Reliability-based load-carrying capacity assessment of bridges using structural health monitoring and nonlinear analysis

, , Nguyen, Andy, & (2018) Reliability-based load-carrying capacity assessment of bridges using structural health monitoring and nonlinear analysis. Structural Health Monitoring, 18(1), pp. 20-34.

[img]
Preview
Accepted Version (PDF 1MB)
SHM Accepted paper_SJ.pdf.

View at publisher

Description

For assessment of existing bridges, load rating is usually performed to assess the capacity against vehicular loading. Codified load rating can be conservative if the rating is not coupled with the field data or if simplifications are incorporated into assessment. Recent changes made to the Australian Bridge assessment code (AS 5100.7) distinguish the difference between design and assessment requirements, and include addition of structural health monitoring for bridge assessment. However, very limited guidelines are provided regarding higher order assessment levels, where more refined approaches are required to optimize the accuracy of the assessment procedure. This article proposes a multi-tier assessment procedure for capacity estimation of existing bridges using a combination of structural health monitoring techniques, advanced nonlinear analysis, and probabilistic approaches to effectively address the safety issues on aging bridges. Assessment of a Box Girder bridge was carried out according to the proposed multi-tier assessment, using data obtained from modal and destructive testing. Results of analysis at different assessment tiers showed that both load-carrying capacity and safety index of the bridge vary significantly if current bridge information is used instead of as-designed bridge information. Findings emerged from this study demonstrated that accuracy of bridge assessment is significantly improved when structural health monitoring techniques along with reliability approaches and nonlinear finite element analysis are incorporated, which will have important implications that are relevant to both practitioners and asset managers.

Impact and interest:

28 citations in Scopus
13 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

170 since deposited on 10 Mar 2020
26 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 197107
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Chan, Tommyorcid.org/0000-0002-5410-8362
Thambiratnam, Davidorcid.org/0000-0001-8486-5236
Measurements or Duration: 15 pages
Keywords: Box Girder, Load-carrying capacity, Nonlinear analysis, Reliability analysis, Structural health monitoring
DOI: 10.1177/1475921718808462
ISSN: 1741-3168
Pure ID: 33408183
Divisions: Past > Institutes > Institute for Future Environments
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Funding:
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 10 Mar 2020 01:34
Last Modified: 24 May 2024 19:24