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Abstract

This thesis presents innovative and significantly effective fusion-based TFS models and frame-

works to overcome the above problems in LDA and the relevant features discovered by exist-

ing relevance discovery models. The proposed models—SIF, SIF2 and UR—extend multiple

random sets to model and, therefore, understand the complex relationships between different

entities that affect the weighting process of topical terms in a collection of documents. The

models effectively fuse different features to (1) generalise terms’ weights to the collection level,

(2) alleviate the impact of local terms’ frequency, (3) estimate document segment relevancy and

(4) relax the assumption of a globally generalised topical term weight. This thesis also proposes

two TFS frameworks, USIF and SSIF, which adopt the idea of differentiating between feature

selection and feature weighting processes at two stages to discover relevant features. USIF

integrates topic modelling, document clustering and global statistics to reduce uncertainties

and the impact of highly frequent topics or sub-topics in an unsupervised context. Conversely,

SSIF is supervised and incorporates support vector machines, topic modelling and collection

statistics to reduce the impact of terms that frequently appear in both positive and negative

topics in a document collection, as well as the uncertainties available in relevant documents.

All the proposed models and frameworks are extensively evaluated for information filtering

using a series of experiments based on 50 collections from the standard RCV1 dataset and their

TREC assessors’ relevance judgements. The ability of the proposed models and frameworks in

ranking relevant terms in these collections is also tested. The experimental results, measured

by seven different performance metrics, the percentage of change and the Student’s t-test, show

that SIF, SIF2, UR, USIF and SSIF significantly outperform all state-of-the-art and popular

baseline TFS models, regardless of the type of text feature they adopt, the fusion strategies they

adhere to or the mining and learning algorithm they use.
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Chapter 1

Introduction

1.1 Background and Motivation

Text documents grow exponentially and constitute more than80% of the unstructured data

available on the web or in private storage [Dhar, 2013, Khan et al., 2010]. Some forms of

unstructured text include emails, tweets, reports, articles, logs and reviews [Blei, 2012, Dhar,

2013]. These documents contain invaluable information that needs to be automatically ex-

tracted for the success of many organisations and businesses [Bashar et al., 2014, Dhar, 2013].

However, it is particularly challenging for traditional text mining (TM) and machine-learning

techniques to find useful information in textual data due to the size and nature of text in which

synonymy, polysemy and noise are commonly inherited problems [Croft, 2000, Li et al., 2015,

2010, 2012]. As a dimensionality reduction technique, feature selection plays a major role in

knowledge discovery in databases by improving accuracy andreducing the complexity of many

data-mining and machine-learning algorithms [Aphinyanaphongs et al., 2014, Cai et al., 2010,

Dasgupta et al., 2007]. This can be done automatically by selecting a subset of relevant features

and removing irrelevant, redundant and noisy features [Albathan et al., 2014, Li et al., 2015,

Zhong et al., 2012].

1.1.1 Text Feature Selection

Relevance discovery models endeavour to mine, interpret, understand and rank relevant features

that specifically represent what the user needs [Gao et al., 2014b, Li et al., 2015, 2010, Man

et al., 2009, Zhong et al., 2012]. User information needs can be explicitly expressed by a

search query or inferred from the user’s interests or searchprofile, in the form of a set of

documents [Algarni et al., 2010, Li and Yao, 2002a, Tao et al., 2011, Yuefeng and Ning,

1
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2006]. Discovering and selecting features that are relevant to the user’s needs or interests is

challenging, and remains the subject of much research [Gao et al., 2015, Li et al., 2015, 2010].

In the absence of a user query, relevance feedback—as a set ofdocuments that can be relevant

or irrelevant to a particular topic—provides an effective way to identify text features that can

be used to describe user information needs [Algarni et al., 2010, Tao et al., 2011]. However,

guaranteeing the quality of these features is challenging,as text documents tend to have many

uncertainties in addition to a large number of terms, patterns, noise and multiple unbalanced

sub-topics [Alharbi et al., 2018a, 2017b, Gao et al., 2015, Li et al., 2015]. These problems

have interested TM, natural language processing (NLP), machine learning (ML), information

filtering (IF) and information retrieval (IR) research communities from both theoretical and

empirical perspectives [Li et al., 2015, 2010].

In recent decades, a large number of text feature selection (TFS) techniques have been

developed by these research communities. Within each community, TFS models and frame-

works have been categorised based on first, the intrinsic details of the selection algorithm, into

filter, wrapper, embedded and hybrid [Bolón-Canedo et al., 2013, Li et al., 2017a, Liu and Yu,

2005]; second, whether it requires labelled training data, intosupervised, semi-supervised or

unsupervised methods [Li et al., 2017b, Wang et al., 2017, Zhao et al., 2013]; and third, the

structure of text feature being used, into simple, such as the term-based methods, or complex,

like the phrase-based, pattern-based, topic-based, concept-based or hybrid techniques [Li et al.,

2015, 2010]. In this thesis, a fourth categorisation for TFS techniques is adopted based on

integrating data fusion strategies like early, late and hybrid approaches [Kozorovitsky and

Kurland, 2011b, Lillis et al., 2006, Wu et al., 2014] with the simple or complex structure of text

(identified above as the third classification). Thus, a TFS model is considered an early fusion

model if it uses simple, low-level terms (i.e., no semantic information is considered between

the terms) [Alharbi et al., 2018b, Balazs and Velásquez, 2016] and a late fusion model when

complex, high-level and semantically rich features (e.g.,phrases, patterns, concepts, topics or

a combination of these text features) are used [Alharbi et al., 2018b]. Also, a hybrid fusion

model can be developed by integrating different early and late fusion models for even better

performance [Atrey et al., 2010, Baltrušaitis et al., 2019].

A TFS model for relevance discovery selects the most informative text features, such as

terms [Combarro et al., 2005, Man et al., 2009, Zheng et al., 2004], phrases [Fürnkranz, 1998,

Sebastiani, 2002, Shirakawa et al., 2015], patterns [Algarni and Li, 2013, Li et al., 2015,
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Yuefeng and Ning, 2006], concepts [Li and Zhong, 2004, Shehata et al., 2010, Tao et al., 2011],

topics [Blei et al., 2003, Deerwester et al., 1990, Hofmann, 2001] or different combinations of

these features [Gao et al., 2015, Li et al., 2015, Wang et al., 2007] that describe user information

needs. The selected features are used to represent documents to help TM algorithms, such as

filtering [Gao et al., 2015, Li et al., 2011, 2012], classification [Li et al., 2017c, Shehata et al.,

2007, Yang and Pedersen, 1997] and clustering [Cai et al., 2010, Liu et al., 2003, Shehata

et al., 2010], to be: (1) effective by increasing their accuracy, (2) efficient by reducing the

dimensionality of the feature space and thus, the algorithms take less computational time and

(3) tractable and understandable [Liu et al., 2005, Song et al., 2013]. By focusing on the selected

features, it is possible to understand how and why such algorithms behave a certain way and

produce certain results [Bashar and Li, 2017, 2018, Bashar et al., 2017].

While each text feature has strengths and weaknesses, latent topics that are extracted by

topic modelling algorithms have received much attention inmany applications [Blei et al.,

2010a, Blei, 2012, Blei et al., 2003, Hofmann, 2001]. However, exploiting these topics for

TFS for relevance discovery is still an open research problem, as these algorithms did not show

encouraging results in many recent studies [Alharbi et al., 2017c, Bashar and Li, 2017, Bashar

et al., 2016, Gao et al., 2017, 2015]. Therefore, the focus of this thesis is developing fusion-

based TFS models and frameworks for relevance discovery. These models and frameworks

integrate early and late fusion strategies with other learning algorithms to fuse different features

to manage uncertainties in relevance feedback and overcomethe limitations of topic modelling

algorithms and other TFS techniques in selecting informative topical terms that describe user

information preferences.

1.1.2 Text Feature Fusion Strategies

As there is no single text feature that can encompass all evidence of relevance available in a set

of documents that discusses user information needs, text feature fusion offers an approach that

integrates different features of text with various degreesof relevance for better performance

in many IR, IF, TM and ML applications [Anava et al., 2016, Li et al., 2013, Pickens and

Golovchinsky, 2008]. The fused features are more reliable and can be used to model uncertainty

and thus, increase confidence and robustness of learning algorithms [Balazs and Velásquez,

2016, Croft, 2000, Esteban et al., 2005]. Two main fusion approaches have been employed in

IR and ML, commonly known as the early and late fusion strategies [Balazs and Velásquez,
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2016, Zhang and Balog, 2017]; however, there is also a hybrid strategy that combines thefirst

two approaches [Atrey et al., 2010, Baltrušaitis et al., 2019, Snoek et al., 2005].

1.1.2.1 Early Fusion Strategy

Term-based Models

Most existing TFS models for relevance discovery adopt the early fusion strategy in which no

semantic information is considered among the fused features [Alharbi et al., 2018b]. Popular

examples are the term-based methods, such as term frequency-inverse document frequency

(TFIDF) [Salton and Buckley, 1988], mutual information (MI) [Manning et al., 2008b], in-

formation gain (IG) [Yang and Pedersen, 1997], Gini-index (GI) [Zhu and Lin, 2013], Chi-

Square (χ2) [Chen and Chen, 2011], best matching 25 (BM25) [Robertson and Zaragoza, 2009],

Rocchio algorithm [Rocchio, 1971], least absolute shrinkage and selection operator (LASSO)

[Tibshirani, 1996], ranking support vector machine (SVM) [Joachims, 2002] and many others.

These models are efficient and have been developed based on sophisticated mathematical and

statistical weighting theories [Li et al., 2015, 2010]. However, their use of low-level terms (i.e.,

individual words) makes them sensitive to noise and semantic-related issues, such as synonymy

and polysemy problems [Li et al., 2015, 2012, Zhong et al., 2012]. A synonymous word is

lexically different from another semantically identical word (e.g., ‘man’ and ‘guy’) [Wu, 2007];

conversely, a polysemous word is lexically identical but has different contextual meanings (e.g.,

‘newspaper’ as a company and as a physical item)Sebastiani[2002].

In IR, term-based models suffer from mismatching and overloading as a result of synonymy

and polysemy issues [Liu et al., 2016, Yuefeng and Ning, 2006]. Mismatching occurs when

query terms do not exhaustively represent the user’s searchtopic [Tao et al., 2011, Yuefeng and

Ning, 2006]. For example, documents that only discuss the subject of ‘knowledge discovery’

will be missed if the user uses the query ‘data mining’, knowing that data mining and knowledge

discovery are closely related subjects. This problem is usually referred to as the synonymy

problem (synonymy can cause information mismatch) [Bashar and Li, 2018, Li et al., 2012].

Conversely, information overload can be caused by the polysemy problem when query terms

can be used in different contexts [Bashar et al., 2016, Tao et al., 2011]. A common example is

the use of the query term ‘Java’, whether it means coffee, theisland of Java in Indonesia or the

Java programming language [Bashar et al., 2016, 2017, Bing et al., 2015]. Further, by using the

bag-of-words (BoW) representation, term-based methods ignore word order in documents and
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consequently miss the semantic relationships between these words [Li et al., 2009a, Turney and

Pantel, 2010].

1.1.2.2 Late Fusion Strategy

Phrase-based Models

TFS techniques that adopt the late fusion approach utilise different high-level features that

have semantic information, such as phrases, patterns, concepts, topics or a combination of these

features [Zhou et al., 2010]. Phrase-based TFS models use phrases (e.g.,n-grams) because

they are (1) more discriminative, (2) better able to containsemantic information than single

words and (3) less ambiguous [Li et al., 2015, 2011, 2010, 2012]. Then-grams are commonly

extracted using different values for ‘n’, which are experimentally specified [Albathan et al.,

2013, Fürnkranz, 1998, Wang et al., 2012]. Language models (e.g.,n-grams models) [Lavrenko

and Croft, 2001, Robertson and Zaragoza, 2009, Wang et al., 2007] are particularly relevant in

the field where phrases, as a sequence of words, are probabilistically formulated and these

lexical features extracted using then-grams (e.g., unigram (n=1), bi-gram (n=2), tri-gram

(n=3), etc.) to maintain the terms’ dependencies. However, published phrase-based experiments

do not show encouraging results compared to term-based ones[Gao et al., 2015, Li et al., 2015,

Moschitti and Basili, 2004, Scott and Matwin, 1999, Wu et al., 2006]. Wu et al. [Wu et al.,

2006] argue that this is because phrases’ statistical attributes are inferior to terms, they suffer

from redundancy and noise, and meaningful phrases suffer from the low-frequency problem

that makes them hard to distinguish and thus, select.

Whether heuristically or probabilistically justified, phrase-weighting functions assign scores

to phrases to represent their relevance to user informationneeds. However, they treat a phrase

as an atomic unit of meaning and assume its terms are equally important to the user’s needs

[Shirakawa et al., 2015, Wang et al., 2007]. This assumption can be too simple for discovering

relevant features. For example, a traditionaln-gram model would uniformly weigh the phrase

‘President Bill Clinton’ even though each term in the phrasehas a specific meaning and can

be more important than the others and thus, should be assigned different representative weights

[Hammache et al., 2014, Metzler and Croft, 2005, Shi and Nie, 2009]. It can also be too simple

to assume that phrases are more representative because theycarry semantic meaning and less

ambiguity than terms [He et al., 2011, Lv and Zhai, 2009, Miao et al., 2012]. For example, if a

short document contains ‘deep hierarchical reinforcementlearning’, then a popular phrase like

‘deep learning’ cannot be used as a representative feature for the document because ‘deep’ and
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‘learning’ do not sequentially appear in the document, eventhough the phrase is relevant to the

document [Gao, 2015].

Pattern-based Models

To overcome the shortcomings of term- and phrase-based methods, different pattern-based

techniques have been introduced [Algarni et al., 2010, Li et al., 2015, 2011, 2010, 2012, Wu

et al., 2006, 2004, Zhong et al., 2012]. A pattern, as a set of associated terms, has been used for

feature selection [Albathan et al., 2013, 2014, Li et al., 2015, 2010, Zhou et al., 2011]. Many

efficient pattern-mining algorithms have been developed indata mining, such as Apriori-like

algorithms [Agrawal and Srikant, 1994], Pre-fixSpan [Pei et al., 2001], FP-tree [Han et al.,

2000], SPADE [Zaki, 2001], SLPMiner [Seno and Karypis, 2002] and GST [Huang and Lin,

2003]. These algorithms have been adapted for use with text data [Li et al., 2015, Wu, 2007,

Zhong et al., 2012]; however, text patterns can still be redundant and noisy [Gao et al., 2015,

Li et al., 2015]. Several pruning techniques, such as closed patterns [Yan et al., 2005], maximal

patterns [Feldman et al., 1997] and master patterns [Yan et al., 2005], have been developed in

the data-mining communities to remove noisy patterns and manage redundant patterns [Han

et al., 2007, Mooney and Roddick, 2013, Xu et al., 2011]. These pruning techniques make

closed sequential patterns as an alternative to phrases because they are (1) more frequent, (2)

still possess some semantic information and (3) do not impose the strict rule of sequential

occurrence of terms [Li et al., 2010, Wu, 2007]. However, extracting patterns from text data

seems to be less efficient than term-based techniques [Algarni, 2014, Zhong et al., 2012], and

discovering high-quality knowledge from patterns seems toimpose further time complexity [Li

et al., 2010, Wu, 2007, Zhong et al., 2012]. Moreover, informative patterns can suffer from

the low-frequency problem if they are treated as a single atom [Wu, 2007, Zhong et al., 2012].

Also, the assumption that all terms in a closed sequential pattern are equally important to user

information needs can be too simple and needs to be relaxed.

Selecting the most useful patterns for relevance discoveryis challenging due to the large

number of patterns generated from relevant documents usingpatterns’ interestingness measures

(i.e., supports and confidence) [Li et al., 2015, Yan et al., 2005]. Such selection may also lead to

feature loss [Alharbi et al., 2017a,c]. Re-using minimum support and confidence in identifying

relevance patterns from the broad set of discovered ones is not effective, because only statistical

information about the used patterns is revealed [Li et al., 2010, Zhong et al., 2012]. For example,

given a set of documentsD that describes user information needs, patterns with low support
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values are generally short and highly frequent [Algarni, 2014, Li et al., 2015, 2008, Zhong et al.,

2012]. Such patterns are more general and less specific to the topics discussed inD. Conversely,

longer patterns have higher support and are more specific to the topics inD, but less frequent

[Gao et al., 2015, Li et al., 2015]. However, identifying the best values for these measures is

still experimental and hard to generalise, and adopting such measures for pattern-based TFS can

make the model highly sensitive to them [Li et al., 2015, Zhong et al., 2012]. Moreover, textual

patterns like phrases order terms based on their positionalappearance in documents and do not

arrange them according to relevance to the topics discussedin the documents, or even to what

the user needs. Also, specifying the length of a pattern as a hyperparameter (i.e., how many

terms a pattern must contain) is still beyond the user’s capability, and generalising that longer

or shorter patterns are always informative is rather too simple and difficult to justify.

To address some of these limitations, pattern deployment techniques, such as pattern deploy-

ing with relevance function (PDR) [Wu et al., 2006], pattern deploying method (PDM) [Zhong

et al., 2012] and pattern deploying based on support (PDS) [Wu, 2007], have been developed

and adopted to revise patterns extracted using the interestingness measures by first, finding

some correlations between them, and then deploying (i.e., distributing) them to a hypothesis

space (e.g., a positive or negative term space or both) [Li et al., 2004]. This technique has

led to a significant performance in discovering relevant features based on text patterns [Algarni

et al., 2010, Li et al., 2015, 2011]. However, we argue that this technique is still sensitive to

the selected hypothesis space, which is generally just a BoWrepresentation, and its statistical

features’ types, size, noise, redundancy, and generality and specificity of this space [Abul

Bashar, 2017, Bashar et al., 2016]. Further, this space is hard for users to govern as it is usually

the whole term’s space of theD collection, in which it has been assumed that each term has the

same importance (e.g., relevance) to each document. Such anassumption can be too simple, as

terms tend to co-occur in every documentd ∈ D unevenly.

Also, pattern deployment cannot deal with ambiguous patterns that appear in negative feed-

back [Li et al., 2009b, Zhong et al., 2012]. Such patterns can influence the identification of

relevant features [Li et al., 2010, 2012]. To deal with this issue and refine such problematic

patterns, the pattern evolution technique [Wu, 2007, Zhong et al., 2012] has been introduced.

Techniques that use patterns in negative feedback have shown considerable improvement in

identifying relevant features. Popular examples are the pattern taxonomy model (PTM) [Wu

et al., 2006, 2004], Relevance Feature Discovery (RFD1) [Li et al., 2010] and RFD2 [Li et al.,
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2015], which use different patterns and algorithms to reduce theside effects of high-level

patterns and low-level terms that appear in both sets. However, these pattern-based models may

not perform well if the positive and the negative feedback are mutually exclusive, as negative

feedback can be any irrelevant documents. Pattern-mining algorithms also appear to suffer

when the relevant documents are limited and collecting themis expensive and time-consuming

[Algarni, 2011, Soleimani and Miller, 2016].

Concept-based Models

A concept is a set of semantically related words that together describe a human understanding

of a particular object or idea [Bashar and Li, 2017, 2018, Egozi et al., 2008]. Concept-based

TFS is supposed to effectively identify user information needs as concepts that reflect human

understanding and knowledge of a particular topic [Bashar et al., 2017, Egozi et al., 2008].

However, concept-based models are sensitive to the type of text feature adopted to represent

the agreeable concept as a set of related terms, whether these terms come from phrases [Liu

et al., 2016], patterns [Bashar and Li, 2018, Bashar et al., 2017] or topics of topic modelling

algorithms [Bashar and Li, 2017, Bashar et al., 2016]. Also, concept-based techniques can be

manual, semi-manual or entirely dependent on external sources of knowledge [Tao, 2009] such

as dictionaries (e.g., thesaurus) and domain ontologies, which can be incomplete or ambiguous.

Moreover, the automatic specification of relevant and irrelevant concepts can be challenging, as

only the user can decide based on the concept map in his or her mind after reading a retrieved

document [Tao, 2009]. Simulating this process is difficult because manual concept specification

implicitly lacks a clear understanding of the user’s background knowledge [Tao, 2009]. Much

attention has been paid to learning personalised ontologies from a set of documents that repre-

sents the user’s profile to explicitly simulate user conceptmaps [Bashar et al., 2016, 2017, Shen

et al., 2012a, Tao et al., 2011]. However, this process is challenging as it can be expensive, time-

consuming and requires verification by domain experts [Bashar et al., 2016, Lee et al., 2015b,

Li and Zhong, 2004, Zhu and Iglesias, 2017]. Constructing and updating ontologies for every

knowledge domain is also unrealistic, especially considering the current exponential growth in

data sources.

Ontological concepts can be general, incomplete and sensitive to the type of relations that

govern the hierarchal structure between these concepts in the ontology (e.g., super-class, sub-

class, is-a, part-of, etc.) [Bashar et al., 2016, Li and Zhong, 2004, Tao, 2009, Tao et al.,

2011, Yuefeng and Ning, 2006]. Further, relying on ontologies to select informative features
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[Bashar and Li, 2017, 2018, Bashar et al., 2016, 2017] can lead to feature loss, as no complete

ontology can practically represent all existing human knowledge. Also, ontologies alone are

not an accurate way to estimate feature weight or efficientlyrepresent the relevance of features

[Luo et al., 2011]. Concept-based TFS models endeavour to add more semantic knowledge

to discovered features, such as terms [Egozi et al., 2008], phrases [Liu et al., 2016], patterns

[Bashar and Li, 2018, Bashar et al., 2017] and topics of topic modelling algorithms [Bashar and

Li , 2017, Bashar et al., 2016], using global knowledge base ontologies or those learned from

local user repositories [Shen et al., 2012a,b, Tao et al., 2011]. However, while this approach

can help humans interpret the meaning of these features, it still does not specify the features’

importance to user information needs, especially when the user query is absent. A knowledge

base ontology consists of a set of concepts with their semantic relations (e.g., is-a, part-of,

related-to, etc.) that together represent a human background knowledge of a specific domain,

or many sub-domains, of knowledge [Abul Bashar, 2017, Tao, 2009]. In the absence of a user-

specific query, it is challenging to map user information needs that may be unevenly discussed in

a set of relevant documents to a domain ontology (i.e., mapping many to many) [Abul Bashar,

2017]. It could introduce ambiguity and feature loss if the ontology is not comprehensive;

further, such an approach is expensive and highly sensitiveto the feature type, semantic relations

and the ontology itself.

Overall, fusion-based TFS models that use terms, phrases, patterns, concepts or a combi-

nation of these, do not explicitly assume that a long document can exhibit multiple topics or

themes [Gao et al., 2014b, 2015]; yet in reality, they can contain multiple semantically related

topics or sub-topics [Anastasiu et al., 2013, Gao et al., 2015]. Topic-based models have been

developed to address this assumption.

Topic-based Models

Probabilistic topic modelling algorithms, such as the probabilistic latent semantic analysis

(PLSA) [Hofmann, 2001] and latent Dirichlet allocation (LDA) [Blei et al., 2003], have gained

popularity and are widely accepted in IR, IF, NLP, TM and ML research communities [Blei,

2012, Gao et al., 2015, Wei and Croft, 2006, Xiong et al., 2015, Yi and Allan, 2009, Zhang

and Chow, 2016]. These algorithms discover latent topics that can be used to represent user

information needs [Bashar and Li, 2017, Bashar et al., 2016, Gao et al., 2017]. Existing TFS

models that adopt terms, phrases, patterns, concepts or a combination of these, do not explicitly

assume user information needs can discuss multiple topics [Alharbi et al., 2017b,c, Gao et al.,
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2014a]. For example, consider a researcher in forensic science who wants to enrich his or

her knowledge about economic espionage by studying popularcases that have been identified

worldwide. The two features (i.e., ‘economic espionage’) represent the researcher’s information

needs (e.g., a query to a search engine) and can be regarded asa phrase (bi-gram), two single

terms or a pattern. However, searching algorithms that adopt these features do not consider that

such an information need (i.e., the query ‘economic espionage’) can have multiple related topics

or sub-topics, such as ‘commercial espionage’, ‘industrial espionage’, ‘corporate espionage’

and ‘technical espionage’ [Gao et al., 2017, 2015]. LDA is designed to consider this assumption

automatically, but it favours the most frequent topics or sub-topics in the collection [Ding and

Yan, 2015, Mimno et al., 2011]. Such algorithms can automatically, and in an unsupervised

way, extract latent topics from pieces of text [Blei et al., 2003, Hofmann, 2001]. These topics

are a reduced intermediate representation that can be used in a broad spectrum of applications

and tasks [Gao et al., 2014b, 2015].

Unlike the PLSA, LDA is the most popular technique and its generated topic is a set of

semantically related words [Blei et al., 2003, Gao et al., 2015]. LDA defines a topic as a

probability distribution over all terms in the collection vocabulary [Blei, 2012, Blei et al.,

2003], which (1) gives a user the ability to specify the length of atopic (i.e., how many

terms it should have), (2) arranges topic terms based on their importance to the topic, and

(3) relaxes the constraint of the strict sequential appearance of terms in a single topic. Further,

LDA represents a document as a probabilistic mixture of multiple topics [Blei et al., 2003, Gao

et al., 2015], which allows the location of similar topics or sub-topicsacross the collection

and cluster documents or paragraphs that discuss similar subjects or themes [Anastasiu et al.,

2013, Blei, 2012, Blei and Lafferty, 2009]. Despite these advantages, using LDA or PLSA

for relevance discovery does not show encouraging performance because they cannot estimate

a generalised (globally representative) weight for topical terms to reflect their relevance in a

set of relevant documents that describe user information preferences [Gao et al., 2014b, 2015].

This is because these types of documents usually contain uncertainties that come from irrelevant

parts in these documents, as users can label a document as relevant even though only a small

part is relevant and the rest is irrelevant [Alharbi et al., 2018a, Bendersky and Kurland, 2010].

Therefore, estimating the relevance of features globally at the collection level can be effective

if it is assumed that the relevant parts frequently appear across all relevant documents in the

collection.
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Mixed-Features Models

Mixed-based TFS models use different combinations of high-level features to overcome the

limitations of single feature models or exploit the semantic information of two or more of

these high-level features [Gao et al., 2015]. For example,n-grams and latent topics have

been integrated into the topical n-grams model (TNG) [Wang et al., 2007] to discover topical

phrases that are more discriminative and interpretable. Similarly, patterns and topics have

been employed [Gao et al., 2017, 2014b, 2015] to take advantage of the explicit relationships

between pattern terms and the multi-topics representationof documents in the topic modelling

algorithms to produce a more discriminative and informative representation for user information

needs. Further, ontological concepts have been used with patterns [Bashar and Li, 2018, Bashar

et al., 2017] and latent topics [Bashar and Li, 2017, Bashar et al., 2016] to add explicit semantics

to these features and facilitate the interpretation and understanding of their meanings. Yet,

despite the advantages of mixed-based models, they can be time-expensive and susceptible to

the previously mentioned inherited limitations of high-level features.

1.1.2.3 Hybrid Fusion Strategy

A hybrid fusion strategy can exploit the advantages of the early and late fusion approaches

[Alqhtani et al., 2018, Atrey et al., 2010, Baltrušaitis et al., 2019]. Thus, a hybrid fusion

based TFS model would integrate low-level terms with one or more high-level features. In

relevance discovery, this hybrid strategy brings the statistical richness of individual terms in

relevant documents to the semantic information of high-level features extracted from the same

documents [Abul Bashar, 2017, Wu, 2007]. The advantage of this strategy can be clearly

observed in the PDS [Wu et al., 2006, Zhong et al., 2012], RDF1 [Li et al., 2010] and RDF2

[Li et al., 2015] models, which map high-level patterns to low-level terms to solve the low-

frequency problem of specific patterns. This strategy also made pattern mining a feasible

technique for discovering relevant features that describeuser information needs [Wu, 2007].

However, because text features can pass their limitations onto the models and frameworks that

use them, adopting a mixture of low-level terms and high-level features can be ineffective as

it might implicitly inherit the limitations of each featuretype, especially if no solution for the

limitations were provided beforehand [Alharbi et al., 2018a]. The critical problem in this issue

is how to present, model and understand the complex relationships between these different types

of features and relevant and/or irrelevant documents in theforms of weighting functions under

one framework, and use them to discover or re-rank relevant features.
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1.1.3 Text Feature Weighting Schemes

The weighting function is the most important component in a TFS model [Albathan et al., 2013,

2014, Li et al., 2015]. If this function fails in assigning the best and most representative weight

to the feature, the whole fusion-based model will fail [Alharbi et al., 2018a]. Term- and phrase-

based weighting functions are heuristic—even the probabilistic ones are frequency-based—and

do not show effective performance in IF [Li et al., 2011, Zhong et al., 2012]. Pattern-based

weighting functions are also heuristic and usually ignore the original semantic information (i.e.,

break the relationships between pattern terms) [Bashar et al., 2016, Zhong et al., 2012]. They

are ineffective in accurately assigning a representative weight to terms that show the terms’

relevance to the user information needs [Alharbi et al., 2018a]. Further, weighting functions

do not address negative feedback. Existing supervised models, such as BM25 [Robertson and

Zaragoza, 2009], SVM [Joachims, 2002] and Rocchio [Rocchio, 1971], are term-based and do

not show sufficient performance as they ignore the multi-topics assumption [Gao et al., 2015,

Li et al., 2015, 2010, 2012, Zhong et al., 2012].

A global weighting scheme can assign a representative weight to features because it is

explicitly related to relevance judgements [Escalante et al., 2015, Greiff, 1998, Man et al., 2009,

Shirakawa et al., 2015]. However, such schemes suffer from a lack of relevance details at the

document level. Conversely, local weighting schemes estimate the relevance of features at the

document level because a relevant document contains details about such relevance, but may

be implicitly related to relevance judgements [Escalante et al., 2015, Greiff, 1998, Liu et al.,

2009, Sabbah et al., 2017, Wu and Gu, 2017]. Therefore, these details are hard to use because

they do not directly describe the available relevance at thecollection level. Thus, the research

issue is how to devise a middle solution that exploits the trade-offs between a global and local

estimation of features relevance. Therefore, this research seeks to integrate early and late fusion

strategies of different features by modelling complex relationships between the entities in a

document collection (i.e., terms, topics, paragraphs, documents or clusters of documents) that

share these features.

To do so, this research extends multiple random sets [Goutsias et al., 1997, Molchanov,

2005, Nguyen, 2008] to represent, describe and understand these complex relationships via

multiple probabilistic functions. These functions are then effectively combined, globally and

locally, to re-weigh topical terms based on their appearance across the selected entities. The
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proposed models and frameworks will be used to rank and select features for relevance dis-

covery. They are application independent and can be appliedto various tasks in text analysis.

However, in this thesis, we tested the proposed models and frameworks for IF, which can be

considered a special type of binary text classification [Gao et al., 2015, Li et al., 2008], as well

as for ranking relevant terms (RRT) that were selected by domain experts.

1.1.4 Text Feature Selection Applications

Fusion-based TFS techniques have been experimentally evaluated for different TM, IR, IF and

ML tasks [Forman, 2003, Metzler, 2007, Yang and Pedersen, 1997, Zhang et al., 2016]. In

the absence of a query, which explicitly represents user information needs in IR, the proposed

models and frameworks can be evaluated in the context of textclassification and IF. However,

text classification ignores relevant information ranking while IF is considered a binary text

classification problem with more focus on the relevance ranking of information [Gao et al.,

2015, Li et al., 2011, 2008]. As the name implies, an IF system removes information or

documents from a stream of documents or information that do not meet user needs [Algarni

et al., 2010, Belkin and Croft, 1992]. In this research, user information needs are represented

by a set of related terms—used as a query in our case—that are discovered by the proposed

models and frameworks from the set of documents in which the user is interested.

Based on the quality of the set of terms produced by the proposed research, the IF system

is able to rank the most relevant documents that strongly meet the user’s needs or interests.

This research is evaluated empirically for IF and RRT. An extensive series of experiments have

been conducted on the first 50 collections of documents of thestandard Reuters Corpus Volume

1 (RCV1) dataset [Lewis et al., 2004], which are assessed by domain experts at the National

Institute of Standards and Technology1. These collections imitate real user information needs,

are high in terms of quality and reliability, and sufficient for a stable experiment [Buckley and

Voorhees, 2000, Li et al., 2012]. The experimental results show that the proposed models and

frameworks significantly outperform all baseline models, regardless of the type of text feature

they adopt, the fusion strategies they apply or the learningalgorithms they use.

1https://www.nist.gov/

https://www.nist.gov/
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1.2 Problem Statement and Objectives

The previous section introduced extensive background knowledge on various TFS techniques

from different perspectives, including data fusion, and generally described their apparent limi-

tations in identifying relevant features that can be used torepresent user information needs. The

discussion motivates the research work in this thesis by pinpointing the need for more effective

fusion-based techniques for relevant feature discovery. The following section lists and discusses

the main research questions addressed in this thesis and their objectives.

1.2.1 Research Problems

Probabilistic topic modelling algorithms such as PLSA [Hofmann, 2001] and LDA [Blei et al.,

2003] are widely researched and broadly applied [Blei et al., 2010a, Blei, 2012, Griffiths and

Steyvers, 2004, Wei and Croft, 2006]. Most research in topic modelling addresses the issues of

efficiency and scalability of the algorithms, and the interpretation, semantics and cohesion of

generated topics [Bashar and Li, 2017, Chuang et al., 2013, Gao et al., 2017, He et al., 2017,

Ramage et al., 2011]. However, searching for useful and relevant topical features is an ongoing

research problem, as demonstrated by some very recent studies [Ma et al., 2019, Wu et al.,

2019, Xu et al., 2019].

In TFS, different types of text features are used to represent user information needs dis-

cussed in a set of documents. While terms, phrases, patterns, concepts or a combination of

these do not assume user information needs can exhibit multiple topics or sub-topics [Gao

et al., 2013, 2014a, 2015], latent statistical topics discovered by topic modellingtechniques are

explicitly built on the assumption that a document can discuss multiple topics [Blei et al., 2003,

Deerwester et al., 1990, Hofmann, 2001], which makes them more representative of what the

user needs [Gao et al., 2014b, 2015, Wu et al., 2019]. As a set of semantically related terms

sorted in descending order based on their importance to the topic, a topic can alleviate the

problem of polysemy and synonymy to some extent by softly clustering similar words together

in the form of a topic [Blei et al., 2003, Hofmann, 2001]. Also, topic modelling can reduce

the dimensions of a text corpus to a set of a limited number of topics [Gao et al., 2014b,

2015]. However, as previously noted, topic modelling algorithms do not show encouraging

results for relevant feature discovery. Nevertheless, given all the advantages of topic modelling,

the primary problem concerns effectively utilising the discovered topics for selecting relevant

features.
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Fusion-based IR models that adopt data fusion or collectionfusion have shown remarkable

results compared to traditional techniques in the field [Lillis et al., 2006, 2008, 2010, Nuray

and Can, 2006, Towell et al., 1995]. Existing research demonstrates that fusing different rep-

resentations of documents, queries, search results, rankings and scores can lead to substantial

improvements on single IR models [Anava et al., 2016, Croft, 2000, Kozorovitsky and Kurland,

2011a,b, Pickens and Golovchinsky, 2008, Zhang and Balog, 2017]. However, applying similar

fusion techniques to TFS for relevance discovery under uncertainties is limited, as no single

text feature can encompass information relevant to the userneeds, which makes the feature

fusion strategies more prominent. Moreover, there is no similar technique in current relevance

discovery literature that models the fusion of different hierarchal features and integrates multiple

relevance fusion models into supervised and unsupervised frameworks for relevant feature

selection. This research gap is the basis of research questions that will be answered in this

thesis.

As previously discussed, statistical topic modelling algorithms reduce the dimensions of a

text corpus to a specified set of topics. Each topic groups semantically related terms together

as they appear in the corpus, which alleviates the problems of synonymy and polysemy to a

certain extent [Hofmann, 2001, Steyvers and Griffiths, 2007]. The algorithms also assume that

each document can discuss multiple topics to imitate this reality, especially long documents (see

Figure1.1), in which different themes tend to be discussed across relevant document paragraphs.

This assumption makes these algorithms more capable of identifying the hidden needs of users

[Gao et al., 2014b, 2015]. Figure1.2illustrates a real example of hidden needs from Collection

101 of the RCV1 dataset, which is about ‘economic espionage’. The narrative element in the

figure clearly shows the relevant themes or sub-topics of this type of espionage. However, in

the absence of user queries, such algorithms do not have an implicit mechanism to discover

the most relevant features because they cannot accurately generalise the topical term weight

to a more representative global level, especially when the term has an identical meaning (i.e.,

semantically the same) in a group of similar documents. Therefore, the first research problem

to be addressed is:

• RQ1: How do we effectively fuse different features from a collection of documents that

describes user information needs to accurately generalisetopical term weight globally at

the collection level?
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Figure 1.1: A sample of a relevant long document from collection 101 of the RCV1 dataset.

 

 

 

Figure 1.2: A TREC topic for collection 101 of the RCV1 dataset in which the title element
’Economic espionage’ represents explicit user information needs.

Assuming a term has equal importance in a group of similar documents that describe user

information needs can be a simple assumption. Global (i.e.,corpus level or collection level)

feature selection methods have adopted such an assumption by estimating the importance (i.e.,

a relevance weight) of the term based on its global information in the whole corpus, in a

heuristic way [Chen et al., 2016, Cummins and O’Riordan, 2006, Shirakawa et al., 2015]. Local

methods have tried to relax the constraint of a globally generalised term weight by considering

its importance locally, in a document-by-document manner [Chen et al., 2016, Sabbah et al.,

2017]. However, both approaches—especially those based on term, phrase, concept and pattern

methods—do not assume a document can exhibit multiple topics or themes even though in

reality, a long document can span different sub-topics in its segments (i.e., its paragraphs or

sentences), as illustrated in Figure1.1. Topic-based techniques such as PLSA [Hofmann, 2001]

and LDA [Blei et al., 2003] can be considered local TFS methods that have adopted multi-topics
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representation of documents.

Yet, despite relaxing the term global assumption, these topic-based methods do not show

encouraging performances in identifying relevant features [Alharbi et al., 2018a, 2017a,b,c,

2018b, Bashar and Li, 2017, Bashar et al., 2016, Gao et al., 2015]. From a data fusion per-

spective, this is because they estimate the local importance of terms based on the fusion of

two topical features: the document topic and term topic probability distributions [Blei et al.,

2003]. The former is flat and does not automatically consider the hierarchal sub-features of the

document (e.g., its paragraph topic features), as both PLSAand LDA use BoW representation

and do not retain the notion of a document [Blei, 2012, Wallach, 2006, Wang et al., 2007]. The

latter is globally estimated from the entire corpus, which makes it sensitive to frequency as well

as uncertainties in relevance feedback. Therefore, to develop a more effective fusion-based TFS

for relevance discovery, the following research problem will also be addressed in this thesis:

• RQ2: How do we effectively fuse local and global features to moreaccurately estimate

the generalised topical term weight?

For most relevance discovery models, regardless of the fusion strategy, feature type or

learning and mining algorithm used, the document level is anevidence space for identifying

relevant features to represent user information needs [Gao et al., 2017, 2014b, 2015]. As

previously mentioned, a document can be labelled as relevant even if only a small part of it

contains relevant information [Bendersky and Kurland, 2010, Fan et al., 2018, Kaszkiel and

Zobel, 1997, Liu and Croft, 2002]. This is demonstrated in the real example of a labelled

relevant document from collection 142 of the RCV1 dataset shown in Figure1.3, as only a

small segment of one particular paragraph is considered relevant based on the TREC topic

description of the collection (see Figure1.4). Thus, selecting features from all parts of such a

document leads to uncertainties and scatters the focus on relevant information because features

from non-relevant parts do not represent user information needs [Alharbi et al., 2018a, Lv and

Zhai, 2010]. Consequently, the relevance of the corresponding part should be considered when

selecting features from it. Research in IR shows that considering the evidence at the passage

level (e.g., a paragraph level) can improve retrieval accuracy, especially when documents are

long or span different subject areas [Bendersky and Kurland, 2010, Callan, 1994, Dang et al.,

2015, Liu and Croft, 2002]. However, in TFS for relevance discovery and in the absenceof an

explicit query representing user needs, which can also guide the search for a relevant paragraph,
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it becomes very challenging to explicitly estimate a paragraph’s relevance in a set of documents

that describe user information needs. Therefore, an implicit mechanism is needed to utilise the

paragraph level evidence. To reduce uncertainty in the relevant feature discovery, we address

the following research problem in this thesis:

• RQ3: How do we effectively fuse multiple features in a collection of relevant documents

to implicitly estimate the paragraph relevance and use it tomanage uncertainties in rele-

vant features discovered by existing TFS models?

<?xml version="1.0" encoding="iso-8859-1" ?>

<newsitem itemid="28354" id="root" date="1996-09-02" xml:lang="en">

<title>MOROCCO: PRESS DIGEST - Morocco - Sept 2.</title>

<headline>PRESS DIGEST - Morocco - Sept 2.</headline>

<dateline>RABAT 1996-09-02</dateline>

<text>

<p>These are the leading stories in the Moroccan press on Monday.

Reuters has not verified these stories and does not vouch for their accuracy.</p>

<p>AL-BAYANE</p>

<p>- More than third of foreigners' requests in Spain for residence permits

come from Moroccans.</p>

<p>LIBERATION</p>

<p>- Gas price expected to rise on world market and this could affect local businesses.</p>

<p>AL-ALAM</p>

<p>- World Bank report says illiteracy puts Morocco at 119th rank.

The report advises the education ministry to take over building

schools -- rather than local communities -- to curb corruption and embezzlement.</p>

</text>

<copyright>(c) Reuters Limited 1996</copyright>

Figure 1.3: A sample of a relevant long document from collection 142 of the RCV1 dataset
that discusses ’Illiteracy Arab Africa’ as shown in Figure1.4with only a part of a paragraph is
considered relevant (the last paragraph).

 

 

Figure 1.4: A TREC topic description for collection 142 of the RCV1 dataset in which thetitle
element ’Illiteracy Arab Africa’ represents explicit user information needs.

In addition to the research problems mentioned, unsupervised topic modelling algorithms

seem to favour subjects that frequently appear in a text corpus [Ding and Yan, 2015, Mimno

et al., 2011, Xu et al., 2019]. These highly frequent subjects can overshadow less frequent but

equally important subjects, especially in relevance discovery. Given a set of documents relevant

to user needs, LDA assigns higher probabilities (i.e., weights) to features that frequently appear

within a limited subset of documents while those occurring in fewer documents receive less

attention, even though they may be equally relevant to user needs. Document clustering is also
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an unsupervised learning algorithm that appears to effectively limit bias towards highly frequent

subjects by grouping documents that share common subjects in a hard cluster [Aggarwal and

Zhai, 2012, Anastasiu et al., 2013, Jain, 2010]. However, a traditional clustering algorithm does

not consider the detailed topics or themes exhibited acrossdocuments, and assuming a cluster

of similar documents only discusses one topic is too simple [Alharbi et al., 2017b, Krikon

and Kurland, 2011, Liu and Croft, 2004]. Further, selecting informative features from a set

of equally important clusters and assigning globally representative weights to these features is

difficult when no search guide (e.g., a user query) is given. Combining these issues with the

previous research problems, especially uncertainties in relevance feedback, this thesis raises the

following research question:

• RQ4: How do we effectively develop an unsupervised relevance discovery framework by

integrating topic modelling, document clustering and global statistics to effectively select,

weigh and ultimately fuse different intra- and inter-cluster relevant features?

Discovering relevant features from a collection of relevant and irrelevant documents to

specifically describe what the user needs remains a major research problem in IR, IF, DM and

ML communities [Gao et al., 2015, Li et al., 2015, Man et al., 2009, Yuefeng and Ning, 2006], as

it is both theoretically and empirically challenging [Li et al., 2015, 2010]. From the data fusion

perspective, unsupervised TFS techniques that adopt early, late or both fusion strategies are

not discriminating enough to accurately weigh features that frequently appear in both relevant

and irrelevant documents [Hou et al., 2010, Man et al., 2009]. Supervised techniques can be

discriminative in selecting specific features of the class label that separate relevant and irrelevant

documents, but because they do not consider the detailed latent structures of these labelled

documents, they cannot assign globally representative weights to show features’ relevance to

user needs [Alharbi et al., 2018b, Gao et al., 2015, Li et al., 2015]. Considering the research

problems of unsupervised topic modelling and the issues of feature weighting in supervised

relevance discovery models, as well as the uncertainties inrelevance feedback, the following

research question is posed:

• RQ5: How do we effectively develop a supervised relevance discovery framework by

integrating discriminative learning algorithms, topic modelling and global statistics and

effectively fuse both discriminative and descriptive features to identify relevant features

that more specifically represent user information needs?
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To solve these five research questions, the thesis research objectives are discussed in the

following section.

1.2.2 Research Objectives

The main objective of the research in this thesis is to develop better TFS models and frameworks

for relevance discovery. The selected features and their weights must be informative and

representative to user information needs. Therefore, the research outcomes are not targeting

any specific areas of applications and should improve applicable information-oriented systems,

such as IF, IR, text classification and others. The research contributions made in this thesis are

original and highly significant, especially in the field of relevant feature discovery in TM.

The research work in this thesis solves the identified problems of topic modelling and brings

data fusion techniques into the area of relevance discoveryfor more effective TFS models

and frameworks. Unlike common practice in data fusion, whereby multimodal data sources

are integrated to produce more accurate, consistent and useful information, this research only

depends on different text features from a single collectionof documents. The collection is

domain-specific and has a relatively small set of relevant and irrelevant documents that can be

used to discover user information needs. Features are extracted from the collection using some

supervised and unsupervised learning algorithms, namely topic modelling, clustering and SVM,

including some global and local statistical features. No external sources of knowledge are used

in this research.

• RO1: To accurately estimate a more globally representative weight for a topical term, a

hybrid fusion based model (called SIF) is proposed in which multiple random sets are

extended to (1) manage a hybrid fusion of features of distinct entities in the document

collection and (2) model the complex relationships betweenthese features and the entities

that influence the term weighting process.

Adopting a hybrid fusion strategy guarantees that the fusion is based on some semantic in-

formation (i.e., extracted by topic modelling) rather thanbased solely on heuristics. The fusion

is between different features of the collection’s paragraphs, the latent topics extracted from these

paragraphs and all terms in the collection (i.e., the vocabulary list). As the associations between

these entities are complex—in the form of many-to-one and one-to-many relationships—and

topical terms frequently appear across numerous documents, paragraphs and even topics in the

collection, it is challenging to know which relationship orentity is most important. Therefore,
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in the proposed SIF model, multiple random sets are extendedand used to represent and thus,

understand these relationships using probability functions. The fusion made by these functions

can effectively estimate a more representative and generalised topical term weight, as will be

fully described and evaluated in Chapters3 and6, respectively.

• RO2: To relax the assumption of the globally generalised topical term weight, the SIF

model will be revisited and an integration between early andlate fusion strategies of local

and global features will be modelled using multiple extended random sets (ERS).

The proposed SIF model adopts a hybrid fusion strategy to select informative features for

relevance discovery. It is a collection-based model that assumes identical topical terms have

equal importance in every document in the corpus. Such an assumption can be too simple and

needs to be accurately relaxed. In Chapter4, the SIF2 model is introduced to solve the issue of

the SIF model. The proposed SIF2 model adopts a hybrid fusionstrategy of local and global

features that are modelled by ERS. Unlike SIF, four entitiesand their complex relationships

are represented and probabilistically estimated on a document-by-document basis to accurately

measure the topical term importance in each document independently. As each document is

equally relevant to the user’s needs, it is difficult to identify the most representative weight for

a topical term that is independently estimated in each document of the collection. To solve this

problem, SIF2 assumes all individual weights of a topical term are important and combines

them with a more descriptive global statistic. In addition to Chapter4 presenting the details of

the proposed SIF2 model, Chapter6 shows an extensive experimental evaluation for this model.

• RO3: To reduce uncertainties in relevant features discovered by existing TFS models,

an uncertainty reduction (UR) method is proposed to implicitly estimate the paragraph

level evidence of relevance and use it to re-rank the discovered features after scaling their

original weights.

Generally, the ‘relevance’ of a text feature in this thesis refers to the relevancy between a

document or set of documents in which this feature is discovered and user information needs,

which are supposed to be implicitly described across the contents of the document(s). Most

existing relevance models treat all document segments (e.g., paragraphs and sentences) equally

when discovering and weighing relevant features. However,this approach can introduce uncer-

tainties to these features. The simple intuition behind this reason is that document segments are
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not equal in terms of their relevance to what the user needs and some can be completely irrele-

vant. Thus, considering non-relevant or weakly relevant parts when discovering and weighing

relevant features can do more harm than good.

Numerous studies in IR confirm that adopting passage level evidence (e.g., paragraph level)

for relevance shows remarkable improvements for query-based models in different retrieval

tasks. However, in relevant feature discovery, such an explicit query can be either unavailable

or not considered, which makes this problem particularly challenging. Therefore, in Chapter4,

a UR method is also proposed to implicitly estimate the relevance of a document’s paragraph

by modelling the late fusion of different features of the paragraph with latent topics and the

paragraph with terms. Multiple ERS with inverses are developed to map, measure and under-

stand the relationships between the four entities. Based onthe proposed ERS theory, a feature

weighting formula is developed to scale and re-rank the relevant features discovered by existing

TFS models. The extensive evaluation of the proposed methodis presented in Chapter6.

• RO4: To force topic modelling algorithms to pay equal attentionto both frequent and less

frequent relevant topics of interest in an unsupervised way, and to select and weigh rel-

evant features of these topics, an unsupervised relevance discovery framework of hybrid

fusions is proposed.

To limit the topic modelling bias towards highly frequent subjects, a document-clustering

technique will be employed to group documents that share similar subjects in one cluster.

However, in IR it was assumed that clustered documents only discuss one subject [Alharbi

et al., 2017b, Krikon and Kurland, 2011, Liu and Croft, 2004]; yet, such an assumption can

be unrealistic, as a single long document in a cluster can exhibit multiple topics or sub-topics.

Therefore, the clustering technique cannot reveal the detailed topical structures of documents

and provides no clear way to either select or weigh the inter-or intra-cluster features. Con-

versely, topic modelling is capable of such a task and has been developed on the assumption

that a document can have multiple topics. Nevertheless and as previously noted, topic modelling

still (1) suffers from its inability to generalise topic term weights to a global level, (2) does not

consider paragraph level evidence (as it is a document-widemodel) and (3) pays no explicit

attention to the document’s hierarchal features when estimating weight.

Therefore, in Chapter5, an unsupervised, two-stage, hybrid fusion based framework, called

unsupervised selection of informative features (USIF) is proposed to discover relevant features
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that represent user information needs. The framework effectively integrates global statistics,

topic modelling and document clustering to select and re-weigh clustered features. Multiple

ERS are also developed to model the integrated hybrid fusions of multiple cluster-based and

collection-based features and to describe and thus, understand the complex relationships be-

tween them. The idea of concept agglomeration is introducedin this framework to effectively

identify the relevant inter-cluster features. The SIF model and an adapted version of the UR

method are employed to estimate the topical and thematic significances of terms in the collec-

tion, respectively. These two significances will be used to discover the intra-cluster relevant

features. The extensive experimental evaluation for the proposed framework is reported in

Chapter6.

• RO5: To discover and accurately weigh specific relevant features using both relevant and

irrelevant documents, a supervised relevance discovery framework of hybrid fusions is

proposed.

To reduce the impact of relevant features that frequently appear in both positive and negative

training documents, a discriminative supervised learningalgorithm will be used (e.g., SVM) to

delineate between positive and negative documents. The boundary (e.g., the hyperplane as in

SVM) is then used to select some discriminative specific features. However, such algorithms can

implicitly inherit the limitations of the text feature theyuse and the uncertainties available in the

training documents. In general, these algorithms do not consider the hidden topical structure

of a training relevant document and have no explicit mechanism in adopting paragraph level

evidence of relevance as a means to deal with the uncertainties. These reasons make them

ineffective in assigning a more representative weight to the specific feature they discover. As

already discussed, probabilistic topic modelling are unsupervised algorithms that effectively

reveal the internal topical structure of the document, but they remain problematic.

SIF, SIF2 and the UR method have effectively solved these problems in a domain-specific

context. However, as they are also unsupervised, they cannot deal with features that frequently

exist in both negative and positive documents, as negative training documents, specifically, can

be much larger and topically diverse. In Chapter5, a two-stage supervised and hybrid fusion

based framework, called supervised selection of informative features (SSIF) is proposed to

specifically deal with negative documents and enhance the discovery of relevant features that

represent user information needs. The proposed SSIF framework effectively incorporates global
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statistics, topic modelling and SVM to select and re-weigh discriminative specific features. A

multiple hybrid fusions strategy is adopted in SSIF, which is modelled by multiple ERS, as in

the USIF framework. Chapter6 presents an extensive experimental evaluation of SSIF.

1.3 Contributions

The research work in this thesis contributes theoreticallyand practically to the field of TFS for

relevance discovery. The contributions are original and significant and are implemented in the

forms of different models (SIF, SIF2 and the UR method) and frameworks (USIF and SSIF) of

TFS. The research integrates supervised and unsupervised learning algorithms and adopts data

fusion strategies to select, weigh (or re-weigh) and rank (or re-rank) relevant features. A novel

ERS theory is developed to model the integrations and managethe fusion of different local and

global features. Several accurate feature-weighing schemes are also proposed based on the ERS

modelling. The extensive experimental evaluation shows that the proposed models and frame-

works are effective and significantly outperform all state-of-the-art baseline models regardless

of the text features or the fusion strategies they utilise. More details on the contributions of this

thesis are provided in Section7.2.

The main contributions of this thesis to TFS for relevance discovery research are sum-

marised as follows:

• An innovative hybrid fusion based model that extends multiple random sets to generalise

the weight of topical terms in relevant documents based on a new and accurate term

weighting scheme.

• A new and effective ERS-based model that integrates early and late fusion strategies to

relax the assumption of a generalised weight of a topical term.

• An innovative and effective fusion-based method that adopts paragraph level evidence,

at both the document and collection level, to reduce the uncertainty in relevant features

discovered by existing TFS models.

• A new and effective unsupervised framework that integrates topic modelling, global statis-

tics and document clustering to select and accurately re-weigh relevant features.

• An effective and new supervised framework that combines topic modelling, global statis-

tics and SVM to select and accurately re-weigh relevance-specific features using both
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relevant and non-relevant documents.

1.4 Research Methodology

The research methodology can be defined as the theoretical framework through which re-

searchers analyse the method or set of methods that are applied to solve the identified re-

search problem [Gable, 1994, Leedy and Ormrod, 2005]. Scientific [Galliers, 1992], case study

[Gable, 1994], action research [Somekh, 2005] and prototyping [Creswell, 2013] are examples

of research methodologies that are applicable to the field ofknowledge discovery in texts [Wu,

2007]. As this research aims to contribute to the knowledge discovery in text field, this makes

it an empirical research type that is applicable to the scientific research methodology. However,

as our proposed research has different stages and the scientific methodology consists of six

repetitive activities, an organising methodology such as action research is needed. Therefore,

after analysing all aspects of this research and the scientific and action research methodologies,

we found the integration of scientific and action research methodologies best fit this research.

To achieve the aims of this thesis and solve the identified research problems, extensive

surveys are conducted against the relevant literature of TFS, topic modelling, data fusion,

measuring uncertainty, TM, document clustering, text classification and IF and retrieval. Then,

a hypothesis is developed for each problem and an initial solution is proposed by developing a

theoretically sophisticated model. Next, an experiment isdesigned to test the hypothesis and

the initial results are evaluated. If the results are not significantly better than state-of-the-art

baseline models, then iterative steps are taken until a better solution is achieved. These steps

are revising the literature, updating the hypothesis, improving the proposed model, and testing

and evaluating the model. Figure1.5 illustrates the research approach used in this thesis.

1.5 Publications

Some parts of the proposed models and frameworks in this thesis and their results have been

published in (or submitted to) international conferences and journals as follows:

Peer-Reviewed Journal Articles

• Abdullah Alharbi, Md Abul Bashar, Yuefeng Li, ‘Fusing clustering and topic modelling

for unsupervised relevant feature discovery’,IEEE Trans. Pattern Anal. Mach. Intell.

(To be submitted).
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Figure 1.5: Research methodology and thesis structure.

• Abdullah Alharbi, Md Abul Bashar, Yuefeng Li, ‘Combining supervised and unsuper-

vised learning for an effective representation of specific corpus’, IEEE Trans. Knowl.

Data Eng.(To be submitted).

Peer-Reviewed Full Conference Papers

• Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Enhancing topical word semantic for rel-

evance feature selection’, inProc. IJCAI Workshop on Semantic Machine Learning,

Melbourne, (vol. 1986), 2017, pp. 27–33.

• Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Integrating LDA with clustering technique

for relevance feature selection’, in Peng W., Alahakoon D.,Li X. (eds)AI 2017: Advances

in artificial intelligence. Lecture notes in computer science. Cham: Springer, 2017, vol.
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10400, pp. 274–286.

• Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Topical term weighting based on extended

random sets for relevance feature selection’, inProc. Intern. Conf. on Web Intelligence,

Leipzig, Germany, 2017, pp. 654–661.

• Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘An extended random-sets model for fusion-

based text feature selection’, in Phung D., Tseng V., Webb G., Ho B., Ganji M., Rashidi

L. (eds)Advances in knowledge discovery and data mining. Lecture notes in computer

science. Cham: Springer, 2018, vol 10939, pp. 126–138.

• Abdullah Alharbi, Md Abul Bashar and Yuefeng Li, ‘Random-sets for dealing with uncer-

tainties in relevance feature’, in Li X., Mitrovic T., and Xue B. (eds)AI 2018: Advances

in artificial intelligence. Lecture notes in computer science. Cham: Springer, 2018, vol

11320, pp. 656–668.

1.6 Thesis Structure

This thesis is organised into seven chapters, as illustrated in Figure1.5 and summarised as

follows:

• Chapter 2: This chapter is a literature review of disciplines relatedto knowledge dis-

covery in databases, including text mining. It comprehensively reviews and critically dis-

cusses recent research in TFS; specifically, research from different perspectives, including

TFS applications. Limitations are pointed out, and possible solutions are suggested.

• Chapter 3: An innovative hybrid fusion based model for relevant feature selection (called

SIF) is presented in this chapter. The model is unsupervisedand proposed to address

the limitations of the topical features discussed earlier in this chapter and Chapter2.

The model extends multiple random sets to describe the complex relationships between

topical terms and other entities in a document collection. Based on these relationships,

a weighting scheme is developed to estimate a generalised term score that effectively

reflects the relevance of a term to user information needs andmaintains the same semantic

meaning of terms across all relevant documents.

• Chapter 4: This chapter describes SIF2, another novel, unsupervisedfusion-based model

for selecting informative features in a collection of documents that discusses a specific
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topic of interest that describes user information needs. SIF2 relaxes the term weight

generalisation assumption of the SIF model, which has been explained in Chapter3.

It also adopts the strategy of distributing global term topics assignments generated by

LDA to a local hypothesis space to solve unbalanced frequency-related problems. This

chapter also presents the UR method, which is proposed to reduce uncertainties in relevant

features discovered by existing TFS models of relevance discovery. The UR method is

also unsupervised and estimates the relevance evidence in passages of relevant documents

to scale the weight of these features and re-rank them accordingly.

• Chapter 5: Two novel frameworks of fusion-based TFS for relevance discovery are pre-

sented in this chapter. The first proposed framework, USIF, is unsupervised and integrates

document clustering, topic modelling, concept agglomeration and global statistics in a

two-stage approach to select and then re-weigh relevant features in the text collection that

describe a specific topic of interest that discusses user information preferences. The sec-

ond framework proposed is SSIF. It is a supervised, two-stage framework that combines

SVM linearly with topic modelling and global statistics. Itcan effectively deal with the

impact of topical terms that commonly appear in relevant andirrelevant documents.

• Chapter 6: The evaluation methodology for the proposed models and frameworks are

detailed in this chapter, which includes evaluation hypotheses, the benchmark dataset,

experimental design, evaluation measures and baseline models and their settings. A

detailed analysis and discussion of the experimental results for each proposed technique

in IF and RRT are also presented.

• Chapter 7: This concluding chapter summarises the key outcomes and discusses the

significant contributions of the thesis. Identified limitations are also reported in this

chapter, suggesting the direction of further research workin the future.



Chapter 2

Literature Review

This chapter undertakes a literature review of TFS techniques. The review is organised around

the major areas of TFS to ensure that an exhaustive approach is taken. The first part covers

knowledge discovery in databases in which feature selection is an essential pre-processing

step. This section also describes strategies of text miningto extract representative text features.

The second part of the review discusses the idea of TFS and proposes a taxonomic model to

organise the study of existing TFS models. While this study focuses on TFS from the data

fusion perspective, three other viewpoints are introducedin this chapter—namely, the search

strategy of the TFS models, the availability of semantic information in the utilised features,

and the models need for labelled training documents. Each ofthese perspectives is presented

in a separate section, and popular TFS models are described and critically discussed under the

relevant category. In an independent section, the applications of TFS are explained and linked

to the proposed TFS taxonomy as each application requires a suitable TFS method. The last

section presents a summary of this chapter.

As extensively discussed in Chapter1, this study brought the feature fusion approaches

to TFS for discovering relevant features that reflect user information needs. However, in the

literature, feature fusion strategies are mainly used to exploit multimodal data more than the

monomodal text. Therefore, we explicitly defined and critically discussed the concept of text

feature fusion in Chapter3 instead of this chapter. Additionally, based on the research studies

reviewed in this chapter, it is clear that there is a researchgap on how feature fusion can be used

to combat uncertainties that affect most TFS models and frameworks. This study aims to fill

this research gap.

29
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2.1 Knowledge Discovery in Databases

Knowledge discovery is commonly defined as the process of extracting useful information

from large databases of particular interest to specific users [Fayyad et al., 1996, Frawley et al.,

1992]. The extraction process should be non-trivial, and the discovered information must: (1)

implicitly exist in the databases, (2) be previously unknown to the users and (3) meet the users’

information needs [Frawley et al., 1992]. From a formal point of view, knowledge discovery can

also be defined as follows: ifF is a set of facts that represent the given data,L is a language,

andC is a set of certainty measures, then a statementS ∈ L is called a pattern, which is

discovered from the subsetFs taken fromF based on a certaintyc [Wu, 2007]. Thus, the

patternS must describe the relationships between the subsetFs of F and must be simpler than

the listing of all facts inFs. In this case, the pattern can be called knowledge if it meetsthe

interestingness measures and certainty criteria imposed by the user. However, patterns with

insufficient certainties cannot be treated as knowledge because the certainty with an acceptable

degree is essential in the knowledge discovery process [Wu, 2007].

Overall, a knowledge discovery system must output high-quality patterns that demonstrate

the following characteristics [Fayyad et al., 1996, Wu, 2007]

• Interestingness: On the basis that patterns must be novel, useful, and discovered in a

non-trivial way, it implies that the discovered knowledge must be interesting too.

• Accuracy: Based on the used certainty measure, the discovered patterns should accu-

rately reflect the contents of the original dataset in which inaccurate reflection should be

noted by the certainty measure.

• Efficiency: Given a large database, this characteristic implies that the knowledge discov-

ery algorithms must be efficient in terms of run-time where efficient means the algorithm

run-time is acceptable and can be theoretically predicted.

• Understandability: This characteristic emphasis that a discovered knowledgemust be

interpretable using a high-level language. Thus, users should be able to understand this

interpretation.
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2.1.1 Knowledge Discovery Processes

Knowledge discovery is not a monolithic task. It involves several iterative and interactive

processes, as shown in the model in Figure2.1. These processes are data selection, data pre-

processing, data transformation, data mining and pattern evaluation or interpretation, and each

process depends on the output of the previous one [Fayyad et al., 1996, Frawley et al., 1992,

Wu, 2007], as illustrated in the figure. Each of these processes is briefly described below.

Figure 2.1: KDD general processes.Note.Adapted from [Fayyad et al., 1996].

1. Data Selection: Given a large database, this process selects a subset from the database in

which the user requires the knowledge discovery system to find some useful knowledge.

Thus, the data selection process accepts a large database and outputs a target data, as

shown in Figure2.1. For example, given the World Wide Web, as a massive and multi-

source database, in the data selection process, a set of newsstories webpages might be

collected for some Web mining applications.

2. Data Pre-Processing: This process concerns about cleaning and removing the noise from

the target data. The process also handles missing and redundant data and collects relevant
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information from the required fields of the target data. For the previous case of Web

content mining, some elements from the news webpages need tobe removed, such as

metadata, pictures, hyperlinks, tags and CS codes. Also, stop-words are usually removed,

and word-stemming is performed, if required, in this process.

3. Data Transformation: Following the pre-processing task, the transformation process

takes place. Depends on the data mining application, the pre-processed data are trans-

formed into the required format, or some relevant features are selected to reduce the

dimensionality of the pre-processed data. The selected features are then used to represent

the data and used in the mining task. The output of the transformation process (i.e., the

transformed data) is analogous to the subset of factsFs discussed above, which can be

passed to the data mining process.

4. Data Mining : This process performs a specific mining task (e.g., summarisation, clas-

sification, regression, clustering or association rule mining etc. ) by searching for some

interesting patterns in the transformed data. These interesting patterns can be in the form

of ordered co-occurring features, a set of maximum featuresor even as simple as pairs of

features found in the data. The effectiveness of this process can be enhanced if the user

manages to perform the previous three KDD process more accurately.

5. Results Evaluation: The main task of the evaluation process is to ensure that thedis-

covered patterns meet the definition of knowledge noted previously. Thus, the evaluation

process must confirm that the discovered patterns are novel,valid and reflect the user’s

information needs. Only those patterns satisfy these criteria are considered useful knowl-

edge.

2.1.2 Text Knowledge Discovery

Textual data have witnessed a dramatic increase since the introduction of the web in the early

nineties. The amount of text continued to increase in an exponential rate, especially with the

wide-spread use of social networks applications [Gao, 2015, Khan et al., 2010, Sebastiani,

2002, Wu, 2007]. This text deluge has made the search for relevant information extremely

challenging as text tends to suffer from the high-dimensionality problem [Aphinyanaphongs

et al., 2014, Dasgupta et al., 2007, Yang and Pedersen, 1997]. Also, textual data are sparse

and noisy [Albathan et al., 2014, Algarni, 2011, Li et al., 2015]. Text-based applications also
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suffer from semantics related problems like ambiguity, synonymy and polysemy [Algarni and

Li , 2013, Bashar et al., 2014, Li et al., 2010]. Thus, unlike other types of data, texts need special

processing and analysis techniques to discover useful information from it. Knowledge discovery

in text (aka text mining or text analytics) [Wu, 2007] is the process of finding meaningful and

interesting patterns from text collection using differentanalysis tools and algorithms to suit what

the user needs. Unlike knowledge discovery from databases where the stored data are usually

structured (e.g., relational tables), text mining usuallyhandles semi-structured and unstructured

text, which is no more than a sequence of words or even characters [Gao, 2015, Sebastiani,

2002]. Text mining also is interdisciplinary that can span different research communities,

including ML, IR, NLP and IF [Gao et al., 2015, Khan et al., 2010, Li et al., 2015, Moschitti

and Basili, 2004, Zhong et al., 2012].

2.1.2.1 Text Pre-Processing

As noted above, textual data is noisy and can have an enormousnumber of errors and irreg-

ularities as well as noninformative words. Thus, before it can be further analysed, texts need

to be pre-processed through the undertaking of some popularpre-processing tasks, including

tokenisation, lemmatisation, stemming and filtering. These tasks are described below.

1. Tokenisation: In the tokenisation process, the text is divided into fragments of words.

At the same time, punctuation is removed, and tabs (including non-text characters) are

replaced with single spaces [Khan et al., 2010].

2. Lemmatisation: In the lemmatisation process, all verbs are converted backto the original

dictionary keywords and mapped to their original infinitival forms.

3. Stemming: In stemming, ends of words are sliced off in anticipation ofbringing them

back to their dictionary keywords. For example, present participles’ –ing endings are

removed, and plurals are turned into singulars [Khan et al., 2010, Porter, 1980].

4. Filtering : Stop words are common words like conjunctions, articles and prepositions that

are found in every text but have little or no meaning in relation to the content [Khan et al.,

2010, Porter, 1980]. These are removed.
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2.1.3 User Relevance Feedback

Relevance is a fundamental concept in both IR and IF. IF is mainly concerned with the doc-

ument’s relevance to a query about a specific subject [Li et al., 2015, 2010]. However, IF

discusses the document’s relevance to the user’s information needs [Gao et al., 2015, Li et al.,

2010]. Relevance feedback is a technique that has been extensively used mainly in IR, where a

user is involved in judging the relevance of the retrieved results [Algarni, 2011, Rocchio, 1971].

A user submits a queryQ to a search engine that retrieves a list of documentsR, which are

ranked based on their similarities to the user’s query. The user, then, is involved in assessing the

relevance of a top-k documents collectionD to what he/she needs to either relevant (1 positive)

or irrelevant (0/-1 negative) documents [Algarni, 2011]. In this case, the collectionD is known

as the relevance feedback such thatD ⊂ R andD has a subset of relevant documentsD+ and

another subset that are irrelevantD−. Due to the user judgement, relevance feedback has been

extensively used in TM, ML, IR and IF for a variety of applications [Bashar et al., 2016, Gao

et al., 2015, Li et al., 2015, Rocchio, 1971] to learn or mine useful information and knowledge.

• Positive Feedback: This feedback refers to the subset of documents that are relevant to

what the user needs, which commonly represented asD+ such thatD+ ⊂ D. This subset

can be used to identify the main interests of the user, which makesD+ receives much

attention from many research communities [Alharbi et al., 2017b, Bashar and Li, 2018,

Gao et al., 2017].

• Negative Feedback: The negative feedback is the subset of irrelevant documents inD,

which is commonly referred to asD− [Alharbi et al., 2018a, Li et al., 2010, 2012]. People

assume thatD− documents are useful for deciding the information or knowledge that the

user is not interested in. However, this assumption can be simple, knowing that these

documents can be very topically diverse, which makes the identification of what exactly

the user not interested in is rather challenging [Li et al., 2015, 2017c].

2.1.4 Text Representation

Text representation is a central problem in TM and ML in whicha set of documents is numer-

ically represented in a specific space [Man et al., 2009, Sebastiani, 2002, Zhong et al., 2012].

For example, given a numerical spaceS, and a document collectionD = {d1, d2, d3, . . . , dm}

where dx denotes thexth document inD, the text representation model aims to represent
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each documentdx ∈ D as a pointsx in the spaceS. The representation model allows the

documents to be mathematically defined, as pairs of points inthe space, which can be efficiently

manipulated (e.g., measures the similarity or distance between two pairs) [Salton and Buckley,

1988, Salton et al., 1975]. Further, selecting the suitable representation model iscrucial for the

success of the TM task being undertaken [Algarni, 2011, Sebastiani, 2002]. The two primary

text representation models are the keyword-based and phrase-based, as described below.

2.1.4.1 Keyword-based Representation

Representation based on keywords, the so-called bag-of-words (BoW) process (see Figure2.2),

is extensively employed in IR [Croft, 2000, Fang et al., 2004, Huston and Croft, 2014]; it is

also known as the vector space model (VSM). Gerard Salton developed this model in 1960 to

index and retrieve information [Salton and Buckley, 1988, Salton et al., 1975]. Most IR systems

and text extraction methods have employed this model, whichfinds similarities among the text

representations identified [Manning et al., 2008b, Rocchio, 1971]. Each documentd is repre-

sented by the VSM as a vector in the feature space,w(d) = {x(d, t1), x(d, t2), . . . , x(d, tn)};

the frequency of the termt is represented by each element of the vector in the document [Salton

and Buckley, 1988, Salton et al., 1975].

Figure 2.2: The BoW representation.Note.Adapted from [Joachims, 1996].

Although quite useful, the VSM representation is not without limitations: It poorly rep-

resents long documents, since these contain loose values for similarity, and keywords being

searched must concisely relate to the terms in the documents[Croft, 2000, Turney and Pantel,

2010]. Besides, VSM does not retain semantic information about terms [Zhong et al., 2012].
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2.1.4.2 Phrase-based Representation

The keyword-based representation, resembled by the VSM or BoW, was not limitations free.

The absence of semantic knowledge (e.g., words order) amongkeywords in VSM made it suffer

from the synonymy and polysemy problems [Deerwester et al., 1990, Li et al., 2015, Luo et al.,

2011]. Also, VSM considers each keyword as a separate dimension in the numerical space can

be inefficient. Further, using VSM to find relations between words in documents is distance-

based. It largely depends on the spatial information of vectors that represent the documents

in which the sequence of the words is not considered. Thus, inan attempt to address VSM’s

limitations, a phrase-based representation was developedin which unstructured documents are

represented by a set of phrases instead of individual keywords [Albathan et al., 2013, Fürnkranz,

1998, Huston and Croft, 2014]. A phrase is a set of keywords that appear together and carrya

specific meaning.

The phrase-based representation aims to add semantic information to a word in documents

by capturing its correlation with other words across the containing corpus [Albathan et al.,

2013, Huston and Croft, 2014, Wang et al., 2012]. The statisticaln-grams model [Manning

et al., 2008b] is a widely used phrase-based representation with numerous applications in IR,

IF and other related TM tasks. Then-Gram is employed to locate all the series of words that

do not exceed the length ofn [Albathan et al., 2013, Wang et al., 2012]. The n-gram-based

text representation offers a more rigorous means of handling documents even in the presence of

typographical and grammatical errors and mistakes. Besides, this model does not require any

processes like tokenisation or stemming. Yet, there are also a few limitations in this model;

for example, the word patterns mined with this model will be limited to a total ofn, possibly

limiting the discovery of long phrases or patterns [Wu, 2007].

2.2 Text Feature Selection

Having highly informative text features is crucial for the success of any text analysis applica-

tion [Algarni, 2011, Li et al., 2015, Zhong et al., 2012]. Text data are extremely sparse and

suffer from the high-dimensionality problem, which can cause a learning algorithm to overfit

[Dasgupta et al., 2007, Khan et al., 2010, Yang and Pedersen, 1997]. Also, text documents

suffer from feature redundancy and noise, which can cause knowledge discovery algorithms to

be inefficient. Therefore, different TFS models and frameworks have been extensively used in

the areas of TM and ML to overcome the curse of dimensionalityand extract high-quality text
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features to support the different knowledge discovery applications [Li et al., 2015, 2017c, Tang

et al., 2016, Zhang et al., 2016, Zheng et al., 2004]. Most TFS techniques exploit the statistical

information (frequency) of terms and patterns in a documentor set of documents for capturing

the importance of the different features [Man et al., 2009, Robertson and Zaragoza, 2009, Yang

and Pedersen, 1997]. However, two terms may have the same frequency in the same document,

but it is hard to discover the one that contributes more semantically to the sentence. Further,

the resulting features (terms or patterns) still suffer from noise and redundancy [Albathan et al.,

2013, 2014, Li et al., 2015].

2.2.1 Definition

Instead of creating new features, a TFS model automaticallyselects a subset of features from

the original set of features that discovered from a collection of documents [Combarro et al.,

2005, Dasgupta et al., 2007, Forman, 2003]. The selected features must be relevant to the

topics discussed in the collection that might describe the user’s information needs [Gao et al.,

2015, Li et al., 2015, Zhong et al., 2012]. The features must also be sufficient to represent the

documents of the collection without losing important information. Additionally, the features

must be meaningful and easy to understand by users and must not be redundant or noisy [Bashar

et al., 2014, Wu et al., 2006]. Further, and based on the target application, the selected features

have to be informative (descriptive), in the case of unsupervised TM or ML applications [Cai

et al., 2010, Huston and Croft, 2014, Scott and Matwin, 1999], or discriminative (predictive or

support decision making), in the case of supervised learning problems [Combarro et al., 2005,

Li et al., 2010, Xue and Zhou, 2009]. By selecting such a subset of features that maintains

those qualities, we can guarantee the removal of irrelevantfeatures and, thus, reduce the total

dimensionality of the feature space that a document can be mapped to.

Given a data collection, a general feature selection methodselects important features from

the full features set of the collection based on four main steps [Li et al., 2017b, Liu and Yu,

2005]. The steps are shown in Figure2.3 and they are subset selection (or generation), subset

evaluation, the stopping criterion and subset validation.In the first step, the subset selection

searches for a subset of candidate features from the original feature set (e.g., the set of all terms

in a document collection). Next, the subset evaluation steptests, based on some criteria, the

goodness of the candidate subset of the first step. Before theresult validation step takes place,

the feature selection process must stop based on the stopping criterion. Usually, the selection
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process stops when the search for better features is completed, or a minimum number of features

is already obtained. However, these are not the only stopping criteria available, and there are

many others depend on the learning or mining application. Lastly, the result validation step

measures the performance of the selected subset of featuresbased on some ground truth (e.g., a

prior known set of relevant features) [Liu and Yu, 2005].

Subset

Selection

Subset

Evaluation

Stopping

Criterion

Subset

Validation

Original

Feature Set

No Yes

subset

goodness

Data

Collection

Figure 2.3: The general procedure of feature selection.Note.Adapted from [Liu and Yu, 2005].

2.2.2 Benefits and Challenges

A TFS model does not construct new features (i.e., features that do not belong to the original

feature set that is discovered from the training samples). Instead, the model selects relevant

features, removes those that are irrelevant and discards the redundant ones [Albathan et al.,

2013, Algarni and Li, 2013, Li et al., 2015]. As an automatic process, TFS comes with many

important benefits for learning algorithms, computer storage, decision making, and computa-

tional time [Li et al., 2017a, Liu and Yu, 2005] as follows:

1. Improving the learning algorithm performance : The number of features employed

determine the complexity of any learning algorithm, and so,in the training set, the

elimination of noisy or redundant features should enhance the accuracy of the system and

improve efficiency by decreasing the process of computation[Aphinyanaphongs et al.,

2014, Cai et al., 2010];

2. Reducing data size: Storing or retrieving features requires storage space, which can be

a challenge. As it is not necessary to retrieve and store an irrelevant feature, reducing the

number of features will assist in retrieving data;

3. Enhancing data visualisation readability: Reducing to fewer dimensions helps in pro-

viding the increased readability of the data as it also enables better visualisation and
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understanding of the data [Chaney and Blei, 2012]; and

4. Improving computational resources utilisation: The training and testing time is also

reduced when redundant and noisy features are reduced, and this can facilitate the con-

servation of essential computation resources like memory.

Although a TFS model can offer significant benefits to different mining and learning algo-

rithms, the model is still subject to some challenges. For instance, choosing the most relevant

feature is sensitive to the effectiveness of the selection algorithm, which indicates that there

might be a chance for some important features to be missed [Alharbi et al., 2017b, Li et al.,

2011]. A possible solution to prevent losing important featuresfrom the training samples

is to find optimal TFS models that employ different selectioncriteria and integrate between

them [Gao et al., 2014b, 2015]. Moreover, identifying noisy features is still challenging to

most TFS models to date, and require user’s involvement, which can impose further restrictions

concerning the model’s learning time and scalability.

2.2.3 Models Taxonomy

There is a large number of TFS models and frameworks in the current literature. To study

them effectively, they have been categorised based on different characteristics. In this study,

we proposed the taxonomy shown in Figure2.4 as an attempt to study these TFS models and

techniques comprehensively. Each category is separately discussed in the subsequent sections

except the ‘fusion’ category, which is described in Chapter3.

One of the most widely used categorisations of TFS models is based on the search strategy

employed to locate relevant features [Bolón-Canedo et al., 2013, Liu et al., 2005, Liu and Yu,

2005]. Common strategies are the filter, wrapper, embedded and hybrid strategies, as illustrated

in the figure. Another categorisation approach is based on the presence and absence of semantic

information in the extracted text features [Li et al., 2015, 2010]. TFS models that adopt low-

level features, such as individual terms, do not consider any semantic information. However, the

models that use high-level features, such as phrases, patterns, topics, concepts or a combination

of them, are semantic-aware [Algarni, 2014, Bashar et al., 2017, Gao et al., 2015, Zhong et al.,

2012].

Additionally, the class label information is also used to categorise different TFS models and
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Figure 2.4: The proposed TFS taxonomy.

frameworks [Aphinyanaphongs et al., 2014, Li et al., 2017a,b]. A TFS model that requires la-

belled training set is called supervised while a model that does not consider the class information

(i.e., use unlabelled training set) is known as unsupervised [Cai et al., 2010, Hou et al., 2010].

However, those models use a few samples of labelled data, andlarge samples of unlabelled

data are called semi-supervised [Li et al., 2017a,b]. Weakly supervised TFS techniques do not

require high-quality, human-labelled data samples for training. They can work with noisy or

weakly labelled data that can be produced by learning algorithms [Baltrušaitis et al., 2019].

2.3 Search Strategy-based Models

The ultimate goal of any TFS model is selecting a subset of features from the original feature

space. The selected subset is supposed to comprise the most important features (most informa-

tive or discriminative features) that represent the entirefeature space almost equally [Peng et al.,

2005, Song et al., 2013]. The selection or the search strategy for relevant features is one of the

keys for differentiating feature selection models [Bolón-Canedo et al., 2013, Li et al., 2017a,b].

Therefore, from the search strategy perspective, a featureselection model can be classified as

a filter-, wrapper-, hybrid- or embedded-based model [Bolón-Canedo et al., 2013, Liu et al.,
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2005]. More details about each strategy are given in the next foursubsections.

2.3.1 Filter-based Models

A filter TFS model attempts to exploit the characteristics oftraining data samples and, then,

select important features without relying on any learning algorithms (e.g., classifiers) [Liu et al.,

2005, Liu and Yu, 2005]. There are two essential steps in the filter model, which areas follows:

1) based on the model’s evaluation criterion, the original features are ranked; and 2) the top-

rankedk features are selected [Bolón-Canedo et al., 2013, Liu and Yu, 2005]. Figure2.5shows

the structure of the filter-based TFS model in which the feature subset selection module is the

core of this model. The figure does not only show the training phase where the model selects

the most important features, but it also illustrates the testing phase in which the quality of the

selected features is evaluated using a learning algorithm,testing data samples and evaluation

measures.
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Figure 2.5: The filter model.Note.Adapted from [John et al., 1994]

Popular examples of TFS models that adopt the filter’s strategy are information gain (IG)

[Yang and Pedersen, 1997], BM25 [Robertson and Zaragoza, 2009], MI [ Manning et al., 2008b],

χ2 [Chen and Chen, 2011], Prob [Jones et al., 2000a,b], TFIDF [Salton and Buckley, 1988]

and other term weighting algorithms [Man et al., 2009, Wu and Gu, 2017]. The filter model

is computationally efficient and can remove noisy features and simplify training data [Bolón-

Canedo et al., 2013, Liu and Yu, 2005]. The model can improve the performance of any TM

or ML algorithms because it does not require any classifiers to select features (i.e., not biased

towards any learning algorithms) [Liu et al., 2005, Liu and Yu, 2005]. However, the filter model

can miss some discriminative features and cannot validate the selected subset of features as it

ignores the learning algorithm during the training phase.
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2.3.2 Wrapper-based Models

A wrapper TFS model does not only exploit the characteristics of training data, as in the filter

model but also uses a learning algorithm (e.g., a classifier)to assess the usefulness of the initially

selected subset of features [Bolón-Canedo et al., 2013, Kohavi and John, 1997, Liu et al., 2005,

Liu and Yu, 2005]. Figure2.6[Kohavi and John, 1997] shows the structure of the wrapper-based

model and how it can be used during both training and testing phases. The shaded box in the

figure represents the central part of any wrapper-based TFS model, and the learning algorithm is

what distinguishes the wrapper’s approach from the filter’s. To select the best subset of features,

the wrapper model performs three steps. First, it selects aninitial subset of features from the

original set based on some searching criteria. Then, the model uses the learning algorithm, as a

black box, to evaluate the goodness of the selected subset offeatures. Lastly, the model repeats

the previous two steps until the best subset of features is selected [Kohavi and John, 1997].

Original

Feature Set

Training Samples

Feature Subset Selection

Learning Algorithm

Testing Samples

Results

Selected

Features

Feature Subset Evaluation

Feature

Subset

Feature

Subset Hypothesis

Performance

Estimation

Learning

Algorithm

Evaluation

Figure 2.6: The wrapper model.Note.Adapted from [Kohavi and John, 1997]

Different learning algorithms, such as C4.5, naı̈ve Bayes and ID3 [Khan et al., 2010], were

employed by various wrapper-based models to validate the quality of the selected features

during training [Bolón-Canedo et al., 2013, Liu and Yu, 2005]. Adopting such algorithms

make the wrapper strategy more effective than the filter approach in selecting better features

that might increase the accuracy of classifiers during the testing phase [Bolón-Canedo et al.,
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2013, Li et al., 2017b]. However, the effectiveness comes with higher computational time.

Further, the wrapper model may not be applied with massive training data because it cannot

manage and scale its size [Li et al., 2017a]. Also, it is well understood that the accuracy of

learning algorithms during the testing phase cannot be guaranteed based on the accuracy that

is estimated during the training phase. Thus, it cannot be generalised that the best subset of

features selected by the wrapper model during training can perform best during testing.

2.3.3 Hybrid-based Models

The hybrid TFS model takes the advantages of both the filter and wrapper models [Liu and Yu,

2005]. As a middle-ground solution, the hybrid algorithm uses the filter model to select optimal

feature subsets [Song et al., 2013]. It also exploits the learning algorithm in the wrapper model

to decide the final best subset of features [Liu and Yu, 2005]. Figure2.7 depicts the structure

of the hybrid model and how the filter and wrapper algorithms are integrated. The figure also

shows both the training and testing phases of the hybrid model.
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Figure 2.7: The hybrid model.Note.Adapted from [Albathan, 2015]

The computation of the hybrid algorithm is fast and less cumbersome, and its interaction

with the learning algorithm enables it to generate an optimal set of features [Liu and Yu, 2005].

The hybrid model also can handle large data collection and does not need stopping criteria as the

learning algorithm naturally performs such a task [Song et al., 2013]. However, it is challenging

to guarantee the generalisability of the final subset of features selected by the hybrid model

because there might be some data samples in the testing phasethat could not be seen in the
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model training phase.

2.3.4 Embedded-based Models

Unlike the hybrid selection strategy in which the advantages of both filter and wrapper are

combined, a TFS model that adopts the embedded strategy doesnot select features before

learning a classifier [Bolón-Canedo et al., 2013]. It embeds the selection process inside the

process of learning a classifier using some forms of regularisation or pruning for features [Li

et al., 2017a]. Figure2.8 illustrates the typical structure of an embedded TFS model and how

the model can be used during both the training and testing phases. Based on these criteria,

popular classifiers, such as random forests, weighted naiveBayes and decision tree C4.5 [Khan

et al., 2010] can be considered as embedded models. Additionally, the features selected based

on the SVM’s weighted vectors [Joachims, 2002] and LASSO model [Tibshirani, 1996] are also

regarded as embedded models [Bolón-Canedo et al., 2013].
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Figure 2.8: The embedded model.Note.Adapted from [Bolón-Canedo et al., 2013]

In the literature, many hybrid models have been categorisedas embedded stressing that

there is no difference between the two [Li et al., 2017b, Liu and Yu, 2005]. However, in the

embedded algorithm, no feature subsets are selected beforelearning a classifier, as shown in

the figure. Instead, the classifier can only select importantfeatures during its learning phase.

The embedded model is more efficient than the hybrid one because there is no need to re-train

the adopted classifier for each subset of features [Bolón-Canedo et al., 2013]. However, both

models produce better results compared to the filter and wrapper algorithms [Bolón-Canedo

et al., 2013, Li et al., 2017a].
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2.4 Semantic Information-based Models

Based on the availability of semantic information in text features, they can be classified to

low- and high-level features [Bashar et al., 2014, Li et al., 2015, 2010]. The low-levelness

here implies the absence of semantic information in the features used by a TFS model. The

high-level features retain some semantic information thatcan make them more meaningful and

understood by users. More details are given in the subsequent sections.

2.4.1 Types of Text Features

In a document, text features can take different forms, such as words (terms), phrases, patterns,

n-grams structures, and part-of-speech constructs (e.g., verbs, adverbs, nouns and adjectives)

[Li et al., 2015, 2010]. All these terminologies refer to thephysicalfeatures (whether lexical

or syntactic) that characterise the document’s text. Thesefeatures can be used in representing

or indexing the document for a text analysis technique. However, in the literature, the term

”feature” can also refer to some statistical attributes that are pertinent to a specific lexical or

syntactic features (e.g., frequency, conditional probability distribution, etc.) [Xue and Zhou,

2009]. Li, Algarni and Zhong (2010) [Li et al., 2010] categorised text features into two groups

based on the semantic information they carry in relevant documents. The first group, called

high-level features, is represented by text patterns, while the second group, relates to low-level

features like words. However, patterns are not the only typethat belongs to the high-level

group. Other features like phrases, concepts, topics or different combinations of them can also

be classified as high-level features [Albathan et al., 2013, Alharbi et al., 2017c, Bashar et al.,

2016, Gao et al., 2015].

2.4.2 Low-level Features

From the semantic information perspective, low-level features reside at the bottom of the seman-

tic taxonomy of text features with almost no semantic information [Li et al., 2015, 2010]. Low-

level terms (i.e., individual words) are the typical example of such features that are extensively

used in IR and ML algorithms mainly to represent documents asBoW in the VSM [Albathan

et al., 2013, Gao et al., 2014b]. Due to the richness of their statistical properties, low-level

words were efficiently adopted by many TFS techniques in which the term’s statistics were

mathematically and heuristically modelled in the forms of weighting schemes [Gao et al.,

2014b, Li et al., 2011, Zhou et al., 2008]. However, individual words suffer from the problem

of synonymy and polysemy due to the absence of semantic relations between them [Algarni,
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2014, Li et al., 2015, Zhong et al., 2012]. These problems are the leading cause of information

mismatch and overload that affect many IR and IF systems [Li et al., 2008, 2012]. Thus, it is

challenging to discover relevant terms that reflect the user’s information needs. Some popular

examples of term-based TFS models are described in the next section.

2.4.2.1 Term-based Models

• TF*IDF

Term Frequency-Inverse Document Frequency [Salton and Buckley, 1988] is a commonly

used weighting method in IR, TM and ML algorithms [Man et al., 2009, Sebastiani, 2002,

Zhong et al., 2012]. TF-IDF linearly combines term frequency (TF) of termt in documentd

with the term inverse document frequency (IDF) at the collection level as follows:

tfidf t,d = tf t,d × idf t (2.1)

wheretf t,d is the term’st instances of occurrences in the documentd.

The term inverse document frequency isidf t, which is employed to quantify the term’s

specificity in the collection of documents on the basis that terms that frequently appear in

many documents are not robust determiners of specificity andshould be assigned less weight

compared to the ones appearing in just a small number of documents. Thus,IDF of a termt

can be calculated as follows:

idft = log
N

df t
(2.2)

whereN represents the number of documents in a collection.

• Rocchio’s Algorithm

Rocchio’s algorithm was introduced in 1971 with the SMART retrieval system [Rocchio,

1971]. Even since, the algorithm has been used extensively in IR,IF and TM applications

[Li et al., 2015, 2011, Robertson and Soboroff, 2002]. Rocchio’s algorithm is a relevance

feedback model that uses both positive and negative documents. The algorithm uses terms to

represent the documents in the VSMs in whichtf.idf is used to give weight to documents

terms. Rocchio’s algorithm can be formulated as follows:

~c = α
1

|D+|

∑

~d∈D+

~d

||~d||
− β

1

|D−|

∑

~d∈D−

~d

||~d||
(2.3)

Despite its efficiency in discriminating between positive and negative documents in the vector
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space, Rocchio’s algorithm has low classification accuracy[Shehata et al., 2007, Yuefeng and

Ning, 2006]. It is because the algorithm uses low-level terms that madeit unable to cope with

the problems of synonymy and polysemy.

• Okapi BM25

The Okapi BM25 [Robertson and Zaragoza, 2009] is considered one of the best ranking

algorithm in IR. Instead of representing documents in the VSM, BM25 uses the termt

frequency and length of documents to probabilistically assign a weight to the term at the

collection level using the following equation:

w(t) =
tf × (k1 + 1)

k1 ×
(

(1− b) + b DL
AVDL

)

+ tf
× log

(r+0.5)
(n−r+0.5)

(R−r+0.5)
(N−n−R+r+0.5)

(2.4)

whereN is the number of training documents;R is the number of positive documents in the

training set;tf is the term frequency;b andk1 are experimental parameters whose values set

to 0.75 and1.2 respectively as recommended in [Manning et al., 2008b]; DL andAVDL

are the document length and the average document length;n andr are the total number of

documents contain the termt, and the total number of positive documents that include the

same termt.

• Mutual Information

The mutual information (MI) [Manning et al., 2008b] is derived from information theory and

widely used for measuring the mutual dependency between terms given a specific collection

or class label. Thus, given a collection of documents that represent a particular topic of

interest and a termt, the mutual information can be calculated as follows:

mi(t) = log
r ÷R

n÷N
= log

r

R
− log

n

N
(2.5)

whereR, r,N andn denote the same statistical information of BM25 as described above.

• Chi-Square

The chi-square (χ2) [Chen and Chen, 2011] is a statistical test that is widely used to measure

the strength of independence between a termt and a specific topic (i.e., a collection of

documents). Chi-square’s equation can be written as follows:

χ2(t) =
N × (r ×N − n×R)2

R× n× (N − R)× (N − n)
(2.6)
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whereR, r, N andn denote the same statistical information of BM25 and MI as described

above.

• Probabilistic Models

Four term-based methods are proposed by Jones et al. [Jones et al., 2000a,b] and used as

relevance ranking functions for retrieval models. These probabilistic methods assign weights

to search terms based on the independence and ordering assumptions for binary relevance

models. The four weighting functions are as follows:

F1(t) = log
(r ÷ R)

(n÷N)
(2.7)

F2(t) = log
( r
R
)

( n−r
N−R

)
(2.8)

F3(t) = log
( r
R−r

)

( n
N−n

)
(2.9)

F4(t) = log
( r
R−r

)

( n−r
N−n−R+r

)
(2.10)

wheret is an individual term,r is the number of documents inD+ that contain the term

t, n is the number of documents inD that containt, N andR denote the total number of

documents inD andD+, respectively. Based on the experiment in [Zhong et al., 2012],

which was conducted on the RCV1 dataset, the following function performed best compared

to the others above:

W (t) = log

(

r + 0.5

R− r + 0.5
÷

n− r + 0.5

(N − n)− (R− r) + 0.5

)

(2.11)

• LASSO

LASSO [Tibshirani, 1996] is a linear regression model and stands for Least Absolute Shrink-

age and Selection Operator. LASSO is considered as an embedded TFS model as it uses

l1-norm regularisation to eliminate unimportant features byforcing their weights (̄w) to be

zero though some optimisation methods. Oncew̄ is calculated, the features are sorted in

descending order, and top-k can be selected. LASSO was used in this study is the same way

as in [Li et al., 2015].

Despite the efficiency of the term-based models described above, they suffer from the limi-

tations of low-level terms. These models cannot handle the synonymy and polysemy problems
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[Li et al., 2015, 2012]. The models do not assume that documents can discuss multiple topics

[Alharbi et al., 2017c, Gao et al., 2015]. Additionally, term-based TFS models are sensitive

to the noisy terms in the collection and cannot manage the uncertainties in relevant documents

[Albathan et al., 2013, 2014]. To overcome the weaknesses of low-level terms, many high-level

features were proposed, as described in the following section.

2.4.3 High-level Features

Some text features are attributed as high-level due to the semantic information they contain

[Li et al., 2015, 2012]. Popular examples are phrases, patterns, topics, concepts or a mixture

of these features. Phrases were extracted and probabilistically modelled to understand the

semantic meaning of user information needs and, thus, improve the performance of many IR,

IF and TM applications [Albathan et al., 2013, Fürnkranz, 1998, Wang et al., 2012]. Similarly,

different association rule mining methods were adapted andemployed to discover interesting

text patterns [Li et al., 2012, Wu et al., 2006, 2004, Zhong et al., 2012]. These patterns

are semantically meaningful and used understand user information preferences for many TM

problems [Albathan et al., 2013, 2014, Li et al., 2015, 2010, Zhou et al., 2011]. Ontological

concepts were also used to add an explicit semantic layer to user information needs and, thus,

interpret their meanings for more reliable results [Bashar and Li, 2017, 2018, Egozi et al.,

2008]. Statistical topic modelling algorithms were also adopted to discover the topics that user

might interested in and, therefore, discover the more relevant topical features [Blei et al., 2003,

Hofmann, 2001, Wei and Croft, 2006]. Additionally, these features above were also integrated

to solve the limitations of specific other high-level features. Several popular and state-of-the-

art TFS models that adopted high-level features are described and discussed in the following

sections.

2.4.3.1 Phrase-based Models

• n-Grams

Then-grams method extract a sequence of terms (words) or characters from a document by

moving a sliding window of sizen [Albathan et al., 2013, Fürnkranz, 1998]. The simplest

form of n-grams is the unigram that can be extracted by assigningn = 1 (i.e., move the

window one place at a time). The extractedn-grams become more meaningful and interesting

with higher values forn, such as bigram (n = 2) and trigram (n = 3) etc. As phrases are more

semantically rich than individual words, then-grams language model has been widely used in
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IR, IF and other TM applications [Lavrenko and Croft, 2001, Robertson and Zaragoza, 2009,

Wang et al., 2007]. A common way to model a sequence of terms ofn-grams is through the

conditional probability of a term given the preceding term [Albathan et al., 2013]. Thus, if

n-grams= {t1, t2, t3, . . . , tn} then it can be modelled as follows:

P (t1t2t3 . . . tn) = P (t1)P (t2|t1t2) . . . P (tn|t1t2 . . . tn−1) (2.12)

where the conditional probability of a termtn given its preceding termtn−1 (P (tn|tn−1)) can

be estimated using the following equation:

P (tn|tn−1) =
P (tn−1, tn)

P (tn−1)
(2.13)

Despite the meaningfulness of phrases (n-grams), they did not show encouraging perfor-

mance in discovering relevant features that reflect user information needs, as can be seen in

many studies [Gao et al., 2015, Li et al., 2015, Moschitti and Basili, 2004, Scott and Matwin,

1999, Wu et al., 2006]. One of the main reasons behind the poor performance ofn-grams

models is the existence of noisy terms [Albathan et al., 2013, Fürnkranz, 1998]. The strict

sequential appearance of terms inn-grams made it challenging to handle noisy terms and allows

them to be modelled alongside with important terms. Additionally, n-grams language models

cannot manage uncertainties in relevant documents and do not assume that these documents

might discuss multiple topics and themes [Alharbi et al., 2017c, Gao et al., 2015].

2.4.3.2 Pattern-based Models

Text patterns, as sets of associated terms, are widely used in different TM, IR and IF applications

[Gao et al., 2015, Li et al., 2015, 2012, Wu et al., 2019, Zhong et al., 2012]. Many pattern

mining algorithms are used to extract interesting text patterns, such as frequent patterns [Han

et al., 2007], closed patterns [Yan et al., 2005], sequential patterns [Mooney and Roddick, 2013],

maximal patterns [Feldman et al., 1997] and master patterns [Yan et al., 2005]. These different

types of patterns are employed by many pattern-based TFS models to discover relevant features

that describe user information needs [Algarni et al., 2010, Li et al., 2011, 2010, 2012, Wu et al.,

2004]. Some state-of-the-art examples are described below.

• MP

The master pattern model [Yan et al., 2005] groups frequent closed patterns into clusters

(aka pattern profiles or master patterns) based on some similarity’s measures. The model was



2.4. SEMANTIC INFORMATION-BASED MODELS 51

developed on the basis that individual text patterns might not be representative but assembling

them together in one master pattern can increase their informativeness and lead to a better dis-

covery of knowledge. To summarise the set of closed patternsCP = {cp1, cp2, cp3, . . . , cpn}

that was discovered from the set of all paragraphsG of relevant documentsD+, the MP model

defines a master patternM as a triple〈P, φ, ρ〉 whereP is a probability distribution vector

of the pattern terms,φ is the set of closed patterns andρ is the pattern support. The model

also combines master patterns that are closed in the distance into a single one and uses the

k-means clustering algorithm to generate the user-specified k number of master patterns.

• PDS

Pattern Deploying Based on Support [Zhong et al., 2012] is one of the state-of-the-art pattern-

based feature selection models that adopt the late fusion concept. It is an enhanced extension

to the PTM [Wu et al., 2004] and the PDM [Wu et al., 2006] to overcome the limitations of

pattern frequency and usage. PDS extracts closed sequential patterns in relevant documents as

a high-level features that represent user’s information needs based on a threshold of minimum

support (min sup). Then, the model deploys all the extracted patterns into terms where each

term’s score (also calledsupport) can be calculated using the following equation:

support(t, D+) =

n
∑

i=1

|{p|p ∈ SPi, t ∈ p}|
∑

p∈SPi
|P |

(2.14)

whereD+ is the relevant documents in the training set andn is the total number ofD+; |P |

is the total number of terms in patternp; SP is the set of all closed sequential patterns inD+.

• RFD

The relevance feature discovery model [Li et al., 2015, 2010] is one of the state-of-the-art TFS

techniques that uses high-level pattern to weight low-level terms. The RFD model clusters

terms into three groups—positive specific, general and negative specific— based on their

appearance in the positiveD+ and negativeD− training documents. This clustering helps

to determine the specificity of each individual term to represent the document collection that

discuss user information needs. Given a termt, the RFD model defines its specificity using

the following equation:

spe(t) =
|coverage+(t)| − |coverage−(t)|

n
(2.15)

wheren = |D+|, the functioncoverage+(t) is defined to be{d ∈ D+|t ∈ d} and, inversely,
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the functioncoverage−(t) is as{d ∈ D−|t ∈ d}.

Based on the value ofspe(t), for example, if thespe(t) > 0, then, the RFD model assumes

that the termt can be more relevant toD+ rather thanD−. The model uses the classification

rule G = {t ∈ T |θ1 ≤ spe(t) ≤ θ2} to group general terms together in the setG and

similarly uses the ruleT+ = {t ∈ T |spe(t) > θ2} for the specifically positive termsT+ and

the ruleT− = {t ∈ T |spe(t) < θ1} for the specifically negative termsT−. Bothθ1 andθ2 are

experimental coefficients that denote the minimum and maximum bounds of general terms

specificity, respectively.

The RFD model selects some top-K irrelevant documents (called offenders) to revise the

estimated weights of terms based on the specificity functionspe(t) and the supportw(t) of

the mined sets of closed sequential patternsSP that terms appear in as follows:

weight(t) =



































w(t) + w(t)× spe(t), if t ∈ T+

w(t), if t ∈ G

w(t)− |w(t)× spe(t)|, if t ∈ T−

(2.16)

The RFD model assumesw(t) = w(t, D+) based on the following equation:

w(t, D+) =

n
∑

i=1

|p|p ∈ SPi, t ∈ p|
∑

p∈SPi

|p|
(2.17)

wheren = |D+|, p is a closed sequential pattern and|p| is the length ofp (i.e., the number of

terms in the patternp).

• PCM

The pattern co-occurrence matrix model [Albathan et al., 2012] defines an× n matrix over a

relevant document to represent the co-occurrence relationships between the patterns extracted

from all paragraphs of the document collection. The matrix is used to remove the noisy

patterns through a re-evaluation process. The PCM model uses a set of closed sequential

patternsP extracted using a small minimum support (min sup = 0.2). Thus, given a matrix

A andP = {p1, p2, p3, . . . , pn}, the matrix elementAij holds the the number of times pattern

pi comes (i.e., co-occur) after patternpj in the same paragraph. The PCM usesWR(pi) =
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n
∑

j

Ai,j to calculate the total co-occurrence of patternpi in relevant documentdi for a row in

the defined matrix. Similarly, the model also usesWC(pi) =
n
∑

j

Aj,i for a column. Then,

PCM sums the total co-occurrences of the same pattern asPCM(pi) = WR(pi) +WC(pi)

before it normalises it based on the length of the target document as follows:

PCM(pi) =
WR(pi) +WC(pi)

n×m
(2.18)

wheren = |P | andm is the total number of paragraphs in the relevant document.

• SCSP

The specific closed sequential patterns [Albathan et al., 2014] uses the ERSξ : T → 2P×[0,1]

to weight patternsPtn based on the term distribution in patterns and the pattern distribu-

tion in documents such thatξ(t) = {(ptn, f(ptn))|t ∈ ptn, f(ptn) > 0} andf(ptn) can be

calculated as follows:

f(ptn) =

∑

d∈D+ suppa(ptn,D
+)

∑

d∈D

suppa(ptn,D)
(2.19)

whereptn is a text pattern andsuppa(ptn,D
+) calculates the absolute support ofptn in D+

paragraphs. Then, the SCSP model finds the specific closed sequential patterns based on the

weightpr(ptn) for all patternsptn ∈ Ptn. The weight is estimated as follows:

pr(ptn) = f(ptn)×
∑

t∈ptn

p(t) (2.20)

wherep(t) = w(t)∑

tj∈T

w(tj)
andw(t) = tfidf(t). The set of specific closed sequential patterns

represent the collection of documents.

As text patterns brought some interesting semantic information to the field of TFS for

relevance discover, they also come with many challenges. First, selecting only relevant patterns

out of a vast number of extracted patterns is challenging as many of these patterns are noisy,

redundant and difficult to be interpreted [Bashar and Li, 2018, Gao et al., 2015, Li et al., 2015].

However, if some interesting patterns are selected, the selection process still experimental and

might lead to the loss of some important patterns or terms [Alharbi et al., 2017b,c]. Also, pattern

mining algorithms seem to impose further time-complexity and scalability problems when

used with more massive datasets. Further, the pattern interestingness measures (e.g., support,
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confidence, etc.) are not informative about the relevance ofpatterns to the user information

needs [Li et al., 2015, Zhong et al., 2012]. Additionally, pattern mining models do not assume

that text documents can exhibit multiple topics and cannot handle the uncertainties in relevant

long documents [Alharbi et al., 2018b, Gao et al., 2014b, 2015].

2.4.3.3 Topic-based Models

A topic, as a set of semantically related terms, has extensively used in TM and ML prob-

lems, such as classification [Soleimani and Miller, 2016], clustering [Yin and Wang, 2014],

summarisation [Wu et al., 2019], retrieval [Wei and Croft, 2006], filtering [Gao et al., 2015]

and many others. Given a text corpus, a topic can be statistically generated from the corpus

using a probabilistic topic modelling algorithm. The most popular examples of such algorithms

are PLSA [Hofmann, 2001], LDA [ Blei et al., 2003] and their variations. However, LDA is

widely used, as a fully generative Bayesian model, and more effective than PLSA [Blei et al.,

2003, Gao et al., 2015, Wei and Croft, 2006]. Both algorithms assume that a document can

discuss multiple topics, which, in many cases, reflect the natural structure of long documents.

Thus, these algorithms represent the document as a mixture of topics in which each topic is

a probability distribution over all terms in the corpus [Blei et al., 2003, Gao et al., 2014b].

This probabilistic representation is efficient and can reduce the corpus’s dimensionality to just a

limited number of topics [Bashar et al., 2016, Gao et al., 2015]. The topic representation itself

allows the selection of most probabilistically relevant terms based on their distribution in each

document and the entire corpus. More details about the PLSA model is given next, and the LDA

is extensively discussed in the next chapter.

• PLSA

Probabilistic Latent Semantic Analysis (PLSA) [Hofmann, 2001] is an enhanced probabilistic

model of the LSA, which is a linear algebra-based model. The PLSA (see Figure2.9) is a

statistical topic model that relaxes the simple assumptionof the unigram model that states a

documentd contains only one topic. PLSA represents each document as a mixture of hidden

topics. However, given a latent topicz, as an unobserved variable, the PLSA model was

developed on the basis that a documentd and a termt are conditionally independent [Blei

et al., 2003], as can be seen from Figure2.9 where the document is a sequence ofN terms

from a collection ofM documents. Thus, PLSA it is not entirely generative model inthe sense

that it cannot generate new documents (infer unseen documents during the training phase).
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tzd

M

N

Figure 2.9: The graphical representation of the PLSA model in whichd and t are the only
observable variables.Note.Adapted from [Blei et al., 2003]

The PLSA model can deal with the problem of polysemy [Hofmann, 2001] and will be used

as a baseline in our experiment in which a termti in relevant documentd weight can be

calculated as per the following equation:

p(d, ti) = p(d)

|Z|
∑

j=1

p(ti|zj)× p(zj |d) (2.21)

where|Z| is the total number of topics.

Apart from their mathematical soundness and the flexible representation they produce, topic-

based models adopt the BoW representation in which the orderof terms is ignored [Blei, 2012,

Blei et al., 2003, Wei and Croft, 2006]. The models also are sensitive to term frequency,

knowing that most frequent terms are general and less specific to the main topic in a document.

As probabilistic models, both PLSA and LDA are biased towards frequent topics in the text

corpus [Ding and Yan, 2015, Mimno et al., 2011, Xu et al., 2019], which can overshadow other

equally relevant but less frequent topics. The generated topics can be difficult to be understood

due to their term-based representation, and the topics, generally, lack explicit semantics [Bashar

and Li, 2017, Bashar et al., 2016]. Further, as noted previously, both PLSA and LDA cannot

handle uncertainties in long documents and cannot deal withnegative feedback. All these issues

made the PLSA and LDA models ineffective for selecting relevant terms that describe user

information needs, as shown in the experimental studies of the researches in [Alharbi et al.,

2017b,c, Bashar et al., 2016, Gao et al., 2014b, 2015].

2.4.3.4 Concept-based Models

Another approach to overcome the semantic limitations of the above text features is to use

ontological concepts. Concepts reside at the highest levelin terms of explicit human under-

standing to the real world [Bashar and Li, 2017, Bashar et al., 2016, Shehata et al., 2007]. A
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concept can be defined as a set of semantically related words that together represent a specific

object or idea in domain-specific, human background knowledge [Abul Bashar, 2017, Bashar

et al., 2016]. Commonly, a knowledge-base ontology of a specific domain is used to mimic

such background knowledge. A domain-specific ontology is simply a set of concepts that are

connected by specific semantic relations (e.g., Part-of, Is-a, Related-to, etc.) [Tao, 2009, Tao

et al., 2011, Yuefeng and Ning, 2006]. Domain ontologies are widely used in information

gathering and semantic Web mining applications [Abul Bashar, 2017, Tao et al., 2011]. Also,

they were used to interpret and understand the meanings of text features, such as terms [Egozi

et al., 2008, Shen et al., 2012b], phrases [Bing et al., 2015, Shehata et al., 2007], patterns [Bashar

and Li, 2018, Bashar et al., 2014, 2017] and topics [Bashar and Li, 2017, Bashar et al., 2016],

for discovering relevant features that describe user information needs. A few state-of-the-art

concept-based TFS models are described below.

• CBM

Concept-based model (CBM) [Shehata et al., 2007] defines a concept as a labelled term (word

or phrase) that contributes to the semantics of a sentence ina document. This term can

then be analysed based on its importance at two different levels, namely, the sentence and

document levels. A concept can also be used as a text feature for measuring the similarity of

documents, which can be used in different text mining tasks like clustering and classification.

A conceptual TF (CTF) model was proposed in [Shehata et al., 2010] for measuring the

similarity between documents based on the analysis of concepts at the sentence and document

levels. At the sentence level,ctf(c) is defined as the number of times a conceptc occurs as an

argument of a verb structure in a sentences and can be normalised asctfweight(c). The more

c appears as an argument of different verb structures in a sentence, the more it contributes to

the meaning of sentences. That is how each concept can be analysed at the sentence level.

In contrast, at the document level, each concept is analysedby calculating the frequency of

the concept term (word or phrase) in a document and represented and normalised asct(c),

andctweight(c), respectively. Based on the above definitions, two different concept weights

can be measured—at the sentence level and document level—for the same concept in which

its weight can be calculated asweight(c) = ctfweight(c) + ctweight(c)

• POM

Personalised ontology model (POM) [Shen et al., 2012b] uses the RFD model [Li et al.,
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2015, 2010] to discover relevant terms from both relevant and negativedocument sets, and

then maps (i.e., annotates) these terms to the concepts of the Library of Congress Subject

Headings (LCSH) ontology. The POM model assumes that relevant terms are semantically

independent in each document. However, such an assumption can be too simple knowing

that relevant documents might share similar topics in whichmany terms are semantically

related. This simple assumption made POM ineffective in annotating relevant terms and,

thus, representing user information needs.

• PIM

Pattern Interpretation Model (PIM) [Bashar et al., 2014] attempts to interpret text patterns

using high-level concepts taken from the LCSH ontology. Themodel mines closed patterns

from relevant documents and, then, summarises them to a set of master patterns. To explain

the meaning of master patterns and made them understandableto humans, PIM performs

four steps. First, it estimates the concept’s support basedon the overlap between the terms

in concepts and patterns. Then, PIM deploys and estimates the relevance weight for each

of the overlapping term in matched concepts. Lastly, as it can be no overlapping between

some concepts and patterns, the PIM model adds the non-overlapping terms in patterns as

new concepts and estimates their relevance independently.The model achieved better results

compared to the pattern-based PDM [Zhong et al., 2012] model.

Despite their explicit specification of meaning, ontological concepts are not limitation free.

Domain-specific ontologies can be incomplete, imprecise, vague and difficult to be updated

[Li and Zhong, 2004, Tao, 2009, Yuefeng and Ning, 2006]. Human-defined concepts, which

are constructed manually, are expensive and time-consuming. Automatically discovered ones

are less in terms of meaning and interpretation that make them hard to be understood [Abul

Bashar, 2017, Bashar and Li, 2018]. Additionally, the use of knowledge-base ontology in TFS

impose further computational time-complexity and cannot estimate the relevance of semanti-

cally related features. Ontologies also do not provide clear mechanism to identify and group

similar topics that co-occur in relevant documents. All these limitations can significantly impact

and limit the use of ontological concepts for identifying relevant features that represent user

information preferences. The experimental results in [Bashar and Li, 2017, Bashar et al., 2016,

2014, Shen et al., 2012b, Tao et al., 2011, Yuefeng and Ning, 2006] confirm the negative effects

of using ontological concepts in TFS for relevance discovery.
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2.4.3.5 Hybrid-based Models

On the basis that each of the high-level features has limitations, many studies combine these fea-

tures in a unified framework to exploit their advantages. Forexample, phrases and patterns were

combined in [Albathan et al., 2013] to remove noisy phrases through the exploitation of patterns

taxonomic relations. Also, topics and patterns were integrated in [Gao et al., 2017, 2014b,

2015] to understand user information needs by benefiting from themulti-topic assumption of

documents in topic modelling and positional relations of text patterns. Similarly, ontological

concepts were incorporated with patterns [Bashar and Li, 2018, Bashar et al., 2017] and topics

[Bashar and Li, 2017, Bashar et al., 2016] to understand the meaning of these statistical and

semantic structures and use them to identify user information preferences. Some state-of-the-

art hybrid-based models are discussed below.

• TNG

The Topicaln-Grams model [Wang et al., 2007] integrates topic model with phrases (n-

Grams) to discover topical phrases that are more discriminative and interpretable. Thus, TNG

can be considered as another type of hybrid-based model thatuses latent topic and phrase

as representative text features. TNG has been treated as a relevance ranking model in our

experiment as it appears in [Gao et al., 2014b] as follows:

rank(d) =
V
∑

j=1

nj
∑

k=1

count(phjk)× ϑD+,j (2.22)

whererank(d) is the relevance ranking of documentd to the user information needs;count(phjk)

is the frequency of phrasek in topic j which represents the topic relevance; finally,ϑD+,j is

the proportion of topicj in relevant documentsD+; V is the number of topics;n is the number

of phrases.

• Pattern-based Topic Models

Pattern-based Topic Models (PBTM) [Gao et al., 2013, 2014b, 2015] are also another type

of hybrid-based TFS models where topics and patterns have been incorporated to obtain

semantically rich and discriminative representation for information filtering. PBTM-FP and

PBTM-FCP [Gao et al., 2013] integrate frequent patterns (FP) and frequent closed patterns

(FCP) with latent topics to represent user profiles. The models are also treated as relevance

ranking models where the document relevance ranking can be calculated as follows:
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rank(d) =

V
∑

j=1

nj
∑

k=1

|PAdjk|
m × fjk × ϑD+,j (2.23)

whererank(d) is the estimated relevance ranking for documentd; V is the number of LDA

topics; n is the number of used patterns (FP or FCP ); the parameterm is the pattern

specificity scale and set to0.5; |PAdjk|
m is the matched patterns for topicj in document

d; the support of matched pattern isfjk; finally, ϑD+,j is the proportion of topicj in relevant

documentsD+. The SPBTM model [Gao et al., 2014b] enhances LDA topics by combining

them with significant matched patterns (SMPatterns). The model is also treated as a relevance

ranking model based on the following equation:

RankE(d) =
V
∑

j=1

nj
∑

k=1

∑

X∈SMd
jk

ηx|X|0.5 × δ(X, d)× fjk × ϑD,j (2.24)

whereSMd
jk represents the significant matched patterns set of the equivalence classECjk,

X is a matched pattern in documentd, ϑD,j is thejth topic distribution,fjk is the statistical

significance of the equivalence class andδ(X, d) is a function defined as follows:

δ(X, d) =











1, if X ∈ d

0, otherwise

Similarly, the MPBTM model [Gao et al., 2015] is developed for IF and adheres almost to

the same steps of the SPBTM model. However, MPBTM integratesthe maximum matched

patterns instead and estimates the document relevance as follows:

RankE(d) =
V
∑

j=1

nj
∑

k=1

|MCd
jk|

0.5 × δ(MCd
jk, d)× fjk × ϑD,j (2.25)

whereMCd
jk is the set of all maximum matched patterns. For all models, itis assumed

that the higher the ranking value ofRankE(d), the more likely that documentd meets user

information needs.

• LdaConcept

The latent Dirichlet allocation concept-based model [Chemudugunta et al., 2008] uses LDA

and a knowledge base (an ontology) to label a set of documentsD using a set of human-

defined conceptsC obtained from the used ontology. The model defines a concept as a set of

unique words taken from a standard ontology. The LdaConceptmodel imitates the LDA and
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defines each conceptcj as a constrained topic in whichp(wi|cj) = 0 if the wordwi /∈ cj. The

model also similar to LDA and defines a document from a probabilistic mixture of document-

specified concepts.

Thus, LdaConcept estimates the probability of the conceptual wordwi being relevant to a

documentd as follows:

p(wi|d) =

|C|
∑

j=1

p(wi|cj)× p(cj |d) (2.26)

wherep(wi|cj) andp(cj |d) were also inferred similarly using the Gibbs sampling algorithm

as in the LDA.

While integrating different high-level features comes as an approach to exploit the advan-

tages of each type, this approach is not without limitations. In addition to the time-complexity

and scalability issues that can be imposed on the intended applications, this approach is also

sensitive to the restraints of the candidate features. For example, this sensitivity problem can be

seen in the TNG [Wang et al., 2007] model in which phrases and topics were probabilistically

modelled using Bayesian theory. Despite the sophistication of the proposed theory, TNG did not

perform well as shown by many studies [Alharbi et al., 2017c, Gao et al., 2017, 2014b, 2015].

Possible reasons behind the TNG’s inferior performance is noisy phrases and terms derived by

the strict sequential occurring of these terms in phrases. The same problem continues to occur in

the patter-based topic models [Gao et al., 2017, 2014b, 2015] where different types of patterns

combined with latent topics. These models could not addressthe problems of noisy patterns,

interestingness measures and the informativeness of some topical features. Similarly, adding

explicit semantics to patterns and topics though ontological concepts [Bashar and Li, 2017,

2018, Bashar et al., 2016, 2017] could not solve the patterns or the topics problems because

none of their original problems was effectively addressed,especially when uncertainties exist

in relevant documents [Alharbi et al., 2018a].

2.5 Label Information-based Models

Feature transformation (or extraction) techniques, such as the principal components analysis

model, can reduce the dimensionality of datasets by formingnew low-level feature space [Anas-

tasiu et al., 2013, Liu et al., 2005]. This method has been successfully used in many text mining

applications, and it reduces the total dimensionality of a document collection; however, the
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new low-level representation (text features) does not truly represent the original document set

[Anastasiu et al., 2013, Cai et al., 2010, Liu et al., 2003]. Thus, it is hard to trust such a

reduction, and it is not justifiable for further text analysis. In contrast, feature selection can

select only informative features from the original set of features, without requiring any further

transformations [Forman, 2003, Li et al., 2017a,b, Liu et al., 2005]. This can reduce the overall

dimensionality by focussing on a certain set of features that are more relevant to a text-domain

analyst.

In the relevant literature, due to TFS’s importance, there are various TFS techniques; how-

ever, they use different algorithms, which makes them difficult to study comparatively. Despite

the multiplicity of approaches, they all process just two types of text data, namely, supervised

and unsupervised data [Li et al., 2017a, Man et al., 2009, Wang et al., 2017]. Supervised data

have been manually labelled by domain experts, whereas the unsupervised ones are still unla-

belled (as they may naturally exist in an information repository). Therefore, broadly speaking,

TFS methods can be categorised, based on the class label information, into supervised, semi-

supervised, weakly supervised and unsupervised models [Li et al., 2017a]. However, the label

information does not give sufficient details about the internal structure of the TFS model. Thus,

in this study, each category can also be classified into filter, wrapper and hybrid (or embedded)

models based on their internal learning algorithms.

Further, it is worth mentioning that some TFS techniques canwork well with any text data,

regardless of the class label. In the following subsections, a brief description of each category is

given. However, this study focuses on supervised and unsupervised TFS models as the dominant

and widely used categories.

2.5.1 Supervised Models

Supervised TFS deals with labelled document datasets [Liu and Yu, 2005, Man et al., 2009,

Wang et al., 2017]. These can be collected based on specific class labels. Textdata collection

is usually manually labelled by domain experts. For example, a document can be positive or

negative for the class label ”sport”. Class labels (or predictions/hypotheses) are of particular

importance to many text mining and ML applications [Lewis et al., 2004, Li et al., 2015,

Sebastiani, 2002]. They are even crucial to TFS algorithms. For example, in a given TFS

technique, a class label can guide the search process for relevant features that can positively

correlate with the class label [Bolón-Canedo et al., 2013, Jian et al., 2016, Li et al., 2017a].
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It is also important in the definition of a relevance measure (i.e., weighting function) that

differentiates features. Class labels can be utilised in generating descriptive corpus statistics

[Man et al., 2009, Zhu and Lin, 2013].

As the name implies, supervised TFS models use the class information to limit the search

space and evaluate features [Li et al., 2017a, Zhao et al., 2013]. Therefore, a given class label

supervises the two most important tasks, namely, space searching and feature evaluation [Liu

et al., 2005, Liu and Yu, 2005]. Each of these tasks can employ a so-called induction algorithm

or learning algorithm to accomplish their job [Kohavi and John, 1997, Li et al., 2017b, Liu et al.,

2005]. Therefore, supervised TFS techniques are further classified as filter, wrapper or hybrid

as described below.

Supervised Filter Model

The vast majority of TFS algorithms follow the filter model due to its computational efficiency,

scalability and generalisability [Bolón-Canedo et al., 2013, Combarro et al., 2005, Li et al.,

2017a,b]. This model does not depend on any learning algorithms; instead, it selects relevant

features based on the internal structure of the training dataset [Liu et al., 2005, Liu and Yu,

2005]. The supervised filter model not only depends on the characteristics of the corpus but

also uses the class label to guide the search process and evaluate the extracted text features

based on specific criteria [Li et al., 2017a, Liu et al., 2005]. For example, a filter model that

uses the Fisher algorithm scores each feature independently based on the Fisher formula [Cai

et al., 2010, Jian et al., 2016, Li et al., 2017a]. Many other techniques use different criteria for

defining the relevancy of features by assigning each featurea calculated weight (or score). This

score differentiates features regarding which one is more informative than the other in terms

of the class label [Li et al., 2017a, Man et al., 2009]. For example, the Laplacian algorithm

and spectral feature selection (SPEC) techniques belong toa family of algorithms that utilise a

weights matrix analysis system known as an eigensystem to select relevant features [Cai et al.,

2010, Hou et al., 2010, Wang et al., 2017, Zhao et al., 2013].

Another family of algorithms is LASSO [Tibshirani, 1996]. It attracted many researchers

because it shows high performance in TFS [Li et al., 2017a, 2015]. It assigns a sparse weight

to informative features, while other, non-relevant features receive a zero score. For different

data structures, LASSO comes in various versions that suit them. The most influential ones are

Graph Lasso, Group Lasso and Overlapping Group Lasso [Li et al., 2017a].
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In the literature, most TFS algorithms belong to the filter model due to its advantages,

especially its independence of any learning algorithms (classifiers). Popular algorithms like

ReliefF, CFS, FCBF, t-test, Gini index, Chi-Square, IG, mRMR and many more are all good

examples of TFS algorithms that follow the filter’s structure [Chen and Chen, 2011, Li et al.,

2017a,b, Yang and Pedersen, 1997, Zhu and Lin, 2013]. Text features produced by the filter

model are more general in nature. Therefore, if the user knows the type of classifier that he or

she is going to use for the text mining application, then a filter algorithm may not give accurate

results as the wrapper model does.

Supervised Wrapper Model

To overcome the apparent limitations of the filter model, thewrapper method induces a classi-

fier, and sometimes a set of classifiers, to evaluate the selected features regarding discriminating

quality on the class label [Kohavi and John, 1997, Liu et al., 2005]. This makes a wrapper

model a better alternative to a filter, especially when the classifier is already known beforehand.

Thus, the resulting features of the wrapper model are more accurate and can lead to higher

classification performance on the used classifier than thoseof the filter model [Bolón-Canedo

et al., 2013, Liu and Yu, 2005].

First, a wrapper algorithm starts by choosing a feature subset based on some search tech-

niques, such as the greedy search algorithm [Li et al., 2017a, Liu and Yu, 2005]. Second, the

resulting features are passed to the given classifier for quality evaluation. If the features’ quality

is acceptable, then the wrapper stops selecting more features. Otherwise, it continues searching

for another, better subset of features. This approach is computationally expensive compared

with the filter model [Bolón-Canedo et al., 2013, Cai et al., 2010, Forman, 2003]. Therefore, an

efficient search strategy is crucial to the success of a wrapper model.

In the relevant literature, many researchers have proposeddifferent wrapper methods by

combining different search algorithms with a variety of classifiers to achieve high-quality results

[Bolón-Canedo et al., 2013, Li et al., 2017a]. For example, the SVM classifier was combined

with a recursive feature elimination (RFE) search algorithm to form the so-called RFE-SVM

wrapper a classification problem, and the same classifier wasincorporated with the L1 norm to

produce a more efficient embedded wrapper model [Li et al., 2017a, Liu and Yu, 2005].
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Supervised Hybrid Model

The hybrid model has been proposed to address the obvious drawbacks of the filter and wrapper

models. It combines the advantages of a filter model for beingefficient in terms of choosing

a subset of features and being scalable to a bigger feature space [Li et al., 2017a, Liu and Yu,

2005, Song et al., 2013]. Also, it has the evaluation accuracy of a wrapper model. This makes

hybrid algorithms capable of producing a subset of featuresthat gives a higher classification per-

formance but that is small in feature number. Consequently,a hybrid model is considered more

accurate than a filter in producing quality features, and at the same time, less computationally

expensive than a wrapper [Li et al., 2017b, Liu and Yu, 2005].

As a hybrid model consists of two parts, similar to the wrapper, there are different possible

combinations of classifiers and search criteria (filtering criteria) that could lead to even more

efficient hybrid algorithms [Li et al., 2017b, Liu and Yu, 2005]. For example, attaching the

k-nearest neighbours classifier to the combination of the correlation-based feature selection and

a genetic algorithm led to a new hybrid algorithm with high accuracy [Bolón-Canedo et al.,

2013, Liu et al., 2005]. Similarly, in [Li et al., 2012], combining the SVM classifier with the

pattern mining algorithms has led to another new hybrid method that is capable of producing

more accurate and meaningful features.

2.5.2 Unsupervised Models

In DM and ML, extracting relevant features for training classifiers requires high-quality labelled

data. Providing such data for every knowledge domain is a hugely expensive task in terms of

both time and cost [Algarni, 2011, Soleimani and Miller, 2016]. Further, labelling data man-

ually is infeasible, knowing that some domain knowledge even has sub-domains, making the

problem even harder. Unlabelled data, in contrast, are abundantly available for free in different

information repositories, and they are growing exponentially every few months [Blei, 2012,

Dhar, 2013, Khan et al., 2010]. Such data are still useful and contain invaluable knowledge that

is crucial to the success of many businesses. Therefore, there is an imminent need for efficient

feature selection techniques that could handle unlabelleddata.

Supervised TFS methods cannot directly deal with unlabelled data due to the absence of

the domain knowledge, which is represented by the class label that could guide the selection

algorithm [Li et al., 2017a, Man et al., 2009]. This makes unsupervised TFS a challenging

problem. To demonstrate this, imagine a collection of unlabelled text documents that have been
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collected from a news website, where the goal is to categorise them based on the similarity

of their contents. In this case, a document can be assigned tomore than one category. For

example, a document with a fictitious sentence, ”An intelligent pair of shoes have been invented

by Google to monitor the blood glucose level for diabetic athletes”, could be categorised into

different categories like technology, health, sport, and economy. However, the absence of

themes (aka topics or class labels) makes the optimal classification of the document almost

impossible. TFS also cannot be done efficiently in the absence of document topics because

each topic has features. In this example, the topic of technology has the feature ”Google”,

while the features ”blood” and ”diabetic” belong to the topic of health and so on. Therefore, a

TFS algorithm cannot efficiently calculate the feature relevancy weight (or score) in the absence

of the class label.

Unsupervised TFS techniques are not as mature as supervisedones are. However, in the

relevant literature, different models have been developedto tackle the problem of TFS for

unlabelled documents. One commonly used approach is automatically labelling the training

document set by generating topics that could be used later onto guide the TFS process and

handle it as supervised ones [Blei et al., 2003, Hofmann, 2001, Wei and Croft, 2006]. One

way to do this is by applying a k-means clustering technique to the training sample to generate

labels [Cai et al., 2010, Hou et al., 2010, Li et al., 2017a]. Another approach is employing

a spectral analysis technique to extract the underlying document clusters [Cai et al., 2010, Li

et al., 2017b, Zhao et al., 2013]. An example of this technique is SPEC [Zhao and Liu, 2007],

which is a unified TFS model for supervised and unsupervised data.

As can be seen so far, clustering techniques are considered amajor approach for handling

unlabelled data for TFS. Different k-means algorithms havebeen proposed to tackle this prob-

lem. For example, in, an entropy weighting k-means clustering technique has been proposed

for subspace clustering [Hou et al., 2010, Liu et al., 2003]. It employs a k-means clustering

algorithm to find document clusters by minimising sub-clusters in each cluster and maximising

those with a negative weight. It keeps repeating these stepsuntil it converges, and it then applies

a TFS algorithm on the data. Cai et al. (2010) [Cai et al., 2010] applied spectral analysis

to different features to measure the correlation between them without the need for any label

information. This method, called multi-cluster feature selection, uses the top eigenvectors of a

Laplacian graph to form multiple clusters. Spectral clustering can group unlabelled data without

any class labels.
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Clustering-based TFS techniques are not the only methods ofhandling unlabelled data.

Other algorithms evaluate features (or terms) using a calculated weight (or score). They do

not depend on any clustering techniques. For example, in text mining, TF, IDF and TF*IDF

are considered the most used term-weighting functions [Salton and Buckley, 1988]. Besides,

other TFS techniques cluster all features first and then select the most popular ones to be the

selected features [Li et al., 2016, Song et al., 2013]. Unsupervised TFS methods follow the

same categorisation system as supervised ones. They can be classified as filter, wrapper and

hybrid models. These models can be developed based on the type of unsupervised technique,

such as clustering [Song et al., 2013], association [], matrix factorisation [Deerwester et al.,

1990] or topic modelling [Blei et al., 2003, Hofmann, 2001]. However, most models reported

in the literature were developed for clustering or utilise different clustering algorithms.

Unsupervised Filter Model

The unsupervised filter model selects features based on their weights (or scores), which are

assigned by the selection criteria [Cai et al., 2010, Forman, 2003, Hou et al., 2010]. Only

features with higher weight are selected; those with low scores are filtered out as irrelevant or

redundant. This model does not use any unsupervised learning algorithm to judge the value of

the selected features [Bolón-Canedo et al., 2013, Li et al., 2017a]. Therefore, the filter model

is considered fast and efficient, and it scales well with massive data. The filter model can

evaluate each feature, either for its relation to the whole feature space or independently [Cai

et al., 2010]. The former is called the multivariate evaluation technique, where each feature is

evaluated regarding its space [Bolón-Canedo et al., 2013, Li et al., 2017a]. Thus, it is capable of

finding redundant features. The latter evaluates each feature independently of the feature space,

and it is known as the univariate evaluation technique [Li et al., 2017a]. This technique is much

faster than the multivariate one, but it cannot handle feature redundancy [Bolón-Canedo et al.,

2013].

In the literature, there are many examples of unsupervised filter algorithms. In [Hou et al.,

2010], the proposed technique utilises the entropy-based distance as an evaluation criterion for

the selected features, while the selection techniques in use the Laplacian score as a metric in the

evaluation and selection tasks. SPEC [Zhao and Liu, 2007] is considered a univariate model,

and it has been extended to work as a multivariate technique.Finally, the filtering algorithm in

[Hou et al., 2010] implements a feature-dependency metric for measuring thefeature relevancy
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score.

Unsupervised Wrapper Model

This type of wrapper model is similar in its internal structure to the supervised one, except

it utilises an unsupervised classifier (e.g. clustering algorithm) [Hou et al., 2010, Li et al.,

2017a, Liu and Yu, 2005]. First, the model starts by selecting a subset of features,and then

it passes them to the unsupervised classifier. Second, the classifier evaluates those features

based on their discriminating quality. If they can form better clusters, for example, then the

algorithm stops. Otherwise, the model repeats the first and second steps until it produces the

best possible clusters [Dy and Brodley, 2004, Li et al., 2017a]. This makes the wrapper model

highly computationally expensive compared with the filter model, as it tries to evaluate all the

available subsets of features. This can be a prohibitive task, especially with a high-dimensional

dataset [Bolón-Canedo et al., 2013]. One possible solution to this problem is reducing the total

search space in the sample features by implementing a more efficient search algorithm, such as

the heuristic method [Peng et al., 2005]. In addition, there is another problem with the wrapper

model: It can be biased to the chosen unsupervised classifier[Li et al., 2017b]. However,

the wrapper model gives better features compared with the filter model because it selects only

features that form high-quality clusters.

In the literature, many different TFS techniques have been built on the wrapper model.

However, they differ in their search strategy and the unsupervised learning algorithm. For

example, the classical k-means clustering algorithm has been used as a classifier, and it can be

accompanied by any search technique as a feature selector [Li et al., 2017a]. A second wrapper

example utilises Gaussian methods as unsupervised classifiers and maximum-likelihood criteria

for selecting the subset of features [Cai et al., 2010]. A final example was reported in [Dy and

Brodley, 2004], where the authors used the expectation maximization (EM)clustering technique

to group the selected features and then evaluated the resulting clusters based on specific criteria.

This technique is called feature subset selection wrapped around EM clustering.

Unsupervised Hybrid Model

A hybrid model was developed to tackle the apparent limitations of the unsupervised filter

and wrapper algorithms. This model tries to combine an efficient filtering method with a

suitable unsupervised learning algorithm (or unsupervised classifier) to produce a better subset

of features [Li et al., 2017a, Liu et al., 2005, Liu and Yu, 2005]. Typically, a hybrid model
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starts by selecting different subsets of features using itsfiltering criteria. Then, it evaluates the

quality of each subset individually by passing them sequentially to the unsupervised classifier

(e.g. classical k-means clustering algorithm) [Cai et al., 2010, Liu and Yu, 2005]. Finally, the

model selects only one subset that has the highest quality (or produces best clusters) [Cai et al.,

2010, Li et al., 2017a]. Clearly, the hybrid model is more efficient than the wrapper model in

terms of speed and quality results, but it is slower than the filter model.

2.6 Feature Selection Applications

Due to their benefits discussed above, many TFS models and frameworks have been extensively

used in different applications of text-based information analysis. As shown in Figure2.10, there

are many applications in which TFS can be used. Popular applications are text classification,

text clustering, text summarisation, information retrieval/filtering, natural language processing,

text visualisation, social media analysis and others. Thisstudy briefly discusses the use of TFS

with the applications depicted in the figure and how essential was the role of TFS in helping

these applications to achieve their goals.

Figure 2.10: TFS applications.

• Text Classification: Supervised text classification (aka text categorisation)is the task

of automatically assigning text documents to a predefined category (i.e., class or label)

[Forman, 2003, Khan et al., 2010]. Supervised and unsupervised TFS has been exten-

sively used with various text classifiers, such as SVM, k nearest neighbours, Rocchio,
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Naive Bayes, decision tree, neural networks and many other variations of these classifiers

[Aphinyanaphongs et al., 2014, Khan et al., 2010, Li et al., 2017c, Yang and Pedersen,

1997]. Commonly, and before the training phase of a text classifier, a TFS method is

used to select a small set of informative features from the labelled training collections

to reduce the total dimensionality of the feature space in the collection. The selected

features can then be used to represent the training documents that the text classifier

will be trained on [Aphinyanaphongs et al., 2014, Li et al., 2017c]. The non-selected

features can be removed with minimal effects on the overall accuracy of the classification

algorithms. Different experimental studies in [Aphinyanaphongs et al., 2014, Chen et al.,

2016, Escalante et al., 2015, Li et al., 2017c, Liu et al., 2009] clearly demonstrate that

TFS is an essential step for the effectiveness and efficiencyof text classifiers.

• Text Clustering: Despite being an unsupervised learning task that groups similar pieces

of text together [Anastasiu et al., 2013, Jain, 2010], text clustering still requires TFS to

identify and remove noisy features as well as reduce the total dimensionality of the feature

space [Aggarwal and Zhai, 2012, Liu et al., 2003]. Text clustering is used extensively to

find interesting patterns from unlabelled collections of documents using some similarity

functions, and, then, organise these documents to improve tasks like retrieval, filtering,

summarisation and others [Aggarwal and Zhai, 2012, Alharbi et al., 2017b, Huang, 2008,

Jain, 2010, Liu and Croft, 2004]. However, the absence of the class label from the used

collection has made the selection of informative features more challenging. In such a

case, supervised TFS techniques might not be applicable, and only unsupervised TFS can

be used for text clustering. TFS methods, such as TF, TFIDF, LSA, PLSA, LDA and

others have been widely used with text clustering [Anastasiu et al., 2013, Liu et al., 2003,

Shehata et al., 2010, Wang et al., 2015]. The experimental studies in [Beil et al., 2002,

Lee et al., 2015b, Liu et al., 2003, Shehata et al., 2010] show that TFS not only improves

the efficiency of clustering algorithms but also leads to higher clustering performance.

• Text Summarisation: TFS models play an essential role in multi-document summarisa-

tion despite the underlying algorithms [Qiang et al., 2016]. Text summarisation intends

to automatically produce a concise and coherent summary that must retain the key in-

formation in the original text [Qiang et al., 2016, Wu et al., 2019]. TFS models are

extensively employed with both extractive and abstractivemethods of text summarisation

[Qiang et al., 2016, Wu et al., 2019, 2016]. Unsupervised term-based TFS models, such
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as TF, TFIDF and other frequency-based schemes, are efficiently used to select infor-

mative terms, and, thus, indicate candidate sentences to the summarisation algorithms

[Qiang et al., 2016, Wu et al., 2019]. Supervised term-based models are also used in

text summarisation, especially when training samples are available. However, the lack

of semantic information in low-level terms has limited their use and moved the focus

towards semantically-rich text features. Therefore, closed patterns and a combination of

patterns and latent topics have produced better summarisesdespite their time-complexity

[Qiang et al., 2016, Wu et al., 2019]. A more holistic approach is also taken through

the combination of low-level terms and high-level patternsand topics, which gives better

summarisation performance [Wu et al., 2019].

• Information Retrieval : For decades, different types of TFS models are employed by

many IR models. Generally, IR concerns about locating relevant information from a

collection of documents given a query that represents user information need [Belkin and

Croft, 1992, Croft, 2000, Gao, 2015]. Term-based TFS models received much atten-

tion in the IR community due to their efficiency and mathematical soundness. Popular

term-based models used in IR are TFIDF [Salton and Buckley, 1988], Rocchio [Roc-

chio, 1971], BM25 [Robertson and Zaragoza, 2009], Prob [Jones et al., 2000a,b], SVM

[Joachims, 2002] and many more. However, the sensitivity of these models towards

semantic-related problems has impacted their performancein retrieval tasks [Gao, 2015,

Li et al., 2015, Metzler, 2007]. Thus, TFS techniques that adopt high-level features

are widely used in retrieval models instead of the term-based to tackle the problems of

information mismatch and overload. Then-grams statistical language model [Bendersky

and Kurland, 2010, Lavrenko and Croft, 2001] is of a particular interest and shows

better retrieval results compared to the traditional term-based techniques. As the user’s

query and the collection might exhibit multiple topics, different statistical, topic-based

TFS models are also used in IR. Models like LSA [Deerwester et al., 1990], PLSA

[Hofmann, 2001] and LDA [Blei et al., 2003] and its variations are intensively used to

reduce the impact of synonymy and polysemy problems. However, topic-based models

are limited in terms of their semantic capabilities. Thus, concept-based TFS models that

use external knowledge bases, such as Wikipedia, Wordnet, DBpedia, etc. are also used

in retrieval models to add explicit semantics to the document representation, and, thus,

solve the synonymy and polysemy problems [Bendersky et al., 2011, Egozi et al., 2008].
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Nevertheless, the expensive time-complexity of these models and the effectiveness of

these external resources in a real retrieval system are limiting their use. Overall, and

based on the above studies, it can be concluded that TFS continues to contribute to the

success of many IR applications.

• Information Filtering : As TFS plays a crucial role in the IR field, it is expected to

continue the same role in IF because both fields seek to find relevant information that

suit user information needs [Belkin and Croft, 1992, Gao, 2015, Robertson and Soboroff,

2002]. However, unlike IR, IF dynamically removes irrelevant stream of documents based

on maintained user information needs (aka user profiles or long-term user interests) [Li

et al., 2012, Robertson and Soboroff, 2002, Soboroff and Robertson, 2003]. Different TFS

models and frameworks are used to select relevant features from a collection of documents

that discusses user information preferences. Similar to the IR context, the conventional

term-based TFS models are widely used in IF, particularly the supervised models, such as

SVM [Li et al., 2010], MI [ Manning et al., 2008b], Chi-square [Chen and Chen, 2011],

BM25 [Robertson and Zaragoza, 2009], Rocchio [Rocchio, 1971], LASSO [Tibshirani,

1996] and many others. As term-based TFS models do not consider the order of terms

in the documents, phrase-based methods are employed, especially the n-grams-based

models [Albathan et al., 2013, Fürnkranz, 1998], because phrases carry more semantic

information than low-level terms. Data mining approaches are also used in IF to reduce

the effects of synonymy and polysemy problems, most notablythe pattern-based TFS

techniques like PTM [Wu et al., 2004], PDS [Zhong et al., 2012], MP [Yan et al., 2005],

RFD [Li et al., 2015], PCM [Albathan et al., 2012] and SCSP [Albathan et al., 2014].

However, all these TFS models do not assume that user information interests can span

many topics and themes [Blei et al., 2003, Gao et al., 2015]. Thus, topic-based TFS mod-

els like PLSA [Hofmann, 2001], LDA [ Blei et al., 2003] and their extensions are adopted

by IF systems to handle the multiple topics assumption in thedocuments that describe

user information preferences. Nevertheless, and on the basis that no single feature can

hold all relevant information, different hybrid-based TFSmodels and techniques are used

for IF. Popular examples are the pattern-based topic models(e.g., PBTM-FP [Gao et al.,

2013], PBTM-FCP [Gao et al., 2013], SPBTM [Gao et al., 2014b] and MPBTM [Gao

et al., 2015]), the ontological concept-pattern [Bashar and Li, 2018, Bashar et al., 2017]

and concept-topic models [Bashar and Li, 2017, Bashar et al., 2016] approaches. The
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experimental studies in all these previously mentioned models clearly show the important

role of TFS in IF and how some features are more informative than the others.

2.7 Chapter Summary

This chapter provided an in-depth discussion of TFS techniques in extant literature. First, the

discussion encompassed knowledge discovery in databases in which feature selection plays an

important role. Next, the discussion outlined text mining and the techniques of text representa-

tion and pre-processing. The discussion then focussed on conventional TFS approaches along

with highlighting their challenges and issues. However, itwas determined that the presence

of uncertainties is still a challenging problem, causing relevant features to be missed, overesti-

mated or underestimated.

The next chapter introduces our innovative and effective SIF model. The model adopts

a hybrid fusion strategy of different lexical and statistical features that are discovered from a

set of relevant documents that discuss user information needs. Our SIF model extends multiple

ERSs to accurately estimate the relevance of topical terms that occur across the documents. The

chapter also presents essential definitions in relation to random-sets, topic modelling, global

statistics and the specifically defined text feature fusion.



Chapter 3

Fusion Model for Relevant Feature Selection

3.1 Introduction

As noted in Chapter1, TFS has been extensively researched by many communities due to

its importance to a broad spectrum of applications [Blei et al., 2010a, Forman, 2003, Li et al.,

2017a, Man et al., 2009, Yang and Pedersen, 1997, Zhao and Liu, 2007]. In relevance discovery,

selecting features from the contents of a long document set that describes user information

needs is difficult, due to the uncertainties in these documents [Li and Zhong, 2003, Li et al.,

2005, Zhong et al., 2012, Zhou et al., 2011]. The selection problem becomes more challenging

in the absence of a user’s query that could guide the search for relevant features. However, in

IR, fusion-based techniques have shown remarkable resultsin identifying relevant documents

compared to traditional models in the field [Lillis et al., 2006, 2010]. These techniques show

that combining different representations of documents andqueries, search system outputs, and

ranking and scoring algorithms as evidence of relevance canreduce uncertainty and yield better

results [Croft, 2000, Kozorovitsky and Kurland, 2011a]. However, adopting a similar approach

for TFS for relevance discovery is difficult, because which text features to fuse, how to fuse

them effectively and, ultimately, how to use the fusion feature to manage uncertainties in the

relevant document set remains unknown.

Random sets are effective mathematical tools for handling uncertainty and vagueness in an

information system [Goutsias et al., 1997, Molchanov, 2005, Nguyen, 2008] and can be ex-

tended to an ERS [Albathan et al., 2014, Li , 2003]. An ERS can be used to describe interesting

relationships that are inherited between conditional and decisional entities [Li , 2003, Li and

Yao, 2002b], which makes it the best fit for modelling and managing the fusion of text features

based on their importance to different entities in a document collection. User information needs

73
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can implicitly cover several topics, as illustrated in Figure1.2, and a long document (Figure1.1)

that is relevant to the user information needs can also discuss multiple subtopics or themes in

its segments (e.g., paragraphs or sentences). TraditionalTFS methods do not assume that long

documents exhibit multiple topics—they also have no mechanism to discover them or determine

their relevance to the user information needs [Gao et al., 2014b, 2015]. Topic-based methods,

such as PLSA [Hofmann, 2001] and LDA [Blei et al., 2003], have been explicitly built to treat

documents as a mix of latent topics. Unlike PLSA, LDA is more popular with many applications

Blei et al.[2010a], Blei [2012]. In the form of a language-modelling approach, LDA can also

adopt different document representations and accurately estimate features’ probabilities [Blei

et al., 2003, Croft, 2000, Gao et al., 2015], which makes the topical features of the LDA better

candidates for an effective fusion-based TFS.

Analogous to IR fusion-based techniques that reward highlyranked documents in retrieved

lists [Anava et al., 2016, Lillis et al., 2006], TFS models for relevance discovery must also

reward highly relevant features. The most critical component in any TFS model is thus the

weighting function [Li et al., 2015, 2010, Wu et al., 2006]. It assigns a numerical weight to

each feature, specifying how informative the feature is to the user information needs [Albathan

et al., 2013, 2014, Li et al., 2015]. However, LDA estimates a term1 weight that is locally based

on two components: the topic–document distribution and theterm–topic assignment [Blei et al.,

2003, Gao et al., 2015]. Therefore, in a set of similar documents, a specific term might receive

a different weight in each separate document, even though the term is semantically identical

across all the documents. Such an approach does not accurately reflect the semantic meaning

and relevance of the term to the user information needs. The performance of LDA in TFS

for relevance discovery is influenced negatively, as it is uncertain and difficult to know which

weight is more representative; it should thus be assigned tothe intended relevant term. Several

experiments in different studies [Alharbi et al., 2017b,c, Bashar and Li, 2017, Bashar et al.,

2016, Gao et al., 2013, 2014b, 2015] confirm that the term probability (i.e., weight) function of

LDA make it ineffective in discovering relevant topical terms.

Identifying relevant terms from a collection of documents that describe user information

needs can be achieved by combining evidence about these terms in different representations

[Lee et al., 2015a, Zhang and Balog, 2017]. The global statistics of terms, such as document

frequency (df), term frequency (tf), paragraph frequency (pf) or inverse document frequency

1In this chapter, terms, words, keywords or unigrams are usedinterchangeably.
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(idf) are important evidence that reveal the discriminatory power of terms [Man et al., 2009,

Maxwell and Croft, 2013]. However, in IR, selecting terms that are based on global statis-

tics did not show better retrieval performance [Bendersky et al., 2011, Macdonald and Ounis,

2010], because global statistics cannot describe the local importance of terms [Maxwell and

Croft, 2013]. Inversely, LDA can estimate the local importance of termsat the document level

based on the two components that were mentioned previously.However, LDA estimates the

term–topics probabilities globally, which does not correctly reflect the importance of the term

at the document level because terms usually appear unevenlyacross the relevant document

set. Therefore, fusing the different weights of the LDA topical features in a global context is

challenging and remains uncertain due to the complex relationships between terms and different

entities that represent the document collection. For example, a term might appear in multiple

documents, paragraphs and LDA topics. Similarly, each topic might be discussed, entirely or

partially, in many documents or paragraphs that contain thesame term.

This chapter presents SIF,2 a novel and effective fusion-based TFS model for relevance

discovery. SIF is proposed to solve the previous questions and overcome the common lim-

itations of the existing TFS models of relevance discovery (i.e., a more accurate estimation

of the relevant features). The proposed model is derived from random set theory to handle

uncertainties, manage features fusion and model the complex relationships between essential

entities in a set of relevant documents. Figure3.1 shows the SIF’s structure, with the feature

fusion module at the core of the model, and the main entities—namely, the paragraph, term

and topic sets—that are adopted from the relevant document collectionD+. Further, the flow

of different lexical (i.e., terms) and statistical features are also depicted. The remainder of this

chapter provides basic definitions about topic modelling, LDA, global statistics, text feature

fusion and random sets in Section3.2; more details about the SIF model are presented in

Section3.3and a summary in Section3.4. An extensive evaluation of the proposed SIF model

is presented in Chapter6.

3.2 Basic Definitions

Given a document collectionD, the relevant long documents setD+ ⊆ D discusses user

information needs that might contain multiple topics of interest. Notably, in the current study,

a topic of interest is different to a latent topic that can be discovered by a topic modelling

2This model was published in [Alharbi et al., 2017c] and the acronymSIF stands forSelection ofInformative
Features.
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Figure 3.1: The SIF model structure.

algorithm (e.g., LDA). The SIF model usesD+ for training, whereby each documentdx ∈ D+

has a set of paragraphsS and each paragraph has a set of terms. The setG in this thesis is the

set of all paragraphs inD+, such thatS ⊆ G. The set of termsΩ denotes the vocabulary list in

D+. A term t is a keyword or unigram in which the functionterms(g) returns the set of terms

that appear in paragraphg.

In the proposed SIF model, the paragraphs of relevant documents are split and each para-

graph is treated as an independent passage (i.e., a document) that consists of a bag of terms

(i.e., words), as illustrated in Table3.1 in which a termti, for example, may appear more than

once in a paragraphgy. Before delving into the details of SIF, the next section provides some

essential definitions of topic modelling and the LDA, followed by global statistics and feature

fusion in this thesis, including its strategies.

3.2.1 Topic Modelling

Topic modelling algorithms, such as PLSA [Hofmann, 2001] and LDA [Blei et al., 2003],

are proven to be effective in reducing the total dimensionality of text documents to a set of

manageable topics [Gao et al., 2015]. LDA is more effective than PLSA in many applications
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Table 3.1: A sample of document collection with three hierarchical entities: document,
paragraph and term

Document Paragraph Term

d1

g1 {t1, t2, t4, t3, t7, t2}

g2 {t3, t1, t5, t7, t1}

g3 {t5, t6, t4, t2, t1, t2, t7}

g4 {t4, t2, t3, t7}

d2
g5 {t1, t3, t4, t3, t8, t2}

g6 {t3, t2, t5, t7}

d3

g7 {t4, t6, t8, t2, t1, t5, t7}

g8 {t1, t2, t3, t7}

g9 {t3, t8, t5, t7, t3}

[Blei, 2012, Gao et al., 2014b, 2015] and can statistically identify hidden topics from a text

collection to improve different tasks in IR [Wang et al., 2007, Wei and Croft, 2006], IF [Gao

et al., 2015], document summarisation [Wu et al., 2016], visualisation [Chaney and Blei, 2012],

personalised ontology learning [Bashar et al., 2016] and many other TM and ML applications.

LDA represents documents by a set of topics in which each topic is a set of semantically related

terms [Blei et al., 2003, Gao et al., 2015]. It can thus group related words in a document

collection, which can reduce the negative influence of common problems like polysemy, syn-

onymy and information overload [Aggarwal and Zhai, 2012, Gao et al., 2014b]. However, in

practice, LDA treats topics as multinomial distributions over words and represents documents

as a probabilistic mix over a predefined number of latent topics. LDA is discussed further in the

next section.

3.2.1.1 Latent Dirichlet Allocation

Given the set of relevant documentsD+, the proposed SIF model uses LDA to reduce the total

dimensionality ofD+ paragraphs to a set of manageable topicsZ, in which V denotes the

number of topics inZ. Therefore the input to LDA in our study is the set of all paragraphs

G, as illustrated in Table3.2. Splitting the paragraphs of the long documents before the topic

discovery step implicitly exploits the relationships between terms that commonly appear in

similar contexts [Krikon and Kurland, 2011, Xi et al., 2001]. Moreover, LDA assumes that

each paragraph has multiple latent topics and that each topic zj ∈ Z is defined as a multinomial

probability distribution over all terms inΩ, as shown in Table3.3, that are represented as
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p(ti|zj), in whichti ∈ Ω and1 ≤ j ≤ V such that

∑|Ω|

i
p(ti|zj) = 1

Table 3.2: A set of paragraphs of the documents in Table3.1 and their terms, which both
represent the input to be given to LDA

Paragraph Terms

g1 {t1, t2, t4, t3, t7, t2}

g2 {t3, t1, t5, t7, t1}

g3 {t5, t6, t4, t2, t1, t2, t7}

g4 {t4, t2, t3, t7}

g5 {t1, t3, t4, t3, t8, t2}

g6 {t3, t2, t5, t7}

g7 {t4, t6, t8, t2, t1, t5, t7}

g8 {t1, t2, t3, t7}

g9 {t3, t8, t5, t7, t3}

Table 3.3: A sample of LDA topics generated from collection 101 of the RCV1 dataset, which
shows how LDA represents a latent topic (i.e., a probabilitydistribution over terms)

Topic 1 Topic 3 Topic 5 Topic 10

year 0.072 Piech 0.148 Volkswagen 0.086 VW 0.264

federal 0.072 economic 0.055 passed 0.06 house 0.059

AG 0.04 manager 0.047 laws 0.043 sale 0.045

seat 0.032 interview 0.032 million 0.035 theft 0.045

economic 0.032 use 0.032 Europe 0.035 GM 0.037

board 0.032 congress 0.032 USA 0.035 test 0.037

believed 0.024 computer 0.032 prosecutor 0.035 fight 0.023

work 0.024 return 0.024 version 0.026 appeared 0.015

suspect 0.024 organisation 0.024 Lopez 0.026 full 0.015

advances 0.024 agency 0.024 planted 0.018 lose 0.015

LDA also represents an individual paragraphg as a probabilistic mixture of topics asp(zj |g), as

illustrated in Table3.4. Consequently, and based on the number of latent topics, theprobability

(i.e., local weight) of termti in paragraphg can be calculated as

p(ti|g) =
∑V

j=1
p(ti|zj)× p(zj|g)

All hidden variables,p(ti|zj) and p(zj |g), are statistically estimated by the Gibbs sampling
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Table 3.4: Example of how LDA represents a paragraph (i.e., a probability distribution over
latent topics)

Paragraph Z1(ϑy,1) Z2(ϑy,2) Z3(ϑy,3) Z4(ϑy,4)

g1 0.2 0.3 0.4 0.1

g3 0.4 0.3 0.1 0.2

g5 0.1 0.2 0.5 0.2

g6 0.3 0.2 0.2 0.3

g8 0.1 0.6 0.1 0.2

algorithm [Steyvers and Griffiths, 2007].

From a different perspective, LDA generates two distinct outputs that can be observed from

two levels. At the document level (or, in our case, the paragraph level), LDA represents each

paragraphgy by the proportions of topics distributionθgy = (ϑy,1, ϑy,2, ϑy,3, . . . , ϑy,v). At the

collection level, which in our model is the set of relevant documentsD+, LDA representsD+

by a set of topicsZ, in which each topic is a probability distribution over all terms inD+, φj

for topiczj andΦ = {φ1, φ2, φ3, . . . , φv} for all topics. Different studies [Bashar and Li, 2017,

Bashar et al., 2016, Gao et al., 2014b, 2015] commonly only use the top 10 terms from each

topic, based on their probability distribution that is estimated byp(t|z). However, the proposed

model considers all terms in all topics to avoid any possibility of relevant feature loss during

the training phase of the SIF model. A third output that the LDA can produce is the term–topic

assignment, in which a set of terms is assigned to a specific topic but not to other related topics.

3.2.2 Global Statistics

Global statistics are frequency-based evidence that are used to indicate the informativeness

(i.e., importance) of text features (e.g., terms and phrases) to the entire collection of documents

[Macdonald and Ounis, 2010, Maxwell and Croft, 2013]. In IR, and by using the global statistics

of terms, documents are usually scored and then ranked according to the presence and/or

frequency count of query terms in the document [Macdonald and Ounis, 2010, Maxwell and

Croft, 2013, Sebastiani, 2002]. However, global statistics do not provide semantic information

about terms and can be biased towards the most frequent termsin the collection, which are often

general and less discriminating [Bendersky et al., 2011, Maxwell and Croft, 2013]. They thus do

not show significant improvement in IR, especially in weighting models of proximity [Huston

and Croft, 2014, Macdonald and Ounis, 2010, Maxwell and Croft, 2013]. For relevant feature

discovery, global statistics show how terms are explicitlyrelated to relevance at the collection



80 CHAPTER 3. THE SIF MODEL

level, but they ignore the local (i.e., at document level) details of relevance [Macdonald and

Ounis, 2010, Maxwell and Croft, 2013], as illustrated in Table3.5 for the case of document

frequencydf . Additionally, global statistics cannot deal with latent information (e.g., latent

topics) alone, and they ignore explicit semantic relationships between terms [Bendersky et al.,

2011]. In the current study, we divide global statistics into twogroups: raw statistics and hand-

crafted statistics.

Table 3.5: Document frequency of terms (df ) for a set of relevant long documents in which the
local semantic and statistical details of each term in any document are ignored, except for the
presence and absence of terms in these documents

Document t1 t2 t3 t4 t5 t6 t7

d1 1 1 1 0 0 1 1

d2 0 1 1 1 0 1 1

d3 1 0 0 0 1 0 1

d4 0 1 1 0 0 0 1

d5 0 1 0 0 0 1 1

d6 1 1 0 1 0 1 1

df 3 5 3 2 1 4 6

3.2.2.1 Raw Statistics

As the name indicates, these statistics are non-estimated and primarily based on the count of

the terms in the document collection. Popular examples are thedf , tf and other segment-based

frequencies, likepf and sentence frequency (sf ). Each of these global statistics is characterised

by identifying the discriminating power of a term [Macdonald and Ounis, 2010]. Therefore,

document frequency and term frequency form the basis for other handcrafted global statis-

tics—like idf [Salton et al., 1975] and tfidf [Salton and Buckley, 1988], which are discussed

in the next section. However, they can either underestimateor overestimate the importance of

terms to the user information needs [Macdonald and Ounis, 2010, Maxwell and Croft, 2013].

Given the collection of relevant documentsD+, we define these raw statistics in this research

as follows:

Definition 1 (Document Frequency) Thedf of a termt is the number of relevant documents

in D+ that contain the termt. df(t) can be calculated as follows:

df(t) =

|D+|
∑

i=1

fdi(t)
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where |D+| is the total number of relevant documents inD+ and fdi(t) can be defined as

follows:

fdi(t) =











1, if t ∈ di

0, otherwise

Definition 2 (Paragraph Frequency) Thepf of a termt is the number of paragraphs inD+

that contain the termt. Thus, givenG, the set of all paragraphs inD+, pf(t) can be calculated

in a similar manner asdf using the following formula:

pf(t) =

|G|
∑

y=1

fgy(t)

where|G| is the total number of paragraphs inG andfgy(t) is defined likefdi(t) as follows:

fgy(t) =











1, if t ∈ gy

0, otherwise

Definition 3 (Term Frequency) Thetf of a termt is the number of timest occurs overD+.

Unlike the definitions ofdf andpf , which are only concerned about the binary occurrence (i.e.,

occur or does not occur) of the termt in a relevant document or paragraph,tf(t) also considers

redundant occurrences oft. tf(t) can thus be calculated as follows:

tf(t) =

|D+|
∑

i=1

fr(t, di)

wherefr(t, di) counts the total occurrences of termt in documentdi

3.2.2.2 Handcrafted Statistics

Handcrafted statistics are developed and estimated to suitdifferent needs based on counting

term occurrences within a collection of documents. Widely used examples are theidf and

term frequency–inverse document frequency (tfidf ), which are essential components in many

term-weighting models, particularly in IR, such as BM25 [Robertson and Zaragoza, 2009],

language models and smoothing formulas [Zhai and Lafferty, 2004] for estimating the relevance

of documents given a user query. In this research, we define the cluster frequency of terms as a

handcrafted statistic, in addition toidf andtfidf as follows:
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Definition 4 (Cluster Frequency) GivenC, as a set of document clusters inD+, the cluster

frequency (cf ) of a termt is the number of document clusters that contain the termt. The term

t occurs in a clustercj ∈ C if at least one relevant document in that cluster containst. If we

assume thatD+ hasL clusters, thencf(t) can thus be calculated as follows:

cf(t) =
L
∑

j=1

fcj (t)

wherefcj(t) can be defined as follows:

fcj(t) =











1, if t ∈ cj

0, otherwise

Definition 5 (Inverse Document Frequency)The idf is developed to quantify the informa-

tiveness of a termt in D+, assuming that the important terms appear less frequently in fewer

documents than the less-important terms. Using the previous definition ofdf(t), the formula of

idf for termt can be expressed as follows:

idf(t) = log

(

|D+|

df(t)

)

Definition 6 (Term Frequency–Inverse Document Frequency)The tfidf combines a local

tf(t) in documentd as a representative statistic of the document’s contents, with the global

idf(t) as a discriminating statistic. While there are many variants oftfidf [Sebastiani, 2002],

the current study estimates it to be in accordance withSalton and Buckley[1988], as follows:

tfidf(t) = fr(t, d)× idf(t)

Moreover, using global statistics alone can impose inflexibility, as each global statistic has

its own limited focus and does not consider other factors that influence term weight. For

example, in IR,idf was introduced to control the effect of frequent terms in thecollection based

on the assumption that less frequent terms are more specific [Cummins and O’riordan, 2005,

Macdonald and Ounis, 2010]. However,idf cannot look beyond the importance of document

frequency to terms [Bendersky et al., 2011]. These limitations make utilising global statistics

alone for term weighting ineffective due to their single, low-level focus. Therefore, there is
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a need to fuse informative global statistics with other high-level features to (1) increase the

flexibility of such statistics, (2) enhance the representativeness of features, and (3) accurately

estimate the importance of other text features.

3.2.3 Text Feature Fusion

Text feature fusion can be defined as the process of integrating different lexical, syntactic,

semantic and statistical features into a useful, consistent and accurate representation of text

documents [Balazs and Velásquez, 2016, Egozi et al., 2008, Scott and Matwin, 1999, Wu et al.,

2006, Xue and Zhou, 2009]. This fused representation is then used to enhance the performance

of the related TM and ML tasks (e.g., retrieval [Anava et al., 2016, Pickens and Golovchinsky,

2008], filtering [Alharbi et al., 2018b, Gao et al., 2015], classification [Bharath Bhushan and

Danti, 2017, Xu et al., 2017] and clustering [Wang et al., 2019, Yu et al., 2011]), because no

specific feature can hold the available pieces of evidence information singlehandedly. However,

as previously mentioned, it is challenging to know which type of text features to fuse, how

to fuse it and, ultimately, how to weight and select the most relevant text features from the

contents of relevant documents that describe user information needs, knowing that plain text

is monomodal and suffers from inherited problems like synonymy, polysemy, noise, feature

sparsity and many uncertainties [Gao et al., 2015, Jian et al., 2016, Li et al., 2015, Zhong et al.,

2012].

A fusion-based TFS technique might first exploit inter-feature semantic relationships—such

as dependency [Chen et al., 2017, Xu et al., 2017], co-occurrence [Balazs and Velásquez,

2016, Kludas, 2011], correlation [Kim et al., 2010], causation [Xiao et al., 2016] and mutual

information [Peng et al., 2005]—as evidence to locate interesting features [Kludas, 2011, Wu

and Mcclean, 2006]. It could then combine their normalised scores (i.e., weights) or relevance

rankings before estimating the features’ final scores [Lillis et al., 2006, 2008, Nuray and Can,

2006]. The feature-scoring function is thus critical in the fusion-based TFS algorithm and

should estimate an informative score to each fused feature [Bendersky et al., 2011, Li et al.,

2015]. Despite the single modality of text, its feature fusion algorithms can still be divided

into the typical three groups of fusion strategies—early, late and hybrid—as in multimodal ML

[Alqhtani et al., 2018, Baltrušaitis et al., 2019]. However, in our research, the presence and

absence of semantic information in the used text features will govern the distinction between

those strategies.
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3.2.3.1 Early Fusion

In this thesis, a TFS model can adopt the early fusion strategy if it only integrates individual

terms by combining their scores (e.g., frequencies) heuristically beforeand considering any

semantic relationships between these terms and relevant and/or irrelevant documents. In rele-

vant feature discovery, the traditional term-based techniques, such as idf [Salton et al., 1975],

tfidf Salton and Buckley[1988], BM25 [Robertson and Zaragoza, 2009], Prob [Jones et al.,

2000a,b], SVM [Joachims, 2002], χ2 [Chen and Chen, 2011], MI [ Manning et al., 2008b],

LASSO [Tibshirani, 1996] and Rocchio [Rocchio, 1971], are popular examples of early fusion-

based TFS models. Therefore, we generally define the early fusion of text features as follows:

Definition 7 (Early Fusion) A fusion strategy that integrates low-level terms before consider-

ing any form of semantic relationships between them and relevant and/or irrelevant documents.

Moreover, in multimodal fusion, early fusion strategy is commonly used and known as the

feature-level fusion [Atrey et al., 2010, Datta et al., 2017, 2016] or pre-classification fusion

[Jeng and Chen, 2016]. It is claimed that the early fusion of features is best in terms of perfor-

mance improvement, as the original raw source of information is considered the richest [Balazs

and Velásquez, 2016, Kludas, 2011, Zhang and Balog, 2017]. However, in most cases, low-level

terms in text data suffer from inherited noise and cannot handle semantic-related problems (e.g.,

synonymy and polysemy) because they ignore the order of the terms in documents [Li et al.,

2010, 2012].

3.2.3.2 Late Fusion

High-level text features, such as phrases (n-grams), patterns, topics, concepts or a combination

of these, are more semantically rich than low-level individual keywords (i.e., terms) [Bashar

et al., 2016, Gao et al., 2015, Li et al., 2015, Tao et al., 2011, Zhong et al., 2012]. Therefore,

documents that share the same high-level features are more likely to be semantically related

[Gao et al., 2015, Zhong et al., 2012]. In this research, and from a data fusion perspective, a TFS

model can apply the late fusion strategy if the features’ scores are combinedafter the extraction

of some high-level features from relevant and/or irrelevant documents. Popular examples of late

fusion–based TFS models are the phrase-basedn-grams models [Fürnkranz, 1998, Lavrenko

and Croft, 2001]; the pattern-based PTM [Wu et al., 2004], PCM [Albathan et al., 2012] and

SCSP [Albathan et al., 2014] models; the topic-based PLSA [Hofmann, 2001] and LDA [Blei

et al., 2003] models; the concept-based CBM [Shehata et al., 2007] model; and other hybrid,
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high-level features-based models, such as the pattern– topic based PBTM-FP [Gao et al., 2013],

PBTM-FCP [Gao et al., 2013], SPBTM [Gao et al., 2014b] and MPBTM [Gao et al., 2015]

models; the topic–phrase TNG [Wang et al., 2007] model; and the pattern–concept PIM [Bashar

and Li, 2018] and topic–concept Lda Concept [Chemudugunta et al., 2008] models. Therefore,

we define the late fusion of text features as follows:

Definition 8 (Late Fusion) A fusion strategy that integrates high-level features after consider-

ing any form of semantic relationships between them and relevant and/or irrelevant documents.

In multimodality, the late fusion strategy is also known as decision-level fusion [Atrey et al.,

2010, Datta et al., 2017, Kludas, 2011] or post-classification fusion [Alqhtani et al., 2018].

In this approach, the fusion occurs at the concept level [Alqhtani et al., 2018] because some

evidence-based decisions have already ocurred by merely combining the feature scores from

each learning model [Alqhtani et al., 2018, Baltrušaitis et al., 2019]. Adopting the late fusion

strategy has resulted in a more effective and robust performance in both multimodal [Alqhtani

et al., 2018, Snoek et al., 2005] and monomodal applications [Blei et al., 2003, Gao et al., 2015,

Wu et al., 2004]. While the improved performance can be application dependent [Balazs and

Velásquez, 2016, Snoek et al., 2005], the reason for its robustness appears to be related to the

consideration of the semantic information of features in late fusion [Snoek et al., 2005], even

in monomodality [Blei et al., 2003, Gao et al., 2015]. However, late fusion can make learning

correlations between multimodel features less effective [Baltrušaitis et al., 2019, Snoek et al.,

2005] because these learned features are no longer flexible and they do not necessarily resemble

their original data sources.

3.2.3.3 Hybrid Fusion

On the basis that no specific fusion approach always performsbest, a combination scheme

is necessary. A hybrid strategy in multimodal fusion includes performing fusion at both the

feature (i.e., early) and decision (i.e., late) levels to solve problems in multimodal data analysis

[Atrey et al., 2010, Wu et al., 2005]. In this thesis, and for relevant feature discovery, a similar

approach is possible by combining different high-level features and low-level terms to exploit

the advantages of the previously defined early and late fusion approaches. Therefore, we can

define the hybrid fusion of text features as follows:

Definition 9 (Hybrid Fusion) A fusion strategy that integrates early- and late-fused features
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into a composite semantic space between them and relevant and/or irrelevant documents.

Existing hybrid fusion–based TFS models are the pattern–terms PDS [Zhong et al., 2012],

MP [Yan et al., 2005], RDF1 [Li et al., 2010] and RDF2 [Li et al., 2015] models. In these models,

fusing the semantic information of patterns with the richness (i.e., statistical properties) of low-

level terms has led to a better performance [Wu et al., 2006, Zhong et al., 2012] than the late

fusion of patterns only or the early fusion of terms only [Albathan et al., 2012, Wu et al., 2004].

Further, the hybrid fusion of patterns and terms facilitates a better exploitation of pattern mining

in text, which was a challenging issue in only pattern-basedTFS models [Li et al., 2015, 2011,

Wu et al., 2004, Zhong et al., 2012].

3.2.4 Random Sets

A random set is a random object that has values as subsets taken from some space [Goutsias

et al., 1997, Molchanov, 2005]. As a general mathematical modelling tool with many applica-

tions, random sets work as an effective measure of uncertainty in imprecise data for decision

analysis [Nguyen, 2008]. For example, ifZ andΩ are finite sets andZ is the evidence space,

we propose

Γ : Z → 2Ω

as a set-valued mapping fromZ onto Ω. Because the SIF model aims to estimate a more

accurate weight for topical terms, a probability function needs to be defined on the evidence

space to specify the significance of the relationship that isgoverned by the set-valued mapping.

Therefore, ifP is a probability function that is defined onZ, the pair(P,Γ) is called a random

set [Goutsias et al., 1997, Kruse et al., 1991]. However, because LDA defines a topic as a

probability distribution over all terms in the collection,the random set will be extended to model

the resultant complex relationships between topics and terms and vice versa, as described in the

next section.

3.3 The Proposed SIF Model

The proposed SIF model (see Figure3.1) fuses high-level topics with low-level terms to gener-

alise the local weight of a topical termt in D+, based on the set of topicsZ that are generated

from the paragraphs inG by exploring all possible relationships between differententities that
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influence the term-weighting process. The targeted entities in our model are paragraphs, topics

and terms. The possible relationships between these entities are complex (a set of one-to-many

or many-to-one relationships). For example, a paragraph can have multiple topics, whereby

each topic is a probability distribution over all terms inΩ. Inversely, a topic can be discussed in

many paragraphs, and a term can frequently appear in many topics and paragraphs.

An experimental practice commonly employed by most popularTFS models is to select

top-k terms fromΩ before training that is based on weighting schemes [Li et al., 2015, 2010,

Zhong et al., 2012]. In the case of LDA, some top-k terms from each topic are also used

for many applications [Bashar and Li, 2017, Bashar et al., 2016, Gao et al., 2014b, 2015].

However, as LDA topics are a mix of multiple probability distributions of terms, we argue that

in TFS for relevance discovery, such a practice can lead to the loss of some relevant features,

particularly those that are less frequent in the collection. This practice can also make the TFS

model sensitive to the adopted weighting scheme. Therefore, rather than pre-selecting top-k

terms from eitherΩ or eachzi ∈ Z in the collection, our SIF model extends multiple random

sets for this task.

G

G
P

Figure 3.2: The feature fusion module of the SIF model and the mapping ofΓ andΓ−1.

In this model, two ERSs and their inverses are proposed to describe such complex re-

lationships, in which each ERS can be interpreted as a probability function from which the

importance of the main entity in the relationship can be determined. The proposed ERS theory

is then used to develop a new weighting function to generalise LDA’s local term probability to a

global one that is locally descriptive, as the relevance details of the term in each document

in the collection are considered. The generalised term weight is also more discriminating,

as it accurately represents the relevance of the term to the user information needs, especially
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when combined with the global document frequency. Figure3.2shows the structure of the SIF

model’s feature fusion module, as well as the adopted entities and proposed ERSs, including

their inverses. The details of the ERSs are described in the next section.

3.3.1 Extended Random Sets

LetD+ = {d1, d2, d3, . . . , dm} be a set ofM relevant long documents. Each documentdx con-

sists ofS paragraphs, such asdx = {g1, g2, g3, . . . , gs}. A paragraphgy is a bag of terms; for ex-

ample,gy = {t1, t2, t3, . . . , tk}. Assuming we have a set of latent topicsZ = {z1, z2, z3, . . . , zv}

that are extracted by the LDA fromG as the set of all paragraphs inD+, a topicz can be

defined as a probability distribution over the set of termsΩ, in whichterms(gy) ⊆ Ω for every

paragraphgy ∈ G.

However, as a termt can appear in multiple topics, there is a need to estimate thetopical

significance of the termt by measuring the strength of its relationship with each topic zi ∈ Z.

Therefore, we extendΓ to an extended set-valued mapping [Li , 2003] as follows:

ψ :: Z → 2Ω×[0,1]

which satisfies

∑

(t,p)∈ψ(z)

p = 1

for eachz ∈ Z, whereZ is a set of topics (or evidences) andΩ is a set of terms (objects) as

previously defined.

3.3.2 Generalised Weighting Scheme

Let P be a probability function onZ, such that

∑

z∈Z

P (z) = 1

We call(ψ, P ) an ERS. For eachzi ∈ Z, letPi(t|zi) be a conditional probability function onΩ,

such that

Γ(zi) = {t|t ∈ Ω, Pi(t|zi) > 0}
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while the inverse mapping ofΓ is defined as follows:

Γ−1 : Ω → 2Z

Γ−1(t) = {z ∈ Z|t ∈ Γ(z)}

A probability functionpr(t) can be decided by the extendedΓ onΩ, which satisfies

pr :: Ω → [0, 1]

as follows:

pr(t) =
∑

zi∈Γ−1(t)

(

P (zi)× Pi(t|zi)
)

(3.1)

wherepr(t) is the generalised weight of termt at the collection level that LDA does not estimate,

P (zi) represents the weight of topiczi, Pi(t|zi) as the probability of termt in topiczi, andΓ−1

is a mapping function.

Similarly, as a topiczi might appear in multiple paragraphs, it is necessary to estimate its

significance overG. Therefore, the extended random setΓ1 is proposed to describe the rela-

tionships between paragraphs and topics by using the conditional probability functionPy(z|gy)

as follows:

Γ1 : G→ 2Z×[0,1]

Γ1(gy) = {(z1, Py(z1|gy)), . . .}

Similarly, Γ2 is also proposed to describe the relationship between topics and terms by using

the defined conditional probability functionPi(t|zi) as follows:

Γ2 : Z → 2Ω×[0,1]

Γ2(zi) = {(t1, Pi(t1|zi)), . . .}

Based on the previously defined inverse mapping, the inverseERSsΓ−1
1 andΓ−1

2 are proposed.

Γ−1
1 describes the inverse relationships between topics and paragraphs by using the probability

functionPz(zi), such that
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Γ−1
1 : Z → 2G

Γ−1
1 (z) = {gy|z∈Γ1(gy)}

Conversely,Γ−1
2 describes the inverse relationships between terms and topics by using the

probability functionpr(t), such that

Γ−1
2 : Ω → 2Z

Γ−1
2 (t) = {z|t∈Γ2(z)}

3.3.2.1 Generalising Topic Weight

To estimate the generalised termt weight in collectionD+, we need to estimate two probabil-

ities that are based onΓ−1
1 andΓ−1

2 . The first is topic weight, which is the probability of each

topic Pz(zi) in each paragraph inG in which we assumePG(gy) = 1
N

, whereN is the total

number of paragraphs inG as follows:

Pz(zi) =
∑

gy∈Γ
−1

1
(zi)

(

PG(gy)× Py(zi|gy)
)

= 1
N

∑

gy∈Γ
−1

1
(zi)

Py(zi|gy)

(3.2)

wherePy(zi|gy) is estimated by LDA,gy refers to theyth paragraph inG andΓ−1
1 is a previously

defined mapping function.

3.3.2.2 Generalising Topical Term Weight

Second, for each topiczi in Z, we must estimate the conditional probability of termt, given

topiczi, Pi(t|zi). The generalised term weight can thus be calculated using Equation3.1, which

can be expanded by using Equation3.2as follows:
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pr(t) =
∑

zi∈Γ
−1
2

(t)

(

Pz(zi)× Pi(t|zi)
)

=
∑

zi∈Γ
−1

2
(t)

[

(

1
N

∑

gy∈Γ1
−1(zi)

Py(zi|gy)

)

× Pi(t|zi)

]

= 1
N

∑

zi∈Γ
−1

2
(t)

[

Pi(t|zi)×

(

∑

gy∈Γ
−1

1
(zi)

Py(zi|gy)

)

]

(3.3)

3.3.3 Score Fusion Scheme

Finally, the global term scores(t) at the collection level is calculated as follows:

s(t) = pr(t)× df(t) (3.4)

wherepr(t) is the generalised weight of termt, which is estimated previously by Equation3.3,

anddf(t) is the document frequency of termt.

3.3.4 Hybrid Fusion Algorithm

Algorithm 1 describes our SIF model in which the term weighting function(Equation3.3) is its

core. The algorithm begins with an initialisation step for all terms inΩ (steps 2–3). Then, the

algorithm splits all paragraphs in the training documentsD+ (steps 5–7) after removing stop

words and stemming all terms in each paragraph. Then, the algorithm uses LDA to generate

two representations (steps 9–10). The first representationis the paragraph–topics coverage (i.e.,

paragraph–topic distributions). The second representation is a specified number of latent topics

(10 topics in our case) (V = 10), which are generated from the set of paragraphsG. While

V = 10 is reported in [Gao et al., 2015] as the best value for the used 50 collections of the

RCV1 dataset, our SIF model tends to be insensitive to the hyperparameterV (see Section

6.9.1).

Then, the algorithm calculates the term weight based on Equation 3.3 for each term inΩ

(steps 12–22). To do so, the algorithm first applies Equation3.2to calculate the topic probability

Pz(zj) for each topiczj∈Z in all paragraphs inG (steps 13–16). Then, the algorithm continues

to calculate the term probability in topics that contain thesame term (steps 17–21) based on
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Equation3.3. The previous steps generalise the local term weight to a global one (pr(ti)).

Step 22 combines both global weights (pr(ti) and the document frequencydf(ti)). Notably,

paragraph splitting, stop word removal, term stemming and LDA topic extraction can be done

once and offline in this model.

3.3.4.1 Time Complexity Analysis

The proposed SIF model is trained offline using a small set of relevant documents. The ex-

perimental results in Section6.8.1show that SIF outperformed all baseline models in both IF

and RRT tasks. The experiments demonstrated that SIF does not need a large training set. On

average, our model needs only 13 relevant documents to perform effectively. However, SIF’s

efficiency depends largely on LDA’s time complexity, which tends to be affected by the Gibbs

sampling algorithm in which each of its iterations increases linearly with the number of topics

V and number of documents (i.e., the number of paragraphsN in our case). Thus, as in [Gao

et al., 2015, Wei and Croft, 2006], the LDA time complexity can be estimated asO(V ×N).

However, as our SIF model is trained offline, it only needs LDAto be run once. Also, as SIF

is not sensitive toV , the time complexity of LDA is proportional toO(N). By analysing the

time complexity of Algorithm1—especially the core section (steps 12–22)—we can see that

lines two to 22 takeO(K × V × N) basic operations to complete, whereK is the size of the

vocabularyΩ, V is the number of topics andN is the number of paragraphs in the collection.

Because the number of topics can be as few as one and SIF performance is not sensitive to it,

the required time complexity is practically estimated to beO(K ×N).

3.4 Chapter Summary

This chapter described SIF, an innovative and effective fusion-based TFS model for relevance

discovery. SIF extends multiple random sets to model the imprecise and complicated relation-

ships between terms, topics and paragraphs to effectively manage the hybrid fusion of different

lexical and topical features from a collection of relevant documents. Based on the proposed

ERS theory, a score fusion scheme is developed to estimate the relevance of topical terms at

the collection level. The estimated score accurately reflects the relevance of these terms to

the user information needs and maintains the same semantic meaning of the terms across all

relevant documents. The proposed model demonstrates the effectiveness of the hybrid fusion

strategy, using high-level topical features and low-levelterms statistics in an unsupervised
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Algorithm 1: Hybrid fusion-based TFS algorithm
Input : A set of relevant documentsD+, the vocabulary listΩ and total number of

topicsV
Output: A functions : Ω → [0,R)

1 Z = T = G = ∅;

2 foreach ti ∈ Ω do
3 pr(ti) = 0;

4 // split all paragraphs in D+

5 foreachdx ∈ D+ do

6 foreachgy ∈ dx do

7 G = G ∪ {gy};

8 N = |G|;

9 Generate paragraph-topic proportions(ϑy,1, . . . , ϑy,v) by applying LDA toG;

10 Generate topicsZ = {z1, . . . , zv} by applying LDA toG;

11 // calculate ti fused score based on Eq 3.3 & Eq 3.4

12 foreach ti ∈ Ω do

13 foreachzj ∈ Z do

14 Pzj = 0;

15 foreach gy ∈ G do

16 Pzj = Pzj + ϑy,j ;

17 if ti∈zj then

18 t′ =

(

tf(ti,zj)∑

t∈zj

tf(t)

)

× Pzj ;

19 else

20 t′ = 0;

21 pr(ti) = pr(ti) + t′;

22 s(ti) =
pr(ti) × df(ti)

N
;
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learning setting. Based on the first 50 assessors’ collections of the standard RCV1 dataset,

TREC relevance judgements and seven performance measures,the experimental results (see

Section6.8.1) showed that the proposed SIF model significantly outperformed many state-of-

the-art baseline models for IF and RRT in all evaluation metrics, despite the fusion strategies

used or type of text features adopted.

However, the proposed SIF model is not without limitations.It assumes that a topical term

is equally important to each relevant document. This assumption can be too simple because

it ignores the local details about the term in each relevant document, knowing that the term is

more likely to appear unevenly across the paragraphs of relevant documents. Thus, it is essential

to revisit SIF and re-estimate the term’s importance at the document level before it is globally

generalised at the collection level. The next chapter describes SIF2, a more effective TFS model

that overcomes the limitations of the SIF model.

Moreover, many existing TFS techniques for relevance discovery have no mechanism to

consider the evidence of relevance in a relevant document. These TFS techniques assume either

all paragraphs in the relevant document are equally relevant or all information in the document

is necessary. A document is commonly labelled as relevant because it contains a small part(s) of

relevant information in its segments; however, the non-relevant parts can introduce uncertainties

into the discovered relevant features. Therefore, in the next chapter, we will also introduce the

UR method, which very effectively deals with uncertaintiesin relevant features discovered by

most existing TFS models and frameworks.



Chapter 4

Dealing with Uncertainties in Relevant Features

This chapter introduces two novel and highly effective fusion-based models for handling uncer-

tainties in relevant features that were discovered in a collection of documents discussing user

information needs. The first model is called SIF2 and is proposed to overcome the limitation

of our SIF model presented in Chapter3 and the limitations of similar TFS models. The

proposed SIF2 model delves into each document’s details to estimate more accurate weights for

topical terms before generalising and integrating them with globally informative statistics. The

second model is developed to tackle the uncertainties problem that arises from irrelevant parts of

relevant documents. The UR method is proposed to incorporate paragraph-relevance evidence

estimated from document paragraphs and use these pieces of evidence to revise relevant features

discovered through various existing TFS models and frameworks. The details of the SIF2 model

and the UR method are presented in Section4.1and Section4.2, respectively, and the summary

of this chapter is presented in Section4.3. An extensive experimental evaluation of the SIF2

and UR models for IF and RRT is presented in Chapter6.

4.1 The Proposed SIF2 Model

4.1.1 Introduction

Most fusion-based TFS models, including SIF, estimate the relevance of features that describe

user information needs globally at the collection level, assuming that these features are equally

important to each document in the collection [Greiff, 1998, Robertson and Zaragoza, 2009,

Shirakawa et al., 2015]. In this study, we argue that such an assumption is too simple given that

long documents can discuss many unbalanced topics across their paragraphs, and even these

paragraphs can randomly describe multiple specific themes [Alharbi et al., 2017c, Anastasiu

95
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et al., 2013, Chien, 2016, Gao et al., 2015]. Therefore, these TFS models must consider the

relevant details of features locally within each document before generalising their relevance to

all user’s needs in the collection. However, as noted previously, most fusion-based models were

not developed on the basis that long documents or user information needs can exhibit multiple

topics; this negatively affected their performances in selecting relevant features [Alharbi et al.,

2017c, Bashar et al., 2016, Gao et al., 2017, 2015].

Topic-based models are explicitly developed presuming that documents contain multiple

topics [Blei et al., 2003, Hofmann, 2001]. LDA is the most popular statistical topic modelling

algorithm and has many applications, including relevant feature discovery [Alharbi et al., 2017c,

Bashar et al., 2016, Gao et al., 2015]. However, LDA estimates terms’ relevance weights on a

document-by-document basis using the local topics–document probability proportions and the

global term–topics assignments [Blei et al., 2003, Gao et al., 2015]. It does not automatically

consider the sub-hierarchal features of the document, suchas its paragraphs–topics distributions

or the features higher up in the hierarchy that represent thefull collection. Also, LDA represents

each generated topic as a probability distribution over allterms in the collection [Bashar and Li,

2017, Blei et al., 2003]. Such global representation might not accurately reflect the local rele-

vance of topical terms at the document level because these terms are not equally distributed over

all documents in the collection. Therefore, term weights assigned by the LDA term probability

function do not accurately reflect the importance of these terms in their local documents or the

collection. Recent studies in [Alharbi et al., 2018a, 2017b, Bashar and Li, 2017, Bashar et al.,

2016, Gao et al., 2015] confirmed that the LDA probability function negatively influenced the

LDA’s performance in discovering relevant features.

Relevant terms can be identified in a specific collection by fusing various instances (i.e.,

evidence) of these terms in different representations [Croft, 2000, Zhang and Balog, 2017]. At

the collection level, terms’ global statistics, such as document frequency (df ), are important

pieces of evidence that represent terms more discriminatively [Man et al., 2009, Sebastiani,

2002]. Nevertheless, in IR, representing the relevance of termsusing global weighting schemes

cannot provide better retrieval results, because term global statistics cannot reveal the term’s

local importance at the document level [Macdonald and Ounis, 2010, Maxwell and Croft, 2013],

and neither can the LDA. This research asked if there is a method to fuse the LDA’s hierarchal

features with informative collection statistical features (particularlypf anddf ) to overcome

their limitations in representing the local and global relevance of terms to the user information
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preferences.

This study aimed to develop an effective, fusion-based TFS model called SIF2.1 The model

adopts a complex hierarchal representation for the collection, consisting of its documents,

paragraphs, latent topics and all terms in the collection. Figure4.1illustrates the main elements

of this representation and the different lexical and statistical features extracted from these

entities to be fused by the feature fusion module. As in SIF, the feature fusion module of SIF2

is the main component of the model. This component models thecomplicated and imprecise

relationships between these hierarchal entities and the different features, using multiple ERSs

to estimate a relevance score fusion function.

Figure 4.1: The SIF2 model structure.

The SIF2 model provides an elegant hybrid fusion approach that combines both high-level

topics and local and global statistics of low-level terms toaccurately score relevant topical

terms at the collection level. This fused score effectivelyreflects the informativeness of the

terms to the key topic of interest in a specific collection that describes user information needs.

1Parts of this model were published in [Alharbi et al., 2017a] and [Alharbi et al., 2018b]. The acronym ‘SIF’
stands for theSelection ofInformativeFeatures while ‘2’ refers to the use of both local and global statistics.
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The experimental results presented in Section6.8.2demonstrate that the framework was highly

effective and significantly outperformed both state-of-the-art and popular TFS methods in IF

and RRT, regardless of the fusion technique or the type of text features they used. Further

details about the proposed SIF2 model are described in the following sections. A background

overview and some basic definitions are provided in Section4.1.2, the theoretical details of the

developed ERSs and the feature fusion functions are presented in Sections4.1.3, 4.1.4and4.1.5

and the SIF2 algorithm and its time complexity analysis are described in Section4.1.6.

4.1.2 Background and Basic Definitions

Assume that a researcher maintains a collection of long documents, denoted asD+, describing

a particular topic of interest that might also have multiplesub-topics or themes. For purposes

of further investigation, the researcher wants to enrich the collection by collecting documents

from the web. To achieve this goal, the researcher needs a model that can select and accurately

weight terms to effectively describe the collection. The weighted terms2 are used to gather

relevant documents.

We assumed that the collectionD+ = {d1, d2, d3, . . . , dx} hasM documents that are related

to a particular topic of interest, which, as noted before, isdifferent from a latent topic. A

documentdx consists of a set of paragraphsS while a paragraphg consists of a bag of words

andgxy refers to theyth paragraph of thexth document. Therefore, the set of all paragraphs in

the corpus isG = ∪dx∈D+{gxy|gxy ∈ dx} andS ⊆ G. The set of all unique words inD+ is

Ω = {t1, t2, t3, . . . , tk}, whereK = |Ω|. SIF2 uses the LDA to discover a set of latent topics

Z from G whereV denotes the number of topics. The LDA is an effective model todiscover

hidden topics from a corpus, but it does not demonstrate sufficient performance in TFS for

relevance discovery.

As noted before, LDA describes a topiczj ∈ Z as a probability distribution over all words

in Ω using p(ti|zj), in which
∑|Ω|

i p(ti|zj) = 1, where1 ≤ j ≤ V and ti ∈ Ω. Also,

LDA describes a documentdx by a probabilistic mixture of topics usingp(zj |dx). All hidden

variables,p(ti|zj) andp(zj|dx), are inferred statistically by the Gibbs sampler [Steyvers and

Griffiths, 2007]. Consequently, and based onZ, the local weight (i.e., probability) of wordti in

a documentdx can be estimated asp(ti|dx) =
∑V

j=1 p(ti|zj) × p(zj|dx). Therefore, for every

2In this chapter, we continue to use ’terms’, ’words’, ’keywords’ and sometimes ’features’ interchangeably
unless explicitly stated otherwise.
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topic zj ∈ Z, estimatingp(ti|dx) requires the fusion of two hierarchal features: the word–topic

assignmentp(ti|zj) and the topic–document distributionp(zj |dx). However, we argue that using

these features makes the LDA ineffective for selecting relevant terms in a specific collection,

whether at document level or paragraph level (see LDA’s experimental results in Section6.8.2).

Therefore, adapting LDA to estimate words’ informativeness has two challenges: a) how

to localise global features for a more accurate estimation of their local relevance and b) how

to fuse other hierarchal features for a better relevance estimation for topical terms. In the

following section, we define some informative local features that will be used to represent

relevance information in documents. These features will also be integrated by the SIF2 model

to estimate the relevance of topical terms in the collectionthat describe user information needs.

4.1.2.1 Informative Text Features

As in the SIF model, the proposed SIF2 model adheres to the hybrid fusion strategy defined

in Section3.2.3.3through integration between high-level topics and low-level terms. However,

unlike SIF, the SIF2 model will estimate the relevance of each topical term at the document

level, assuming that they have different degrees of relevance in each long document in the

collection. Therefore, some informative topical and low-level statistical features are adopted

and defined in this study as local features.

Local Features

Local features can be used to measure the importance of termswithin a specific document

or even a fixed-size window of text [Macdonald and Ounis, 2010, Maxwell and Croft, 2013,

Pickens and Golovchinsky, 2008]. In low-level terms, popular local features are the local

statistics of terms, such as term frequencytf , paragraph frequencypf and sentence frequency

sf . Instead of usingsf , which is comparable totf , this study usespf at the document level

as a local low-level feature. Thepf demonstrates better results thantf in representing the

informativeness of relevant topical term in our SIF model, as can be observed in Table6.23.

However, to calculatepf(t) at the document level, we update its previous definition in Section

3.2.2.1to the following:
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Definition 10 (Document–Paragraph Frequency)The pf of a term t in documentdx, de-

noted aspf(t, dx), is the number of paragraphs indx that contain the termt. Thus, knowing

thatS is the set of all paragraphs indx, pf(t, dx) can be calculated as follows:

pf(t, dx) =

|S|
∑

y=1

fgy(t)

where|S| is the total number of paragraphs indx andfgy(t) is defined as follows:

fgy(t) =











1, if t ∈ gy

0, otherwise

Since low-level terms do not contain any semantic information and do not assume that

a document can exhibit multiple topics, using their local statistics alone is not sufficient for

estimating the relevant information in the document. Therefore, a local feature that can reveal

the topical coverage of the document is required. The LDA is used for this purpose to estimate

what we call in this study a topical paragraph (tp) that will be used to estimate the topical

coverage of the document. The topical paragraph is defined asfollows:

Definition 11 (Topical Paragraph) The tp of a paragraphgy of documentdx, denoted as

tp(gxy), is the proportions of the probability distribution ofgxy over a specific number of latent

topics as follows:

tp(gxy) = (ϑxy,1, ϑxy,2, ϑxy,3, . . . , ϑxy,V )

where0 ≤ ϑxy,V ≤ 1 and V is the number of LDA topics.

Further, tp represents the topical coverage at the paragraph level, butin this study, we

selected the document as our semantic space to estimate the relevance of topical terms, as

noted previously. Therefore, and using the definition oftp, we call this semantic space a topical

document (td) and define it as follows:

Definition 12 (Topical Document) The td of documentdx, denoted astd(dx), is the sum of

the proportions of the identical topics in every topical paragraphtp(gy) in dx wheregy ∈ dx.

Therefore, thetd(dx) can be calculated as follows:
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td(dx) =

(

|S|
∑

gy∈dx

ϑy,1, . . . ,

|S|
∑

gy∈dx

ϑy,V

)

whereϑy,i is the proportion of topici in paragraphy in documentdx, and|S| is the total number

of paragraphs in documentdx.

Figure 4.2 illustrates the informativeness oftd in representing the topical coverage (i.e.,

topical information) of three different relevant documents taken from Collection 101 of the

RCV1 dataset. The figure demonstrates that these documents almost cover the same topics of

interest but with variant levels of significance. The figure experimentally justifies our claim that

a topical term might have different degrees of relevance in each relevant document.

Figure 4.2: The td of three different relevant documents from Collection 101 of the RCV1
dataset using 10 LDA topics.

4.1.3 Extending Multiple Random Sets

Distinct hierarchal entities and their relationships to each other can affect the term scoring in a

specific collection. As demonstrated in Figure4.3, the SIF2 model uses four entities, which are

the collection documentsD+, their paragraphsG, the LDA latent topicsZ and the collection

keywordsΩ. Similar to our SIF model, SIF2 also models the complex relationships between

these entities using the ERS theory to integrate and, thereby, generalise the weight of a local

term to a global one that can be combined with a more informative global statistic.

However, in SIF2, we proposed three ERSsΓ1, Γ2 andΓ3 and their inverses to model the

one-to-many relationships between the used entities, as illustrated in Figure4.3. In every ERS,
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including its inverse, a probabilistic function is used to describe a specific relationship and

assign a weight that represents the strength of the relationship with the targeted entity. Then, a

new score fusion function is developed by integrating the proposed ERSs. The function assigns

highly informative scores to topical terms in the collection, representing their relevance to what

the user needs.

Figure 4.3: The feature fusion module of the SIF2 model and the mapping of Γ andΓ−1

between the used entities.

To effectively estimate the local relevance of topical terms in every documentd ∈ D+, we

first must consider the hidden topicsZ discussed in all documents inD+ and their relationships

with all terms in the collection (i.e.,Ω). Therefore, we proposed the set-valued function

Γ : Z → 2Ω

fromZ ontoΩ. However, it is important to estimate the strength of every relationship between a

term and a topic in the collection. Therefore, let us consider Z the evidence space and propose
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P as a probability function specified onZ. However, because LDA defines each topic as a

probability distribution over all terms inΩ, not as a scalar value, and a termt can appear in

many topics, we extendedΓ as

Ψ :: Z → 2Ω×[0,1]

and it is called an extended set-valued mapping [Li , 2003] such that

∑

(t,p)∈Ψ(z)

p = 1

for eachz ∈ Z.

However, because LDA assumes that a document contains multiple topics, then, for every

topicz ∈ Z, we define a probability functionP that satisfies

∑

z∈Z

P (z) = 1

Therefore, we can call the pair(Ψ, P ) an ERS, as noted previously. Consequently, and for every

zi ∈ Z, we definePi(t|zi) as a conditional probability function on the set of termsΩ to describe

the new relationship between the termt and a set of topics such that the mapping

Γ(zi) = {t|t ∈ Ω, Pi(t|zi)>0}

However, as our ultimate goal is to estimate the relevance oft in a documentdj, not only in a

topic zi, we much first estimatet weights in all topics. Therefore, we considerΓ−1 the inverse

function ofΓ and define it as follows:

Γ−1 : Ω → 2Z

Γ−1(t) = {z ∈ Z|t ∈ Γ(z)}

Nevertheless, as noted earlier, LDA estimatesZ from all terms in the collection. Knowing

that these terms appear unevenly across all documents in thecollection and that all topics in

Z appear in an unbalanced way in each document, based on the definitions presented in the

last section, we must localise all topical information to each document individually and the

relevance oft at the document level, not the topic level. Therefore, basedon the ERS defined
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above, we propose the score fusion functionsrd(t) onΩ such that

srd :: Ω → R

as follows:

srd(t) =
∑

dj∈Γ−1(t)







1

Pj(t|dj)
·

[

∑

zi∈Γ−1(t)

(

Pz(zi)× Pi(t|zi)
)

]







(4.1)

wheresrd(t) is the fused score of topical termt at the document level. The functionsPj(t|dj)

andPi(t|zi) calculate the conditional probability of the termt in documentdj and topiczi,

respectively. Finally,Pz(zi) estimates the generalised weight of topiczi in dj as it will appear

in Equation4.2.

4.1.4 Integrating Informative Features

To estimatesrd(t), we must investigatedj and accurately measure the strength of all possible

relationships between 1)S andZ, 2)Z andt, and 3)t andD+. Therefore, the ERSΓ1 defines

the conditional probability functionPxy(z|gxy) on the set of paragraphsG to describe the one-

to-many relationship between a paragraph and a topic as

Γ1 : G→ 2Z×[0,1]

Γ1(gxy) = {(z1, Pxy(z1|gxy)), . . .}

Similarly, as a topic can have many terms,Γ2 definesPi(t|zi) on Z as another conditional

probability function that estimates the probability of a term based on its appearance in each

topiczi ∈ Z as

Γ2 : Z → 2Ω×[0,1]

Γ2(zi) = {(t1, Pi(t1|zi)), . . .}

Further,Γ3 is also proposed to describe the relationship between documents and terms using

the defined probability functionPj(t|dj) as

Γ3 : D
+ → 2Ω×[0,1]
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Γ3(dj) = {(t1, Pj(t1|dj)), . . .}

Based on the inverse mapping described above, we haveΓ−1
1 , Γ−1

2 and Γ−1
3 . The Γ−1

1

describes the inverse relationships between topics and paragraphs using the probability function

Pz(zi), such that

Γ−1
1 : Z → 2G

Γ−1
1 (z) = {gxy|z ∈ Γ1(gxy)}

Γ−1
2 , conversely, describes the inverse relationships betweenterms and topics using thePi(t|zi)

function such that

Γ−1
2 : Ω → 2Z

Γ−1
2 (t) = {z|t ∈ Γ2(z)}

Γ−1
3 describes the inverse relationships between terms and documents using the functionPj(t|dj)

such that

Γ−1
3 : Ω → 2D

+

Γ−1
3 (t) = {dj|t ∈ Γ3(dj)}

Inversely, as a topic also can appear in one or more paragraphs that belong to a certain

document,Γ−1
1 is proposed to describe such a relationship using thePz(zi) function, in which a

subset of paragraphsS will only be mapped to its document as

Γ−1
1 (z) = {gxy|z ∈ Γ1(gxy), gxy ∈ S}

Similarly, as a termt in a specific document can occur in multiple topics,Γ−1
2 is also proposed

to govern this relationship using the probability functionsrd(t) as

Γ−1
2 (t) = {z|t ∈ Γ2(z)}
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4.1.4.1 Estimating Topical Relevance

To estimate the relevance of termt in a documentdx, Γ
−1
1 , Γ−2

1 andΓ−1
3 are used to calculate

two probabilistic scores based on the definitions oftp and td. The first score represents the

topical relevance at the document levelPz(zi) for every topic that appears in paragraphgy ∈

dx. TheΓ−1
1 is used to integrate the topic–paragraph distributionPxy(zi|gxy) for estimating

its topic–document marginal probability distribution. WeassumePG(gxy) = 1
N

, denoting that

everygy ∈ dx is likely equally important, andN = |S| as follows:

Pz(zi) =
∑

gxy∈Γ
−1

1
(zi)

(PG(gxy)× Pxy(zi|gxy))

= 1
N

∑

gxy∈Γ
−1

1
(zi)

Pxy(zi|gxy)

(4.2)

wherePxy(zi|gxy) is estimated based on the definition oftp, andgxy denotes paragraphy of

documentx.

4.1.4.2 Estimating Term Relevance

The second score estimates the relevance oft at the document level and is calculated first using

Γ−2
1 for every topiczi ∈ Z based on the conditional probability distributionPi(t|zi). However,

Γ−1
3 is adopted to localise the globally calculated probabilities based onPj(t, dj). Therefore,

the fused termt score at a documentd level can be estimated by substitutingPz(zi) in Equation

4.1with its formula in Equation4.2as follows:

srd(t) =
1

N

∑

dj∈Γ
−1

3
(t)







1

Pj(t|dj)
·

[

∑

zi∈Γ
−1

2
(t)

Pi(t|zi)×
(

∑

gxy∈Γ
−1

1
(zi)

Pxy(zi|gxy)
)

]







(4.3)

4.1.5 Score Fusion Scheme

As noted previously, the proposed SIF2 model adopts the hybrid fusion strategy through the

integration of high-level topical features and both local and global statistics of low-level terms.

The proposedsrd(t) function estimated the local relevance of termt in a specific document
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though the fusion of informative local features. However, relevant terms that describe user

information needs must be estimated at the collection level, not only at a specific document

level . Therefore, we estimated the global score for a termt at the collection level, denoted as

sc(t), to be the sum of itssrd(t) in every documentdi ∈ D+ integrated with the informative

global statisticdf , as in the SIF model. Thesc(t) is calculated as follows:

sc(t) = df(t) ·
∑

t∈di,di∈D+

srdi(t) (4.4)

wheredf(t) is the document frequency of termt andsrdi(t) is the fused score oft in document

di.

4.1.6 Hybrid Fusion Algorithm

Algorithm 2 illustrates the details of the proposed SIF2 model, in whichEquation4.3represents

the main function in the model. The algorithm follows the same pre-processing and initialisation

steps of the SIF algorithm (Algorithm1), except that each paragraph in the collection is indexed

to be mapped to its containing document. The LDA is also used with the SIF2 model to generate

10 topics from the set of all paragraphsG, as illustrated in steps 8–9. The number of LDA topic

was set experimentally, but SIF2 is insensitive to this hyperparameter. Steps 11–25 are the core

steps of the algorithm, based on the details of Equation4.4.

4.1.6.1 Time Complexity Analysis

The proposed SIF2 models inherited the positive aspects of our SIF model in terms of the

insensitivity to the number of LDA topics (i.e.,V ), as illustrated in Figure6.23. Also, SIF2

does not require a large training set and is trained offline with a single LDA run. Due to

SIF2’s insensitivity toV , the time complexity of LDA is∝ O(N), whereN is the total

number of paragraphs inD+. SIF2’s algorithm resembles much of the contents of SIF’s; the

only noticeable difference is the use of a third loop to iterate through the number of relevant

documentsM in the collection. Therefore, the time complexity of SIF2’salgorithms is∝

O(K ×M ×N), whereK is the vocabulary size.



108 CHAPTER 4. THE SIF2 & UR MODELS

Algorithm 2: Score fusion scheme
Input : A set of relevant documentsD+, the vocabularyΩ and total number of

topicsV
Output: A functionsc : Ω → [0,R)

1 Z = T = G = ∅;
2 foreach ti ∈ Ω do
3 sc(ti) = 0;

4 foreachdx ∈ D+ do
5 foreachgy ∈ dx do
6 G = G ∪ {gxy};

7 N = |G|;

8 Generate paragraph-topic proportions(ϑxy,1, . . . , ϑxy,v) by applying LDA toG;

9 Generate topicsZ = {z1, . . . , zv} by applying LDA toG;

10 // calculate sc(t) based on Equation 4.4
11 foreach ti ∈ Ω do
12 foreachdx ∈ D+ do
13 if ti ∈ dx then

14 w =
(

pf(ti,dx)
pf(ti)

)

;

15 foreach zj ∈ Z do
16 Pzj = 0;
17 foreachgxy ∈ dx do
18 Pzj = Pzj + ϑj,xy;

19 if ti ∈ zj then

20 w′ =

(

tf(ti,zj)∑

t∈zj

tf(t)

)

;

21 t′ = (w′ ÷ w)× Pzj ;
22 else
23 t′ = 0;

24 srdx(ti) = srdx(ti) + t′;

25 sc(ti) =
srdx (ti) × df(ti)

N
;
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4.2 The Proposed UR Method

4.2.1 Introduction

As noted previously, relevance discovery algorithms face challenges in identifying relevant text

features from both a theoretical and empirical viewpoint [Alharbi et al., 2017b, Li et al., 2015,

2010]. One main challenge is the uncertainties associated with the features discovered from

irrelevant or less relevant paragraphs that might exist in relevant documents. This is because

a document can be labelled relevant if only a small part of it contains relevant information, as

previously illustrated in Figure1.3. Using only document-level evidence can select features

from all parts of the document, which can lead to uncertainties and scatter the focus of the

selection algorithm because the features coming from irrelevant parts do not describe user

information needs. Therefore, the relevance of the corresponding part should be considered

when selecting features from it. Many studies have been conducted to develop TFS models of

relevance discovery over the last few decades [Gao et al., 2015, Li et al., 2015, Man et al., 2009,

Song et al., 2013, Tao et al., 2011]. However, most of these consider only the document- or

collection-level evidence for discovering relevant features, which makes them vulnerable to the

uncertainties present in a specific document or even the entire collection.

Research in IR has demonstrated that considering the evidence at the passage level can

improve document retrieval accuracy, especially when documents are long or span different

subject areas [Callan, 1994, Kozorovitsky and Kurland, 2011a, Liu and Croft, 2002]. Generally,

the performance of IR models can dramatically improve depending on the amount of relevant

evidence available in each passage [Anava et al., 2016, Callan, 1994, Fan et al., 2018]. Most

existing IR research measures the amount of relevance between a fixed window-size passage

and a user query through the estimation of some query similarity scores as the passage-level

evidence [Bendersky and Kurland, 2010, Xi et al., 2001]. However, the explicit user query

may not always be available, as in the case of IF, which forbids the estimation of such query

similarity scores [Gao et al., 2015, Li et al., 2012]. Therefore, in a situation in which paragraphs

are variant in size (i.e., no fixed window-size passages are considered), it becomes challenging

to explicitly estimate paragraph-level relevance evidence in a set of relevant documents that

describes user information needs. Also, it is equally difficult to use the estimated relevance at

the paragraph level to reduce uncertainties of relevant features that already been discovered by

existing TFS models and frameworks. Therefore, implicit mechanisms are required to estimate

and then utilise paragraph-level relevance evidence.
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Text feature fusion performed effectively in dealing with uncertainty through the combina-

tion of multiple evidences available in different high-level and low-level text features [Alharbi

et al., 2018b, Gao et al., 2015, Li et al., 2015]. However, these features are more likely to

be uncertain as they might be extracted from irrelevant or less relevant parts of documents.

Therefore, it is challenging to know which features to fuse,how to deal with their inherent

uncertainties, how to fuse them to estimate the relevance ofa paragraph and, ultimately, how

to use the paragraph-level evidence to deal with uncertainties in relevant features discovered

by other relevance discovery models and frameworks. The latent topical features of LDA [Blei

et al., 2003] seem to be better candidates for estimating the relevance available in different

entities (e.g., document, paragraph or sentence) of a collection. This is because they are the

only features explicitly generated based on the assumptionthat a text document (or even a

paragraph) can discuss multiple topics or themes [Alharbi et al., 2017c, Gao et al., 2014b,

2015]. LDA defines each discovered topic as a multinomial distribution over the terms in the

collection. It also represents each document or paragraph as a mixture of the discovered topics

[Blei et al., 2003, Griffiths and Steyvers, 2004]. However, LDA, as an unsupervised learning

algorithm, treats all documents or paragraphs equally and pays no attention to any relevance

evidence that might be available in them.

Therefore, in this section, we describe the uncertainties reduction (UR)3 method, which uses

paragraph relevance to reduce the uncertainties of the relevant features discovered by existing

models (e.g., BM25 [Robertson and Zaragoza, 2009], Rocchio [Rocchio, 1971], RFD2 [Li et al.,

2015]). The method adopts the late fusion strategy to integrate different features extracted from

the relevance feedback collection as an implicit mechanismto estimate the paragraph relevance.

We call the user information needs’ specific subject matters’topics’. For example, the user

information needs ofglobal warmingmay involve topics likepollution, greenhouse gasesand

ozone layer depletion. We assume that frequent topics in the relevance feedback collection are

the most relevant ones and use them to estimate the relevanceof paragraphs. LDA is used in this

study to discover these topics from the collection. However, the UR method does not use topical

terms (i.e., LDA term–topic distributions) to avoid any inherent uncertainties that might exist in

these statistical features, knowing that they are estimated from all terms of all paragraphs in the

collection without considering the relevance of any paragraph.

3An adapted version of this model was published in [Alharbi et al., 2018a].
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A relevance feedback collection that discusses user information preferences, the relation-

ships between distinct entities in the collection—namely,its documents, paragraphs, topics and

terms—and the estimated strengths of these relationships can be modelled as extended set-

valued observations [Alharbi et al., 2017b,c, 2018b]. The uncertainties in phenomena that can

be observed and represented as multiple sets, not as exact points, can accurately be modelled

using ERS [Li , 2003, Li and Zhong, 2003]. Therefore, in the UR method, multiple ERSs are de-

veloped to effectively model these complex relationships so that they can be understood and the

uncertainties dealt with through the hybrid fusion of different representative features discovered

from the selected entities. Based on the ERSs, a weight-scaling scheme is also developed to use

the estimated paragraph-level relevance for uncertainties reduction. The scheme is applied to

individual terms (i.e., lexical features), due to their flexibility and shareability between different

entities and high-level features in the collection. Therefore, the developed scaling scheme

is used to scale the weights of relevant term sets discoveredby a TFS model as an implicit

mechanism to reduce uncertainties in these terms. Then, thescaled relevant terms are re-ranked

to represent a new term set that is less uncertain and more relevant to user information needs.

Figure4.4 illustrates the structure of the UR method in which the feature fusion module

is the main component. The figure also shows the related entities and the flow of different

features from them to the feature fusion module. The UR’s structure resembles that of SIF2 as

the UR also estimates the relevance of a paragraph locally, at its document level, and globally,

at the collection level. Section6.8.3in Chapter6 presents the results of experiments conducted

on the 50 human-assessed collections of documents from the standard RCV1 dataset and their

TREC filtering topics, showing that the proposed UR method ishighly effective in reducing

uncertainties. When applied to the suitable existing TFS model, the improved model signif-

icantly outperforms all the other models in all evaluation metrics, regardless of the relevance

discovery technique or the type of text features they use. More details about the proposed UR

method are presented as follows: the problem formulation isintroduced in Section4.2.2, the

relevance estimation of paragraphs and the developed scaling function are described in Section

4.2.3and Section4.2.4describes how the estimated paragraphs’ relevance can be used to reduce

uncertainties in relevant features selected by any TFS model.
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Figure 4.4: The UR method structure.

4.2.2 Problem Formulation

Given a set of documentsD that discusses both relevant and irrelevant user information needs

[Li et al., 2015, 2010], the setD+ denotes the positive (i.e., relevant) documents inD such that

D+ ⊆ D, andD− represents the set of negative (i.e., irrelevant) documents such thatD− ⊆ D,

and, therefore,D = D+ ∪D−. A relevant long documentdx ∈ D+ has a set of paragraphsS

and the setG denotes all paragraphs inD+, wheregxy is theyth paragraph of thexth document

andS ⊆ G. Also, each paragraph is a bag of terms andΩ is the set of all terms inD+. As each

paragraph might discuss multiple sub-topics or themes, a set of statistical topicsZ is extracted

fromG using the LDA model. These topics reduce the dimensionalityof G to just a few topics,

whereV denotes the total number of topics inZ. The topics are integrated with other statistical

features to estimate the relevance of each paragraph inG.

In this study, we assume that a paragraphgxy has a local significance at its containing

document and another global relevance significance at theD+ collection. A long document

can discuss many topics across its paragraphs, and the paragraphs can also exhibit multiple

smaller themes [Blei et al., 2003, Gao et al., 2014b, 2015]. Therefore, a relevant paragraph
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should summarise this topical information described in itsdocument. However, for user infor-

mation needs, these topics and themes might be discussed randomly and unevenly across the

relevant documents, which makes the local relevance estimation of the paragraph significantly

unrepresentative of what the user needs. Therefore, a global relevance for the paragraph must

also be estimated based on its local significances in all documents. However, as noted before,

it is challenging to estimate paragraph relevance in the absence of a specific search guide for

such relevance (e.g., a user query), knowing that paragraphs’ terms can appear in many other

paragraphs, documents and topics. The topics, also, can be randomly discussed in multiple

documents and paragraphs.

Moreover, as LDA defines its topics as multiple probability distributions over all terms inΩ

and represents each paragraph as a probabilistic mixture ofall topics, it is difficult to model and

understand the highly complex relationships between the entities that influence the relevance

estimation of a paragraph, since they are not exact points. Therefore, as shown in Figure4.5,

multiple ERSs and their inverses are developed to model the complicated relationships between

documents, their paragraphs, topics and terms. Further, a probability function is developed

to estimate the strength of each relationship. Then, all functions are effectively combined to

estimate the relevance of paragraphs based on their lexicaland statistical features. More details

about the proposed ERSs are provided in the next section.

Figure 4.5: The feature fusion module of the UR method and the mappings of Γ (left) andΓ−1

(right).
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4.2.3 Estimating Paragraph Relevance

To estimate the global relevance of a paragraphgxy at the setD+ level, first we measure the local

significance ofgxy in its containing document (i.e.,dx) based on the relevance of thegxy terms.

However, many subsets of these terms can appear in many otherparagraphs, documents and

topics in theD+ collection, and many of these topics can also be discussed ingxy, knowing that

each topiczj ∈ Z might also be exhibited in many paragraphs. Therefore, multiple probability

distributions are defined and then modelled using multiple ERSs. Second, as in the SIF2 model,

we assume that the global relevance ofgxy is the summation of its local relevance in each

documentdx ∈ D+. More details about the estimation of paragraph relevance are provided in

the following two sections.

4.2.3.1 Local Relevance

As a paragraph is a set of terms, we assume that the relevance of each paragraphgxy ∈ G is

defined by a probabilistic distribution over the term setΩ in D+, which is modelled using the

set-valued mappingΓ1(gxy). To estimate the term relevance, we assume that the relevance of a

termt depends on a probabilistic mixture ofG, which is modelled using the inverse set-valued

mappingΓ−1
1 (t). The setG is the evidence space in this case, and a set of terms can represent

the relevance of a paragraphgxy, but its relevance level to the entire space is yet unknown asit

depends on its local relevance atdx. Therefore, the probability distributionΨ1 is defined onG

to indicate this uncertainty;Ψ1 is then used to estimate the relevance level ofgxy to the terms.

Let the probability of a termt relevant togxy be P (t|gxy). Since each paragraphgxy is

described by the probability distribution over the setΩ, we have the set-valued mappingΓ1 to

represent and describe the relationship between a set of terms and a paragraph as follows:

Γ1 : G→ 2Ω×[0,1]

such that

Γ1(gxy) = {t ∈ Ω|Pxy(t|gxy) > ζ}

whereΓ1(gxy) = {(t1, Pxy(t1|gxy)), . . .} for all gxy ∈ G and ζ is a user-defined threshold

assigned toζ = 0 in this study. GivenΨ1, as a probability distribution defined onG, we call

the pair(Ψ1,Γ1) an ERS.
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Since there is a need to identify the significance level of a term t, the inverse set-valued

mapping ofΓ1 is considered to estimate a representative distributionΨ1 onG. For all terms

t ∈ Ω, the inverse set-valued mapping ofΓ1 is defined as

Γ−1
1 : Ω → 2G

such that

Γ−1
1 (t) = {gxy ∈ G|t ∈ Γ1(gxy)}

to also represent and understand the relationships betweena term and a set of paragraphs.

However, whileΓ−1
1 is used to estimate the significance level of the termt to a subset of

paragraphs fromG, these paragraphs might not be related to a particular documentdx ∈ D+,

knowing that we assumedx is the local space used to estimate the relevance of anygxy ∈

G. Therefore, and as in our SIF2 model,Ψ1(t) is relaxed by considering the relationships

between documents and terms. However, the relevance level of dx to theD+ is still unknown.

Consequently, we defineΨ2 as a probability distribution overD+ and propose the set-valued

mappingΓ2 as follows:

Γ2 : D
+ → 2Ω×[0,1]

to represent eachdx as a probability distribution over all terms inΩ such that

Γ2(dx) = {t ∈ Ω|Px(t|dx) > 0}

and the probability of a termt relevant todx isP (t|dx). We also call(Ψ2,Γ2) an ERS. Therefore,

Γ2(dx) can be described as

Γ2(dx) = {(t1, Px(t1|dx)), . . .}

To estimate the relevance weight of a termt to the user information needs, which are

represented in our study byD+, the inverse set-valued mapping ofΓ2 is proposed as follows:

Γ−1
2 : Ω → 2D

+

where

Γ−1
2 (t) = {dx ∈ D+|t ∈ Γ2(dx)}
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We define the scoring functionsrg(t) onΩ such that

srg :: Ω → R>0

and

R>0 = {srg(t) ∈ R|srg(t) > 0}

as follows:

Ψ1(t) ∝ srg(t) =
∑

dx∈Γ−1(t)







Px(t|dx) ·





∑

gxy∈Γ−1(t)

P (gxy)× Pxy(t|gxy)











(4.5)

whereP (gxy) is the probability ofgxy being relevant to what the user needs.

As the paragraphgxy can discuss multiple sub-topics or themes, we assume thatgxy is a

probabilistic mixture of a set of latent topicsZ in G, which is modelled using the set-valued

mappingΓ3(gxy). The topicZ is the evidence space in this case. The setZ can represent the

relevance ofgxy to the user information needs. The more relevant topics a paragraph covers,

the more the paragraph’s relevance increases. This impliesthe relevance of frequent topics

(topics shared by many paragraphs). However, the relevancelevel of gxy to the entireZ space

is unknown without estimating the relevance ofgxy to the topics indx.

Similarly, as before,Ψ3 is a probability distribution defined onZ to indicate this uncertainty,

andΨ3 is used to estimate the relevance level ofgxy toZ, managed by the pair(Ψ3,Γ3). As each

paragraphgxy is described by the probability distribution over the setZ of topics, a set-valued

mapping ofΓ3 is proposed to represent the relationship between a paragraph and a set of topic

as follows:

Γ3 : G→ 2Z×[0,1]

and

Γ3(gxy) = {zj ∈ Z|Pxy(zj |gxy) > 0}

whereΓ3(gxy) = {(z1, Pxy(z1|gxy)), . . .} for all gxy ∈ G.

However,P (zj|gxy) can only estimate the topical significance ofzj given gxy; we must

estimate the relevance ofgxy at dx instead. Therefore, let the probability of a paragraphgxy

relevant to a given topiczj beP (gxy|zj). Further,Γ−1
3 is proposed to describe and measure
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the strength of the inverse relationship between a topiczj and the set of paragraphsS ⊆ G as

follows:

Γ−1
3 : Z → 2G

and

Γ−1
3 (gxy) = {zj ∈ Z, gxy ∈ S|Pj(gxy|zj) > ξ}

where ξ is another user-defined threshold assigned toξ = 0 in this study. Therefore, the

relevance ofgxy to dx can be estimated as follows:

Ψ3(gxy) ∝ P (gxy) ∝
∑

zj∈Γ
−1

3
(gxy)

Pxy(gxy|zj) (4.6)

By integrating Equation4.6into Equation4.5, the relevance score of the termt (i.e.,srg(t))

can be calculated as follows:

srg(t) =
∑

dx∈Γ
−1

2
(t)







Px(t|dx)×





∑

gxy∈Γ
−1

1
(t)





1

Pxy(t|gxy)
·





∑

zj∈Γ
−1

3
(gxy)

Pxy(gxy|zj)



















(4.7)

To find the latent sub-topics inG, we use LDA, which providesP (zj|gxy). However, we

needP (gxy|zj), which is estimated as follows:

Pxy(gxy|zj) =
P (zj)× Pxy(zj |gxy)

Px(zj |dx)

Here,P (zj|dx) is estimated by the LDA model andP (zj) is the marginal probability ofzj in

G, which can be calculated based on the definition ofΓ3 as follows:

P (zj) =
∑

zj∈Γ3(gxy)

Pxy(zj |gxy)

4.2.3.2 Global Relevance

The scoring functionsrg(t) can be used to estimate the local relevance of a paragraphgxy ∈ G,

using the relevance of its terms to the user information needs. Therefore, as indicated before,
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the global relevance ofgxy to the complete user information needs that are discussed across

D+ documents can then be calculated through the summation of its local relevance in every

dx ∈ D+ as follows:

SG(t) =
∑

t∈dx,dx∈D+

(

∑

gi∈dx,t∈gi

srgi(t)

)

(4.8)

wheresrgi(t) estimates the relevance of termt of paragraphgi in documentdx ∈ D+.

However, whileSG(t) can estimate the global relevance of the paragraphs inD+, using

this relevance to reduce uncertainties in relevant features that are discovered by various TFS

models and frameworks without losing the qualities of the originally discovered features must

be addressed. Therefore, in the next section, we address theissue of adopting the proposed UR

method using a two-step tactic, by 1) scaling the relevance of a selected feature (e.g., a weighted

termt) and 2) re-ranking the scaled set of relevant features.

4.2.4 Re-Ranking Relevant Features

To effectively represent user information needs, we first must select a set of terms that are

representative. To find such terms, a TFS model is selected, such as SVM [Dumais et al., 1998].

As a discriminative classifier, SVM finds a hyperplane that best separates the positive and the

negative classes. The discrepancy between normal values and the hyperplane is used to weight

and thus rank the terms, and then a subset is empirically selected from these ranked terms.

Since SVM and other existing models consider a given document relevant if some parts of the

document are relevant, some terms selected by these models can come from irrelevant or less

relevant parts of the document. Therefore, the selected terms, their weights and their ranks

incorporate uncertainties. We aim to reduce these uncertainties by effectively scaling the term

weights and re-ranking the terms based on their relevance value estimated by Equation4.8.

Let the weight of a termt estimated by a model (e.g., SVM) bewm(t) and its relevance,

estimated by Equation4.8, beSG(t). The re-ranking weight (i.e., score)w(t) of the term is

estimated by scalingwm(t) by SG(t) as follows:

w(t) = wm(t)× SG(t) (4.9)
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Then, the terms are re-ranked based on the new weightw(t). When re-ranking is applied to the

model (e.g., SVM), we call it the improved iModel (e.g., iSVM). An intuitive interpretation of

w(t) is that it combines the paragraph-level relevance evidencewith the document-level rele-

vance evidence, which is estimated by the existing models for reducing uncertainty. However,

the sentence-level evidence is too specific, and our preliminary experiments showed that such

evidence is not effective in our current relevant term re-ranking model.

4.3 Chapter Summary

This chapter presented SIF2, an innovative fusion-based model for selecting informative topical

terms from a collection of documents that discusses user information needs. The model extends

multiple random sets to fuse hierarchical LDA-based features and accurately weight topical

terms on a document-by-document basis. SIF2 also combines the aggregated topical terms’

weights with their document frequencies to estimate a global score. This fused global score

more accurately reflects the informativeness of a term to thekey topics of interest discussed

in the collection. The experimental results (see Section6.8.2) demonstrated that SIF2 attained

significant performance improvements in IF and RRT experiments compared to all baseline

models. SIF2 demonstrates an effective hybrid fusion strategy for integrating the advantages of

unsupervised topic modelling and collection statistics.

This chapter also addressed the challenge of reducing uncertainties in relevant feature space

by using implicit paragraph relevance. The proposed UR method uses topics in relevance

feedback discovered by LDA to estimate the implicit paragraph relevance. Multiple ERSs

are used to model the complex relationships between features, paragraphs and topics, and to

deal with the associated uncertainties. The experimental results (see Section6.8.3) confirm the

proposed UR method’s merit as a feature re-ranking technique for relevance discovery. The

substantial improvement achieved by applying the proposedmethod is due to the effective esti-

mation of paragraph relevance, as well as its use in estimating feature relevance. This research’s

theoretical contribution regards using multiple ERSs for modelling uncertainties associated with

the complex relationships between features, paragraphs and topics as essential entities in the

feature weight-scaling process. This study provides a promising methodology for combining

paragraph-level evidence with document-level evidence toestimate feature relevance.

Despite the effectiveness of the proposed SIF, SIF2 and UR models, they are biased towards
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the most frequent topics or themes in the collection. Highlyfrequent topics can overshadow less

frequent but equally important ones, which makes it challenging to identify relevant features

that precisely describe the user information preferences.Moreover, the three fusion models

also cannot deal with relevant features that frequently appear in both positive and negative

feedback documents. Therefore, in the next chapter, two frameworks will be introduced to

deal with the limitations mentioned above by treating feature selection and feature weighting as

two independent tasks. To do this, the proposed frameworks will integrate different supervised

and unsupervised learning algorithms in addition to our SIFand UR models to select and then

re-weight relevant features that describe user information needs.



Chapter 5

Hybrid Fusions Frameworks for Relevant Feature

Discovery

This chapter describes two innovative and highly-effective frameworks that were developed to

identify relevant topical terms1 that reflect user information needs. The frameworks integrate

different learning algorithms and multiple hybrid fusion-based modules, which were developed

based on our SIF and UR models, to select and then re-weight topical terms at two separate

stages of features fusion. The first unsupervised frameworkis known as USIF. This framework

was especially developed to address LDA bias towards frequent topics in a collection of doc-

uments that can undermine less frequent but equally important topics. The second supervised

framework is known as SSIF. The SSIF framework was developedto manage the effects of

topical terms that appear repeatedly in both positive and negative user relevance feedback.

Section5.2 and Section5.1, describe the USIF framework and SSIF framework, respectively.

Section5.3 provides a summary of this chapter. Both frameworks are evaluated in relation to

their IF and RRT applications. The experimental results arepresented in Chapter6.

5.1 The Proposed USIF Framework

5.1.1 Introduction

As described above, relevant feature discovery aims to identify a set of representative features

(feature selection) and estimate their relevance (featureweighting) in relation to a user’s topics

of interest in a collection of relevant documents [Gao et al., 2015, Li et al., 2015, 2010, 2012].

As noted above, as topic modelling algorithms [Blei, 2012, Blei et al., 2003, Hofmann, 2001]

1The terms ’topical terms’, ’lexical features’, ’term’ and ’features’ are used interchangeably in this chapter.
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are the only algorithms that explicitly assume that documents can exhibit multiple topics, they

are most suited to discovering relevant features [Blei et al., 2003, Gao et al., 2014b, 2015].

Whether supervised or unsupervised, most relevance discovery techniques, including topic-

based models, conduct the selection and weighting of relevant features as dependent tasks

[Manning et al., 2008b, Robertson and Zaragoza, 2009, Yang and Pedersen, 1997]. How-

ever, adopting a data fusion perspective, this study arguedthat treating feature selection and

weighting dependently may be ineffective given the uncertainties in training collections and

that most these collections are topically unbalanced [Alharbi et al., 2018a, Lewis et al., 2004].

Notably, the use of sequential closed pattern mining to select some representative features (i.e.,

patterns) has been effective in reducing noisy and redundant features [Li et al., 2015, 2010, Wu

et al., 2006]. However, the adoption of interestingness measures (i.e., support and confidence)

in pattern mining algorithms to estimate the relevance of these representative patterns has

considerably undermined their effectiveness in representing user information needs and led to

undesirable results [Li et al., 2015, 2011].

Both supervised and unsupervised relevance discovery algorithms are affected by uncertain-

ties in the relevant documents [Alharbi et al., 2018a]. Notably, supervised algorithms require

large sets of manually-labelled training documents that may be labour expensive and time

consuming [Algarni, 2011, Soleimani and Miller, 2016]. Conversely, unsupervised algorithms,

particularly probabilistic topic modelling algorithms, are biased towards the most dominant top-

ics in a document collection (i.e., topics that are shared bymany documents in the collection).

However, even topics that are only briefly discussed in documents could be important to users’

needs [Alharbi et al., 2017b, Anastasiu et al., 2013, Jain, 2010]. Additionally, these methods

also appear to favour frequent sub-topics (i.e., themes) ofa particular general topic of interest;

however, this can make it challenging to capture the thematic relevance of the features if these

themes are randomly discussed at the paragraph level [Alharbi et al., 2018a, Chien, 2016]. Thus,

under an unsupervised framework, it is challenging to select representative features, as frequent

topics or themes may overshadow less frequent but equally relevant themes. Additionally, can

also be challenging to accurately weight these features, asthey may be unevenly distributed

across the relevant documents and paragraphs in a collection.

The unsupervised technique of clustering has widely been used to gain an understanding

of unlabelled data and to facilitate the discovering of knowledge from document collections

[Anastasiu et al., 2013, Jain, 2010]. Document-clustering algorithms group similar documents



5.1. THE PROPOSED USIF FRAMEWORK 123

into clusters according to specified similarity measures [Aggarwal and Zhai, 2012, Anastasiu

et al., 2013]. For many years, document clustering has been used in retrieval systems to organise

documents around a single subject or topic. Such cluster-based language models represent

a significant improvement over standard document-based models [Kozorovitsky and Kurland,

2011a, Krikon and Kurland, 2011, Liu and Croft, 2004]. However, the assumption that a cluster

of documents describes only one topic may be too simple giventhat most long documents

discuss multiple topics and themes. As the document-clustering algorithm does not depend

on the frequency of topics in documents to form a cluster of similar documents [Aggarwal

and Zhai, 2012, Li et al., 2016], it can be used to limit the impact of frequent relevant topics

by treating each cluster in the collection as equally important. However, unlike topic models,

clustering does not provide details of the topics in each cluster, as these topics are hidden in

the clusters of the documents. Additionally, the clustering algorithm does not explicitly provide

a way to select or weight the relevant features that may appear in a cluster (i.e., intra-cluster

features) or across all clusters (i.e., inter-cluster features). This study sought to address the

following question: Is there a method that effectively incorporates the advantages of document

clustering and topic modelling to discover the relevant features that effectively represent user

information needs?

In this section, we present our innovative USIF framework2. This framework integrates

document clustering and topic modelling to select and then re-weight relevant topical terms that

describe users’ information preferences at twoindependentstages. As Figure5.1 shows, the

USIF framework uses multiple fusion modules that were developed based on the theoretical

foundations of our SIF and UR models. In the first stage, the USIF framework selects a ranked

set of representative, inter-cluster, topical terms usingan elegant method that conceptually

agglomerates relevant clusters in a taxonomic style and selects the features at a specific level of

abstraction. This step ensures that the selected features are not biased towards frequent topics,

as each cluster is considered equally important. The conceptual agglomeration algorithm is also

integrated with our ERS-based SIF model to uncover each cluster’s hidden topics and estimate

the topical relevance of the intra-cluster features beforethe selection process occurs. In the

second stage, the framework estimates the relevance of the selected topical terms based on the

fusion of their topical and thematic significances and theirglobal representativeness across all

2Parts of this framework were published in [Alharbi et al., 2017b] and [Alharbi et al., 2018a]. The abbreviation
’USIF’ stands forUnsupervisedSelection ofInformativeFeatures.
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of the documents in the collection. Finally, the framework uses the fused score estimated in

the second stage to re-weight the selected, ranked topical terms identified in the first stage. The

results of experiments, which were conducted using the first50 collections of documents from

the standard RCV1 dataset and TREC filtering topics, show that our USIF framework is highly

effective. It significantly outperforms state-of-the-artsupervised and unsupervised models as

presented in Section6.8.4and analysed and discussed in Section6.9.4.

Figure 5.1: The structure of the USIF framework.

Figure5.1 not only illustrates the fusion modules of our USIF framework, but also depicts
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the used entities; that is, the relevant document clustersC, the set of paragraphsG in the

collectionD+, their topicsZ and vocabulary listΩ. This figure also shows the flow of the

adopted lexical (terms) and statistical features by the framework’s fusion modules. Additional

details about the proposed USIF framework are described in the following sections. First,

Section5.1.2 discusses the problem formulation. Next, Section5.1.3 provides an overview

of unsupervised learning algorithms. Following this, Section 5.1.4.1describes the framework’s

first stage and Section5.1.4.2outlines the details of the second stage of the USIF algorithm.

Next, Section5.1.5describes the fusion of the framework’s two stages of the USIF algorithm.

Finally, Section5.1.6outlines the time complexity analysis.

5.1.2 Problem Formulation

It was assumed that a user has a collection of long documentsD+ that are pertinent to the

subject ofeconomic espionageand its related topics of interest, such asindustry espionage,

technical espionage, commercial espionageand corporate espionage. To further investigate

this subject, the user wishes to enrich the collection by gathering more relevant documents from

the Web. To achieve this goal, the researcher needs a relevant feature discovery framework that

can accurately select and give weight to a representative set of topical terms that effectively

describe the collection. The user can then use these weighted terms to collect the required

relevant documents. However, it should be noted that such topics of interest are not generally

evenly distributed in a collection in which some topics are frequent and other topics are non-

frequent.

Frequent topics refer to topics featured in many documents in a collection. Conversely, non-

frequent topics refer to topics featured in a lower number ofdocuments. Many equally important

topics may be non-frequent, as a collection may not have sufficient documents to determine the

optimal frequency of these topics. LDA is an effective tool for discovering latent topics in a

corpus that are different to those topics of interest (see above). However, LDA favours the most

frequent topics; for example, the generated topics might bemore relevant to the topic of interest

commercial espionage, as it is featured in most documents in the collection. Consequently,

many useful but non-frequent topics are overshadowed by frequent topics; however, this makes

both the selection and weighting of the features described by these less frequent topics rather

challenging. This problem is further complicated in relation to long documents, as it is highly

likely that a topic may have multiple and unbalanced themes (i.e., sub-topics). Further, as the
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long documents may suffer from uncertainties related to irrelevant or not very relevant para-

graphs (see Figure1.3) and other LDA-related problems (see discussions in previous chapters),

the necessity of a more holistic solution, which addresses all these problems in the form of a

framework for relevant feature discovery, increases.

One possible solution to the problem of the LDA bias towards the frequent topics of interest

is to group the documents of the collection into clusters based on their similarities. Each cluster

identifies a topic regardless of the frequency of the documents that discuss this topic in the

collection. Each cluster is treated equally to limit the effect of frequent topics. Next, the clusters

in the collection are conceptually agglomerated in a taxonomic style to select a set of topical

terms that are representative of all topics in the clusters.However, the selected terms might not

reflect the detailed topics and themes in the collection, as most traditional clustering algorithms

assume that a cluster describes a single topic; however, this approach may be ineffective, as

long documents often discuss multiple topics and themes. Thus, LDA was adapted and used to

discover the hidden topics and themes in every cluster and estimate the informativeness of each

topical term based on its topical and thematic significancesin the original collection rather

than on any artificially formed clusters. The purpose of using document clusters to select

representative topical terms is to reduce the bias of topic modelling towards frequent topics.

In the following section, a brief description is provided ofdocument-clustering and the LDA

model in relation to two well-known unsupervised learning algorithms.

5.1.3 Background Overview

In the first stage of the proposed USIF framework, the relevant document setD+ is statically

organised into groups (aka clusters) using a clustering algorithm that is based on similarity (aka

distance) measures [Huang, 2008]. This study assumes that a relevant long documentd has a

set of paragraphs and that each paragraph contains a bag of terms. The setG is the set of all

paragraphs inD+. Additionally, a clustercr in this study is considered a subset of relevant

documents that share a similar topic of interest. Thus,cluster(D+) = {C1, C2, . . . , Cr}, such

thatCr = {dx : x ≤ M, dx ∈ D+}, whereM = |D+|, L is the total number of clusters inD+

that is automatically identified by a document-clustering algorithm and thusCr ⊆ D+.

5.1.3.1 Document Clustering

ClusteringD+ was completed in the first stage of our framework using the bisecting K-means

(BKM) algorithm [Steinbach et al., 2000], which uses a partitional clustering technique. This
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algorithm is widely used by researchers to cluster large document collections because of its

low computational overheads [Anastasiu et al., 2013, Beil et al., 2002, Savaresi and Boley,

2001]. The BKM algorithm groups similar documents together in a cluster by maximising the

intra-cluster similarity between documents and minimising the similarity between each inter-

cluster (i.e., by maximising the inter-cluster distance).The documents in our framework are

represented in the vector space model as BoW. The BKM algorithm requires that pairwise doc-

ument similarity be calculated using some distance measures, such as the Euclidean distance,

cosine similarity, the Jaccard coefficient and the Pearson correlation coefficient [Steinbach

et al., 2000]. Our USIF framework uses cosine similarity as the distancemeasure used by

the BKM algorithm, as it is the most widely used similarity measure and has been shown to

work effectively with the BKM algorithm [Steinbach et al., 2000]. The BKM algorithm also

requires that the number of clustersL be specified beforehand. However, it is challenging to

specify the optimal number of clusters accurately [Das et al., 2008, Jain, 2010]. In our model,

we do not assume that the number of clusters would be optimal;rather, a trial-error approach

is adopted in our experiment. Section6.7provides further details about how we experimentally

predetermined the number of clusters for a collection of documents.

5.1.3.2 Topic Modelling

In both stages and for both theD+ collection and each clusterCr ⊆ D+, our USIF framework

uses LDA to reduce the dimensionality of the relevant documents’ paragraphs inG to a set of

manageable topicsZ whereV is the number of topics. In accordance with [Gao et al., 2015],

each paragraphgy ∈ G is assumed to contain multiple latent topics. As mentioned above, LDA

defines each topiczj ∈ Z as a multinomial probability distribution over all terms inD+ orCr as

p(ti|zj) in whichΩ represents all terms inD+, ti ∈ Ω and1 ≤ j ≤ V , such that
∑|Ω|

i p(ti|zj) =

1. LDA also represents each individual paragraph inG as a probabilistic mixture of topics as

p(zj |g). As a result, and based on the number of latent topics, the probability (local weight)

of term ti in paragraphgy is calculated byp(ti|gy) =
∑V

j=1

(

p(ti|zj) × p(zj|gy)
)

. Finally,

all hidden variables,p(ti|zj) and p(zj|g), are statistically estimated by the Gibbs sampling

algorithm [Steyvers and Griffiths, 2007].

In the current literature (e.g., [Bashar and Li, 2017, Bashar et al., 2016, Gao et al., 2014b,

2015]), each topiczj is represented with the top-k terms sorted in descending order byp(ti|zj).

These top-k terms inzj are closely related to topiczj and there areV such topics. This kind



128 CHAPTER 5. THE USIF & SSIF FRAMEWORKS

of representation is effective in the analysis of individual topics; however, this kind of topic

representation is not effective in estimating the topical relevance of features for representing

user information needs. If terms in a topic are discarded that are not in the top-k list, important

information may be missed. Thus, instead of representing each topic by its top-k features, we

use multiple ERS to model the complicated and imprecise relationship between the terms, topics

and the relevant collections’ paragraphs and to estimate the topical and thematic relevance of

the collection’s topical terms.

5.1.4 USIF Fusion Stages

Unlike traditional unsupervised relevance discovery models, the proposed USIF framework

differentiates between the selection and weighting processes of relevant features by using two

independent feature fusion stages. In the absence of a search guide and labelled training set

and given the existence of uncertainties, this differentiation approach facilitates the effective

fusion of different lexical and statistical features that are independently discovered and esti-

mated at each stage. Thus, the selection task focuses on specific aspects, such as identifying

representative topical terms from a set of equally relevantclusters, while the weighting task

accurately estimates a more accurate fused score for each ofthese topical terms using entities

in the collection other than the artificially formed clusters. The following two sections provide

further details about each stage of the proposed USIF framework.

5.1.4.1 Stage 1: Topical Term Selection

As noted above, a document-clustering algorithm is used in the first stage of our USIF frame-

work to alleviate the impact of frequent topics in the document collection and thus limit the bias

of LDA towards these topics. The formed clusters are then used as leaf nodes in a hierarchical

taxonomy that is conceptually agglomerated during the topical term selection. Several studies

[Blei et al., 2010b, Chien, 2016, Weninger et al., 2012] have used taxonomy models to represent

topics and documents of a corpus. A hierarchical taxonomy isa common technique whereby

items are conceptually grouped into increasingly smaller granularities within which each non-

leaf node is a conceptual agglomeration of its siblings [Cai and Hofmann, 2004, Weninger et al.,

2012]. A node in a taxonomy can be described as the sum of its super-node features and node-

specific modifier features [Hwang and Sigal, 2014]. This implies that the features found on the

path from the root to the leaf describe the leaf (the cluster)[Petinot et al., 2011]. The biological

classification of species is a good example of a taxonomy under which species are placed only
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at the leaf nodes, while the inner nodes, such as those for primates and mammals, conceptually

agglomerate the species. The path of each species through the taxonomy can be used to describe

such species.

Inter-Cluster Topical Term Selection

Figure5.2 shows the structure of our taxonomic selection model, wherecr is a cluster,an is a

non-leaf node that conceptually agglomerates clusters andti is a topical term. In this taxonomy,

for example,a4 is the conceptual agglomeration of the clustersc1, c2, a2 is the conceptual

agglomeration ofa4 anda5 anda1 is the conceptual agglomeration ofa2 anda3. The nodea1

at abstraction level three is described by the topical termt1, anda1 conceptually agglomerates

all the clusters (c1 to c8). This means that all the clusters share this topical termt1. The nodea2

at abstraction level two is described by its node-specific topical termst2 andt3 and the super-

node topical termt1 anda2 conceptually agglomerates the clusters fromc1 to t4. This means

that the topical terms{t1, t2, t3} are shared by the clusters fromc1 to c4. Thus, the nodes in

higher abstraction levels are more general and have fewer topical terms, while the nodes in

lower abstraction levels are more specific and have more topical terms. The abstraction level

is determined based on the application, the topical terms required to describe the nodes at that

level are then selected as the representative topical termsof the given collection.

c8c7c6c5c4c3c2c1

4 5 6 7

2 3

1 Level 1

Level 2

Level 3

 t1 

 t2 , t3  t4 

 t5  t6 

 t7 , t8 , t9

 t10 , t11

Figure 5.2: The conceptual agglomeration of relevant clusters.
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Intra-Cluster Topical Term Selection

As mentioned above, the assumption that a cluster of long documents can only discuss one topic

is rather simple, as a sample document may include multiple related sub-topics or themes (see

Figure1.1). Thus, these hidden sub-topics need to be uncovered and thetopical relevance of any

terms that appear frequently across the cluster’s documents (i.e., the intra-cluster topical terms)

need to be estimated. For this task, our SIF model was appliedto each cluster. Some systems

may ask for the top-k representative topical terms rather than terms at the abstraction level. For

example, an IF system may ask for the top six terms from Figure5.2. If we select level two,

only four terms ({t1, t2, t3, t4}) are identified. Conversely, if we select level one, the 11 terms

depicted in the figure are identified; however, such a high number is more than required. In this

case, we select all the topical terms required to describe the nodes in level two (the lowestfull-

level) and are given four terms. The remaining terms from level one(the highestpartial-level)

are then selected using the score fusion functionr(ti) (as described in the following section).

The following section also discusses the second stage of ourUSIF framework in which the

topical and thematic relevance of the inter-cluster topical terms are estimated based on their

appearance in the entire relevant documents of the collection.

5.1.4.2 Stage 2: Topical Term Weighting

In the first stage of the USIF framework, a set of representative, inter-cluster topical terms are

selected via the integration of document-clustering and topic modelling (as determined by the

proposed conceptual agglomeration algorithm). Our previously proposed SIF model was used

to relax the single topic assumption of the clustering approach and select the most representative

intra-cluster topical terms. The conceptual agglomeration of equally relevant clusters was used

to effectively select those terms that represent the essential topics discussed across all the formed

clusters. However, the estimated topical relevance of eachterm in each cluster could not be

generalised due to the unbalanced set of clusters. Thus, in the second stage, the thematic and

topical significances of each inter-cluster term are re-estimated based on its original appearance

in the collection. To do this, the theoretical merits of our SIF model and the UR method are

used.

Term Thematic Significance

Themes refer to the main ideas of a document set and are implicitly expressed across paragraphs

[Chien, 2016]. Thus, paragraphs are used to capture the thematic relevance of terms. Thematic
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relevance captures the general focus of user information needs. LetG be the set of paragraphs

in the relevant documentsD+. Each paragraphgy ∈ G is a probabilistic distribution over the

term spaceΩ, which is modelled using set-valued mappingΓ1(gy). It is assumed that a term’s

ti thematic relevance is a probabilistic mixture ofG, which is modelled using the inverse set-

valued mappingΓ−1
1 (ti). Figure5.3shows all the proposed set-valued mappings.

Figure 5.3: The mappings ofΓ andΓ−1 for estimating the thematic significance of terms.

The setG is the evidence space and a set of terms represents a paragraph gy; however, a

term’s relevance level to the evidence space is unknown. Thus, the probability distributionΨ1

is defined usingG to indicate this uncertainty. Let the probability of a termti be relevant togy

beP (ti|gy), where, for simplicity, it is assumed thatP (ti|gy) = 1 if ti ∈ gy andP (ti|gy) = 0

if ti /∈ gy. Next, ERS(Ψ1,Γ1) is used to model and describe the relationship between the

paragraphs and terms. As each paragraphgy is described by the probability distribution over
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the setΩ, the set-valued mapping of

Γ1 : G→ 2Ω×[0,1] − {∅}

such that

Γ1(gy) = {ti ∈ Ω|Py(ti|gy) > ζ}

is proposed to represent and describe the relationship between a set of terms and a paragraph,

whereΓ1(gy) = {(t1, Py(t1|gy)), . . .} for all gy ∈ G andζ is a user-defined threshold assigned

to ζ = 0.

As there is a need to identify the relevance level of a selected termti, the inverse set-valued

mapping ofΓ1 is considered to estimate a representative distributionΨ1 onG. For all terms

ti ∈ Ω, the inverse set-valued mapping ofΓ1 is defined as

Γ−1
1 : Ω → 2G

such that

Γ−1
1 (ti) = {gy ∈ G|ti ∈ Γ1(gy)}

to represent and understand the relationships between a term and a set of paragraphs. Thus, the

thematic relevance weightwg(ti) of a termti to a user’s information needs can be estimated as

follows:

Ψ1(ti) ∝ wg(ti) ∝
∑

gy∈Γ
−1

1
(ti)

Py(ti|gy)× P (gy) (5.1)

whereP (gy) is the probability ofgy being significantly relevant to the main themes that describe

what the user wants (see discussion below).

As paragraphgy may discuss multiple sub-topics (i.e., themes), it is assumed thatgy is a

probabilistic mixture of a set of latent topicsZ in D+, which is modelled using set-valued

mappingΓ2(gy). In this case,Z is the evidence space. The setZ represents the relevance of

gy to the user’s information needs. The more relevant topics a paragraph covers, the more the

paragraph’s relevance increases. This motivation impliesthe relevance of frequent topics (i.e.,

topics shared by many paragraphs). However, the relevance level ofgy is unknown. Similarly,
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as before,Ψ2 is a probability distribution defined onZ to indicate this uncertainty. The pair

(Ψ2,Γ2) represents an ERS that models the complex relationship between paragraphs and latent

topics.

Let the probability of a paragraphgy be relevant to a given topiczj beP (gy|zj). As each

paragraphgy is described by the probability distribution over the setZ of topics, there is a

set-valued mapping of

Γ2 : G→ 2Z×[0,1] − {∅}

such that

Γ2(gy) = {zj ∈ Z|Py(gy|zj) > ξ}

whereΓ2(gy) = {(z1, Py(gy|z1)), . . .} for all gy ∈ G andξ is another user-defined threshold

assigned toξ = 0 in this study. Thus, the relevance ofgy toD+ is estimated as follows:

Ψ2(gy) ∝ P (gy) ∝
∑

zj∈Γ2(gy)

Py(gy|zj) (5.2)

Using Equation5.1and Equation5.2, the thematic relevance weightwg(ti) of the termti is

calculated as follows:

wg(ti) =
∑

gy∈Γ
−1

1
(ti)







Py(ti|gy)×
∑

zj∈Γ2(gy)

Py(gy|zj)







(5.3)

To identify the latent topics inD+, the LDA was used to estimatep(zj|gy); however,

P (gy|zj) is needed. By applying Bayes’ theorem, it is found thatPj(gy|zj) =
p(zj |gy)×p(gy)

p(zj)
.

In this instance,p(gy) is a prior distribution that can be ignored andp(zj) is the marginal

probability ofzj in G.

Term Topical Significance

Topics are specific matters in a general subject in a collection. Topical relevance captures the

specific focus of user information needs. In accordance withtopic modelling, it is assumed

that each topiczj is defined by a probabilistic distribution over the terms in the vocabularyΩ,

which is modelled with the set-valued mappingΓ3(zj). In estimating the topical relevance, it

is assumed that the topical relevance of a termti comes from a probabilistic mixture of a set of
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topicsZ, which is modelled with the inverse set-valued mappingΓ−1
3 (ti). Figure5.4shows the

proposed set-valued mappings.

Figure 5.4: The mappings ofΓ andΓ−1 for estimating the topical significance of terms.

Additionally, similar to topic modelling, it is assumed that a paragraphgy is a probabilistic

mixture of a set of topicsZ, which is modelled with the set-valued mappingΓ4(gy). It is also

assumed that frequent topics (i.e., topics featured in manyparagraphs) are important as, they are

more likely to discuss the general subject in the collection. The relevance of a topic is defined

by a probabilistic mixture of a set of paragraphsG, which is modelled with inverse set-valued

mappingΓ−1
4 (zj).

In this case, the setZ is our evidence space. A set of topics can represent the topical

relevance of the selected termti, but the relevance level remains unknown. Thus,Ψ3 is defined

as a probability distribution on the specified evidence space to represent this uncertainty.Ψ3

is also used to find the relevance level of the term. As there isΨ3, as probability distribution

defined on the evidence spaceZ, then the pair(Ψ3,Γ3) is an ERS. As each topiczj is described
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by the probability distribution over the set of termsΩ, there is a set-valued mapping of

Γ3 : Z → 2Ω×[0,1] − {∅}

Γ3(zj) = {ti ∈ Ω|Pj(ti|zj) > ς}

whereΓ3(zj) = {(t1, Pj(t1|zj)), . . .} for all zj ∈ Z andς is assigned as ‘0’ in this research.

We also need to determine the relevance level of the termti. Thus, we had to consider the

inverse set-valued mapping ofΓ3 to estimate a suitable distribution forΨ3 onZ. For all terms

ti ∈ Ω, the inverse set-valued mapping ofΓ3 is defined as

Γ−1
3 : Ω → 2Z

Γ−1
3 (ti) = {zj ∈ Z|ti ∈ Γ3(zj)}

Thus, the topical relevance weightwz(ti) of the termti is estimated as follows:

Ψ3(ti) ∝ wz(ti) ∝
∑

zj∈Γ
−1

3
(ti)

(

Pj(ti|zj)× P (zj)
)

(5.4)

whereP (zj) is the marginal probability distribution ofzj over paragraph setG. If P (ti|zj) is

normalised, thenΨ3(ti). This is the same as the marginal probability distributionP (ti) over the

evidence space.

However, the distributionP (zj) is unknown. To estimateP (zj), our next evidence space

G is considered. A set of paragraphs can define the relevance ofa topiczj in the collection;

however, as before, the relevance level remains unknown. Thus,Ψ4 is defined as a probability

distribution on the evidence spaceG to indicate this uncertainty. Thus, the pair(Ψ4,Γ4) is an

ERS and is defined on the evidence spaceG. As each paragraphgy is defined as a mixture of

topicsZ in the collection, the set-valued mapping ofΓ4 is defined as as

Γ4 : G→ 2Z×[0,1] − ∅

such that

Γ4(gy) = {zj ∈ Z|Py(zj|gy) > 0}
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whereΓ4(gy) = {(z1, Py(z1|gy)), . . .} for all gy ∈ G.

As the relevance level of a topiczj needs to be determined, the inverse set-valued mapping

of Γ4 must be considered to obtain a probability distribution that suitsΨ4 onG. For all topics

zj ∈ Z, the inverse set-valued mapping ofΓ4 is defined as

Γ−1
4 : Z → 2G

such that

Γ−1
4 (zj) = {gy ∈ G|zj ∈ Γ4(gy)}

The probability distributionΨ4 is proportional to the relevance of a topic that is estimatedas

follows:

Ψ4(zj) = P (zj) ∝
∑

gy∈Γ
−1

4
(zj)

(

Py(zj |gy)× P (gy)
)

(5.5)

whereP (gy) is the probability distribution ofgy over the given collection. In this research, it

is assumed thatP (gy) is equally likely for allgy ∈ G. If P (zj|gy) is normalised, thenΨ4(zj),

which is the same as the marginal probability distributionP (zj).

Thus, using Equations5.4 and 5.5, the topical relevance weightwz(ti) of the termti is

calculated as follows:

wz(ti) =
∑

zj∈Γ
−1

3
(ti)







Pj(ti|zj)×
∑

gy∈Γ
−1

4
(zj)

Py(zj |gy)







(5.6)

5.1.5 Ranked Feature Fusion

The feature fusion stages of the USIF framework operate independently (see Figure5.1). In the

first stage, two modules are integrated (i.e., the intra-cluster topical relevance and the conceptual

agglomeration) to select a set of representative topical terms (i.e., lexical features). In Section

5.1.4.1, it was noted that some systems might ask for the top-k representative topical terms

rather than specifying the level of abstraction. In such cases, we select all the terms required

to describe the nodes in the lowest full-level. We then select the remaining terms from the

highest partial-level using a ranking score calculated byr(ti). In this study, we user(ti) =
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wz(ti), which is derived from each cluster rather than the collection. When a parent node in the

taxonomy agglomerates children nodes, the score of termti in the parent node is calculated by

summing up the term scores assigned byr(ti) from the children nodes.

In the second stage, the selected topical terms, which are ranked based on the aggregated

scores from the first stage, are re-weighted using the fused score estimated by the feature fusion

module (see Figure5.1). The module estimates the relevance of each selected topical term

in relation to its topical relevance, thematic relevance and its global statistic in the collection.

Thus, let the probability of a selected termti of topically relevance beP (ti|Z) and the term of

thematically relevance beP (ti|G). The joint probability isP (ti|Z) × P (ti|G). Additionally,

let df(ti) be the document frequency ofti. If it assumed thatP (ti|Z) ∝ wz(ti) andP (ti|G) =

wg(ti), we can writeP (ti|Z,G) ∝ wz(ti) × wg(ti). By using the concept of joint probability,

the fused feature score is calculated as follows:

w(ti) = wz(ti)× wg(ti)× df(ti) (5.7)

Thus, if the setT ′ = {t1, t2, . . . , tk} represents the topical terms that are selected in the first

stage, the ranked feature fusion module (see Figure5.1) then produces the setT = {(ti, w(ti))|ti ∈

T ′}, which represents the relevant features that describe the user’s information needs.

5.1.6 Unsupervised Multi-Fusions Algorithm

Algorithm 3 shows the implementation of the main steps of our proposed USIF framework.

Lines 2 to 9 estimate the topical relevance of the selected lexical features, line 8 determines

a distribution proportional to marginal probability distributionP (zj) and line 9 ascertains the

summation ofP (ti|zj) × P (zj), which is the estimated topical relevancewz(ti) for a termti.

Lines 11 to 14 show the set of selected topical terms with corresponding fused scores, line 12

checks whether the termΩ[i] is a selected feature obtained by the integration of our conceptual

agglomeration of clusters andr(ti), line 13 estimates the relative term importancew[i] of term

T ′[i] and line 14 adds the termT ′[i] and its scorew[i] as a pair to the setT . Line 15 returns the

setT of feature score pairs.

5.1.6.1 Time Complexity Analysis

The proposed USIF framework uses LDA and the BKM algorithm inits feature fusion stages.

As the USIF framework was based on our SIF model, it is insensitive to the number of topics
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Algorithm 3: USIF algorithm
Input : A matrixPzg that containsP (z|g), a matrixPtz that contains

P (t|z), a vectordf that containsdf(t), a vectorT ′ that contains
the representative topical terms and a vectorΩ that contains the
vocabulary terms.

Output: A setT of relevant features with corresponding scores.
1 Letwz be a vector of sizeT ′;
2 for i = 1 to T ′ do
3 wz[i] = 0;
4 Let Pz be a vector of sizeV ;
5 for j = 1 to V do
6 Pz[j] = 0;
7 for k = 1 toN do
8 Pz[j] = Pz[j] + Pzg[j][k];

9 wz[i] = wz[i] + Ptz[i][j]× Pz[j];

10 Let T = ∅;
11 for i = 1 to T ′ do
12 if Ω[i] ∈ T ′ then
13 w[i] = wz[i]× df [i];
14 T = T ∪ {(T ′[i], w[i])};

15 returnT ;

parameter (V ) (see Section6.9.4). Thus, the LDA’s time complexity continues to be∝ O(|G|)

for the second stage and∝ O(|Gcr | × |C|) for the first stage where|Gcr | is the total number of

paragraphs in clustercr documents. The time complexity of the BKM algorithm is linear to the

|D+| [Steinbach et al., 2000], which is relatively small in our case. Thus, the time complexity

of the BKM for the first stage is∝ O(|D+|). However, both algorithms only need to be run

once and can be run offline.

Line 1 of Algorithm3 takesO(1) basic operations to complete. Lines 2 to 9 takeO(|Z| ×

|T ′| × |G|) basic operations to complete. Line 10 takesO(1) basic operations to complete.

Lines 11 to 14 takeO(|T ′|) basic operations to complete. Line 15 takesO(1) basic operations

to complete. The total basic operations required by the algorithm areO(1) + O(|T ′| × |Z| ×

|G|)+O(1)+O(|T ′|)+O(1) ∝ O(|T ′| × |Z| × |G|). Thus, the time complexity of Algorithm

3 is O(|T ′| × |Z| × |G|). As the number of topics is usually very small and the performance is

not sensitive to the number of topics, the required time complexity is effectivelyO(|T ′| × |G|).

However, it must be noted that|T ′| is small where1 ≤ |T ′| ≤ k and our USIF is not sensitive

to the parameterk (see Figure6.27[right]).
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5.2 The Proposed SSIF Framework

5.2.1 Introduction

As a set of irrelevant documents, negative feedback has beenextensively used in many relevance

discovery models to enhance the selection and weighting of features that are specifically relevant

to what the user needs [Li et al., 2015, 2011, 2012, Tao et al., 2011, Yuefeng and Ning,

2006]. However, using negative feedback is challenging, as these documents are not domain-

specific; rather they are topically diverse, skewed and suffer from uncertainties [Li et al., 2011,

2012, Zhong et al., 2012]. Additionally, collecting high-quality negative documents is difficult,

expensive and time consuming [Algarni, 2011, Soleimani and Miller, 2016]. As unsupervised

relevance discovery models are not discriminative, they cannot deal with the features that

frequently appear in both positive and negative feedback [Hou et al., 2010, Man et al., 2009].

Such features are noisy and problematic and may hinder the performance of many IR, IF,

DM and ML applications, as these features cannot be used to distinguish between relevant

and irrelevant documents. Supervised models are discriminative and developed to consider

positive and negative samples in training collections differently [Joachims, 2002, Man et al.,

2009, Sebastiani, 2002]. However, supervised models are sensitive to: (1) the feature type they

use [Li et al., 2015, 2012]; (2) the uncertainties available in any positive samples [Alharbi et al.,

2018a, Li et al., 2017c]; (3) the skewness of one sample compared to another [Li et al., 2017c,

Xue and Zhou, 2009]; and (4) the effectiveness of the discrimination algorithm [Man et al.,

2009, Yang and Pedersen, 1997]. This study considered whether a method could be developed

that combines the advantages of both the supervised and unsupervised learning methods to

overcome their limitations.

Of numerous unsupervised fusion techniques, topic-based models are the only models that

explicitly assume that a document may contain multiple topics or themes [Blei et al., 2003,

Gao et al., 2014b, 2015]. These models, specifically LDA, learn a function from a setof

unlabelled documents that describes the hidden topical structures (e.g., latent topics) available

in the documents [Blei et al., 2003, John Lu, 2010]. The focus of this learning is to weight

features from the detailed composition of the documents in away that allows the function

to generate the hidden structures. Thus, such models can identify distributions of features to

summarise specific aspects in documents (e.g., the topics orthemes or some essential aspects

of meaning) [Blei et al., 2003, Hofmann, 2001]. The feature distribution does not overfit the

given documents (or collection) [Blei et al., 2003, Wei and Croft, 2006]. However, the features
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may not be specific to the topics of interest in the collection, as some features may appear in

documents that are not relevant to these topics [Li et al., 2015, 2010]. Additionally, unlike

many supervised models, the SVM uses a set of labelled training examples to learn a function

that associates new examples with corresponding labels [Joachims, 2002, Man et al., 2009].

The focus of this learning is to select and weight features from the training examples in a way

that allows the learned function to separate one label from another. Thus, this learned function

can identify the discriminative power of features to separate a given collection of documents

from other collections and can be used to select specific features [Joachims, 1998, Sebastiani,

2002]. However, the function cannot address hidden semantic structures to summarise a given

collection. Consequently, the SVM model performs poorly for relevant feature discovery as

reported in several studies [Algarni and Li, 2013, Gao et al., 2015, Li et al., 2015, 2011, 2010,

Zhong et al., 2012].

This section presents our innovative and highly-effectiveSSIF framework3. This framework

discovers specifically relevant topical terms that reflect users’ information preferences. The

framework integrates supervised and unsupervised algorithms to select and then weight these

topical terms at two independent stages of feature fusion. Like our USIF framework, the

SSIF framework also adheres to the same multiple fusion strategy in its stages and the fusion

modules are also developed based on our SIF and UR models. In the first stage (see Figure

5.5), the SSIF framework selects a set of representative, weighted topical terms using the

discriminative SVM algorithm incorporated with the adapted UR method. This stage ensures

that the selected terms are specifically relevant to what theuser needs, as the SVM requires that

both relevant and irrelevant documents and the available uncertainties in the relevant documents

be considered before applying the SVM. In the second stage, the SSIF framework estimates

the informativeness of the selected specific terms from the first stage via the integration of

their topical and thematic relevance and their global exhaustivity in the collection of relevant

documents. As users are normally interested in relevant documents, the framework uses the

estimated relevance from the second stage to re-weight (i.e., scale) the selected weighted terms

of the first stage. The experimental results, presented in Section 6.8.5and discussed in Section

6.9.5, show that our SSIF framework is more highly and significantly effective than both popular

and state-of-the-art baseline models despite the featuresthey fuse, how they fuse them or even

the learning or mining algorithms that generate these features.

3‘SSIF’ stands forSupervisedSelection ofInformativeFeatures.



5.2. THE PROPOSED SSIF FRAMEWORK 141

Figure 5.5: The structure of the SSIF framework.

As Figure5.5shows, the proposed SSIF framework uses both positive and negative training

documents for feature selection in the first stage and uses only relevant documents for feature

weighting in the second stage. As noted above, the frameworkextends multiple random sets to

model the complex relationships between different entities in the relevant collection and thus

estimates a more accurate relevance score for topical terms. As Figure5.5 shows, the used

entities are the collection’s terms, paragraphs and the latent topics in the paragraphs. Figure

5.5 also shows the flow of the features (lexical and statistical)between the fusion modules.
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The following sections describe our SSIF framework in detail. First, Section5.2.2outlines the

problem formulation. Next, Section5.2.3provides details of the fusion stages of the framework.

Section5.2.4 then outlines how our SSIF framework integrates between theoutputs of each

stage. Finally, Section5.2.5describes the SSIF algorithm and its time complexity.

5.2.2 Problem Formulation

Assume that a user maintains a collection of news storiesD for research purposes. The col-

lection contains a set of documents that are related to some ‘economic espionage’ scenarios

that have occurred around the world. However, the user is only interested in some forms

of espionage. Thus, the user decides to split the collectionD into a relevant (i.e., positive)

collectionD+ and an irrelevant (i.e., negative) collectionD−. The relevant documents in

collectionD+ discuss the topics of the scenarios in which the user is interested, such as ‘industry

espionage’, ‘technical espionage’, ‘commercial espionage’ and ‘corporate espionage’. The

user keeps irrelevant news documents in theD− collection that discuss unwanted topics such

as ‘military espionage’ and ‘political espionage’. To enrich D+ and remain abreast of new

scenarios of economic espionage, the user needs to collect more news documents from the

Internet that are pertinent to the topics of interest inD+. To achieve this goal, the user needs

a framework for selecting and weighting features to describe the collection effectively. The

weighted features will be used to gather the relevant documents.

Based on the above example, it is likely that there will be many shared features between

relevant and irrelevant topics of interest in both theD+ andD− documents. However, given

that the user is only interested in the topics ofD+, it requires more emphases on the relevant

information that comes fromD+ documents. The irrelevant information available in theD−

documents is also useful and needs special treatment. Thus,unlike traditional, supervised, rele-

vant feature discovery models, the proposed SSIF frameworkfollows the approach of our USIF

framework by treating feature selection and feature weightas two independent feature fusion

tasks. The SSIF framework integrates three crucial characteristics (see below) of important

features to ensure effective fusion and thus accurately selects and weights the topical terms to

effectively represent the user’s information needs.

• Feature Specificity: Selecting features that can discriminate between theD+ collection

and theD− collection is critical [Maxwell and Croft, 2013]. Fang et al. [Fang et al.,

2004] argue that a new document that has more occurrences of specific features should
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be favoured as relevant to a given corpus. Thus, the featuresshould be specific to the

given collection. We argue that a supervised learning algorithm is effective for selecting

features that are specific to the collection. Some examples of potential supervised learning

methods are SVM [Joachims, 1998], BM25 [Robertson and Zaragoza, 2009] and RFD2

[Li et al., 2015].

• Feature Informativeness: The features should represent the essential aspects of mean-

ings of the user’s information needs. If the informativeness of a feature is increased, then

the chance of a document matching the feature being relevantto the user’s information

needs is increased. Thus, informativeness should increaseprecision.

• Feature Exhaustivity: The features should be exhaustive [Yuefeng and Ning, 2006] of

the user’s information needs. It should be noted that the exhaustivity of a feature refers

to the coverage of various subjects of the user’s information needs. If the exhaustivity

of a feature is increased, then the chance of the feature matching a relevant document is

increased. Thus, exhaustivity should increase the recall by reducing the chance of dropout

of a relevant document.

The remaining problem relates to determining how to accurately estimate these three aspects

and integrate them. This research showed that a set of features first need to be found that are

specific to a user’s information needs. Next, the relevance of these specific features needs to be

jointly estimated from their informativeness and exhaustiveness. This research incorporates su-

pervised (i.e., BM25 and SVM) and unsupervised (i.e., LDA) learning algorithms to determine

the specific features and uses both the topical relevance andthematic relevance of a feature to

estimate its informativeness.

5.2.3 SSIF Fusion Stages

Similar to the USIF framework, under the SSIF framework, thetasks of feature selection

and feature weighting are undertaken independently at two different fusion stages. However,

unlike under the USIF model, the SSIF framework treats the selection task as a supervised

problem during the first stage to identify those features that are specific to the relevant topics

of interest in theD+ collection, but not those that are irrelevant and captured by the D−

collection. Additionally, similar the USIF framework, as auser can only be interested in

relevant documents, the SSIF framework views the weightingtask in the second stage to be
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an unsupervised problem. It uses the positive collectionD+ to estimate a more accurate

weight for each specific feature selected from the first stage. However, due to the uncertainties

available in positive documents, the hugely diverse topicsin the negative documents and the

large number of common features between both positive and negative documents, the selection

and the weighting problems are challenging. The next two sections examine the feature fusion

stages of the proposed SSIF framework.

5.2.3.1 Stage 1: Selecting Specific Topical Terms

This research uses the supervised learning SVM to select specific features (i.e., topical terms

that are related to the topics of interest). However, the SVMis a term-based model and does

not consider any latent topical structure in either positive or negative training documents. Thus,

at the first stage, to add a topical representation in an implicit manner, the SVM is integrated

with the adapted version of our UR method (see Section5.1.4.2). This integration sought to

reduce the uncertainties inD+ documents, as they discuss the topics of interest for the user and

thus assist the SVM to learn a more accurate hyperplane (as described in the following section).

To do this, the SVM has to first be trained. Different types of initial feature weights are used

to represent the training documents (e.g., IDF, TFIDF, BM25and etc.). From those weights,

the BM25 is combined with our UR method, as it is supervised and performed the best in our

UR experiments (see Section6.8.3and our study published in [Alharbi et al., 2018a]). The

following section gives a brief description of the SVM.

Support Vector Machine

A SVM is a supervised classifier that is theoretically definedby a hyperplane that separates

relevant and irrelevant documents of a class. First, the classifier learns a hyperplane from a

set of training examples. Then, the learned hyperplane is used to categorise new examples

based on which side of the hyperplane a new example sits. To train the SVM to classify

documents, each document is represented with a list of term weight pairs. Each term in the list

is a unique term in the document and the corresponding weightattributed to that term represents

its significance in the document. The equation of a hyperplane isβ · x+ c = 0, whereβ is the

weight vector,x is the term vector andc is a constant. In the learning process, the SVM sets

β andc. This allows the hyperplane to optimally separate the positive (relevant) examples and

negative (irrelevant) examples. The distance of each example document from the hyperplane is

positionalβ. Such that each element ofβ is proportional to the distance of the corresponding



5.2. THE PROPOSED SSIF FRAMEWORK 145

term from the hyperplane. The main output of the SVM arex (i.e., the vector of terms in the

vocabulary) andβ (i.e., the distance vector of the corresponding terms inx)).

5.2.3.2 Stage 2: Weighting Specific Topical Terms

The theoretical approach used in the second stage of the USIFframework was adopted, as this

approach has been shown to effectively and accurately estimate the relevance of the selected

features. Thus, at the second stage of the proposed SSIF framework, the topical and thematic

significances of a specific feature, which are estimated fromthe relevant collectionD+, are

used jointly. The estimated significances are also combinedwith the document frequency, as

this is the best global statistic to efficiently and effectively indicates the exhaustivity of relevant

terms. The topical significance (i.e., relevance) of a specific term ti to the hidden topics that

are discussed isD+ (i.e.,P (ti|Z)) is estimated based on Equation5.6, as theoretically justified

in Section5.1.4.2. Similarly, the thematic relevance of the termti (i.e., P (ti|G)), which is

selected at the first stage, is estimated using Equation5.3. Both significances of the termti are

probabilistically combined (i.e.,P (ti|Z) × P (ti|G)) to estimateti informativeness globally at

the collectionD+ level (i.e.,P (ti|Z,G)).

5.2.4 Ranked Feature Fusion

Both the proposed SSIF and USIF frameworks conduct the selection and weighting of topical

terms as independent tasks at two separate stages. However,unlike the USIF framework, the

SSIF framework treats the selection task as a supervised problem to select those terms that are

specific to the topics of interest in the relevant collectionD+ using the negative documents of

D−. In relation to feature weighting, the SSIF framework adopts the same approach as that

adopted by the USIF framework and treats this task as an unsupervised problem in which only

D+ is used. One issue that remained was to determine how to integrate the features produced

at each stage without losing any important information. As noted in Section5.2.2, to create an

effective fusion between the estimated features of the two stages and thus effectively select and

weight relevant features that are specific to what a user needs, the ranked feature fusion module

(see Figure5.5), incorporates the three previously identified characteristics (see below).

• Specific: The top-k ranked features (i.e., the topical terms sorted in descending order)

are selected from the integration between BM25, our adaptedUR method and the SVM

at the first stage. Letdx = {t1, t2, t3, . . . , tk}. Before training the SVM, each document
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dx ∈ D is scored using the combination of BM25 and the UR method, such asdx =

{(ti, bm25(ti) × ur(ti))|ti ∈ Ω} whereur(ti) = wg(ti) in this study. This combination

sought to reduce the uncertainties in the relevant topical terms before the application

of the SVM (see the justification for this approach in Section4.2.4). After training the

SVM, the SVM provides two vectors:x (i.e., the vector of terms in the vocabulary) and

β (i.e., the distance vector of the corresponding terms inx). LetH = {(ti, ws(ti))|ti ∈

x & ws(ti) ∈ β}. H is sorted in descending order ofws(ti) and the setF ⊆ H of the

top-k terms is taken as specific topical terms.

• Informative : The integration of the topical and thematic relevance modules (see Figure

5.5) is used to represent the informativeness of the selected features. As the user’s

main interests are located in theD+ documents, these two modules fuse different topical

features to estimate the significance of the terms inD+ to the hidden topics and themes.

Thus, given a specific termti , its informativeness is estimated as the joint probability

of its topical relevanceP (ti|Z) with its thematic relevanceP (ti|G). In this study, as

we did in our study of the USIF framework, it was assumed thatP (ti|Z) ∝ wz(ti) and

P (ti|G) = wg(ti). Their joint probability was written asP (ti|Z,G) ∝ wz(ti)× wg(ti).

• Exhaustive: Global frequency is a strong indicator of term importance at the collection

level [Bendersky and Croft, 2012] and can be used to optimise feature weights [Bendersky

and Croft, 2008, Xue et al., 2010]. The global frequency (or global statistic) of a feature

is defined as its frequency across all documents in the collection. This feature indicates

which portion of a collection (i.e., how many documents) is covered by a given feature

(e.g., a term). This research uses document frequency as theestimation of the exhaustivity

of specific terms selected in the first stage.

The next issue is to determine how the above three characteristics can be accurately fused

in such a way that the specificity of the selected features would not be compromised by their

informativeness and exhaustivity or vice versa. Thus, in this research, the top-k specific features

setF have their weights scaled by the linear combination of the features’ topical, thematic

and global significances inD+ ( previously estimated by Equation5.7, asF = {(ti, ws(ti) ×

w(ti))|(ti, ) ∈ H}).
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5.2.5 Supervised Multi-Fusions Algorithm

Algorithm 4 shows the main implementation steps of the proposed SSIF framework. The

algorithm is similar to that of the USIF framework, especially in estimating the topical, thematic

and global relevance of the selected specific features (lines 1 to 13). Additionally, as in the USIF

framework’s algorithm, the details of applying LDA to the paragraph setG to generate the topic

setZ and the calculations of the required probabilities are omitted, as they can be learned from

the SIF and SIF2 algorithms (see Sections3.3.4and4.1.6). However, two vectorsF ′ andF ′′ are

defined to store the top-k features produced by the first stage and their correspondingweights,

respectively. Notably, Line 14 shows how the features from both the SSIF framework’s stages

can be effectively combined to maintain the specificity, informativeness and exhaustivity of

features.

Algorithm 4: SSIF algorithm
Input : A matrixPzg that containsP (z|g), a matrixPtz that contains

P (t|z), a vectordf that containsdf(t), a vectorF ′ that
contains the top-k terms of the SVM, a vectorF ′′ that
contains the corresponding weights of the SVM terms inF ′

and a vectorΩ that contains the vocabulary terms.
Output: A setF of features with corresponding scaled scores.

1 Letwz be a vector of sizeF ′;
2 for i = 1 toF ′ do
3 wz[i] = 0;
4 Let Pz be a vector of sizeV ;
5 for j = 1 to V do
6 Pz[j] = 0;
7 for k = 1 toN do
8 Pz[j] = Pz[j] + Pzg[j][k];

9 wz[i] = wz[i] + Ptz[i][j]× Pz[j];

10 LetF = ∅;
11 for i = 1 toF ′ do
12 if Ω[i] ∈ F ′ then
13 w[i] = wz[i]× df [i];
14 F = F ∪ {(F ′[i], F ′′[i]× w[i])};

15 returnF ;

5.2.5.1 Time Complexity Analysis

The time complexity of Algorithm4 is similar that of the USIF framework’s algorithm (i.e.,

∝ O(|F ′| × |G|)), as it linearly depends on the size ofG andF ′. However, it should be noted

thatT ′ andF ′ in the two algorithms are relatively small in size and dependon thek parameter.
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As both frameworks were developed based on our SIF theory, both frameworks inherited its

insensitivity to thek parameter (see the experimental evaluation chapter). Further, unlike the

stages of the USIF framework where LDA applied|C| times in the first stage and once in the

second stage, our SSIF framework only needs to apply LDA once, while the generated topics are

used across the two stages. The time complexity of the LDA remains the same (i.e.,∝ O(|G|)),

the only difference is the use of the SVM in the first stage of the SSIF framework that requires

a polynomial computational time that depends on the training instances [Man et al., 2009].

However, both the SVM and LDA were only required to be run onceand were run offline in our

experiments.

5.3 Chapter Summary

This chapter introduced two innovative and highly-effective frameworks that can be used to

discover relevant features that describe user informationpreferences. Unlike conventional

relevance discovery models, the proposed frameworks treatfeature selection and weighting as

two independent tasks. Over two different stages, the frameworks first identify a representative

set of topical terms and then re-estimate their informativeness using a complex integration of

multiple learning algorithms and fusion-based models. Theintegration is managed by multiple

ERSs based on the theoretical merits of our SIF and UR models (as described earlier in this

thesis).

The proposed unsupervised USIF framework elegantly addresses the challenges that arise in

selecting representative terms from an unbalanced set of topics discussed in a small collection

of relevant documents that describe a user’s information needs. In the first stage, a conceptual

agglomeration technique was developed that is based on the fusion of lexical and statistical

features that are discovered via the integration of document clustering and topic modelling

algorithms. An agglomeration technique was used to select apredetermined set of inter-cluster,

topical terms from unbalanced but equally relevant clusters of documents. As traditional clus-

tering algorithms do not consider the multi-topic structure of documents, the identification of

relevant, intra-cluster topical terms is difficult. To address this issue, our USIF framework

employed the SIF model to estimate the topical relevance of such terms. In the second stage, the

relevance of the selected terms was re-estimated based on fusions of their topical, thematic and

global significance (as measured by our SIF model and an adapted version of the UR method)

at the collection level rather than at the unbalanced-clusters level. The experimental results (see
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Section6.8.4) demonstrate the superiority of the performance of the USIFframework in IF and

RRT over both supervised and unsupervised state-of-the-art baseline models. The experimental

results also confirm the merits of the proposed framework in which the problems of feature

selection and feature weighting can be addressed independently. The results also show how

topic modelling, document-clustering and multiple fusion-based models can be integrated in an

unsupervised way to discover relevant features that occur unevenly across the unbalanced topics

that appear in a collection of long documents.

Similarly, the proposed supervised SSIF framework sophisticatedly and effectively addressed

the difficulties that arose in discovering topical terms that are specifically relevant to a user’s

needs based on small samples of positive and negative documents. The SSIF framework is

similar to the USIF framework; however, it conducted the selection and weighting of topical

terms that frequently appear in both positive and negative topics of interest over independent

stages differently. In the first stage, the selection problem was addressed via the fusion of

supervised (i.e., SVM) and unsupervised (i.e., LDA) learning algorithms in which the inherited

uncertainties in positive documents were addressed using the adapted UR method. Second,

the proposed framework learned a more accurate weight for specific topical terms, which were

selected during the first stage, via an unsupervised integration of multiple fusion-based models

that was managed by the ERSs theory of our SIF model and an adapted UR method. The weight-

ing problem was addressed by determining the joint estimation of the topical and thematic

relevance of the selected terms in the positive documents and their global exhaustivity across

these documents. The experimental results (see Section6.8.5) showed that our SSIF framework

is highly effective and significantly outperformed all the baseline models in all performance

measures across both IF and RRT tasks. This study developed apromising methodology that

combines the advantages of supervised and unsupervised learning for feature selection and

effectively uses the topical features and global statistics of low-level terms for feature weighting.

In the next chapter, an experimental evaluation is undertaken of all the proposed models

and frameworks in this thesis based on the widely accepted IF-based system methodology.

The proposed techniques are also evaluated in relation to the ranking of relevant features that

were manually identified by NIST’s domain experts. Fifty collections of long documents

from the popular RCV1 dataset are used for the evaluation purposes, including seven standard

performance measures, TREC filtering topics and more than 20different baseline models.

Additional details about the experiments are provided in the next chapter.
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Chapter 6

Experimental Evaluation

6.1 Introduction

As mentioned in Chapter1, the research in this thesis proposes several TFS techniques for

relevance discovery. These techniques deal with uncertainties in the relevant documents that

describe user information needs using data fusion approaches. For example, the SIF model

fuses different features from relevant documents to discover informative topical terms on a

global level. The SIF2 model revises SIF model and solves thegeneralised weight hypothesis of

topical terms that SIF was developed upon to tackle the nonmonotonic problem of some relevant

features. The UR method reduces uncertainties in relevant features discovered by existing TFS

techniques by fusing different features to estimate the passage-level evidence of relevance. Two

other fusion-based frameworks, namely, USIF and SSIF are proposed to deal with the bias

toward frequent topics and the features that appear in both relevant and irrelevant documents,

respectively.

This chapter presents and thoroughly describes the experimental evaluation methods for

the proposed TFS models and frameworks. The chapter describes the essential aspects of

the experimental evaluation, including the evaluation hypotheses, experimental design, data

collections, performance measures, baseline models and their experimental settings. Then, the

results are presented, discussed and analysed separately for each model and framework based on

their evaluation hypotheses. The popular RCV1 is selected as the benchmark dataset including

its TREC-11 topics for IF tasks. Seven standard evaluation metrics are used to measure different

aspects of the effectiveness of the performance of the proposed models and frameworks in IF

and RRT applications. Also, the standard paired t-test (akaStudent’s t-test) is used to test how

151
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significant the difference is between the results of the proposed techniques and the baseline

models in both the IF task as well as in ranking relevant features that are identified by TREC’s

domain experts. A variety of state-of-the-art and popular baseline models are selected, and

their results are compared with the proposed models and frameworks. These baseline models

use different fusion strategies, text features and mining and learning algorithms.

6.2 Hypothesis

Several hypotheses were designed to verify the proposed TFSmodels and frameworks for

discovering relevant features that describe user information needs. In this thesis, each hypoth-

esis was developed to validate the main aspects of a particular model or framework. These

hypotheses are presented as follows:

• Hypothesis 1: The proposed SIF model can effectively select informativetopical terms

from a set of relevant documents through the hybrid fusion ofdifferent global features

discovered by topic modelling and a collection statistic.

• Hypothesis 2: The proposed SIF2 model can effectively select the most informative

topical terms learned from a collection of relevant documents via the hybrid fusion of

different local and global features learned from topic modelling and collection statistics.

• Hypothesis 3: The proposed UR method can effectively reduce uncertainties in relevant

features through the estimation of the relevance of paragraphs that can be used to re-

estimate the relevance of features (i.e., terms) discovered by existing TFS techniques.

• Hypothesis 4: The proposed USIF framework can effectively select and re-weight topical

terms that occur in clusters of relevant documents that contain frequent topics and less

frequent but equally important ones via the hybrid fusions of different features discovered

by topic modelling, document clustering and global statistics.

• Hypothesis 5: The proposed SSIF framework can effectively select and re-weight rele-

vant topical terms that frequently appear in relevant and non-relevant training documents

through the hybrid fusions of different features learned from the same documents by a

combination of supervised and unsupervised algorithms as well as global statistics.

In the following sections, each hypothesis will be experimentally evaluated using the stan-

dard and widely accepted IF system-based methodology similar to the studies in [Bashar and Li,
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2018, Bashar et al., 2017, Gao et al., 2015, Li et al., 2015, Wu et al., 2006, Zhong et al., 2012].

In addition to the IF-based methodology, the set of relevantterms identified by NIST domain

experts will be used to evaluate those topical terms discovered and re-ranked by the proposed

TFS models and frameworks.

6.3 Data Collection

Many published and publicly available datasets have been used in the field of text classification,

IR and IF. Among the most popular ones, especially those usedby TREC, are the standard

Reuters datasets. The Reuters Corpus Volume 1 (RCV1) [Lewis et al., 2004] is selected for all

the experiments in this chapter. In the following section, more details about the RCV1 dataset

are given.

6.3.1 RCV1

RCV1 consists of 100 collections of documents that cover a wide range of subjects to suit

different interests. The first 50 collections, from Collection 101 to 150, are used in this research

due to their reliability and high quality as they were manually assessed by domain experts at

NIST for TREC1 in their filtering track [Robertson and Soboroff, 2002, Soboroff and Robert-

son, 2003]. These collections are usually known as the assessors topics in that track because

they were assessed and labelled by human domain experts. However, in this research and to

differentiate between an LDA latent topic and the TREC topic, each assessor topic was called

a collection. According to Buckley and Voorhees [Buckley and Voorhees, 2000] and other

experimental studies in [Gao et al., 2015, Li et al., 2015, 2012, Zhong et al., 2012], this number

of collections (i.e., the 50 collections) is sufficient and stable for better and reliable experiments.

The last 50 collections (aka intersection topics) were completely labelled by a machine learning

algorithm. Thus, they are less in terms of quality and reliability [ Li et al., 2012, Robertson and

Soboroff, 2002, Soboroff and Robertson, 2003]. Each collectionD of the RCV1 has been split

into training and testing sets, and each set has some relevant (aka positive)D+ and irrelevant

(aka negative)D− documents to the topic they describe as illustrated in Figure6.1.

RCV1 is a large dataset with more than 806,000 documents thatare distributed over the

100 different collections. Each document is a news story written by a journalist in English and

published by Reuters. Table6.1shows the main statistics of the RCV1 dataset while Figure1.2

illustrates the topic’s description of Collection 101 as prepared by TREC’s assessors. Moreover,

1http://trec.nist.gov/
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Figure 6.1: The structure of RCV1 dataset.

each document in the RCV1 is in an XML format that has many elements as shown in Figure

6.2. The proposed models and frameworks including the baselines use only the’title’ and’text’

elements during the training and testing phases. Each element (i.e., ’<title>’ and ’<p>’) is

considered a separate paragraph to be used in training the SIF, SIF2, UR models and some parts

of the USIF and SSIF frameworks. Thus, each RCV1 document hasat least two paragraphs,

the ’<title>’ and at least one content paragraph as a sub-element of the ’<text>’ element.

To eliminate bias in our experiments, all meta-data elements have been ignored. Also, each

and every paragraph of the relevant documents are separately split and indexed to facilitate the

extraction of smaller sub-topics using LDA as sub-documents (i.e., passages or paragraphs)

show better results in IR [Krikon and Kurland, 2011, Xi et al., 2001].

Table 6.1: The main statistics of the RCV1 dataset [Lewis et al., 2004]

Statistic Value

The total number of documents 806,791

The total number of paragraphs 9,822,391

The total number of terms 96,969,056

The vocabulary size 391,523

The average vocabulary size in a document 75.7

The average document length 123.9

Moreover, each document in the RCV1 dataset is a long document with an average number
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<?xml version="1.0" encoding="iso-8859-1" ?>

<newsitem itemid="82454" id="root" date="1996-09-27" xml:lang="en">

<title>GERMANY: German police detain 2 men in VW spy saga.</title>

<headline>German police detain 2 men in VW spy saga.</headline>

<dateline>FRANKFURT 1996-09-27</dateline>

<text>

<p>German authorities said on Friday that two men have been detained on 

    suspicion of industrial spying at German carmaker Volkswagen AG.</p>

<p>The two men were believed to have planted secret cameras at a test

    track operated by Volkswagen, Europe's largest carmaker.VW said the 

cameras, discovered last summer, had apparently sent out photographs

of vehicles under development.</p>

<p>The public prosecutor's office in Braunschweig, located near the 

    Wolfsburg headquarters of VW, said the men did not work for Volkswagen

or to competing car manufacturers.</p>

<p>These men did not work for Volkswagen or another car company, said 

    prosecutor Eckehard Niestroj.</p>

<p>VW management board chairman Ferdinand Piech said in late August that 

    the cameras had been sending out photographs from the track for some 

time, noting that he believed VW had been under surveillance for about

eight years.</p>

<p>VW probed for cameras at the test track after four unauthorised 

    photographs of prototypes appeared in car magazines in recent months.

Pictures of new models and prototypes are highly valued by industry 

magazines.</p>

<p>--John Gilardi, Frankfurt Newsroom, +49 69 756525</p>

</text>

<copyright>(c) Reuters Limited 1996</copyright>

<metadata>

Figure 6.2: A sample of an XML document from collection 101 of the RCV1 dataset.

of more than 12 paragraphs. Figures6.3and6.4show the paragraphs distributions in the RCV1

training sets used with the experiments of the unsupervisedand supervised TFS models and

frameworks, respectively. These figures illustrate the suitability of RCV1 documents for topic

modelling as each document can discuss multiple topics or sub-topics (i.e., themes) across its

paragraphs. Also, these multi-paragraph documents allow LDA to be applied at the paragraph-

level as each paragraph contains enough information to extract some topics from, as illustrated

in Figure6.2, and facilitate a more practical usage of the generated latent topics, as shown in

Chapter4.
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Figure 6.3: The distribution of paragraphs in positive training documents of the first 50
collections of the RCV1 dataset that are used by all unsupervised TFS models and frameworks,
including the selected baseline models.
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Figure 6.4: The distribution of paragraphs in positive and negative training documents of the first 50 collections of the RCV1 dataset that are used
by all supervised TFS models and frameworks, including the selected baseline models.
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Table 6.2 shows a statistical summary of the first 50 collections of theRCV1 dataset.

Only positive training documents are used in the experiments of the unsupervised TFS models

and frameworks with a total number of 639 documents. This number is spread across the

50 collections with an average of fewer than 13 training documents in each collection. This

makes most documents exist in the testing sets rather in the training sets as shown in Figure

6.5. Despite the low number of training samples, the proposed techniques maintain higher and

robust performance compared to the used baseline models. Supervised TFS algorithms, on the

other hand, including the proposed SSIF framework, use bothpositive and negative training

documents in the 50 collections with an average of fewer than55 documents in each collection

compared to more than 377 documents in each testing set, which still makes the testing set

much larger in number of documents than the training one as illustrated in Figure6.6.
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Figure 6.5: The number of training documents compared to the testing documents in the first
50 collections of the RCV1 dataset that are used in the experiments of all unsupervised TFS
models and frameworks, including SIF, SIF2, UR and USIF.

6.3.1.0.1 Document Preprocessing Steps

Few preprocessing steps were performed on all RCV1 documents and TREC topics titles

during the training and testing phases of the proposed models and frameworks including the

baselines. First, all meta-data and stop-words were removed. Second, all keywords were

stemmed using the Porter Suffix Stripping algorithm [Porter, 1980]. These preprocessing steps

are illustrated in Figure6.7and the list of stop-words can be found in AppendixG.
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Figure 6.6: The number of training documents compared to the testing documents in the first
50 collections of the RCV1 dataset that are used in the experiments of the SSIF framework and
other supervised TFS baseline models.

Figure 6.7: The preprocessing steps for all RCV1 documents.
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Table 6.2: The statistics of the training and testing sets of the RCV1 dataset

Training Set Testing Set

Collection# |D| |D+| |D−| |D| |D+| |D−|

101 23 7 16 577 307 270

102 199 135 64 308 159 149

103 64 14 50 528 61 467

104 194 120 74 279 94 185

105 37 16 21 258 50 208

106 44 4 40 321 31 290

107 61 3 58 571 37 534

108 53 3 50 386 15 371

109 40 20 20 240 74 166

110 91 5 86 491 31 460

111 52 3 49 451 15 436

112 57 6 51 481 20 461

113 68 12 56 552 70 482

114 25 5 20 361 62 299

115 46 3 43 357 63 294

116 46 16 30 298 87 211

117 13 3 10 297 32 265

118 32 3 29 293 14 279

119 26 4 22 271 40 231

120 54 9 45 415 158 257

121 81 14 67 597 84 513

122 70 15 55 393 51 342

123 51 3 48 342 17 325

124 33 6 27 250 33 217

125 36 12 24 544 132 412

126 29 19 10 270 172 98

127 32 5 27 238 42 196

128 51 4 47 276 33 243

129 72 17 55 507 57 450

130 24 3 21 307 16 291

131 31 4 27 252 74 178

132 103 7 96 446 22 424

133 47 5 42 380 28 352

134 31 5 26 351 67 284

135 29 14 15 501 337 164

136 46 8 38 452 67 385

137 50 3 47 325 9 316

138 98 7 91 328 44 284

139 21 3 18 253 17 236

140 59 11 48 432 67 365

141 56 24 32 379 82 297

142 28 4 24 198 24 174

143 52 4 48 417 23 394

144 50 6 44 380 55 325

145 95 5 90 488 27 461

146 32 13 19 280 111 169

147 62 6 56 380 34 346

148 33 12 21 380 228 152

149 26 5 21 449 57 392

150 51 4 47 371 54 317

Total 2704 639 2065 18901 3484 15417

Average 54.08 12.78 41.3 378.02 69.68 308.34
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6.4 Experimental Design

To demonstrate the validity of each of the evaluation hypotheses, a series of experiments have

been conducted using an IF system-based methodology as in the standard TREC Filtering Track

[Lewis et al., 2004, Robertson and Soboroff, 2002]. These extensive experiments were carried

on the RCV1 50 assessors collections and their TREC relevance judgements. As mentioned

previously, an IF system filters out irrelevant documents from a stream of incoming documents

based on the user information needs. Out of different types of IF systems, including, batch,

routing and adaptive IF systems, the routing system is adopted in the evaluation experiments

mainly to avoid the tuning of any required thresholds and to test the performance of the system

based on a ranked list of documents [Soboroff and Robertson, 2003].

Figure 6.8 illustrates the evaluation procedure implemented in this research. For each

collection, the proposed models and frameworks are trainedon the training set of the collection.

A set of discovered relevant features (i.e., relevant features and their estimated weights learned

from the training set) are used as a queryq = (t1, t2, t3, . . . , tk) submitted to the IF system

in which q ⊆ T and 1 ≤ k ≤ |T |. As in the TREC Filtering Track [Lewis et al., 2004,

Robertson and Soboroff, 2002] and for each new document comes from the testing set, the

system has to decide whether the new document is relevant to the user information needs, which

are represented by the selected set of features (i.e., the query q in this case). A similar approach

is applied to the baseline models.

Figure 6.8: The main IF-based evaluation procedure.

Moreover, and in separate experiments, we used the terms of the TREC topics for the RCV1

dataset (see AppendixF) as relevant features. These terms are identified by the domain experts
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at NIST and will be used to evaluate the proposed TFS techniques and the baseline models

in automatically discovering and ranking these features. Figure 6.9 illustrates this evaluation

process. However, we do not assume that these terms are the only relevant ones in the used 50

collections, but to avoid the expense of manually identifying more relevant terms from these

vast collections, we limited our study only to those terms presented in AppendixF.

Figure 6.9: The RRT-based evaluation procedure.

If the results for the proposed models or frameworks are significantly better than the used

baselines, then, it is valid to claim that the proposed technique reflects the developed hypothesis.

6.4.1 Unsupervised Learning Setting

Figure 6.8 briefly shows both the training and the testing stages of the evaluation process.

Figure 6.10 further illustrates the training procedure of the proposedunsupervised models

(i.e., SIF, SIF2 and UR) including the USIF framework. Thesemodels and the framework

use only the relevant documents setD+ in each collection as a domain-specific set of long

documents. After completing the preprocessing steps on each set as previously shown in Figure

6.7, all documents paragraphs are split, stored in separate files and indexed for efficient mapping

between a document and its paragraphs. Then, the LDA is used to extract some latent topics

from all paragraphs in the collection. These topics are thenused by the proposed SIF, SIF2 and

the UR models in their fusion modules.

The solid arrows in Figure6.10show the sequential flow of these steps for the SIF, SIF2

and UR models while the dotted arrows display the subsequenttraining steps for the USIF

framework. As the USIF framework utilises a document clustering algorithm in one of its
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Figure 6.10: The training procedure for the proposed SIF, SIF2, UR models and the USIF
framework.

stages, a term weighting scheme (i.e., TFIDF) is used on the preprocessed documents. Then,

the bisecting k-means (BKM) algorithm [Savaresi and Boley, 2001] is used to cluster these

documents based on the cosine similarity measure. Then, foreach cluster formed by the BKM

algorithm, the paragraphs of the documents in the cluster are split, and some latent topics are

extracted using the LDA in a similar fashion as in training steps of the SIF, SIF2 and the UR

models. Lastly, all unsupervised baseline models were trained as described in their original

studies.

6.4.2 Supervised Learning Setting

In the training phase of the proposed SSIF framework, both relevant (positive)D+ and irrelevant

(negative)D− training documents sets were used as shown in Figure6.11. Each set is used

separately, and the latent topics only extracted fromD+ because it is domain-specific and its

subjects are more related to each other unlike the irrelevant set, which has a diverse collection

of unrelated subjects. The negative set, on the other hand, is only used for the supervised

learning algorithm, the support vector machine (SVM) in this research, which also requires

the positive set as well. To train the SVM, a supervised term weighting scheme is used (i.e.,

BM25) to assign weights to terms in both documents sets afterthe preprocessing steps are

completed. These weighted terms are used to represent all training documents (positive and

negative) for the SVM. The SVM learns a hyperplane from thesetraining documents, which

can be used to separate between positive and negative information in those documents. The

same training steps of the SIF, SIF2 and UR models are also applied on the relevant documents

set for the SSIF framework. The solid green arrows in Figure6.11show the usage flow of the

relevant documents while the red dotted arrows display the flow of negative documents. The
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generated latent topics of the LDA and the learned hyperplane of the SVM will be used by the

fusion modules of the SSIF framework. Lastly, all supervised baseline models were trained as

described in their original studies.

Figure 6.11: The training procedure for the proposed SSIF framework.

6.5 Baseline Models

For a more comprehensive evaluation, the performance of theproposed models and frameworks

were compared to a wide range of TFS models. Over 20 differentbaseline models used for

relevance discovery were selected and tested for IF and RRT tasks. These models use different

types of text features, and they can be either supervised or unsupervised learning techniques.

However, in this thesis, all the baseline models were categorised based on the feature fusion

strategy they adopt. In the following sections, a short description is given for each model under

its category, and more details about these baselines can be found in Chapter2.

6.5.1 Early Fusion Models

Early fusion TFS models use low-level terms and consider no semantic information as described

in Chapter3. The following popular examples are selected as baselines in our evaluation

experiments.

• TFIDF [Salton and Buckley, 1988]: is a widely accepted term weighting scheme in many

IR applications. In an unsupervised manner, TFIDF assigns higher weights to terms that

occur more frequently in a specific document.
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• Okapi BM25 [Robertson and Zaragoza, 2009]: is a popular, supervised document rank-

ing algorithm in IR. It is term-based and its experimental parameters were set tob = 0.75

andk1 = 1.2 in this thesis as recommended in [Gao et al., 2015, Manning et al., 2008b,

Zhong et al., 2012].

• Prob [Jones et al., 2000a,b]: is a supervised probabilistic method that estimates the

relevance weight of terms at the collection level.

• Chi-square (χ2) [Chen and Chen, 2011]: is a popular statistical method that measures

the informativeness of a term to its class information. It shows effective performance in

supervised text classification compared to many other TFS [Tang et al., 2016, Yang and

Pedersen, 1997].

• MI [Manning et al., 2008b]: mutual information is another supervised TFS that measures

the mutual dependence between random terms and their classes information.

• SVM [Joachims, 2002]: support vector machine is a well-known supervised learning

algorithm that discriminatively separates two different classes. Since IF can be considered

another type of binary classification problem, the rank-based SVM was used in this

research similarly as in [Algarni and Li, 2013, Gao et al., 2015, Li et al., 2008, Zhong

et al., 2012].

• LASSO [Tibshirani, 1996]: the least absolute shrinkage and selection operator, com-

monly known as Lasso, is a supervised linear regression model. It can be used in TFS for

relevance discovery as in [Li et al., 2015].

• Rocchio [Rocchio, 1971]: is widely used in IR, IF and text classification as a centroid-

based classifier. It revises relevant terms weights using the negative training document

set. In this study, Rocchio is used as in [Li et al., 2015, Wu et al., 2006].

6.5.2 Late Fusion Models

High-level features like phrases, patterns, topics, ontological concepts or a different combina-

tion of them contain different semantic information that makes them suitable for late feature

fusion. A wide variety of popular and state-of-the-art latefusion models are selected as base-

lines in our experiments. They are briefly described as follows:
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• n-grams: is a standard phrase-based model that usesn-grams extracted from relevant

documents to represent user information needs, where, as in[Albathan et al., 2012, 2014,

Gao et al., 2015], the best value ofn is empirically set to 3 (a tri-gram).

• PCM [Albathan et al., 2012]: is the pattern co-occurrence matrix model that removes

noisy patterns extracted from a set of relevant documents paragraphs. PCM is unsu-

pervised and utilises a pattern co-occurrence matrix to identify interesting set of closed

sequential patterns for relevance discovery.

• SCSP [Albathan et al., 2014]: is a supervised pattern-based TFS model. It extends a

random-set to find specifically relevant closed sequential patterns extracted from both

positive and negative documents.

• PLSA [Hofmann, 2001]: is an unsupervised topic-based TFS model. It identifies hidden

topics from a set of documents that can be used to represent user information needs.

These topics can alleviate the problem of polysemy to a certain extent as mentioned

previously. PLSA is a probabilistic enhancement to the latent semantic analysis (LSA)

model [Deerwester et al., 1990].

• LDA [Blei et al., 2003]: is the most widely used topic modelling algorithm. Unlike

the PLSA, LDA is theoretically sound and more effective. It probabilistically generates

latent topics from a collection of documents in an unsupervised way. In our experiments,

PLSA and LdaDoc were trained onD+ documents while LdaPara was trained onD+

paragraphs.

• TNG [Wang et al., 2007]: is a topicaln-grams TFS model that integrates topic modelling

with phrases to discover topical phrases that are more discriminative and interpretable.

TNG is treated as a relevance ranking model in our experiments as in [Gao et al., 2014b,

2015].

• PBTM-FP [Gao et al., 2013]: is an unsupervised TFS model that incorporates latent

topics and frequent patterns (FP) to obtain a more semantically rich and discriminative

representation to be used for IF.

• PBTM-FCP [Gao et al., 2013]: is similar to the PBTM-FP model except it uses the

frequent closed pattern (FCP) instead in order to reduce thesize of FP as redundant

patterns .
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• SPBTM [Gao et al., 2014b]: is a third extension to PBTM-FP and PBTM-FCP. It uses

significant matched patterns (i.e., significantly representative and specific frequent pat-

terns) to represent latent topics.

• MPBTM [Gao et al., 2015]: is a more advanced extension to the PBTM-FP, PBTM-FCP

and SPBTM models. It uses maximum matched patterns (i.e., the most representative and

specific frequent patterns) to represent latent topics.

• LdaConcept [Chemudugunta et al., 2008]: combines topic models with ontological con-

cepts to semantically represent user information needs. LdaConcept is unsupervised and

is similarly adopted in our experiments as in [Bashar and Li, 2017, Bashar et al., 2016].

6.5.3 Hybrid Fusion Models

A hybrid fusion can be developed through the combining of early and late fusions strategies to

exploit the advantages of both low- and high-level text features in a unified framework. Three

state-of-the-art baseline models are selected to represent this type of fusion.

• PDS [Zhong et al., 2012]: is a pattern deploying technique based on support. It is an

unsupervised extension to the PTM model [Wu et al., 2006]. PDS uses high-level patterns

extracted from relevant documents to accurately weight low-level terms to represent what

the user wants.

• MP [Yan et al., 2005]: similar to the PDS model, the master pattern technique uses pat-

terns to identify relevant low-level terms. Instead of deploying patterns, MP summarises

or groups text patterns intoL clusters (aka pattern profiles) based on defined similarities.

MP is used in our experiments as in [Bashar and Li, 2018, Bashar et al., 2016, 2017].

• RFD2 [Li et al., 2015]: is a supervised relevant feature discovery model. It is anextension

of RFD1 [Li et al., 2010] and uses high-level patterns to discover relevant low-level terms

that are clustered into three distinct groups; positive specific, general and negative specific

sets of terms. RFD2 experimental parameters are kept in our experiments as the original

study.

6.6 Performance Measures

Measuring the performance of an information system is an essential step in any experimental

evaluation process. In our experiments, the effectivenessof the proposed TFS models and
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frameworks in IF is measured by six different evaluation metrics that are well-established and

commonly used in the IR and IF research communities. These measures are derived, in a way

or another, from the standard effectiveness metrics; precision and recall. The six metrics are

the average precision of the top-20 ranked documents (P@20), break-even point (BP), mean

average precision (MAP), F measure, interpolated average precision (IAP) and the interpolated

precision averages at 11 standard recall levels (11-point). Each of these measures concerns

about a particular aspect of the model overall performance as it will be described in this section.

More information about these measures can be found in [Manning et al., 2008a].

The previous six metrics are used to measure the effectiveness of our proposed techniques

for IF specifically in returning relevant documents from thetesting sets of the first 50 collections

of the RCV1 dataset. However, there is a need to measure the effectiveness of the proposed tech-

niques in identifying and ranking relevant features (i.e.,terms) that are identified and selected

by TREC’s domain experts. The standard, normalized discounted cumulative gain (nDCG)

measure is used for this task and it will be described below inthis section. Moreover, in our

experiments, the percentage change and the Student’s t-test are used to analyse the significance

of the difference between the results of the proposed modelsand frameworks and the selected

baselines.

6.6.1 Precision and Recall

For an IR system, the precision is the ”fraction of retrieveddocuments that are relevant” to

the user query while the recall is the ”fraction of relevant documents that are retrieved” [Man-

ning et al., 2008a]. For a text classifier, the accuracy measure, which is the fraction of the

classifier’s predictions that are correct, is usually used instead of the precision and recall. The

confusion matrix depicted in Table6.3, which is a special type of contingency table, is used for

binary classification judgement. Therefore and based on theaccuracy definition, a classifier’s

accuracy= (TP+ TN) ÷ (TP+ FP+ FN + TN), where TP is the number of documents that

the classifier identified as relevant, TN is the number of documents that the classifier identified

as irrelevant, FP is the number of documents that the classifier incorrectly identified as relevant

and FN is the number of relevant documents that the classifiercould not identify [Manning

et al., 2008a, Wu, 2007].

Since an IR or IF system can be considered as a two-class classifier (i.e., relevant-irrelevant),

it implies that the accuracy measure can be used in measuringIR and IF systems performance.



6.6. PERFORMANCE MEASURES 169

Table 6.3: The confusion matrix of classification

Human judgement

Yes No

System judgement
Yes True Positive (TP) Fale Positive (FP)

No False Negative (FN) True Negative(TN)

However, accuracy is not suitable for retrieval and filtering problems as it is biased toward the

bigger class in the used dataset [Manning et al., 2008a]. For example, if an imbalanced dataset

has 98.9% positive samples, then, a classifier can achieve 98.9% accuracy by just classifying all

documents as positive and vice-versa when most samples are negative. Instead, the precision

and recall are more suitable for IR and IF because users are only interested in positive class

[Algarni, 2011]. Therefore and in a similar context as in the accuracy measure above, Table

6.3 can be used to calculate precision (P) and recall (R) as P= TP÷ (TP+ FP) and R=

TP÷ (TP+ FN), respectively.

6.6.2 Effectiveness Measures

Based on the definitions of precision and recall, more practical metrics can be derived to solve

some problems that precision and recall alone cannot resolve.

• Break-even Point(BP): Break-even point is a commonly used measure in the areaof IR

and IF. It concerns about the relationship between P and R andindicates the point when

both P and R values are equal (P= R). Thus, the higher the value of the BP measure, the

more effective the evaluated system is.

• F measure (Fβ=1): F measure is another metric that concerns about the relationship

between P and R. Unlike the BP metric, which only concern about P= R, F measure can

be used to trade off between P and R because usually, in a testing set, R can be high and

P may be low and vice versa. F measure is the weighted harmonicmean of P and R and

can be calculated as F measure= ((1 + β2)× P× R)÷ (β2 × P+ R). As the harmonic

mean tends to be closer to the smallest value of either P or R, Fmeasure is used in our

experiments when the value of both R and P wanted to be high rather one higher, and the

other is lower and vice versa. Thus, we set the parameterβ to be equal to 1 (β = 1) which

simplifies the last equation to Fβ=1 = (2× P× R)÷ (P+ R).

Despite the practicality of the P, R, BP and Fβ=1 measures, they ignore the order of the
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retrieved documents [Manning et al., 2008a]. It is assumed that in a ranked list of documents

the topu documents are more relevant than those at the end of the list.Also, Fβ=1 and BP, as

single-valued metrics, do not provide a more detailed picture of the whole system performance.

To further address these issues, four effective measures are adopted in our experiments and

described as follows:

• Precision at top-u documents(P@u): Precision takes into account all retrieved docu-

ments by the IR/IF system, but a user might be interested onlyin the first or two dozens of

documents (i.e., a specified cut-off) ordered based on theirrelevance to user information

needs. Thus, in this research, the precision of the topu returned documents (P@u) is

used, and the value ofu is set to be 20 in our experiments, which is an agreeable number

within IR and IF communities [Gao et al., 2015, Manning et al., 2008a, Zhong et al.,

2012].

• Mean Average Precision(MAP): It is the most commonly used single-figure metric

among the TREC community [Manning et al., 2008a]. MAP can be calculated by first

measuring P at each relevant document in a ranked list of retrieved documents based on

their relevance to a user information need (aka topic or collection), and, then averaging

P over all topics (collections) in the testing sets. MAP provides an excellent indication

about the quality of the evaluated system as it combines the measurements of P, overall R

and the relevance ranking of the retrieved documents.

• Interpolated precision averages at 11 standard recall levels (11-point): It is an effec-

tive measure for comparing the performance of two or more different IR/IF systems in

distinctive details. 11-point metric is the interpolated Pat 11 standard R-levels. This

measure examines the entire P-R curve at only 11 points (0.0, 0.1, 0.2, ..., 1.0) where the

first R point is equal to zero, which is the smallest value (e.g., 1 ÷ (TP+ FN)) [Algarni,

2011].

• Interpolated Average Precision(IAP): Unlike the 11-point measure, the IAP is a single-

valued metric that can be calculated by averaging the interpolated P at 11 standard R-

levels for one topic (i.e., TREC topic), in a similar fashionas in MAP, and, then averaging

for all topics.



6.6. PERFORMANCE MEASURES 171

As mentioned previously, the IF system in our experiments returns a ranked list of docu-

ments after accepting a queryq, which is a sequence of〈term,weight〉 pairs discovered by the

proposed TFS techniques and the baseline models. The queryq in this research represents a user

information need. All the six metrics discussed above are used to measure the effectiveness of

the IF system in identifying relevant documents from the testing sets of the RCV1 dataset based

on q. However, there is a need to measure the performance of our proposed techniques as well

as the used baseline models in RRT. The nDCG measure at top-k terms is used for this task as

described below.

• normalized Discounted Cumulative Gain at top-k feature (nDCG@k): It is commonly

used within the IR/IF community to measure the effectiveness of IR/IF models in ranking

highly relevant documents. nDCG is sensitive to the position of the relevant document,

so as it rewards highly ranked documents, it also penalises those in lower ranks. Further

details about the nDCG metric can be found in [Järvelin and Kekäläinen, 2002]. However,

we adopted the nDCG to measure the effectiveness of the proposed models and frame-

works and the baseline models in ranking relevant terms instead of documents. We used

the terms of each TREC topic as our relevance judgment as described previously. As

nDCG is usually used for graded relevance judgment, it can also be used for binary one

as in our case. The nDCG at top-k terms is calculated in our experiments based on its

formula in [Manning et al., 2008a].

6.6.3 Statistical Significance Measures

It is a common practice in scientific research to analyse experimental results using some well-

established mathematical tools. Two statistical significance measures are used to evaluate the

reliability and significance of the results of our experiments. These measures are the Percentage

of Change and the Student’s Paired T-Test [Smucker et al., 2007, Urbano et al., 2013]. They are

described as follows:

• Percentage Change(improvement%): It is commonly used to calculate the difference

between two mean values and show how statistically significant this difference is in a

percentage format [Gao et al., 2015, Li et al., 2015, 2010, Wu et al., 2006]. In our

experiments, the”improvement%” is used to denote the result of this test in several tables.

The percentage change between two TFS models can be calculated asimprovement% =

(νour − νbase) ÷ | νbase |, whereν refers to the result of an experimental model (in our
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case, the result is averaged over the used 50 collections) and | ν | is the absolute value of

that result.

• Student’s Paired T-Test (t-test): It is also widely used in IR and IF to statistically

measure how significant the improvement is between two related sets of results [Smucker

et al., 2007, Urbano et al., 2013]. The t-test assesses the mean of two different numerical

groups and shows how significant is the difference between their values. Usually, the null

hypothesis of this test assumes that no significant difference exists between the results.

However, this hypothesis can be either rejected or acceptedbased on thep-valueof the

test. If thep-value is less than 0.05(p-value< 0.05), it indicates that the difference

between these two groups is significant, and the null hypothesis can be rejected and vice

versa.

6.7 Experimental Settings

All experiments described in this chapter were conducted ona personal computer (PC) equipped

with an Intel® Core™ i7-4510U @ 2.00 GHz processor and a main memory of 8.00 GB

running on Microsoft® Windows® 10 Pro. The proposed models and frameworks and the IF

evaluation system including all baseline models were implemented in the Java 8 programming

language (JRE 8.0.31) using the NetBeans IDE (version 8.0.2). The RCV1 dataset was obtained

from a TREC licensed CD, and its relevance judgement information was downloaded from the

TREC website.2

The MALLET toolkit [McCallum, 2002] 3 was used to implement all LDA-based models

and frameworks except for the PLSA model where the Lemur toolkit 4 was used instead. All

topic-based models require some parameters to be set. For the LDA-based models, the number

of iterations for the Gibbs sampling was set to be1000 and for the hyper-parameters to be

α = 50/V andβ = 0.01 as they were justified inSteyvers and Griffiths[2007]. The number

of iterations for the PLSA was configured to be1000 (default setting). Lastly, it should be

mentioned that the LDA training needs only to be done once andoff-line.

The CLUTO toolkit5 was used to cluster the relevant documents of each collection into

hard clusters using its graphical tool gCLUTO [Rasmussen and Karypis, 2004]. The repeated

2https://trec.nist.gov/data/t2002_filtering.html
3http://mallet.cs.umass.edu
4https://www.lemurproject.org/
5http://glaros.dtc.umn.edu/gkhome/views/cluto

https://trec.nist.gov/data/t2002_filtering.html
http://mallet.cs.umass.edu
https://www.lemurproject.org/
http://glaros.dtc.umn.edu/gkhome/views/cluto
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bisecting algorithm is selected to be the clustering technique used with the USIF framework.

Other parameter settings in the gCLUTO environment are set as follows: the similarity function

is set to be the cosine; I2 is the criterion function; 10 for the number of trials; the default values

are accepted for the remaining parameters.

It is challenging to predetermine the optimal number of clusters for a given collection [Das

et al., 2008, Jain, 2010, Liu and Croft, 2004]. However, in this research, and based on the USIF

performance on a sample of collections, the straight line equationL = mX + b was fitted

through the number of clustersL and the number of relevant documentsX, wherem is the

slope andb is the bias. They were empirically set to bem = 0.5 andb = 0.5.

6.8 Results

In this section, the experimental results of the proposed TFS models and frameworks are pre-

sented and compared with the results of various baseline techniques. The results show the ef-

fectiveness of the proposed fusion-based techniques in IF using the 50 domain experts assessed

collections of the RCV1 dataset. The effectiveness is measured by six standard evaluation

metrics. The results also demonstrate the effectiveness ofour proposed models and frameworks

in identifying and ranking relevant features that describeuser information needs. The standard

nDCG measure is used for evaluating the quality of these identified features based on the

relevance judgment of NIST domain experts. Additionally, two statistical significance tests,

namely the percentage change and the t-test, are used to detect and verify the improvement in

each result compared to the baselines.

These experimental results are presented in the following sections: the result of the SIF

model compared to the baseline models are given in Section6.8.1. The results of the SIF2

model and the comparisons with the baselines are given in Section 6.8.2. The UR method

improvements to many existing relevance discovery models are demonstrated by the results

presented in Section6.8.3. Section6.8.4shows the results of the USIF framework compared

to the used baseline models and Section6.8.5presents the results of the SSIF framework in a

similar way.

6.8.1 The Proposed SIF Model

The results of the SIF model and the selected baselines are illustrated in Table6.4 and Figure

6.12(left). These experimental results show the effectivenessof SIF and the baseline models for
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the IF task measured by the standard metrics of P@20, BP, MAP,Fβ=1, IAP and 11-point. The

baseline models in Table6.4 are categorised based on the type of text feature they use. Table

6.5and Figure6.12(right) illustrate the results of the SIF model and some baseline models for

RRT measured by the nDCG metric. These results, in Tables6.4and6.5, are the average of the

50 collections of the RCV1.

Moreover, Table6.6and the p-value column in Table6.5illustrate the results of the statistical

significance measure, the t-test, and the ”improvement%”, in Tables6.4and6.5, represents the

percentage change, in our SIF model’s performance comparedto the best result of the baseline

model. We consider any improvement in the percentage changethat is greater than 5.0% to be

significant. From all these tables and figures, we can see thatthe SIF model outperformed all

baseline methods in all measures for all experimental tasks. More evaluation details are given

in the following sections.

• SIF Versus Term-based Models

The BM25 and the TFIDF models were selected to represent the term-based category and

their experimental performance in IF and RRT tasks were compared to the proposed SIF

model. While BM25 maintained superior performance in both experimental tasks compared

to the TFIDF as can be seen in Table6.4 and Figure6.12(left) and in Table6.5 and Figure

6.12(right), respectively, our SIF model outperformed BM25 forIF in all five measures by

an overall average improvement of 20.866% with a minimum of 14.237% on Fβ=1 and a

maximum of 27.416% on P@20. Figure6.12(left) clearly shows the superior performance

of the SIF model in IF compared to the BM25 measured by the 11-point metric.

Also, our model significantly outperformed BM25 in RRT by an average improvement of

448.159% measured by the nDCG metric using just the top-4 keywords (i.e., k = 4) ranked

by each model as illustrated in Table6.5. While k = 4 is the average number of terms in

the 50 titles of TREC topics (see AppendixF), Figure6.12(right) shows that our SIF model

was consistently significant in RRT compared to both BM25 andTFIDF at all top-k values.

The percentage change test results in Tables6.4 and6.5 show that all the performance im-

provements of the SIF model in IF and RRT over the BM25 were statistically very significant

as they were much higher than 5.0%. The t-test results in Table6.6 and6.5 confirmed this

significance because the p-values were much less than 0.05 inboth tails of the test.

• SIF Versus Phrase-based Models
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Table 6.4: SIF results for the IF task compared to the baselines (grouped based on the type of
feature used by the model) for all measures averaged over thefirst 50 collections of the RCV1
dataset

Model P@20 BP MAP Fβ=1 IAP

SIF 0.567 0.475 0.500 0.473 0.527

LDA 0.492 0.414 0.442 0.437 0.468

PLSA 0.423 0.386 0.379 0.392 0.404

improvement% +15.337% +14.773% +13.273% +8.141% +12.507%

PDS 0.496 0.430 0.444 0.439 0.464

MP 0.426 0.392 0.393 0.409 0.421

improvement% +14.315% +10.388% +12.805% +7.687% +13.524%

n-grams 0.401 0.342 0.361 0.386 0.384

improvement% +41.397% +38.936% +38.608% +22.526% +37.287%

BM25 0.445 0.407 0.407 0.414 0.428

TFIDF 0.354 0.338 0.337 0.367 0.366

improvement% +27.416% +16.620% +22.981% +14.237% +23.076%

PBTM-FCP 0.489 0.420 0.423 0.422 0.447

PBTM-FP 0.470 0.402 0.427 0.423 0.449

TNG 0.447 0.360 0.372 0.386 0.394

improvement% +15.951% +13.087% +17.214% +11.856% +17.220%
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Figure 6.12: The 11-point results for IF (left) and the nDCG@k results for RRT (right) of SIF
in comparison with baselines averaged over the first 50 collections of the RCV1 dataset.
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Table 6.5: The SIF results for the RRT task including the percentage change and the t-test
p-value in comparison with some of the baselines averaged over the first 50 collections of the
RCV1 dataset

Model nDCG@4 improvement% p-value

SIF 0.457 0% N/A

LDA 0.356 +28.132% 6.581E-04

PDS 0.342 +33.536% 3.504E-04

PLSA 0.235 +94.085% 3.055E-05

BM25 0.083 +448.159% 8.041E-11

TFIDF 0.025 +1706.215% 8.939E-12

Table 6.6: The t-test p-values of the best baseline model in each category in comparison with
the SIF model for the IF task results in Table6.4

Model Tail(s) P@20 BP MAP Fβ=1 IAP

LDA
One 7.557E-04 5.117E-07 4.785E-05 7.002E-05 1.239E-05

Two 1.511E-03 1.023E-06 9.571E-05 1.400E-04 2.477E-05

PDS
One 3.435E-03 3.969E-03 9.530E-04 2.726E-03 1.298E-04

Two 6.869E-03 7.937E-03 1.906E-03 5.451E-03 2.596E-04

n-grams
One 4.091E-09 3.483E-11 1.280E-12 5.943E-11 2.051E-13

Two 8.181E-09 6.967E-11 2.560E-12 1.189E-10 4.102E-13

BM25
One 1.440E-04 1.103E-03 8.550E-05 1.065E-04 1.110E-05

Two 2.879E-04 2.206E-03 1.710E-04 2.129E-04 2.220E-05

PBTM-FCP
One 8.335E-03 3.411E-03 1.444E-04 9.346E-04 6.542E-05

Two 1.667E-02 6.823E-03 2.889E-04 1.869E-03 1.308E-04

PBTM-FP
One 5.664E-04 4.085E-05 1.271E-04 1.342E-04 1.965E-05

Two 1.133E-03 8.171E-05 2.541E-04 2.683E-04 3.929E-05
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For the phrase-based category, the n-grams language model was used as a baseline for the IF

only. It was not used for the RRT task as it does not explicitlyweight single terms. As shown

in Table6.4, the SIF model significantly outperformed the n-grams modelin all measures

by an overall average improvement of 35.751% with a minimum of 22.526% on the Fβ=1

metric and a maximum of 41.397% on the P@20 measure. Moreover, the 11-point result in

Figure6.12(right) illustrates the superiority of SIF over the n-gramsmodel and confirms the

significant improvements that were shown in Table6.4. All SIF improvements were much

higher than 5.0%, and its t-test p-values in Table6.6 were largely less than 0.05, indicating

that SIF improvements were statistically very significant.

• SIF Versus Pattern-based Models

Our SIF model continues to perform significantly better thanthe state-of-the-art pattern-based

techniques represented in our experiments by the PDS and theMP models. For the IF and

the RRT tasks, SIF results were compared to the PDS because itscored better results than the

MP model as illustrated in Table6.4, and can rank relevant terms while the MP does not deal

with individual terms.

In Table6.4, SIF outperformed the PDS in all measures on average by a minimum improve-

ment of 7.687% and a maximum of 14.315% on the Fβ=1 and the P@20 respectively. Our SIF

model maintained an average improvement of 11.744% over the PDS. Also, Figure6.12(left)

illustrates the superiority of SIF compared to PDS on the 11-point measure. For the RRT task,

SIF was significantly better than the PDS by 33.536% on the nDCG@4 as shown in Table6.5

and continues to perform consistently better with different k values as illustrated in Figure

6.12(right). All SIF improvements over the PDS were statistically significant as confirmed

by the percentage change as well as the t-test results in Tables6.4, 6.5and6.6, respectively.

• SIF Versus Topic-based Models

We selected LDA and its predecessor, the PLSA, as baseline models to represent this category.

LDA continues to achieve better results for the IF and RRT tasks than the PLSA. Therefore,

our SIF model will be compared to LDA rather than the PLSA. As illustrated in Table6.4,

the SIF model outperformed the LDA for IF in all measures. Ourmodel achieved a minimum

improvement of 8.141% on the Fβ=1 measure over the LDA, and a maximum improvement

of 15.337% on the P@20 over the same model. On an overall average, the SIFmodel scored

an improvement of 12.806% over the LDA in the IF task. This improvement can be clearly
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seen in Figure6.12(left) on the 11-point measure.

For the RRT task measured by the nDCG metric, SIF continues tooutperform the LDA

by an average improvement of 28.132% as illustrated in Table6.5 using only the top 4

keywords from each training collection of the RCV1 dataset.Moreover, our model seems

to be insensitive to the value of thek parameter for the RRT task as can be seen in Figure6.12

(right). SIF consistently performed very significantly on all k values compared to the LDA

model. The percentage change in Tables6.4 and6.5 represented by the ”improvement%”

shows that all SIF improvements are statistically significance because they are all over 5.0%.

The t-test results in Tables6.6and6.5confirmed these statistical significances as all p-values

were much less than 0.05 in all tails of the test.

• SIF Versus Hybrid Features-based Models

Three models were selected for this category. The pattern-based topic models (i.e., PBTM-FP

and PBTM-FCP) performed better than the topical N-grams (TNG) model in the IF task. As

all these models were not developed to deal with individual terms explicitly, they were not

used for the RRT task. For the IF task and according to Table6.4, the SIF model outperformed

both PBTM models in all measures. SIF scored a minimum improvement of 11.856% over the

PBTM-FP model on the Fβ=1 measure and a maximum improvement of 17.220% on the IAP

metric over the same baseline model. Overall, our model maintained an overage improvement

of 15.066% in all metrics over the two PBTM models. The 11-point result in Figure6.12(left)

confirmed this improvement over all baseline models, including the PBTMs. Moreover, the

percentage change and the t-test results in Tables6.4 and6.6, respectively, show that SIF

improvements over the baselines were statistically significant as these improvements were

higher than 5.0% and their one- and -two-tailed p-values were less than 0.05.

Based on the results presented earlier, we are confident in claiming that our SIF model can

effectively generalise the local term weight at the document level in the LDA term weighting

function and, thus, provide a more globally representativeweight when it combined with the

term document frequency. Also, SIF is more effective in selecting relevant features to acquire

user information needs that represented by a set of long documents. Overall, these results

support the hypothesis 1.

Despite its effectiveness, SIF was built on the hypothesis of identical topical terms are

equally important in all relevant documents. We argued thatsuch an assumption could be too
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simple and need to be relaxed. Therefore, we revisited SIF and extended it to SIF2. The

following section shows the experimental results of SIF2 for the same experimental tasks.

6.8.2 The Proposed SIF2 Model

This section presents the experimental results of the SIF2 model that has been introduced in

Chapter4. As in our SIF model, SIF2 was also tested for an IF application and its performance

was measured by six different effectiveness metrics. SIF2 was also experimentally examined

for the RRT task, and its performance was measured by the nDCG@k metric. Two groups

of different baseline models, supervised and unsupervised, were used for comparison with our

new model. These baseline models were examined for the same IF and RRT tasks. However,

those baselines that do not have an explicit mechanism for ranking terms were exempted from

the RRT task. The detailed comparisons are given below basedon these two groups.

Table6.7 and Figure6.13 (left) illustrate SIF2 results as well as the baselines for the IF

system while Table6.8and Figure6.13(right) show the results for the RRT task. The percentage

change and the t-test results were presented in Tables6.7, 6.8and6.9.

• Comparisons with Supervised Models

The upper part of Table6.7 summarises the results of SIF2 and three supervised baseline

models for the IF task. These supervised models are the term-based SVM and BM25 and the

pattern-based SCSP model. The results are sorted in descending order, and SIF2’s results are

only compared with the best baselines.

As can be seen from Table6.7, our model outperformed the SVM in all measures. It main-

tained an overall average improvement of 20.117% over the SVM with a minimum improve-

ment of 12.357% and a maximum of 23.218% on the Fβ=1 and P@20 measures, respectively.

This significant improvement can be seen clearly using the 11-point result in Figure6.13(left)

in which the SIF2 model outperformed all the baselined models in general and the supervised

ones more specifically.

For the RRT task results in Table6.8, SIF2 also kept its superiority over the SVM with

an average improvement of 713.793% using only four terms. While BM25 scored better

than the SVM in this task, our model was significantly better than the BM25 by an average

improvement of 466.775%. Moreover, Figure6.13(right) shows the significant performance

of SIF2 in the RRT experiment compared to all baseline models, including the supervised

ones. The Figure also illustrates our model insensitivity to the hyperparameterk in which it
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scored much higher than any baseline model at any givenk value.

According to the percentage change test, all SIF2 improvements over the supervised models

presented in Tables6.7and6.8were statistically significant as they were all much higher than

5.0%. The t-test results in Tables6.9and6.8 further confirmed the statistical significance of

SIF2 results as each p-value of the test is much lower than 0.05 for all measures in the two

tails of the t-test.

Table 6.7: The SIF2 results for the IF task compared to the baselines (grouped as supervised
and unsupervised) for all measures averaged over the first 50document collections of the RCV1
dataset

Model P@20 BP MAP Fβ=1 IAP

SIF2 0.605 0.504 0.535 0.491 0.557

SVM 0.491 0.414 0.436 0.437 0.462

SCSP 0.480 0.407 0.420 0.423 0.442

BM25 0.445 0.407 0.407 0.414 0.428

improvement% +23.218% +21.739% +22.706% +12.357% +20.563%

SPBTM 0.527 0.448 0.456 0.445 0.478

PDS 0.496 0.430 0.444 0.439 0.464

LdaPara 0.492 0.414 0.442 0.437 0.468

PBTM-FP 0.470 0.402 0.427 0.423 0.449

PBTM-FCP 0.489 0.420 0.423 0.422 0.447

LdaDoc 0.457 0.391 0.400 0.413 0.434

PLSA 0.423 0.386 0.379 0.392 0.404

TNG 0.447 0.360 0.372 0.386 0.394

n-grams 0.401 0.342 0.361 0.386 0.384

improvement% +14.801% +12.454% +17.425% +10.227% +16.473%
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Figure 6.13: The 11-point results for IF (left) and the nDCG@k results for RRT (right) of SIF2
in comparison with baselines averaged over the first 50 collections of the RCV1 dataset.
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Table 6.8: The SIF2 results for the RRT task including the percentage change and the t-test
p-value in comparison with some of the baselines averaged over the first 50 collections of the
RCV1 dataset

Model nDCG@4 improvement% p-value

SIF2 0.472 0% N/A

LdaPara 0.356 +32.483% 8.057E-05

PDS 0.342 +38.071% 6.678E-05

LdaDoc 0.275 +71.636% 5.255E-06

PLSA 0.235 +100.676% 5.115E-06

BM25 0.083 +466.775% 6.530E-12

SVM 0.058 +713.793% 2.821E-13

Table 6.9: The t-test p-values of the best baseline model in each category in comparison with
the SIF2 model for the IF task results in Table6.7

Model Tail(s) P@20 BP MAP Fβ=1 IAP

SPBTM
One 6.244E-03 1.294E-02 2.393E-04 1.048E-03 1.638E-04

Two 1.249E-02 2.588E-02 4.785E-04 2.096E-03 3.276E-04

SVM
One 1.847E-04 1.970E-04 6.051E-06 2.346E-05 2.904E-06

Two 3.694E-04 3.940E-04 1.210E-05 4.693E-05 5.809E-06

• Comparisons with Unsupervised Models

In a similar setting, our SIF2 model was compared to a wide range of unsupervised baseline

TFS models that use different text features. The SPBTM technique uses a combination of

high-level features (i.e., patterns and latent topics) andachieved the best result among the

other baseline models. Thus, SIF2 performance was comparedto the SPBTM’s for the IF

task and to the LDA instead for the RRT as the SPBTM does not deal with low-level terms

and LDA was the best unsupervised baseline model in this task.

In IF, our model scored much higher than the SPBTM in all measures by an overall average

of 14.276%, as shown in Table6.7. SIF2’s lowest average improvement was 10.227% on

the Fβ=1 metric and its highest average improvement was 17.425% on the MAP measure.

Further, the superiority of our model over the SPBTM can be seen clearly on the 11-point

measure, which is illustrated in Figure6.13(left). SIF2 scored much higher precision than the

SPBTM model at every standard point of the 11 recall-level. In the RRT task, our SIF2 model

outperformed the LDA by an average improvement of 32.483% using only four keywords as

shown in Table6.8. Figure6.13(right) clearly demonstrates the significant performance of

the SIF2 model in the RRT experiment compared to the unsupervised baseline models not

only using four terms but at all used terms (i.e., top-25 keywords).
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As per the percentage change measure, all SIF2 improvementsover the SPBTM and the LDA

were statistically significant because they were much greater than 5.0% as shown in Tables

6.7and6.8. The two-tailed p-values of the t-test confirmed the statistical significance of the

SIF2 results as illustrated in Tables6.9and6.8.

As per the results reported earlier, we can claim in much confidence that our SIF2 model

managed to relax the SIF hypothesis. It can effectively estimate a more accurate weighting

function that measures the importance of topical terms in each relevant document. SIF2 also can

better select relevant features from a document collectionthat discuss user information needs

via the fusion of the estimate weighting function with a morerepresentative global statistic.

Therefore, the reported results support hypothesis 2.

SIF and SIF2 models managed to deal with some uncertainties when estimating the rel-

evance of topical terms in a collection of relevant documents. In the following section, we

experimentally demonstrate the effectiveness of our UR method in dealing with uncertainties in

relevant features that are discovered by various TFS modelsand techniques.

6.8.3 The Proposed UR Method

In this section, the experimental evaluation of the proposed UR method is presented. The

UR method has been introduced in Chapter4 to deal with uncertainties in relevant features

discovered by various supervised and unsupervised TFS models. Unlike the experiments of

our SIF and SIF2 models, the UR method is integrated with eachbaseline model to scale and

then re-rank its weighted relevant terms. The integration produces an improved baseline model,

called ’iModel’ (e.g., iSVM), which is experimentally examined for the IF and RRT tasks. The

iModel’s performance is measured by the seven effectiveness metrics and compared with its

original performance before the integration with the UR method. The statistical significance

tests, the percentage change and the t-test, are used to measure the improvement in the iModel

performance and verify whether it is statistically different from the original’s. If the new

performance is significantly better than the original one, then we can claim that the UR method

can reduce uncertainties and the evaluation hypothesis is valid.

All detailed results and comparisons are presented based onthe experimental task and the

type of the baseline model (i.e., supervised or unsupervised). Tables6.10, 6.12, 6.13, 6.14and

6.15as well as Figures6.16and6.14 illustrate all models results for the IF task while Table

6.11and Figure6.15show the models performance in the RRT’s experiments.
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• UR with Supervised Models

Eight supervised baseline models were used to evaluate the UR method for the IF and RRT

tasks. These models are SVM, BM25, Prob, RFD2, Rocchio, LASSO, Chi-square (χ2) and

MI. All these models adopt the low-level terms as text features except the RFD2 that uses a

combination of patterns and terms. For the IF results, the first eight rows of Table6.10shows

each model performances before and after applying the UR method. The ”improvement%”

row shows the percentage of improvement achieved by applying the UR method to the cor-

responding model’s original feature set. The table clearlyshows that the re-ranking function

of the UR method can significantly improve the performance ofthe feature set discovered by

each model.

As can be seen in Table6.10, all eight models gained significant improvements in all the

effectiveness measures. On an overall average across thesemeasures,χ2 achieved the highest

improvement of 55.446% compared to its original performance in the IF task while the

lowest improvement (only 5.931%) was obtained by the RFD2 model. LASSO recorded the

second highest improvement (50.521%) after theχ2 followed by MI (48.771%), then BM25

(27.127%), Prob (27.060%) and lastly the SVM (24.262%) in descending order. Rocchio

achieved a bit higher improvement (8.294%) than the RFD2, which makes it the second lowest

model to be improved by the UR method.

While Table6.10 showed the best results of these models using different top-k terms as

queries to the IF system, Figure6.14 shows the changes in MAP values for each model

with an incremental change in the percentage of the top-k terms starting from top-1% to

100% of the entire terms space of each collection used by the modeland averaged over

the used 50 collections. It is apparent from the figure that the re-ranked term set performs

significantly better at any percentage of terms in the original set, and usually, compared

with the original term set, requires less re-ranked terms innumbers to obtain the highest

performance. Moreover, the re-ranked terms showed significant performance stability and

adequate sensitivity to the hyperparameterk compared to the original term sets. Similar

figures for the P@20, BP, Fβ=1 and IAP measures can be found in AppendixC.

In the RRT task, all the eight models obtained significant improvements and outperformed

their original performances, as illustrated in Table6.11. The MI model achieved the highest

average improvement (8027.121%) compared to its original nDCG value. Rocchio scored the

lowest average improvement (20.876%) in the RRT task slightly proceeded by the RFD2 at



184 CHAPTER 6. EVALUATION

21.976%. These results in Table6.11were obtained using the top-4 terms from each term set

ranked by an original and improved model. However, Figure6.15shows the changes in the

nDCG measure over the first 25 terms (1 ≤ k ≤ 25) in which all improved models performed

significantly and consistently better than the originals.

The percentage of change and the t-test were also conducted in the UR method experiments

in order to verify that the gained performances of the baseline models were statistically

significant than their original ones. The percentage of change results in Tables6.10 and

6.11clearly show that all models improvements were higher than 5.0%, which implied that

all improvements were statistically different from the original performances. The t-test results

in Tables6.12and6.11confirmed the results of the percentage change. All p-valuesof all

seven measures for both IF and RRT tasks were largely less than 0.05 in the two tails of

the t-test, which indicate that all improvements were statistically significant. However, the

RFD2 model did not achieve an improvement that is higher than 5.0% on the Fβ=1 measure

(3.784% < 5.0%) in the IF results in Table6.10even though the t-test results of this measure

in Table6.12indicated the opposite as the p-value at the two tails were less than 0.05 (0.003

and 0.005, respectively). Moreover, the two-tailed p-value of the t-test did not show that the

improvement of the RFD2 on the BP measure was statistically different from the original one.

However, the one-tailed shows the opposite as the p-value (0.0372) is less than 0.05 and the

percentage of change in Table6.10indicates that it is higher than 5.0% (5.496%).

• UR with Unsupervised Models

Four unsupervised models were used in the experiments of theUR method to assess its

effectiveness in reducing uncertainties. These TFS modelsare the pattern-based PDS, the

topic-based LDA and its predecessor, the PLSA, and lastly the traditional TFIDF as a term-

based method. These models, including the UR itself, were not trained on the negative

document sets of the 50 RCV1 collections. The models’ results for the IF task are presented

in Table6.10at its last four rows. By examining these rows, we can see thatthe UR method

can significantly improve the performances of these models in all measures.

In Table6.10, PLSA achieved the highest overall average improvement of 29.604% across all

measures. The term-based TFIDF scored the second best improvement (15.990%) followed

by the LDA (14.107%) and lastly the PDS with an overall average improvement of 12.841%.

These results were the best results for each model, and they were achieved using different

top-k terms based on the model’s ability to respond to the scaling function of the UR method.
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Therefore, for a much clearer picture, Figure6.14 illustrates the response of each model

to the UR method for the entire terms space of the model measured by the MAP metric.

We can see that at each top-k% of the terms the improved model achieved much higher

performance compared to the original model and at a much smaller number of terms. Even

more, each improved model showed much performance stability and adequate sensitivity to

thek hyperparameter. While this figure shows the MAP results, similar figures for the other

effectiveness measures can be located in AppendixC.

In the RRT experiments, the last four rows of Table6.11show the results of the used unsu-

pervised models measured by the nDCG metric. It is apparent that applying the UR method

to these models made them perform very effectively comparedto their original performances

in the RRT task. TFIDF re-ranked terms scored the best average improvement of 361.903%

compared to their original performance (0.117≫ 0.025). The re-ranked topical terms of the

PLSA model also achieved significant improvement compared to its original performance

by an average of 77.771% while the improved terms of its successor, the LDA, only gained

28.903% improvement. The re-ranked terms of the PDS patterns scoredthe best nDCG result

(0.490) among all baseline models with an average improvement of 43.418% compared to the

original model’s performance. Although these results werescored using the top-4 re-ranked

terms of each model, Figure6.15shows that all the improved models performed consistently

much better than the originals at any top-k value of the first 25 words.

The percentage of change results in Tables6.10and6.11as well as the t-test results in Tables

6.12 and 6.11 strongly confirm that all the reported performances improvements of these

unsupervised models are statistically different from their original performances. As shown in

these tables, all improvement% of the percentage change test were much higher than 5.0% in

all measures. Similarly, for the t-test, all p-values of alltails were much less than 0.05.

• Best Model Versus All Models

The previous sections presented the improvement gains in both supervised and unsupervised

baseline models after applying the UR method. This section presents the results of the best-

improved model (i.e., iModel) compared to the other models for the same IF and RRT tasks.

These results are shown in Tables6.13, 6.14, 6.15and Figure6.16for all tasks.

The best performance in the IF task was scored by the improvedSVM model (i.e., iSVM)

as shown in Table6.13. Compared to the second best-improved model, the iBM25, iSVM
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Table 6.10: The performance improvements of all TFS models for the IF task after applying
the UR method compared to their original performance averaged over the first 50 collections of
the RCV1 dataset

Model P@20 BP MAP Fβ=1 IAP

SVM 0.491 0.414 0.436 0.437 0.462

iSVM 0.613 0.531 0.559 0.502 0.578

improvement% +24.847% +28.442% +28.178% +14.817% +25.025%

BM25 0.445 0.407 0.407 0.414 0.428

iBM25 0.596 0.526 0.553 0.504 0.570

improvement% +33.933% +29.238% +35.872% +21.739% +33.178%

Prob 0.464 0.395 0.414 0.421 0.438

iProb 0.593 0.515 0.542 0.499 0.559

improvement% +27.802% +30.486% +30.751% +18.467% +27.794%

RFD2 0.525 0.461 0.474 0.459 0.497

iRFD2 0.563 0.487 0.506 0.476 0.529

improvement% +7.238% +5.496% +6.598% +3.784% +6.540%

Rocchio 0.509 0.430 0.456 0.446 0.480

iRocchio 0.559 0.469 0.496 0.469 0.521

improvement% +9.823% +8.927% +8.847% +5.333% +8.541%

LASSO 0.329 0.325 0.318 0.354 0.347

iLASSO 0.565 0.467 0.495 0.468 0.516

improvement% +71.733% +43.663% +55.995% +32.296% +48.920%

χ2 0.316 0.309 0.304 0.346 0.329

iχ2 0.541 0.467 0.492 0.472 0.514

improvement% +71.203% +51.139% +62.153% +36.389% +56.348%

MI 0.328 0.319 0.309 0.344 0.341

iMI 0.545 0.458 0.476 0.460 0.498

improvement% +66.159% +43.705% +54.335% +33.544% +46.113%

PDS 0.496 0.430 0.444 0.439 0.464

iPDS 0.574 0.489 0.526 0.483 0.549

improvement% +15.726% +13.721% +18.468% +10.023% +18.319%

LDA 0.492 0.414 0.442 0.437 0.468

iLDA 0.565 0.483 0.512 0.479 0.532

improvement% +14.930% +16.605% +15.800% +9.576% +13.623%

PLSA 0.423 0.386 0.379 0.392 0.404

iPLSA 0.582 0.478 0.509 0.478 0.528

improvement% +37.589% +23.834% +34.301% +21.939% +30.693%

TFIDF 0.354 0.338 0.337 0.367 0.366

iTFIDF 0.458 0.381 0.390 0.399 0.415

improvement% +29.379% +12.723% +15.768% +8.765% +13.317%
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Figure 6.14: The changes in the MAP measure for each TFS model before and after applying
the UR method for the IF task using top 1% to 100% of the terms space of each collection
averaged over all 50 collections.
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Table 6.11: The performance improvement of all TFS models for the RRT task after applying
the UR method compared to their original performance averaged over the first 50 collections of
the RCV1 dataset

Model nDCG@4 improvement% T-Test p-value

SVM 0.058
+621.469%

One-Tailed 5.882E-13

iSVM 0.422 Two-Tailed 1.176E-12

BM25 0.083
+321.618%

One-Tailed 3.220E-09

iBM25 0.351 Two-Tailed 6.440E-09

Prob 0.060
+470.657%

One-Tailed 7.073E-10

iProb 0.345 Two-Tailed 1.415E-09

RFD2 0.355
+21.976%

One-Tailed 2.129E-04

iRFD2 0.433 Two-Tailed 4.258E-04

Rocchio 0.330
+20.876%

One-Tailed 2.983E-04

iRocchio 0.399 Two-Tailed 5.966E-04

LASSO 0.007
+5680.761%

One-Tailed 2.186E-14

iLASSO 0.428 Two-Tailed 4.372E-14

χ2 0.009
+3251.463%

One-Tailed 9.265E-10

iχ2 0.315 Two-Tailed 1.853E-09

MI 0.004
+8027.121%

One-Tailed 2.511E-13

iMI 0.329 Two-Tailed 5.021E-13

PDS 0.342
+43.418%

One-Tailed 2.298E-05

iPDS 0.490 Two-Tailed 4.596E-05

LDA 0.356
+28.903%

One-Tailed 9.279E-05

iLDA 0.459 Two-Tailed 1.856E-04

PLSA 0.235
+77.771%

One-Tailed 2.070E-05

iPLSA 0.418 Two-Tailed 4.140E-05

TFIDF 0.025
+361.903%

One-Tailed 1.014E-04

iTFIDF 0.117 Two-Tailed 2.029E-04
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Figure 6.15: The changes in the nDCG@k measure for each TFS model before and after
applying the UR method for the RRT task using the top 25 terms (1 ≤ k ≤ 25) averaged
over the 50 human-assessed collections of the RCV1 dataset.
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Table 6.12: The t-test p-values for each TFS model in comparison with its improved version
after applying the UR method for the IF task results in Table6.10

Model Tail(s) P@20 BP MAP Fβ=1 IAP

SVM
One 2.275E-04 5.950E-06 1.509E-06 5.172E-06 7.557E-07

Two 4.550E-04 1.190E-05 3.018E-06 1.034E-05 1.511E-06

BM25
One 1.098E-07 1.654E-09 1.258E-10 1.157E-10 4.135E-11

Two 2.195E-07 3.307E-09 2.517E-10 2.313E-10 8.270E-11

Prob
One 7.169E-06 3.123E-09 1.799E-09 3.145E-09 5.905E-10

Two 1.434E-05 6.246E-09 3.598E-09 6.290E-09 1.181E-09

RFD2

One 1.087E-03 3.723E-02 3.128E-03 2.524E-03 1.457E-03

Two 2.174E-03 7.446E-02 6.257E-03 5.049E-03 2.913E-03

Rocchio
One 1.576E-03 2.052E-03 1.270E-04 5.256E-04 6.461E-05

Two 3.153E-03 4.104E-03 2.539E-04 1.051E-03 1.292E-04

LASSO
One 1.610E-09 4.341E-08 1.115E-10 9.176E-10 1.284E-10

Two 3.220E-09 8.683E-08 2.230E-10 1.835E-09 2.568E-10

χ2
One 1.116E-08 5.550E-10 4.502E-12 6.049E-11 3.737E-12

Two 2.231E-08 1.110E-09 9.004E-12 1.210E-10 7.474E-12

MI
One 8.130E-09 1.417E-08 6.982E-10 1.754E-09 1.128E-09

Two 1.626E-08 2.834E-08 1.396E-09 3.507E-09 2.256E-09

PDS
One 7.058E-03 1.506E-02 1.333E-04 4.095E-04 2.691E-05

Two 1.412E-02 3.012E-02 2.666E-04 8.190E-04 5.382E-05

LDA
One 1.867E-03 7.017E-06 2.513E-06 1.842E-06 3.113E-06

Two 3.734E-03 1.403E-05 5.027E-06 3.684E-06 6.225E-06

PLSA
One 3.329E-07 5.528E-06 2.352E-08 3.542E-08 2.754E-08

Two 6.657E-07 1.106E-05 4.705E-08 7.085E-08 5.508E-08

TFIDF
One 1.143E-05 1.762E-03 2.549E-05 3.482E-05 4.150E-05

Two 2.286E-05 3.524E-03 5.098E-05 6.964E-05 8.299E-05

Table 6.13: The results of the improved TFS models for the IF task compared to the result of
the best improved model (i.e., iSVM)

Model P@20 BP MAP Fβ=1 IAP

iSVM 0.613 0.531 0.559 0.502 0.578

iBM25 0.596 0.526 0.553 0.504 0.570

iProb 0.593 0.515 0.542 0.499 0.559

iPDS 0.574 0.489 0.526 0.483 0.549

iLDA 0.565 0.483 0.512 0.479 0.532

iPLSA 0.582 0.478 0.509 0.478 0.528

iRFD2 0.563 0.487 0.506 0.476 0.529

iRocchio 0.559 0.469 0.496 0.469 0.521

iLASSO 0.565 0.467 0.495 0.468 0.516

iχ2 0.541 0.467 0.492 0.472 0.514

iMI 0.545 0.458 0.476 0.460 0.498

iTFIDF 0.458 0.381 0.390 0.399 0.415

improvement% +2.852% +0.976% +1.215% −0.440% +1.419%
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Table 6.14: The results of iSVM model for the IF task compared to other TFS models as
baselines (grouped as supervised and unsupervised)

Model P@20 BP MAP Fβ=1 IAP

iSVM 0.613 0.531 0.559 0.502 0.578

RFD2 0.525 0.461 0.474 0.459 0.497

Rocchio 0.509 0.430 0.456 0.446 0.480

Prob 0.464 0.395 0.414 0.421 0.438

BM25 0.445 0.407 0.407 0.414 0.428

LASSO 0.329 0.325 0.318 0.354 0.347

MI 0.328 0.319 0.309 0.344 0.341

χ2 0.316 0.309 0.304 0.346 0.329

improvement% +16.762% +15.154% +17.875% +9.231% +16.443%

PDS 0.496 0.430 0.444 0.439 0.464

LDA 0.492 0.414 0.442 0.437 0.468

PLSA 0.423 0.386 0.379 0.392 0.404

TFIDF 0.354 0.338 0.337 0.367 0.366

improvement% +23.589% +23.488% +25.901% +14.351% +24.569%
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Figure 6.16: The 11-point result of the iSVM model for the IF task in comparison with other
TFS models (left) and iSVM compared to other improved models(right) all averaged over the
first 50 collections of the RCV1 dataset.
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Table 6.15: The improved TFS models results for the RRT task compared tothe result of the
best improved model (i.e., iPDS)

Model nDCG@4 improvement%

iPDS 0.490 0%

iLDA 0.459 +6.754%

iRFD2 0.433 +13.164%

iLASSO 0.428 +14.486%

iSVM 0.422 +16.114%

iPLSA 0.418 +17.225%

iRocchio 0.399 +22.807%

iBM25 0.351 +39.601%

iProb 0.345 +42.029%

iMI 0.329 +48.936%

iχ2 0.315 +55.556%

iTFIDF 0.117 +318.803%

achieved an overall average improvement of 1.204% nearly in all measures. iSVM scored

its highest average improvement on the P@20 measure while its lowest was−0.440% on

the Fβ=1 metric. These improvements indicate that iSVM performanceis not significantly

different from the iBM25 in IF. Figure6.16 (right) confirms this conclusion as these two

models performed similarly well in IF. In the RRT task, the iPDS model achieved the best

result of 0.490 on the nDCG measure, as illustrated in Table6.15, with average improvements

of 6.754% and 13.164% compared to the iLDA and iRFD2, respectively.

Table6.14 and Figure6.16 (left) compare the performance of iSVM with all the baseline

models. The improvement% at the bottom of Table6.14shows the percentage of improve-

ment achieved by iSVM against the best-supervised baselinemodel, RFD2, and the best-

unsupervised baseline model, PDS. The iSVM model outperforms all models in all five mea-

sures. The improvement of iSVM against the RFD2 model is from a maximum of 17.875%

to a minimum of 9.231% in all measures. The iSVM model also outperformed the PDS

by a maximum improvement of 25.901% and a minimum of 14.351%. The performance

improvements against the most important measure for the IF system, MAP, are 17.875%

and 25.901% compared to RFD2 and PDS, respectively. Generally, iSVM achieved average

improvements of 15.093% and 22.380% in all measures against RFD2 and PDS, respectively.

The interpolated precision results of 11 standard recall levels in Figure6.16(left) show that

iSVM consistently outperforms any baseline models.
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Based on all results presented in previous sections, we can conclude that when our UR

method is applied to suitable relevant feature discovery model, the performance can be sig-

nificantly better than existing models. Therefore, all these results support our hypothesis that

paragraph relevance can effectively reduce uncertaintiesin relevant feature space.

Apart from the effectiveness of SIF, SIF2 and the UR method sofar, they (1) cannot deal

with the problem of unbalanced relevant topics in order to select the most relevant features.

Also, as they are unsupervised, they (2) cannot select relevant features that frequently occur

in negative documents. In the following sections, the results of the proposed USIF and SSIF

frameworks will be presented. USIF was developed to addressthe first problem while SSIF

was proposed to deal with the second problem. Both frameworks make use of SIF and the UR

methods in different ways to deal with uncertainties inherited in relevance feedback.

6.8.4 The Proposed USIF Framework

USIF results for the IF testing system are illustrated in Table 6.16and Figure6.17(left) and

compared to the results of different baseline models for thesame task. The baseline models are

grouped based on the fusion strategy they use as either earlyor late or hybrid. Table6.17and

Figure6.17(right) show USIF results for the RRT task including the baselines. The percentage

change and the t-test results are presented in Tables6.16, 6.18and6.17showing the statistical

significance of USIF performance in both experimental tasksagainst the best baseline models.

More evaluation details are described below.

• USIF Versus Early Fusion Models

USIF performance for IF was compared to Rocchio, SVM and BM25as early fusion-based

models. Unlike USIF, they are supervised and use low-level terms. Table6.16shows these

models performances, including USIF, in the upper part of the table measured by the five

standard metrics; P@20, BP, MAP, Fβ=1 and IAP. The improvement% row at the bottom of

this part shows the percentage of improvement achieved by the USIF against the best model

(i.e., Rocchio) among all the other baseline models in that part. Figure6.17(left) illustrates

the performance of USIF and these baseline models for the same IF task measured by the

11-point metric.

It is apparent from the first part of Table6.16and Figure6.17that the USIF consistently per-

forms the best among all these early-fusion models. It outperformed Rocchio’s performance

by an average improvement of 18.611% across all measures with a maximum improvement
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of 21.022% on P@20 and a minimum of 12.290% on Fβ=1. Moreover, USIF was significantly

better than Rocchio on the 11-point measure, as illustratedin Figure6.17(left). For the RRT

task, our framework scored an average of 0.502 on nDCG@4 thatindicates that USIF was

significantly better than Rocchio by an average improvementof 52.112% as shown in Table

6.17.

USIF’s score on the nDCG@4 measure is the best score achievedamong all TFS models

used in this research, including our proposed works. While the score was achieved using four

terms discovered by USIF, Figure6.17 (right) shows that our framework was consistently

better than all baseline models, including Rocchio. All USIF improvements were statistically

significant compared to the baselines as confirmed by the percentage change and t-test results

in Tables6.16, 6.17and6.18. USIF improvements were much higher than 5.0% and their

t-test p-values were largely less than 0.05 in both tails of the test.

Table 6.16: The USIF results for the IF task compared to the baselines (grouped based on the
fusion strategy they use to early, late and hybrid fusion models) for all measures averaged over
the first 50 document collections of the RCV1 dataset

Model P@20 BP MAP Fβ=1 IAP

USIF 0.616 0.518 0.550 0.500 0.571

Rocchio 0.509 0.430 0.456 0.446 0.480

SVM 0.491 0.414 0.436 0.437 0.462

BM25 0.445 0.407 0.407 0.414 0.428

improvement% +21.022% +20.285% +20.638% +12.290% +18.822%

LDA 0.492 0.414 0.442 0.437 0.468

SCSP 0.480 0.407 0.420 0.423 0.442

TNG 0.447 0.360 0.372 0.386 0.394

LdaConcept 0.335 0.329 0.326 0.352 0.357

improvement% +25.305% +25.063% +24.403% +14.428% +21.859%

RFD2 0.561 0.473 0.493 0.470 0.514

PDS 0.496 0.430 0.444 0.439 0.464

MP 0.426 0.392 0.393 0.409 0.421

improvement% +9.804% +9.506% +11.477% +6.504% +11.110%

• USIF Versus Late Fusion Models

Four baseline models were selected to represent this category. They are the supervised

pattern-based SCSP model and three unsupervised models, which includes the topic-based

LDA, the topical phrase-based TNG and the topical concept-based LdaConcept. The second

part of Table6.16 shows the IF results of these baseline models in descending order and
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Figure 6.17: The 11-point results for IF (left) and the nDCG@k results for RRT (right) of USIF
in comparison with baselines averaged over the first 50 collections of the RCV1 dataset.

Table 6.17: The USIF results for the RRT task including the percentage change and the t-test
p-value in comparison with some of the baselines averaged over the first 50 collections of the
RCV1 dataset

Model nDCG@4 improvement% p-value

USIF 0.502 0% N/A

LDA 0.356 +40.788% 4.486E-06

RFD2 0.355 +41.371% 3.009E-06

PDS 0.342 +46.726% 9.198E-06

Rocchio 0.330 +52.112% 4.717E-07

SVM 0.058 +758.720% 2.288E-14

Table 6.18: The t-test p-values of the best baseline model in each category in comparison with
the USIF framework for the IF task tesults in Table6.16

Model Tail(s) P@20 BP MAP Fβ=1 IAP

Rocchio
One 1.594E-06 1.603E-05 9.837E-07 5.877E-06 7.206E-07

Two 3.188E-06 3.205E-05 1.967E-06 1.175E-05 1.441E-06

LDA
One 1.901E-05 1.783E-08 2.999E-08 1.534E-07 7.729E-09

Two 3.801E-05 3.567E-08 5.999E-08 3.068E-07 1.546E-08

RFD2

One 2.458E-02 7.596E-03 1.528E-03 3.381E-03 6.739E-04

Two 4.916E-02 1.519E-02 3.056E-03 6.761E-03 1.348E-03
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USIF was compared to the best model; the LDA. The performanceof USIF is significantly

better than the performance of LDA by an overall average improvement of 22.212% across all

measures. The performance improvement by USIF is from an average minimum of 14.428%

on the Fβ=1 measure to a maximum of 25.305% when compared with LDA. The 11-point

results in Figure6.17show that the performance of USIF is consistently better than the LDA.

In the RRT experiment, Table6.17shows that USIF performance was superior to the LDA

by an average improvement of 40.788% on the nDCG@4 measure, and Figure6.17(right)

confirms the superiority of USIF at any number of terms ranging from the top-1 to top-25

keywords. All USIF improvements compared to the baselines were not random as verified

by the statistical significance tests. The percentage change measure and the t-test results in

Tables6.16, 6.17and6.18show that all improvements in USIF performance were statistically

different from the baselines as they were much higher than 5.0%. The two tails t-test confirm

the results of the percentage change as all p-values were significantly less than 0.05.

• USIF Versus Hybrid Fusion Models

The last part of Table6.16shows the IF experimental results of the USIF framework compared

to three hybrid fusion-based baseline models. These modelsfuse high-level patterns with

low-level terms, and they are the supervised RFD2 model, and the unsupervised PDS and MP

models. USIF performances were compared against RFD2, as the best model in the group.

USIF outperformed RFD2 by an overall average improvement of 9.680% in all measures. The

maximum average improvement achieved by USIF was 11.477% on the MAP metric, and the

minimum was 6.504% on the Fβ=1 measure. Moreover, Figure6.17(left) shows that USIF

continues to perform significantly better than RFD2 on the 11-point metric.

USIF was superior to RFD2 in discovering relevant terms, as illustrated in Table6.17. Our

framework achieved an average improvement of 41.371% compared to the RFD2 and consis-

tently superior not only using four terms but at any number ofthe first 25 words as can be

seen in Figure6.17(right). USIF achievements against RFD2 in both IF and RRT tasks were

also statistically verified using the percentage of change and t-test to make sure that they did

not occur randomly. All USIF improvements were higher than 5.0% in all seven measures as

illustrated in Tables6.16and6.17. The two tails t-test results in Tables6.18and6.17strongly

confirm the results of the percentage of change as all p-values were much less than 0.05.

As per the results presented earlier, we have much confidencein claiming that the USIF
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framework can discover relevant features from a set of unbalanced latent topics that discuss

user information preferences. USIF managed to effectivelyselect and weight these features

using a combination of unsupervised learning algorithms and representative global statistics.

Therefore, the experimental results discussed above support hypothesis 4.

While USIF provided a comprehensive, unsupervised solution for discovering relevant fea-

tures from a set of positive documents, it still cannot deal with relevant features that also

frequently appear in negative documents. The following section presents the results of our

SSIF framework that effectively addresses the limitation of USIF.

6.8.5 The Proposed SSIF Framework

The performances of SSIF in IF and RRT experiments are presented in this section and com-

pared to different state-of-the-art baseline models. We grouped supervised models together,

including SSIF for easier comparison. Also, we group other baseline models based on the

learning or mining algorithms they use for better analysis.The results of SSIF and the baseline

models for IF are given in Table6.19 and Figure6.18 (left) while their results in RRT are

illustrated in Table6.20and Figure6.18 (right). We also conducted two statistical tests; the

percentage change and t-test, to measure and verify how significant the SSIF improvements

compared to the baselines. These tests results are presented in Tables6.19, 6.20and6.21. It is

apparent from all these tables and figures that the SSIF consistently performs the best among

all baseline models. More detailed comparisons are given below in the following sections.

• Comparison with Supervised Learning

For IF, the first part of Table6.19 shows that the SSIF outperformed all other supervised

learning-based baseline models in all five measures. The improvement% in this part shows

that SSIF, which combines both supervised and unsupervisedlearning, consistently achieved

the best performance when compared with baseline models that are based on supervised

learning. The improvement of SSIF against the second best model, RFD2, was from a

minimum of 9.519% to a maximum of 16.880% on Fβ=1 and MAP measures, respectively.

The performance improvement against the most important measure of IF system, MAP, was

16.880%, and the average improvement in all five measures was 14.108%. The 11-point

results in Figure6.18(left) clearly shows that SSIF performance was significantly better than

RFD2 and all other models.

Table6.20shows SSIF and other suitable models performances in the RRTtask using the first
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top four terms. SSIF scored 0.420 on the nDCG measure with an average improvement of

18.292% compared to RFD2. For the same task, SSIF continued to perform consistently

better than RFD2 at differentk values, as shown in Figure6.18 (right). Moreover, the

percentage change results in Tables6.19and6.20show that all SSIF improvements against

RFD2 were statistically significant as they were largely higher than 5.0% in all measures.

T-test results in Tables6.21 and 6.20 further confirm the statistical significance of SSIF

performance compared to RFD2. All p-values were much less than 0.05 in all measures

except for the nDCG@k. It was not statistically different from RFD2 result (0.113 ≮ 0.05).

Table 6.19: The SSIF results for the IF task compared to the baselines for all measures averaged
over the first 50 document collections of the RCV1 dataset

Model P@20 BP MAP Fβ=1 IAP

SSIF 0.631 0.550 0.576 0.515 0.592

RFD2 0.561 0.473 0.493 0.470 0.514

SVM 0.491 0.414 0.436 0.437 0.462

BM25 0.445 0.407 0.407 0.414 0.428

improvement% +12.478% +16.405% +16.880% +9.519% +15.256%

LDA 0.492 0.414 0.442 0.437 0.468

PLSA 0.423 0.386 0.379 0.392 0.404

TNG 0.447 0.360 0.372 0.386 0.394

improvement% +28.356% +32.942% +30.433% +17.667% +26.406%

PDS 0.496 0.430 0.444 0.439 0.464

SCSP 0.480 0.407 0.420 0.423 0.442

PCM 0.437 0.372 0.381 0.397 0.406

n-grams 0.401 0.342 0.361 0.386 0.384

improvement% +27.218% +27.863% +29.893% +17.174% +27.549%

MPBTM 0.552 0.466 0.477 0.459 0.496

SPBTM 0.527 0.448 0.456 0.445 0.478

PBTM-FP 0.470 0.402 0.427 0.423 0.449

PBTM-FCP 0.489 0.420 0.423 0.422 0.447

improvement% +14.312% +18.058% +20.762% +12.218% +19.341%

• Comparison with Topic Modelling

The performance of the topic modelling-based baseline models in IF are shown in the second

part of Table6.19. The best model in this part is LDA. The performance of SSIF was sig-

nificantly better than the performance of topic modelling-based baselines. The performance

improvement by SSIF was from a minimum average of 17.667% to a maximum of 32.9%

when compared with LDA based on the Fβ=1 and BP measures, respectively. SSIF maintained

an overall average improvement of 27.161% across all measures. The 11-point result in Figure

6.18(left) confirms SSIF superiority over LDA and other topic-based models. In RRT, SSIF
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Figure 6.18: The 11-point results for IF (left) and the nDCG@k results for RRT (right) of SSIF
in comparison with baselines averaged over the first 50 collections of the RCV1 dataset.

Table 6.20: The SSIF results for the RRT task including the percentage change and the t-test
p-value in comparison with some of the baselines averaged over the first 50 collections of the
RCV1 dataset

Model nDCG@4 improvement% p-value

SSIF 0.420 0% N/A

LDA 0.356 +17.978% 1.367E-01

RFD2 0.355 +18.292% 1.133E-01

PDS 0.342 +22.807% 8.610E-02

BM25 0.083 +403.974% 4.187E-10

SVM 0.058 +618.533% 3.321E-11

Table 6.21: The t-test p-values of the best baseline model in each category in comparison with
the SSIF framework for the IF task results in Table6.19

Model Tail(s) P@20 BP MAP Fβ=1 IAP

RFD2

One 5.463E-03 3.574E-04 2.866E-04 6.626E-04 2.347E-04

Two 1.093E-02 7.148E-04 5.733E-04 1.325E-03 4.693E-04

LDA
One 1.095E-05 1.132E-07 1.857E-07 5.673E-07 2.076E-07

Two 2.191E-05 2.264E-07 3.715E-07 1.135E-06 4.153E-07

PDS
One 1.787E-06 4.254E-06 3.663E-07 8.594E-07 2.045E-07

Two 3.574E-06 8.509E-06 7.325E-07 1.719E-06 4.089E-07

MPBTM
One 3.208E-03 7.582E-04 7.677E-05 2.075E-04 5.350E-05

Two 6.417E-03 1.516E-03 1.535E-04 4.149E-04 1.070E-04
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achieved better performance than LDA with an average improvement of 17.978% over LDA

performance on the nDCG@4 measure. Figure6.18(right) also illustrates SSIF performance

in RRT over LDA using the top 25 terms ranked by both SSIF and LDA.

SSIF improvements in all measures for the experimental taskwere statistically significant

from the LDA as measured by the percentage change test. The percentage change results in

Tables6.19and6.20clearly indicate that SSIF improvements were much higher than 5.0%.

The t-test confirmed the results of the percentage change. The p-values of both tails of the

test show that SSIF results were statistically different from the LDA as their p-values were

much less than 0.05, as illustrated in Tables6.21and6.20. However, this was not the case

with the nDCG@4 result because the t-test p-value of SSIF compared to LDA washigher

than 0.05 indicating that SSIF performance in RRT was not statistically significant than the

LDA’s negating the outcome of the percentage change test.

• Comparison with Pattern Mining and N-Grams

The third part of Table6.19shows the performance of pattern mining-based baseline models

in IF including the phrase-based N-Grams model. The best model in this part is PDS. The

minimum and maximum improvements achieved by the SSIF against PDS is 17.174% and

29.893% on the Fβ=1 and MAP measures, respectively. Over all measures, SSIF performance

was significantly better than PDS by an average improvement of 25.939%. The 11-point

results in Figure6.18(left) confirm the previous overall average improvement of SSIF over

the PDS model in the IF task. SSIF also continued to outperform PDS in the RRT experiment

achieving an average improvement of 22.807% over it on the nDCG@k measure, as shown

in Table6.20.

Figure6.18 (right) shows that SSIF scored better results on nDCG not only whenk=4 but

at anyk value from 1 to 25. All SSIF improvements over PDS were statistically significant

as indicated by the percentage of change measure. Tables6.19and6.20clearly show that

SSIF performance improvements in both experimental tasks were largely higher than 5.0%.

The two-tailed t-test confirmed the outcome of the percentage change. Nearly all p-values

of the two tails of the test were much less than 0.05 as can be seen in Tables6.21and6.20

except for the nDCG@4 result. Its p-value was slightly higher than 0.05 refuting the outcome

of the percentage change (22.807%), which stated that SSIF improvement was statistically

significant than PDS.
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• Comparison with Topical Pattern Mining

The last part of Table6.19shows the performance of topical pattern mining-based baseline

models. As these models combine the best of both topic modelling and pattern mining, they

outperform the models in the second part and the third part. The performances of the models

in this part are about the same as the models in the first part except for SSIF. The best-

performing model in this part is MPBTM. The improvement of SSIF against MPBTM in IF

is from a minimum of 12.218% to a maximum of 20.762% on the Fβ=1 and MAP measures,

respectively.

Across all five measures, SSIF outperformed MPBTM by an average improvement of 16.938%.

The 11-point results in Figure6.18(left) can confirm this improvement in which SSIF main-

tained its superior performance over MPBTM. All SSIF improvements against MPBTM were

statistically significant according to the percentage of change test. Its improvements were

higher than 5.0% as demonstrated by the improvement% in Table 6.19. T-test results in

Table6.21further confirm the statistical significance of SSIF improvements over the MPBTM

model. All the p-values of the test were much less than 0.05 inall measures.

Based on the experimental results of the SSIF framework presented above, we are confident

of claiming that SSIF can effectively select and weight relevant features that appear across both

positive and negative documents. Our framework managed to do that through the combina-

tion of different supervised and unsupervised learning techniques. Consequently, those results

presented earlier support hypothesis 5.

6.9 Analysis and Discussion

The previous section presented the extensive experimentalstudies that have been conducted

to assess the effectiveness of our proposed TFS models and frameworks. The experimental

results confirm the superiority of our techniques over all baseline models in both IF and RRT

tasks. In this section, we further analyse and discuss theseresults based on the effects of some

critical factors that influence the performance of our proposed models and frameworks as well

as the used baselines. These factors are linked to the use of (1) fusion strategies; (2) type of

text feature; (3) positive and/or negative feedback; and (4) global statistics. Also, the effects

of other factors such as the sophistication of the weightingfunction and the learning algorithm

are worth to be taken into consideration, especially when integrating different low-level and/or
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high-level features. A parameter-sensitivity analysis for SIF, SIF2 and UR models as well as a

more in-depth investigation for the idea of separating feature selection from feature weighting

in the proposed USIF and SSIF frameworks are also presented in this section.

6.9.1 The Proposed SIF Model

• The Effects of Feature Type

As observed from the results shown in Tables6.4 and6.5 and illustrated in Figure6.12, the

SIF model outperformed all baseline models in all measures for both IF and RRT experimental

tasks. Our SIF model achieved this superior performance through the hybrid fusion of high-

level topics and low-level terms. Adopting only individualterms, as in BM25, TFIDF and

other early fusion baseline techniques, made them performed poorly in IF compared to the late

and hybrid fusion models. We speculate that the absence of semantic information among these

terms is one of the main reasons behind the poor performance of these techniques despite the

flexibility of terms and their rich statistical information. The inferior results of both TFIDF

and BM25 in the RRT task, as illustrated in Table6.5 and the right figure of Figure6.12,

evidently confirm the negative effects of ignoring semanticinformation in relevant feature

discovery.

However, (1) the efficient employment of the statistical properties of terms by the BM25

weighting function and, more specifically, (2) the utilisation of negative feedback made BM25

significantly better than TFIDF. Also, these two factors made BM25 competitive and some-

times even better, in some measures, than some of the late (e.g., PLSA,n-grams and TNG)

and hybrid (e.g., MP) fusion-based models in the IF task, as illustrated in Table6.4. Despite

the positive effects of these factors on BM25, it still couldnot discover the relevant terms

identified by the NIST experts, which made it performed very poorly in the RRT experiment.

Table6.22shows a real example from Collection 101 of the RCV1 dataset in which BM25

could not highly rank any of these relevant terms (i.e., “Economic” and “Espionage”). There-

fore, it is clear that the absence of semantic information inearly fusion models has severely

impacted their performance in IF and most apparently in the RRT task.

The effective integration of topical features and the accurate estimation of their importance

to some representative entities in relevant documents using multiple ERS have made our SIF

model significantly better than LDA and PLSA. Both PLSA and LDA share a similar term

weighting function, but LDA is more effective than PLSA in both IF and RRT experiments, as
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shown in Tables6.4and6.5as well as in Figure6.12. It might be due to its underline Bayesian

generative algorithm that can estimate more semantically related topical terms. All these

models, including our SIF, utilise the semantic information that latent topics provide, and

exploit the multi-topic assumption when representing relevant documents that discuss user

information needs. However, the ERS-based weighting function of our SIF model assigns

more accurate weights to topical terms than the LDA’s. This claim can be testified by the

performance of SIF in RRT, as illustrated in Table6.5, and also can be seen clearly in Table

6.22in which only SIF could automatically discover the human-identified relevant terms.

The adverse effects of (1) ignoring the multiple topics assumption in representing relevant

documents; (2) the too strict constraint of the sequential appearance of terms in these doc-

uments; and (3) the ineffective term weighting functions have hindered the performance

of phrase-, pattern-, and the hybrid feature-based models despite the semantic information

in their high-level features. The negative effects of thesethree factors can be seen on the

performance of then-grams model, as illustrated in Table6.4 and Figure6.12. While the

pattern-based MP and PDS models managed to solve the second factor, not dealing with the

effects of the first and the third factors are clearly limiting their performance. However, the

PDS model demonstrated significant performance compared tomany baselines because it

integrates the semantics of patterns with the statistical properties of low-level terms. It allows

PDS to rank some relevant terms, as shown in Table6.22, and be competitive with LDA.

The topicaln-grams (TNG) model resolves the first factor, but clearly, not considering the

effects of the second and the third factors badly influenced its performance. Despite dealing

with the effects of the first two factors, the performance of the topical pattern-based models

(i.e., PBTM-FP and PBTM-FCP) obviously impacted by the imprecision of their weighting

functions. The proposed SIF model significantly outperformed all these models in all exper-

imental tasks simply because SIF (1) represented the paragraphs of relevant documents with

multiple topics; (2) relaxed the constraint of the sequential appearance of topical terms and

(3) accurate estimated of the weight of these terms in the relevant documents that discuss

what the user needs.

• The Effects of Global Statistics

The proposed SIF model exploits the statistical propertiesof low-level terms, represented

by the document frequencydf , to estimate the relevance of topical terms at the collection
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Table 6.22: The top-10 stemmed terms from collection 101 of the RCV1 dataset, which is about
’economic espionage’, discovered and ranked by different TFS models in which only SIF was
able to select both these relevant features

SIF LDA BM25 PDS

Term Weight Term Weight Term Weight Term Weight

vw 0.423 piech 0.245 secret 0.130 vw 0.617

espionag 0.236 carmak 0.194 technolog 0.112 bill 0.343

piech 0.225 bill 0.185 crime 0.112 piech 0.340

year 0.221 feder 0.185 pass 0.112 men 0.256

bill 0.221 compani 0.180 fbi 0.098 econom 0.238

compani 0.216 men 0.171 bill 0.098 car 0.152

secret 0.194 photograph 0.145 cia 0.098 photograph 0.150

econom 0.176 camera 0.143 law 0.098 carmak 0.150

carmak 0.163 volkswagen 0.141 softwar 0.098 camera 0.134

feder 0.163 year 0.139 comput 0.098 volkswagen 0.125

level. However, several statistics can reveal the global importance of terms in a collection

of relevant documents. Therefore, further experiments were conducted to measure the global

informativeness of paragraph frequencypf and term frequencytf , as raw statistics of the

individual terms in the collection. The popular hand-crafted statistics, namely the inverse-

document frequencyidf and the term frequency-inverse documenttfidf , were also used in

these experiments to measure their usability compared topf andtf . Moreover, the experi-

ments show how the inflexibility (e.g., low-frequency problem) of high-level features spaces

(e.g., phrase space, pattern space, topic space, etc.) can be efficiently and effectively solved

through the utilisation of the various statistics of the term space.

The experiments were conducted on the same 50 collections ofthe RCV1 dataset and for

the same IF and RRT tasks. Table6.23and Figure6.19show the best results of the effects

of used global statistics when integrated with SIF’s weighting function (Equation3.3). For

IF, df remains the most representative global statistic when combined with SIF’s equation.

This combination scored an overall average improvement of 4.724% in all measures with a

minimum improvement of 2.976% and a maximum of 5.587% in Fβ=1 and P@20 measures,

respectively, compared to the combination of the same equation with the second-best statistic,

the paragraph frequencypf . The 11-point result exhibited on the left figure of Figure6.19

shows that the combination withdf obtained better precision scores than the combinationpf

at most of the 11-recall levels. All these improvements wereachieved using only the top-

k = 10 terms, as shown in Table6.23, where the combination withpf required the next

33 terms (i.e., requires three times more terms thandf ) to score its best results in IF. In
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the RRT task, the same combination ofdf scored 0.457 on the nDCG@4 measure with an

average improvement of 16.503% overpf ’s score (0.392) on the same measure. While the

improvement obtained using top-4 terms, the right figure of Figure6.19 illustrates that the

combination of SIF’s generalised weighting function anddf is consistently better than the

combination of the same equation withpf .

As seen from Table6.23 and Figure6.19, both pf and tf performed comparably similar

when linearly integrated with SIF’s weighing function. However, they were less effective in

revealing the global importance of relevant topical terms compared todf as they might appear

unevenly across the documents in the collection. The hand-crafted statistics,tfidf andidf ,

performed very poorly on all measures for all tasks. Their performance was expected because

they no longer resembled the original terms frequency, and were developed based on some

assumptions to suit specific needs. Therefore, raw statistics of terms are more representative

and can be used to resolve some frequency-based problems in high-level features.

Table 6.23: The IF and RRT results of SIF’s main weighting function (Equation3.3) integrated
with different global statistics of low-level terms averaged over the 50 collections of the RCV1
dataset

P@20 BP MAP Fβ=1 IAP nDCG@4 k

pr(t)× df(t) 0.567 0.475 0.500 0.473 0.527 0.457 10

pr(t)× pf(t) 0.537 0.452 0.478 0.459 0.500 0.392 43

pr(t)× tf(t) 0.520 0.447 0.475 0.458 0.499 0.372 44

pr(t)× tfidf(t) 0.406 0.357 0.361 0.380 0.390 0.069 49

pr(t)× idf(t) 0.352 0.335 0.328 0.361 0.357 0.027 48

improvement% +5.587% +5.075% +4.684% +2.976% +5.297% +16.503%

• Parameters Sensitivity

SIF uses two experimental parameters. The first is the numberof LDA topics V and, as a

hyperparameter, it can be difficult to be optimally set before training. The second parameter

is the number of top relevant weighted termsk, which are used as a query to both IF and RRT

testing system. Similar toV , it is challenging to know the optimal value fork from the data.

Therefore, and to investigate the sensitivity of SIF to these two parameters, we conducted

extensive experiments on the same RCV1 collections using all performance measures for the

same experimental tasks.

The results of these experiments are presented in Figures6.20and6.21. For IF, and using

different values forV and k, our SIF model showed a very stable performance in all six
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Figure 6.19: The results of 11-point measure (left) and nDCG at top-25 terms (right) of SIF’s
generalised weighting function (Equation3.3) with other global statistics of terms averaged
over the first 50 collections of the RCV1 dataset.

measures at any number of topics, as illustrated in the left figures of Figures6.20and6.21.

The model also demonstrated a stable performance after the first top ten terms (k = 10) in all

measures except some slight fluctuations on the P@20 metric,as shown in the right figure of

Figure6.20. SIF also maintained the same stable performance in the RRT task. This can be

seen in the right figure of Figure6.21where SIF obtained almost identical performance at any

given value of theV andk parameters. Overall, despite the challenge of specifying optimal

values for theV andk parameters, our SIF model is insensitive to these parameters, which

gives it another significant advantage over many state-of-the-art TFS models of relevance

discovery that might be sensitive to their experimental parameters.

6.9.2 The Proposed SIF2 Model

• The Effects of Fusion Strategy

The SIF model results that were presented and discussed in Sections6.8.1and6.9.1demon-

strated the merits of adopting the hybrid fusion of high-level topics and low-level terms.

The SIF2 model is regarded as an improved version of SIF. It continues to adhere to the

same fusion strategy of SIF. However, SIF2 relaxes the constraint of SIF’s assumption, which

states that only one generalised score should be estimated and assigned to identical topical

terms in each relevant document in the collection. This assumption means that each topical

term in equally important to every document, which, in reality, might not be the case. To

relax such assumption, SIF2 assumes that each topical term has specific local significance
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Figure 6.20: The SIF sensitivity to the number of LDA topics (left) and top-k terms (right) for
the IF experiments.
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Figure 6.21: The SIF 11-point results for IF (left) and the SIF nDCG@k results for RRT (right)
over different number of LDA topics.
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at each document and has another global one at the collectionlevel. The two significances

must be integrated to represent the relevance of the term to the user information needs. The

experimental results of SIF2 presented in Section6.8.2clearly demonstrated the superiority of

SIF2 over the baseline models. Also, the comparison betweenSIF2 and SIF results described

in Section6.9.6verified the validity of SIF2’s assumption.

By adapting some of SIF’s fusion steps and estimating more accurate weights for topical

terms, SIF2 significantly outperformed both the supervisedSVM and the unsupervised SPBTM

models, as the best baseline TFS models in their categories.Despite the soundness of its

mathematical foundation and the utilisation of negative documents, which made the SVM

model performs better than many baselines, the model continues to show insufficient perfor-

mance in selecting features for relevance discovery in accordance with the different studies

in [Gao et al., 2015, Li et al., 2015, 2010, 2012, Zhong et al., 2012]. As an adherent of the

early fusion strategy, the absence of semantics among the low-level terms used to represent

documents for SVM apparently affected its performance. Thelate fusion-based SPBTM

model was the best among the baselines due to the exploitation of the semantic information

in the integrated representation of topics and patterns. However, the challenge of selecting

the most important patterns extracted from relevant documents and ignoring the terms-topics

distributions in these documents clearly hindered the SPBTM’s performance compared to our

SIF2 model. We continue to argue that assuming that only a particular group of patterns are

important and ignoring others will lead to the loss of some relevant features.

Representing the paragraphs of relevant documents by multiple topics has made both SIF

and SIF2 models performing effectively compared to those models that do not consider the

topics in the paragraphs. Measuring the relevance of topical terms at the paragraph-level

even improved the performance of LDA (LdaPara) in IF and RRT tasks compared to its

performance at the document-level (LdaDoc), as can be seen in Tables6.7 and6.8 as well

as in Figure6.13. However, both, LdaPara and LdaDoc still could not estimatemore accurate

weights that reveal the relevance of topical terms for the reasons discussed previously. In the

case of our SIF model, SIF2 revised SIF’s weighting functionand developed a more effective

one that can go deeper into the structure of each relevant document and assign more accurate

weights to topical terms. For example, in Table6.24, it can be seen that only the SIF, SIF2 and

PDS models can discover and highly rank human-identified relevant terms from Collection

101 of the RCV1 dataset.
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Moreover, only our SIF and SIF2 models could discover the term ’espionage’ in which we

argue that it is more topically specific and representative of the main topic of interest in

Collection 101 than the word ’economic’. However, while both SIF and SIF2 ranked the word

’espionage’ as the second most relevant topical term, SIF2 estimated its relevance two times

as much as SIF’s (0.472 ≫ 0.236). As we mentioned in Section6.4, we believe that these

two words are not the only relevant terms in the collection, but to make the study simple and

reliable, we only used those words identified by the NIST domain experts. Nevertheless, we

argue that the top-10 terms of SIF2, shown in Table6.24, are more meaningful and specifically

relevant than SIFs. For example, the word ’secret’ is more relevant to the collection topic than

’vw’ (acronym of Volkswagen), which is highly ranked by SIF. Also, we can see that SIF2

was able to underestimate some general and frequent terms like ’year’ and ’bill ’, and discover

more specific ones to the context of ”Economic Espionage”, such as ’trade’ and ’crime’.

Table 6.24: The top-10 stemmed terms from collection 101 of the RCV1 dataset, which is about
’economic espionage’, discovered and ranked by different TFS models in which only SIF was
able to select both these relevant features

SIF2 SIF LdaPara SVM PDS

Term Weight Term Weight Term Weight Term Weight Term Weight

secret 0.709 vw 0.423 piech 0.245 vw 0.419 vw 0.617

espionag 0.472 espionag 0.236 carmak 0.194 piech 0.239 bill 0.343

compani 0.278 piech 0.225 bill 0.185 men 0.218 piech 0.340

trade 0.185 year 0.221 feder 0.185 bill 0.199 men 0.256

crime 0.179 bill 0.221 compani 0.180 photograph 0.175 econom 0.238

feder 0.164 compani 0.216 men 0.171 carmak 0.174 car 0.152

piech 0.139 secret 0.194 photograph 0.145 return 0.153 photograph 0.150

repres 0.121 econom 0.176 camera 0.143 volkswagen 0.130 carmak 0.150

volkswagen 0.108 carmak 0.163 volkswagen 0.141 gm 0.127 camera 0.134

pass 0.092 feder 0.163 year 0.139 camera 0.125 volkswagen 0.125

• The Effects of Combining Local and Global Statistics

Unlike SIF, the SIF2 model considered the local statistics of a termt in each document using

its paragraph frequency distribution. The paragraph distribution used to revise the term-topic

distribution, which is globally estimated from the entire collection. By taking local details

of topical terms into consideration, our SIF model effectively managed the hybrid fusion of

high-level topics with both local and global statistics of low-level terms. Like the SIF model,

SIF2 continues to use document frequencydf to reveal the global relevance of the revised

topical terms. Therefore, and, as other possible global statistics can be used for the same

purpose ofdf , we conducted the same experiments of the effects of global statistics on the

SIF model, which are discussed in Section6.9.1, on Equation4.4 of SIF2. For simplicity,
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we refer to the equation assrD+(t) instead of
∑

t∈di,di∈D+

srdi(t) in the table and figures of the

results.

The experimental results presented in Table6.25and Figure6.22clearly show thatdf remains

the most informative statistic for the global relevance of topical terms. In the IF task, and

compared to the second-best results, the integration between Equation4.4and thedf obtained

an overall average improvement of 3.332% in all measures with a minimum of 2.196% and a

maximum of 4.853% on Fβ=1 and P@20, respectively. The 11-point result in the left figure of

Figure6.22confirms the results in Table6.25in which the combination withdf still perform

slightly better than other combinations. From the values ofthek parameter in Table6.25, it

is apparent that combining Equation4.4with df requires a smaller number of terms (the top-

16 terms from each collection) to score its best performancewhile the combination withpf

required 3.3 times more terms to achieve their best results.In the RRT experiments, the same

integration withdf achieved an improvement of 1.936% on the nDCG@4 measure compared

to the integration withpf . While this improvement scored using the top-4 terms, the right

figure of Figure6.22shows that the combination withdf remains slightly better than other

combinations for the first 25 terms measured by the nDCG metric.

In accordance with the same experiments conducted on the SIFmodel and reported in Table

6.23 and Figure6.19, we can see that even in SIF2’s experiments that the raw-statistics

remains more representative compared to estimated ones (e.g., idf andtfidf ). Both,pf and

tf , continues to show competitive performance compared to thedf . Moreover, integrating

pf and tf with Equation4.4 of the SIF2 models made them performed almost equally the

same, as can be seen in Table6.25and Figure6.22. Besides, the SIF2 equation also made

bothtfidf andidf perform similarly, which was not the case in SIF’s experiments. Overall,

we can conclude that (1) taking the local statistical details of low-level terms into account

and the (2) effective integration between them and the revised topical statistics and thedf

can estimate better weights that accurately represent the relevance of these terms to the user

information needs, as demonstrated in the experiments.

• Parameters Sensitivity

As an improved version of SIF, the SIF2 model inherited the same experimental parameters;

V , which denotes the number of LDA topics; andk that represents the number of top topical

terms discovered the model. The same experiments, which hadbeen conducted for SIF
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Table 6.25: The IF and RRT results of SIF2’s main weighting function (Equation4.4) integrated
with different global statistics of low-level terms averaged over the 50 collections of the RCV1
dataset

P@20 BP MAP Fβ=1 IAP nDCG@4 k

srD+(t) · df(t) 0.605 0.504 0.535 0.491 0.557 0.472 16

srD+(t) · pf(t) 0.577 0.493 0.517 0.480 0.536 0.463 53

srD+(t) · tf(t) 0.574 0.486 0.515 0.479 0.535 0.453 45

srD+(t) · tfidf(t) 0.444 0.382 0.395 0.403 0.423 0.124 39

srD+(t) · idf(t) 0.431 0.387 0.394 0.405 0.419 0.106 33

improvement% +4.853% +2.208% +3.548% +2.196% +3.855% +1.936%
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Figure 6.22: The results of the 11-point measure (left) and the results of the nDCG measure
at top-25 terms (right) of SIF2’s weighting function (Equation 4.4) with other global statistics
averaged over the first 50 collections of the RCV1 dataset.
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parameters sensitivity, were also repeated on SIF2 to verify how sensitive it is to these

parameters. The results illustrated in Figures6.23 and 6.24 show that SIF2 continues to

inherit the insensitivity of the SIF model towards the two parameters. In the IF task, our SIF2

model has stable performance in all measures at any given value of theV parameter, as can

be seen in the left figures of Figures6.23and6.24, except some negligible fluctuations on the

P@20 measure. The model also shows a stable performance after the top five topical terms

(k = 5), as can be seen in the right figure of Figure6.23, even though the best results reported

in Tables6.7 and6.25were for the top 16 words. However, and in the same figure, SIF2

performance in IF measured by the P@20 metric remains to showinsignificant fluctuations.

In the RRT task, our SIF2 model continues its insensitivity towards theV andk parameters

as illustrated in the right figure of Figure6.24.

12345 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of LDA topics

S
IF

2
P
e
r
fo
r
m
a
n
c
e

P@20
BP
MAP
Fβ=1

IAP

✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵ ✹✺ ✺✵
✵

✵✿✶

✵✿✷

✵✿✸

✵✿✹

✵✿✺

✵✿✻

✵✿✼

✵✿✽

✵✿✾

✶

❚♦♣✲❦ ❚❡r♠s

❙
■❋
�
P
✁
✂
❢✄
✂
☎
❛
♥
❝
✁

✆❅✷✵
❇✆
▼❆✆
✝☞❂✞
✟❆✆

Figure 6.23: The SIF2 sensitivity to the number of LDA topics (left) and top-k terms (right) for
the IF experiments.

6.9.3 The Proposed UR Method

• UR Effects on Fusion Algorithms

As observed from the extensive results presented in Section6.8.3, the UR method effectively

and significantly improved the performance of all the twelvedifferent fusion-based TFS mod-

els in both the IF and RRT applications. The results experimentally demonstrated the merits

of the UR method in which the uncertainties available in the positive feedback (i.e., relevant

documents) can be reduced via the implicit estimation of theparagraph-relevance using latent

topics. Inspired by the assumption of our SIF2 model in whicha topical term has both local
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Figure 6.24: The SIF2 11-point results for IF (left) and SIF2 nDCG@k results for RRT (right)
over different number of LDA topics.

and global significances, the UR method assumed that a paragraph has local relevance, at its

document, as well as another global relevance at the entire collection of relevant documents.

The fusion of the paragraph relevance scores indicates its significance to the topic(s) of

interest in the collection that discusses user informationneeds. However, unlike SIF and SIF2

models, the UR method did not consider the terms-topics distributions because LDA estimates

them from all terms in the collection paragraphs without paying attention to the evidence of

relevance in these paragraphs knowing that some of these paragraphs can be irrelevant as

illustrated in Figure1.3. Instead, the UR method relied on raw frequency distributions of the

terms in their documents and all paragraphs in the collection as these distributions show to

be representative in revealing the importance of these terms as demonstrated in SIF and SIF2

experiments.

As observed from the results of the UR method, the amount of improvement in each feature

set discovered by a specific TFS model varies depends on certain characteristics of the model.

For example, for IF, the best performance and the highest improvements were achieved by

the supervised early fusion models, especially the SVM, BM25 and Prob models, as it can

be seen from Table6.10 and Figure6.14. We can speculate that (1) the effective use of

negative feedback by these models; (2) the soundness of their weighting functions; and (3)

the flexibility of the low-level terms discovered by these models have positively affected

their performance. The UR method also brought the multi-topic representation to these

term-based models. Also, from the feature fusion perspective, our UR method implicitly
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integrated topical and local statistical features with these models, which transferred them

to hybrid fusion models (i.e., iSVM, iBM25 and iProb). However, while the unsupervised

early fusion model (e.g., TFIDF) also gained significant improvement compared to their

original performance, they did not show better performancethan the supervised ones because

they could not deal with negative documents and their weighting functions are not sufficient

enough. Moreover, our UR method not only improved the performance of the early fusion

models in IF. It also significantly improved their performance in the RRT task, as it can be

seen in Table6.11and Figure6.15. The example in Table6.26shows how the UR method

managed to re-rank the original terms and bring forward the most relevant ones. As can be

seen from the same table, the original SVM, BM25 and Prob models were not able to discover

any of the human-identified relevant terms. However, by integrate them with our UR method,

not only have the relevant terms started to appear among the top-10 terms, we argue that a

more accurate weight is also assigned to the original terms as it confirmed by the models IF

results.

An interesting observation is that our UR method effectively improved the performance of

all unsupervised late fusion models in all experimental tasks. Integrating the UR method

with the pattern-based PDS model not only significantly improved its original performance,

but it also made it outperformed all the pattern-based topicmodels (i.e., PBTM-FP, PBTM-

FCP, SPBTM and MPBTM) regardless of the type of patterns employed by these complex

models. The UR method also not only brought the multitopic assumption to pattern mining,

but it also provided an effective way to use patterns and alleviate the low-frequency of some

specific patterns. The example in Table6.26 illustrates the benefits that our UR method

brought to the PDS model. It can be seen how the UR method re-ranked the PDS original

terms and thus allows some specific terms that were appearingin low-frequent patterns to

be highly ranked in the list, such as the term ’espionage’ and ’secret’. Our method also

revised the original pattern-based term weight resulting in some scaling ups and downs of

some terms. For example, the original PDS assigned a higher weight to the general word

’economic’ (0.238) while after the integration with the UR method the weight scaled down

to (0.012) as general words are less specific. These benefits made the improved PDS (iPDS)

achieved the best result (0.490) in RRT task measured by the nDCG@4 metric compared to

all improved models.

More interestingly, the UR method also significantly improved the performance of LDA and
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PLSA in both IF and RRT experimental tasks. Both LDA and PLSA do not distinguish the

most relevant paragraphs even though LDA estimates the relevance of terms based on the

topics extracted from all paragraphs in the collection, which improves the performance of

LDA (LdaPara) compared to its performance using the whole documents (LdaDoc) as shown

in Table6.7. The new improvements made by integrating LDA and PLSA with the UR method

can confirm (1) the effectiveness of the UR method in estimating the relevance of paragraphs

and utilising them in reducing uncertainties in relevant documents; and (2) the existence of

uncertainties in the terms-topics distributions knowing that our UR method does not use these

statistical features because they might be affected by the uncertainties in some paragraphs.

Overall, the UR method made several supervised and unsupervised performed comparably

similar despite the differences in their algorithms, the feature they use or the fusion strategy

they adhere to as illustrated in Figures6.16and6.25.

Table 6.26: The top-10 stemmed terms from collection 101 of the RCV1 dataset, which about
’economic espionage’, discovered and ranked by different TFS models in which only iPDS,
iSVM and iBM25 was able to select both of these relevant features.

iPDS PDS iSVM SVM

Term Weight Term Weight Term Weight Term Weight

espionag 0.896 vw 0.617 secret 0.537 vw 0.419

secret 0.433 bill 0.343 compani 0.379 piech 0.239

crime 0.083 piech 0.340 espionag 0.372 men 0.218

compani 0.042 men 0.256 crime 0.292 bill 0.199

bill 0.036 econom 0.238 bill 0.234 photograph 0.175

econom 0.012 car 0.152 technolog 0.182 carmak 0.174

pass 0.006 photograph 0.150 econom 0.181 return 0.153

feder 0.006 carmak 0.150 pass 0.174 volkswagen 0.130

foreign 0.002 camera 0.134 foreign 0.146 gm 0.127

senat 0.001 volkswagen 0.125 piech 0.137 camera 0.125

iBM25 BM25 iProb Prob

Term Weight Term Weight Term Weight Term Weight

bill 0.423 secret 0.130 bill 0.444 secret 0.126

secret 0.402 technolog 0.112 secret 0.428 crime 0.109

crime 0.302 crime 0.112 crime 0.324 pass 0.109

espionag 0.264 pass 0.112 compani 0.232 technolog 0.109

compani 0.237 fbi 0.098 pass 0.202 bill 0.094

pass 0.189 bill 0.098 technolog 0.202 cia 0.094

technolog 0.189 cia 0.098 theft 0.190 law 0.094

theft 0.181 law 0.098 feder 0.164 softwar 0.094

econom 0.178 softwar 0.098 espionag 0.163 fbi 0.094

feder 0.175 comput 0.098 law 0.158 comput 0.094

• UR Effect on k Parameter
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Figure 6.25: The 11-point results of supervised (left) and unsupervised (right) models after the
integration with the UR method all averaged over the first 50 collections of the RCV1 dataset.

Figure6.26shows the bestk value for each TFS model used in the UR experiments. Both

values ofk, for the original and improved model, are reported in the figure. It seems com-

plicated to find any correlation between the use of the UR method and thek parameter

because each model has its unique characteristics in dealing with the identification of relevant

features. However, while applying the UR method significantly improved the performance of

all models in both IF and RRT tasks, it also reduced the numberof top terms (i.e.,k value)

needed to achieve the best performance for most models. Eight models out of twelve had their

k values reduced after applying the UR method while the remaining four models got theirk

value increased. We speculate that the influence of the factors mentioned at the beginning of

this section has made it difficult to establish any correlation between applying the UR method

to any TFS model and the changing in the values of thek parameter.

6.9.4 The Proposed USIF Framework

The experimental results of our USIF framework presented inSection6.8.4clearly illustrated

its superiority in discovering relevant features that represent user information preferences com-

pared to the used baseline models. Unlike our SIF, SIF2 and URmodels, the USIF framework

employed multiple hybrid fusions of different lexical and statistical features that were extracted

from a collection of relevant documents using document clustering and topic modelling algo-

rithms and the global statistics of the collection. The framework utilised the hybrid fusions to

select and then re-weight topical terms that appear in equally relevant but unbalanced clusters.
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Figure 6.26: The bestk value for each TFS model after and before applying the UR method.

A conceptual agglomeration technique is developed to select a specified set of intra- and inter-

cluster terms based on a score fusion scheme (r(ti)). Then, the relevance of these representative

terms is estimated based on their topical and thematic significances as well as their document

frequencies in the collection. More analysis of the proposed USIF framework is given below.

• Feature Selection Versus Feature Weighting

Generally, the proposed USIF framework has dealt with feature selection and feature weight-

ing as two different problems. The representativeness of the selected topical terms (i.e., fea-

ture selection) and their relevance estimated jointly fromtopical significance and the thematic

significance (i.e., feature weighting) have substantial contributions to the performance of the

proposed USIF framework. To analyse these contributions, we have designed seven scenarios.

The scenarios (scen-1 to scen-7) are summarised in Table6.27. Each scenario is designed to

analyse the effect of a change in one or more components of theproposed framework on its

overall performance. The corresponding experimental results using the seven performance

measures (i.e., P@20, BP, MAP, Fβ=1, IAP, 11-point and nDCG@k) are shown in Table6.28

and the left figure of Figure6.27. The key observations obtained from these scenarios can be

summarised as follows:

(a) The performance of scen-1 is better than scen-2 and scen-3.Scen-1 uses topical signifi-

cancewz(ti) asr(ti), while scen-2 uses term frequencytf(ti) asr(ti) and scen-3 uses term

frequency-inverse document frequencytfidf(ti) asr(ti), all learned from the corresponding

clusters. This meanswz(ti) is better in revealing the representativeness of intra-cluster terms

than simply usingtf(ti) and tfidf(ti) as an estimation ofr(ti). Further, from the results

of scen-2 and scen-3, we can see that integrating our conceptual agglomeration of intra- and
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inter-cluster terms with the informativeness of our topical and thematic significances as well

as the document frequency greatly improved the original performance of bothtf(ti) and

tfidf(ti).

(b) The performance of scen-1 is significantly better than scen-4. To select representative

terms, scen-1 uses conceptual agglomerate of clusters’ topical terms and ther(ti) = wz(ti),

while scen-4 uses only ther(ti) = wz(ti). This means conceptual agglomeration of clusters’

terms has a significant contribution to the performance of the USIF framework. However,

while the selected terms are different in each of these scenarios, both of them use the same

relevance score fusion function (i.e.,w(ti)), which made scen-4 achieve competitive results.

(c) The performance of scen-1 is marginally better than scen-5even though both scenarios

share the same selected set of topical terms. The only difference is the absence of using global

statistics represented in our framework by the document frequencydf(ti). This means that

df(ti) has a marginal contribution in estimating the relevance of topical terms based on the

BP and Fβ=1 measures.

(d) Performances of scen-6 and scen-7 are significant and similar as they use the same set of

topical terms selected by our conceptual agglomeration technique. As the estimation of infor-

mativeness, scen-6 uses topical significancewz(ti), while scen-7 uses thematic significance

wg(ti). This means thematic significancewg(ti) is as essential as topical significancewz(ti)

for estimating the relevance of the selected topical terms,especially when both significances

integrated together.

(e) The performance of scen-5 is significantly better than scen-6 and scen-7. As the estimation

of the relevance, scen-5 jointly uses the topical significancewz(ti) and the thematic signif-

icancewg(ti), while scen-6 uses only the topical significancewz(ti) and scen-7 uses only

thematic significancewg(ti). This means the relevance of topical terms should be estimated

jointly from both topical significance and thematic significance.

Overall, the previous scenarios demonstrated the importance of each component of our USIF

framework and how they performed when they integrated to select and then re-score relevant

topical terms that describe user information needs. Most importantly, the scenarios illustrated

the fact that term selection and term weighting can differ from each other, and an effective

integration between them can result in significant performance for unsupervised relevance

discovery.
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Table 6.27: A set of different scenarios designed for analysing the fusion hypothesis of the
USIF framework

Scen-1 Our USIF (use conceptual agglomeration of clusters andr(ti) = wz(ti)
learned from each cluster to select a set of representative topical terms, and
usew(ti) = wz(ti)× wg(ti)× df(ti) to weight these terms).

Scen-2 User(ti) = tf(ti), term frequency learned from each cluster.

Scen-3 User(ti) = tfidf(ti), term frequency-inverse document frequency learned
from each cluster.

Scen-4 Instead of using clustering, usewz(ti) learned from the whole document
collection to select a set of representative topical terms.

Scen-5 Usew(ti) = wz(ti)× wg(ti) to weight topical terms.

Scen-6 Usew(ti) = wz(ti) to weight topical terms.

Scen-7 Usew(ti) = wg(ti) to weight topical terms.

Table 6.28: The results of the scenarios in Table6.27for IF and RRT tasks using all measures
averaged over the first 50 document collections of the RCV1 dataset

Scenario P@20 BP MAP Fβ=1 IAP nDCG@4

scen-1 0.616 0.518 0.550 0.500 0.571 0.502

scen-2 0.570 0.495 0.517 0.482 0.539 0.460

scen-3 0.570 0.483 0.507 0.477 0.529 0.447

scen-4 0.576 0.487 0.514 0.481 0.534 0.457

scen-5 0.584 0.500 0.523 0.486 0.544 0.502

scen-6 0.550 0.467 0.488 0.468 0.510 0.502

scen-7 0.555 0.471 0.496 0.473 0.517 0.502



220 CHAPTER 6. EVALUATION

• Parameters Sensitivity Test

The proposed USIF framework has three parameters: the number of document clusters (L),

the number of LDA topics (V ) and the number of top representative topical terms (k). Because

it is challenging to decide the optimal value ofL for a given document collection [Das et al.,

2008, Jain, 2010, Liu and Croft, 2004], a trial and error approach was used to develop the line

equation presented in Section6.7 to predetermine the value ofL. Regarding the number of

topicsV , it is expected that USIF would not be sensitive to this hyperparameter because the

topical and thematic significances of terms in the frameworkare estimated by our SIF model

and the adapted version of our UR method, which already proven to be insensitive toV .

Moreover, given a topical termti, thew(ti) of that term is estimated using all relevant topics

in theD+ collection and not based on any specific topiczj . Thus, regardless of the number

of topicsV generated fromD+, they all represent the same collection andw(ti) should not

strongly depend on their numbers, which is denoted byV . The results of the sensitivity test

for USIF over different numbers of topics are given in Figure6.28. The results confirm our

expectation and show thatw(ti) is quite insensitive to theV parameter.

It is also expected that the performance of our USIF framework is stable for a range of

top topical terms (i.e.,k) because USIF was developed to treat term selection and term

weighting as two independent stages in the framework. Thus,if some nonrepresentative

terms are accidentally selected by the first stage due to the nonoptimal number of clusters

estimated from the collection, then, the second stage should be robust enough to weight them

as much less important compared with the most representative terms in the collection. The

performance sensitivity of USIF for a range of top-k terms (fromk = 1 tok = 150) is given in

the right figure of Figure6.27. It shows that after the 20 top terms, the performance becomes

stable with occasional small fluctuations, which supports our expectation.

6.9.5 The Proposed SSIF Framework

The results presented in Section6.8.5show the performance superiority of our SSIF framework

compared to all fusion-based TFS baseline models of relevance discovery. The sophistica-

tion of SSIF and, more specifically, the effective use of negative feedback collections largely

contribute to its outstanding performance. As in our USIF framework, SSIF also deals with

feature selection and feature weighting as two independentproblems through the integration of

multiple hybrid fusion-based models. However, and unlike USIF, our SSIF framework utilises
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Figure 6.27: The 11-point result of the scenarios in Table6.27(left) and the results of USIF
sensitivity test to thek parameter (right) all for IF and averaged over the same RCV1 collections.
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supervised learning algorithms to select some discriminatively specific features and re-weight

them using unsupervised learning algorithms. In the light of SSIF experimental results, we

discuss SSIF’s hypothesis in which supervised feature selection can discover more specifically

relevant features, but unsupervised feature weighting canbetter estimate their informativeness.

As illustrated in Figure5.5, the multiple hybrid fusions of different lexical and statistical

features extracted from the positive and negative feedbackusing supervised and unsupervised

algorithms have made our SSIF framework significantly outperforms all state-of-the-art base-

line models in discovering relevant features that describeuser information needs. The SSIF

framework was developed on the basis that the discovered features set must be (1) specific to

the main topics of interest in the document collection. SSIFeffectively employed the integration

of our UR method, BM25 and SVM algorithms to meet this criterion. Also, as there might be

several topics and themes in the collection, the relevance of this set of features must be (2)

informative about the essential aspects of meanings of these topics and themes. To meet this

condition, our SSIF framework adopted both the topical and thematic significances in a similar

way as in the USIF framework. Further, the feature set must be(3) globally representative to the

given collection not to a larger document. Thus, and to meet this condition, the SSIF framework

used the global statistics represented by the document frequency in this case.

From Table6.19 and Figure6.18, we can see that the sophistication of our SSIF frame-

work has made it significantly outperformed all supervised baseline models. Compared to the

best model in the group, the RFD2, it is clear that SSIF effectively selected more specifically

relevant features compared to the RFD2 through the integration of the UR, BM25 and SVM

models. SSIF also estimated more accurately informative scores to these features via the

joint probability of topical and thematic significances of these features combined with their

document frequencies. Thus, it is apparent that the integration between an effective supervised

selection and unsupervised weighting of features can significantly discover relevant features that

represent user information needs. Regarding the RFD2, we can speculate that the (1) absence of

multi-topic assumption; (2) the challenge of selecting representative patterns from both positive

and negative feedback and (3) ignoring the available uncertainties in positive documents have

contributed to its inferior performance compared to our SSIF framework. Moreover, despite

the cleverness of the RFD2 specificity function in classifying features to general, specifically

positive and specifically negative, we argue that this function is sensitive to the type of pattern in

use, the size of terms space and most importantly to the experimental coefficients. However, and
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based on the experimental results in Figures6.28and6.14, we can see that using the topical and

thematic significances as well as applying the UR method to SVM can make the performance

of discovering relevant features robust and insensitive toany parameters.

The MPBTM model is one of the state-of-the-art baseline models in discovering relevant

features that discuss user information needs thru the integration of patterns and topics. It is

the best among all unsupervised baseline models, as shown inTable6.19. However, our SSIF

framework significantly outperformed MPBTM in all performance measures. The effectiveness

of SSIF in utilising the negative documents has given it the superiority over MPBTM. Besides,

the MPBTM model effectively exploited the semantics of bothpatterns and topics to rank

specifically relevant documents that meet user informationinterests. Nevertheless, the model

failed to address the uncertainties in training documents as it assumed all documents contents

are important, which resulted in either selecting irrelevant features or inaccurately estimating

relevant documents. Also, it can be argued that selecting some patterns and ignoring others

can cause the loss of some important features, especially the less frequent ones. Moreover, the

MPBTM model seems to be sensitive to the number of latent topics (i.e., theV parameter) as

its performance significantly fluctuated with differentV . However, our SSIF was more stable,

robust and insensitive to all its experimental parameters.

6.9.6 Comparison of Proposed Techniques

In the previous sections, we presented, analysed and discussed some of the experimental results

of our proposed models and frameworks. We also provided detailed comparisons between them

and many popular and state-of-the-art baseline models. In the following sections, we compare

and briefly discuss the performances of SIF, SIF2, USIF and SSIF in IF and RRT as illustrated

in Table6.29and Figure6.29.

• SIF2 Versus SIF

The first part of Table6.29shows the comparison between the performances of SIF2 and SIF

in both IF and RRT experimental tasks. SIF2 performance was consistently better than SIF

by an average improvement of 5.434% in all measures. SIF2 achieved its best performance

(6.980%) on the MAP metric for the IF task, which is considered the most important measure

in IR and IF experiments. However, SIF2 minimal performancecompared to SIF was in

RRT by an average improvement of 3.282% on the nDCG@4 metric. The 11-point results in

Figure6.29(left) illustrates that SIF2 was performing better than SIF, especially in the last
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nine recall levels. However, in the RRT task for the first 25 terms, SIF2 was slightly better

than SIF, as shown in Figure6.29 (right). Overall, all these results confirm the validity of

SIF2’s assumption that a topical term should not be equally relevant in every document of the

collection. Our SIF2 model shows that the accurate revisionof the global relevance details

of features can alleviate the uncertainties available in the entire collection to a considerable

extent. The model demonstrates that localising global relevance details of topical terms can

estimate more accurate weights to these terms and thus resulting in discovering more specifi-

cally relevant terms, especially when they are integrated with informative global statistics.

Table 6.29: A comparison between the performances of all proposed models and frameworks
in IF and RRT tasks using six evaluation measures averaged over the first 50 collections of the
RCV1 dataset

Model P@20 BP MAP Fβ=1 IAP nDCG@4

SIF2 0.605 0.504 0.535 0.491 0.557 0.472

SIF 0.567 0.475 0.500 0.473 0.527 0.457

improvement% +6.702% +6.133% +6.980% +3.795% +5.709% +3.282%

USIF 0.616 0.518 0.550 0.500 0.571 0.502

SIF 0.567 0.475 0.500 0.473 0.527 0.457

improvement% +8.642% +8.966% +9.825% +5.814% +8.312% +9.847%

SSIF 0.631 0.550 0.576 0.515 0.592 0.420

SIF 0.567 0.475 0.500 0.473 0.527 0.457

improvement% +11.287% +15.831% +15.149% +8.809% +12.354% −8.096%

USIF 0.616 0.518 0.550 0.500 0.571 0.502

SIF2 0.605 0.504 0.535 0.491 0.557 0.472

improvement% +1.818% +2.669% +2.660% +1.945% +2.462% +6.356%

SSIF 0.631 0.550 0.576 0.515 0.592 0.420

SIF2 0.605 0.504 0.535 0.491 0.557 0.472

improvement% +4.298% +9.137% +7.636% +4.831% +6.286% −11.017%

SSIF 0.631 0.550 0.576 0.515 0.592 0.420

USIF 0.616 0.518 0.550 0.500 0.571 0.502

improvement% +2.435% +6.300% +4.847% +2.831% +3.732% −16.335%

• USIF Versus SIF

The performance comparison between the SIF model and the USIF framework in IF and RRT

experiments is given in the second part of Table6.29. As can be seen, USIF significantly

outperformed SIF in all measures for both experiments by an overall average improvement of

8.568%. In IF, USIF achieved its minimum improvement against SIF onthe Fβ=1 metric by

an average of 5.814%, and its maximum improvement for the same task was 9.825% on the

MAP measure. Figure6.29(left) confirms the superiority of USIF in IF as it achieved higher
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Figure 6.29: The 11-point (left) and nDCG@k (right) results for IF and RRT, respectively, for
all the proposed models and frameworks averaged over the first 50 collections of the RCV1
dataset.

average precision scores at most recall levels compared to SIF. In RRT, USIF performance was

significantly better than SIF by an average improvement of 9.847% on the nDCG@4 measure,

as shown in Table6.29. Figure6.29(right) also shows that USIF is performing consistently

better in RRT at anyk value compared to the SIF model. All these significant improvements

of USIF over SIF come as a result of the sophistication of the USIF framework in integrating

topic modelling, document clustering and global statistics to discover representative features

and estimate their informativeness as previously demonstrated in Section6.9.4.

• SSIF Versus SIF

The third part of Table6.29presents the results of the supervised SSIF framework and the

unsupervised SIF model. From the improvement% row of that part of the table, we can see

than SSIF significantly outperformed SIF in IF in all five measures. SSIF maintained an

overall average improvement of 12.686% over SIF performance with a maximum of 15.831%

and a minimum of 8.809% on the BP and Fβ=1 measures, respectively. The 11-point results

in Figure6.29(left) supports the previous measures and shows its superiority over the SIF

model at nearly all recall levels. However, in RRT, SSIF underperformed compared to SIF

with an average of−8.096% on the nDCG@4 metric, as illustrated in Table6.29. This can be

seen clearly in Figure6.29(right) in which SIF performed much better than SSIF, especially

in the last 24 values of thek parameter. In general, the superiority of SSIF over SIF comes as

a result of its sophistication in selecting and weighting specifically relevant features through
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the integration of supervised and unsupervised learning algorithms. However, USIF inferior

performance in RRT compared to SIF is expected as most of the supervised models used in the

experiments of this thesis did not perform well compared to their unsupervised counterparts.

We can speculate that the reason behind the poor performanceof supervised models in RRT

is that the human-identified relevant words are not comprehensive and only focus on general

ones.

• USIF Versus SIF2

The results of USIF and SIF2 for IF and RRT experiments are presented in the fourth part of

Table6.29. Both USIF and SIF2 are unsupervised TFS methods and performed competitively

in our experimental tasks. However, USIF performed better than SIF2 in IF by an overall

average improvement of 2.311%. It achieved a minimum improvement of 1.818% on P@20

and a maximum of 2.669% on BP. On the 11-point measure, both techniques competed with

each other, but USIF scored higher precision than SIF2 in several recall levels, as illustrated in

Figure6.29(left). In RRT, USIF significantly outperformed SIF2 by an average improvement

of 6.356% on the nDCG@4 measure, as shown in Table6.29. Figure6.29 (right) shows

the performance of USIF and SIF2 in RRT for the top-25 words inwhich USIF maintained

greater improvements at all terms. Despite the sophistication of the USIF framework, the

SIF2 model demonstrated an adequate competency compared toit, especially in IF. However,

USIF illustrated its capability in selecting representative features as can be seen in its RRT

results. Further, while USIF was developed before SIF2 in this thesis, it might be feasible to

employ SIF2 capabilities in a similar research objective asUSIF’s.

• SSIF Versus SIF2

The fifth part of Table6.29shows the results of SSIF and SIF2 for both IF and RRT tasks.

As can be seen from that part of the table, SSIF outperformed SIF2 in IF and achieved a

minimum average improvement of 4.298% and a maximum of 9.137% on the P@20 and BP

measures, respectively. Overall, SSIF maintained better performance than SIF2 by an average

improvement of 6.438% in all measures. The 11-point results in Figure6.29(left) confirmed

SSIF better performance over SIF2 in IF. However, on the contrary, SIF2 significantly out-

performed SSIF in the RRT task with an average improvement of11.017% on nDCG@4

metric, as shown in Table6.29. Moreover, SIF2 was performing significantly better than

SSIF nearly at any given top-k keyword, as illustrated in Figure6.29(right). As a supervised

framework, SSIF improvements over SIF2 were expected because SIF2 is considered as an
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improvement to the SIF model. It is apparent that the integration of different supervised and

unsupervised algorithms made SSIF capable of selecting andweighting specifically relevant

features compared to the unsupervised SIF2. The poor performance of SSIF in RRT can be

justified as in the case of SSIF versus SIF mentioned previously.

• SSIF Versus USIF

A comparison between the performances of our supervised SSIF and unsupervised USIF

frameworks are given in the last part of Table6.29. In IF, SSIF maintained better performance

than USIF by an overall average improvement of 4.029% across all five measures. SSIF

performed minimally by achieving an average improvement of2.435% on the P@20 metric

compared to USIF. Its maximum performance in IF was measuredby the BP metric and

obtained an average improvement of 6.300% over USIF. The 11-point measure in Figure

6.29 (left) confirmed the effectiveness of SSIF in IF against USIFas it achieved higher

precision scores at nearly all the 11 recall levels. However, for the RRT and as shown in

Table6.29, USIF was superior in performance than SSIF and outperformed it significantly by

an average improvement of 16.335% on nDCG@4. Figure6.29(right) clearly shows USIF

superiority over SSIF in RRT as it maintained a significant performance at each top-k term

for the first 25 terms. It is apparent that the use of negative documents has made SSIF better

than USIF, especially in selecting a set of specifically relevant features. It also alleviates

the problem of general features that keep appearing in both positive and negative training

documents. While the two frameworks deal with the problems of feature selection and feature

weighting differently, they both demonstrated that the accurate integration of different lexical

and statistical features extracted by supervised and/or unsupervised techniques could discover

more representative features that describe user information needs and thus achieve higher

performance.

6.10 Chapter Summary

In this chapter, the extensive experiments conducted to evaluate the proposed fusion-based TFS

models and frameworks were reported. The evaluation hypotheses and the experimental design

were also described. The standard experimental benchmark that includes the RCV1 dataset

and the TREC-11 topics for IF and seven popular performance measures were presented in the

chapter including the statistical significance test; the Student’s Paired T-Test and Percentage

Change. Many different state-of-the-art baseline models were also briefly described and used to
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evaluate the proposed methods. The experimental results were reported in different forms and

compared to the baseline results to show the superiority of the proposed models and frameworks

in selecting and weighting relevant features. The nDCG@k measure clearly showed that SIF,

SIF2, UR, USIF and SSIF were able to discover relevant features that match those identified by

domain experts. The results were also discussed and analysed using many scenarios to demon-

strate the robustness and effectiveness of fusion-based techniques and the proposed solutions

for the discovered problems of selecting relevant featuresunder uncertainties as well as those

of the topic modelling algorithms. The next chapter concludes this thesis and describes its

contributions. It also discusses the identified limitations and some possible future directions for

the research presented in this thesis.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

For more than a decade, topic modelling has been extensivelyused in TM to enhance the

automatic discovery of knowledge from texts in the form of latent topics. LDA is the most

widely used probabilistic topic modelling algorithm, superseding its predecessor, the PLSA.

Both techniques have been adapted substantially to suit multiple applications. Many existing

projects focus on improving the algorithms’ efficiency, scalability and quality of generated

latent topics. However, using these topics to identify relevant features from a collection of

documents that describes user information needs is ineffective for several reasons. First, LDA

cannot generalise the weight of topical terms that appear across different entities in the col-

lection. Second, LDA favours the most frequently discussedsubjects in the collection, which

can overshadow less frequent but equally important subjects. Third, LDA does not provide a

mechanism to consider the hierarchical topical features ofdocuments and the skewness of terms

distribution across them when estimating the weight of topical terms. Further, LDA cannot deal

with uncertainties in relevant features, as it does not consider passage level evidence. Finally,

LDA cannot discover relevant features using both positive and negative documents.

Data fusion is a well-known approach that is proven to be effective in estimating relevant

information by combining different features that represent various aspects of the data. In this

thesis, effective fusion-based models and frameworks for relevant text feature weighting and

selection have been proposed. The models and frameworks aredeveloped to overcome the

already noted challenges of topic modelling and have been integrated with both supervised

and unsupervised learning algorithms and global statistics for better performance. A new and

elegant ERS theory was developed to efficiently and effectively model the complex relationships

229
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between different entities in document collection and to manage the different types of fusion

between their features. Utilising the proposed models to improve the performance of existing

relevant feature discovery techniques was also investigated.

This thesis presents research in the field of TFS for relevance discovery based on the con-

cept of data fusion. Different fusion strategies have been adopted and integrated to combine

latent topical features with global statistics, as well as supervised and unsupervised learning

algorithms. The SIF model (Chapter3) was developed based on the concept of hybrid fusion

to discover relevant topical terms by generalising their weight to the collection level. The SIF2

model (Chapter4) re-visits the concept of generalised term weight in SIF andis introduced

to integrate late and early fusion strategies to relax the weight generalisation assumption. The

UR method (Chapter4) was developed to reduce uncertainty in relevant features discovered by

existing models. USIF is a TFS framework built around the concept of multiple hybrid fusions

to integrate topic modelling, document clustering and global statistics for better relevant feature

discovery (Chapter5). SSIF is another framework introduced in Chapter5 and developed to

discover relevant features from both relevant and irrelevant documents. Within each model

and framework, various mechanisms are proposed including the ERS theory, term weighting

schemes, term scaling functions, concept agglomeration, topical significance and thematic sig-

nificance to accomplish the aims of the proposed models and frameworks.

The proposed TFS models and frameworks were experimentallyevaluated (Chapter6) for

IF and RRT using the 50 expert-assessed collections from thestandard RCV1 dataset, their

TREC relevance judgements and seven widely adopted performance measures. The results

show that the proposed models and frameworks significantly outperform all state-of-the-art

baseline models regardless of the text feature or fusion strategy used.

In the following, Section7.2 presents the main contributions of this research and Section

7.3discusses the limitations of the study and recommends future work in feature selection and

weighting for relevance discovery.

7.2 Contributions

This thesis makes several contributions to the field of relevant feature discovery under uncer-

tainty using fusion-based approaches.

• Solving topic modelling problems: It is possible to generate a specific number of latent
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topics from a document collection using probabilistic topic modelling algorithms. These

topics have been used extensively in a range of TM applications. However, utilising these

topics in TFS for relevance discovery is ineffective due to the specific characteristics of

generating algorithms (see Section7.1). In this thesis, effective models and frameworks have

been proposed to circumvent the limitations of topic modelling by adopting and integrating

fusion strategies with global statistics and learning algorithms. An innovative ERS theory was

developed to model the proposed fusion strategies. Further, effective weighting and scaling

formulas were introduced to weigh or re-rank relevant features so these features can be used

in TM systems.

• Innovative Hybrid Fusion-Based TFS model: An effective TFS model, SIF, was developed

based on a hybrid fusion strategy to discover relevant features (i.e., topical terms). The

model implements three knowledge discovery steps, including (1) generating latent topics,

(2) modelling hybrid fusion and (3) ranking topical terms. In the first step, SIF uses the LDA

to generate useful topics from all paragraphs in a collection of relevant documents. The topics

reduce the dimensionality of the collection and adequatelyrepresent useful information (e.g.,

subjects or themes) discussed in the relevant paragraphs. In the second step, multiple random

sets are extended to manage the hybrid fusion strategy of different features between three

entities in the collection; namely, paragraphs, topics andterms. This is achieved by modelling

the complex relationships between these entities with a probability function measuring the

strength of each relationship. In the final step, an effective global term weighting scheme is

introduced based on the ERS to rank topical terms (i.e., relevant features). To the best of our

knowledge, SIF is the first hybrid fusion model that uses multiple ERSs for TFS. The SIF

model was extensively tested for IF and RRT and showed significant performance compared

to many competent baseline models of relevance discovery. Afull description of the proposed

SIF model can be found in Chapter3 and a detailed experimental evaluation is presented in

Sections6.8.1and6.9.1.

• Effective Hierarchical Feature Fusion TFS model: A new and highly effective TFS model

for relevance discovery, SIF2, was developed based on the integration of early and late fusion

strategies of hierarchical features. Unlike SIF, which assumes that identical topical terms are

equally important in each relevant document, SIF2 relaxes this assumption and differentiates

these terms based on their local statistics in each document. The SIF2 model adopts the same

knowledge discovery steps as SIF, but it differs in the last two steps and introduces a new
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global weighting function. First, in the fusion modelling step, an extra ERS is introduced to

model the relationship between a fourth entity; namely, thedocument and its paragraphs.

Further, the function that represents the relationship between a term and latent topics is

updated to allow topical terms to be deployed based on their distributions in each document.

In the final step, the term weighting scheme is also updated toreflect the changes in the second

step. The global weighting function can assign a more representative fused score to topical

terms, expressing the integration between late and early fusion of features. The proposed

SIF2 model was extensively evaluated and the experimental results demonstrate its significant

performance and confirm its merits. Chapter4 describes SIF2 in detail and Sections6.8.2and

6.9.2discuss its experimental evaluation.

• Innovative Uncertainty Reduction Method: Another effective late fusion-based technique,

the UR method, is proposed to reduce uncertainties in relevant features discovered by various

existing TFS models. The uncertainties are introduced whenthese models consider the entire

contents of a document knowing that a document can be labelled as relevant even if it has

a small part(s) that matches what the user prefers. The UR method adheres to the same

knowledge discovery steps as the SIF2 model. However, the newly developed ERS in the UR

method does not consider the topic–term relationship, because LDA estimates the term–topic

distribution using all the content of documents or paragraphs in the collection without dis-

tinguishing relevant passages. Instead, the ERS models theterm–paragraph relationship.

A new term weight scaling function was developed and used to re-rank relevant features

discovered by different TFS techniques. To the best of our knowledge, the proposed UR

method is the first of its kind that estimates the passage level relevance without an explicit

query (i.e., a search guide) and uses multiple ERSs to model the hybrid fusion of different

features from a document collection. The proposed UR methodwas tested extensively using

many existing relevance discovery models. The experimental results show that the proposed

method significantly improved the performance of these models for relevant feature selection.

The UR method is described in more detail in Chapter4 and its experimental evaluation is

fully reported in Sections6.8.3and6.9.3.

• Novel Unsupervised TFS Framework: A highly effective two-stage TFS framework, USIF,

was developed based on the integration of multiple early andlate fusions for relevant feature

discovery. The framework treats term selection and weighting as two independent processes.

First, the integration of document clustering and topic modelling was developed, in which
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the same knowledge discovery steps of SIF were used with every cluster of relevant doc-

uments. Then, a concept agglomeration technique was proposed to discover representative

terms among the many intra- and inter-cluster topical terms. Further, an effective line-fitting

equation was developed to pre-select the number of clusters. Second, an effective collection

level feature-weighting technique was used based on the linear combination between the

SIF model and a modified UR method. The SIF model was used to estimate the topical

significance of topical terms in the collection, while the modified UR method was adopted

to emphasise terms appearing in more relevant passages (i.e., paragraphs). To the best of our

knowledge, USIF is the first TFS framework that integrates multiple early and late fusions of

different features discovered by unsupervised methods; namely, document clustering, topic

modelling and global statistics. Such sophisticated fusions are elegantly modelled by the

multiple ERSs. The framework was extensively tested and theexperimental results show

its significant performance compared to many supervised andunsupervised baseline models.

Chapter5 discusses the details of USIF and the results of its evaluation are reported, analysed

and discussed in Sections6.8.4and6.9.4.

• Effective Supervised TFS Framework: Another highly effective TFS framework was in-

troduced to discover relevant features not only from the positive (i.e., relevant) documents,

as in SIF, SIF2, UR and USIF, but also from the negative (i.e.,irrelevant) documents. Thus,

the framework is fully supervised and is referred to as SSIF.As with USIF, SSIF uses mul-

tiple ERSs to model the integration of early and late fusion of informative features. Also,

SSIF treats feature selection and feature weighting as two independent tasks in two distinct

stages. First, specific features are selected using a supervised algorithm (e.g., SVM) after

integration with the UR method. Second, informative features are learned and weighted in an

unsupervised way using the combination of SIF, the UR methodand global statistics. Finally,

an efficient tactic is introduced to combine the output of thetwo stages. The proposed SSIF

framework provides an effective method for discovering relevant features from both positive

and negative documents by combining both supervised (i.e.,SVM) and unsupervised (i.e.,

LDA) algorithms. The SSIF framework is innovative when dealing with the challenging

problems of topical terms that frequently appear in both positive and negative contexts. The

experimental results confirm the superiority of SSIF compared to major supervised and unsu-

pervised baseline models. The proposed SSIF framework is described in detail in Chapter5,

while its experimental evaluation is discussed and analysed in Sections6.8.5and6.9.5.
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In summary, the research presented in this thesis demonstrates the adoption of different

fusion-based techniques in TFS for relevance discovery.

1. The SIF model adopts a hybrid fusion strategy to select informative features at the collection

level, which is achieved by:

• generating latent topics from all paragraphs in the collection

• extending multiple random sets to model the complex relationships between different

entities in the collection from which the fused features originated

• developing a new and effective term weighting scheme to assign a generalised weight

to topical terms in the collection.

2. The SIF2 model adopts the hybrid fusion strategy to rank local document-specific features

and select those that are informative based on their global representativeness. These pro-

posed tactics are achieved by:

• generating latent topics from indexed paragraphs in the collection

• adapting the ERS theory of SIF to model more entities from the collection

• localising the weighting scheme of topical terms based on their appearance in each

document and distributing their global topical assignmentbased on their frequency in

the document

• developing a new and effective term weighting scheme to consider the previous local-

ising process

• developing a score fusion function that can assign a globally representative score to

topical terms.

3. The UR method also adopts the hybrid fusion strategy to reduce uncertainties in relevant

features discovered by different TFS models. The proposed steps are to:

• Generate latent topics from indexed paragraphs in the collection.

• Adapt the ERS theory of SIF2 to model the exact collection entities.

• Develop a new relevance function to estimate paragraph level relevance.

• Develop a weight scaling function to re-rank relevant features discovered by the exist-

ing TFS model.
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4. The USIF framework adopts multiple fusion models to select and weight representative intra-

and inter-cluster features. The proposed steps are to:

• Cluster relevant documents based on a similarity measure.

• Develop a line-fitting equation to estimate the number of clusters in a document collec-

tion.

• Generate latent topics from all paragraphs within a cluster.

• Adapt ERS to model the required entities.

• Utilise the SIF model to discover important topics in a cluster and facilitate the selection

of intra-cluster features.

• Develop a new UR method to estimate the relevance of all paragraphs in the collection

and then utilise it for measuring the thematic significance of topical terms.

• Develop a conceptual agglomeration technique to select representative inter-cluster

topical terms from the discovered clusters.

• Re-weigh the selected representative terms using the weighting scheme of SIF and

combining this in a linear fashion with the UR method and an informative global

statistic.

5. The SSIF framework also adopts multiple fusion models to select and weigh specific fea-

tures. The proposed tactics are to:

• Generate latent topics from all paragraphs in the relevantdocument collection.

• Integrate the UR method with BM25 to reduce uncertainties in relevant documents

before training the SVM.

• Select specific features from both relevant and irrelevantdocuments in the collection

using the SVM.

• Utilise the SIF model and combine it in a linear fashion withthe adapted UR method

and an informative global statistic to weigh all topical terms.

• Re-weigh the re-ranked features of the UR method and the SVMusing the weight

calculated by the combined SIF, UR method and global statistic.
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7.3 Limitations and Future Work

In this section, the limitations of the research presented in this thesis will be discussed and some

recommendations for future research outlined.

7.3.1 Limitations

Despite the superior performance of the proposed models andframeworks in selecting features

for relevance discovery, these models and frameworks are not free of limitations.

a) Identical feature set: This is a common challenge in most feature weighting schemes in

which equal weight is assigned to a subset of features (i.e.,terms). Equal weighting implies

these features have the same degree of relevance even thoughthey are not semantically

the same, which also implies the existence of inherited and more complicated type of

uncertainties. Tackling this problem by revising the identical set is critical to increase the

overall performance of the intended application.

b) Other types of features: Only terms and topical statistical features (i.e., term–topic as-

signment and paragraph–topic distribution) are considered in the fusion strategies adopted

in this research. However, other text features, such as patterns, phrases, concepts or a

combination of these appear to be beneficial for relevant feature discovery. Incorporating

these features into the proposed work might be useful, especially for the selection process.

c) Advanced clustering algorithms: Traditional clustering algorithms use distance-based

measures to estimate the similarity between documents to form a cluster. These algorithms

are (1) only concerned with the spatial relationship between the vectors that represent

documents [Li et al., 2016], (2) sensitive to the method of selecting the initial centroids

[Li et al., 2016] and (3) unaware of the internal structure of long documents[Shehata et al.,

2010]. Thus, using more advanced clustering techniques might help to discover additional

interesting features.

d) Advanced topic modelling: The proposed models and frameworks used the popular LDA

algorithm to extract latent topics. The LDA model forms the basis of many probabilistic

topic modelling techniques designed to improve the qualityof generated topics. Adopting

these enhanced topic models might be more effective in identifying relevant topics or sub-

topics.
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e) Adding explicit semantics: The semantic information used in this research is probabilistic

and based on the LDA topics. Such semantic information is implicit and usually difficult

to interpret [Saif et al., 2016]. Therefore, using explicit semantics (e.g., those based on

advanced NLP techniques, ontologies and dictionaries) might aid in understanding the

meaning of discovered features and facilitate the selection process.

f) Introducing parameters: The proposed models and frameworks did not use any param-

eters except those of the LDA, clustering and the top-k features. However, it would be

practical to introduce certain parameters to control tasks, such as weight optimisation and

noise reduction.

g) More specific features: It is difficult to define the specificity of features using only relevant

documents with SIF, SIF2, USIF and the UR method due to the absence of an explicit query

or negative context (i.e., irrelevant documents). Using negative feedback to identify specific

relevant features (as done by the SSIF framework) significantly improves the performance

of IF and allows the boundary of feature specificity to be defined to some extent. However, if

the feature context in both positive and negative feedback is mutually exclusive, identifying

specific features is either impossible or ineffective. Thus, it might be useful to introduce

an appropriate clustering algorithm to the SSIF framework to delineate a clear boundary

between positive and negative feature contexts, which might aid in the selection of specific

features.

7.3.2 Future Work

Addressing the limitations outlined in the previous section is the first intended step for future

work. Also, the research presented in this thesis can take several future directions, which are

noted in this section.

a) Despite the sophistication of the proposed models and frameworks in this thesis and the

way they tackle uncertainties in TFS, they still output identical subsets of features (i.e.,

terms). These sets are problematic and hinder the performance of discriminative algorithms

such as IF because it is difficult to differentiate between the elements (i.e., features) of a

set. Knowing these elements are semantically different suggests a more comprehensive

solution is needed, as this problem is prevalent with almostall TFS techniques. Revising

the weight of these elements by integrating granular computing [Yao, 2001] and rough set

theory [Yao, 2009] into our ERS theory is a feasible solution. Both granular computing and
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rough set theory have demonstrated interesting outcomes [Li , 2003, Li and Zhong, 2003]

and [Li et al., 2017c, 2012]. Thus, this approach should be investigated in future work.

b) The fusion strategies adopted in the proposed research mainly deal with statistical features

(i.e., topics) and lexical words. These features do not consider the sequence of terms as

they originally appear in documents and paragraphs. The order of words is important, as it

conveys semantic information and discriminates between selected features. In future work,

the proposed models and frameworks will be adapted to consider n-grams [Albathan et al.,

2013], sequential patterns [Li et al., 2015] or ontological concepts [Tao et al., 2011] to

enhance the selection step of relevant features.

c) The document clustering algorithm used in this research has shown remarkable improve-

ment to existing techniques. However, the limitations outlined in the previous section might

affect the performance of the USIF framework. It is worth investigating other advanced

clustering techniques, such as the collapsed Gibbs sampling algorithm for the Dirichlet

multinomial mixture model (GSDMM) [Yin and Wang, 2014] and the constrained hetero-

geneous information network clustering model (CHINC) [Wang et al., 2015], which are

capable of digging deeper into the internal structures of documents or even paragraphs.

Also, developing or adapting our intra- and inter-cluster concept agglomeration to select

informative features from the newly formed clusters is an essential step forward.

d) The topical features used in this research have been generated by the LDA, which is cur-

rently the most widely used unsupervised topic modelling algorithm. However, there are

numerous other topic modelling techniques that might generate better quality topics in a

supervised or unsupervised way, including the pachinko allocation model (PAM) and the

hierarchical pachinko allocation model (hPAM) [Li and McCallum, 2006, Mimno et al.,

2007], the segmented topic model (STM) [Du et al., 2010] and the maximum entropy dis-

crimination latent Dirichlet allocation (MedLDA) [Zhu et al., 2012]. It would be beneficial

to use these topics knowing that the proposed ERS theory managed to solve many issues of

the base topic model (i.e., LDA). Adapting our models and frameworks to the new topics

would be useful.

e) Understanding the meaning behind the discovered features would also be useful, especially

in the selection process. However, no explicit semantic knowledge is used in our proposed

research, and the adopted semantic information is implicitand probabilistically generated.
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Thus, adding an explicit semantic layer to the proposed models and frameworks through

personalised ontology, advanced NLP methods or a combination of both could dramatically

improve our understanding of the topics discussed in the document collection and enhance

the selection and weighting of relevant features.

f) In the proposed TFS research, a conservative approach wastaken during the training phase

of the models and frameworks. No features were ignored except the stop words, as the

training documents were relevant. We assumed that all features in these documents were

initially relevant. However, it would be practical to introduce control parameters (e.g.,

hyperparameters) to facilitate issues like noise reduction (e.g., by specifying a cut-off) and

weight optimisation. Incorporating parameters into the proposed models and frameworks is

feasible and will be considered in future work.

Our proposed models and frameworks can be extended and integrated with potential theories

and techniques to explore different research problems. Although the proposed research has been

evaluated mainly in the context of IF, it has the potential tobe employed in other applications

such as IR, recommendation systems, text classification andopinion mining.

1. The proposed techniques have illustrated the capabilityof fusion strategies to discover rel-

evant features from the contents of relevant and irrelevantdocuments that represent user

information preferences. These techniques can be adapted to similar content-based analysis

systems such as the recommender system. For example, the proposed SIF, SIF2 or even the

USIF framework could be utilised to select and weigh interesting items from the content of

user profiles, and subsequently used to recommend top-k items.

2. No explicit users information needs (e.g., queries) havebeen assumed to be given in the

research work in this thesis. However, for an IR application, such queries can be integrated

with the proposed techniques to guide the search for high-quality features. For example,

the proposed USIF framework would benefit from the user queryto locate the most relevant

cluster. Also, an explicit query can be utilised with the proposed UR method to categorise

paragraphs in relevant documents based on their specificityto the query, allowing them to be

ranked accordingly. In the presence of short queries, the proposed techniques could be used

for a query expansion problem.

3. As previously mentioned, IF is regarded as a form of binaryclassification. Therefore, it
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is feasible to adapt our proposed work for incorporation into the related centroid-based

or three-way decision methodologies for text classification problems or similar contexts,

like sentiment analysis. For instance, our proposed UR method and the SSIF framework

significantly improved the performance of the SVM, which indicates the possibility for

further improvements in text classification.
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Table A.1: Detailed Results of the SIF Model for the First 50 Collections of the RCV1 Dataset

Collection# nDCG@4 P@20 BP MAP Fβ=1 IAP Recall 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

101 0.3868528 1.0000000 0.8631922 0.9288488 0.6514430 0.9199720 0.5016287 1.0000000 1.0000000 1.0000000 0.9831933 0.9802632 0.9537572 0.9547738 0.9004149 0.8711864 0.80285720.6732456

102 0.0000000 0.9000000 0.7798742 0.8059042 0.6195130 0.8231076 0.5031447 1.0000000 0.9000000 0.9210526 0.8600000 0.8600000 0.8627451 0.8347826 0.8000000 0.7529412 0.72000000.5426621

103 0.2960819 0.7000000 0.4918033 0.5020288 0.5050939 0.5447907 0.5081967 1.0000000 0.7391304 0.7142857 0.7142857 0.4918033 0.4235294 0.4423077 0.4423077 0.4094488 0.40740740.2081911

104 0.0000000 0.8500000 0.6276596 0.6456860 0.5669436 0.6627463 0.5053192 1.0000000 0.8846154 0.8846154 0.7435898 0.7031250 0.7014926 0.6354167 0.5454546 0.4331551 0.40930230.3494424

105 0.3903800 0.7500000 0.5400000 0.6219502 0.5604391 0.6483184 0.5100000 1.0000000 1.0000000 1.0000000 0.7727273 0.6176471 0.5400000 0.4615385 0.4454545 0.4454545 0.44545450.4032258

106 0.3903800 0.1500000 0.0967742 0.1646489 0.2496558 0.2303192 0.5161290 1.0000000 0.1612903 0.1552795 0.1612903 0.1612903 0.1543210 0.1612903 0.1612903 0.1543210 0.14659690.1165414

107 0.4692787 0.2000000 0.3513514 0.2442039 0.3309993 0.2644358 0.5135135 0.5000000 0.5000000 0.3750000 0.4166667 0.4166667 0.1775701 0.1455696 0.1092437 0.0994318 0.10000000.0686456

108 0.3903800 0.4500000 0.5333334 0.4073960 0.4619349 0.4557604 0.5333334 1.0000000 0.6250000 0.7500000 0.6250000 0.5454546 0.5714286 0.4285714 0.1279070 0.1818182 0.09210530.0660793

109 0.2021073 0.9500000 0.4189189 0.5425472 0.5240415 0.5532305 0.5067568 1.0000000 1.0000000 1.0000000 0.4915254 0.4626866 0.3724138 0.3642384 0.3642384 0.3712575 0.34693880.3122363

110 0.2463024 0.7500000 0.5483871 0.5387074 0.5271766 0.5928535 0.5161290 1.0000000 0.8125000 0.7857143 0.8125000 0.8125000 0.7619048 0.5581396 0.5581396 0.2795699 0.07650270.0639175

111 0.0000000 0.1000000 0.1333333 0.1331301 0.2130731 0.1655131 0.5333334 1.0000000 0.2857143 0.0746269 0.0729927 0.0729927 0.0746269 0.0729927 0.0454545 0.0447761 0.04142010.0350467

112 0.9060254 0.5000000 0.5000000 0.6568739 0.5835797 0.6556748 0.5250000 1.0000000 1.0000000 0.8000000 0.7500000 0.7500000 0.5833333 0.6363636 0.6363636 0.4210526 0.34545450.2898551

113 0.4692787 0.3000000 0.3428572 0.2690215 0.3515553 0.2926038 0.5071428 0.4242424 0.4242424 0.4516129 0.3818182 0.2886598 0.2681159 0.2485549 0.2425743 0.1866667 0.17204300.1301115

114 0.6713861 0.5500000 0.3709678 0.3942677 0.4439904 0.4332674 0.5080645 1.0000000 0.7500000 0.6400000 0.4444445 0.3294118 0.2897196 0.2774194 0.2767296 0.2631579 0.25000000.2450593

115 0.4692787 0.8500000 0.6031746 0.7465919 0.6045640 0.7297820 0.5079367 1.0000000 1.0000000 0.9333333 0.9545454 0.8809524 0.7619048 0.8666667 0.7758621 0.4561403 0.20070420.1974922

116 0.0000000 0.8500000 0.6666667 0.7344497 0.5990111 0.7434714 0.5057472 1.0000000 0.9166667 0.8285714 0.8055556 0.7777778 0.7121212 0.6896552 0.6853933 0.6730769 0.61654130.4728261

117 1.0000000 0.9000000 0.6250000 0.8293392 0.6358950 0.7971186 0.5156250 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.8695652 0.7419355 0.5777778 0.39189190.1871345

118 0.5307213 0.3500000 0.4285714 0.4644918 0.4975672 0.4848810 0.5357143 1.0000000 1.0000000 0.5000000 0.5000000 0.5000000 0.4375000 0.5000000 0.3703704 0.3076923 0.14444450.0736842

119 0.7039181 0.2000000 0.2750000 0.2841173 0.3655710 0.3460044 0.5125000 1.0000000 0.3055556 0.3055556 0.2772277 0.2772277 0.2772277 0.2772277 0.2772277 0.2720588 0.27007300.2666667

120 0.6713861 0.8000000 0.7531645 0.7701278 0.6086599 0.7798477 0.5031645 1.0000000 0.9411765 0.8723404 0.8750000 0.8666667 0.8360656 0.8360656 0.8102190 0.6165049 0.51811590.4061697

121 0.8318725 0.9000000 0.7380952 0.7765812 0.6127139 0.7713742 0.5059524 1.0000000 0.9444444 0.9444444 0.8297873 0.8297873 0.8000000 0.7857143 0.7662337 0.6607143 0.63333330.2906574

122 0.4981893 0.8500000 0.7450981 0.7061632 0.5921292 0.6926526 0.5098040 1.0000000 1.0000000 0.9230769 0.8695652 0.8620690 0.8529412 0.8378378 0.7254902 0.1923077 0.18359380.1722973

123 0.6713861 0.1500000 0.1764706 0.2478195 0.3376050 0.2990831 0.5294118 1.0000000 1.0000000 0.2173913 0.1956522 0.1956522 0.1875000 0.1358025 0.1250000 0.0792079 0.07881770.0748899

124 0.6131472 0.1500000 0.1818182 0.1865306 0.2738890 0.2256692 0.5151515 0.6666667 0.1960784 0.2318841 0.1960784 0.1797753 0.1730769 0.1734104 0.1734104 0.1705882 0.17341040.1479821

125 0.0000000 1.0000000 0.5151515 0.6232488 0.5571872 0.6201299 0.5037879 1.0000000 0.9600000 0.9090909 0.7407407 0.6309524 0.5178571 0.4938272 0.4656863 0.4435147 0.36445790.2953020

126 0.5307213 0.9000000 0.8953489 0.9283363 0.6523933 0.9278924 0.5029069 1.0000000 0.9722222 0.9540230 0.9491525 0.9479167 0.9456522 0.9448819 0.9166667 0.9047619 0.89325850.7782806

127 0.0000000 0.7000000 0.5476190 0.5850744 0.5460494 0.6243455 0.5119048 1.0000000 0.7857143 0.8333333 0.6785714 0.6785714 0.5800000 0.5357143 0.5357143 0.4666667 0.41758240.3559322

128 0.7653606 0.4500000 0.3636364 0.3840161 0.4400214 0.4491878 0.5151515 1.0000000 0.5384616 0.7000000 0.5384616 0.5384616 0.3673469 0.3278689 0.2727273 0.2700000 0.21126760.1764706

129 0.1951900 0.6000000 0.4210526 0.4228632 0.4618566 0.4541660 0.5087720 1.0000000 1.0000000 0.6333333 0.4736842 0.4210526 0.3670886 0.2578616 0.2578616 0.2255319 0.18772560.1716868

130 0.7039181 0.2500000 0.3125000 0.3078890 0.3898425 0.3824883 0.5312500 1.0000000 1.0000000 0.5000000 0.2352941 0.2352941 0.2702703 0.2352941 0.2352941 0.1794872 0.15957450.1568628

131 0.0000000 0.8500000 0.6486486 0.7233598 0.5959882 0.7330287 0.5067568 1.0000000 0.8947368 0.8823530 0.8947368 0.8947368 0.8695652 0.7741935 0.5714286 0.4960630 0.43312100.3523810

132 0.0000000 0.2500000 0.2727273 0.0856993 0.1472564 0.1207630 0.5227273 0.2400000 0.2400000 0.2777778 0.0843373 0.0698413 0.0685358 0.0698413 0.0698413 0.0685358 0.06984130.0698413

133 0.6366824 0.4500000 0.4642857 0.5016328 0.5096158 0.5193362 0.5178571 1.0000000 1.0000000 0.8750000 0.8181818 0.4482759 0.4285714 0.3333333 0.2941177 0.2421053 0.15294120.1201717

134 0.3903800 0.6000000 0.3432836 0.3310262 0.4006814 0.3911084 0.5074626 1.0000000 0.7777778 0.3898305 0.3150685 0.3076923 0.2614108 0.2653061 0.2653061 0.2614108 0.26530610.1930836

135 0.7653606 0.9000000 0.8427300 0.8729712 0.6370246 0.8886224 0.5014837 1.0000000 0.9615384 0.9615384 0.9146342 0.9146342 0.9100529 0.8714860 0.8454810 0.8454810 0.82526880.7247312

136 0.2960819 0.4000000 0.3731343 0.3206993 0.3930219 0.3853492 0.5074626 1.0000000 0.3750000 0.4038461 0.3625000 0.3625000 0.3689320 0.3287671 0.3287671 0.3142857 0.22021660.1740260

137 0.7653606 0.2500000 0.4444445 0.3760315 0.4484957 0.4285004 0.5555556 1.0000000 1.0000000 0.4444445 0.3000000 0.2857143 0.3571429 0.2727273 0.2727273 0.2352941 0.27272730.2727273

138 0.8048100 0.2000000 0.2045455 0.1996002 0.2871265 0.2563788 0.5113636 1.0000000 0.2250000 0.2250000 0.1746032 0.1746032 0.1783784 0.1746032 0.1746032 0.1745283 0.16226420.1565836

139 0.9060254 0.6500000 0.7058824 0.6765018 0.5939862 0.7157504 0.5294118 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.7692308 0.5500000 0.5217391 0.6086956 0.23880600.1847826

140 1.0000000 0.6500000 0.4477612 0.4639552 0.4847346 0.4745721 0.5074626 1.0000000 0.8750000 0.6400000 0.4897959 0.4576271 0.4320988 0.4056604 0.3455882 0.2030075 0.18895350.1825613

141 0.7653606 0.8000000 0.4878049 0.5906197 0.5451016 0.5977781 0.5060976 1.0000000 1.0000000 0.7142857 0.5517241 0.5500000 0.5116279 0.5000000 0.5000000 0.4382716 0.42285710.3867925

142 0.4692787 0.3500000 0.2916667 0.3653896 0.4294790 0.4434576 0.5208333 1.0000000 1.0000000 0.8333333 0.4761905 0.4761905 0.1982759 0.1825397 0.1825397 0.1982759 0.18253970.1481482

143 0.2960819 0.1000000 0.0869565 0.1121917 0.1846725 0.1650253 0.5217391 1.0000000 0.0844156 0.0821918 0.0844156 0.0844156 0.0821918 0.0805085 0.0805085 0.0801688 0.07823130.0782313

144 0.2960819 0.9000000 0.6545454 0.7393518 0.6029869 0.7425133 0.5090909 1.0000000 0.8947368 0.9000000 0.8947368 0.8333333 0.7250000 0.7000000 0.6964286 0.6081081 0.50485440.4104478

145 0.2346394 0.1000000 0.1111111 0.0851688 0.1463062 0.0940965 0.5185185 0.1153846 0.1153846 0.0917431 0.0975610 0.0975610 0.0893471 0.0896552 0.0896552 0.0893471 0.08965520.0697674

146 0.0000000 0.6500000 0.5495495 0.6302434 0.5604075 0.6548078 0.5045044 1.0000000 0.8297873 0.8297873 0.8297873 0.6923077 0.5648148 0.5367647 0.5155280 0.5174419 0.47555560.4111111

147 1.0000000 0.5500000 0.5294118 0.5209063 0.5177875 0.5473980 0.5147059 0.7142857 0.7142857 0.6071429 0.6000000 0.5806451 0.6071429 0.5531915 0.5531915 0.4915254 0.34042550.2595420

148 0.0000000 0.8500000 0.9254386 0.9280095 0.6517116 0.9287103 0.5021929 1.0000000 0.9633027 0.9633027 0.9633027 0.9633027 0.9513889 0.9532164 0.9532164 0.9452736 0.92792790.6315789

149 0.2021073 0.1000000 0.1754386 0.1730475 0.2582552 0.2100302 0.5087720 0.2524272 0.2524272 0.2523364 0.2524272 0.2524272 0.2102273 0.1777778 0.1777778 0.1777778 0.17777780.1269488

150 1.0000000 0.7000000 0.3518519 0.4694999 0.4885721 0.4750203 0.5092593 1.0000000 1.0000000 0.8666667 0.3958333 0.3085106 0.3043478 0.2903226 0.2867647 0.2848101 0.25520830.2327586

Avg. 0.4566359 0.5670000 0.4751608 0.5003752 0.4729521 0.5268587 0.5137146 0.9182601 0.7569241 0.6615829 0.5769837 0.5413795 0.4941959 0.4619849 0.4303175 0.3738135 0.3217071 0.2582962
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Table B.1: Detailed Results of the SIF2 Model for the First 50 Collections of RCV1 Dataset

Collection# nDCG@4 P@20 BP MAP Fβ=1 IAP Recall 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

101 0.3868528 1.0000000 0.8371335 0.9221295 0.6497825 0.9091740 0.5016287 1.0000000 1.0000000 1.0000000 0.9827586 0.9621212 0.9550562 0.9230769 0.8773235 0.8445122 0.84451220.6115538

102 0.0000000 0.9500000 0.7798742 0.8347064 0.6278399 0.8374788 0.5031447 1.0000000 0.9500000 0.9016393 0.9016393 0.8854167 0.8854167 0.8738739 0.8129497 0.7527472 0.72727280.5213115

103 0.4692787 0.7000000 0.5573770 0.5613163 0.5334373 0.6071813 0.5081967 0.7777778 0.7777778 0.7777778 0.7419355 0.7179487 0.6400000 0.5588235 0.4464286 0.4464286 0.41044780.3836478

104 0.0000000 0.9500000 0.6063830 0.6933501 0.5845868 0.6976306 0.5053192 1.0000000 1.0000000 0.9565218 0.8333333 0.7358491 0.6582279 0.6477273 0.5945946 0.4935897 0.40465120.3494424

105 0.3903800 0.7000000 0.5800000 0.6632540 0.5766177 0.6808106 0.5100000 1.0000000 1.0000000 1.0000000 0.7600000 0.7407407 0.6046512 0.5769231 0.4814815 0.4555556 0.43478260.4347826

106 0.5585076 0.1500000 0.0967742 0.1762388 0.2627561 0.2550958 0.5161290 1.0000000 0.1896552 0.1896552 0.1896552 0.1896552 0.1896552 0.1896552 0.1896552 0.1838235 0.16384180.1308017

107 0.4981893 0.2500000 0.2162162 0.2386212 0.3258331 0.2740144 0.5135135 1.0000000 0.8333333 0.2162162 0.1505376 0.1450382 0.1450382 0.1282051 0.1220657 0.1059603 0.09742120.0703422

108 0.3903800 0.4000000 0.5333334 0.3928076 0.4524093 0.4279386 0.5333334 1.0000000 0.6666667 0.6000000 0.5333334 0.5333334 0.5333334 0.2812500 0.1896552 0.1621622 0.13333330.0742574

109 0.4692787 1.0000000 0.5000000 0.6728416 0.5781071 0.6898621 0.5067568 1.0000000 1.0000000 1.0000000 1.0000000 0.9705882 0.7551020 0.4000000 0.4000000 0.3896104 0.35828880.3148936

110 0.3903800 0.8000000 0.8387097 0.6431335 0.5726742 0.7024058 0.5161290 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.06879610.0639175

111 0.0000000 0.1500000 0.1333333 0.1405291 0.2224456 0.1657687 0.5333334 1.0000000 0.1818182 0.1500000 0.0937500 0.0937500 0.0731707 0.0731707 0.0488889 0.0365535 0.03655350.0357995

112 0.5307213 0.5500000 0.5500000 0.6647796 0.5866789 0.6864402 0.5250000 1.0000000 1.0000000 1.0000000 1.0000000 0.7500000 0.5714286 0.5714286 0.5185185 0.4210526 0.39583330.3225806

113 0.6713861 0.4500000 0.4428572 0.3327282 0.4018253 0.3615957 0.5071428 0.5000000 0.4912281 0.4912281 0.4912281 0.4912281 0.3888889 0.2905406 0.2653061 0.2488889 0.18768330.1313321

114 0.7653606 0.6000000 0.4516129 0.4405396 0.4718988 0.4664055 0.5080645 0.8461539 0.8461539 0.6363636 0.5263158 0.4912281 0.3522727 0.3057325 0.3057325 0.2880435 0.28643220.2460318

115 0.4692787 0.7000000 0.5714286 0.6045777 0.5520597 0.6167222 0.5079367 1.0000000 1.0000000 1.0000000 0.6410257 0.6136364 0.5714286 0.5324675 0.5232558 0.4636364 0.23849370.2000000

116 0.0000000 0.8500000 0.7586207 0.8247380 0.6270028 0.8384056 0.5057472 1.0000000 0.9230769 0.9038461 0.9038461 0.9038461 0.9038461 0.8571429 0.8205128 0.7373737 0.64754100.6214286

117 0.7653606 0.8500000 0.5937500 0.6914657 0.5907377 0.6766763 0.5156250 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.4285714 0.2839506 0.2745098 0.26363640.1927711

118 0.2960819 0.3500000 0.2857143 0.2891648 0.3755937 0.3224022 0.5357143 0.5000000 0.3846154 0.3846154 0.3846154 0.3846154 0.3846154 0.3846154 0.3846154 0.2105263 0.07179490.0717949

119 0.5307213 0.5500000 0.3250000 0.4167015 0.4596624 0.4607579 0.5125000 1.0000000 0.8000000 0.6666667 0.5000000 0.3200000 0.3134328 0.3090909 0.3090909 0.3090909 0.30000000.2409639

120 0.6713861 0.7500000 0.7468355 0.7837759 0.6128772 0.8026015 0.5031645 1.0000000 0.9000000 0.9000000 0.9000000 0.9000000 0.9000000 0.8807340 0.8496240 0.6614583 0.52747260.4093264

121 0.8318725 0.7500000 0.8333333 0.8060027 0.6216661 0.8124495 0.5059524 1.0000000 1.0000000 0.8636364 0.8636364 0.8636364 0.8636364 0.8636364 0.8481013 0.8395062 0.61417320.3169811

122 0.7039181 0.8500000 0.8039216 0.8644753 0.6413732 0.8630371 0.5098040 1.0000000 1.0000000 1.0000000 0.8571429 0.8571429 0.8571429 0.8571429 0.8571429 0.8200000 0.75806450.6296296

123 0.6713861 0.3000000 0.2941177 0.2911162 0.3756614 0.3448280 0.5294118 1.0000000 1.0000000 0.3157895 0.3157895 0.2682927 0.2682927 0.2682927 0.1237113 0.0797872 0.07657660.0765766

124 0.6131472 0.2000000 0.1212121 0.1952800 0.2832047 0.2569791 0.5151515 1.0000000 0.2222222 0.1913043 0.1913043 0.1913043 0.1913043 0.1913043 0.1726619 0.1640212 0.16402120.1473214

125 0.0000000 0.8500000 0.5000000 0.5384228 0.5205299 0.5609151 0.5037879 1.0000000 0.8571429 0.6923077 0.6557377 0.6136364 0.5156250 0.4469274 0.3899614 0.3772242 0.32487310.2966292

126 0.4981893 0.9500000 0.8953489 0.9310888 0.6530716 0.9351044 0.5029069 1.0000000 0.9777778 0.9777778 0.9701493 0.9594595 0.9453125 0.9453125 0.9453125 0.9012346 0.89595380.7678571

127 0.0000000 0.7000000 0.6190476 0.6301055 0.5648882 0.6526714 0.5119048 1.0000000 0.8571429 0.8333333 0.7368421 0.6538461 0.6388889 0.6190476 0.5535714 0.5230770 0.38181820.3818182

128 0.7653606 0.2500000 0.3636364 0.2809189 0.3635753 0.3124057 0.5151515 0.3750000 0.3750000 0.3750000 0.3750000 0.3750000 0.3207547 0.2804878 0.2758621 0.2547170 0.23437500.1952663

129 0.2463024 0.6500000 0.4385965 0.4963182 0.5024679 0.5268646 0.5087720 1.0000000 1.0000000 0.7200000 0.7200000 0.5476190 0.4531250 0.3627451 0.2985075 0.2598870 0.24299070.1906355

130 0.6713861 0.2000000 0.2500000 0.3677687 0.4346453 0.3824965 0.5312500 1.0000000 1.0000000 0.4000000 0.2448980 0.2448980 0.2448980 0.2448980 0.2448980 0.1973684 0.19736840.1882353

131 0.2960819 0.9000000 0.7297297 0.8405771 0.6323127 0.8369895 0.5067568 1.0000000 1.0000000 1.0000000 0.9534884 0.9534884 0.9534884 0.8653846 0.7536232 0.7142857 0.57264960.4404762

132 0.0000000 0.3000000 0.2727273 0.2347347 0.3239826 0.2627108 0.5227273 1.0000000 0.5555556 0.5555556 0.1794872 0.0856031 0.0856031 0.0856031 0.0856031 0.0856031 0.08560310.0856031

133 0.8048100 0.6000000 0.5000000 0.5841202 0.5489964 0.5827838 0.5178571 1.0000000 1.0000000 1.0000000 0.7500000 0.6000000 0.5333334 0.5151515 0.3962264 0.3205128 0.16455700.1308411

134 0.3903800 0.6000000 0.5223880 0.5064644 0.5069631 0.5346825 0.5074626 1.0000000 0.6666667 0.6551724 0.5789474 0.5500000 0.5384616 0.4941177 0.4800000 0.4218750 0.30373830.1925287

135 0.7653606 1.0000000 0.8397626 0.8823375 0.6395015 0.8852153 0.5014837 1.0000000 0.9500000 0.9078947 0.9078947 0.9078947 0.8855932 0.8855932 0.8637993 0.8489426 0.83746560.7422907

136 0.2960819 0.3000000 0.3731343 0.3479407 0.4128273 0.3674176 0.5074626 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.3986014 0.3986014 0.26991150.1744792

137 0.7653606 0.2500000 0.2222222 0.2756401 0.3684653 0.3050943 0.5555556 0.4000000 0.4000000 0.4000000 0.3181818 0.3181818 0.3181818 0.3181818 0.3181818 0.2051282 0.18000000.1800000

138 0.8318725 0.2500000 0.1590909 0.2501396 0.3359468 0.3014838 0.5113636 1.0000000 0.3333333 0.2530121 0.2530121 0.2530121 0.2527473 0.2195122 0.2035928 0.1956522 0.19417480.1582734

139 0.9060254 0.6500000 0.7647059 0.7764128 0.6295518 0.7567821 0.5294118 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.8333333 0.8125000 0.8125000 0.3043478 0.29629630.2656250

140 1.0000000 0.9500000 0.5820895 0.6333755 0.5634707 0.6270447 0.5074626 1.0000000 1.0000000 0.9600000 0.9600000 0.7500000 0.6481481 0.5061728 0.4234234 0.2727273 0.19090910.1861111

141 0.7653606 0.8000000 0.5000000 0.6259098 0.5596632 0.6320926 0.5060976 1.0000000 1.0000000 0.8181818 0.6744186 0.5500000 0.5232558 0.5177305 0.5177305 0.5177305 0.46625770.3677130

142 0.4692787 0.4000000 0.3333333 0.3998019 0.4523619 0.4399978 0.5208333 1.0000000 1.0000000 1.0000000 0.4705882 0.2035398 0.2035398 0.2035398 0.2035398 0.2035398 0.20353980.1481482

143 0.2346394 0.1500000 0.1304348 0.0918632 0.1562205 0.1033880 0.5217391 0.1666667 0.1666667 0.1333333 0.1176471 0.0860215 0.0860215 0.0860215 0.0787037 0.0781250 0.07308970.0649718

144 0.2960819 0.9000000 0.7090909 0.7439543 0.6045119 0.7633553 0.5090909 1.0000000 0.9130435 0.9130435 0.9130435 0.8888889 0.8055556 0.7551020 0.7222222 0.6428571 0.49504950.3481013

145 0.2346394 0.1000000 0.0740741 0.0772089 0.1344045 0.0937063 0.5185185 0.1333333 0.0928270 0.0928270 0.0928270 0.0928270 0.0928270 0.0928270 0.0928270 0.0928270 0.08125000.0735695

146 0.0000000 1.0000000 0.6036036 0.7571582 0.6055338 0.7615704 0.5045044 1.0000000 1.0000000 1.0000000 1.0000000 0.9230769 0.8235294 0.6261683 0.5436242 0.5144509 0.47807020.4683544

147 1.0000000 0.6000000 0.6470588 0.5383474 0.5262612 0.5861561 0.5147059 0.6571429 0.6571429 0.6571429 0.6571429 0.6571429 0.6571429 0.6571429 0.6410257 0.4838710 0.40506330.3177570

148 0.0000000 1.0000000 0.9254386 0.9501113 0.6570788 0.9285288 0.5021929 1.0000000 1.0000000 0.9800000 0.9520958 0.9520958 0.9520958 0.9520958 0.9470588 0.9327354 0.93273540.6129032

149 0.2960819 0.1500000 0.2280702 0.1984578 0.2855359 0.2805758 0.5087720 1.0000000 0.2708333 0.2708333 0.2242991 0.2242991 0.1908397 0.1908397 0.1908397 0.1908397 0.18840580.1443038

150 1.0000000 0.9500000 0.5740741 0.6616644 0.5755435 0.6701500 0.5092593 1.0000000 0.9500000 0.9500000 0.9500000 0.7500000 0.7500000 0.5500000 0.4712644 0.4190476 0.37984500.2014925

Avg. 0.4721432 0.6050000 0.5043039 0.5353023 0.4909009 0.5569369 0.5137146 0.8919965 0.7686686 0.6986885 0.6332260 0.5878731 0.5500399 0.4974052 0.4624303 0.4117959 0.3457523 0.2784295
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Figure C.1: P@20 Results Before and After Uncertainty Reduction for Each Model from 1%
to 100% of the Features Space.
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Figure C.2: BP Results Before and After Uncertainty Reduction for EachModel from 1% to
100% of the Features Space.
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Figure C.3: Fβ=1 Results Before and After Uncertainty Reduction for Each Model from 1% to
100% of the Features Space.
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Figure C.4: IAP Results Before and After Uncertainty Reduction for Each Model from 1% to
100% of the Features Space.



250 APPENDIX C. APPENDIX C: UR METHOD



Appendix D

Detailed Results: The Proposed USIF Framework
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Table D.1: Detailed Results of the USIF Framework for the First 50 Collections of RCV1 Dataset

Collection# nDCG@4 P@20 BP MAP Fβ=1 IAP Recall 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

101 0.6131472 1.0000000 0.8892508 0.9596796 0.6588655 0.9437619 0.5016287 1.0000000 1.0000000 1.0000000 1.0000000 0.9945946 0.9945946 0.9893048 0.9579832 0.9503817 0.85493830.6395834

102 0.0000000 0.9000000 0.7798742 0.8428251 0.6301226 0.8353913 0.5031447 1.0000000 0.9444444 0.9200000 0.8985508 0.8846154 0.8709678 0.8608696 0.8115942 0.7513812 0.72727280.5196078

103 0.4692787 0.6000000 0.5901640 0.5328653 0.5202387 0.5883213 0.5081967 1.0000000 0.6842105 0.7272728 0.7073171 0.6842105 0.6181818 0.5967742 0.3896104 0.3391813 0.38961040.3351648

104 0.0000000 0.9500000 0.6276596 0.7424275 0.6013446 0.7436865 0.5053192 1.0000000 1.0000000 1.0000000 0.9268293 0.9268293 0.7968750 0.6744186 0.6111111 0.4782609 0.41284400.3533835

105 0.3903800 0.7000000 0.5800000 0.6856604 0.5849267 0.6983788 0.5100000 1.0000000 1.0000000 1.0000000 0.7500000 0.7500000 0.6279070 0.5882353 0.5362319 0.5000000 0.47524750.4545455

106 0.5855701 0.1500000 0.0967742 0.1687288 0.2543180 0.2430861 0.5161290 1.0000000 0.1733333 0.1710526 0.1710526 0.1733333 0.1733333 0.1733333 0.1733333 0.1733333 0.16374270.1280992

107 0.6131472 0.3500000 0.2972973 0.3043028 0.3821484 0.3206445 0.5135135 1.0000000 1.0000000 0.2727273 0.2096774 0.2191781 0.2065217 0.1678832 0.1152263 0.1456311 0.10000000.0902439

108 0.4692787 0.4000000 0.4666667 0.4909103 0.5112433 0.5263233 0.5333334 1.0000000 1.0000000 0.7500000 0.7500000 0.6363636 0.4705882 0.3666667 0.3666667 0.2500000 0.12389380.0753769

109 0.2021073 1.0000000 0.4324324 0.6119888 0.5544236 0.6254494 0.5067568 1.0000000 1.0000000 1.0000000 1.0000000 0.7317073 0.3703704 0.3703704 0.3703704 0.3703704 0.35051550.3162393

110 0.3868528 0.8000000 0.7741935 0.6322939 0.5683363 0.6656584 0.5161290 0.8000000 0.8000000 0.8000000 0.8000000 0.8000000 0.8000000 0.8000000 0.7941176 0.7941176 0.07035180.0636550

111 0.0000000 0.1000000 0.0666667 0.1431067 0.2256625 0.1704687 0.5333334 1.0000000 0.1363636 0.1333333 0.1333333 0.1363636 0.0849057 0.0849057 0.0472103 0.0391645 0.03978780.0397878

112 0.5307213 0.5500000 0.5500000 0.6279055 0.5718602 0.6611460 0.5250000 1.0000000 1.0000000 1.0000000 1.0000000 0.8181818 0.6666667 0.4615385 0.3454545 0.3454545 0.34545450.2898551

113 0.4692787 0.3000000 0.4857143 0.3560422 0.4183674 0.3965220 0.5071428 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.4929577 0.4285714 0.3202615 0.2978723 0.18823530.1338432

114 0.7653606 0.7000000 0.3709678 0.4219602 0.4610265 0.4582993 0.5080645 0.8888889 0.8888889 0.7777778 0.4750000 0.3250000 0.3027523 0.3014706 0.2795699 0.2795699 0.27536230.2470120

115 0.6131472 0.9500000 0.6666667 0.7543512 0.6070923 0.7369163 0.5079367 1.0000000 1.0000000 0.9545454 0.9545454 0.8857143 0.8684211 0.8125000 0.6233766 0.5862069 0.22265630.1981132

116 0.0000000 0.8500000 0.7701150 0.8298371 0.6284707 0.8458704 0.5057472 1.0000000 0.9375000 0.9107143 0.9107143 0.9107143 0.9107143 0.8571429 0.8227848 0.7692308 0.66666670.6083916

117 0.7653606 0.9500000 0.7187500 0.8162860 0.6320204 0.7966991 0.5156250 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9545454 0.7419355 0.5777778 0.33333330.1560976

118 0.6131472 0.3500000 0.3571429 0.3349426 0.4121796 0.3664669 0.5357143 0.5000000 0.4347826 0.4117647 0.4117647 0.4347826 0.4347826 0.4347826 0.4347826 0.3870968 0.07329840.0732984

119 0.7653606 0.5500000 0.4000000 0.4539210 0.4814351 0.4998970 0.5125000 1.0000000 1.0000000 0.6153846 0.5714286 0.4324324 0.3428572 0.3428572 0.3130435 0.3130435 0.31304350.2547771

120 0.4692787 0.7500000 0.7594937 0.7576152 0.6047133 0.7953957 0.5031645 0.9042553 0.9042553 0.9000000 0.9010989 0.9042553 0.9042553 0.8909091 0.8538461 0.6464647 0.53068590.4093264

121 0.6366824 0.8500000 0.8095238 0.7936722 0.6179636 0.8086052 0.5059524 1.0000000 0.8823530 0.8947368 0.8593750 0.8593750 0.8593750 0.8593750 0.8500000 0.8500000 0.64406780.3360000

122 0.7039181 0.8500000 0.7843137 0.7109390 0.5938016 0.6928090 0.5098040 1.0000000 0.9000000 0.8636364 0.8636364 0.8611111 0.8611111 0.8611111 0.8510639 0.1891892 0.18918920.1808511

123 0.6713861 0.4000000 0.4705882 0.5716386 0.5497155 0.5606520 0.5294118 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.4074074 0.4074074 0.1363636 0.0727273 0.07272730.0705394

124 0.6131472 0.2000000 0.1515152 0.2030395 0.2912766 0.2603640 0.5151515 1.0000000 0.2352941 0.1926606 0.1926606 0.1965812 0.1965812 0.1965812 0.1714286 0.1666667 0.16756760.1479821

125 0.0000000 0.9000000 0.5151515 0.5833250 0.5406468 0.6025345 0.5037879 1.0000000 0.9444444 0.8709678 0.6935484 0.6428571 0.5317460 0.4408602 0.4170404 0.4030418 0.38607590.2972973

126 0.5307213 0.9500000 0.8953489 0.9267689 0.6520059 0.9260019 0.5029069 1.0000000 0.9777778 0.9772728 0.9666666 0.9615384 0.9304348 0.9304348 0.9000000 0.9000000 0.89080460.7510917

127 0.1951900 0.7500000 0.6190476 0.6435965 0.5702463 0.6579581 0.5119048 1.0000000 0.8333333 0.8461539 0.8333333 0.6410257 0.6410257 0.6279070 0.5303030 0.5223880 0.40000000.3620690

128 0.7039181 0.3000000 0.3636364 0.3018966 0.3806936 0.3353024 0.5151515 0.4000000 0.4000000 0.4117647 0.4000000 0.4000000 0.3600000 0.3194445 0.3012048 0.2929293 0.22556390.1774194

129 0.3903800 0.6000000 0.4561403 0.4742413 0.4909002 0.4846080 0.5087720 1.0000000 1.0000000 0.6190476 0.5882353 0.5106383 0.3717949 0.2923077 0.2697369 0.2658960 0.24186050.1711712

130 0.6713861 0.2000000 0.2500000 0.4057498 0.4600953 0.4520497 0.5312500 1.0000000 1.0000000 0.8000000 0.3200000 0.3200000 0.3200000 0.2857143 0.2727273 0.2372881 0.21428570.2025317

131 0.2346394 0.9500000 0.6756757 0.8291577 0.6290542 0.8168420 0.5067568 1.0000000 1.0000000 1.0000000 0.9500000 0.9500000 0.9500000 0.9183673 0.6547619 0.6354167 0.57264960.3540670

132 0.0000000 0.3000000 0.2727273 0.1835725 0.2717214 0.2409627 0.5227273 1.0000000 0.5555556 0.5000000 0.1076923 0.0696203 0.0696203 0.0696203 0.0696203 0.0696203 0.06962030.0696203

133 0.9060254 0.5500000 0.5000000 0.5538344 0.5352419 0.5540635 0.5178571 1.0000000 1.0000000 0.8571429 0.7500000 0.5714286 0.5000000 0.4594595 0.3859649 0.3382353 0.11818180.1142857

134 0.4692787 0.6500000 0.4477612 0.4673399 0.4865756 0.5048481 0.5074626 1.0000000 0.6538461 0.6071429 0.6000000 0.5178571 0.4565218 0.4565218 0.4392524 0.3417721 0.27981650.2005988

135 1.0000000 0.9000000 0.8308606 0.8426890 0.6287805 0.8641342 0.5014837 1.0000000 0.8793104 0.8906250 0.8906250 0.8647059 0.8529412 0.8529412 0.8529412 0.8358209 0.83333330.7522321

136 0.2960819 0.2500000 0.3582090 0.3291611 0.3993121 0.3641232 0.5074626 0.3986014 0.3986014 0.4042553 0.3986014 0.3986014 0.3986014 0.3986014 0.3986014 0.3986014 0.23735410.1749347

137 0.7653606 0.2500000 0.4444445 0.4381790 0.4899352 0.5354782 0.5555556 1.0000000 1.0000000 1.0000000 0.7500000 0.5714286 0.3181818 0.3181818 0.3181818 0.2142857 0.20000000.2000000

138 0.8318725 0.3500000 0.2272727 0.2797645 0.3616642 0.3151340 0.5113636 1.0000000 0.5555556 0.2500000 0.2315790 0.2346939 0.2346939 0.2196970 0.1968085 0.1968085 0.18779340.1588448

139 0.9060254 0.6500000 0.7647059 0.7392536 0.6169784 0.7491651 0.5294118 1.0000000 1.0000000 0.8666667 0.8666667 0.8666667 0.8666667 0.8666667 0.8666667 0.3469388 0.34693880.3469388

140 1.0000000 0.9000000 0.5671642 0.6236919 0.5596058 0.6322360 0.5074626 1.0000000 1.0000000 0.9411765 0.9200000 0.8181818 0.6415094 0.5857143 0.4476191 0.2231405 0.19062500.1866295

141 0.7653606 0.8500000 0.5000000 0.6200349 0.5573024 0.6346732 0.5060976 1.0000000 1.0000000 0.8500000 0.6500000 0.5873016 0.5384616 0.5376344 0.4963504 0.4963504 0.48076920.3445378

142 0.5000000 0.5000000 0.4166667 0.4819365 0.5006306 0.5032898 0.5208333 1.0000000 1.0000000 1.0000000 0.8000000 0.5555556 0.2053572 0.2053572 0.2053572 0.2053572 0.20535720.1538462

143 0.2346394 0.1000000 0.0869565 0.0809907 0.1402154 0.0880235 0.5217391 0.1052632 0.1000000 0.0909091 0.0909091 0.0873786 0.0873786 0.0873786 0.0873786 0.0837004 0.07719300.0707692

144 0.2346394 0.9000000 0.7454546 0.7757996 0.6147645 0.8003657 0.5090909 1.0000000 0.9230769 0.9230769 0.9230769 0.9230769 0.8297873 0.8297873 0.8297873 0.6521739 0.58823530.3819445

145 0.6131472 0.1000000 0.0740741 0.0779815 0.1355737 0.0962691 0.5185185 0.1250000 0.0982659 0.0960699 0.0960699 0.0982659 0.0982659 0.0982659 0.0975610 0.0944206 0.08280260.0739726

146 0.0000000 1.0000000 0.5585586 0.7054864 0.5883037 0.7060094 0.5045044 1.0000000 1.0000000 0.9600000 0.9268293 0.6969697 0.6222222 0.5583333 0.5337838 0.5235294 0.48000000.4644352

147 0.7653606 0.5500000 0.6764706 0.5377863 0.5259931 0.5753744 0.5147059 0.6857143 0.6857143 0.6944444 0.6944444 0.6857143 0.6857143 0.6857143 0.6857143 0.5800000 0.13223140.1137124

148 0.5000000 1.0000000 0.9254386 0.9526129 0.6576760 0.9346949 0.5021929 1.0000000 1.0000000 0.9836066 0.9764706 0.9583333 0.9527027 0.9527027 0.9485714 0.9377990 0.92920350.6422535

149 0.3065736 0.2500000 0.2280702 0.1989377 0.2860324 0.2324890 0.5087720 0.2839506 0.2839506 0.2839506 0.2804878 0.2839506 0.2000000 0.2000000 0.2000000 0.2000000 0.20000000.1410891

150 0.9197208 0.9000000 0.5925926 0.6762447 0.5809916 0.6851051 0.5092593 1.0000000 0.9375000 0.9333333 0.9000000 0.8888889 0.7297297 0.5789474 0.5066667 0.4423077 0.39837400.2204082

Avg. 0.5017374 0.6160000 0.5177640 0.5495394 0.5004499 0.5706510 0.5137146 0.8918335 0.7929672 0.7290643 0.6718444 0.6234005 0.5531097 0.5251623 0.4765993 0.4142189 0.3339912 0.2649695
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Table E.1: Detailed Results of the SSIF Framework for the First 50 Collections of RCV1 Dataset

Collection# nDCG@4 P@20 BP MAP Fβ=1 IAP Recall 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

101 0.3065736 0.9500000 0.8143323 0.8854953 0.6404472 0.8935572 0.5016287 1.0000000 0.9821429 0.9450000 0.9450000 0.9450000 0.9450000 0.9450000 0.8506944 0.8211920 0.79829540.6518047

102 0.4692787 1.0000000 0.8364780 0.9362046 0.6545268 0.9155068 0.5031447 1.0000000 1.0000000 0.9905660 0.9905660 0.9905660 0.9905660 0.9905660 0.9743590 0.8724832 0.75129530.5196078

103 0.4692787 0.9500000 0.6393443 0.7596180 0.6089776 0.7576004 0.5081967 1.0000000 1.0000000 1.0000000 1.0000000 0.9615384 0.7804878 0.6491228 0.6231884 0.4833333 0.48333330.3526012

104 0.4692787 1.0000000 0.6808510 0.7867288 0.6153783 0.7828135 0.5053192 1.0000000 1.0000000 1.0000000 0.9166667 0.8958333 0.8750000 0.8219178 0.6930693 0.6363636 0.39908260.3730159

105 0.0000000 0.7500000 0.5400000 0.6310720 0.5641129 0.6478875 0.5100000 1.0000000 1.0000000 0.9230769 0.8076923 0.8076923 0.5952381 0.5344828 0.5147059 0.3703704 0.31034480.2631579

106 0.4414924 0.2000000 0.2258064 0.1609772 0.2454121 0.1861531 0.5161290 0.2333333 0.2333333 0.2333333 0.2187500 0.2187500 0.1550802 0.1550802 0.1550802 0.1550802 0.15508020.1347826

107 0.8772153 0.5000000 0.3243243 0.3032707 0.3813335 0.3432863 0.5135135 1.0000000 0.7142857 0.6250000 0.4615385 0.2238806 0.1810345 0.1533333 0.1232227 0.1016949 0.10057470.0915842

108 0.0000000 0.3500000 0.4000000 0.3269585 0.4053924 0.3607519 0.5333334 1.0000000 0.6666667 0.6000000 0.4000000 0.4000000 0.2162162 0.1718750 0.1718750 0.1643836 0.11475410.0625000

109 0.4692787 1.0000000 0.7432432 0.8155494 0.6250976 0.7994165 0.5067568 1.0000000 1.0000000 1.0000000 1.0000000 0.9705882 0.9069768 0.8823530 0.8666667 0.4460432 0.40606060.3148936

110 0.3868528 0.8000000 0.8387097 0.6572248 0.5781935 0.7060801 0.5161290 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.8437500 0.10894940.0641822

111 0.0000000 0.2500000 0.2666667 0.2558650 0.3458227 0.3014993 0.5333334 1.0000000 1.0000000 0.3125000 0.3125000 0.2727273 0.1904762 0.0757576 0.0421456 0.0396341 0.03562340.0351288

112 1.0000000 0.4500000 0.4500000 0.4163052 0.4643770 0.4627878 0.5250000 1.0000000 1.0000000 0.7777778 0.7777778 0.5294118 0.3750000 0.3750000 0.0773196 0.0614887 0.06148870.0554017

113 0.7039181 0.4500000 0.4142857 0.3363194 0.4044330 0.3744662 0.5071428 0.5357143 0.5357143 0.5357143 0.4912281 0.4912281 0.3846154 0.3467742 0.2318182 0.2298387 0.19814240.1383399

114 0.7653606 0.5500000 0.4516129 0.4820915 0.4947374 0.4967312 0.5080645 0.8333333 0.7333334 0.5925926 0.5588235 0.5208333 0.4782609 0.4148936 0.4017094 0.3472222 0.31111110.2719298

115 0.0000000 0.7000000 0.3492064 0.4903236 0.4989748 0.5359722 0.5079367 1.0000000 1.0000000 1.0000000 0.4313726 0.4166667 0.4166667 0.4166667 0.4166667 0.2830189 0.28301890.2316176

116 0.3065736 0.8000000 0.7126437 0.7176548 0.5933485 0.7427136 0.5057472 1.0000000 0.8333333 0.8181818 0.7714286 0.7580645 0.7580645 0.7307692 0.7209302 0.6862745 0.59848490.4943182

117 0.7039181 0.9500000 0.7500000 0.8014183 0.6275137 0.7887564 0.5156250 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9500000 0.9166667 0.8846154 0.4333333 0.25641030.2352941

118 0.3065736 0.4000000 0.5000000 0.4117887 0.4656472 0.4318944 0.5357143 1.0000000 1.0000000 0.6666667 0.5333334 0.5333334 0.5333334 0.1149425 0.1149425 0.1142857 0.07000000.0700000

119 0.0000000 0.6500000 0.4500000 0.5040684 0.5082492 0.5202687 0.5125000 1.0000000 1.0000000 0.8888889 0.7500000 0.5151515 0.3278689 0.3181818 0.3181818 0.2370370 0.21839080.1492537

120 0.7039181 0.8500000 0.7405064 0.8076689 0.6200488 0.8091738 0.5031645 1.0000000 0.8947368 0.8765432 0.8765432 0.8765432 0.8585858 0.8571429 0.7555556 0.7555556 0.74869110.4010152

121 0.3903800 0.8000000 0.7023810 0.7460529 0.6029803 0.7641363 0.5059524 1.0000000 0.8333333 0.8307692 0.8307692 0.8307692 0.8307692 0.8307692 0.7763158 0.6915888 0.65254240.2978723

122 0.7039181 0.8000000 0.8627451 0.8607025 0.6403319 0.8603120 0.5098040 1.0000000 1.0000000 0.9285714 0.8653846 0.8653846 0.8653846 0.8653846 0.8653846 0.8653846 0.80000000.5425532

123 0.0000000 0.3500000 0.4117647 0.3511035 0.4222035 0.3904018 0.5294118 0.6666667 0.6666667 0.6363636 0.6363636 0.6363636 0.3913043 0.2115385 0.1645570 0.1102362 0.08717950.0871795

124 0.6131472 0.2500000 0.2121212 0.2506422 0.3372154 0.2713197 0.5151515 0.6666667 0.3333333 0.2758621 0.2758621 0.2758621 0.2531646 0.2531646 0.1678322 0.1677019 0.16574590.1493213

125 0.0000000 0.7000000 0.4090909 0.5021803 0.5029828 0.5259179 0.5037879 1.0000000 0.7941176 0.7941176 0.5263158 0.4416667 0.3948340 0.3948340 0.3948340 0.3948340 0.38125000.2682927

126 0.7653606 0.9500000 0.9069768 0.9355398 0.6541632 0.9430761 0.5029069 1.0000000 0.9726027 0.9726027 0.9726027 0.9726027 0.9569892 0.9459459 0.9416059 0.9276316 0.90751450.8037383

127 0.3903800 0.7500000 0.6190476 0.6117654 0.5573978 0.6166582 0.5119048 1.0000000 0.8888889 0.7619048 0.7619048 0.6279070 0.6279070 0.6279070 0.5454546 0.3673469 0.34821430.2258064

128 0.2960819 0.3000000 0.3030303 0.2632897 0.3484761 0.2818924 0.5151515 0.5000000 0.4166667 0.3125000 0.3125000 0.2830189 0.2656250 0.2222222 0.2222222 0.2222222 0.18518520.1586538

129 0.5585076 0.9000000 0.6315789 0.6488366 0.5703308 0.6545457 0.5087720 1.0000000 0.9285714 0.9285714 0.9047619 0.6944444 0.6470588 0.6379311 0.5555556 0.4476191 0.30588240.1496063

130 0.2346394 0.3500000 0.4375000 0.4916600 0.5106889 0.5098369 0.5312500 1.0000000 1.0000000 1.0000000 0.5555556 0.5384616 0.3200000 0.2666667 0.2666667 0.2542373 0.25423730.1523810

131 0.2346394 0.9500000 0.6891892 0.8354376 0.6308530 0.8437507 0.5067568 1.0000000 1.0000000 0.9714286 0.9714286 0.9714286 0.9500000 0.8490566 0.7093023 0.7093023 0.59292040.5563910

132 0.0000000 0.2000000 0.1818182 0.2571957 0.3447602 0.2696442 0.5227273 1.0000000 1.0000000 0.2142857 0.2121212 0.0786026 0.0786026 0.0786026 0.0786026 0.0786026 0.07333330.0733333

133 0.7039181 0.5000000 0.5000000 0.6334676 0.5698578 0.6327292 0.5178571 1.0000000 1.0000000 1.0000000 0.9090909 0.5172414 0.5172414 0.4791667 0.4791667 0.4791667 0.45614030.1228070

134 0.0000000 0.7000000 0.5970149 0.6244991 0.5599305 0.6293111 0.5074626 1.0000000 0.8461539 0.7500000 0.7500000 0.7297297 0.6727273 0.5714286 0.5632184 0.5321101 0.28372090.2233333

135 0.0000000 0.8500000 0.7507418 0.8103175 0.6195467 0.8283562 0.5014837 1.0000000 0.9387755 0.9333333 0.8897638 0.8146341 0.8095238 0.7649254 0.7597911 0.7597911 0.75362320.6877551

136 0.4692787 0.4000000 0.3880597 0.3982233 0.4462550 0.4191853 0.5074626 0.6666667 0.4666667 0.4255319 0.4252874 0.4252874 0.4252874 0.4141414 0.3984375 0.3875000 0.38750000.1887324

137 0.7653606 0.3500000 0.3333333 0.2901000 0.3811639 0.3175641 0.5555556 0.5000000 0.5000000 0.5000000 0.4285714 0.3500000 0.3500000 0.3500000 0.3500000 0.0548781 0.05487810.0548781

138 0.1681275 0.7500000 0.5454546 0.5565589 0.5330049 0.5789647 0.5113636 1.0000000 0.8750000 0.8333333 0.8333333 0.7500000 0.6764706 0.5090909 0.3478261 0.2264151 0.16949150.1476510

139 0.7653606 0.7000000 0.7647059 0.8641524 0.6565790 0.8585185 0.5294118 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.8666667 0.8666667 0.7777778 0.59259260.3400000

140 0.6131472 0.7000000 0.6268657 0.6872808 0.5838397 0.6964436 0.5074626 1.0000000 1.0000000 0.8292683 0.8292683 0.8292683 0.8292683 0.6666667 0.5222222 0.4782609 0.42758620.2490706

141 0.4692787 0.5000000 0.5853658 0.5812025 0.5410561 0.6202215 0.5060976 1.0000000 0.9000000 0.5903614 0.5903614 0.5903614 0.5903614 0.5842696 0.5652174 0.5546219 0.45882350.3980583

142 1.0000000 0.6000000 0.5833333 0.6695839 0.5859149 0.6778596 0.5208333 1.0000000 1.0000000 1.0000000 1.0000000 0.8333333 0.6153846 0.6153846 0.6071429 0.4347826 0.19658120.1538462

143 0.0000000 0.1000000 0.1304348 0.1031015 0.1721785 0.1139308 0.5217391 0.2500000 0.1666667 0.1282051 0.1153846 0.1136364 0.0903226 0.0903226 0.0746753 0.0746753 0.07467530.0746753

144 0.0000000 0.5000000 0.5818182 0.5942110 0.5483674 0.6287107 0.5090909 1.0000000 1.0000000 0.6551724 0.6551724 0.6470588 0.6400000 0.6065574 0.6029412 0.5238096 0.29255320.2925532

145 0.6131472 0.0500000 0.1111111 0.0844872 0.1452994 0.1061500 0.5185185 0.2500000 0.1111111 0.0934066 0.0934066 0.0934066 0.0934066 0.0934066 0.0909091 0.0879121 0.08196720.0787172

146 0.0000000 1.0000000 0.8558559 0.9388253 0.6563178 0.9297459 0.5045044 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9750000 0.9750000 0.9673913 0.75757580.5522388

147 1.0000000 0.6500000 0.6176471 0.6042943 0.5559138 0.6326666 0.5147059 0.8750000 0.8750000 0.8750000 0.6818182 0.6818182 0.6451613 0.6388889 0.6315789 0.5714286 0.35955060.1240876

148 0.6309298 1.0000000 0.9254386 0.9576538 0.6588732 0.9399759 0.5021929 1.0000000 1.0000000 1.0000000 0.9857143 0.9568346 0.9568346 0.9529412 0.9529412 0.9497488 0.92765960.6570605

149 0.6131472 0.4000000 0.3859649 0.3742748 0.4312807 0.4119870 0.5087720 1.0000000 0.4411765 0.4411765 0.4318182 0.3870968 0.3734940 0.3448276 0.3448276 0.3430657 0.28865980.1357143

150 0.6131472 0.9500000 0.7407407 0.7955762 0.6210048 0.7861273 0.5092593 1.0000000 0.9729730 0.9729730 0.9729730 0.9729730 0.9729730 0.9729730 0.9090909 0.4489796 0.25000000.2014925

Avg. 0.4198282 0.6310000 0.5503828 0.5761764 0.5146158 0.5919451 0.5137146 0.8964226 0.8273000 0.7456866 0.6900901 0.6416150 0.5920463 0.5478991 0.5102097 0.4394281 0.3595343 0.2611646
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Collection# Topic title

101 Economic Espionage
102 Convicts, Repeat Offenders
103 Ferry Boat Sinkings
104 Rescue of Kidnapped Children
105 Sport Utility Vehicles U.S.
106 Government Supported School Vouchers
107 Tourism Great Britain
108 Harmful Weight-loss Drugs
109 Child custody cases
110 Terrorism Middle East Tourism
111 Telemarketing Practices U.S.
112 School Bus Accidents
113 Ford Foreign Ventures
114 Effects of Global Warming
115 Indian Casino Laws
116 Archaeology Discoveries
117 Organ Transplants in the UK
118 Progress in Treatment of Schizophrenia
119 U.S. Gas Prices
120 Deaths Mining Accidents
121 China Pakistan Nuclear Missile
122 Symptoms Parkinson’s Disease
123 Newspaper Circulation Decline
124 Aborigine Health
125 Scottish Independence
126 Nuclear Plants U.S.
127 U.S. Automobile Seat Belt
128 Child Labor Laws
129 Problems Illegal Aliens U.S.
130 College Tuition Planning
131 Television U.S. Children
132 Friendly Fire Deaths
133 Anti-rejection Transplant Drugs
134 Crime Statistics Great Britain
135 WTO Trade Debates
136 Substance Abuse Crime
137 Sea Turtle Deaths
138 Creutzfeldt-Jakob, Mad Cow Disease
139 Pig Organ Transplants
140 Computer Simulation
141 Environment National Park
142 Illiteracy Arab Africa
143 Improving Aircraft Safety
144 Mountain Climbing Deaths
145 Airline Passenger Disruptions
146 Germ Warfare
147 Natural Gas Vehicles
148 NAFTA
149 Aid to Handicapped People
150 Drive-by Shootings



Appendix G

Stop-Words List

a, a’s, able, about, above, according, accordingly, across, actually, after, afterwards, again,

against, ain’t, all, allow, allows, almost, alone, along, already, also, although, always, am,

among, amongst, an, and, another, any, anybody, anyhow, anyone, anything, anyway, anyways,

anywhere, apart, appear, appreciate, appropriate, are, aren’t, around, as, aside, ask, asking,

associated, at, available, away, awfully, b, be, became, because, become, becomes, becoming,

been, before, beforehand, behind, being, believe, below, beside, besides, best, better, between,

beyond, both, brief, but, by, c, c’mon, c’s, came, can, can’t, cannot, cant, cause, causes,

certain, certainly, changes, clearly, co, com, come, comes, concerning, consequently, consider,

considering, contain, containing, contains, corresponding, could, couldn’t, course, currently,

d, definitely, described, despite, did, didn’t, different,do, does, doesn’t, doing, don’t, done,

down, downwards, during, e, each, edu, eg, eight, either, else, elsewhere, enough, entirely,

especially, et, etc, even, ever, every, everybody, everyone, everything, everywhere, ex, exactly,

example, except, f, far, few, fifth, first, five, followed, following, follows, for, former, formerly,

forth, four, from, further, furthermore, g, get, gets, getting, given, gives, go, goes, going, gone,

got, gotten, greetings, h, had, hadn’t, happens, hardly, has, hasn’t, have, haven’t, having, he,

he’s, hello, help, hence, her, here, here’s, hereafter, hereby, herein, hereupon, hers, herself,

hi, him, himself, his, hither, hopefully, how, howbeit, however, i, i’d, i’ll, i’m, i’ve, ie, if,

ignored, immediate, in, inasmuch, inc, indeed, indicate, indicated, indicates, inner, insofar,

instead, into, inward, is, isn’t, it, it’d, it’ll, it’s, its, itself, j, just, k, keep, keeps, kept, know,

knows, known, l, last, lately, later, latter, latterly, least, less, lest, let, let’s, like, liked, likely,

little, look, looking, looks, ltd, m, mainly, many, may, maybe, me, mean, meanwhile, merely,

might, more, moreover, most, mostly, much, must, my, myself, n, name, namely, nd, near,
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nearly, necessary, need, needs, neither, never, nevertheless, new, next, nine, no, nobody, non,

none, noone, nor, normally, not, nothing, novel, now, nowhere, o, obviously, of, off, often,

oh, ok, okay, old, on, once, one, ones, only, onto, or, other,others, otherwise, ought, our,

ours, ourselves, out, outside, over, overall, own, p, particular, particularly, per, perhaps, placed,

please, plus, possible, presumably, probably, provides, q, que, quite, qv, r, rather, rd, re, really,

reasonably, regarding, regardless, regards, relatively,respectively, right, s, said, same, saw,

say, saying, says, second, secondly, see, seeing, seem, seemed, seeming, seems, seen, self,

selves, sensible, sent, serious, seriously, seven, several, shall, she, should, shouldn’t, since,

six, so, some, somebody, somehow, someone, something, sometime, sometimes, somewhat,

somewhere, soon, sorry, specified, specify, specifying, still, sub, such, sup, sure, t, t’s, take,

taken, tell, tends, th, than, thank, thanks, thanx, that, that’s, thats, the, their, theirs, them,

themselves, then, thence, there, there’s, thereafter, thereby, therefore, therein, theres, thereupon,

these, they, they’d, they’ll, they’re, they’ve, think, third, this, thorough, thoroughly, those,

though, three, through, throughout, thru, thus, to, together, too, took, toward, towards, tried,

tries, truly, try, trying, twice, two, u, un, under, unfortunately, unless, unlikely, until, unto,

up, upon, us, use, used, useful, uses, using, usually, uucp,v, value, various, very, via, viz,

vs, w, want, wants, was, wasn’t, way, we, we’d, we’ll, we’re,we’ve, welcome, well, went,

were, weren’t, what, what’s, whatever, when, whence, whenever, where, where’s, whereafter,

whereas, whereby, wherein, whereupon, wherever, whether,which, while, whither, who, who’s,

whoever, whole, whom, whose, why, will, willing, wish, with, within, without, won’t, wonder,

would, wouldn’t, x, y, yes, yet, you, you’d, you’ll, you’re,you’ve, your, yours, yourself,

yourselves, z, zero



Appendix H

Research Awards

Figure H.1: WI 2017 Best Paper Award

Figure H.2: AI 2017 Best Student Paper Award
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