Free-living evaluation of laboratory-based activity classifiers in preschoolers

, , , , & (2020) Free-living evaluation of laboratory-based activity classifiers in preschoolers. Medicine and Science in Sports and Exercise, 52(5), pp. 1227-1234.

Free-to-read version at publisher website

Description

Machine learning classification models for accelerometer data are potentially more accurate methods to measure physical activity in young children than traditional cut point methods. However, existing algorithms have been trained on laboratory-based activity trials, and their performance has not been investigated under free-living conditions. PURPOSE: This study aimed to evaluate the accuracy of laboratory-trained hip and wrist random forest and support vector machine classifiers for the automatic recognition of five activity classes: sedentary (SED), light-intensity activities and games (LIGHT_AG), walking (WALK), running (RUN), and moderate to vigorous activities and games (MV_AG) in preschool-age children under free-living conditions. METHODS: Thirty-one children (4.0 ± 0.9 yr) were video recorded during a 20-min free-living play session while wearing an ActiGraph GT3X+ on their right hip and nondominant wrist. Direct observation was used to continuously code ground truth activity class and specific activity types occurring within each class using a bespoke two-stage coding scheme. Performance was assessed by calculating overall classification accuracy and extended confusion matrices summarizing class-level accuracy and the frequency of specific activities observed within each class. RESULTS: Accuracy values for the hip and wrist random forest algorithms were 69.4% and 59.1%, respectively. Accuracy values for hip and wrist support vector machine algorithms were 66.4% and 59.3%, respectively. Compared with the laboratory cross validation, accuracy decreased by 11%-15% for the hip classifiers and 19%-21% for the wrist classifiers. Classification accuracy values were 72%-78% for SED, 58%-79% for LIGHT_AG, 71%-84% for MV_AG, 9%-15% for WALK, and 66%-75% for RUN. CONCLUSION: The accuracy of laboratory-based activity classifiers for preschool-age children was attenuated when tested on new data collected under free-living conditions. Future studies should train and test machine learning activity recognition algorithms using accelerometer data collected under free-living conditions.

Impact and interest:

19 citations in Scopus
14 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 197211
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Pavey, Tobyorcid.org/0000-0002-4946-6683
Trost, Stewartorcid.org/0000-0001-9587-3944
Measurements or Duration: 8 pages
DOI: 10.1249/MSS.0000000000002221
ISSN: 0195-9131
Pure ID: 33508227
Divisions: Past > Institutes > Institute of Health and Biomedical Innovation
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Schools > School of Electrical Engineering & Robotics
Funding:
Copyright Owner: 2020 by the American College of Sports Medicine
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 10 Mar 2020 01:37
Last Modified: 06 Apr 2024 09:52