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In order to understand the relationship between neuronal organization and behavior,
precise methods that identify and quantify functional cellular ensembles are required.
This is especially true in the quest to understand the mechanisms of memory.
Brain structures involved in memory formation and storage, as well as the molecular
determinates of memory are well-known, however, the microanatomy of functional
neuronal networks remain largely unidentified. We developed a novel approach
to statistically map molecular markers in neuronal networks through quantitative
topographic measurement. Brain nuclei and their subdivisions are well-defined – our
approach allows for the identification of new functional micro-regions within established
subdivisions. A set of analytic methods relevant for measurement of discrete neuronal
data across a diverse range of brain subdivisions are presented. We provide a
methodology for the measurement and quantitative comparison of functional micro-
neural network activity based on immunohistochemical markers matched across
individual brains using micro-binning and heat mapping within brain sub-nuclei. These
techniques were applied to the measurement of different memory traces, allowing for
greater understanding of the functional encoding within sub-nuclei and its behavior
mediated change. These approaches can be used to understand other functional and
behavioral questions, including sub-circuit organization, normal memory function and
the complexities of pathology. Precise micro-mapping of functional neuronal topography
provides essential data to decode network activity underlying behavior.
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INTRODUCTION

Following Cajal’s identification of the neuron as the fundamental
functional unit of the nervous system (López-Muñoz et al., 2006),
the field of neuroscience has endeavored to understand how
neurons operates in local groups (ensembles) and distributed
networks to bring about behavior. Cajal (1894) proposed a theory
that memory storage requires the formation of new connections
between neurons in the brain. How neurons and their 1000s of
synaptic connections act together to encode a memory was first
conceptualized by Hebb (1949) as neuronal ensembles that both
spatially and temporally act together to encode a component of
the memory. Since these foundational anatomical and theoretical
works, newer studies involving fluorescent imaging and electron
microscopy have since provided growing evidence for the
modification of neuronal synapses as a result of information
storage, now known as synaptic plasticity (Kandel, 2001; Korb
and Finkbeiner, 2011). Thus, at the sub-cellular level knowledge
of mechanisms of memory encoding is more established, in
contrast at the neuronal ensemble level memory encoding
mechanisms are not yet understood. Some functional evidence
for Hebbian reverberatory networks connecting ensembles of
neurons (Hebb, 1949) has been identified in memory circuits
(Johnson et al., 2008, 2009; Josselyn et al., 2017). However,
key challenges in neuroscience remain around how neurons
collectively undergo plasticity in ensembles to encode memories
and behaviors. Aspects of neural ensemble activity has been
demonstrated in Hippocampus (Nakamura et al., 2010) and
Caudate (Barbera et al., 2016) and in Amygdala (Johnson et al.,
2008, 2009; Rogerson et al., 2014; Davis and Reijmers, 2017;
Josselyn et al., 2017; Josselyn and Frankland, 2018). A key
challenge in the neuroscience of memory is in identifying which
neurons have been allocated to the memory trace and which
have not, while some progress has been made (Bergstrom et al.,
2008, 2011, 2013a,b; Bergstrom and Johnson, 2014; Mayford,
2014; Rogerson et al., 2014; Frankland and Josselyn, 2015;
Bergstrom, 2016; Josselyn and Frankland, 2018), new techniques
and approaches for understanding microanatomy are needed.
This aim can be aided by the development of methods and
approaches to help reliably identify and quantify systematic
topographies of neurons allocated to specific memory traces.

Here, we developed a method for topographical analysis and
measurement of neurons allocated to memory traces. We have
applied this method to study aspects of the neurobiological
encoding of fear memory. We termed this method “neuronal
topographic density mapping” and have devised it to identify
and map the degree of stability within a micro-topography
of neurons encoding Pavlovian fear memory across different
animals undergoing fear memory acquisition or extinction. The
methods, described in detail below, were developed over multiple
studies, investigating the location and distribution of neurons
activated in fear memory in amygdala (LeDoux et al., 2006;
Haranhalli et al., 2007; Bergstrom et al., 2011, 2013a,b; Johnson
et al., 2012). For illustrative purposes and to expand on the scope
of these techniques, we employed a small data set drawn from the
study of activity-regulated cytoskeleton-associated protein (Arc)
expression in prefrontal cortex.

In our studies to date, we have investigated the micro-
topography of memory using Pavlovian fear conditioning. In
Pavlovian or classical fear conditioning a mild foot shock
[unconditioned stimulus (US)] is temporally paired with an
auditory tone or comparable visual stimuli [conditioned stimulus
(CS)] (Johnson et al., 2012; Bergstrom et al., 2013a; Bergstrom
and Johnson, 2014). The animal learns to associate the US
with the CS and exhibits typical behaviors including freezing,
typical of fear/threat behavior [described extensively by other
authors (LeDoux, 2000; Fanselow and Gale, 2003; Johnson
et al., 2012; Josselyn and Frankland, 2018)]. We measured
neurons expressing plasticity associated proteins identified by
immunocytochemistry. Other functional protein and RNA
expression in neurons and glia can also be used with this
approach. Differences were tested in the localization of neurons
among the conditioned memory groups. We have provided
a methodological approach to produce topographic neuron
data from brain within precisely aligned anatomical regions.
This approach enables investigation of the topographic patterns
of neurons expressing plasticity associated proteins in the
associative fear memory formation and its extinction. We
propose that this method can also be used in the reproduction
of neuronal density maps with regard to many forms of
neuroscience data for example, drug treatments, stress and
addiction or neurodegenerative disorders.

Our methodological approach to neuron topography,
described here, provides useful advantages for localizing function
across behavioral conditions. Other analysis methods to measure
topography also provide useful topographic data. For example,
Nakamura et al. (2010) identified that memory activated neurons
formed small anatomical clusters in hippocampus during place
preference formation, which was identified using a cluster
analysis approach. Recent studies by Barbera et al. (2016) used
measures of neuronal clustering of medium spiny neurons to
predict locomotive states of behavior in mice. They reported that
behavioral decoding accuracy improved using spatially distinct
neural clusters over single neurons (Barbera et al., 2016).

Recent advances using in vivo optical methods including
calcium imaging have provided a rich source of complex micro
anatomical and dynamic neuronal data, including in awake
behaving subjects (Ohki and Reid, 2014; Romano et al., 2017;
Castanares et al., 2019). Recent analysis approaches for these
data include the method developed by Romano and associates,
to analyze neuronal population dynamics (Romano et al., 2017).
Additional recent whole brain imaging and analysis techniques
by Kim et al. (2015, 2017), who developed a spatial IEG-based
mapping technique as a method to view whole-brain activity.
Furthermore, whole brain mapping methods have also been
developed by Vousden et al. (2015) and Renier et al. (2016).
Each of these methods provide the advantage of visualizing
patterns of neural activity across distributed brain networks. The
creation of neuronal quantitative topographic density maps, as
described here, can be used for a variety of studies to pinpoint
functional microcircuits in the brain.

Using our approach to mapping and measuring topography
we have characterized the microanatomy and topography of
neurons involved in different phases of memory, consolidation,
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reconsolidation, and extinction (LeDoux et al., 2006; Haranhalli
et al., 2007; Bergstrom et al., 2008, 2011, Bergstrom et al., 2013a,b;
Bergstrom and Johnson, 2014). These data have the potential
to pinpoint neuronal topography patterns underlying memory
encoding in the mammalian brain in normal and pathological
situations (Johnson et al., 2012) and thereby facilitate current
treatments for pathological memory disorders (Johnson et al.,
2012). The generation of neuronal topographic density maps can
be used to define and measure memory allocation within the
brain.

Throughout this methodological report we provide details
of the rationale, procedures and equipment needed to produce
and analyze topographic neuronal data. In addition, within each
methodological section we provide ‘examples’ from our own
data in order to illustrate how the methods can be applied and
used. The methodological approaches we describe here have
wide applications for understanding and measuring neuronal
topography. Applications include measuring the topography of
neurons encoding different types of memory, different sensory
stimuli, and motor behaviors.

METHODS

Data Collection: Behavioral, Tissue, and
Neuron Analysis in Preparation for
Topographic Investigation
Run Behavioral Models
In order to produce and analyze functional neuronal topography
data linked to behavior, an appropriate behavioral model is
needed. Behavioral model can include a variety of learning and
memory models, addiction models, social interaction models,
and other behaviors of interest. In our case we have investigated
in detail Pavlovian fear conditioning.

Pavlovian fear conditioning leads to the formation of
associative memories. Synaptic plasticity, dependent upon
phosphorylation of extracellular signal-regulated kinase
(pMAPK) has been identified as critical in the formation
of these memories in the lateral amygdala (LA) and medial
prefrontal cortex (mPFC) (LeDoux, 2000; Fanselow and
Gale, 2003; Johnson et al., 2012; Josselyn and Frankland,
2018).

Example: The sample data set consisted of fear conditioned
adult male Sprague-Dawley rats (RRID:RGD_5508397) (n = 40)
that underwent behavioral procedures in standard Pavlovian
fear conditioning chambers (Coulbourn Instruments, Allentown,
PA, United States) (see Figure 1A). The US, a 0.6 mA foot
shock with duration of 500 ms, was paired with the CS, a
tone of 5 kHz and 75 dB (Digitech Professional Sound Level
Meter1, 20 s in duration, to produce an associative memory.
Three pairings were presented with an average 180 s inter-
trial interval with total time in box of 10 min. Standard
conditioning and behavioral testing procedures were followed
(LeDoux et al., 2006; Haranhalli et al., 2007; Bergstrom et al.,

1https://www.jaycar.com.au/pro-sound-level-meter-with-calibrator/p/QM1592

2008, 2011, 2013a,b; Bergstrom and Johnson, 2014). The
experimenter was blind to the experimental conditions when
scoring freezing behavior, which was defined as a lack of
movement except that required for respiration (LeDoux et al.,
1988). Next, brains were prepared for histological analysis and
measurement.

Perform Immunohistochemistry
Rats were transcardially perfused and brains were post-fixed in
4% PFA overnight then stored in 0.1 M phosphate buffered
saline. Free-floating serial coronal sections (40 µm) of the
mPFC and amygdala were prepared using a vibratome (M11000;
Pelco easiSlicer, Ted Pella, Inc., Redding, CA, United States).
Sections from the LA and prefrontal cortex were labeled
for pMAPK and Arc activation using the avidin–biotin
peroxidase method. Detailed immunocytochemical methods
can be obtained from our previous reports (see Bergstrom
et al., 2011, 2013a). Slides were scanned with an Olympus
VS120 slide scanner and cropped at 2x magnification (see
Figure 1B).

Choose Anatomical Anchor/Marker
Establishing anatomical alignment between regions of interest
(ROI) is necessary for visual comparison of neuron density
in neural images, for sectioning the ROI into micro regions
for analysis, and for both quantitative and visual analysis
of the data. Therefore, choosing an appropriate anatomical
anchor is a key step. The anchor point should: (1) be a
readily visible anatomical feature that is close in proximity
to the ROI, (2) be stable across subjects and conditions,
and (3) change shape rapidly and distinctly as the viewing
plane changes, so that different planes of view can be
discriminated clearly. These characteristics are identifiable
microscopically and importantly can also be quantified (see
Figure 1C).

Example: The amygdala and mPFC have been implicated in
Pavlovian fear conditioning (Fanselow and Gale, 2003; Johnson
et al., 2012; Lee et al., 2015). In a series of studies, we have
focused on the amygdala and have used the opening of the
Lateral Vertical (LV) as an anatomical anchor (LeDoux et al.,
2006; Haranhalli et al., 2007; Bergstrom et al., 2008, 2011,
Bergstrom et al., 2013a,b; Bergstrom and Johnson, 2014). The
LV has proved a useful structure for the purpose because it
meets the criteria outlined above: (1) the LV is close in proximity
to the amygdala, (2) the LV changes rapidly in size along the
longitudinal plane, (3) the LV is a stable anatomical feature,
and (4) LV changes can be seen clearly, and measured, through
the sequence of planes on which the brains were sectioned,
enabling quantitative analysis of the changes section by section.
In order to further demonstrate and measure the properties
of the LV for landmark suitability, in addition to histological
measurements, we made measurements of the LV with MRI.
Here, the morphological properties of the LV, including its
increase in diameter along the rostral-caudal axis, were confirmed
in vivo, using three-dimensional T2-weighted MRI to quantify
its area (Bergstrom et al., 2013a). This rapid change from rostral
to caudal allows for precise quantitative section alignment from
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FIGURE 1 | Steps for tissue sampling and measurement from behavioral data. (A) Run behavioral models. Any expression of a chosen behavior can be used as a
model. In our example we have used Auditory Pavlovian fear conditioning. Behavioral testing was conducted with adult male Sprague-Dawley rats in acoustic
classical fear conditioning chambers. A 0.6 mA foot shock with duration of 500 ms was paired with a tone of 5 kHz and 75 dB, 20 s in duration to produce an
associative fear memory. (B) Perform immunocytochemistry. Avidin–biotin peroxidase complex method is demonstrated here. Sections from the lateral amygdala
(LA) were labeled for Arc, scanned using a slide scanner and cropped at 2x magnification. Enlarged inset square shows Arc+ neurons in the dorsolateral portion of
the LA at 20x magnification. Inverted gray scale images of fluorescent immunocytochemistry would also be suitable. (C) Choose suitable anatomical marker to be
used as an anchor. The caudate putamen and lateral ventricle are two examples of anatomical landmarks, that we have used previously, and can be differentiated in
serial sections for section alignment by Feret length within the ventile or between anatomical landmarks. Photomicrographs show three consecutive 60 µm sections
across the rostrocaudal axis of the rat brain, depicting 2.76, 2.70, and 2.64 mm anterior to Bregma in the medial prefrontal cortex (mPFC). Feret diameter is shown –
red arrow. Brain sections at Bregma coordinates –3.32, –3.36, and –3.40 mm posterior from Bregma were used to align the LA (Source: see Bergstrom et al., 2011).
The maximum Feret length of the caudate putamen in the prefrontal cortex was shown to be statistically different across Bregma coordinates, animals and
conditions. (D) Establish section alignment. The Rat Brain Atlas (Paxinos and Watson, 2007) is an important tool to assist alignment of sections. Schematic diagrams
are shown depicting the regions of interest. The dorsolateral portion of the lateral amygdala (LAd), the ventromedial portion of the lateral amygdala (LAvm) and the
ventrolateral portion of the amygdala (LAvl) are shown in three serial sections caudal from bregma –3.36 mm. The prelimbic (PL) and infralimbic (IL) cortex are
represented by three serial sections caudal from bregma 2.52 mm. Brain Atlas diagrams are adapted from Paxinos and Watson (2007).
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plane to plane. In our histological studies the morphology
of the LV was reconstructed from five consecutive planes
(Bregma −3.36 to −3.48). The coronal plane with the least
variance between conditions was found at Bregma −3.36 in
the rat (Paxinos and Watson, 2007), the entrance of the LV,
so this was chosen as the most suitable anatomical anchor,
in addition, it could be readily visualized and measured. At
−3.36 mm Bregma, in addition to the LV it is also possible
to identify the major anatomical structures of the ROI (the
subnuclei of the LA). The choice of the LV as an anatomical
anchor was therefore suitable because it is amygdala-centric,
changes shape rapidly and clearly, and is stable across subjects
(LeDoux et al., 2006; Haranhalli et al., 2007; Bergstrom et al.,
2008, 2011, Bergstrom et al., 2013a,b; Bergstrom and Johnson,
2014).

We used the caudate putamen as an anatomical landmark
to align sections in the prefrontal cortex (described below).
Aspects of the caudate putamen met the criteria we previously
set for landmark identification (see Figure 1D). Histological
images were captured as virtual slide images (OlyVia; format.vsi)
using a slide scanner (Olympus VS120). Capturing images
with a slide scanner (used in this example) is an alternative
approach to live capturing of neuron data with a microscope
connected directly to Neurolucida as used in our previous
published data (LeDoux et al., 2006; Haranhalli et al., 2007;
Bergstrom et al., 2008, 2011, Bergstrom et al., 2013a,b;
Bergstrom and Johnson, 2014). In this example, we used
OlyVIA XV Image Viewer (Olympus Australia Pty Ltd.,
Vic, RRID:SCR_014342) to ascertain and measure images
within a Bregma range that showed an alteration in the size
of the caudate putamen. The caudate putamen becomes
visible 2.7 mm anterior to Bregma, distinctly widens and
lengthens in serial coronal sections across the rostrocaudal
axis. Three consecutive sections (Bregma 2.7–2.58 mm)
were aligned and verified across subjects and conditions by
statistical comparison (ANOVA) of the Feret length (Walton,
1948) (the maximum Feret length or distance between two
perpendicular tangents) was measured with Neurolucida
360 software (Neurolucida, MBF BioScience, Williston,
VT, United States, RRID:SCR_001775) and analyzed with
SPSS (IBM SPSS Statistics 23, WA, SCR_002865). A similar
comparison of sections was calculated using z-scores from
each maximum Feret measurement of the caudate putamen.
No outliers were detected using ±3.0 standard deviation (SD).
This principle includes 99.9% of values coming from the
same normal distribution. Additionally, outliers can also be
checked using online software tools, e.g., GraphPad Prism.
Next, in order to test each Bregma point assignment was
dissimilar and no difference existed between experimental
conditions, paired t-tests were performed on the Feret measures.
Each distance was found to be statistically different (example
2.76 mm Bregma; p = 0.000304). This data was used to help
exclude misaligned sections due to natural or histological
induced variations. This quantitative analysis approach can
thus be used to assign sections to distinct groups maximizing
alignment accuracy for subsequent neuronal topography
measures.

Section Alignment
Quantitative topographical data was produced beginning with
neuron identification and section alignment. While LV and
caudate putamen changes can be observed through a sequence
of many planes, the ROS may be rostral or caudal to this point.
For this reason, the chosen landmark is used only as a point
of reference. Sections are aligned manually using the landmark
and working rostrally or caudally through the sequential Bregma
coordinates using the measurement of width of each section as
a guide. For example, Bregma 2.76 mm is 0.48 mm away from
Bregma 3.24 mm; therefore, there will be 8 µm× 60 µm sections
or 12 µm× 40 µm sections between the two Bregma coordinates.
This highlights the need for precision when slicing and marking
serial sections. Having mounted sections in the correct order on
slides prior to labeling decreases time taken during this stage.

Generate Topography in Preparation for
Analysis
Create Contour
In order to ensure consistency and precision in neuron counting
across all subjects, a contour or tracing of the anatomical
structure being investigated can be prepared in Neurolucida (NL)
360 (Neurolucida, MBF Bioscience, Williston, VT, United States).
Prior to importing an image into NL for tracing, it is necessary
to calibrate the image to approximate the dimensions of a single
brain section bitmap image (cellSens software, Olympus, Notting
Hill, VIC, Australia, RRID:SCR_014551). Within Neurolucida
select > File, > Image open to allow the image to appear and
select x and y calibration pixel size. These measurements are
located in the image properties section in the cellSens program.
Choose > Trace, > Contour Mapping in NL to begin the trace
(see Figure 2A). The image lines may be enlarged using the zoom
tool, to increase accuracy of the trace. Use the curser to trace
around the selected area and > Close Contour when finished each
area. This allows delineation of each section of the contour with
a separate color using ‘User Line.’

Scale Contour
At this point it is essential to align the contour. The size of the
tracing can be adjusted to fit the image using > Tools, > Adjust
Scaling. Contour alignment must be consistent across all groups,
prior to neuron counting. It is advisable to open several images
to scale the contour, due to minor variation in dimensions across
subjects.

Calibrate Contour
Very importantly, the contour is then calibrated to a constant
point (0, 0 on the x, y axis) to preserve consistency of
neuron marker coordinates. The reference point is displayed by
selecting > Options, > Display Preferences, > View. In this
window, the radius of the point can be set to a desired diameter.
Apply the display grid setting and enlarge with the magnification
tools as required. The contour is moved (using move tools) such
that the 0,0 coordinates are placed in the superior left corner of
the contour. Once in position the contour must not move or be
resized for the duration of neuron counting across all groups to
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FIGURE 2 | Steps for producing raw coordinate data from identified neurons. (A) Create, scale, and calibrate contour. Neurolucida 360 (or an equivalent program)
can be used to produce a nucleus or brain region contour from a rat brain atlas diagram. Using the contour mapping tool in Neurolucida 360 contours (in different
colors) can be traced over a figure from an atlas. Lateral amygdala tracing shown was generated from Bregma –3.36 of Rat Atlas (Paxinos and Watson, 2007).
(B) Align section to contour and mark immuno positive neurons. Prefrontal cortex section with contour overlaid. Immuno-positive neurons were marked within the
contour. Saved data files can be opened in Neurolucida Explorer to gain data file information such as contour areas, Feret length measures, and neuron counts.
Prelimbic contour and neurons were marked in aqua, infralimbic contour, and neurons marked in yellow. Once neurons are marked, Neurolucida Explorer (or
equivalent) can import the data file to generate a contour and marker analysis, LA example shown. (C) Export marker coordinates. The x, y coordinates produced for
each marked neuron are exported to an ASCII file which can be opened in graphing software such as Origin Pro (or equivalent). (D) Produce bin matrix. A data
matrix is generated based on the area and density of marked neurons within the contour. Bin size is calculated using twice the area of the contour divided by the
total number of neurons (De Smith et al., 2009). Once the x, y coordinates are highlighted in an Origin Pro (or equivalent) workbook, the 2D binning option under
descriptive statistics is chosen. The bin ends and size can be manually entered into the dialog box once determined using the standard geospatial formula (De Smith
et al., 2009).

ensure the integrity of the quantitative data. Save contour as a
data file.

Align Sections to Contour
Once the tracing has been saved > CTRL + S, a scanned
and cropped image of a single neural section may be opened
(> File, > Image Open, > calibrate pixel size) and the
tracing can be overlaid using the move tools to move only
the image. There may be some minor variation in the size
and properties of each subject, driven by natural variation
or variations introduced during tissue processing – therefore
the contour must be aligned to each section. To align the
section and the contour, select > Image, > Image Processing,
and > Orientation (see Figure 2B). Options are provided for

a mirror image, flip, 90 or 180◦ rotation of the image. Choose
Arbitrary Rotation and use the arrows to alter the Rotation in
Degrees.

Mark Immuno Positive Neurons
Once the section is aligned to the contour (or tracing), begin to
mark neurons by choosing a marker from the marker toolbar
located down the length of the left side of the screen. Right click
the mouse button on the selected marker to rename, recolor or
resize the marker. Elect to use a different color for markers in
separate areas of the contour for ease of analysis at later stages of
the process (see Figure 2B). Markers may be erased at any time
during counting by > CTRL Z, or > Edit, > Undo, to remove
the last placed marker. If mapping to determine the organization
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of synaptic markers within the neuropile, the same procedure
should be followed for marking puncta (Radley et al., 2006).

Note: If mapping neurons using NeuroLucida directly
connected to a microscope for live imaging, then, following
contour tracing and neuron mapping, a final alignment of all data
to be compared must be made before analysis of neuron spatial
distribution. Contours with mapped neurons are rotated for
matched alignment using the Neurolucida Contour Alignment
function.

Example: A digital image of the ROI, the mPFC, was sourced
from the rat brain atlas, 6th Edn, 2007 (Paxinos and Watson, 2007,
RRID:SCR_006369). Three locations, 3.3, 3.24, and 3.18 mm
anterior to Bregma (Paxinos and Watson, 2007) were used
for cell counting. This level was chosen as both the prelimbic
and infralimbic cortices were represented at this point. Specific
markers were recolored and renamed for each subregion to be
mapped (Figure 2B).

Export Neurolucida ASCII File Into OriginPro (or
Alternative)
Once all the neurons in the ROI are counted with the
aligned contours, the marker coordinates (x, y, z), which
Neurolucida has recorded relative to the nominated reference
point, can be exported as an ASCII (plain text) file (see
Figure 2C). To accomplish this, select > File, > Export
Marker Coordinates and save the file. At this point it is also
prudent to save the data file you have placed your makers
on, by choosing > File, > Save Data File As. The Data
file can be opened in Neurolucida Explorer > File, > open
data file, > contour, > analysis, > markers and region
analysis. This program provides a full synopsis of the contour
areas, required for later mapping, perimeters, Feret measures,
and neuron counts for each designated region. Once this
information has been saved the neuron markers can be cleared
in NL 360 using > Edit, > Select Objects. A window will
open to the right of the screen where you can select Any
Object, Only Markers, Select All, then press the Delete key.
Choose > File, > Image Open to import a new section and
begin the entire sequence again. Once two or more images
are open, select > Image, > Image Organizer, to choose
which images you will Show, Hide or Delete. Files can also
be closed by selecting > File, > Close All Images. To analyze
the data obtained the ASCII files can be opened in Microsoft
Excel where the x and y coordinates are quickly accessed
and can be cut and pasted into Origin Pro (see Figure 1C)2

. Alternatively, Origin Pro has the facility to open all files
at once by choosing > File, > Import, > Multiple ASCII,
and following the prompts to choose the files you wish to
include in one density map. It is recommended to import
only files from one behavioral condition at a time to reduce
human error. Once coordinates are listed, select > Descriptive
Statistics, > 2D Frequency Binning, which will require input
of bin sizes (Alternatives to Origin Pro can also be used – see
Discussion below).

2http://www.scientificcomputing.com/product-release/2014/10/origin-and-
originpro-2015-data-analysis-and-graphing-software

Select Binned Data Parameters Within Origin Pro (or
Alternative)
Data binning, also known as discretization, involves grouping
data into bins in order to ascertain a quantitative understanding
of neuronal distribution (Kerber, 1992). Developing an
appropriate data matrix relies on the optimization of the
dimensions of micro regions of data (bins). This part of the
analysis should be well-considered and standardized in order
to closely match the bin number and dimensions with the
central experimental question being investigated and also to
ensure the repeatability across subjects and experiments. The
number of bins can be determined based on experimenter
determined parameters or alternatively a formula can be applied
to standardize the selection on bin numbers and to reduce any
bias in bin number selection. An established formula for this
type of spatial analysis is based on twice the expected frequency
of items identified in a random field (2∗sampling area/n, where
n = mean number of items to be counted, e.g., activated neurons)
(De Smith et al., 2009). This method can be used to ensure an
unbiased estimate of the optimal dimension of bins for sectioning
the ROI into a matrix for data analysis. The neuron counts, and
contour area measurements are obtained from the Neurolucida
Explorer data. Once bin number has been calculated, the
minimum bin beginning and maximum bin end for the x axis
and y axis are adjusted to encompass the smallest and largest
coordinates contained within the ASCII files. In Origin Pro, all
Auto windows must be unchecked to allow manual input of data.
The bin size is measured in micrometers squared (µm2). Once
these measurements have been entered and the number of bins
is calculated by the program, select > OK (see Figure 2D). This
converts the data into an appropriate matrix, based on the area
and density of the marked objects.

Produce Bin Matrix
The next step is to use the data from the calculated matrix of
bins and their corresponding neuron counts for graphing and
statistical analysis. The table of bins and neurons counts derived
from Origin Pro (see Figure 2D) can now be copied into an Excel
spreadsheet (or equivalent program). Repeat this process for each
ASCII file obtained from one section, in one condition across
all animals – this will be based on the section alignment for a
specific “Bregma” coordinate – as described above. For validation
purposes individual density maps can be produced at this point,
for later comparison to the mean map. For an example see a range
of 26 maps produced from raw values for each subject across four
experimental conditions in comparison to mean maps in Figure 2
of Bergstrom et al. (2013a).

Topographic Neuronal Density Maps
(Heat Maps) and Analysis
Create Density Maps
Using Excel, an average across all sheets can then be calculated –
this is used to plot a graph of the mean for an experimental
condition (see Figure 3A). In addition, from these combined
and averaged data a coefficient of variance (CV) and other
measures can be calculated. The mean and CV data can be used
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FIGURE 3 | Steps for producing and analyzing topographical density maps. (A) Create topographic density map. A neuronal topographic density mean map is
produced by transferring binned data from Excel to Sigma Plot (or equivalent software) (X data = x coordinates, Y data = y coordinates). Density maps can be
created for each sub region. A coefficient of variance map can be prepared by dividing the standard deviation by the mean across all samples in one condition.
Difference maps can also be created between conditions. The data matrix from Origin Pro (or equivalent) is transferred to a spreadsheet. This procedure is followed
for each animal from a single condition/group. An average across all sheets produces the data for a mean density map. The standard deviation is calculated and
divided by the mean, producing the data required for the coefficient of variance (CV) map. Example – topographic density (mean and CV) maps shown for Bregma
–3.36, pMAPK+ neurons in the ventrolateral portion of the LA of rats that underwent extinction training (n = 7). (B) Align density map with contour and brain sections.
To enhance visualization of specific neuronal subsets, density maps can be inserted into the contours or superimposed over brain sections. Density maps may be
edited to change the styles, colors, font sizes, labels etc., providing alternatives conducive to individual requirements. Information regarding cell layers can be
determined from visualizing the distribution of activated neurons as shown in the pMAPK labeling of the mPFC of rats that have undergone auditory fear conditioning
(n = 7): mean map generated in Sigma Plot (or equivalent), map placed into contour, map overlaid on rat brain section. (C) Quantitative analysis of variance between
conditions. A variety of statistical analysis can be performed to compare binned data such as Bonferroni correction, principal component analysis (PCA), false
discovery rate (FDR), multiple discriminant analysis and mixed model ANOVA. Example of mean maps for the expression of pMAPK in the LA provides visual
comparison between auditory fear conditioned (n = 6) and naïve (n = 7) rats. pMAPK+ ranks comparing extinction (n = 7) and no extinction (n = 5) groups within the
ventrolateral portion of the LA p = 0.0022 (t-test, Mann–Whitney rank and SEM).

to create separate neuron topographic density ‘heat’ maps using
graphing software SigmaPlot or OriginPro (SigmaPlot v 12.5,
Systat Software, San Jose, CA, United States RRID:SCR_003210)
(or alternatives). For producing a variety of graphs from the now
binned data we have used SigmaPlot, however, other programs
can be used. The data matrix, using individual subject data or
averaged data from Excel, is transferred beginning in the third
column of SigmaPlot. The x and y coordinates from Origin
Pro are copied into columns one and two of Sigma Plot. In
order to produce a colored neuron topographic density ‘heat’
map, select > Create Graph, > Contour Tool (see Figure 3A).
The scale can be adjusted using the graph properties tool. The
production of a neuronal topographic density ‘heat’ map is also
possible using Origin Pro.

Example: We have used bin matrix data from neurons
identified and marked in the prelimbic and infralimbic cortices
and transferred this data to SigmaPlot. This data was used to

produce both prelimbic (PL) and infralimbic (IL) mean neuron
topographic density graph (heat maps). As described above,
during the creation and alignment of the contour the 0, 0
coordinate was aligned to the superior left corner of the contour.
The creation of an overlay was performed by aligning this same
superior left landmark of the contour with the 0,0 coordinates as
displayed on the SigmaPlot contour graph export. This process
allowed aligned or registered heat maps from different animals to
be combined into signed maps of mean data for initial qualitative
analysis of the data sets. In our example we identified neurons
activated during the recall of an extinguished fear memory –
initial qualitative analysis of this data reveals increased neuron
density within the deep layers of the PL and IL.

Align Maps With Contours and Sections
We recommend two methods to enhance visualization of
specific neuronal subsets and gain visual information regarding
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distribution of activated neurons, for example, in relation to
cell layer. The density maps can be inserted into the contours
generated from an atlas, or alternatively superimposed over the
original brain sections (see Figure 3B). To ensure ease of fit it is
prudent to place a marker in the corner of each contour which
can be removed prior to statistical analysis. Density maps may be
edited in Sigma Plot to change the styles, colors, font sizes, labels
etc., as requirements.

Example: Information regarding cell layers can be determined
from visualizing the distribution of activated neurons as shown
in the pMAPK labeling of the mPFC (see Figure 3B) of rats that
have undergone auditory fear conditioning (n = 7): mean map
generated in Sigma Plot (Systat Software). The map was placed
into the prefrontal contour and overlaid onto a rat brain section.

Analysis of Binned Data
Graphing topographic neuron density data is an important step
to provide visual evidence for changes in topography associated
with behavioral and other experimental manipulations, as
described above. However, when further evidence is needed to
support conclusions of changes to neuronal topographic patterns
then statistical analysis of the topographic data is required.
Quantitative analysis can be performed with a variety of methods
(discussed below) to compare topographical differences between
conditions. Most common statistical software packages can be
used for the analysis of topographical data. We have used
GraphPad Prism 7 (GraphPad Software, Co., San Diego, CA,
United States) for each of the below discussed methods, as well
as linear regression and Pearson’s r coefficient which can also be
collected for correlation between groups.

Example: To evaluate the bins in each data matrix, two-
way ANOVA with a false discovery rate (FDR) correction for
multiple comparisons was conducted. The discovered bins were
termed micro-regions of interest (MORIs) and assigned a color
to represent the density of neuronal cell bodies located in
that position (see Figure 3C). Post hoc analysis of MROIs was
conducted using corrected t-tests.

Statistical Analysis of Topographic
Neuron Density Data
In the next section, we describe statistical methods than can be
applied to binned data sets of topographic data combined with
behavioral manipulations to groups of experimental and control
subjects. We also provide examples of application of statistical
analysis from our own behavioral and neuronal topography
data sets. The major challenge with the statistical analysis
of multiple topographical binned data sets, combined with
several experimental groups, is statistical error due to multiple
comparisons. In order to best handle the analysis of topographical
data we have investigated and utilized a variety of statistical
approaches for large multiple comparison data sets – these
include ANOVA and its variants; principal component analysis
(PCA); and FDR correction (see Table 1). A very important
step in performing statistical analysis of topographic data is to
perform the statistical analysis in very close consultation with the
Data produced from the topographic maps as described above.
Through careful observation and consultation of the heat maps,

derived from both individual animals and importantly behavioral
group mean heat maps together with their measures of variance
(CV maps), the most meaningful analyses can be performed and
interpreted.

ANOVA Followed by Bonferroni Corrected t-Tests
A question addressed in topographic data analysis is whether
there is a significant difference in the data (e.g., number of
activated neurons in the ROI) across all experimental conditions
and in all ROI. One way to assess the overall difference
in experimental manipulation is with analysis of variance
(ANOVA), followed by a post hoc t-test with a correction for
multiple comparisons (e.g., Bonferroni), among specific ROI
and experimental groups to determine where the significance
arises. Where multiple comparisons are necessary, a Bonferroni-
type correction may be employed (see use in Bergstrom et al.,
2011), however, it has the risk of being too strict and likely to
sacrifice power in the attempt to exert stringent control over
error. The potential for false negatives (type II errors) can be
controlled effectively, while still retaining sufficient power, with
FDR correction (Benjamini and Hochberg, 1995).

Example: We have analyzed topographic neuron density
data from Pavlovian fear conditioning experiments in order
to determine whether there were significant differences
in topographic neuron density data across conditions by
comparison of activated neuron density in each of the micro
ROIs (46 bins) across all conditions via multiple comparisons
(Bergstrom et al., 2013a). The mean numbers of activated
neurons identified in the ROI from topographic data were
used to conduct ANOVA across all conditions. Where a
significant difference was found, planned contrasts between
experimental and control groups were performed to assess
where the differences lay (Bergstrom et al., 2013b). Multiple
comparison tests involved three contrasts using one-way
ANOVA. The first compared the fear conditioned and CS
reactivated groups to the control groups: in this example,
we compared box alone and CS (memory not reactivated
groups). The second contrast was between the fear conditioned
and CS reactivated groups and the third compared the box
alone to the CS group. Having established a significant
difference across conditions and located the main effect between
experimental and control conditions, the next step was to
locate the region of greatest variance in the ROI, requiring
assessment of the differences in micro ROIs between groups
(Bergstrom et al., 2013a). Furthermore, we also ran correlations
with behavioral data as additional analysis (Bergstrom et al.,
2013a).

False Discovery Rate (FDR)
Where the area under investigation has been sectioned into
topographical units, each having its own data set, multiple
ANOVAs on all topographical units may determine more
precisely any variance between experimental conditions. FDR
controls the expected rate of false rejection of the null hypothesis,
by setting a parameter, the quotient q, as the “tolerable” FDR
(Genovese et al., 2002). The q-value is used as an alternative
to p-value when reporting significance, and while it may be set
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at a conventional level (0.05), a higher level may be reasonable
(Genovese et al., 2002). FDR has been used effectively in
neuroscientific studies (Genovese et al., 2002; Groppe et al., 2011;
Bergstrom et al., 2013a; Bergstrom and Johnson, 2014). Once
the region of greatest variance across all conditions is identified,
follow up tests focus the investigation on the variance between
experimental conditions, in those locations.

Example: We have previously successfully applied FDR for
type II error minimization and identification of significance
in specific topographic ROI in behavioral experiments (see
Bergstrom et al., 2013a; Bergstrom and Johnson, 2014). In
these studies, we conducted mass univariate ANOVAs to assess
differences in neuron activation across all conditions in each of
46 bins. FDR correction was used, with the tolerable limit set
at q = 0.1. Significant differences across conditions were found
in certain micro ROIs (nine of 46 bins), so comparisons were
performed on those particular data to locate (1) the effect of
the experimental versus control groups and (2) the difference
between two experimental groups (Bergstrom et al., 2013a;
Bergstrom and Johnson, 2014). The q-values were mapped onto
the topographical matrix (bins) to reveal the highly localized
topography of neuronal activation. The spatial distribution of
these points of significance was confirmed on visual analysis
of the neuronal topographic density maps compiled from
topographic data, and also reflected earlier findings (Bergstrom
et al., 2011). Subsequent correlational analysis was used to
confirm the relationship between the density of marked neurons
and behavior.

Principal Component Analysis (PCA)
Another approach to topographical data with multiple ROI and
group comparisons is PCA. PCA seeks to identify and rank
combinations of variables that account for variance within the
data set. PCA enables the relationships between these patterns
of variables to be identified, tested and confirmed (Jolliffe, 2002).
PCA has been applied by ourselves and others to address a variety
of anatomical questions, for example in morphological studies of
microglial cells (Soltys et al., 2005); and vagus nerves (Horn and

Friedman, 2003); localization of sensory cells in the thalamus in
facial recognition (Chapin and Nicolelis, 1999); the segregation of
pyramidal neurons into morphological defined cell populations
(Bergstrom et al., 2008); eye-tracking data (Bergstrom et al.,
2016); and extensivley in MRI data (Lin F. et al., 2006).

Example: We have successfully applied PCA for the analysis
of topographic neuronal density data activated in studies of
Pavlovian fear conditioning. Activated neurons were mapped
and the area sectioned into micro ROIs (bins) as described
above, to produce a matrix of memory data (Bergstrom
et al., 2011, 2013a). Ten components (of spatial data) were
revealed, with one of these (SC1) being associated with the
pattern of greatest difference (principal component score) in the
spatial distribution of activated neurons between experimental
conditions. SC1 displayed a unique pattern of activated neurons
in a particular subnucleus of the amygdala (the LAd) across all
brain samples in the experimental group. This was confirmed
by t-test comparisons (Bonferroni corrected) of the bins with
the most prominent loading values, and these also correlated
with the area of highest density in the topographic analysis
outlined above. That is, as described above, the statistical pattern
could be confirmed by visual patterns seen in the neuronal
topographic density maps generated by color-coding neuron
densities. PCA has proved a useful statistical tool to extract
meaningful patterns of variance related to the experimental
manipulation, which could be confirmed by both comparison
with visual representations of the data and Bonferroni corrected
t-tests (Bergstrom et al., 2011, 2013a).

Multiple Discriminant Analysis (MDA)
Multiple discriminant analysis (MDA) is a method of visualizing
patterns within complex data sets (Lin L. et al., 2006). With
complex data, such a topographic data with many anatomical
sub-regions and bins combined with multiple experimental
conditions, where both location and distribution across area,
are under investigation it can be important to identify patterns
within this data set, in order to help understand and interpret
the data. MDA can be used to determine how a set of continuous

TABLE 1 | Approaches for statistical analysis of neuron topographic data.

Method Purpose Advantage

ANOVA followed by Bonferroni corrected t-tests To define where there is a significant difference in the
data across conditions

Stringent control over type II errors

False discovery rate To locate specific topographic regions of greatest
variance across all conditions

Controls the expected rate of false rejection of the
null hypothesis)

Greater power

Can be useful prior to correlational analysis

Principal component analysis Identifies and ranks combinations of variables that
account for variance within the data set

Extract meaningful patterns of neuronal variance
related to the experimental manipulation

Multiple discriminant analysis To visualize patterns within complex data sets Determines how a set of continuous variables can
discriminate groups

Mixed model ANOVA Tests for differences between independent groups while No adjustment for multiple comparisons is required

using repeated measures to analyze topographic data Accounts for random effects

combined with experimental manipulations ∗GEE and ∗∗GAMM can be applied after, to
accommodate non-linear relationships

∗GEEs, generalized estimated equations; ∗∗GAMMs, generalized additive mixed models.

Frontiers in Neural Circuits | www.frontiersin.org 10 October 2018 | Volume 12 | Article 84

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-12-00084 October 15, 2018 Time: 16:6 # 11

Jacques et al. Neuronal Topography

variables can discriminate groups (Bergstrom et al., 2013b),
for example, how the pattern of neuron density in certain
subnuclei (the independent or predictor variable) can predict
the experimental condition the subject brain best fits into (the
grouping or independent variable). MDA gives loading values
(canonical variate correlation coefficients) that represent the
relative contribution of each variable in a set of variables (a
dimension) that discriminates groups from each other (see Lin
L. et al., 2006; Bergstrom et al., 2013b).

Example: In one topography of Pavlovian fear memory study,
we were interested in the relative contribution of lateral and
basal amygdala (LA) subnuclei to the overall density of activated
(pERK/MAPK expressing) neurons among each experimental
condition (Bergstrom et al., 2013b). First, MANOVA was
performed to examine the relationship among the subnuclei.
Where a significant relationship was found, one-way ANOVA
on each subnucleus tested for significant differences between
conditions. Next, MDA was used to test the relative contribution
of each subnucleus to the overall difference in density of
activated neurons between conditions. The MDA revealed a
single underlying pattern in density of activated neurons across
lateral and basal amygdala subnuclei that discriminated the
experimental and control groups. It also showed the subnucleus
(the LAd) that contributed most to the overall difference between
conditions. Having used MDA to help identify the region with
the most significant contribution to the overall pattern of
variance between conditions, it was possible to go further and
explore more fine-grained details within the data. To confirm
the pattern identified with MDA, post hoc comparisons with
Bonferroni correction were performed, verifying the findings
on the location and experimental condition of the greatest
activation, and reinforcing ours and others previous findings
about the predominance of LAd neural plasticity in fear memory
(Rodrigues et al., 2004; Bergstrom et al., 2011).

Mixed Model ANOVA
The Mixed Model ANOVA also known as a Mixed Design
ANOVA or a Split-Plot ANOVA, allows for testing for differences
between independent groups (in functional topography
experiment these will be the impendent behavioral groups,
i.e., experiment and control groups) while using repeated
measures (bins in topography experiments). Thus, the Mixed
Model ANOVA can be employed for microanatomy data
comprising neuron counts within bins contrasted across
several independent groups. For our studies of functional
neuronal topography, we typically derive 20–80 bins per
animal comprising the within-group dependent variable.
For the independent variable, several independent groups of
animals are used including experiment and control groups.
Mixed Models allow for the analysis of data from all locations
and all animals in one analysis. Thus, Mixed Models a have
strong potential for analysis of topographic data combined
with experimental manipulations – such as behavioral or
pharmacological manipulations. Using a Mixed Model analysis
data between anatomic locations can be compared and no
adjustment for multiple comparisons is required. Mixed Models
can be thought as an advancement of ANOVA and regression

models. One, very important but often overlooked, assumption
of ANOVA/Regression, is that the data are independent
of each other. Thus, the analysis cannot have the same
individual represented twice in the same dataset. For example,
measurements on LA have to be analyzed separately from
infralimbic cortex.

Mixed models ANOVA offers a toolbox to account for the
dependence of measurements taken on the same individual,
by accounting for, so called, random effects. Random effects
are variables for which we are not interested in the actual
levels that we have sampled but on what they represent as
a sample from a population. The most usual random effect
would be the individual animal (for further definitions of
random effects readers are directed to Fitzmaurice et al. (2004)
and Zuur et al. (2007, 2009). Methods related to Mixed
Model ANOVA that could also be applied to topographic data
sets with is the generalized estimated equations (GEEs) and
the generalized additive mixed models (GAMMs) which can
accommodate non-linear relationships (for further information
see, Zuur and Ieno, 2016 for GAMM and Fitzmaurice
et al., 2004 on Mixed Model ANOVA and GEEs and their
differences).

DISCUSSION

Understanding neural network organization and predicting
memory and behavior from neural network functionality is
a critical goal in the field of neuroscience. Although various
imaging techniques are capable of large-scale analysis of
functional brain regions, they are not suitable for imaging
the spatial distribution, connectivity and stability of neurons
at the micro-network level. The ability to accurately map,
measure and compare neural network spatial properties, as
described here, contributes to our fundamental awareness of the
organization and structure of functional neural circuits. Classic
cellular and molecular analysis of neuronal tissue assists in
the identification of molecular machinery underlying behavior
but does not answer questions relative to the fundamental
organizational properties and their functional changes associated
with behavior. We have developed a combined topographic
and statistical approach for producing and analyzing micro-
topographic data. This method provides clear visualization of
the spatial organization and degree of consistent neuronal
patterns across brains from individual subjects and in different
experimental conditions.

Neuronal material used for topographic mapping can
include both exogenously labeled, such as immunocytochemistry
and in situ hybridization, as well as endogenous genetic
labeling with green fluorescent protein (GFP) and other
fluorescent probes. Consistency in labeling is important with
regard to whichever neuron marking system is selected for
topographic mapping. The statistical methods recommended
and applied here allow for natural variation in measured
populations. Nonetheless, reduction of variability will improve
outcome consistency and statistical verifications. Marking
neurons requires consistent labeling and consistent identification
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of neurons. To verify consistency, ideally experimenters blind
to the experimental conditions are employed throughout
or for verification checks of large data sets. The general
principles outlined here for micro-topographic mapping can
be applied to sectioned brain material as well as whole
brain analysis approaches using CLARITY, CUBIC, or iDISCO.
Three-dimensional analysis also requires focus and comparative
measurements on specific anatomic ROS. Both 2D and 3D
analysis ultimately requires localization and correlation of
cellular activity with behavioral function using the approaches
described here.

Topographic Mapping
The first step in the approach to visual and quantitative analysis
of functional neuronal topography between animals is to establish
section alignment. Careful choice of an appropriate and stable
landmark or anchor point associated with the ROS is essential
(LeDoux et al., 2006; Haranhalli et al., 2007; Bergstrom et al.,
2011, 2013a,b; Johnson et al., 2012; Bergstrom and Johnson,
2014). Identification of an anchor point which has rapid and
distinct conformational change through sectional view planes will
ensure success at this level. The second stage involves fitting a
contour to the ROS, which ensures precision of the region in
which the neurons will be counted, as well as consistency in the
area across subjects. A limitation at this stage is small variation
between sections from each subject, which can come from animal
variations and also from histological processing, therefore care
is needed to minimize variation. The contour must be fitted
to each section with a degree of individual judgment. Specific
brain regions, such as the hippocampus, may also significantly
change in shape along the longitudinal axis and therefore a single
contour is not feasible. An alternate approach entails producing a
unique mean contour section for a specific data set. The rat brain
atlas, developed by Paxinos and Watson in the 1980s (Paxinos
and Watson, 2007), is one of the most established and detailed
sources of anatomical coordinates available at this time. Other
brain atlases are available and can also be used. In the Paxinos
and Watson atlases, the depicted brain sections can appear up
to 480 micrometers apart necessitating several brain sections to
be mapped to individual atlas plates. Our method is therefore
limited in part by the standardized atlas information currently
available (Paxinos and Watson, 2007).

Prior to creating a contour an atlas image generally requires
resizing, which can represent an amount of time spent making
adjustments with various software packages. Due to the number
of software packages used to produce the images, it is essential
to note both the accepted file types (as listed in methods
above) for compatibility as images are moved between programs.
Furthermore, it is very important to note the numerical functions
involved in any resizing, so that consistency is maintained.
Computer processing speed and memory requirements must also
be considered when using the large data files produced by slide
scanning.

Free, open source programs are available for some procedures,
making our described method economically viable to all. For
example, Image J and FIJI (National Institutes of Health) can be
substituted for some elements of the topographic mapping, as it is

able to perform cell counts and export x,y coordinate data. Image
J has many plugins available and runs in Java which is editable.
Prior to this the contours must be calibrated to a zero point to
facilitate precise individual comparisons. Once the coordinates
have been exported a data matrix may be developed. Data bins are
created using a geospatial analysis formula to establish unbiased
bin dimensions. Open source programs are also available for this
step requiring some degree of coding for specific features. QtiPlot
(Free Software Foundation) is a free replacement for Origin
and SigmaPlot. It will enable binning of x, y coordinates into a
two-dimensional matrix and has contour generating capabilities
for producing neuronal topographic density maps. Free online
software for FDR analysis, as described above, is also available3.
While we have outlined and described our methodical approach
using a series of standalone commercial software packages for
each of the steps descried, free software is also available making
the methodical approaches described here freely available for all
worldwide.

Analysis of Topographic Data
Although we have presented several arguments for the use of
binned data for micro-topographic analysis, there remains the
opinion that discretization has limitations (MacCallum et al.,
2002; Langseth, 2008). We have used both PCA as well as Mass
Univariate ANOVA with FDR correction as a useful way to locate
areas of most variance in complex data, and to confirm the
qualitative data from our mean heat maps. This method assists
in decreasing the reduction in power generated with Bonferroni
procedures (Verhoeven et al., 2005). While we provide general
guidance for analysis of binned micro-anatomical data sets,
we advise the reader to liaise with statisticians to evaluate the
methodical approaches described here with the chosen data
analysis techniques for the analysis of unique data sets and
research questions.

CONCLUSION

Neuronal micro-topographic density maps can assist in defining
specific brain regions involved in behavior. Statistically verified
microanatomical mapping has the ability to advance our
knowledge of the multi layered, complex organization of
the brain and its cognitive systems. Our approach for the
measurement and contrasting of neuronal topographic data
in behavioral experiments has been successfully applied to
the study of the microanatomy of memory formation. It
has enabled us to visualize the spatial allocation of neurons
activated during the acquisition of fear memories (LeDoux
et al., 2006; Haranhalli et al., 2007; Bergstrom et al., 2011,
2013a,b; Johnson et al., 2012; Bergstrom and Johnson,
2014). We propose this method will prove advantageous to
other forms of neuroscience, including the cellular basis of
addiction; pathological memory models; pharmacological
manipulations, and other forms of functional microanatomy
(Johnson et al., 2012; Holmes and Singewald, 2013).
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Existing nuclei cataloged in brain atlases have been defined
histologically, our approach allows for the identification of
new functional micro-regions within established brain nuclei.
By providing this walk-through tutorial we encourage further
development of these goals.
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