Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

(2005) Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects. Physics Education, 40(5), pp. 468-474.

View at publisher

Description

A little-known method of measuring the volume of small objects based on Archimedes principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two other traditional water displacement methods of measuring volume – i.e. placing an object in a measuring cylinder and recording the rise in the water level and immersing the object in a water-filled container with an overflow spout to record the volume of overflow. The accuracy and precision of the three methods was compared using 10 accurately machined PVC cylinders ranging in volume from 1.5 to 15.7 ml. The mean difference between the actual and measured volumes was 3.3 +/- 7.3%, -1.6 +/- 7.2% and 0.03 +/- 0.45%, for the level, overflow and suspension methods respectively. Each measurement was repeated twice to obtain the reproducibility of the three displacement techniques. The reproducibility was –1.7 +/- 8.5%, 0.09 +/- 3% and –0.04 +/- 0.43% for the level, overflow and suspension techniques respectively. The results show that the suspension technique is more accurate and precise than the traditional water displacement methods and is more accurate than measuring volume using Vernier calliper measurements.

Impact and interest:

206 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

6,328 since deposited on 31 Mar 2009
271 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 19356
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
Measurements or Duration: 7 pages
Keywords: Archimedes, Volume
DOI: 10.1088/0031-9120/40/5/008
ISSN: 0031-9120
Pure ID: 34303030
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Australian Research Centre for Aerospace Automation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 31 Mar 2009 23:55
Last Modified: 03 Aug 2024 12:29