the mathematical structure of

POVM requires that we understand cognitive function well enough to construct

the appropriate PVM and POVM for the Hilbert space H and subspace HR

respectively. Thus, we would need to understand the variables involved in shap-

ing states “R” and “E”. Current experimental developments may not provide

us with this ability; as Khrennikov & Basieva (2014) discuss, the brain can be
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both a system and the observer in a QC system, which can make it difficult to

isolate from its mental environment.

Progressing in this area will require significantly more work to understand

how boundaries should be defined in cognitive experiments. For example, we

are immediately confronted with the question of: what should be considered

noise in a given experiment?

It is essential that the field of QC consider the effects of noise in our models

for different cognitive experiments. Our work in Section 2.2 was just a first step

in this direction. We have so far considered two cognitively motivated effects

of noise as: (1) the probability ξ, which represents the imprecision across all

subjects in a recall experiment; and (2) the probability γ for priming with the

sense A′ and A in the generalized Bell experiment. However, more work remains

to be completed before it will be possible to construct comprehensive models

for memory using modern quantum inspired methods.

3.2. An operational approach to modelling cognition-defining context

Much of this section was inspired by the work of Spekkens (2005), who has

generalized the standard treatment of contextuality in quantum theory to ar-

bitrary operational theories. We have used his approach to treat contextuality

as it occurs for both preparation and measurement processes in cognition. This

approach extends existing works on contextuality in QC by Aerts, Gabora &

Sozzo (2013); Bruza et al. (2015); Bruza (2016); Dzhafarov, Kujala & Larsson

(2016); Dzhafarov & Kujala (2016). Thus, we have provided: (a) a method for

modelling contextuality in preparation, and; (b) refinements in our understand-

ing of contextuality as it arises during measurement.

Our approach here has been deliberately formulated in terms of basic op-

erations such as preparation (P ) and measurement (M), and the probabilities

for various possible measurement outcomes. In physics, operational theory is

defined based on these experimental procedures (Harrigan & Spekkens, 2010;

Abramsky & Heunen, 2016; Spekkens, 2005). This section will apply the same

approach to cognitive experiments. More specifically, we will show how this
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approach is compatible with the process of recall demonstrated earlier (in Sec-

tion 2.1), and allude to the manner in which the same approach can be used to

model contextuality.

The mathematical structures we need for the operational approach were

introduced earlier in Sections 2.1 and 2.2. To define this approach, we apply

the density matrix ρ to model the preparation process P , and a POVM{P̃k} to

the measurement process M as follows (Abramsky & Heunen, 2016; Spekkens,

2005):

Definition 5. Operational theory defines the probabilities p(k|P,M) of different

outcomes k given specific preparation and measurement procedures.

To fully describe the Spekkens approach we require a precise understanding of

what he means by an Ontological model. Here, the intrinsic properties of a

physical system are called its ontic state and is denoted by λ (where λ belongs

to a set of all possible ontic states Λ). To use Spekkens’ approach in cognition,

we will make use of a similar conception: an ontic state should refer to the

reality of the cognitive system, that is, the presumed features of a cognitive

state (of mind) which exist without performing experiments or any other form

of observation. (Our definition of ontic state in cognition will be illustrated

further on with reference to the recall experiment.)

Here we bring the definition of an ontological model of operational theory

as suggested by Spekkens (2005) and Harrigan & Spekkens (2010) to define a

notion of contextuality:

Definition 6. An ontological model (of operational quantum theory) posits an

ontic state space Λ and for every preparation procedure P over Λ appoints a

probability distribution µP (λ). Similarly, a probability distribution ξM,k(λ) is

attributed over the different outcomes k of a measurement M for every ontic

state λ ∈ Λ. Finally, to be consistent with operational theory for all P and M ,

an ontological model should satisfy

p(k|P,M) =
∑
λ∈Λ

ξM,k(λ)µP (λ) (32)
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This definition makes it possible to specify the notion of a contextual model,

where instead of explicitly considering quantum states and POVMs, we spec-

ify probabilistic interpretations of the preparation and measurement procedures

that are used to create them (µP (λ) and ξM,k(λ)). These are the probabili-

ties that determine what can be known and inferred by observers (Harrigan &

Spekkens, 2010; Spekkens, 2005).

Having provided the mathematical details of an operational theory and on-

tological model, now we can study the Spekkens approach to contextuality

(Spekkens, 2005). The fundamental idea of noncontextuality in this approach

is that processes which are operationally equivalent, should not be distinguish-

able in an ontological model (Leifer, 2014). This means two processes which

generate the same observable probabilities, should be represented by the same

probability distributions over their underlying ontic state. Thus, we can say

the two preparation processes of a state are noncontextual when they yield the

same probability distributions without changing the intrinsic properties of the

system.

We can illustrate this approach in cognition with reference to the recall

experiment that was introduced earlier in Section 2.1. In that example, the

preparation scenario leads to some proportion of subjects belonging to differ-

ent cognitive states (11), where the density matrix of ensembles of subjects is

represented using the convex composition of pure states ψv representing those

subjects, with the probability pv.
1

This density state of ensembles is related2 to the preparation process. How-

ever, we know that our cognitive reality is not completely controlled by the

preparation process, which means that preparing our cognitive system in a spe-

cific state ρ does not give us any information about the exact ontic state. Our

1It worth pointing out that we can also consider a more general scenario that the density

matrix of this recall experiment as a convex composition of mixed states.
2It is possible to have a one-to-one relationship between the state of a system ψ and the

reality, although in most of physical models ψ only indicates a state of incomplete knowledge

about reality. A more complete discussion can be found in Harrigan & Spekkens (2010).
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knowledge of the ontic state can only be described by the probability distribution

µ(λ) that we introduced earlier. The assumption of noncontextual preparation

entails that the probability distribution of preparation P on an ontic state λ

depends only on the ρ related to P (Spekkens, 2005)

µP (λ) = µρ(λ). (33)

This implies that for an ensemble of subjects to be noncontextual, the distri-

bution µP (λ) should not depend on a specific convex decomposition of ρ (each

convex decomposition provides a different context for the preparation P ). In

other words, consider a hypothetical scenario where two preparation procedures

result in the same density matrix. This density matrix of the ensemble of sub-

jects can be implemented based on the two3 different convex decompositions

of ρ, represented as ρ =
∑
v pvρv (see equation (12)). Each of these possi-

ble decompositions can be associated to a member of the equivalence class of

preparation procedures for density matrix ρ. These two procedures are noncon-

textual if the probability distribution µP (λ) is independent of each member of

that class.

As with the preparation process, we can consider the measurement process

as measuring the ontic state of our cognitive system. As for preparation, per-

forming this measurement does not guarantee access to the ontic state, it only

provides different probabilities that the system exists in one of a collection of

ontic states. These probabilities are represented by ξ(λ) (Spekkens, 2005). The

assumption of noncontextual measurement entails that the probability distribu-

tion of measurement M on an ontic state λ depends only on the POVM {P̃k}

related to M :

ξM,k(λ) = ξ{P̃k},k(λ). (34)

One way to represent context for measurement in cognition is to consider

3It is clear in a more general scenario, there could be more possible convex decompositions

for the density matrix ρ.
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Neumark’s theorem (Section 3.1). This approach suggests that each way of rec-

ognizing a POVM on subsystem HR, based on its coupling with the environment

(noise) and performing a projective measurement on a composite system H, im-

plicitly generates a context. In other words, different sources of noise can lead

to different contexts. Examples of these sources of noise might include episodic

memories constructed for different subjects throughout their lifetimes (and rep-

resented in a semantic network), e.g. subjects who have had their breakfast

or not, give different response to a priming word “food”. The measurements

of psychology are inherently noisy, but this approach offers ways in which we

might start to model this phenomenon.

In this section, we have shown that reconsidering an ensemble of subjects

and a generalized measurement for cognitive systems leads us to identify new

sources of contextuality. This approach describes the way in which contextual-

ity affects the preparation process for the first time in cognition. Moreover, the

suggested contextuality model for measurement process extended the standard

measurement approaches traditionally used in QC with a non projective mea-

surement. Furthermore, this approach opens up a possibility for extending this

model using contextuality models in physics, where every convex decomposi-

tion of a POVM {P̃k} reveals a context for the measurement process (Spekkens,

2005).

4. What is a quantum cognitive state?

In this paper we first generalized the process of preparation and measure-

ment for cognitive systems, and then discussed some possible advantages of this

representation. However, it is important to realize that much of the mathe-

matics utilized in QC rests upon rather shaky foundations. To further improve

quantum inspired models of cognition we need to advance in our mathematical

understanding of the most basic cognitive states. As an example, the model

provided in Section 2.1, of the two senses that a subject might associate with

the ambiguous word BOXER is constructed using the assumption of a basic
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two-level cognitive state. The subject can give many possible answers to an

observable A (in this case the cue word BOXER), but we assume in our mod-

els that they fall into one of two possible senses (i.e. the same as the priming

sense and different from the priming sense), which are denoted with +1 and -1.

This basic state can be considered similar to a single qubit (a spin-1/2 particle)

system in QM. It is represented by a pure state

|ψ〉 = α|0〉+ β|1〉 (35)

where |α|2 and |β|2 are probabilities of spins up and down respectively, and the

state of the qubit is a vector in a two-dimensional complex vector space with

the orthonormal computational basis |0〉 and |1〉. One of the main differences

between a qubit and a classical bit is this superposition property. Unlike a clas-

sical bit, which acts akin to a coin with only two possible states of “heads” and

“tails”, a qubit can exist in any weighted continuum of states between |0〉 and

|1〉. However, when it is measured a qubit still only gives outcomes indicative

of |0〉 or |1〉 (Nielsen & Chuang, 2010). This property has been widely exploited

in QC (Busemeyer & Bruza, 2012; Wang, Busemeyer, Atmanspacher & Pothos,

2013; Aerts, 2011; Asano, Khrennikov, Ohya, Tanaka & Yamato, 2015). For

example, Pothos & Busemeyer (2013) represent the happiness of a hypothetical

person using the superposition state |ψ〉 = a|happy〉+ b|unhappy〉. After being

asked about her happiness, and the subject deciding upon her answer, the state

vector becomes |ψ〉 = |happy〉 or |ψ〉 = |unhappy〉.

However, an approach like this leaves us with few ideas as to what this rep-

resentation of |ψ〉 actually symbolises. What is the underlying cognitive state?

And how does it evolve in time as a person moves through their day? Here, we

will provide some guidelines that could be considered in future research aimed

at clarifying the representation of cognitive states. We note that many more

questions are provided in this section than answers, but consider it appropriate

to draw attention to what is an underexplored but important area for future

research.

Rather than representing qubits using the abstraction of a complex vector
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space, it is possible to more fully visualize their properties using the geometrical

Bloch sphere representation. This method also provides a more explicit repre-

sentation of the types of operations that we can apply on a qubit. We carry out

this transformation by rewriting equation (35) as

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiϕ|1〉, (36)

where spherical coordinates are defined by latitude θ and longitude ϕ. Each

pure state represented by equation (35) associates to a point on the surface

of a unit sphere in the Euclidean 3-dimensional space (see figure 1). In this

Figure 1: Bloch sphere representation of a qubit.

geometrical representation, two orthogonal basis states |0〉 = | ↑〉 and |1〉 = | ↓〉

correspond to an orientation of the spin in +z and −z directions respectively.

And superposition states can correspond to other orientations of the spin in

different spatial directions, e.g. the state |0y〉 is oriented in the +y direction.

The Spherical polar coordinates (r, θ, ϕ) can be related to Cartesian coordinates

(x, y, z) by

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ.

(37)

To measure spin of the qubit in each of these directions we would apply the

Pauli matrices

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

. (38)
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In other words, we can visualize the two-level quantum system using this three-

dimensional Bloch sphere representation. A cognitive state built from this basic

representation brings with it the possibility of modelling its dynamical evolu-

tion, but still has a direct mapping to the qubits which have been used in the

previous work in QC. However, the visualization of more than two-level quan-

tum systems can have different geometries and usually need higher-dimensional

Bloch based vector representation (Kimura, 2003; Bertlmann & Krammer, 2008;

Sandeep K Goyal, B Neethi Simon, Rajeev Singh & Sudhavathani Simon, 2016)

4. Likewise, cognitive systems of more than two-levels (like the example we

described in equation (19)) could still be modelled by these higher-dimensional

representations.

However, to employ this Bloch sphere representation of a qubit in cognition,

we have to provide appropriate meanings for these three directions in phase

space. Yearsley & Pothos (2013) provide an example interpretation in a decision

making experiment, by projecting a bivariate observable on Z direction. This

work employs a Bloch sphere representation to build up an understanding of

how a cognitive system might evolve in time to define a test for violations of

the temporal-Bell inequalities. Similarly, Broekaert, Basieva, Blasiak & Pothos

(2017) provide the geometric interpretation for the evolution of states implied

by Hamiltonian. Their Hamiltonian is built based on only two Pauli matrices

to describe different dynamical evolution scenarios. However, in both of these

approaches, the derivation of the Hamiltonian of the system makes reference

only to the mathematical aspects of the Bloch sphere, without providing an

exact cognitive meaning for the directions x, y and z that are used in these

models.

This is an important point to emphasize; there is little connection in these

more advanced models between the physical formalism and the cognitive mean-

4It is not always necessary to consider a higher dimension, as an example, Kurzyński,

Ko lodziejski, Laskowski & Markiewicz (2016) suggest a three-dimensional visualization for

qutrit.
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ing. This paper has been careful to associate a strong psychological interpre-

tation to the more advanced models of measurement and preparation as they

apply to cognition. However, to move forwards we will require a far stronger

connection to the underlying meaning of a cognitive qubit, which we will term

a cobit. As we emphasized earlier, it is necessary to provide cognitive mean-

ings for the different Cartesian directions in the geometrical representations

used with this approach. However, to transform this representation back to the

complex vector space, we should still be able to provide cognitive meanings for

the orthonormal computational basis |0〉 and |1〉 (like the two senses that we

assigned to these two basis states in equation (35)). We admit that this geomet-

rical interpretation does not scale to more complex multipartite situations in a

straightforward manner, which potentially limits its utility as a general model,

however, we consider it necessary that QC place more of an emphasis upon

finding the underlying dynamical representation of cognitive processes, and a

model based upon a high dimensional Bloch based representation is an imme-

diately plausible option, as has already been recognised by a number of papers

previously published in this domain. Providing the cognitive meaning for a co-

bit as discussed above, helps us to interpret the cognitive meanings of applied

operators on that cobit. As an example, we could reach a better understanding

of the rotations group SO(3) and SU(2) and their special relation with each

other 5. While an unsatisfactory lack of detail still remains in mapping such

models to cognitively plausible representations, our mapping in this paper of

the density matrix to interpretable semantic memory tasks gives a new avenue

that will help to link this more interpretationally robust class of models to the

extensive data sets that have been collected in this the domain of memory and

5The special orthogonal group SO(3) represents rotations around the origin of a three-

dimensional Euclidean space and the special unitary group SU(2) is the set of 2 by 2 unitary

matrices with determinant 1 (like the set of Pauli matrices described in equation (38)). The

relation between these two rotations groups is an one-to-two correspondence between any

R ∈ SO(3) and 2U ∈ SU(2) (Miller, 1972).
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recall already (see e.g. Nelson et al. (2013) for a summary of one such dataset).

We leave this contribution for future work.

If we can successfully create a cognitively well justified geometrical repre-

sentation for our cobit then it will be straightforward to extend the model for

multiple cobits. As Nielsen & Chuang (2010) explain, treating qubits as abstract

mathematical objects enables us to generalize the concept for more complex sit-

uations (e.g. multiple qubits) without depending upon a specific realization.

This geometrical representation opens different avenues to make use of the ap-

proaches identified in this paper for using the density matrix and generalized

measurement in modelling semantics. As an example of a further approach that

this avenue might open up, we will briefly introduce the concept of cognitive to-

mography, and suggest a way in which it might be used to characterize unknown

cognitive states.

4.1. Cognitive Tomography

In a QC model, the result of measurement gives an indication of the state of a

subject’s mind with reference to a measurement scenario, or question, just before

the measurement occurred. For instance, in the BOXER example described

in Section 2.1, each answer +1 or −1 indicates whether BOXER would be

interpreted in the same way as the priming occurred (as represented by the

operators A′ or A′′), or not. But to fully understand the state of a subject’s

mind when faced with the word BOXER, we cannot rely on one measurement

alone. One possibility would be to repeat the measurement many times on the

same subject to get an average of different results. A memory experiment would

need to repeat the cuing procedure in a variety of different contexts. However,

this demonstrates precisely how difficult it is to construct a reliable measurement

in cognition, because the response a subject gives to an experiment can affect

the response that they give for the following experiments (see Section 2.1).

So how can we proceed in finding a more precise understanding of the un-

derlying cognitive state? One possibility would be to apply a method inspired

by Quantum Tomography, which specifies an unknown quantum state by per-
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forming measurements over an ensemble of equally prepared identical quantum

states (Leonhardt, 1997). To use this method for cognition, we would need

to provide the same experimental conditions as we prepare our different sub-

jects 6. This is similar to the scenario in physics where a device produces a

beam of spin-1/2 particles (Wootters, 2004). It is possible to predict the spin

state of particles that the device produces if we perform a set of orthogonal

measurements in the x, y and z directions. These three measurements should

be “mutually conjugate” (Wootters, 2004) which means that an eigenvector of

any one of them must be an equal superposition of the eigenvectors of the two

others. For this set of measurements, each different measurement provides infor-

mation independent from the information provided by the other measurements

(Wootters, 2004).

A detailed mathematical description of tomography for cobits would rely

upon having a precise cognitive meaning for the x, y and z directions in their

geometrical representation. Then to estimate a cognitive state of cobits we

would need to repeatedly apply three linearly independent observables (associ-

ated with those three directions) on three sub-ensembles of subjects (Wootters,

1987, 2004; Gibbons, Hoffman & Wootters, 2004). These observables would

need to be “informationally complete”, and so completely specify the state of

the system. Thus, this method holds promise for being able to help us to es-

timate the unknown state of a cognitive state. An advantage of this approach

is that it allows us to express a cognitive state as a real function on a discrete

phase space instead of using the common method of the density matrix. This

real function which is known as a Wigner function behaves as a probability

distribution, but it can take negative values (Wootters, 2004; Gibbons et al.,

2004). There are recent interests of using negative probabilities in cognition to

model a decision making experiment (J Acacio de Barros & G Oas, 2014) or even

to model contextuality (de Barros, Kujala & Oas, 2016). As an alternative to

6This does not necessarily lead to an ensemble of subjects with the same pure cognitive

state, as we mentioned in Section (2.1).
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these approaches we could consider the Wigner function (Raussendorf, Browne,

Delfosse, Okay & Bermejo-Vega, 2017; Delfosse, Okay, Bermejo-Vega, Browne

& Raussendorf, 2017; Kenfack & Yczkowski, 2004) which has been widely used

in nonclassical calculations in QM. This method could potentially be extended

to more complex situations of multiple cobits tomography, with an associated

increase in the number of necessary observables. To reduce the number of mea-

surements required to specify the description of multiple cobits, we could use

POVM instead of the projective measurements (Lundeen, Feito, Coldenstrodt-

Ronge, Pregnell, Silberhorn, Ralph, Eisert, Plenio & Walmsley, 2008; Wootters,

2004). There is also a possibility of extending this method to the more ambitious

scenarios of “cotrit” (three-level cognitive system) or “codit” (d-level cognitive

system) tomography based on qutrit and qudit tomography in physics (Thew

et al., 2002). Thus, the examples like that modelled in (19) could be more com-

pletely specified using this approach, an avenue that we leave to future work.

5. Conclusion

In this study we assumed that the measurement process for a cognitive sys-

tem is separate from its preparation process. We provided a detailed mathe-

matical description of these two processes by introducing density matrices and

non-ideal measurement. Having created this more rigorous approach we applied

it to existing concepts in QC such as complementary and contextuality, as well

as investigating how it might be extended to new concepts like tomography.

We believe these approaches provide a better quantum inspired models of

cognition, and so could lead to a better understanding of cognitive systems.

As an example, in Section 3.2, the model of contextuality based on Spekkens’

operational method provides a new way to study this important phenomenon

in cognition. This model is more comprehensive than previous studies because

of its consideration of the preparation process and non-ideal measurements.

This work provides us with a number of new avenues to follow as we attempt

to develop a more detailed understanding of the complex process of cognition,
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specifically, memory and recall. It suggests a way in which we could start to

approach the problem of modelling an underlying cognitive state, and so work

towards plausible models of the various ways in which these evolve as a person

interacts with the world (Nelson et al., 2013). The array of episodic events that

each of us takes part in every day all influence our underlying cognitive state,

and it is essential that we develop modelling methodologies that are capable of

capturing the full complexity of this important process. Adopting an operational

approach to QC offers precisely this opportunity.
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