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Abstract

Ultrasensitivity is a particularly interesting dose-response behaviour found in cascade struc-

tures, such as cell signalling networks (the failure of which is linked to the development of

some cancers), and robust perfect adaptation mechanisms, observed in signal transduction

and gene regulation. Ultrasensitivity has previously been investigated in reversible covalent-

modification cycles under the assumption that the substrate concentrations exist in vast

excess over the enzyme concentrations. Here we furthered this investigation by using a va-

riety of analytic and numeric models to examine the detrimental effect on ultrasensitivity

of introducing comparable concentrations of enzyme and substrate. This required us to

introduce new terms to the nomenclature in order to describe the new behaviours which we

observed, namely the conversion potential, mid-conversion stimulus, and mixed-sensitivity.

This analysis also comprised of a thorough investigation into how the parameter regimes

associated with this system effect these new behaviours and ultrasensitivity. We then pro-

posed two novel strategies of positive autoregulation into the covalent-modification cycle to

attempt and improve the dose-response profiles. Here we observed that the new models

were able to improve on the ultrasensitivity and conversion potential, but at the expense of

introducing the potential for bistability.
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1 Introduction

The seminal work of Fischer and Krebs [40, 56] in the 1950s established a conclusive link

between reversible protein phosphorylation and signal transmission in intracellular protein

networks. Protein phosphorylation is an example of enzyme-mediated covalent-modification.

It involves an enzyme, called a kinase, that phosphorylates (adds a phosphate to) a protein

and another enzyme, called a phosphatase, that dephosphorylates (removes a phosphate

from) a protein. Reversible covalent-modification by two independent enzymes gives rise

to a "covalent-modification cycle" (see Figure 1a). We then typically observe the output

from one cycle (e.g. phosphorylated form of the protein) acts as an enzyme (e.g. kinase)

for another protein. This forms a cascade of covalent-modification cycles which Fischer

and Krebs identified as a fundamental mechanism for cell signalling in the development of

skeletal muscle in rabbits [56]. More recently with the complete sequencing of the human

genome [22] and the advance in technologies with the capability to accurately measure pro-

tein abundance and post-translational modification, particularly in cell signalling pathways

[6, 17, 57, 43], disruptions to these signalling networks have been linked to the development

of particular cancers [37, 42]. Defects in these signalling pathways are in fact considered to

be the underlying cause of most human diseases, and are particularly true in the case of

cancers [48, 52, 38, 7]. Understanding how signalling is regulated through enzyme mediated

networks could potentially have extensive applications in medical sciences, particularly when

considering the development of molecular-level treatments [7].

The reversible covalent-modification cycle has already been found to exhibit sophisticated

input-output responses as first revealed by the work of Goldbeter and Koshland in the early

1980s [26, 20]. The focus of this report will be to use mathematical modelling, firstly to

perform a thorough review of the work by Goldbeter and Koshland on this mechanism and

extend their investigation into this cycle. We later introduce variations to this system and

examine their ability to obtain the same input-output responses.

Of particular interest in the reversible covalent-modification cycle is the input-output

response called ultrasensitivity. This essentially describes a behaviour in which the substrate

in a system is rapidly converted into its active or modified form over only a small increase

in input. An example of this can be seen in Figure 1b. Ultrasensitivity is important as we

find this in a number of signalling networks such as in the maturation of oocytes to form

egg cells. In this system we are particularly interested in this "all-or-none" dose response

which is representative of ultrasensitivity [19]. It also plays a key role in a number of larger

mechanisms such as the cascade structure which is typically associated with cell signalling

pathways [23, 40, 56] and in robust perfect adaptation in which ultrasensitivity-generating

mechanisms are embedded into a negative feedback loop [8].

Goldbeter and Koshland were the first to identify the phenomenon of "zero-order" ultra-

sensitivity, which involved having a much higher concentration of substrate than the enzyme
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concentrations. For each of the two enzyme-mediated reactions, the rate of production of

the output is independent of the substrate concentration. Hence we say that this is zero-

order in the substrate, and therefore zero-order ultrasensitivity. This assumption enabled

Goldbeter and Koshland to remove a dependence on intermediate complexes which resulted

in obtaining an explicit analytic solution to this system. However more recent research [11]

has shown that it may be unlikely to have the abundant substrate concentration required

to achieve zero-order ultrasensitivity. The original report on zero-order ultrasensitivity also

had a large focus on profiles obtained using rate constants that were identical for the two

independent enzyme mediated reactions (such as Figure 1b). However in a real biological

system, this constraint on parameters is much less likely to be able to occur [42].

(a) Schematic of Reversible Covalent-Modification
Cycle
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(b) Ultrasensitive Protein Concentration Profile

Figure 1: Schematic of reversible covalent-modification cycle (left) represents the modification of
the unmodified substrate, W , to create W ∗ via a reaction with E1. This modified substrate, W ∗, can
then return to the unmodified form via a reaction with E2. The protein concentration profile (right)
is an example of an ultrasensitive response. This is characterised by the rapid change in the substrate
concentrations. We later consider the input to this system to be the total concentration of the E1

enzyme. The output is also expressed as a percentage of the total substrate i.e. Wtot = W +W ∗.

One of the key aims of this report is to thoroughly investigate the links between the pa-

rameter regimes that govern a covalent modification cycle and ultrasensitive responses. This

work aims to extend on that done by Goldbeter and Koshland and develop other conditions

on how to achieve ultrasensitivity. In order to do this we will thoroughly investigate the ef-

fect that altering the abundant substrate constraint will have on the cycle’s ability to achieve

ultrasensitive behaviour. In particular there is a focus on having comparable concentrations

of enzyme and substrate and examining under what circumstances ultrasensitivity can still

be achieved. This report also increases the focus on the intermediate complexes and the

major role that these have on ultrasensitivity. To perform this analysis, it has also required

a number of new terms to be introduced, in particular "conversion potential" and "mid-

conversion stimulus". Here the conversion potential refers to the maximum concentration

of modified substrate that a system is able to achieve for a given parameter regime. The

mid-conversion stimulus (M-value) refers to the amount of input required for the concentra-

tions of modified and unmodified substrate to be equal. These terms become essential for
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describing the behaviour of the systems that this report will investigate. This is particularly

true when investigating the effect of altering the rate constants and examining the effect

that each of these has on the behaviour of the system.

It is also of interest to investigate how ultrasensitive behaviour can be achieved in varia-

tions on the reversible covalent-modification cycle and whether these are capable of improv-

ing upon the ultrasensitivity achieved in the original cycle. In this report, we investigate

implementing positive-autoregulatory mechanisms into the system. Positive-autoregulation

(PAR) involves the output of a system increasing its own production. This can either occur

directly or indirectly. For this report we investigate an implementation of both direct and

indirect PAR. For the direct PAR this was done by including a third reaction in the system

where the modified substrate acts as an enzyme and catalyses the unmodified substrate to

create more modified substrate. The indirect PAR is implemented by introducing a condi-

tion on the enzyme that catalyses the unmodified substrate to create the modified substrate,

whereby it must now form a complex with the modified substrate before it is able to catalyse

the unmodified substrate. These are then compared with the original reversible covalent-

modification cycle using similar parameter regimes to examine whether these variations are

able to improve upon the ultrasensitivity achieved by the original.

Throughout this investigation this report will be using numerical deterministic and

stochastic mathematical methods. Deterministic methods give an exact solution to the

system based on the initial condition. This will give profiles similar to what is observed in

the paper by Goldbeter and Koshland [26]. The discrete stochastic approach used allows

for more realistic, integer-based simulations of a single cell’s behaviour. A simulation is

then repeated a large number of times and can be averaged to achieve similar profiles to

the deterministic method. It is also of interest to examine the variability between the sim-

ulations. This allows for a different interpretation of ultrasensitivity. Analytic solutions are

also investigated for each of the systems described.

1.1 Literature Review and Background

1.1.1 Early Mathematical Models of Biochemical Reactions

Experimental data on biological systems has provided the scientific community with tremen-

dous amounts of information, but does not provide us with the insight required to understand

the underlying mechanisms responsible for these observations [29]. Obtaining experimen-

tal data is also expensive and prone to error [36]. For this reason, being able to apply

mathematics and create models that describe the functionality of such biological systems

can potentially reduce the dependence on experimental data and optimise experimental

processes.

One of the first attempts at describing biochemical reactions mathematically was in the

form of mass-action equations. In the 1860’s, Guldberg and Waage published a series of
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four papers [27, 28] in which they proposed the concepts of affinity between two reactant

molecules in a chemical reaction. In these papers the affinity of a system was a measure of

its reactive potential [45, 53], which was defined mathematically to be proportional to the

concentration of the reactants [28, 45, 53]. For example, consider a system defined by the

reactions

A+B � A′ +B′, (1)

where A and B are molecules that participate in a reversible reaction to create two new

molecules, A′ and B′. According to an English translation and summary [54] of the first

paper by Guldberg and Waage, the original equation for the affinity of a system was given

by

affinity = α[A]a[B]b,

where a, b and α are constants, and [X] represents the concentration of molecule X. This

form was used to match the experimental data by Guldberg and Waage. The experimental

data shown in the initial reports [27] demonstrated that in all cases a = 1 and in the

majority of cases b ≈ 1. Since the data strongly supported the use of exponents that were

approximately unity, Guldberg and Waage released a subsequent paper in 1867 [28] where

the equation was given by

affinity = α[A][B],

which is now the accepted form of this expression [45].

This concept led directly to the development of the Law of Mass-Action [28, 45, 53], which

has become one of the most influential guiding principles in the mathematical descriptions

of chemical reactions. According to the Law of Mass-Action, the rate of a reaction is propor-

tional to the product of the concentrations of the reactants. For example, the mass-action

equation related to the rate reaction for A in (1) consists of summing the affinities for the

proteins removal and creation and would be written as

d[A]
dt

= −k[A][B] + k′[A′][B′],

where k is the rate constant associated with the forward reaction, and k′ is associated with

the reverse reaction. This gives rise to an ordinary differential equation (ODE) for each

molecule involved in a chemical reaction, and ultimately, a system of coupled ODEs to

describe networks of interconnected chemical reactions. The mass-action equations have

been extensively studied and applied. See [53] for a recent comprehensive review.

1.1.2 Modelling Enzyme Kinetics

In cellular signalling, enzyme-mediated reactions are of paramount importance [23, 40, 56].

Enzymes are special proteins that play the role of a catalyst, and are required for many bio-
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chemical reactions [45]. These enzyme catalysts reduce the energy required for the reaction

to proceed, thereby speeding up the reactions, whilst being conserved in the reaction itself

[34]. In 1913, Michaelis and Menten studied the basic mechanism underlying an enzyme-

mediated reaction in biochemistry [29]. These investigators proposed the following basic

reaction mechanism

E + S
k1�
k2

C
k3→ E + P. (2)

This mechanism involves three distinct reactions. The enzyme, E, combines with an inactive

substrate, S, to form a complex, C, at rate k1. This complex can then split without having

activated the substrate, at rate k2. Alternatively, this complex can allow for the activation

of the substrate which then releases the enzyme from its bind with the activated substrate,

P . This occurs at rate k3. We often refer to the activated form of the substrate as the

product.

Michaelis and Menten applied the reaction mechanism (2) to study the enzyme, invertase,

in certain metabolic reactions and were able to develop an analytic expression to match their

experimental results [44, 36]. Using specific conditions on experimental data, they created

the well-known equation.

V =
dP
dt

=
Vmax[S]

Km + [S]
(3)

This describes the saturated behaviour of the production rate of the activated substrate as a

function of its inactive form. Note that Vmax = k3Etot, where Etot is the total concentration

of enzyme, represents the maximum production rate and Km = k2+k3

k1
is known as the

Michaelis constant. Applying the Michaelis-Menten equation, where Vmax = Km = 1,

creates the plot as seen in Figure 2. This behaviour is referred to as being Michaelian or

hyperbolic and is characterised by the distinct change in production in that these profiles

require an 81-fold increase in input, [S], to alter the output from 10% to 90% of their optimal

value (Vmax). This can be proven mathematically as found in Appendix A.2.
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Figure 2: Profile of V with respect to [S] created using the Michaelis-Menten equation with
[S] ∈ [0, 20], and Vmax = Km = 1. Highlighted is the section of curve between 10% Vmax and 90%
Vmax. This demonstrates the 81-fold increase in input required to achieve this change in output.

The equation itself has since been derived using the full system of mass-action equations

and the conservation equations that govern this system. In 1925, twelve years after Michaelis

and Menten published their findings, Briggs and Haldane [12] derived the Michaelis-Menten

equation using the quasi-steady state assumption. A succinct derivation can be found in

Appendix A.1.

1.1.3 Sigmoidal Response Profiles

The work of Michaelis and Menten simplified the modelling of biochemical reactions un-

der certain simplifying conditions and highlighted the phenomenon of enzyme saturation,

which could produce the hyperbolic profile shown in Figure 2. In 1910 A. V. Hill had pro-

posed a model for cooperative biochemical reactions, specifically the binding of oxygen and

haemoglobin [31]. Cooperative behaviour occurs when an enzyme allows for multiple bind-

ings of substrate i.e. multiple substrate molecules can bind to a single enzyme. Positive

cooperativity, as was observed by Hill, requires that, once the enzyme is bound by a sub-

strate, the new complex is easier to bind to by the next substrate, and so on. The equation

was given by

y =
Kxn

1 +Kxn
,

where x and y are the concentrations of the input, unbound oxygen, and output, oxygen and

haemoglobin complex, respectively [32]. K is the equilibrium constant and n is the number

of binding sites on the haemoglobin molecule. This has also been applied for more general

systems [24] whereby the equation is given by

12



y = ymax
xnH

ECnH
50 + xnH

, (4)

where ymax is the maximum output produced, EC50 is the amount of input required to

obtain half of the maximum output and nH is the Hill coefficient. The Hill coefficient is

given by

nH =
log10(81)

log10
(

EC90

EC10

) ,

where the EC90 and EC10 are the amounts of input required for the output to be 90% and

10% of the maximum output respectively [20, 5].

To demonstrate the effect of the Hill coefficient, the Hill equation shown in equation (4)

has been plotted with ymax = EC50 = 1 and nH = 1, 2, 5 (Figure 3). It can be seen that as

nH increases, the amount of input required to change the output from 10% to 90% of the

maximum output, decreases. It should also be noted that when nH = 1 the Hill equation

takes the form of the Michaelis-Menten equation when Vmax = ymax and Km = EC50 [3] and

requires an 81-fold increase in x to change the output of y from 10% to 90%. This behaviour

has allowed the Hill equation to be used as a method of measuring the sensitivity of profiles

[39].

Figure 3: Profiles of the output, y, with respect to the input, x using the Hill equation, with
ymax = EC50 = 1. The highlighted sections, associated with the colours of the curves, represent
the amount of input required to alter the output from 0.1ymax to 0.9ymax. This shows that as the
Hill coefficient increases, the change in input required to make this change in output, decreases.
As shown, Hill coefficients greater than unity (nH > 1) give rise to ultrasensitive profiles where an
increase from 0.1ymax to 0.9ymax is achieved with less than an 81-fold increase in input (x).

Whilst the Hill equation has been highly influential on modelling the binding of oxygen

and haemoglobin, improved models have since been produced. By using concepts from the

works of Adair [2] and Pauling [47], Koshland et al. [39] created a model which improves upon
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the accuracy of the Hill equation and relates the model to the geometry of the problem. The

binding of oxygen and haemoglobin is referred to as a cooperative system and through their

models, Koshland et al. were able to identify the conditions under which this mechanism

displayed sigmoidal behaviour.

1.1.4 Ultrasensitivity

As previously discussed, the Hill equation is closely related to the Michaelis-Menten equation,

and is equivalent to the Michaelis-Menten equation when the Hill coefficient is set to unity

[3]. The relationship between the Hill coefficient and the sigmoidality of the dose-response

has led to the Hill coefficient being used as a measure of steepness in concentration profiles

[50, 39]. It was partly also this observation that led to the definition of "ultrasensitivity"

in 1981 by Goldbeter and Koshland [26]. Ultrasensitivity was defined by Goldbeter and

Koshland as "an output response that is more sensitive to change in stimulus than the

hyperbolic (Michaelis-Menten) equation" [26]. In essence, ultrasensitivity is achieved when

a system requires less than the 81-fold increase in input to increase from 10% to 90% maximal

output. This concept is illustrated in Figure 3 where several ultrasensitive profiles (i.e. with

Hill coefficients greater than unity) are compared to a Michaelian (Hill coefficient of unity)

profile.

Figure 4: Schematic of the reversible covalent-modification system used by Goldbeter and
Koshland. The forward and backward reactions of this system are as described by Michaelis and
Menten in their original work, as previously discussed. Note that in this system, E1 is the enzyme
that catalyses the modification of W , creating W ∗, whilst E2 catalyses the unmodification of W ∗

back to W . Note that the modified forms of the proteins are represented by the addition of an
asterisk.

Goldbeter and Koshland were interested in investigating a cycle of covalent-modification

reactions, whereby the enzyme-mediated reaction used by Michaelis and Menten, in (2),

could be reversed by a second, independent, enzyme as seen in the schematic, Figure 4. Here

W and W ∗ are the unmodified and modified forms, respectively, of the protein substrate and

E1 and E2 are the two independent respective enzymes. This covalent-modification cycle [26]

is the building block of the cascade structures associated with intracellular communication

pathways as discussed by Fischer and Krebs [40, 56] in their fundamental work, whereby

the enzymes are kinase, for E1, and phosphatase, for E2.

We can represent this system with the following set of reactions. These highlight the
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fact that we have two different enzymes at work in this cycle. The enzyme E1 binds to

W to create the intermediate complex, C1. Once complexed with W , E1 catalyses the

formation of W ∗ - the activated (e.g. phosphorylated) form. Similarly E2 binds to W ∗,

then catalyses conversion of W ∗ back to W . These reactions occur independently, with

different rate constants for each reaction.

W + E1

a1�
d1

C1
k1→ W ∗ + E1, (5)

W ∗ + E2

a2�
d2

C2
k2→ W + E2. (6)

Goldbeter and Koshland were then specifically interested in the scenario in which there is

an abundance of substrate in comparison to the concentrations of enzymes. They were able

to define how this system can achieve ultrasensitivity as a function of the magnitude of the

non-dimensionalised Michaelis constants for the reactions, K1 = d1+k1

a1Wtot
and K2 = d2+k2

a2Wtot
.

Their key finding was that when we have very small values of K1 and K2 we achieve an

ultrasensitive system as seen in Figure 5b. When these values are increased it approaches a

Michaelian profile as seen in Figure 5a. This will be discussed in detail in Chapter 2.2.

(a) Michaelian protein concentration profile. (b) Ultrasensitive protein concentration profile

Figure 5: These profiles were created using the analytic solution created by Goldbeter and
Koshland when assuming negligible complex concentrations [26]. The constants were set such
that Wtot = 100 and V1

V2
∈ {10−2, 102}. For a) the non-dimensionalised Michaelis constants are

given by K1 = K2 = 1, whilst for b) the Michaelis constants are given by K1 = K2 = 0.02. The
highlighted sections demonstrate the input required to change the output concentration of W ∗ from
0.1 to 0.9. In a) it can be seen that this requires an approximate 81-fold increase and is therefore
approximately Michaelian, whereas b) required much less than an 81-fold increase and is therefore
ultrasensitive.

Goldbeter and Koshland also investigated the effect of reducing enzyme saturation using

an analytic solution that included the proteins and complexes. This led to the finding

that as the abundance of enzymes approached the abundance of protein substrate, the

concentrations of the free, modified and unmodified substrates approached zero.
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1.1.5 Alternative Ultrasensitivity-Generating Mechanisms

Since the discovery of zero-order ultrasensitivity by Goldbeter and Koshland, several other

mechanisms for generating ultrasensitivity have been explored. A detailed review by Ferrell

and Ha [18] discuss a variety of alternative mechanisms that can produce this response. A

few of the systems considered in their analysis included reciprocal regulation, feed-forward

regulation, stoichiometric inhibitors, competing substrates, and positive feedback loops. The

analysis carried out by Ferrell and Ha is predominantly analytical with a few exceptions.

However in a number of these solutions, in order to create the analytic solutions, Ferrell and

Ha, have introduced a number of simplifying assumptions for each system.

Reciprocal Regulation

Ultrasensitive dose-responses can be created using reciprocal regulation [18]. Reciprocal

regulation, as discussed by Ferrell and Ha [18], involves an input both activating the forward

reaction and inhibiting the backward reaction of a reversible covalent-modification system.

The example investigated by Ferrel and Ha can be seen in Figure 6. This involves the input

to the system converting the inactive form of E1 and creating its active form which can then

be used to catalyse the forward reaction. The input also removes the active form E2 by

converting it into its inactive form. This behaviour has been found in skeletal muscle cells,

whereby reciprocal regulation increases the production of insulin [1]. Ferrell and Ha created

an analytic solution using the mass-action equations to obtain the following expression for

the concentration of the modified substrate, W ∗.

XP

Xtot
=

K2input+ input2

K1K2K3 + (K2 +K2K3)input+ input2

where K1, K2 and K3 are the fraction of rate constants associated with linking the enzymes

E1 and E2 to the input and the creation of W ∗ from W respectively such that K∗ =
k−∗
k∗

.

Using this they found that the ultrasensitivity of the system is dependent on the rate constant

associated with inhibition, K1, being larger than that associated with activation, K2. If

K1 = K2 = K3 = 1 then the system was Michaelian.
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Figure 6: Schematic of a system of reactions which use a reciprocal regulation mechanism. This is
built on a reversible covalent-modification system, where an input is used to activate the enzymes, E1

and E2, before they can be used in the modification and un-modification of W and W ∗ respectively.
Note that the active forms of the enzymes are represented by the addition of an asterisk.

Feed-Forward Regulation

This form of reciprocal regulation, can also be seen as a form of feed-forward regulation,

whereby the input to the system is both directly and indirectly contributing to the pro-

duction of the output [18]. Ferrell and Ha discuss another form of feed-forward regulation

found in the role of Phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3 is part of a

signalling cascade found on the cell membrane [14]. This system involves an enzyme, Akt,

being bound to the membrane by PIP3. Akt is then activated by PIP3 bound Pdk1 (See

Figure 7). PIP3 is therefore contributing directly to the activation of Akt by bringing it

to the Pdk1 and indirectly by binding the Pdk1 as well. Ferrell and Ha investigated this

system by creating an analytic solution to describe its behaviour. From this they found that

if the constants for binding Akt and Pdk1 to PIP3 are much stronger than the activation

of Akt, then ultrasensitivity can be achieved.

Figure 7: Schematic of a system of reactions which use a feed-forward regulation mechanism. This
system represents the activation of Akt by Pdk1. PIP3 works at directly and indirectly activating
Akt. PIP3 attaches Akt and Pdk1 to the membrane, where Pdk1 is then used to catalyse the
activation of Akt. Adapted from Figure 7 in [18]
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Stoichiometric Inhibitors

Another mechanism for generating ultrasensitivity has been found in systems with stoichio-

metric inhibitors [18]. Ferrell and Ha describe an example whereby a reversible covalent-

modification system has the addition of an inhibitor which binds to the enzyme that activates

the substrate, as seen in Figure 8. Ferrell and Ha [18] developed another analytic model to

investigate this system. However modelling this was very complex and required assuming

the exclusion of a term for the concentration of E2. However making this assumption led

them to find that ultrasensitivity was dependent on the rate constant for the creation of the

inhibitor complex being greater than the rate constant for the activation of the substrate.

This combination results in a threshold where the inhibitor binding to the enzyme slows the

creation of enzyme-substrate complexes. It is only when this complex is greater than the

concentration of the inhibitor that the substrate begins to be activated at a rapid rate, caus-

ing the ultrasensitive profile. When the aforementioned relationship between rate constants

does not hold, the profile of the activated substrate appears hyperbolic.

Figure 8: Schematic of a system of reactions which include a stoichiometric inhibitor. The in-
hibitor, I, attaches to the enzyme, E1, to form a complex which cannot be used to catalyse the
forward reaction of the reversible covalent-modification system.

Competing Substrates

Much like the inhibitor system above, systems with competing substrates can also obtain

ultrasensitive responses [18]. However instead of a separate protein in the form of the

inhibitor, there is now a reversible covalent-modification system that uses the same enzyme

to catalyse the forward reaction (see Figure 9). It has been shown [18] that if there is a

dominant system with a larger total substrate and a higher affinity (larger rate constants

for the forward reaction), the activated substrate for the less dominant system will have an

ultrasensitive profile. This works in much the same way as the inhibitor system whereby

the dominant system will originally use the majority of the enzyme, but as it approaches its

steady state, the enzyme becomes available for the other system, which uses this at a rapid

rate.
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Figure 9: Schematic of a system of reactions that demonstrate competitive substrate behaviour.
Pictured are two reversible covalent-modification systems that use the same enzyme, E1 to modify
the different substrates, W and Z.

Cascades

The analytic solution that Goldbeter and Koshland derived for zero-order ultrasensitivity in

a reversible covalent-modification cycle was also applied to a bi-cyclic cascade format [26]

(see Figure 10). This showed that as the "signal" passes down the cascade, the protein

profiles increase in sensitivity. This assumes however that the input to the second loop of

the system is the steady state value of the output of the first loop. This essentially results

in the assumption that the steady states of the two systems are independent, which has not

been found to be the case [51].

The sensitivity of cascades had been examined prior to the work of Goldbeter and

Koshland. The works of Chock and Stadtman [49, 13] were aimed at creating mathematical

models for mono-cyclic and bi-cyclic cascades. For example, Figure 10 demonstrates the

form of a bi-cyclic cascade whereby the output of the upper loop is used to catalyse the

substrate in the lower loop. The analysis of these systems was based on analytical solutions

created using quasi-steady state assumptions of the mass-action equations that described the

systems. The work of Fischer and Krebs [23, 40, 56] has also pushed the need to understand

cascade structures. Analytical studies by Ferrell [21] have used the Hill equation when the

Hill coefficient is greater than two to demonstrate that the input to a cascade structure is

amplified as a signal passes down the cascade. Alternatively, the signal diminishes if the

coefficient is less than two and remains unchanged if it is equal. Similar analytic studies

by Huang and Ferrell [35] have demonstrated that the output becomes more sensitive as it

passes down the cascade as well. This demonstrated that zero-order ultrasensitivity was a

contributing factor to the sensitivity of the cascade.
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Figure 10: Schematic of a system of reactions in a bi-cyclic cascade format. This cascade is made
up of two reversible covalent-modification systems with two different substrates. The systems are
connected by the output of the upper system, W ∗, being used as the enzyme that modifies the
substrate in the lower system, Z.

1.2 Research Objectives and Thesis Structure

This project will investigate two main objectives centered around ultrasensitivity in re-

versible covalent-modification cycles.

The first objective involves a thorough analysis of the Goldbeter and Koshland mech-

anism (Chapter 2). As discussed by Goldbeter and Koshland [26], a reversible covalent

modification cycle can achieve zero-order ultrasensitivity under conditions of enzyme satu-

ration, which can be readily obtained when the substrates for each of the two reactions in the

cycle exist in vast excess over the corresponding enzyme. Consistent with this finding, our

preliminary work has suggested that increases in substrate abundance has a negative effect

on the ultrasensitivity of the system. The work of Goldbeter and Koshland [26] was theo-

retical when it was first introduced, and since its publication, it has been observed that the

conditions they assumed in regards to excess concentration of substrate in comparison with

the enzymes are not typically present in intra-cellular phosphorylation cascades [11]. It is

therefore of interest to examine the conditions required to obtain an ultrasensitive response

without the assumption of relative substrate abundance. For this reason the main goal of

this objective is to investigate how a system with comparable concentrations of enzyme and

substrate can achieve an ultrasensitive response, and investigate the role of complexes in

this system.

Our analysis of the G-K mechanism investigates the effect of having different Michaelis

constants for the forward and reverse reactions. We also thoroughly investigate the role of the

individual rate constants as opposed to simply the Michaelis constants. This extends on the

work of Goldbeter and Koshland which only focused on the role of the Michaelis constants,

and typically these constants were the same for the forward and reverse reactions. In order

to compare these different parameter regimes, we have also proposed new terminology which
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has been crucial for describing the differences in the profiles that we observe. Chapter 2 also

involves re-deriving the analytic solutions created by Goldbeter and Koshland, discussing

the behaviours in which these solutions can be used to describe and further investigating

just how these solutions behave themselves. We also simulate the model using Gillespie’s

Stochastic Simulation Algorithm which allows for an investigation into how ultrasensitivity

can affect the intracellular variability caused by the ultrasensitive signalling response.

The second objective of this thesis is to investigate how ultrasensitive behaviour can

be achieved in variations on the reversible covalent-modification cycle, in particular, by

implementing direct and indirect positive autoregulation (PAR) mechanisms (Chapter 3).

To implement direct PAR a third reaction in the system is included whereby the modified

substrate, W ∗, acts as an enzyme and forms a complex with the unmodified substrate, W ,

which it catalyses and creates more W ∗. The indirect PAR is implemented by introducing

a condition on the E1 enzyme whereby it may now form a complex with W ∗ before it

then forms a complex with W to create more W ∗. It is then of interest to examine how

the sensitivity of these systems compare with the original reversible covalent-modification

cycle, particularly when there are comparable concentrations of substrate and enzyme. As

discussed by Ferrell [18] positive autoregulation can introduce bistable behaviour where a

system is highly dependent on its initial condition and can switch between two possible

states. This objective also investigates under what circumstances this bistability can occur.

The comparison of these two proposed positive autoregulation mechanisms with the original

cycle requires the use of the new terminology. In this objective we also derive analytic

solutions to these systems and discuss their behaviour. And lastly, we perform a similar

analysis of these systems using Gillespie’s Stochastic Simulation Algorithm and compared

with the results found in the first objective.

Chapter 4 of this thesis reviews the key findings and discusses possible future directions

of research.
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2 Goldbeter-Koshland (G-K) Mechanism

2.1 Introduction

The term ultrasensitivity was first defined by Goldbeter and Koshland in their 1981 pa-

per [26] in which they observed this special signalling response in a reversible covalent-

modification cycle under certain conditions where the protein undergoing conversion between

two alternative forms was present at much higher concentrations than the inter-converting

enzymes. They referred to this phenomenon as zero-order ultrasensitivity because of the

high substrate concentrations saturated the modifying enzymes. In other words, each of

the two opposing reactions was independent of (zero-order in) the substrate concentration.

As we have previously discussed, this was associated with negligible concentrations of the

enzyme-substrate complexes. These complexes however do play a major role in this system,

particularly when the system has comparable concentrations of enzyme and substrate. This

chapter presents a thorough analysis of this zero-order ultrasensitivity generating mechanism

first proposed by Goldbeter and Koshland. We refer to this particular mechanism hereafter

as the G-K mechanism to distinguish this model from the autoregulation mechanisms we

consider in Chapter 3.

The work of Goldbeter and Koshland had a main focus on substrate abundance and the

effect of the Michaelis constants on this system. This focused on a particular case where the

Michaelis constants were equal, i.e. Km1 = Km2. Their analysis then also tended to focus

on these constants and not on the effect of the individual rate constants that made up these

values.

We extend the analysis of Goldbeter and Koshland in two key ways. First we have focused

on the effect that having different Michaelis constants have on the system. In addition to

this we also investigate the effect of the individual rate constants that create the Michaelis

constants. Throughout the majority of this chapter, we are particularly interested in how

this system is able to achieve ultrasensitivity when we include comparable concentrations of

enzyme and substrate. Furthermore we will propose some new terminology that allows us

to precisely describe the new behaviours that develop under these new conditions. Lastly

this chapter shall discuss some other methods for solving this system such as the analytic

solutions found by Goldbeter and Koshland [26] and a stochastic method. Using a method

such as Gillespie’s Stochastic Simulation Algorithm allows for the investigation into how

ultrasensitivity can affect the variability of a system. The analytic solutions provide a

clear insight into just how the inclusion of the complexes is critical in representing accurate

solutions to this system when there are comparable concentrations of enzyme and substrate.

2.2 Basic Properties of the Goldbeter and Koshland System

As noted in Chapter 1, the G-K mechanism concerns the conversion of a single protein

between two alternative forms, W and W ∗, through the catalytic activity of two independent
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enzymes, E1 and E2. Schematically this can be represented by the following.

Figure 11: Schematic of the reversible covalent-modification system used by Goldbeter and
Koshland. The forward and backward reactions of this system are as described by Michaelis and
Menten in their original work, as previously discussed. Note that in this system, E1 is the enzyme
that catalyses the modification of W , creating W ∗, whilst E2 catalyses the unmodification of W ∗

back to W . Note that the modified forms of the proteins are represented by the addition of an
asterisk.

In order to achieve zero-order ultrasensitivity we require that the total substrate is much

larger than the Michaelis constants i.e. Wtot � Km1, Km2. The clearest way to do this is to

increase the concentration of total substrate relative to the total concentration of enzymes.

We can then use the Law of Mass-Action to obtain a system of ODEs which can later be

used to derive the analytic solutions used for the majority of the analysis.

d[W ]

dt
= d1[C1] + k2[C2]− a1[W ][E1], (7)

d[W ∗]
dt

= d2[C2] + k1[C1]− a2[W
∗][E2], (8)

d[C1]

dt
= a1[W ][E1]− d1[C1]− k1[C1], (9)

d[C2]

dt
= a2[W

∗][E2]− d2[C2]− k2[C2], (10)

We also require the following conservation equations.

Wtot = W +W ∗ + C1 + C2, (11)

E1tot = E1 + C1, (12)

E2tot = E2 + C2. (13)

By making the assumption that the complexes C1 and C2 are negligible due to the

abundance of substrate, we can rewrite equation (11) to be

Wtot = W +W ∗. (14)

By using this assumption, equations (7)-(13), and the quasi-steady state assumption Gold-

beter and Koshland were able to derive an analytic solution for the steady-state concentra-

tions of W and W ∗ [26]. This result can be seen below and has been verified and derived in
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Appendix A.3.

W ∗ =

[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]
+

√[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]2
+ 4K2

(
V1

V2
− 1

)
V1

V2

2
(

V1

V2
− 1

)

(15)

W = Wtot −W ∗ (16)

where W and W ∗ and non-dimensionalised parameters, K1 = d1+k1

a1Wtot
, K2 = d2+k2

a2Wtot
, and

V1

V2
= k1E1tot

k2E2tot
.

In order to analyse the result of this equation, Goldbeter and Koshland examined plots

of the substrate concentrations, W and W ∗, as they vary with changes in the input. They

define this input as V1

V2
where V1

V2
= k1E1tot

k2E2tot
. An example of these profiles can be seen below.
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Figure 12: Proteins concentration profiles created using equations (15) and (16). This demon-
strates an ultrasensitive response (solid line) and a Michaelis response (dashed line). The ul-
trasensitive profile was created using the base case parameter regime with a1 = a2 = 2,
d1 = d2 = k1 = k2 = 1. The Michaelian profile was created using the base case parameter
regime with a1 = a2 = 0.1, d1 = d2 = k1 = k2 = 5.

In this system Goldbeter and Koshland defined the sensitivity using the non-dimensionalised

Michaelis constants, K1 = Km1

Wtot
= d1+k1

a1Wtot
and K2 = Km2

Wtot
= d2+k2

a2Wtot
. To then achieve

an ultrasensitive profile as seen in Figure 12, we required a very small value for the non-

dimensionalised Michaelis constants, namely 0 < K1 = K2 � 1. As we increase these values,

the profile becomes more "graded" and approaches a Michaelian response when K1 and K2

are O(1). We also observe the well defined symmetric behaviour of this system when under

these conditions.

2.3 New Nomenclature and Definitions

We are now interested in analysing this system further to consider how it performs when we

relax the substrate abundance assumption which was a key focus of the G-K mechanism.
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This is done by introducing a parameter regime in which Wtot is now of a comparable

magnitude to E1tot and E2tot. We are also interested in further investigating the role of

individual rate constants, rather than just the role of the Michaelis constants. We do this

by altering individual rate constants while maintaining the same Michaelis constant. We are

also interested in understanding the effect of having different values for the two Michaelis

constants i.e. Km1 �= Km2 - an "asymmetric" reaction cycle.

In order to carry out this investigation we define a base case. This is then used in

later investigations by perturbing certain parameters and comparing the effect that this has

relative to the base case. We first define this to be a system with comparable concentrations

of enzyme and substrate i.e. Wtot = 100, E2tot = 20 and E1tot ∈ (0, 40). We also choose

the Michaelis constants for both reactions to be equal such that Km1 = Km2 = 1 and are

created by setting the rate constants to be d = k = 1 and a = 2. This parameter regime has

been chosen as it uses equivalent parameters to those used in the above reproduction of a

zero-order ultrasensitive profile seen in Figure 12, but without the substrate abundance.

For each of these investigations, we have ensured to isolate a single parameter, or param-

eter group, at a time, holding all others fixed. The analysis of this system is then carried

out by examining figures of the modified and unmodified substrate concentrations plotted

against the input, E1tot. The main output of this analysis is the modified substrate, W ∗,

however we are also interested in examining the profiles of the unmodified substrate, W , and

the intermediate enzyme-substrate complexes, C1 and C2. The input has also been chosen

to be E1tot as opposed to the ratio of inputs, V1

V2
, as this removes the dependence on the

rate constants, k1 and k2. It should also be noted that Goldbeter and Koshland typically

used the non-dimensionalised Michaelis constants, such as K1 = Km1

Wtot
, but the following

chapters will tend to only consider the unaltered Michaelis constants, Km∗, as this removes

the dependence on Wtot. Detailed results of these investigations can be found in Appendix

A.5 along with a summary of the observations in Appendix B.4.
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Figure 13: Base case for the G-K mechanism. This defines the reference parameter set that is used
throughtout this chapter. We observe an M-value located at E1tot = 20 and a conversion potential
at 0.6. This profile does not display any mixed sensitivity. Reference parameter regime is chosen
such that a1 = a2 = 2, d1 = d2 = k1 = k2 = 1 with Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40].

The above figure demonstrates the profiles of the two substrate forms. It is immediately

clear that there is a distinct difference between this base case and the profiles seen in the zero-

order ultrasensitive profile. In order to describe these differences fully, we have introduced

new nomenclature, namely:

• conversion potential,

• mid-conversion stimulus (M-value),

• trivial M-value,

• and mixed sensitivity.

In the base case above, we observe a distinct lower concentration of modified substrate that

is achieved as we increase the value of E1tot. We refer to this concept as the "conversion

potential" of a profile and it specifically describes the maximum concentration of modified

substrate that a profile is able to achieve. We also introduce this concept of the "mid-

conversion stimulus". This refers to the value of E1tot required for the system to have equal

concentrations of modified and unmodified substrate. In the above profile we can observe

that the M-value point occurs when E1tot = 20. The concepts of a trivial M-value and

mixed sensitivity will be discussed in the following examples where these novel features are

evident.

2.3.1 Role of Relative Substrate Abundance

The first investigation examines how altering the abundance of substrate affects the sensi-

tivity and profile for this system. This was done by increasing the value of Wtot by ten fold
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over three simulations such that Wtot = {102, 103, 104} in comparison with enzyme concen-

tration, E2tot = 20. The rate constants remained unchanged from the base case throughout

this test. Simulations were run for each parameter regime and can be seen below in which

the increasing total substrate concentration is represented by the line type used whereby

the increasing order is solid, dashed, dotted.

0 5 10 15 20 25 30 35 40

E
1tot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

ce
nt

ra
tio

n 
(a

s 
pr

op
or

tio
n 

of
 W

   
  )

to
t

Figure 14: Investigation 1: Test 1. Parameter regime is chosen such that a1 = a2 = 2, d1 = d2 =
k1 = k2 = 1 with E2tot = 20, and E1tot ∈ [0, 40]. The total substrate is set such that Wtot = 100
(solid line), Wtot = 1000 (dashed line), and Wtot = 10000 (dotted line).

From this it is most notable that as we increase the total substrate concentration, the

conversion potential of the system also increases. In the final profile in which there is a clear

abundance of substrate over the enzyme concentration, it appears as though the profile is

now symmetric around the M-value. It is also worth noting that altering this parameter

has also dramatically increased the sensitivity of the system whereby, when fitting a Hill

function to the profile, the Hill coefficient has increased from 17.5 in the base case (solid

line), to 881.1 in this last case where Wtot = 104 (dotted line). We also find that altering

this parameter has no effect on the M-value of this system and it continues to occur at

E1tot = 20.

2.3.2 Role of Michaelis Constants

Let us now investigate the effect that the individual Michaelis constants have on the system.

For this investigation we have three test regimes to examine: altering Km1, Km2 and both

Km1 and Km2. For each of these regimes, we have comparable concentrations of enzyme and

substrate i.e. Wtot = 100, and we aim to not alter as many rate constants as possible. To

perform these tests then, we examine three parameter regimes for each test. These regimes

are calculated by altering the value of a∗ to be larger and smaller by five-fold to change the

associated Michaelis constant, Km∗. By doing this we are able to hold the values for d∗ and

k∗ constant so as to not confuse this as an effect that these rate constants may be having

on the system themselves. The profiles created by these regimes can be seen below where

for each test the increasing change in a∗, which translates to a decreasing change in Km∗,

is represented by the line types: solid, dashed, and dotted.
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Altering Km1: Test 2
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Altering Km2: Test 3
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Altering Km1 and Km2: Test 4

Figure 15: Investigation 2: Altering Michaelis constants. Parameter regime is chosen such that
a1 = a2 = 2, d1 = d2 = k1 = k2 = 1 with Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40]. The
Michaelis constant is altered by setting a1 = {0.4, 2, 10} in Test 2, a2 = {0.4, 2, 10} in Test 3, and
a1 = a2 = {0.4, 2, 10} for Test 4. The increase in rate constants is represented by the line type:
solid, dashed, dotted i.e. the smallest value of a is represented by a solid line and the largest value
is represented by a dotted line.

From these we can now observe a change in the M-value. We find that a decrease in Km1

results in the M-value shifting left, whereas a decrease in Km2 results in it shifting right.

We can then see that if both constants are changing together, the M-value is not shifted at

all which supports the work produced by Goldbeter and Koshland as this was the basis of

their investigation. We also begin to observe some new behaviour whereby as we approach

the M-value point immediately from either side, in Tests 2 and 3, the profile is no longer

symmetric. For example when Km1 = 1
5 (dotted line) in Test 2, we can see that the profile

clearly changes at a much steeper rate after the M-value than it does before. We refer to

this behaviour as mixed sensitivity.

We also note that changing one Michaelis constant can alter the sensitivity and conversion

potential of a profile. Here we observe that in Test 2, when Km1 is decreased, the level of

conversion potential and sensitivity of the profile is increased. As was observed with the

M-value, decreasing Km2 acts in the opposite way for the conversion potential, whereby

conversion potential also decreases. However decreasing Km2 also increases sensitivity. It’s

also worth noting that when both Michaelis constants are decreased simultaneously, the

sensitivity is increased but the conversion potential appears to be relatively unchanged.

2.3.3 Role of Individual Rate Constants

The enzyme-mediated conversion between unmodified (W ) and modified (W ∗) protein forms

involves three rate constants: association (binding) rate constants a, dissociation (unbinding)

rate constants d, and catalytic rate constants k. In order to understand how the individual

rate constants affect the dose-response of the system, we first perturb a single conversion

reaction. In each case we wish to keep one rate constant and the Michaelis constant of

this reaction unchanged whilst altering the remaining rate constants. We then compare the

altered regimes to the base case to investigate if the altered rate constants have some effect

on the system. These profiles are shown below.

28



0 5 10 15 20 25 30 35 40

E
1tot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

ce
nt

ra
tio

n 
(a

s 
pr

op
or

tio
n 

of
 W

   
  )

to
t

Holding k1 constant: Test 5
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Holding d1 constant: Test 6
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Holding a1 constant: Test 7

Figure 16: Investigation 3: Altering rate constants for forward reaction. This shows that the
protein profile is only altered when k1 is altered. System parameters are set as Wtot = 100,
E2tot = 20, and E1tot ∈ [0, 40]. We then alter the rate constants from the base case given by
a1 = a2 = 2, d1 = d2 = k1 = k2 = 1. The altered rate constants are given by a1 = 4, d1 = 3, k1 = 1
for Test 5, a1 = 2, d1 = 0.5, k1 = 1.5 for Test 6, and a1 = 4, d1 = 1, k1 = 3 for Test 7. The altered
parameter set is represented by the dashed line.

While k1 is held constant, as seen in Test 5, the profile has no change from the base case

indicating that a1 and d1 have no effect. This is true for all possible choices of a1 and d1

as long as the Michaelis constant is unchanged. We do observe however that in Tests 6 and

7, the profiles vary dramatically with large shifts in the M-value and conversion potential.

Since k1 is the only rate constant changed in both of the profiles that exhibit change, this

must be the cause.

Since these tests indicate that only the catalytic constant, k1, has an effect on the profile,

we can now begin to investigate this effect in a similar fashion to what was seen above in

Investigation 2 by examining three test regimes: altering k1, k2, and both k1 and k2. For

these tests this is done by increasing and decreasing the magnitude of all rate constants

associated with the reaction of interest by two-fold. The tests are performed in this manner

to ensure that the Michaelis constants are unchanged and that it is only the magnitude

of the rate constants, in particular k∗, that is affecting the profile. With this in mind the

Michaelis constants are kept the same as the base case i.e. Km1 = Km2 = 1 and the

substrate abundance is unchanged i.e. Wtot = 100. The following profiles demonstrate an

increasing magnitude of the rate constants using line type: solid, dashed, dotted.
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Altering k1: Test 8
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Altering k2: Test 9
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Altering k1 and k2: Test 10

Figure 17: Investigation 3: Altering all catalytic constants. System parameters are set as Wtot =
100, E2tot = 20, and E1tot ∈ [0, 40]. We then alter the rate constants from the base case given by
a1 = a2 = 2, d1 = d2 = k1 = k2 = 1. The altered rate constants are then given by a1 = {1, 2, 4}
and d1 = k1 = {0.5, 1, 2} for Test 8, a2 = {1, 2, 4} and d2 = k2 = {0.5, 1, 2} for Test 9, and
a1 = a2 = {1, 2, 4} and d1 = d2 = k1 = k2 = {0.5, 1, 2} for Test 10. The increase in rate constants
is represented by the line type: solid, dashed, dotted i.e. the smallest set of values are represented
by a solid line and the largest values are represented by a dotted line.
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From this we can see that altering k1 or k2 individually can have a large effect on the

profile, but when they are altered simultaneously, there is no effect on the profile at all.

When altered individually we can see that the catalytic constants have a large effect on the

conversion potential and the M-value and also an effect on the sensitivity. We can see that

as we increase k1 or decrease k2 the M-value is shifted towards the left of the domain and the

conversion potential can be clearly seen to increase. We also see that when k1 = 0.5 (solid

line) in Test 8 or when k2 = 2 (dotted line) in Test 9, the M-value occurs right at the end

of the domain when E1tot = 40. If the input is increased further we do obtain profiles that

will eventually asymptote and continue with this trend to have a lower conversion potential.

When examining the sensitivity of these tests, we find that there is a slight increase in

sensitivity as k1 increases and k2 decreases. For example in Test 8 the Hill coefficient for

the base case (dashed line) compared to when k1 = 2 (dotted line) increases from 17.5 to

21.6. If we also compare the profiles of Tests 8 and 9, it can be observed that when k1 = 2

(dotted line) and k2 = 0.5 (solid line) the profiles created are identical. This is interesting

as it does not obtain the same asymmetric behaviour observed when altering the individual

Michaelis constants.

It is also worth noting that in the tests above we have observed the M-value of the profile

being shifted towards the left hand side of the domain i.e. when E1tot = 0. The final new

term that has been introduced refers to when the M-value occurs at the beginning of this

domain and is referred to as the "trivial M-value". The occurrence of these points is not

common in this system; however in later chapters this will become more prevalent. Since

these profiles are created by running simulations for discrete values of E1tot beginning at

zero, the first point on the profile will have no change from the initial condition as the system

is not able to run without any initial catalysing enzyme. The trivial M-value then refers to

when the M-value occurs as soon as there is any input in the system. This point is therefore

of less interest, as in a biological system we may expect to find at least some traces of input

in a system initially and therefore there would be no switching behaviour that occurs. It is

therefore of interest to only investigate regimes in which there is a non-trivial M-value for

the system.

2.4 Discussion

After examining the effects that the rate constants, Michaelis constants and substrate abun-

dance have on the quantative response of the system, it is now of interest to further inves-

tigate these parameter regimes and investigate why they cause these effects. In particular

we are interested in investigating conversion potential, the M-value and symmetry and how

these are related to ultrasensitivity in this system. These features are of particular interest

as they are the key characteristics that describe the substrate profiles for this system. Im-

plementing this cycle into a larger mechanism may require certain characteristics, such as

complete conversion of the substrate into the modified form, or a specific M-value. Thus it is
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important to understand how these features are created and how they can be manipulated.

2.4.1 Conversion Potential

We begin by investigating the reduced conversion potential of this system. We have previ-

ously seen in the work of Goldbeter and Koshland [26] that when we assume that there is an

abundant concentration of substrate in comparison to the concentration of enzymes, then

we are able to achieve full conversion of our modified substrate (see Figure 5b). By making

this assumption, we are also implying that the concentration of the enzyme-substrate com-

plexes are very small in comparison with the substrate concentration and may be neglected.

In our simulated models, such as what has been observed above in Figure 13, when there

are comparable concentrations of enzyme and substrate, we are no longer able to achieve

this complete conversion potential. One clear difference between these two solutions is the

inclusion of complexes in the simulated results.

When we examine the conservation equation for the substrate that this system is subject

to, we find that

Wtot = W +W ∗ + C1 + C2, (17)

where the complexes are referred to as C1 = WE1 and C2 = W ∗E2 to avoid confusion with

the multiplication of concentrations of the substrate and enzyme. This demonstrates that

for a given value of Wtot any increase in the complexes will directly result in a decrease of

the substrate concentrations to maintain this equation. If we now examine the profile of

the base case along with a profile of the complexes, we can see that the distinct drop in

conversion potential is directly related to the increase in concentration of the complexes (see

Figure 18).

(a) Profile of Protein Concentrations
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(b) Plot of Complex Concentrations

Figure 18: Ultrasensitive substrate concentration profile for base case (a) and profile of complex
concentrations (b). The complexes are represented by: C1 is the WE1 complex (blue), and C2 is the
W ∗E2 complex (red). Parameter regime is chosen such that a1 = a2 = 2, d1 = d2 = k1 = k2 = 1
with Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40].

When we examine the other conservation equations that govern this system, we find that
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E1tot = E1 + C1, (18)

E2tot = E2 + C2. (19)

This demonstrates that, independent to the value of Wtot, the complexes are never able

to exceed the value of E1tot and E2tot.

Using this information we discover that the profile obtained when assuming substrate

abundance appears to achieve complete conversion potential due to the relative low concen-

tration of complexes and how these cannot possibly make a considerable contribution due

to the limited total enzyme. When we have a system with comparable concentrations of

enzyme and substrate, we are then able to observe the proportion of total substrate that

consists of complexes, since the enzyme totals are now comparable in magnitude. If we are

to continue this trend and set Wtot to be equal to E2tot then we achieve a profile that has

almost no modified substrate and no unmodified substrate in the system after the M-value.

Knowing that the concentrations of the complexes play such a significant role in this

system, it is then of interest to investigate what controls their production and whether or

not we can decrease their steady state concentration without affecting sensitivity. To do

this we can first examine the mass-action equations associated with the creation of the

complexes, namely,

dC1

dt
= a1WE1 − d1C1 − k1C1, (20)

dC2

dt
= a2W

∗E2 − d2C2 − k2C2. (21)

This demonstrates that the creation of the complex is dependent on the ratio of the rate

constants associated with the removal of complex, d∗ and k∗, and the creation of complex,

a∗. This ratio can therefore take the form of the Michaelis constant i.e.

Km∗ =
d∗ + k∗

a∗
.

However in order to decrease the creation of complex, we would require increasing the

Michaelis constant, which has already been linked to decreasing the sensitivity of the system

in the work of Goldbeter and Koshland.

When examining a Michaelian profile (see Figure 19a) associated with Michaelis con-

stants, Km1 = Km2 = 100, it can be seen that we obtain a higher conversion potential of

the substrate than the ultrasensitive response. This is clearly due to the concentration of

the complex being smaller. When examining the concentration profile of the complexes,

as seen in Figure 19b, the complexes do not exceed even half of the values achieved when

the response is ultrasensitive regardless of the huge increase in input, E1tot, to the system
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required to obtain the asymptotic behaviour in the far field. Previously the input was cho-

sen as E1tot ∈ (0, 40) to obtain the full ultrasensitive profile. This has now been greatly

increased to view the full behaviour of the Michaelian profile where E1tot ∈ (0, 500). It is

also worth noting that when this Michaelian response is presented using this format it takes

on a vastly different form to that observed in Figure 12 when using the same format as

Goldbeter and Koshland. By plotting against a linear input, as opposed to the logged input

used by Goldbeter and Koshland, we no longer observe the subsensitive region to the left of

the M-value. However this response still requires the 81 fold increase in input to alter the

output from 10% to 90% of the conversion potential, which is characteristic of a Michaelian

response.

(a) Profile of Protein Concentrations
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(b) Plot of Complex Concentrations

Figure 19: Michaelian substrate concentration profile (a) and profile of complex concentrations
(b). The complexes are represented by: C1 is the WE1 complex (blue), and C2 is the W ∗E2 complex
(red). Parameter regime is chosen such that a1 = a2 = 0.1, d1 = d2 = k1 = k2 = 5 with Wtot = 100,
E2tot = 20, and E1tot ∈ [0, 500].

It is worth noting that whilst decreasing both Michaelis constants results in an increased

conversion potential, when we examine the results from Figure 15, this is not always true.

When increasing Km2 individually, we find that the conversion potential increases, however

increasing Km1 decreases the conversion potential. When we examine the substrate profiles

we find that as we increase the input to the system, the unmodified substrate is no longer

going to zero. Therefore, whilst the complexes are still decreased in concentration because of

a larger Michaelis constant, there is still a decreased conversion potential. This is most likely

a result of the unbalanced affinity toward creating more W through the second reaction.

This provides some explanation as to how altering the Michaelis constants not only alters

the sensitivity of a system but also affects the conversion potential of the modified substrate.

We can also further examine the mass-action equations that govern this system by com-

bining and rearranging Equations (7) and (9) at steady state to obtain,

k1C1 = k2C2. (22)

Using this formula we can begin to investigate the role that k1 and k2 have on conversion
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potential. Linking back to what was observed in Figures 17 and 18, we can see that when

k1 = k2 we obtain a profile with incomplete conversion potential that achieves a modified

substrate concentration of approximately 0.6. When we consider that in these simulations

we had set E2tot = 20 and that when k1 = k2, Equation (22) becomes

C1 = C2,

we know that both C1 and C2 could have a concentration of at most E2tot = 20. Using

Equation (17) we can confirm what was found in Figure 18 and explain how we achieve the

level of conversion potential since rearranging and solving for W ∗ gives,

W ∗ = Wtot −W − C1 − C2 ≤ Wtot − 2E2tot = 60.

If we now examine the profiles created by only altering k1 or k2 in Figure 17, we see

that we are able to achieve a higher conversion potential for larger k1 and smaller k2 and we

achieve a lower conversion potential when k1 is smaller and k2 is larger. If we link this back to

Equation (22) we see that a larger k1 or smaller k2 means that C1 < C2. Since we have found

that C2 tends to approach E2tot in an ultrasensitive system, we know that C1 < C2 ≤ E2tot

and we can therefore achieve a higher conversion potential. When k1 is smaller or k2 is

larger, then C1 > C2, and since the domain of our input requires E1tot ∈ (0, 40) then we

can obtain that E2tot < C1 ≤ E1tot and hence the profile has a lower conversion potential.

The relationship between the complexes in Equation (22) clearly defines how the catalytic

constants, k1 and k2, can affect the conversion potential of the system.

Finally, we want to link these two concepts of the Michaelis constants and the catalytic

constants together by reiterating some concepts as to how the complexes form as seen in

Figures 18 and 19. As discussed in Section 1.1.2, we can link the ratio of rate constants as-

sociated with the removal and creation of the complexes to the Michaelis constant. We have

found that decreasing the value of the Michaelis constant requires increasing the production

of complex relative to their removal. In particular a smaller Michaelis constant results in a

higher total complex concentration at steady state. This behaviour can be observed in Fig-

ures 18 and 19 where there is less concentration of the complexes created in the Michaelian

profile. This can also be observed in Figure 15 whereby, when altering only Km1 or Km2, we

observe slight differences in conversion potential since one Michaelis constant has a different

magnitude to the other and therefore a larger affinity to create more complex. We also

observe, particularly in Figure 19, that larger Michaelis constants require a larger input to

achieve the asymptotic behaviour that indicates the maximum conversion potential of this

system but this doesn’t translate to increased complexes.

We can also describe how the two complexes form relative to each other by examining

Equation 22. In Figure 18 the concentrations of C1 and C2 increase at the same rate as

each other, since k1 = k2, with respect to the input (E1tot). Since this parameter regime
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includes small Michaelis constants, there is a high affinity to create more complex, and C1

and C2 increase linearly with the input since C1 is bounded by E1tot and cannot increase

any further. When E1tot surpasses E2tot = 20, the value of C2 is then bounded by E2tot and

both complexes stop increasing. As we increase the Michaelis constant, however, we find

this behaviour changes as the complex no longer increases to its maximum capacity as the

input is increased. In the case of Figure 19 we see that the complexes form at equal rates,

since k1 = k2, but have a hyperbolic profile.

In general the behaviour of these systems also holds true when k1 �= k2. However in

the case of an ultrasensitive system we find that C1 and C2 will now grow at different

rates so that C2 approaches E2tot and C1 approaches k2

k1
E2tot and these level out at the

M-value, rather than when E1tot = E2tot. To fully understand this behaviour, we then need

to investigate when the M-value occurs.

2.4.2 The Mid-Conversion Stimulus (M-value)

We wish to consider how the M-value is influenced by system parameters. We therefore use

Equations (7) and (9) to calculate the value of E1tot for which W = W ∗ at steady state. We

obtain the following analytical expression. The full derivation can be found in Appendix

A.6

k1E1tot(Km2 +W ) = k2E2tot(Km1 +W ) (23)

In the special case where Km1 = Km2, this may be further simplified to give

E1tot =
k2
k1

E2tot. (24)

This function now states that when the Michaelis constants are equal, we are able to an-

alytically define the M-value (the value of E1tot). For example in the base case for this

system, seen in Figure 13, we have that k1 = k2 = 1 and therefore the M-value occurs at

E1tot = E2tot = 20.

Thus we see that when Km1 = Km2, only the ratio of the catalytic constants, k2

k1
and

the concentration of the second enzyme, can affect where the M-value occurs. This is also

very similar in behaviour as the relationship that governs the concentration of complexes

(Equation 22) in that an increase in k1 or a decrease in k2 will shift the M-value left, and

an increase in k2 or a decrease in k1 will shift the M-value towards the right. The M-value

is also completely unaffected by the total substrate abundances when Km1 = Km2.

However when we relax the assumption that Km1 = Km2, we cannot explicitly determine

an expression for the M-value. This is due to the function’s dependence on the unmodified

substrate and the implicit expression of this variable which shall be discussed later in this

chapter. However there are still a number of observations that we can make about what
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affects the M-value in this case. To better analyse the behaviour, Equation (23) can be

rewritten as

E1tot = E2tot
k2
k1

(Km1 +W )

(Km2 +W )
. (25)

Once again larger k1 or smaller k2 will result in shifting the M-value left. We can also get

some idea of how the Michaelis constants can effect the M-value. Much like the catalytic

constants we now have Km1

Km2
and so an increase in Km2 or a decrease in Km1 should shift

the M-value left. This behaviour matches what was found in Figure 15.

However it is also important to keep in mind that altering the catalytic constants or

the Michaelis constants will also affect the concentration of the unmodified substrate, so

these will have secondary effects on the M-value by also altering the value of W . We also

introduce a dependence on Wtot, which was not present when Km1 = Km2, since this can

also effect the concentration of W . Since we have shown that Wtot improves sensitivity and

conversion potential, increasing the value of Wtot can increase the value of W . We then

find that when Km1 < Km2, then increasing Wtot will decrease the M-value as (Km1+W )
(Km2+W )

decreases. Similarly, when Km1 > Km2 the M-value is shifted right as demonstrated below.
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Figure 20: The effect of substrate abundance on the M-value. This demonstrates that when
Km1 > Km2, an increase in Wtot increases the M-value. The concentration of unmodified substrate
is represented by the blue lines and the concentration of modified substrate is represented by the
orange lines. Parameter regime is chosen such that a1 = 20, a2 = 2, d1 = d2 = k1 = k2 = 1 with
E2tot = 20, and E1tot ∈ [0, 40]. The substrate abundance is altered from Wtot = 100 (solid line) to
Wtot = 10000 (dashed line).

When the Michaelis constants are not equal we have demonstrated the M-value’s de-

pendence on the steady state concentration of the unmodified substrate, which itself is

dependent on conversion potential and sensitivity. In order to better understand how the

M-value behaves, let us now investigate the capacity for ultrasensitivity of this system.

36



2.4.3 Capacity for Ultrasensitivity

We have now seen how sensitivity can be linked to the regulation of the M-value and the

conversion potential in our profiles. However understanding sensitivity itself is directly linked

with the behaviour of the profile and is far too complex to directly link to any particular

parameter regime using some form of analytic expression. We discuss this more later when

examining analytic solutions to this system. We can however link this behaviour to certain

parameter regimes through observation. As we have previously seen, Wtot, the Michaelis

constants and the catalytic constants all have some effect on the sensitivity of the profile.

Goldbeter and Koshland focussed on the role of the Michaelis constants in driving ul-

trasensitivity, whereby smaller Michaelis constants result in a more ultrasensitive system.

This has been confirmed throughout this investigation (see Figure 15 for example). We have

also observed that when the two Michaelis constants are altered individually, this relation-

ship still holds true, but we begin to obtain "mixed sensitivity", where the dose-response

has a different ultrasensitivity on either side of the M-value. We consider the effect of the

Michaelis constants to be linked to the creation of the complex. When we acquire smaller

Michaelis constants, it requires that the rate constant associated with the creation of the

complex, a, is comparable or larger than the constants associated with the removal of the

complex, d and k. We could then think of the increased creation of complex to be linked to

the increase in sensitivity, as it allows for more modification of the substrate.

Similarly we have observed that modifying the catalytic constants, whilst not altering the

Michaelis constants, can also increase sensitivity. For example we observed that increases in

k1 or decreases in k2 can increase the sensitivity (see, for example, Figure 17). This could be

explained by the increased affinity for the forward reaction, relative to the reverse reaction.

This is linked to the increase in C1 relative to C2, as highlighted by Equation (22).

We have also observed that increasing the total substrate can improve sensitivity (see,

for example, Figure 14). This too could be linked to an increased affinity for the reactions,

but without having as large of an effect on the M-value as altering the catalytic constants.

2.4.4 Mixed Sensitivity

As discussed above, altering the Michaelis constants individually introduces an interesting

behaviour to the profile, which we refer to as "mixed sensitivity". As seen in Figure 15

making one Michaelis constant larger than the other results in a different sensitivity on

either side of the M-value. Having an inconsistent sensitivity could then have a siginificant

effect when implementing this system into a larger mechanism. For example, if we consider

a cascade made of these cycles whereby the output of one cycle acts as the enzyme for the

next, we may be more interested in only acquiring a small, but rapid, increase in the output

as only a small input may be required for the next cycle. In this scenario a profile that

has a more sensitive profile prior to the M-value may be ideal, as we are less interested for

what occurs later on in the profile. This provides just one example that motivates why this
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behaviour is important to understand.

It is also worth noting that when we compare profiles when altering the Michaelis con-

stants individually, the Hill coefficient no longer captures this difference in behaviour. When

comparing the behaviour of this model when Km1 = 1
5 (dashed line) to when Km2 = 1

5 (dot-

ted line) in Figure 21, we obtain a considerably different profile. We can observe that when

we decrease Km1 the profile is more sensitive after the M-value, which is shifted left, while

when altering Km2 the profile is more sensitive prior to the M-value and the M-value is

shifted further to the right. Despite the differences in the profiles they have fairly similar

Hill coefficients, 27.5 for Km1 and 29.2 for Km2. We can also compare these to another

profile, when Km1 = Km2 = 4
7 . This profile is less sensitive than the small Km2 profile

before the M-value, and less sensitive than the small Km1 profile after the M-value. Yet this

profile is able to achieve a Hill coefficient of 28.4. This demonstrates that the Hill coefficient

may not be an accurate measurement of sensitivity as it does not take into account the

mixed sensitivity characteristics of a profile.
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Figure 21: The effect of substrate abundance on the M-value. The concentration of unmodified
substrate is represented by the blue lines and the concentration of modified substrate is represented
by the orange lines. Parameter regime is chosen such that a1 = a2 = 2, d1 = d2 = k1 = k2 = 1 with
Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40]. The Michaelis constants were changed from the base
case by setting a1 = a2 = 7

2
(solid line), a1 = 10 (dashed line), and a2 = 10 (dotted line).

2.5 Analytic Solutions

We can now derive analytic solutions for the substrate concentrations at steady steady state

for this system in order to try and obtain further insight into how this system behaves. As

we have previously discussed, Goldbeter and Koshland derived two analytic solutions for

the reversible covalent-modification cycle. The first of these is a quadratic whose positive

root provides an explicit expression for the concentration of W ∗ (as a proportion of Wtot)

as a function of the input, E1tot. The second analytic solution is a cubic in W , whose roots

provide the concentrations of W at steady state (as a proportion of Wtot). The difference

between the solutions is that the quadratic is based on the assumption that the intermediate
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substrate-enzyme complexes, C1 and C2, are negligible. As noted earlier, this assumption

may be valid when Wtot � E1tot, E2tot, but is not applicable to parameter regimes in which

Wtot ≈ E1tot, E2tot (see, for example, Figure 22). By constrast, including these complexes

gives rise to a more complicated cubic expression. A full derivation of each solution can be

found in Appendix A.3 and A.4 respectively. For the quadratic the solutions for W and W ∗

at steady state as a proportion of Wtot are given by

W ∗ =

[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]
+

√[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]2
+ 4K2

(
V1

V2
− 1

)
V1

V2

2
(

V1

V2
− 1

) ,

W = Wtot −W ∗,

where K1 = d1+k1

a1Wtot
and K2 = d2+k2

a2Wtot
are the non-dimensionalised Michaelis constants, and

V1

V2
= k1E1tot

k2E2tot
. The cubic equation can be solved to obtain the concentration of W at steady

state and then used to calculate the concentrations of C1, C2, and W ∗ as a proportion of

Wtot by using,

W 3{1− α}+W 2{(K1 +K2α) + (1− α)(K1 + ε1 + ε2α− 1)} (26)

+K1W{(K1 +K2α) + (α− 2) + (ε1 + ε2α)} −K2
1 = 0, (27)

C1 =
ε1W

K1 +W
, (28)

C2 =
k1
k2

C1, (29)

W ∗ = 1−W − C1 − C2, (30)

where α = 1 − k1E1tot

k2E2tot
, ε1 = E1tot

Wtot
, ε2 = E2tot

Wtot
, and K1 = d1+k1

a1Wtot
and K2 = d2+k2

a2Wtot
are the

non-dimensionalised Michaelis constants.
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Figure 22: Comparison of analytic solutions with the simulated results. The concentration of
unmodified substrate is represented by the blue lines and the concentration of modified substrate
is represented by the orange lines. Simulated results (solid line) were created using the base case
parameter regime with a1 = a2 = 2, d1 = d2 = k1 = k2 = 1 and system parameters Wtot = 100,
E2tot = 20, and E1tot ∈ [0, 40]. The analytic solutions were created using the cubic solution (dashed
line) and the quadratic solution (dotted) originally derived by Goldbeter and Koshland using the
same parameter regime as the simulated profile.

Since the cubic gives W implicitly, it is difficult to identify how the various parameters

affect the substrate profiles, so this expression gives limited insight as to how the system

may be effected by different parameter regimes.

When solving for the roots numerically we found this cubic does not always have a

negative discriminant which would allow us to split the solution into an irreducible form

with complex roots that would simply leave one real root remaining. In fact, in the majority

of cases, we found that all three roots of this polynomial were real. To eliminate invalid

roots of the cubic we run a number of tests to ensure that the solutions do not disagree with

physical constraints, i.e. W must be between zero and unity, and the conservation equations

hold for all proteins (equations (11)-(13)). If any of the above tests fail, then the root is no

longer considered valid and is removed.

After these tests we found that there was strictly one valid root for any given value of

E1tot. We also performed a linear stability analysis for this system. We demonstrated that

all valid roots are stable nodes as seen in Figure 23 of the single valid root in each case.

Here a solid circle represents a stable root. This provides us with some insight into how the

numerical methods create the given profiles as it is only able to find the valid, stable roots

of the system.
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Figure 23: Results of linear stability analysis profiles using equation (27) where solid circles repre-
sent a stable root of the solution (i.e. associated with all negative eigenvalues). The concentration
of unmodified substrate is represented by the blue markers and the concentration of modified sub-
strate is represented by the orange markers. The ultrasensitive profile is created using the base case
parameter regime with a1 = a2 = 2, d1 = d2 = k1 = k2 = 1 and system parameters Wtot = 100,
E2tot = 20, and E1tot ∈ [0, 40]. The Michaelian profile is created using the parameter regime with
a1 = a2 = 0.1, d1 = d2 = k1 = k2 = 5 and system parameters Wtot = 100, E2tot = 20, and
E1tot ∈ [0, 500].

2.6 Stochastic Simulations

By using deterministic methods, we consider concentrations of molecules under the assump-

tion that reactions occur continuously, and that the concentrations themselves exist on a

continuum. For ergodic systems, deterministic solutions thus approach the “expected” con-

centrations for the molecules in a single cell. By using stochastic methods, on the other

hand, we can consider the discrete nature of reaction timings and molecular abundances.

We can thus simulate the time-evolution of molecular concentrations in individual cells and

examine the cell-to-cell variabilities in concentrations for a population of cells. Here we use

Gillespie’s Stochastic Simulation Algorithm (SSA), which uses uniformly distributed random

numbers to determine the occurrence of individual reactions, and to determine time intervals

between reactions, as a function of reaction affinities [25]. We assume here that reactions at

the level of a single cell are “well-mixed” and occur in a single cellular compartment, being

a strictly time-dependent (non-spatial) problem. Performing large numbers of simulations

in this manner allows us to obtain a normally-distributed sample of concentrations for each

protein at a specified end time. Gillespie’s SSA thus allows us to examine the relationship

between the sensitivity of the system and the variability in the concentrations of the output

of the system (W ∗). Note that all parameters used to obtain the following figures can be

found in the figure captions.

Before examining variability, we first confirm that the stochastic simulations predict an

average behaviour that closely matches the solution to the deterministic model (equations

(7)-(13)). To obtain solutions for this system we implement the reaction equations (5)-(6)

into Gillespie’s SSA. 250 simulations were then recorded at twenty input values in a neigh-

bourhood of the M-value. In Figure 24 we compare the solutions under the ultrasensitive

base case (defined in Section 2.3). This demonstrates that the stochastic simulations provide
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results that accurately matched those of the deterministic solver.

Figure 24: Protein concentration profile for the modified substrate, W ∗ using Gillespie’s Stochas-
tic Simulation Algorithm and Matlab’s ode23s numerical solution to equations (7)-(13). For
both simulations the system parameters were set as Wtot = 100, E2tot = 20 and E1tot ∈
[1, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 39, 60] with the reference parameter set,
a1 = a2 = 2, d1 = d2 = k1 = k2 = 1. The SSA was averaged over 250 simulations to T = 1000.
Matlab’s ODE solver was used over the same domain but with uniform spacing at much finer values.

In Figure 25 we examine the response variability of a Michaelian modified substrate

profile with an emphasis on the values of input in the neighbourhood of the M-value. It

can be seen that in all three cases we achieve a distribution that is fairly consistent as the

input increases from slightly below the M-value to above it. This demonstrates that for a

Michaelian profile, there is no clear variability in the distributions of modified substrate.

Figure 25: Histogram for a Michaelian response using Gillespie’s SSA. As shown, the variability
remains fairly constant. Distribution simply moves to the right as E1tot increases. This result
was obtained by running 1000 simulations for an increasing input centered around the M-value
(E1tot ≈ 20). This was created using the Michaelian regime with parameters given by a1 = a2 = 0.1,
d1 = d2 = k1 = k2 = 5. Note that the M-value occurs at E1tot = 20.

In comparison when examining an ultrasensitive response, see Figure 26, the variability
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changes quite dramatically as we vary the amount of input. It can be seen that on either

side of the M-value the distribution begins to display some skewing behaviour towards the

center of the domain. At the M-value itself we observe a distribution that covers the whole

domain of possible values when taking into account the decreased conversion potential. This

demonstrates that not only does the distribution move to the right as E1tot increases, but

the variability increases dramatically as E1tot approaches the M-value. Therefore over a

number of systems, we would expect to observe many variations on an ultrasensitive profile,

even when under the same constraints on parameters.

Figure 26: Histogram for an ultrasensitive response using Gillespie’s SSA. As shown the variability
increases drastically as E1tot passes through the M-value. This result was obtained by running 1000
simulations for an increasing input centered around the M-value (E1tot ≈ 20). This was created
using the base case parameter regime with a1 = a2 = 2, d1 = d2 = k1 = k2 = 1. Note that the
M-value occurs at E1tot = 20.

2.7 Summary

In this chapter we have presented a thorough investigation of the G-K mechanism and

explored beyond the original analysis of Goldbeter and Koshland. In particular we have

thoroughly investigated how the system achieves ultrasensitivity and incomplete conversion

potential, how a system is able to achieve a certain M-value, and how we can obtain mixed

sensitivity in the dose response profiles. These features can play a key role in how this cycle

performs when incorporated into a larger system. We have demonstrated clear links between

how the individual rate constants, namely the catalytic constants, can be altered to shift the

M-value, and increase conversion potential and sensitivity. We have also seen how altering

the Michaelis constants can not only increase sensitivity, but can also have some effect on

decreasing conversion potential, shifting the M-value, and introducing mixed sensitivity into

the profile. The role of the substrate abundance has also been linked to the incomplete

conversion potential of a system and decreases in sensitivity, particularly when we have

comparable concentrations of enzyme and substrate, and has also been linked to a shift in
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the M-value in certain parameter regimes. We have also examined analytic solutions for this

system, which have been too complex to provide insight into exactly how the system behaves,

but have provided us with insight into the solutions found by our numerical methods. Using

stochastic simulation methods, we have also seen how increasing sensitivity, dramatically

increases the variability in a system’s response which could have large implications in this

systems ability to perform when integrated into larger mechanisms.

These results have demonstrated just how difficult it may be to achieve an ultrasensitive

response with certain features, particularly when the concentrations of enzymes and sub-

strate are comparable. For this reason, the next chapter introduces two novel examples of

positive autoregulation into the reversible covalent-modification cycle, in order to try and

improve upon the performance of this system.
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3 Positive Autoregulation in the G-K Mechanism

3.1 Introduction

Here we introduce two novel models for enzyme-mediated covalent-modification which may

have a significant capacity for ultrasensitivity.

Both of these new models extend the G-K mechanism by including some form of pos-

itive autoregulation (PAR). We particularly wished to examine whether these new models

might offer improvements in sensitivity when we have comparable concentrations of enzyme

and substrate i.e. Wtot = E1tot, E2tot. Our preliminary analysis of the effect of PAR on

ultrasensitivity is given in Appendix B.1, providing a motivation for the detailed study of

PAR presented in this chapter. Positive autoregulation refers to a mechanism in which an

output of a system either directly or indirectly increases its own production. We propose

two possible reaction mechanisms that incorporate PAR. One of them is created by intro-

ducing a third reaction to the G-K mechanism, whereby W ∗ now acts an enzyme to create

a complex, C2, with W which catalyses to create more W ∗. We call this direct PAR and

will later refer to this as System 2. The second system extends on the G-K mechanism by

including two new reactions. We first introduce a reactions which allows W ∗ to now form

a complex with E1 called C3. This complex can then form a complex, C4, with W which

catalyses to create W ∗. We call this indirect PAR and will later refer to this system as

System 3. These systems can be represented by the schematics and reaction equations seen

below.

W + E1

a1�
d1

C1
k1→ W ∗ + E1, (31)

W ∗ + E2

a2�
d2

C2
k2→ W + E2, (32)

W +W ∗ a3�
d3

C3
k3→ W ∗ +W ∗. (33)

W + E1

a1�
d1

C1
k1→ W ∗ + E1, (34)

W ∗ + E2

a2�
d2

C2
k2→ W + E2, (35)

W ∗ + E1

a3�
d3

C3, (36)

W + C3

a4�
d4

C4
k4→ W ∗ + C3. (37)
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Direct PAR (System 2) Indirect PAR (System 3)

Figure 27: Reaction equations and schematics associated with Systems 2 and 3. System 2 is based
on the G-K mechanism where E1 is the enzyme that catalyses the modification of W , creating W ∗,
and E2 catalyses the unmodification of W ∗ back to W . The third reaction now allows W ∗ to act
as an enzyme and modify W . System 3 uses the same forward and reverse reactions of the G-K
mechanism. We then include a third reaction which allows W ∗ and E1 to form a complex. This
complex is then used in the fourth reaction to modify W and create more W ∗.

In order to examine how these systems behave we can use numeric solutions to the mass-

action equations associated with each system. For System 2, the mass-action equations

derived from reactions (31)-(33) are:

dW
dt

= d1C1 + d3C3 + k2C2 − a1WE1 − a3WW ∗, (38)

dW ∗

dt
= d2C2 + d3C3 + k1C1 + 2k3C3 − a2W

∗E2 − a3WW ∗, (39)

dE1

dt
= d1C1 + k1C1 − a1WE1, (40)

dE2

dt
= d2C2 + k2C2 − a2W

∗E2, (41)

dC1

dt
= a1WE1 − d1C1 − k1C1, (42)

dC2

dt
= a2W

∗E2 − d2C2 − k2C2, (43)

dC3

dt
= a3WW ∗ − d3C3 − k3C3. (44)

For System 3, the mass-action equations derived from reactions (34)-(37) are:

dW
dt

= d1C1 + k2C2 + d4C4 − a1WE1 − a4WC3, (45)

dW ∗

dt
= k1C1 + d2C2 + d3C3 + k4C4 − a2W

∗E2 − a3W
∗E1, (46)

dE1

dt
= d1C1 + k1C1 + d3C3 − a1WE1 − a3W

∗E1, (47)

dE2

dt
= d2C2 + k2C2 − a2W

∗E2, (48)

dC1

dt
= a1WE1 − d1C1 − k1C1, (49)

dC2

dt
= a2W

∗E2 − d2C2 − k2C2, (50)

dC3

dt
= a3W

∗E1 + d4C4 + k4C4 − d3C3 − a4WC3, (51)

dC4

dt
= a4WC3 − d4C4 − k4C4. (52)
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We then obtain steady state solutions to the systems by solving the set of equations nu-

merically with Matlab’s built-in ODE solver, ode23s. These systems are also subject to the

following conservation equations which can be used to check that the numeric solutions are

performing correctly and later used for analytic solutions;

Wtot = W +W ∗ + C1 + C2 + C3, (53)

E1tot = E1 + C1, (54)

E2tot = E2 + C2, (55)

for System 2 and,

Wtot = W +W ∗ + C1 + C2 + C3 + C4, (56)

E1tot = E1 + C1 + C3 + C4, (57)

E2tot = E2 + C2, (58)

for System 3.

We are now interested in examining the role of substrate abundance, Michaelis con-

stants, and the individual rate constants in these modified systems. We are also interested

in directly comparing these new systems with the G-K mechanism when under similar pa-

rameter regimes. We also derive analytic solutions for these systems and produce stochastic

simulations to explore the variability of these systems.

3.2 Numeric Simulations

Since the modified systems have a different set of reactions than the G-K mechanism, we

need to define a base case in which we can clearly compare the effect of adding PAR. To do

this we considered the scenario in which all rate constants were set to unity. For the G-K

mechanism, this was very similar to the base case discussed in the previous chapter and

obtains an ultrasensitive profile with incomplete conversion potential (Figure 13). However

when we examine the two new systems under this regime we find that both profiles are very

different (Figure 28). System 2 is associated with a profile with a trivial M-value and a lower

conversion potential. We also observe that System 3 is associated with a profile that has a

very low conversion potential and the concentration of modified substrate rapidly declines

after achieving the conversion potential. Since we are interested in using these profiles as

base cases for later investigations, we ideally want a profile that does not have a trivial

M-value and a similar conversion potential to the base case in the G-K mechanism.
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Figure 28: Base cases with all rate constants set to unity. We observe that in System 2, the
profile has a trivial M-value and decreased conversion potential. For System 3 we have a decrease
in sensitivity and conversion potential. We also observe that the concentration of the modified
substrate decreases after the conversion potential is achieved. The system parameters were chosen
such that Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40].

We are then interested in selecting a different parameter regime that can obtain features

more similar to those of the G-K mechanism whilst using comparable rate constants to the

G-K mechanism. By altering the rate constants associated with the added reactions that

are not found in the G-K mechanism we maintain the same regime for the reactions that are

found in all systems. Through trial and error we identified a more useful reference parameter

set for thi multi-system comparison. These parameter regimes and their associated profiles

can be found in Figure 29. Based on this figure we observe that we are now able to achieve

similar levels of conversion potential and ultrasensitivity as the G-K mechanism.

G-K Mechanism System 2 System 3

Figure 29: Optimised base cases for Systems 2 and 3 alongside the G-K mechanism. We now
observe a conversion potential of approximately 0.6 for System 2 and the G-K mechanism and 0.62
for System 3. The M-value for the three systems is located at E1tot = 20 for the G-K mechanism,
E1tot ≈ 15 for System 2 and E1tot ≈ 18 for System 3. We also observe mixed sensitivity for System
2, but not for System 3 or the G-K mechanism. The system parameters were chosen such that
Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40]. For the three systems the rate constants for the
forward and reverse reactions were set as a1 = a2 = d1 = d2 = k1 = k2 = 1. For System 2 we then
set a3 = 0.01 and d3 = k3 = 1. For System 3 we set a3 = 0.01, a4 = 2, d4 = 1, and d3 = k4 = 10.

With a new reference parameter set for each system, we can now examine how alter-

ations to these parameters affect these systems. We do this using the same procedure as

in Chapter 2.3 by focusing on (i) the effect of substrate abundance, (ii) the role of the

Michaelis constants, and (iii) the role of the individual rate constants. Detailed results of

these investigations can be found in Appendices B.2 and B.3 along with a summary of the
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findings in Appendix B.4.

Introducing PAR into the reversible covalent-modification cycle increases the complexity

of this system quite dramatically. Therefore using analytic methods, like what was used

for the G-K mechanism, to understand how these systems behave is much more difficult.

Instead we use the simulated results of altering these parameters and the knowledge that

we have gained from analysing the G-K mechanism to investigate how the implementations

of PAR affect the behaviour of our system. We are also interested in understanding how

these affect a number of key characteristics in the concentration profiles. Namely we are

interested in the conversion potential, mid-conversion stimulus (M-value), sensitivity, and

mixed sensitivity.

We also discover that these two new models are capable of a response that was not

possible for the original G-K mechanism: bistability. In these systems bistable behaviour

refers to when the concentrations of substrate change discontinuously as the input increases

i.e. they "jump" from one value to another. In the following simulations we do not observe

discontinuities in the profile at the occurrence of the bistability due to the plotting method

used. Instead we observe a bistable response as a sharp change as opposed to the smooth

curves that we will associate with a continuous, ultrasensitive response. This can be seen in

Figure 30 where we observe the sharp change in W ∗. This plot also demonstrates the second

set of steady states for the bistable response (dashed line). We emphasise that there is a

clear and important distinction between bistable and ultrasensitive responses. We discuss

this, along with the explanation for the occurrence of bistability, in detail in regards to the

analytic solution to System 2 in Chapter 3.4.
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Figure 30: Comparison of an ultrasensitive and bistable response for the unmodified substrate in
System 2. The ultrasensitive response is characterised by its smooth profile. A bistable response
is then distinguished by the sharp change in the profile as we essentially "jump" from one value to
the next. The dashed line represents the second set of steady states for the bistable response. The
system parameters are set as Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40]. The ultrasensitive response
is created with the rate constants set to be a1 = a2 = d1 = d2 = d3 = k1 = k2 = k3 = 1, and
a3 = 0.01. The bistable response is created with the rate constants set to be a1 = a2 = d3 = k3 = 5,
d1 = d2 = k1 = k2 = 1 and a3 = 0.05.
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3.2.1 The Role of Substrate Abundance

We first examine the effect of the relative concentrations of substrate and enzyme in the two

new models. To do this we increase the value of Wtot ten-fold and one hundred fold whilst

holding the total enzyme concentrations constant. The increase in substrate abundance

is represented by the change in line type: solid, dashed, dotted. Detailed results of these

investigations can be found in Appendices B.2 and B.3 along with a summary of the findings

in Appendix B.4.

In the G-K mechanism, increasing the value of Wtot increased the sensitivity, conversion

potential and, when the Michaelis constants were not equal, increased the M-value.
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Figure 31: Investigation 1: Test 1. Profiles are created with the same parameters as the base cases
for each system, but with Wtot = {100, 1000, 10000}. The increase in total substrate is represented
by the line type: solid, dashed, dotted i.e. the smallest value for Wtot is represented by a solid line
and the largest value is represented by a dotted line.

Much like in the G-K mechanism, Figure 31 demonstrates that increasing the relative

abundance of substrate increases the conversion potential and the sensitivity of the modified

systems. Since the concentrations of the complexes contribute a smaller percentage to the

increased total substrate. This follows from the conservation equations for the total substrate

for Systems 2 and 3 given by equations (53) and (56) respectively. Since in System 3 all

of the complexes are bound by the total concentrations of the enzymes, E1tot and E2tot,

increasing Wtot will decrease the complex concentrations in proportion and hence increase

the conversion potential. For System 2, the complexes C1 and C2 are bound by the total

enzyme, but C3 is only bound by Wtot. However due to the small association constant that

governs the creation of this complex, the concentration remains relatively small. Hence an

increase in Wtot results in an increased conversion potential.

However we now find that both new systems are capable of a bistable response for some

values of E1tot. We observe this response in Figure 31 when Wtot = 103 (dashed line) and

Wtot = 104 (dotted line).

We also begin to observe clear shifts in the mid-conversion stimulus as we increase the

total substrate. This occurs even when the Michaelis constants are equal. This is unlike

the G-K mechanism where the Michaelis constants had to be different in order for the total

substrate to have some effect on the M-value. By increasing Wtot the M-value in both systems

is decreased. This was much like the G-K mechanism when Km1 < Km2, which could be
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caused by the extra affinity for the forward reaction as a result of the added reactions. In

System 3 this shift is not dramatic and changed very little after the base case (solid line).

System 2 however has a dramatic shift from the base case (solid line) as we increase Wtot and

finally approaches a trivial M-value when Wtot = 104 where the conversion of the modified

substrate occurs immediately with any input to the system. This change in the M-value is

most likely due to the increased affinity for the added reactions in Systems 2 and 3. Since

these reactions have a higher affinity, we observe a higher sensitivity and a decreased M-

value. In the G-K mechanism, when the Michaelis constants were equal, this had no effect

as increasing Wtot increased the affinity for both reactions equally. When these values were

different, we were able to relate this back to a well-defined function for the M-value, but it

could also be linked to a difference in affinities.

3.2.2 The Role of Michaelis Constants

We now investigate the effect that altering the Michaelis constants have on the modified

systems by increasing the Michaelis constants associated with each reaction individually.

This was done by decreasing and increasing the value of the associative constants, a∗, by

five-fold which respectively increases and decreases the value of the associated Michaelis

constant, Km∗. These Michaelis constants exist for all reactions, bar one in System 3,

such that there were three Michaelis constants for System 2 and three for System 3. For

System 3, the set of reactions that define the creation of C3 only involves an associative and

dissociative reaction, and therefore will not have a catalytic rate constant, k3. We therefore

refer to this as a "dissociation rate" and it represents the ratio of the two rate constants given

by Kd = d3

a3
. We increase and decrease this value by decreasing and increasing, respectively,

the value of a3 by five-fold. The decrease in the Michaelis constants and Kd is represented

by the line type: solid, dashed, dotted. Detailed results of these investigations can be found

in Appendices B.2 and B.3 along with a summary of the findings in Appendix B.4.

In the G-K mechanism, altering the Michaelis constants led to a number of effects on the

substrate concentration profiles. We observed that decreasing the Michaelis constant, Km1,

or increasing Km2 resulted in shifting the M-value to the left and increasing the conversion

potential. By decreasing Km1, Km2 or both, we observed an increase in sensitivity of the

profile. Finally, when the Michaelis constants were not equal, we observed a profile which

had mixed sensitivity behaviour whereby the profile was asymmetric and appeared to be

more sensitive on one side of the M-value than the other.
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Altering Km2: Test 3
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Altering Km3: Test 4
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Altering Km1, Km2 and Km3: Test
5

Figure 32: System 2 Investigation 2: Altering Michaelis constants. The system parameters are
set as Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40] with the rate constants set to be d1 = d2 =
k1 = k2 = d3 = k3 = 1. To alter the Michaelis constants we set a1 = {0.2, 1, 5} in Test 2,
a2 = {0.2, 1, 5} in Test 3, a3 = {0.002, 0.01, 0.05} in Test 4, and a1 = {0.2, 1, 5}, a2 = {0.2, 1, 5},
and a3 = {0.002, 0.01, 0.05} in Test 5. The increase in rate constants is represented by the line
type: solid, dashed, dotted i.e. the smallest value for a is represented by a solid line and the largest
value is represented by a dotted line.

For System 2 we find that when we examine the Michaelis constants associated with the

original reactions, Km1 and Km2, altering these values have the same effect as what was

observed with the G-K mechanism (see Tests 2, and 3 in Figure 32). It is worth noting that

we do obtain asymmetric behaviour i.e. mixed sensitivity, when altering these Michaelis

constants, but unlike the G-K mechanism, this was already present in the base case. We

could consider this to be a result of having unbalanced affinities for the creation and removal

of the modified substrate as this system now has two reactions creating more W ∗ and only

one reaction for its removal. However this may be specific to this implementation of PAR

as we do not observe this in the indirect PAR implementation.

When decreasing the value of Km3 we observe similar behaviours to Km1 whereby we

shift the M-value left and increase the sensitivity (see Test 4 in Figure 32). We also find

that, more like Km2, increasing Km3 increases the conversion potential. This effect is fairly

minimal in comparison to the effect of the other Michaelis constants, but this is most likely

due to the already large magnitude of this constant. We could link this behaviour to the

observation made in the G-K mechanism whereby increasing the Michaelis constant was

observed to decrease the creation of the complexes, which increases conversion potential,

but also decreases the sensitivity.

When we examine these profiles in detail, we actually find that decreasing Km3 increases

the mixed sensitivity of the profiles. This means that whilst the profiles may appear to
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increase in sensitivity, the Hill coefficient actually decreases from 9.5701 (solid line) to 4.2559

(dotted line). This highlights the Hill coefficients incapability to effectively measure the

sensitivity of an asymmetric profile. It is also worth noting that when Km3 = 103 (solid

line) we achieve a profile which appears to be symmetric. This can be observed when we are

modifying Km3 by itself and when altering all Michaelis constants. This is possibly a result

of the third reaction having such little effect, due to such a small association constant, that

the profile appears to behave the same as the G-K mechanism.

When decreasing all three Michaelis constants we find that the profile increases in sen-

sitivity as occurred in the G-K mechanism (see Test 5 in Figure 32). However we also shift

the M-value left and obtain a bistable response for the smallest parameter regime (dotted

line). This bistable response is also found for small values of Km1, Km2 and Km3 when we

continue to decrease this value past what is demonstrated here.
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Altering Km2: Test 3
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Altering Kd: Test 4
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Altering Km4: Test 5
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Altering Km1, Km2 and Km4:
Test 6

Figure 33: System 3 Investigation 2: Altering Michaelis constants. The system parameters are
set as Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40] with the rate constants set to be d1 = d2 =
k1 = k2 = d4 = 1, and d3 = k4 = 10. To alter the Michaelis constants we set a1 = {0.2, 1, 5}
in Test 2, a2 = {0.2, 1, 5} in Test 3, a3 = {0.002, 0.01, 0.05} in Test 4, a4 = {0.4, 2, 10} in Test 5
and a1 = {0.2, 1, 5}, a2 = {0.2, 1, 5}, a3 = {0.002, 0.01, 0.05}, and a4 = {0.4, 2, 10} in Test 6. The
increase in rate constants is represented by the line type: solid, dashed, dotted i.e. the smallest
value for a is represented by a solid line and the largest value is represented by a dotted line.

In System 3, we begin to observe some variation to the G-K mechanism, namely the

effect of the Michaelis constant, Km1. We now observe that an increase in Km1 increases

the conversion potential and sensitivity and decreases the M-value (see Test 2 in Figure 33).

This parameter now has the opposite effect to what it did in the G-K mechanism. In fact

the added reactions now appear to take the role of altering Km1 in the G-K mechanism,

whereby decreasing Kd or Km4 will increase the conversion potential and sensitivity and

decreases the M-value (see Tests 4 and 5 in Figure 33). This dramatic change in the effect
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of Km1 could be linked to the introduced competition that the forward reaction now has

with both the third and fourth reactions.

It is worth noting that altering Km2 has the same behaviour as it did in the G-K mech-

anism (see Test 3 in Figure 33). We also find that altering each of the Michaelis constants

individually will result in mixed sensitivity which matches behaviour observed in the G-K

mechanism, but now we also obtain bistability for some regimes. Also similar to the G-K

mechanism, when altering all Michaelis constants simultaneously, we do not obtain mixed

sensitivity, but we do obtain bistable profiles for smaller Michaelis constants (see Test 6 in

Figure 33).

3.2.3 The Role of Individual Rate Constants

We now aim to understand the role that the individual rate constants (i.e. ai, di, and ki)

play in the new systems. As was discussed in Section 2.3.3, of the three rate constants

associated with the first reaction (W to W ∗), only the catalytic constant k1 had any effect

on the dose-response profile of the G-K mechanism without also altering the value of the

Michaelis constant. This is also applied to the modified systems whereby we investigate

the effect of the catalytic constants by increasing all of the rate constants associated with

a certain reaction by two-fold. This is done to ensure that the Michaelis constant remains

unchanged throughout the investigation and only the magnitude of the rate constants are

altered. This is equivalent to examining the result of increasing the affinity for a reaction by

increasing all of the rate constants associated with that reaction. As stated in Section 3.2.2,

System 3 includes a reaction that does not involve a catalytic constant. For this reaction we

still increase both rate constants two-fold. The increase in the rate constants is represented

by the line type: solid, dashed and dotted. The quantitative results of these investigations

can be found in Appendices B.2 and B.3 along with a summary of the findings in Appendix

B.4.

Much like the G-K mechanism when k1 is increased or k2 is decreased, the M-value is

decreased, and the sensitivity and conversion potential are increased for both of the modified

systems. It is also worth noting that for Systems 2 and 3 changes in k2 have a larger effect

on these features than k1 does e.g. a larger decrease in the M-value is achieved by increasing

k2 then by decreasing k1 (see Figures 34 and 35). For the G-K mechanism, this effect was

the same. This result is most likely caused by the higher affinity for the production of W ∗

in the modified systems. We also find that when altering all catalytic constants, as observed

in the G-K mechanism, there is no change in any of the systems (see Test 9 in Figure 34

and Test 11 in Figure 35).
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tion: Test 7

0 5 10 15 20 25 30 35 40

E
1tot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

ce
nt

ra
tio

n 
(a

s 
pr

op
or

tio
n 

of
 W

   
  )

to
t

Increased affinity for third reaction:
Test 8
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Figure 34: System 2 Investigation 3: Altering all catalytic constants. The system parameters are
set as Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40] with the rate constants set to be a1 = a2 = d1 =
d2 = k1 = k2 = d3 = k3 = 1, and a3 = 0.01. To alter the affinity of the reactions we alter the rate
constants to be a1 = d1 = k1 = {0.5, 1, 2} for Test 6, a2 = d2 = k2 = {0.5, 1, 2} for Test 7, and
a3 = {0.005, 0.01, 0.02}, and d3 = k3 = {0.5, 1, 2} for Test 8. Altering all rate from the base case
by two-fold gives the regimes used in Test 9. The increase in rate constants is represented by the
line type: solid, dashed, dotted i.e. the smallest set of values are represented by a solid line and the
largest values are represented by a dotted line.

When examining the added reaction of System 2 we find that altering k3 acts in much the

same way as k1 since this reaction takes a similar form as the forward reaction (see reactions

31 and 33). We observe that the magnitude of the effect on the sensitivity is similar to that

observed when altering k1. However the magnitude of the effect on the M-value and, in

particular, the conversion potential, decreases in comparison (see Tests 6, and 8 in Figure

34). The profiles obtained for this system remain asymmetric and we find that we obtain

bistable responses for larger values of k2 and smaller values of k1 and k3.
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tion: Test 8
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Increased affinity for fourth reac-
tion: Test 10
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Figure 35: System 3 Investigation 3: Altering all catalytic constants. The system parameters are
set as Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40] with the rate constants set to be a1 = a2 = d1 =
d2 = k1 = k2 = d4 = 1, a3 = 0.01, a4 = 2 and d3 = k4 = 10. To alter the affinity of the reactions we
alter the rate constants to be a1 = d1 = k1 = {0.5, 1, 2} in Test 7, a2 = d2 = k2 = {0.5, 1, 2} in Test
8, a3 = {0.002, 0.01, 0.02}, and d3 = {0.5, 1, 2} in Test 9, and a4 = {1, 2, 4}, d4 = {0.5, 1, 2}, and
k4 = {5, 10, 20} in Test 10. Altering all rates from the base case by two-fold gives the regimes used
in Test 11. The increase in rate constants is represented by the line type: solid, dashed, dotted i.e.
the smallest set of values are represented by a solid line and the largest values are represented by
a dotted line.

For System 3 we observed that the effect of altering k4 matches the effect of k1 but

again with a much smaller magnitude (see Tests 7,and 10 in Figure 35). This means that

increasing k4 also increases sensitivity and conversion potential and decreases the M-value.

This similarity is most likely due to this reaction being very similar in form to the first

reaction (see reactions 34 and 37). For larger values of k4 we do however achieve a bistable

response.

When examining the effect of altering d3 we find that there is no change in the profile.

We can relate this to the concentration of C3 at steady state, whereby by manipulating the

Mass-Action equations (51) and (51) gives the following expression,

C3 =
a3
d3

W ∗E1.

From this we note that altering a3 and d3 simultaneously, and by the same amount, will not

have any effect on the creation of the complex. Hence we do not observe any change in the

profile.
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3.3 Comparison to G-K Mechanism

We are now interested in directly comparing the modified systems with the G-K mechanism

to understand how the features of the profiles compare. As previously discussed, we have

defined a reference parameter set for Systems 2 and 3 whereby the first two reactions, which

are present in all systems (including the G-K mechanism), have the same value for all rate

constants.
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Figure 36: Direct comparison of modified systems (solid lines) and the G-K mechanism (dashed
lines). The system parameters are set as Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40]. For all systems
the rate constants for the forward and reverse reactions were set as a1 = a2 = d1 = d2 = k1 = k2 = 1.
For System 2 we then set a3 = 0.01 and d3 = k3 = 1. For System 3 we set a3 = 0.01, a4 = 2,
d4 = 1, and d3 = k4 = 10.

Both of the two new systems produce different profiles to that obtained by the G-K

mechanism. As shown in Figure 36, in System 2 we observe that the profile is able to

achieve the same level of conversion potential as the G-K mechanism. However we observe

that the M-value is decreased and we obtain the asymmetric behaviour associated with

mixed sensitivity. We find that the Hill coefficient which could be considered to be like an

average sensitivity measurement demonstrates that the G-K mechanism is more sensitive

than System 2, but we can observe that System 2 is clearly more sensitive prior to the M-

value. When we examine System 3 we observe similar behaviour with a shifted crossover, but

now with a clear increase in sensitivity, supported by the Hill coefficient, and an increased

conversion potential (see Figure 36).

We now consider the effect that the added reactions have on the new systems in com-

parison to the G-K mechanism. Firstly we note that we are able to decrease the M-value as

the added reactions allow us to create the modified substrate at a faster rate. Secondly this

increased rate of production, along with the effect of positive autoregulation, is most likely

the reasoning for an increased sensitivity (at least prior to the M-value for System 2).

A reduced conversion potential occurs when there is a non-negligible concentration of

complexes at steady state. For this reason we would expect that adding more reactions, and

hence more complexes, would immediately decrease the conversion potential. However what

we observe in both systems is that we are either able to match the conversion potential

or improve upon it under these parameter regimes. When we examine the behaviour of
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the complexes in System 2 the concentration of the added complex, C3, is only able to

achieve a relatively low concentration. As we continue to increase the input, the complexes

mainly consist of C1 and C2 at concentrations almost identical to those observed in the G-K

mechanism. This results in the conversion potential being the same in the two profiles. When

we examine System 3, we again find that the added complexes are almost insignificant in

concentration. However we observe two differing features, namely that C1 is now at a much

lower concentration than in the G-K mechanism, and that as we continue to increase the

input to the system, C3 begins to increase in concentration. As C1 is at a lower concentration,

we are able to achieve an increased conversion potential. As we have observed earlier in this

chapter (see Figure 28 for a clear example), the concentration of modified substrate begins

to decrease after the conversion potential is achieved, as C3 increases in concentration. This

behaviour continues whilst we increase the input until all of the remaining free modified

substrate, is contained in this complex.
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Figure 37: Complex concentrations for System 2 and 3 using the same parameter regimes as
Figure 36. In System 1 the complexes are represented by: C1 is the WE1 complex (blue), and C2 is
the W ∗E2 complex (orange dashed). In System 2 the complexes are represented by: C1 is the WE1

complex (blue), C2 is the W ∗E2 complex (red), and C3 is the WW ∗ complex (yellow). In System 3
the complexes are represented by: C1 is the WE1 complex (blue), C2 is the W ∗E2 complex (red),
C3 is the W ∗E1 complex (yellow), and C4 is the WC3 complex (purple).

We are also interested in examining the "robustness" of these parameter regimes. Here,

a robust profile refers to the minimal effect on a systems profile when altering the systems

parameters. When we are examining biological systems we would expect some variation

in the parameters that govern the system. In some cases having a large effect to a small

perturbation in parameters may have a positive effect, such as a large increase in sensitivity,

or negative such as a decrease in conversion potential. We may also be interested in having

a system which is robust to changes in the parameters.

By analysing the simulations of the three systems when changing the parameters for the

shared reactions, we were able to gather information about which parameters effect which

systems more (see Appendices B.2 and B.3). When examining System 2, we found that the

sensitivity and M-value of the profiles were affected more by changes in the total substrate

and by alterations in the Michaelis constants than was observed for the G-K mechanism. In

addition, altering the Michaelis constant, Km2, and the catalytic constant, k2 had a larger

effect on the M-value for System 2 than for the G-K mechanism. However if we alter k1,
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the sensitivity and M-value for the G-K mechanism are altered more than for System 2. It

is worth noting that all of the common parameters affect the conversion potential of these

systems by a similar amount.

When examining System 3 on the other hand, we find that altering the total substrate has

a larger effect on the sensitivity and M-value than the G-K mechanism, but the conversion

potential is affected more in the G-K mechanism. We also find that the sensitivity is effected

more in System 3 when altering all of the Michaelis constants simultaneously. However

altering Km1 by itself or the catalytic constants, k1 or k2, effected the sensitivity and M-

value more in the G-K mechanism. Similarly, altering k1 or k2 also had a greater effect on

the conversion potential of the G-K mechanism.

It is also worth noting that altering some of these parameters can cause Systems 2 and 3

to exhibit bistable behaviour rather than ultrasensitivity. Depending on how these systems

are embedded into a larger network structure, it could be functionally important that the

system not be bistable.

3.4 Analytic Solutions

To better understand how these two new auto-regulatory models behave, we have attempted

to derive analytic solutions for W and W ∗ at steady state in these models using similar

methods to those used for the G-K mechanism. Through this method we obtained an analytic

solution for the direct PAR system (System 2), but not for the indirect PAR system (System

3). In System 3 we find that the complexes at steady state are too strongly dependent on

the two forms of substrate. Due to this dependence we were unable to successfully uncouple

these variables using the same approach used for the other systems (see Appendix B.6 for

attempted derivation). In future work systematic elimination methods (e.g. via Groebner

bases [41]) could be used to uncouple these variables, although it is possible that no such

uncoupling exists.

The analytic solution for W in System 2 is a quintic given by

W 5
[
k3(Km3 − γ3Km2)

]
+W 4

[
σ2(Km3 − γ3Km2)− k2σ1 + γ3k2E2TKm3

]
+W 3

[− σ3(Km3 − γ3Km2) + γ3σ6 − σ1σ2 − k3σ4 + k2E2TK
2
m3

]
+W 2

[
γ3σ5 − σ2σ4 + σ6Km3 + σ1σ3

]
+W

[
σ5Km3 + σ3σ4 − γ3k2E2TK

2
m1Km3WT

]
− k2E2TK

2
m1K

2
m3WT = 0,
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where

σ1 = Km3WT −Km1Km3 +Km2Km3 − γ1E1TKm3 = γ3Km1Km2,

σ2 = k3(Km1 −WT + γ1E1T )− γ3k1E1T ,

σ3 = k1E1TKm3 + k3Km3WT ,

σ4 = Km1Km2Km3 +Km1Km3WT ,

σ5 = σ7k2E2TKm1 − k2E2TKm1Km3WT ,

σ6 = σ7k2E2T + k2E2TKm1Km3,

σ6 = Km1Km3 −Km3WT + σ1E1TKm3.

A detailed derivation of this solution is given in Appendix B.5.

The roots of this quintic polynomial are then found numerically using Matlab’s built-

in solver, roots. We found that when we use a parameter set that produces a continuous

response to the input, E1tot, such as the base case for this system (see Section 3.1), there

exists only one valid root for each value of input that meets the physical requirements implied

by our system, namely the conservation equations (Equations (53),(54), and (55)) and the

concentrations of all molecules must be real values between zero and Wtot (see Figure 38).

When the system has a parameter set that gives rise to a bistable response, we obtain a

bifurcation. An example of how the analytic solution compares with the numeric solution

for an ultrasensitive, continuous parameter regime can be found below.
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Figure 38: Comparison of analytic solution with numerical results from the ODEs. This confirms
the validity of numeric solution. The system parameters are set as Wtot = 100, E2tot = 20, and
E1tot ∈ [0, 40] with the rate constants set to be a1 = a2 = d1 = d2 = k1 = k2 = d3 = k3 = 1, and
a3 = 0.01 for both the analytic and numeric results.

An example of the solution to System 2 using a parameter regime which gives rise to a

bistable response is found in Figure 39. We observe that for low input values (E1tot ≈ [0, 2.5])

our numerical root solvers find three valid roots to the cubic solution in W . Beyond a
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threshold value in input (E1tot > 2.5), we find that there is only one root. When we perform

a linear stability analysis on these solutions we find that for these low input values, there is

one unstable root between two stable roots. This relates to the bistable behaviour whereby

a stable solution for W will jump from a large concentration state to a low concentration

state as soon as its concentration passes under the unstable state. This also means that

unlike the parameter regime that gives an ultrasensitive response, it is possible for this

system to have no M-value if the initial concentration of W is located under the unstable

solutions. This is demonstrated in Figure 39 whereby we obtain two profiles of the same

bistable parameter regime using two different initial conditions. The first initial condition

has our system starting with all free substrate found in the unmodified form, W . The second

initial condition has all substrate initially in the modified form, W ∗. We see that in the

latter scenario the system will then remain in the high concentration state as we increase the

input. This is also why if we begin to remove the input, we remain in this state as opposed to

changing back into the low concentration state, like we would in a continuous, ultrasensitive

regime. In the continuous parameter regime above (Figure 38) we only have one solution

to the cubic in W , which is also stable, so we always approach this value regardless of the

initial condition.
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Figure 39: Demonstration of bistability using analytic solution (left) and numeric solutions to
a bistable system under different initial conditions (right). Here empty circles represent a stable
solution whilst solid squares represent an unstable solution. Note that a blue marker represents the
concentration of the unmodified substrate, W , whilst an orange marker represents the concentration
of the modified substrate, W ∗. The initial conditions (I.C.) that the numeric solutions are subject
to involved: I.C. 1 where all free substrate is initially found in the unmodified form such that
Winit = Wtot and I.C. 2 where all free substrate is initially found in the modified form such that
W ∗

init = Wtot. The system parameters are set as Wtot = 100, E2tot = 20, and E1tot ∈ [0, 40] with
the rate constants set to be a1 = a2 = 20, d1 = d2 = k2 = 1, k1 = d3 = k3 = 5, and a3 = 0.1 for
both the analytic and numeric solutions.

3.5 Stochastic Simulations of the Models

We are also interested in examining how these systems behave in a stochastic framework.

This gives us the opportunity to examine cell-to-cell variability in the signalling responses

generated by our models and is able to more accurately encode the behaviour of the system

when molecular concentrations become very low. To do this we have found solutions to
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both systems by implementing reactions 31-33 for System 2 and reactions 34-37 for System

3 into Gillespie’s Stochastic Simulation Algorithm. In the G-K mechanism we observed

that increasing the sensitivity of our system, resulted in an increased variability of our

solutions. We are then interested in examining whether this finding is also observed in

the modified systems. We now examine an ultrasensitive parameter regime which uses the

reference parameter sets defined in Section 3.2 and a graded regime. A graded response

refers to when we decrease the sensitivity and approach a Michaelian response. Due to the

complexity of the new systems it was not feasible to find a parameter regime which achieved

a true Michaelian response as was achieved in the G-K mechanism.

When we examine System 3, with indirect positive autoregulation, we continue to observe

the same behaviours as the G-K mechanism. As seen in Figure 40, for a graded response,

we observe a similar, normal distribution of the modified substrate that shifts to the right

as we increase the input to the system. As the sensitivity increases, we observe that this

distribution changes dramatically as the input alters. Much like the G-K mechanism, when

the input is either side of the M-value (E1tot = 18), the distribution becomes skewed towards

the center. As we approach the M-value, the variability increases dramatically so that the

distribution now spans the range of modified substrate concentrations.

Graded Response Ultrasensitive Response

Figure 40: Stochastic simulations of System 3 using Gillespie’s Stochastic Simulation Algorithm.
Distributions were created by simulating results over 1000 iterations for an increasing input cen-
tered around the M-value (E1tot ≈ 20 for graded and E1tot ≈ 18 for ultrasensitive). The system
parameters are set as Wtot = 100, and E2tot = 20. The graded response was created by setting the
rate constants to be a1 = a2 = a3 = a4 = 0.1, d1 = d2 = k1 = k2 = d4 = k4 = 5, and d3 = 10
with E1tot = {10, 20, 30}. The ultrasensitive response was created by setting the rate constants
to be a1 = a2 = d1 = d2 = k1 = k2 = d4 = 1, a3 = 0.01, a4 = 2 and d3 = k4 = 10 with
E1tot = {15, 18, 21}.

When examining System 2, we can observe that for a graded profile, we obtain similar

distributions as what was observed for System 3 and the G-K mechanism (see Figure 41).

When examining the ultrasensitive reference parameter set of System 2, we are still able

to observe the skewed behaviour of the system as we approach the M-value (E1tot = 12)

from the left, and the increased variability at the M-value. However instead of observing

the skewed behaviour after the M-value, we observe the normally distributed behaviour of a
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graded profile. This is due to the mixed sensitivity that we observed in this profile, whereby

the system is initially very sensitive for lower input values and then the sensitivity decreases

dramatically after the M-value.

Graded Response Ultrasensitive Response

Figure 41: Stochastic simulations of System 2 using Gillespie’s Stochastic Simulation Algorithm.
Distributions were created by simulating results over 1000 iterations for an increasing input cen-
tered around the M-value (E1tot ≈ 10 for graded and E1tot ≈ 12 for ultrasensitive). The system
parameters are set as Wtot = 100, and E2tot = 20. The graded response was created by setting
the rate constants to be a1 = a2 = 0.1, d1 = d2 = k1 = 5, k2 = 9, d3 = k3 = 10, and a3 = 0.01
for E1tot = {2, 10, 20}. The ultrasensitive response was created by setting the rate constants to be
a1 = a2 = d1 = d2 = k1 = k2 = d3 = k3 = 1, and a3 = 0.01 for E1tot = {10, 12, 15}.

We can also investigate how bistability behaves using stochastic methods as shown in

Figure 42. Unlike some instances of the deterministic solvers where it was difficult to observe

the discontinuity, we can now clearly observe the two possible states that the system can be

in. When the input is less than or greater than the M-value, we tend to have a single Normal

distribution which has a smaller variability. This is particularly clear in System 3. At values

of input around the M-value, we observe bimodal distributions as the modified substrate

begins transferring into the larger steady state. These distributions no longer demonstrate

the skewed behaviour or high variability previously observed in an ultrasensitive parameter

regime.

63



System 2 System 3

Figure 42: Stochastic simulations of models with bistable behaviour using Gillespie’s Stochastic
Simulation Algorithm. We observe that both systems achieve bimodal distributions. Distributions
were created by simulating results over 1000 iterations for an increasing input centered around the
M-value (E1tot ≈ 12 for System 2 and E1tot ≈ 13 for System 3). The system parameters are set as
Wtot = 100, and E2tot = 20. System 2 was created by setting the rate constants to be a1 = a2 = 2,
d1 = d2 = k1 = k2 = 1, d3 = k3 = 5, and a3 = 0.01 for E1tot = {10, 12, 14}. System 3 was created
by setting the rate constants to be a1 = a2 = d4 = 2, d1 = d2 = k1 = k2 = 1, a3 = 0.1, d3 = 10,
a4 = 4, and k4 = 20 with E1tot = {10, 13, 16}.

We can also compare a selection of stochastic simulations of the time-dependent be-

haviour of System 2 in order to provide a further illustration of the qualitative differences

between ultrasensitive and bistable responses. In Figure 43 we examine ten simulations

using a parameter regime consistent with ultrasensitivity, as used for Figure 41, and ten

simulations using a regime consistent with bistability, as used for Figure 42. This shows

that while both cases exhibit a high degree of variability in W ∗ by the end of the simulation,

the values separate into two distinct clusters for the bistable case. By contrast, the values

at the end-time exhibit a single, large cluster for the ultrasensitive case.
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Figure 43: Comparison of individual stochastic simulations of System 2 with ultrasensitive and
bistable behaviours using Gillespie’s Stochastic Simulation Algorithm. The system parameters are
set as Wtot = 100, E2tot = 20, and E1tot = 12. The ultrasensitive response was created by setting
the rate constants to be a1 = a2 = d1 = d2 = k1 = k2 = d3 = k3 = 1, and a3 = 0.01. The bistable
response was created by setting the rate constants to be a1 = a2 = 2, d1 = d2 = k1 = k2 = 1,
d3 = k3 = 5, and a3 = 0.01.

It is worth noting that the parameter regimes chosen in Figures 42 and 43 promote

bistability over a significant range of E1tot values. For parameter regimes which only admit
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bistability for a very narrow interval of E1tot values on the other hand, we cannot distinguish

between ultrasensitive and bistable responses from stochastic simulations alone. In these

cases, the clusters that typically characterise bistability will exhibit a high degree of overlap,

thus closely resembling the variability associated with ultrasensitivity.

3.6 Summary

Preliminary work (Appendix B.1) suggested that the addition of positive autoregulation to

the basic G-K mechanism may allow us to obtain ultrasensitivity in a reversible covalent-

modification cycle. We proposed two possible forms: direct and indirect PAR. We are

particularly interested in investigating whether it is possible to increase the sensitivity and

conversion potential of the G-K mechanism through these novel modifications.

For the system with direct PAR (System 2) we introduced a third reaction whereby the

modified form of substrate could act as an enzyme and catalyse the unmodified substrate.

In this system we were able to achieve a similar level of conversion potential as the G-K

mechanism. This system also tends to produce mixed sensitivity whereby two different

sensitivities were obtained on the two sides of the M-value. Now the Hill coefficient acts

as an average sensitivity measurement. This indicated that the G-K mechanism was more

sensitive than System 2.

The system with indirect PAR (System 3) was created by introducing two reactions to

the reversible covalent-modification cycle. The first reaction allowed the modified substrate

to form a complex with the free enzyme, E1. This complex could then be used in a fourth

reaction to catalyse the unmodified substrate and create more of the modified substrate. In

comparison with the G-K mechanism, we are now able to increase the conversion potential

and sensitivity without the mixed sensitivity found in the direct PAR implementation. This

system also demonstrates another behaviour associated with the third reaction, whereby

once the substrate has been fully converted into the modified form, the concentration of the

modified substrate begins to decrease as we increase the input. This was directly related

to the ratio of rate constants associated with this third reaction and decreasing this ratio

allows us to essentially remove this effect.

We also found that both of these systems are prone to bistability. This behaviour restricts

how the system can behave and whilst the change in states occurs almost simultaneously, we

do not refer to this as ultrasensitivity. This behaviour was investigated via numerical simula-

tions of the Mass-Action equations, but also via an analytic solution that was developed for

System 2 and stochastic simulations for both Systems 2 and 3. These other methods clearly

highlighted the discontinuous nature of bistability as opposed to the continuous behaviour

that we require for ultrasensitivity.

By including these added reactions, the complexity of the system was greatly increased

and it became difficult to investigate the behaviour of these systems through the analytic

methods used for the G-K mechanism. However by examining numerical simulations we
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found that in most cases these systems perform almost identically to the G-K mechanism

in terms of the effect of altering the substrate abundance, Michaelis constants and the

individual rate constants. The most obvious exception to this is the effect of Km1 in System 3

whereby it now has the complete opposite effect to what was observed in the G-K mechanism.

This could be linked to the introduced competition that the forward reaction has with both

the third reaction, for E1, and the fourth reaction, for W . For the added reactions we found

that the third reaction in System 2 and the fourth in System 3 behave much like the forward

reaction in the G-K mechanism as these added reactions take a very similar form. We also

used stochastic simulations to investigate the behaviour of these systems. This showed that

these systems display the same increased variability with ultrasensitivity that we observed

in the G-K mechanism. We were also able to observe the mixed sensitivity behaviour of

System 2 through this method which showed that the variability in this system actually

decreases as we increase the input and the system becomes much more graded.

Overall, our results clearly show that by implementing positive autoregulation into a

reversible covalent-modification cycle we can obtain improvements in sensitivity and conver-

sion potential whilst maintaining similar behaviours to the G-K mechanism and while able

to better support comparable concentrations of substrate and enzyme. Our results also show

that these improvements came at the expense of introducing the potential for bistability in

these new models.
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4 Conclusion

4.1 Summary and Discussion

In their 1981 paper [26], Goldbeter and Koshland defined zero-order ultrasensitivity in a

reversible covalent-modification cycle. This system, which we refer to as the G-K mechanism,

achieved an ultrasensitive response when under the condition that the concentration of

substrate was present in vast excess over the concentration of enzyme. It is now known that

intracellular signalling networks involve enzyme-substrate combinations that exist at more

comparable concentrations [11]. Our work has demonstrated the detrimental effect that

having such comparable concentrations of enzyme and substrate has on ultrasensitivity, and

key features of the steady-state substrate concentration profiles. We have defined these

key features throughout our analysis of this system in order to differentiate effects on the

profiles that could be crucial for later implementations of this system into larger network

mechanisms. These new terms include the conversion potential, the mid-conversion stimulus

(M-value), and mixed sensitivity.

We also investigated the effects of substrate concentration on sensitivity. When we ex-

amined these features we found that the substrate abundance had a key role in altering

sensitivity and conversion potential. This effect, particularly on the conversion potential,

could be linked to high concentrations of complexes that made up a significant proportion

of the system when we introduced comparable concentrations of enzyme and substrate. We

also investigated the importance of the Michaelis constants and the catalytic rate constants

have in effecting the above profile features. Goldbeter and Koshland showed that increasing

the Michaelis constants decreases sensitivity [26], but as we have shown, also increases the

conversion potential. Altering these constants individually also resulted in a profile which

shifts the M-value, and alters conversion potential. When altering the rate constants we

found that, if the Michaelis constant is unchanged, only the catalytic constant has an effect

on the profile. In particular, if we increase k1, or decrease k2, both the sensitivity and con-

version potential increase, and the M-value decreases. Understanding how these parameters

can alter the profile allows us to obtain some insight into the limits of ultrasensitivity in

covalent modification cycles. This will be of particular use when studying the embedding of

these covalent modification cycles into larger signalling networks. As we have seen here, hav-

ing comparable concentrations of enzyme and substrate generally has a significant negative

effect on the conversion potential and sensitivity.

This is the first study, to our knowledge, that highlights the potential for mixed sensi-

tivity in covalent modification cycles. This is important because, for these models, the Hill

coefficient can only capture the average sensitivity in the neighbourhood of the M-value,

and results in a misleading measure of ultrasensitivity in these systems.

In this work we have also proposed two possible positive autoregulation (PAR) strate-

gies into the G-K mechanism. PAR refers to a mechanism whereby the output of a system
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increases its own production. This was integrated into the reversible covalent-modification

system by two possible implementations: indirect and direct PAR. The direct implemen-

tation (System 2), added a third reaction whereby the modified substrate now acted as an

enzyme to modify the unmodified substrate. For the indirect implementation (System 3),

we introduced two new reactions. The third reaction enabled the creation of a new complex,

C3, which combines the modified substrate and the forward catalysing enzyme, E1. This

complex can then catalyse W to create more modified substrate in the fourth reaction.

We then compared both of these new models with the G-K mechanism under similar

parameter regimes. We first examined parameter regimes where each rate constant was set

to unity, but this resulted in profiles which had very poor features, particularly in terms of

the conversion potential and M-value. By only altering the rate constants for the reactions

which were not also present in the G-K mechanism, we were able to "optimise" parameter

regimes for the modified systems. For System 2 the profile was able to match the conversion

potential of the G-K mechanism and had a small decrease (left shift) in the M-value. Most

important was the sensitivity of this dose-response profile. This system tended to create a

profile which had mixed sensitivity where the sensitivity was significantly higher prior to the

M-value. This meant that in comparison to the G-K mechanism we were able to improve

on the sensitivity prior to the M-value, but the average sensitivity, as given by the Hill

coefficient, was higher in the G-K mechanism. For System 3 the profile was able to improve

upon both the conversion potential and the sensitivity of the G-K mechanism.

When we examined the behaviours of these systems we also found that in the majority

of cases, altering substrate abundance, the Michaelis constants and the magnitude of the

individual rate constants for the reactions present in the three systems, had the same effects

on the dose-response profile. When examining the added reactions for Systems 2 and 3 we

also observed that these behaved much like when altering the Michaelis constant or rate

constants associated with the forward reaction in the G-K mechanism. When we examined

these systems using stochastic simulations we found that, in all cases, increasing the sen-

sitivity of a system also increased the variability of its output. Of particular interest was

examining the mixed sensitivity of System 2 which demonstrated both the high variability

of an ultrasensitive profile, and the low variability of a graded profile depending on whether

the input was before or after the M-value.

A particular concern of the modified systems was the possibility of bistability for some pa-

rameter regimes. This behaviour involved the substrate concentrations essentially jumping

from a low state to a high state, or vice versa, as the input crossed a threshold value. Thus,

unlike ultrasensitivity (which involves a highly sensitive, but continuous, dose-response pro-

file), this dose-response profile involves a discontinuity. In stochastic solutions this disconti-

nuity gave rise to a bimodal concentration distribution as opposed to the single distribution

for the continuous (ultrasensitive) cases.

We can consider the possible implementations of these modified systems in which they
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will be able to improve upon the performance of the G-K mechanism. In a mechanism

which requires a lower concentration of the modified substrate to be achieved rapidly, and

with less input, System 2 is able to achieve improvements on the performance of the G-

K mechanism. System 3 may be particularly suited to a signalling network that requires

a higher concentration of the modified substrate and a more ultrasensitive response than

the G-K mechanism can provide. However, due to the potential for bistability, these new

systems may have important limitations in comparison with the G-K mechanism.

4.2 Direction of Future Work

There are a number of possible extensions of our thorough analysis of covalent-modification

cycles for future work.

As discussed a number of times throughout this report, the Hill coefficient which is

long established as a measure of sensitivity, does not allow us to capture the asymmetric

dose-response profiles that were observed for many parameter regimes. For these profiles

the Hill coefficient acts as an average sensitivity measurement. For this reason we are

interested in developing a more flexible measure of sensitivity that accommodates both

symmetric (uniform ultrasensitivity) and asymmetric (mixed ultrasensitivity) profiles. This

is particularly important when comparing the sensitivity of the new systems presented in

this work.

There is also potential for analytical (or computational, if need be) work on identifying

the precise location of the M-value (for continuous dose-response profiles) or bifurcation

point (for bistable profiles). We are then interested in understanding which parameters, or

groupings of parameters, can "tune" these features.

In addition, noting the requirement for embedded ultrasensitivity in many robust perfect

adaptation (RPA) capable network modules [8], a potential major extension of this work

is to investigate implementations of the G-K mechanism and the modified systems into

larger signalling networks. RPA is found in a large array of biological systems [55, 33, 9, 4,

30, 46, 15, 10, 16], from large scale organism development [10, 16], to cellular level signal

transduction and gene regulation [4, 30, 46]. The ability to alter the dose-response profiles

of the systems investigated throughout this report allows for an investigation into how the

behaviour and features of ultrasensitivity may effect these larger mechanisms and allow us

to achieve the RPA behaviours.
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Appendices

A Goldbeter-Koshland Mechanism

A.1 Michaelis-Menten Equation

Here we derive the Michaelis-Menten equation from the mass-action equations corresponding

to (2) in Chapter 1. This system of equations is given by,

dE
dt

= −k1ES + k2C + k3C, (59)

dS
dt

= −k1ES + k2C, (60)

dC
dt

= k1ES − k2C − k3C, (61)

dP
dt

= k3C, (62)

with the conservation equations given by,

Stot = Sfree + C + P (63)

Etot = Efree + C (64)

To begin with we define v to be the initial velocity of the reaction, i.e. the production rate

of P ,

v =
dP
dt

= k3C (65)

We now make the assumptions that P � S and E � S. This simplifies equation (63) to

Stot = S (66)

For our final solution we require equation (65) to be strictly in terms of measurable variables

i.e. S and Etot. Therefore it is required that C be replaced by some function of these variables

by examining the quasi-steady state of C. The steady state is achieved when the production

and removal rates are equal, i.e.

k1SE = (k2 + k3)C (67)

Rearranging this gives

k2 + k3
k1

=
SE

C
(68)
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We now need to remove the dependence on E. We can do this by rearranging equation (64)

to get

E = Etot − C. (69)

Substituting this into equation (68) and setting Km = k2+k3

k1
,

Km =
S(Etot − C)

C
(70)

Rearranging this equation to have C as the subject gives,

C =
EtotS

Km + S
(71)

Substitute equation (71) into (65) to now obtain an expression for v that is only in terms of

measurable quantities,

v =
k3EtotS

Km + S
(72)

Using equation (71) it can also be noted that, when the enzyme is saturated (C = Etot),

the maximum velocity occurs, and is given by

Vmax = k3Etot. (73)

Substituting this into equation (72) gives the Michaelis-Menten equation,

v =
VmaxS

Km + S
. (74)

A.2 Characterisation of a Michaelian Enzyme

Here we prove that the Michaelis-Menten equation requires an 81-fold increase in input to

increase from 10% to 90% of the maximum output. These values first need to be expressed in

terms of the Michaelis-Menten equation whereby 10% of the maximum output (i.e. 0.1Vmax)

is given by,

0.1Vmax =
VmaxS1

Km + S1
, (75)

where S1 is the input at which 10% of the maximum output is achieved. Rearranging and

expanding this expanding this expression gives,

0.1Km = 0.9S1 (76)
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We then obtain a similar expression for 90% of the maximum output(i.e. 0.9Vmax).

0.9Vmax =
VmaxS2

Km + S2
(77)

Expanding and rearranging gives,

0.9Km = 0.1S2 (78)

We can now take the ratio of these two equations to give,

0.1Km

0.9Km
=

0.9S1

0.1S2
(79)

Rearranging this can now remove the dependence on the Mihcaelis constants and gives the

final expression,

S2 = 81S1 (80)

This demonstrates that the input required to achieve 90% of the maximum output, S2, is

81-fold the input to achieve 10% of the maximum output, S1.

A.3 Analytic Solution to a Reversible Covalent-Modification Sys-

tem Under the Assumption of Negligible Enzyme-Substrate

Complexes

Here we derive the quadratic solution to the G-K mechanism. This system is described by

the system of equations (7)-(13) developed in Section 2.2. These are also included below.

Mass action equations:

dW
dt

= d1C1 + k2C2 − a1WE1, (81)

dW ∗

dt
= d2C2 + k1C1 − a2W

∗E2, (82)

dC1

dt
= a1WE1 − d1C1 − k1C1, (83)

dC2

dt
= a2W

∗E2 − d2C2 − k2C2. (84)

Conservation equations:

Wtot = W +W ∗ + C1 + C2, (85)

E1tot = E1 + C1, (86)

E2tot = E2 + C2. (87)
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We now introduce the assumption that the total concentration of substrate is much larger

than the concentration of enzyme. This now allows us to exclude the dependence on the

complexes, C1 and C2, in the conservation equation for the total substrate. Equation (85)

can then be re-written as

Wtot = W +W ∗. (88)

For this system to be at steady state we require the production of the modified substrate to

be equal to the production of the unmodified substrate i.e.

k1C1 = k2C2. (89)

To then develop a solution for the substrates we need to express C1 and C2 as a function of

measurable quantities. This follows a process identical to that used in Appendix A.1. For

C1 we use equation (83) at quasi-steady state to examine when the production is equal to

the removal of complex.

k1WE1 = (d1 + k1)C1

Rearranging this we obtain

Km1 =
WE1

C1
, (90)

where Km1 = d1+k1

a1
. We need to remove the dependence on the enzyme as this is not a

measurable quantity. We can do this by using the rearranged equation (86)

E1 = E1tot − C1.

Substituting this into equation (90) we can rearrange to obtain an expression for C1. This

is in the same form of the Michaelis-Menten equation.

C1 =
E1totW

Km1 +W
(91)

We can also apply this process to C2 to obtain the following expression

C2 =
E2totW

∗

Km2 +W ∗ , (92)

where Km2 = d2+k2

a2
. We can now substitute equations (91) and (92) into equation (89).

k1E1totW

Km1 +W
=

k2E2totW∗
Km2 +W ∗ (93)
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We now wish to remove the dependence on both W and W ∗. We do this by rearranging

equation (88) to obtain W = Wtot −W ∗. We can then substitute this into equation (93).

k1E1tot(Wtot −W ∗)
Km1 + wtot −W ∗ =

k2E2totW
∗

Km2 +W ∗ (94)

Rearranging this gives

V1

V2
(K2m +W ∗)(Wtot −W ∗) = W ∗(K1m +Wtot −W ∗) (95)

where V1 = k1E1tot and V2 = k2E1tot. We now expand this expression and collect to obtain

a quadratic in W ∗. We also non-dimensionalise this result by dividing through by W 2
tot to

obtain

W̄ ∗2(1− V1

V2
) + W̄ ∗

[(
V1

V2
− 1

)
−K2

(
V1

V2
+

K1

K2

)]
+

V1

V2
K2 = 0 (96)

where W̄ ∗ = W∗
Wtot

, K1 = Km1

Wtot
and K2 = Km2

Wtot
. We are then able to obtain a solution by

solving this with the quadratic formula.

W̄ ∗ =

[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]
−±

√[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]2
+ 4K2

(
V1

V2
− 1

)
V1

V2

2
(

V1

V2
− 1

)

(97)

Since we are not able to accept negative values solutions as a protein concentration, we take

the positive roots as the solution for W̄ ∗

W̄ ∗ =

[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]
+

√[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]2
+ 4K2

(
V1

V2
− 1

)
V1

V2

2
(

V1

V2
− 1

)

(98)

We have now obtained expressions for W ∗ (using equation (98)) and W (using a non-

dimensionalised equation (88)).

W ∗ =

[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]
+

√[(
V1

V2
− 1

)
−K2

(
V1

V2
+ K1

K2

)]2
+ 4K2

(
V1

V2
− 1

)
V1

V2

2
(

V1

V2
− 1

)

W = 1−W ∗
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A.4 Analytic Solution to a Reversible Covalent-Modification Sys-

tem Accounting For Non-Negligible Complex Formation

Here we derive the cubic equation in W for the G-K mechanism at steady state. This system

uses the same set of equations as outlined in Appendix A.3 as outlined below.

Mass action equations:

dW
dt

= d1C1 + k2C2 − a1WE1, (99)

dW ∗

dt
= d2C2 + k1C1 − a2W

∗E2, (100)

dC1

dt
= a1WE1 − d1C1 − k1C1, (101)

dC2

dt
= a2W

∗E2 − d2C2 − k2C2. (102)

Conservation equations:

Wtot = W +W ∗ + C1 + C2, (103)

E1tot = E1 + C1, (104)

E2tot = E2 + C2. (105)

We can now follow an identical procedure to that in Appendix A.3 to obtain the following

expression for when the production of W is equal to the production of W ∗ (see up to equation

(93) in Appendix A.3)

k1E1totW

Km1 +W
=

k2E2totW∗
Km2 +W ∗ , (106)

where the constants, Km1 = d1+k1

a1
and Km2 = d2+k2

a2
are the Michaelis constants associated

with each reaction. We also obtain steady state expressions for C1 and C2 as given by the

respective equations (91) and (92) in Appendix A.3,

C1 =
E1totW

Km1 +W
, (107)

C2 =
E2totW

∗

Km2 +W ∗ , . (108)

We now wish to remove the dependence on both W and W ∗. We do this by rearranging

equation (103) to obtain W ∗ = Wtot − W − C1 − C2. We can then substitute this into

equation (106).

k1E1totW

Km1 +W
=

k2E2tot(Wtot −W − C1 − C2)

Km2 + (Wtot −W − C1 − C2)
(109)
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Rearranging this gives

V1

V2
W (K2m +Wtot −W − C1 − C2) = (K1m +W )(Wtot −W − C1 − C2) (110)

where V1 = k1E1tot and V2 = k2E1tot.

By removing the dependence on W ∗ we have now reintroduced C1 and C2 back into the

expression. Since C1 is only dependent on W we are able to use equation (107) to remove

the dependence on C1. However we find that C2 is dependent on W ∗ so we are not able

to use equation (108) to remove this dependence. Instead we now examine the mass action

equations (99) and (101). At steady state, adding these equations gives,

0 = k2C2 − k1C1 (111)

Rearranging this gives an expression for the relationship between C2 and C1,

C2 =
k1
k2

C1 (112)

By using equations (107) and (112) we can remove the dependence on C1 and C2 in equation

(110) to obtain,

V1

V2
W

(
K2m +Wtot −W − E1totW

K1m +W
(1 +

k1
k2

)

)
= (K1m +W )

(
Wtot −W − E1totW

K1m +W
(1 +

k1
k2

)

)

By multiplying through by K1m +W to remove the denominator that has now been intro-

duced, and expanding, this takes the form of the cubic,

W 3

[
1− V1

V2

]
+W 2

[
V1

V2

(
K2m −K1m +Wtot − E1tot

(
1 +

k1
k2

))
−Wtot + E1tot

(
1 +

k1
k2

)
+ 2K1m

]

+W

[
V1

V2
(K1mK2m +K1mWtot) +K2

1m +K1mE1tot

(
1 +

k1
k2

)
− 2K1mWtot

]
−K2

1m = 0

This equation can then be non-dimensionalised by dividing through by W 3
tot. To match

the notation of the original analytical solution, the non-dimensionalised form of W will be

continued to be written as W . Non-dimensionalised constants are rewritten as K1 = K1m

Wtot
,

K2 = K2m

Wtot
, ε1 = E1tot

Wtot
and ε2 = E2tot

Wtot
. To simplify this equation the ratio of inputs can

be rewritten as α = V1

V2
. It is also important to note the use of epsilon in regards to the

non-dimensionalised form of the total enzymes are this is typically reserved for small values.

Rearranging the non-dimensionalised form to match that of the original gives,

W 3{1− α}+W 2

{
(K1 +K2α) + (1− α)(K1 + ε1

(
1 +

k1
k2

)
− 1)

}

+K1W

{
(K1 +K2α) + (α− 2) + ε1

(
1 +

k1
k2

)}
−K2

1 = 0
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By noting that ε2α = E2tot

Wtot

k1E1tot

k2E2tot
= k1

k2
ε1, a matching solution to the original found by

Goldbeter and Koshland can be achieved,

W 3{1− α}+W 2{(K1 +K2α) + (1− α)(K1 + ε1 + ε2α− 1)} (113)

+K1W{(K1 +K2α) + (α− 2) + (ε1 + ε2α)} −K2
1 = 0 (114)

We have now obtained a cubic equation in W . By solving for the roots of this equations

we obtain the concentration of W at steady state. This can then be used to calculate the

concentrations of W ∗, C1, and C2 using non-dimensionalised versions of equations (103),

(107), and (108) respectively.

C1 =
ε1W

K1 +W
(115)

C2 =
k1
k2

C1 (116)

W ∗ = 1−W − C1 − C2 (117)

A.5 Detailed Results of G-K Mechanism Tests

The following table includes the results for the Hill coefficient and conversion potential for

the tests as described in Chapter 2 Figures 14, 15, 16, and 17.

Hill Coefficient Conversion Potential

Line Type Solid Dashed Dotted Solid Dashed Dotted

Test 1 17.4859 293.6902 881.0852 0.59691 0.95904 0.9959

Test 2 9.6593 17.4859 27.48 0.55876 0.59691 0.60457

Test 3 7.1461 17.4859 29.1955 0.62118 0.59691 0.59142

Test 4 5.2016 17.4859 80.0787 0.58858 0.59691 0.59934

Test 5 17.4859 17.4859 0.59691 0.59691

Test 6 17.4859 19.6934 0.59691 0.73495

Test 7 17.4859 18.314 0.59691 0.6667

Test 8 12.333 17.4859 19.1177 0.21343 0.59691 0.70095

Test 9 19.1177 17.4859 12.333 0.70095 0.59691 0.21343

Test 10 17.4859 17.4859 17.4859 0.59691 0.59691 0.59691

A.6 Mid-Conversion Stimulus (M-value) Function Derivation

Here we derive the equation that governs the occurrence of the M-value. In order to obtain

this expression we examine the system at steady state. This process is covered in detail in

Appendix A.3. The steady state is given by the balancer equation where the production of

W is equal to the production of W ∗.

k1C1 = k2C2
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We must now express the concentration of these complexes as function of measurable quan-

tities. As shown in Appendix A.3 the steady state concentration of these complexes are

given by,

C1 =
E1totW

Km1 +W

C2 =
E2totW

∗

Km2 +W ∗

By then substituting this in to the balancer equation, we get that

k1E1totW

Km1 +W
=

k2E2totW
∗

Km2 +W ∗

We now set W = W ∗ as this is defined as when the M-value occurs. We then rearrange to

obtain an expression for E1tot,

k1E1totW

Km1 +W
=

k2E2totW

Km2 +W

k1E1totW (Km2 +W ) = k2E2totW (Km1 +W )

k1E1tot(Km2 +W ) = k2E2tot(Km1 +W )

E1tot = E2tot
k2(Km1 +W )

k1(Km2 +W )

Since the M-value is the input value when the substrate concentrations are equal, we can

set E1tot = M-value. We therefore have obtained an expression for the M-value.

M-value = E2tot
k2(Km1 +W )

k1(Km2 +W )

B Simulation Data For Positive Autoregulation Models

B.1 Analytical Investigation of Covalent Modification Cycle with

Positive Autoregulation

Here we investigate the effect of including positive autoregulation (PAR) on ultrasensitivity.

We first use the Michaelis-Menten equation for each of the two independent reactions in the

reversible covalent modification cycle. We introduce PAR to this approximation by including

W ∗. It’s the term associated with its own creation.

dW ∗

dt
=

k1E1WW ∗

K1 +W
− k2E2W

∗

K2 +W ∗
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We then investigate the case when K1 � Wtot −W ∗ and K2 � W ∗. The rate of change in

W ∗ then becomes

dW ∗

dt
≈ k1E1totW

∗ − k2
K2

E2totW
∗

= W ∗
(
k1E1 − k2

K2
E2

)

We now examine the system at steady state so that there is no longer any change in W ∗ i.e.
dW∗
dt = 0.

0 ≈ W ∗
(
k1E1 − k2

K2
E2

)

0 ≈ k1E1 − k2
K2

E2

k1E1 ≈ k2
K2

E2

This demonstrates that at steady state E1 is approximately a constant for all values of W ∗.

We can then conclude that since we obtain approximately all values of W ∗ for a constant

E1, then this system, with PAR, must be able to achieve an ultrasensitive response.

B.2 Comparing the G-K Mechanism and System 2

The following table includes the results for the Hill coefficient and conversion potential for

the tests as described in Chapter 3 applied to System 2 and the G-K Mechanism (Figures

31, 32, 34).

G-K Mechanism

Hill Coefficient Conversion Potential

Line Type Solid Dashed Dotted Solid Dashed Dotted

Test 1 9.8638 125.8568 881.0852 0.59428 0.95809 0.9958

Test 2 6.6617 9.8638 14.6908 0.52188 0.59428 0.60897

Test 3 4.5311 9.8638 17.3281 0.6389 0.59428 0.583

Test 4 9.8638 9.8638 9.8638 0.59428 0.59428 0.59428

Test 5 3.5466 9.8638 39.9092 0.58399 0.59428 0.59871

Test 6 7.4569 9.8638 10.7294 0.22454 0.59428 0.70189

Test 7 10.7294 9.8638 7.4569 0.70189 0.59428 0.22454

Test 8 9.8638 9.8638 9.8638 0.59428 0.59428 0.59428

Test 9 9.8638 9.8638 9.8638 0.59428 0.59428 0.59428

System 2
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Hill Coefficient Conversion Potential

Line Type Solid Dashed Dotted Solid Dashed Dotted

Test 1 8.4336 Inf Inf 0.5901 0.95351 0.99449

Test 2 6.2489 8.4336 11.8022 0.51901 0.5901 0.6079

Test 3 3.5222 8.4336 15.1279 0.63528 0.5901 0.57865

Test 4 9.5701 8.4336 4.2559 0.59341 0.5901 0.57671

Test 5 3.4099 8.4336 15.7781 0.58305 0.5901 0.5934

Test 6 9.4351 8.4336 7.8237 0.32162 0.5901 0.69871

Test 7 7.0988 8.4336 8.4036 0.69992 0.5901 0.27256

Test 8 8.378 8.4336 8.9059 0.58693 0.5901 0.59605

Test 9 8.4336 8.4336 8.4336 0.5901 0.5901 0.5901

B.3 Comparing the G-K Mechanism and System 3

The following table includes the results for the Hill coefficient and conversion potential for

the tests as described in Chapter 3 applied to System 3 and the G-K Mechanism (Figures

31, 33, 35).

G-K Mechanism

Hill Coefficient Conversion Potential

Line Type Solid Dashed Dotted Solid Dashed Dotted

Test 1 9.8638 125.8568 881.0852 0.59428 0.95809 0.9958

Test 2 6.6617 9.8638 14.6908 0.52188 0.59428 0.60897

Test 3 4.5311 9.8638 17.3281 0.6389 0.59428 0.583

Test 4 9.8638 9.8638 9.8638 0.59428 0.59428 0.59428

Test 5 9.8638 9.8638 9.8638 0.59428 0.59428 0.59428

Test 6 3.5466 9.8638 39.9092 0.58399 0.59428 0.59871

Test 7 7.4569 9.8638 10.7294 0.22454 0.59428 0.70189

Test 8 10.7294 9.8638 7.4569 0.70189 0.59428 0.22454

Test 9 9.8638 9.8638 9.8638 0.59428 0.59428 0.59428

Test 10 9.8638 9.8638 9.8638 0.59428 0.59428 0.59428

Test 11 9.8638 9.8638 9.8638 0.59428 0.59428 0.59428

System 3
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Hill Coefficient Conversion Potential

Line Type Solid Dashed Dotted Solid Dashed Dotted

Test 1 15.2754 Inf Inf 0.61301 0.96545 0.99614

Test 2 20.6222 15.2754 16.5252 0.64599 0.61301 0.60591

Test 3 5.5735 15.2754 44.1278 0.6527 0.61301 0.60314

Test 4 10.6688 15.2754 91.952 0.59929 0.61301 0.64788

Test 5 10.838 15.2754 128.7449 0.58922 0.61301 0.67545

Test 6 7.579 15.2754 46.6242 0.61106 0.61301 0.61529

Test 7 17.0548 15.2754 13.7993 0.44931 0.61301 0.69306

Test 8 18.6425 15.2754 10.9772 0.70327 0.61301 0.3488

Test 9 15.2754 15.2754 15.2754 0.61301 0.61301 0.61301

Test 10 12.0157 15.2754 32.3093 0.5952 0.61301 0.64157

Test 11 15.2754 15.2754 15.2754 0.61301 0.61301 0.61301

B.4 Summary Table of Parameter Effects

Goldbeter-Koshland Mechanism
Increased Variable Effects

Wtot increased conversion potential, increased sensitivity, (can) shift M-value

Km1 decreased conversion potential, decreased sensitivity, increased M-value,

mixed sensitivity

Km2 increased conversion potential, decreased sensitivity, decreased M-value,

mixed sensitivity

Km1 and Km2 decreased sensitivity

k1 increased conversion potential, increased sensitivity, decreased M-value

k2 decreased conversion potential, decreased sensitivity, increased M-value

k1 and k2 no change
System 2
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Increased Variable Effects

Wtot increased conversion potential, increased sensitivity, decreased M-value,

bistability

Km1 decreased conversion potential, decreased sensitivity, increased M-value,

mixed sensitivity, removes bistability

Km2 increased conversion potential, decreased sensitivity, decreased M-value,

mixed sensitivity, removes bistability

Km3 increased conversion potential, decreased sensitivity, increased M-value,

removes mixed sensitivity, removes bistability

Km1, Km2 and Km3 decreased conversion potential, decreased sensitivity, increased M-value,

mixed sensitivity, removes bistability

k1 increased conversion potential, increased sensitivity, decreased M-value,

mixed sensitivity, bistability

k2 decreased conversion potential, decreased sensitivity, increased M-value,

mixed sensitivity, removes bistability

k3 increased sensitivity, decreased M-value, mixed sensitivity, bistability

k1, k2 and k3 no change
System 3
Increased Variable Effects

Wtot increased conversion potential, increased sensitivity, decreased M-value,

bistability

Km1 increased conversion potential, increased sensitivity, decreased M-value,

mixed sensitivity, bistability

Km2 increased conversion potential, decreased sensitivity, decreased M-value,

mixed sensitivity, removes bistability

Kd decreased conversion potential, decreased sensitivity, increased M-value,

mixed sensitivity, removes bistability, removes decrease in W ∗ after con-

version potential

Km4 decreased conversion potential, decreased sensitivity, increased M-value,

mixed sensitivity, removes bistability

Km1, Km2 and Km4 decreases sensitivity

k1 increased conversion potential, increased sensitivity, decreased M-value

k2 decreased conversion potential, decreased sensitivity, increased M-value

d3 no change

k4 increased conversion potential, increased sensitivity, decreased M-value,

bistability

k1, k2, d3 and k4 no change
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B.5 Derivation of Analytic Solution to System 2

Here we derive the analytic solution to System 2. This system is described by the system

of equations (38)-(44) and (53)-(55) in Section 3.1. These are also included below.

Mass action equations:

dW
dt

= d1C1 + d3C3 + k2C2 − a1WE1 − a3WW ∗, (118)

dW ∗

dt
= d2C2 + d3C3 + k1C1 + 2k3C3 − a2W

∗E2 − a3WW ∗, (119)

dE1

dt
= d1C1 + k1C1 − a1WE1, (120)

dE2

dt
= d2C2 + k2C2 − a2W

∗E2, (121)

dC1

dt
= a1WE1 − d1C1 − k1C1, (122)

dC2

dt
= a2W

∗E2 − d2C2 − k2C2, (123)

dC3

dt
= a3WW ∗ − d3C3 − k3C3. (124)

Conservation equations:

Wtot = W +W ∗ + C1 + C2 + C3, (125)

E1tot = E1 + C1, (126)

E2tot = E2 + C2. (127)

For this system to be at steady state we require the production of the modified substrate to

be equal to the production of the unmodified substrate i.e.

k1C1 + k3C3 = k2C2. (128)

To then develop a solution for the substrates we need to express C1, C2, and C3 as a function

of measurable quantities. The equations for C1 and C2 are obtained using the same method

as Appendix A.3 for equations (91) and (92) to get

C1 =
E1totW

Km1 +W
, (129)

C2 =
E2totW

∗

Km2 +W ∗ . (130)

For C3 we use equation (124) at quasi-steady state to examine when the production is equal

to the removal of the complex.

(d3 + k3)C3 = a3WW ∗ (131)
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This equation is dependent on both W and W ∗. We can remove the dependence on W ∗ by

rearranging equation (125) to obtain

W ∗ = Wtot −W − C1 − C2 − C3 (132)

This equations includes C2 which is still dependent on W ∗. To remove the dependence of

W ∗ we can use equation (128). By applying this to equation (125) we obtain a new equation

for W ∗

W ∗ = Wtot −W − γ1C1 − γ3C3 (133)

where γ∗ = 1 + k∗
k2

. This can then be substituted back into equation (131) and then rear-

ranged to get

C3 =
W (Wtot −W − γ1C1)

Km3 + γ3W
, (134)

where Km3 = d3+k3

a3
. Substituting in equation 129 for C1 and rearranging to obtain a single

fraction gives the following equation for C3.

C3 =
W [(Wtot −W )(Km1 +W )− γ1E1totW ]

(Km3 + γ3W )(Km1 +W )
(135)

This can then be used, along with the equation for C1, to complete an equation for W ∗ in

terms of W . Substituting these results into equation (133) and rearranging gives,

W ∗ =
Km3(Wtot −W )(Km1 +W )− γ1E1totKm3W

(Km3 + γ3W )(Km1 +W )
(136)

We are now able to substitute in for C1, C2, and C3 using equations (129), (130), and (135)

respectively into equation (128),

k1E1totW

K1 +W
+

k3W [(Wtot −W )(Km1 +W )− γ1E1totW ]

(Km3 + γ3W )(Km1 +W )
=

k2E2totW
∗

K2 +W ∗

By then substituting in the equation for W ∗ and rearranging, we obtain the equation,

[
k1E1totW (K3 + γ3W ) + k3W [(Wtot −W )(Km1 +W )− γ1E1totW ]

]
×

[
Km2(Km1 +W )(Km3 + γ3W ) +Km3(Wtot −W )(Km1 +W )− γ1E1totKm3W

]

− k2E2tot(Km1 +W )(Km3 + γ3W )
[
Km3(Wtot −W )(Km1 +W )− γ1E1totKm3W

]
= 0
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We then expand this equation and collect the powers of W to obtain the following quintic,

W 5
[
k3(Km3 − γ3Km2)

]
+W 4

[
σ2(Km3 − γ3Km2)− k2σ1 + γ3k2E2totKm3

]
+W 3

[− σ3(Km3 − γ3Km2) + γ3σ6 − σ1σ2 − k3σ4 + k2E2totK
2
m3

]
+W 2

[
γ3σ5 − σ2σ4 + σ6Km3 + σ1σ3

]
+W

[
σ5Km3 + σ3σ4 − γ3k2E2totK

2
m1Km3Wtot

]
− k2E2totK

2
m1K

2
m3Wtot = 0

where

σ1 = Km3Wtot −Km1Km3 +Km2Km3 − γ1E1totKm3 = γ3Km1Km2

σ2 = k3(Km1 −Wtot + γ1E1tot)− γ3k1E1tot

σ3 = k1E1totKm3 + k3Km3Wtot

σ4 = Km1Km2Km3 +Km1Km3Wtot

σ5 = σ7k2E2totKm1 − k2E2totKm1Km3Wtot

σ6 = σ7k2E2tot + k2E2totKm1Km3

σ6 = Km1Km3 −Km3Wtot + σ1E1totKm3

This polynomial can be solve to obtain the steady state concentration of W . This can

then be used to calculate the concentrations of W ∗, C1, C2, and C3 using equations (132),

(129), (128), and (134) respectively.

W ∗ = Wtot −W − C1 − C2 − C3 (137)

C1 =
E1totW

Km1 +W
(138)

C2 =
k1
k2

C1 +
k3
k2

C3 (139)

C3 =
W (Wtot −W − γ1C1)

Km3 + γ3W
(140)

B.6 Derivation of Analytic Solution to System 3

Here we include the attempt at the derivation of an analytic solution to System 3. This

system is described by the system of equations (45)-(52) and (56)-(58) in Section 3.1. These

are also included below.
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Mass action equations:

dW
dt

= d1C1 + k2C2 + d4c4 − a1WE1 − a4WC3, (141)

dW ∗

dt
= k1C1 + d2C2 + d3C3 + k4C4 − a2W

∗E2 − a3W
∗E1, (142)

dE1

dt
= d1C1 + k1C1 + d3C3 − a1WE1 − a3W

∗E1, (143)

dE2

dt
= d2C2 + k2C2 − a2W

∗E2, (144)

dC1

dt
= a1WE1 − d1C1 − k1C1, (145)

dC2

dt
= a2W

∗E2 − d2C2 − k2C2, (146)

dC3

dt
= a3W

∗E1 + d4C4 + k4C4 − d3C3 − a4WC3 (147)

dC4

dt
= a4WC3 − d4C4 − k4C4. (148)

Conservation equations:

Wtot = W +W ∗ + C1 + C2 + C3 + C4, (149)

E1tot = E1 + C1 + C3 + C4, (150)

E2tot = E2 + C2. (151)

For this system to be at steady state we require the production of the modified substrate to

be equal to the production of the unmodified substrate i.e.

k1C1 + k4C4 = k2C2 (152)

To then develop a solution for the substrates we need to express C1, C2, and C4 as a

function of measurable quantities. The equation for C2 is obtained using the same method

as Appendix A.3 for equation (92) to get

C2 =
E2totW

∗

Km2 +W ∗ (153)

where Km2 = d2+k2

a2
. For C1 we are unable to use the same method as we have altered

the conservation equation for E1tot. When we examine equation (148), in order to acquire

an expression for C4, we require an expression for C3 first. To obtain this expression we

examine equations (147) and (148) at steady state to obtain,

KdC3 = W ∗E1 (154)

86



where Kd = d3

a3
is the dissociation rate. We must now remove the dependence on E1 by

using equation (150) to obtain E1 = E1tot − C1 − C3 − C4. Substituting this in gives,

KdC3 = W ∗(E1tot − C1 − C3 − C4) (155)

At this point we can observe that C1 and C4 are dependent on W and C2 and C3 are

dependent on W ∗. We want to remove this dependence on both forms of substrate. We

begin by trying to remove the dependence on W . We can do this by starting to remove the

complexes that are dependent i.e. C1 and C4 by using equation (152) to obtain an expression

for C1, C1 = α2C2 − α4C4, where α∗ = k∗
k1

. Substituting this in to equation (155) gives

KdC3 = W ∗(E1tot − α2C2 − C3 − γ4C4) (156)

where γ4 = 1 − α4 = 1 − k4

k1
. By now substituting in the function for C2 (equation (153))

and rearranging this we can obtain an expression for C3.

C3 =
W ∗[(E1tot − γ4C4)(K2m +W ∗)− α2E2totW

∗]
(Kd +W ∗)(K2m +W ∗)

(157)

To now obtain an expression for C4 we need to investigate equation (148) at steady state.

Km4C4 = WC3

where Km4 = d4+k4

a4
.

To remove the dependence on W we use equation (149), W = Wtot −W ∗ − C1 − C2 −
C3 − C4, and the rearranged form of equation (152), C1 = k2

k1
C2 − k4

k1
C4, to obtain,

Km4C4 = (Wtot −W ∗ − γ2C2 − C3 − γ4C4)C3

where γ2 = 1 + α2 = 1 + k2

k1
. We can now substitute in for C3 using equation (157), and

rearrange to obtain,

0 =
[
(Wtot −W ∗ − γ4C4)(K2m +W ∗)(Kd +W ∗)− γ2E2totW

∗(Kd +W ∗)

−W ∗[(E1tot − γ4C4)(K2m +W ∗)

− α2E2totW
∗]
]
W ∗[(E1tot − γ4C4)(K2m +W ∗)− α2E2totW

∗]

−K4mC4(Kd +W ∗)2(K2m +W ∗)2

This can then be rearranged to obtain a quadratic in C4 whereby the roots of that quadratic

will give the concentrations of C4. These are found by using Matlab solvers to ensure that

this is still a function of W ∗ and other measurable quantities. By further analysis it is

found that there is a common denominator between these roots. To attempt an simplify the
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process for later on, the roots of C4 are used by,

C4 =
C∗

4

2KdW ∗γ2
4(K2m +W ∗)

(158)

where C∗
4 = C̄4[2KdW

∗γ2
4(K2m + W ∗)] to remove the W ∗ from the denominator of the

calculated roots, C̄4.

We now want to find an expression for C1 using equation (145) at steady state.

Km1C1 = WE1

where Km1 = d1+k1

a1
. Using equations (149) and(152), for W and E1 respectively, we obtain,

Km1C1 = (Wtot −W ∗ − C1 − C2 − C3 − C4)(E1tot − C1 − C3 − C4)

We now substitute in the functions for C2, C3 and C4 from equations (153), (157) and (158)

and rearrange to obtain,

0 =[
2KdW

∗γ2
4(K2m +W ∗)2(Kd +W ∗)(Wtot −W ∗ − C1)− E2totW

∗22Kdγ
2
4(K2m +W ∗)(Kd +W ∗)

−W ∗[(2E1totKdW
∗γ2

4(K2m +W ∗)− γ4C
∗
4 )(K2m +W ∗)− 2α2KdW

∗2γ2
4E2tot(K2m +W ∗)]

− C∗
4 (K2m +W ∗)(Kd +W ∗)

][
(E1tot − C1)2KdW

∗γ2
4(K2m +W ∗)2(Kd +W ∗)

−W ∗[(2E1totKdW
∗γ2

4(K2m +W ∗)− γ4C
∗
4 )(K2m +W ∗)− 2α2KdW

∗2γ2
4E2tot(K2m +W ∗)]

− C4 ∗ (K2m +W ∗)(Kd +W ∗)
]
− 4K1mC1K

2
dW

∗2γ4
4(K2m +W ∗)4(Kd +W ∗)2

This can then be expanded and rearranged to obtain a quadratic in C1. Since these roots

are dependent on the value of C∗
4 , we have to find roots for based on the two possible values

of C∗
4 separately, which will give four possible roots of C̄1. Similar to C4 the roots still have

a dependence on W ∗. These roots will once again all have a common denominator so C1

can be expressed by,

C1 =
C∗

1

2KdW ∗γ2
4(K2m +W ∗)

(159)

where C∗
1 = (2KdW

∗γ2
4(K2m +W ∗))C̄1.

We can now find an expression for W ∗ by substituting in the equations for C1, C2 and

C4 (equations (159), (153) and (158)) into equation (152) and rearranging to obtain,

0 = (k1C
∗
1 + k4C

∗
4 )(K2m +W ∗)− 2k2KdE2totγ

2
4W

∗2(K2m +W ∗) (160)

By solving this equation with the four possible combinations of values for C∗
1 and C∗

4 we
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obtain an expression for W ∗ that is not a polynomial. Plotting this has shown that there is

at most two roots within the domain of W ∗. The roots are then found by using ’fzero’.

We then calculate the other variables using the functions for C2, and C3 and recalculating

the roots for C4. To obtain a result for C1 we use the rearranged version of equation (152)

whereby C1 = k2

k1
C2− k4

k1
C4. We then obtain a value for W , E1 and E2 using the conservation

equations associated with those concentrations.
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