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Abstract

This thesis presents innovative and significantly effective fusion-based TFS models and frame-
works to overcome the above problems in LDA and the relevant features discovered by exist-
ing relevance discovery models. The proposed models—SIF, SIF2 and UR—extend multiple
random sets to model and, therefore, understand the complex relationships between different
entities that affect the weighting process of topical terms in a collection of documents. The
models effectively fuse different features to (1) generalise terms’ weights to the collection level,
(2) alleviate the impact of local terms’ frequency, (3) estimate document segment relevancy and
(4) relax the assumption of a globally generalised topical term weight. This thesis also proposes
two TFS frameworks, USIF and SSIF, which adopt the idea of differentiating between feature
selection and feature weighting processes at two stages to discover relevant features. USIF
integrates topic modelling, document clustering and global statistics to reduce uncertainties
and the impact of highly frequent topics or sub-topics in an unsupervised context. Conversely,
SSIF is supervised and incorporates support vector machines, topic modelling and collection
statistics to reduce the impact of terms that frequently appear in both positive and negative
topics in a document collection, as well as the uncertainties available in relevant documents.
All the proposed models and frameworks are extensively evaluated for information filtering
using a series of experiments based on 50 collections from the standard RCV1 dataset and their
TREC assessors’ relevance judgements. The ability of the proposed models and frameworks in
ranking relevant terms in these collections is also tested. The experimental results, measured
by seven different performance metrics, the percentage of change and the Student’s t-test, show
that SIF, SIF2, UR, USIF and SSIF significantly outperform all state-of-the-art and popular
baseline TFS models, regardless of the type of text feature they adopt, the fusion strategies they

adhere to or the mining and learning algorithm they use.

iii



Keywords

Text Feature Selection
Relevance Discovery
User Information Needs
Random Sets

Extended Random Sets
Uncertainty Reduction
Term Weighting
Feature Re-Ranking
Weight Scaling

Global Statistics

Text Feature Fusion
Early Fusion

Late Fusion

Hybrid Fusion

Passage Relevance
Topic Modelling

Latent Dirichlet Allocation
Text Mining

Information Filtering

Ranking Relevant Terms



Acknowledgments

All praiseandthanksbeto the Almighty Allah (SWT) for all his graceandblessingsMy PhD

journeywould not havebeenfruitful withouthis mercyandgenerosy.

This researchproject would neverhave beensuccessfulvithout the help and supportof
many people. First, | would like to expresamy sinceregratitudeto my principal supervisor,
ProfessolvuefengLi, for hisconstanhelpandsupport.His patiencegncouragemenguidance,
knowledgein thefield andwisdomin researclweremorethanl neededo succeedn my PhD

studies.| cannotthankyou enoughfor believingin methroughouimy candidature.

Many thanksand muchappreciatioralsogoesto my associatesupervisorAssociatePro-
fessorYue Xu, for herinvaluableguidanceandcommenton my researctwork. | would also
like to thankthe externalexaminerdor their suggestionsnd constructivecomments.| also
thankall my friends and colleaguedn the datascienceresearchgroup, particularly my Al-
baseddataanalysislab members:Dr MubarakAlbathan,Dr Md Abul Bashar,Dr Yutong Wu
andDr KhaledAlbishre.

| would also like to thank the School of Computer Science and the Science and
EngineeringFaculty atthe QueenslandUniversity of Technology(QUT) for providing mewith
everythingl neededio conductmy researchand financial supportfor my travels.As | have
studiedfor my Englishcourse graduatecertificatesmaster’'sdegreeandmostrecentlyPhD all
at QUT, | find myself indebtedto the generalpublic of QUT and Australiafor the amazing

environmen@nd friendly atmosphere.

Also, I wouldlike to thankandacknowledgeheeditorsat Capstondditing®, whoprovided
copyeditingand proofreadingservices,accordingto the guidelineslaid out in the university-

endorsedational’ Guidelinesfor Editing ResearciTheses’.

A speciathankyougoesto my motherfor all herprayersandencouragemenManythanks

alsoto my brothersandsistersfor their emotionalsupport. Wordsalonewill neverbe enough



to thank my wife W. Alluhaybi, my son Mohammad and my daughter Lana for being helpful,
supportive and, ultimately, very patient during my busy times. Also, | cannot forget to thank

my new family member, Leena, for waking me up so early crying for some milk!

Finally, | am grateful to my employer, Umm Al-Qura University, for generously providing
me with a full scholarship, without which | could not have pursued my postgraduate studies
overseas. Also, the people at the Saudi Arabian Cultural Mission in Canberra deserve much
appreciation and gratitude for all their help and support to all Saudi scholars in Australia,

including myself.

vi



List of Publications

1. Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Enhancing topicgord semantic for rel-
evance feature selection’, iBroc. 1JCAI Workshop on Semantic Machine Learning
Melbourne, (vol. 1986), 2017, pp. 27-33.

2. Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Integrating LDA with clustering technique
for relevance feature selection’, in Peng W., Alahakoon D., Li X. (&d®017: Advances
in artificial intelligence Lecture notes in computer science. Cham: Springer, 2017, vol.
10400, pp. 274-286Avarded Best Student Paper Award

3. Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Topical term weighting based on extended
random sets for relevance feature selectionRrac. Intern. Conf. on Web Intelligence

Leipzig, Germany, 2017, pp. 654—-66 RAwarded Best Paper Awayd

4. Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘An extended random-sets model for fusion-
based text feature selection’, in Phung D., Tseng V., Webb G., Ho B., Ganji M., Rashidi L.
(eds)Advances in knowledge discovery and data mining. Lecture notes in computer sci-
ence Cham: Springer, 2018, vol 10939, pp. 126—-138elécted for long presentation
[10% accept rate)

5. Abdullah Alharbi, Md Abul Bashar and Yuefeng Li, ‘Random-sets for dealing with uncer-
tainties in relevance feature’, in Li X., Mitrovic T., and Xue B. (edd4)2018: Advances
in artificial intelligence. Lecture notes in computer scien€Gham: Springer, 2018, vol

11320, pp. 656-668Sklected for long presentatioh

vii



Table of Contents

Abstract ili
Keywords iv
Acknowledgments v
List of Publications vii
Nomenclature XV
List of Figures Xix
List of Tables xXxiv
1 Introduction 1
1.1 Background and Motivation. . . . . . .. .. .. oL oo 1
1.1.1 TextFeature Selection . . . . ... ... ... ... .. ....... 1
1.1.2 Text Feature Fusion Strategies . . . . . . .. ... ... ...... 3
1.1.2.1 EarlyFusionStrategy . . . . . . ... ... ... ..... 4
1.1.2.2 LateFusionStrategy. . . . . . . . . ... .. ... 5
1.1.2.3 HybridFusionStrategy . . . .. ... .. ... ...... 11
1.1.3 Text Feature Weighting Schemes . . . . . .. ... ... ...... 12
1.1.4 Text Feature Selection Applications. . . . . .. ... ... ..... 13
1.2 Problem Statement and Objectives . . . . . . . . . ... ... ... .... 14

viii



1.2.1 Research Problems. . . . . . . . . . . . . . . . . ... ... 14

1.2.2 ResearchObjectives . . . . .. ... .. ... ... .. ....... 20
1.3 Contributions. . . . . . . . . e 24
1.4 Research Methodology . . . . . . .. .. .. .. ... .. ... ... .... 25
1.5 Publications. . . . . . . . .. e 25
1.6 ThesisStructure . . . . . . . . . 27
Literature Review 29
2.1 Knowledge DiscoveryinDatabases. . . . . . ... . ... ... ...... 30
2.1.1 Knowledge Discovery Processes . . . . . . . . .. ... ... .. 31
2.1.2 TextKnowledge Discovery. . . . . . . . . . ... .. 32
2.1.2.1 TextPre-Processing. . . . . .. ... ... .. ...... 33
2.1.3 UserRelevance Feedback. . . . . ... ... ... ......... 34
2.1.4 TextRepresentation. . . . . . . . ... . ... ... .. 34
2.1.4.1 Keyword-based Representation . . . ... ... .. ... 35
2.1.4.2 Phrase-based Representation . . . . ... ... .. ... 36
2.2 TextFeature Selection. . . . . . .. .. ... . .. .. .. 36
2.21 Definition. . . . . .. 37
2.2.2 BenefitsandChallenges. . . . . ... ... ... .. ... . ... 38
2.2.3 ModelsTaxonomy. . . . . . . . . o 39
2.3 Search Strategy-basedModels. . . . .. ... ... o L 0L 40
2.3.1 Filter-basedModels. . . . . ... .. ... ... .. ... 41
2.3.2 Wrapper-basedModels. . . .. ... ... ... ... .. .. .. 42
2.3.3 Hybrid-basedModels. . . . ... ... ... ... ... .. ... 43
2.3.4 Embedded-basedModels . . . . ... ... ... L 44
2.4 Semantic Information-based Models. . . . . .. ... ... oL 45
24.1 TypesofTextFeatures. . . . . .. . .. .. .. ... ... 45
2.4.2 Low-levelFeatures . . . . . . . . . .. . ... 45

X



2421 Term-basedModels. . . . .. ... . ... ... ..... 46

2.4.3 High-levelFeatures. . . . . . . . .. ... ... 49
24.3.1 Phrase-basedModels. . . . . ... ... . ... ..... 49
2.4.3.2 Pattern-basedModels. . . . . ... ... ... L. 50
2.4.3.3 Topic-basedModels. . . . ... ... ... .. ..., . 54
2.4.3.4 Concept-basedModels . . . ... ... ... ....... 55
2.4.3.5 Hybrid-basedModels . . . .. ... ... ... ..., . 58
2.5 Label Information-based Models. . . . . ... .. ... ... .. . L. 60
25.1 SupervisedModels. . . ... ... .. L 61
2.5.2 UnsupervisedModels. . . . ... .. .. ... .. .. ... ... 64
2.6 Feature Selection Applications. . . . . . . .. ... ... ... ... ..., 68
2.7 ChapterSummary . . . . . . . . . e e e e 72
Fusion Model for Relevant Feature Selection 73
3.1 Introduction. . . . . . . . . . 73
3.2 BasicDefinitions. . . . . . . ... 75
3.21 TopicModelling . . . . . . . .. 76
3.2.1.1 Latent Dirichlet Allocation. . . . . . ... ... ...... 77
3.2.2 Global Statistics. . . . . . .. . ... 79
3.22.1 RawsStatistics. . . . . . ... 80
3.2.2.2 Handcrafted Statistics. . . . . ... ... ... ...... 81
3.23 TextFeatureFusian. . . . . . . . .. . . ... .. 83
3.23.1 EarlyFusion . ... ... ... ... ... .. .. . .. .. 84
3.23.2 LateFusion. . . .. . ... .. ... 84
3.23.3 HybridFusion. . . ... ... ... o 85
3.24 RandomSets . . . . . . ... 86
3.3 TheProposed SIFModel . . . ... ... ... .. ... .. ... ..... 86
3.3.1 ExtendedRandomSets . ... ... . ... ... .. ... ... .. 88



3.3.2 Generalised Weighting Scheme. . . . . . ... ... ... ..... 88

3.3.2.1 Generalising TopicWeight . . . . . ... ... ...... 90
3.3.2.2 Generalising Topical TermWeight . . . . . . ... .. .. 90
3.3.3 ScoreFusionScheme . . . ... ... ... ... .. ... ... 91
3.3.4 Hybrid Fusion Algorithm . . . . . . .. ... L oL 91
3.3.4.1 Time Complexity Analysis. . . . .. ... ... ...... 92
3.4 ChapterSummary . . . . . . . . . 92
4 Dealing with Uncertainties in Relevant Features 95
4.1 TheProposed SIF2Model . . . .. ... ... .. .. .. ... ... 95
4.1.1 Introduction . . . . . . . . ... 95
4.1.2 Background and Basic Definitions. . . . . . ... ... ... ... 98
4.1.2.1 Informative TextFeatures. . . . . .. .. ... .. .... 99
4.1.3 Extending Multiple Random Sets . . . . . ... ... ... ..... 101
4.1.4 Integrating Informative Features. . . . . .. .. ... .. ... ... 104
4.1.4.1 Estimating Topical Relevance. . . . . . ... ... .. .. 106
4.1.4.2 Estimating TermRelevance. . . . . ... ... ... ... 106
415 Score FusionScheme . . . .. .. .. .. ... .. o o 106
4.1.6 Hybrid Fusion Algorithm . . . . . . . . . ... ... ... . .. 107
4.1.6.1 Time Complexity Analysis. . . . . . ... ... ...... 107
4.2 TheProposedURMethod . . . ... ... ... ... ... ......... 109
4.2.1 Introduction . . . . . . .. ... e 109
4.2.2 ProblemFormulation. . . . ... ... ... ... .. 0oL, 112
4.2.3 Estimating Paragraph Relevance . . . . .. .. ... ... ..... 114
4231 LocalRelevance. . .. ... ... ... . ......... 114
4232 GlobalRelevance . . ... ... ... .. ... ..., 117
4.2.4 Re-Ranking RelevantFeatures . . . . . ... ... ... ...... 118
4.3 ChapterSummary . . . . . . . . . e 119

Xi



5 Hybrid Fusions Frameworks for Relevant Feature Discovery 121

5.1 TheProposed USIF Framework . . . . . . .. ... ... ... ....... 121
5.1.1 Introduction . . . . . . . . . ... e 121
5.1.2 Problem Formulation. . . . .. ... ... ... ... .. .. ... 125
5.1.3 Background Overview . . . . . . . . . . .. 126

5.1.3.1 DocumentClustering . . . .. ... ... ... ...... 126
5.1.3.2 TopicModelling. . . .. ... ... ... ... ...... 127
5.1.4 USIFFusionStages. . . . . . . . . . it 128
5.1.4.1 Stage 1: Topical Term Selection . . . . . . ... .. ... 128
5.1.4.2 Stage 2: Topical Term Weighting. . . . . . ... ... .. 130
5.1.5 Ranked FeatureFusion. . . . . . ... .. ... ... ..., 136
5.1.6 Unsupervised Multi-Fusions Algorithm . . . . . . . . ... ... .. 137
5.1.6.1 Time Complexity Analysis. . . . . . .. ... ... .... 137

5.2 The Proposed SSIF Framework . . . . .. ... ... ... ... ...... 139
5.2.1 Introduction . . . . . . . . .. e 139
5.2.2 Problem Formulation. . . . ... ... ... .. ... .. ..... 142
5.2.3 SSIFFusionStages. . . . . . . . .. e 143

5.2.3.1 Stage 1: Selecting Specific Topical Terms. . . . . . . .. 144
5.2.3.2 Stage 2: Weighting Specific Topical Terms . . . . . . .. 145
5.2.4 Ranked FeatureFusion. . . . . . ... ... ... ... .. ..., 145
5.2.5 Supervised Multi-Fusions Algorithm . . . . . . .. ... ... ... 147
5.2.5.1 Time Complexity Analysis. . . . .. ... ... ...... 147
5.3 ChapterSummary . . . . . . . . . . e 148
6 Experimental Evaluation 151

6.1 Introduction. . . . . . . . . e 151

6.2 Hypothesis . . . . . . . . . . 152

6.3 DataCollection. . . . . . . . . . . . . . . e 153



6.3.1 RCVL. . . . . 153

6.4 ExperimentalDesign . . . . . . . . . .. 161
6.4.1 Unsupervised Learning Setting . . . . . ... ... ... ...... 162
6.4.2 Supervised Learning Setting. . . . . .. ... ... L 0oL 163

6.5 BaselineModels. . . . . . . .. . 164
6.5.1 EarlyFusionModels . . .. .. ... .. ... .. .. ... .. ... 164
6.5.2 LateFusionModels. . . . . . .. ... .. ... o 165
6.5.3 Hybrid FusionModels. . . . .. ... ... ... ... .. ... ... 167

6.6 Performance Measures. . . . . . . . . . ... 167
6.6.1 PrecisionandRecall . . ... ... ... ... ... .. . .. ... 168
6.6.2 EffectivenessMeasures . . . . . .. .. ... 169
6.6.3 Statistical Significance Measutes . . . . . . .. ... ... ... .. 171

6.7 Experimental Settings. . . . . . . . . . .. 172

6.8 Results . . . . . . . 173
6.8.1 TheProposed SIFModel. . . ... ... ... ... ......... 173
6.8.2 TheProposed SIF2Model. . . ... ... ... ... ........ 179
6.8.3 The Proposed URMethod. . . . .. .. ... ... ......... 182
6.8.4 The Proposed USIF Framework. . . . .. .. ... ... ...... 193
6.8.5 The Proposed SSIF Framework. . . . . .. .. ... ... ..... 197

6.9 Analysisand Discussion . . . . . . . . . ... 201
6.9.1 TheProposed SIFModel. . . ... ... ... ... ......... 202
6.9.2 TheProposedSIF2Model. . . ... .. ... ... ......... 206
6.9.3 The Proposed URMethod. . . . ... ... ... ........... 212
6.9.4 The Proposed USIF Framework. . . . .. ... .. ... ...... 216
6.9.5 The Proposed SSIF Framework. . . . . . ... .. ... ...... 220
6.9.6 Comparison of Proposed Techniques. . . . . ... ... ... ... 223

6.10 Chapter Summary. . . . . . . . . . i 227

Xiii



7 Conclusions and Future Work 229

7.1 Conclusions. . . . . . . . e e 229

7.2 Contributions. . . . . . . . e 230

7.3 Limitationsand FutureWork . . . . . . ... ... o Lo 236

7.3.1 Limitations. . . . . . . ... 236

7.3.2 FutureWork . . . . . . . 237
A Detailed Results: The Proposed SIF Model 241
B Detailed Results: The Proposed SIF2 Model 243
C Detailed Results: The Proposed UR Method 245
D Detailed Results: The Proposed USIF Framework 251
E Detailed Results: The Proposed SSIF Framework 253
F TREC Topics of RCV1 Collections 255
G Stop-Words List 257
H Research Awards 259
Literature Cited 289

X1V



Nomenclature

Abbreviations
Al

BKM
BoW

CF

CFS
CHINC
CTF

DF

DM

EM

ERS
FCBF
FCP
FP-tree
FS
GSDMM
hPAM
IAP

ID3

IDF

Artificial Intelligence

Bisecting K-Means

Bag-of-Words

Cluster Frequency

Correlation-based Feature Selection
Constrained Heterogeneous Information Network Clustering
Conceptual Term Frequency

Document Frequency

Data Mining

Expectation—Maximization

Extended Random Set

Fast Correlation Based Filter

Frequent and Closed Pattern

Frequent Pattern-tree

Feature Selection

Gibbs Sampling for Dirichlet Multinomial Mixture
Hierarchical Pachinko Allocation Model
Interpolated Average Precision

Iterative Dichotomiser 3

Inverse Document Frequency

XV



IF Information Filtering

IG Information Gain

IR Information Retrieval

KDD Knowledge Discovery in Databases

KDT Knowledge discovery in Textual Databases

kNN k-Nearest Neighbours

LASSO Least Absolute Shrinkage and Selection Operator
LCSH Library of Congress Subject Headings

LDA Latent Dirichlet Allocation

LSA/LSI Latent Semantic Analysis/Indexing

MAP Mean Average Precision

MedLDA Maximum entropy discrimination Latent Dirichlet Allocation
Ml Mutual Information

ML Machine Learning

MP Master Pattern

MPBTM Maximum matched Pattern-Based Topic Model
MRMR Minimum Redundancy Maximum Relevance
nDCG Normalized Discounted Cumulative Gain

NIST National Institute of Standards and Technology
NLP Natural Language Processing

Okapi BM25/BM25 Best Matching 25

PAKDD Pacific-Asia Conference on Knowledge Discovery and Data Mining
PAM Pachinko Allocation Model

PBTM-FCP Frequent Closed Pattern-Based Topic Model

PBTM-FP Frequent Pattern-Based Topic Model

PCM Pattern Co-occurrence Matrix

PDM Pattern Deploying Model

Xvi



PDS
PF
PLSA/PLSI
POS
PTM
RCV1
RFD
RRT
RS
SCSP
SF
SIF
SMART
SML
SP
SPADE
SPBTM
SPEC
SSIF
STM
SVM
TF
TFIDF
TFS
™
TNG

TREC

Pattern Deploying based on Support/System
Paragraph Frequency

Probabilistic Latent Semantic Analysis/Indexing
Part-Of-Speech

Pattern Taxonomy Model

Reuters Corpus Volume 1
Relevant/Relevance Feature Discovery
Ranking Relevant Terms

Random Set

Specific Closed Sequential Pattern
Sentence Frequency

Selection of Informative Feature

System for the Mechanical Analysis and Retrieval of Text

Semantic Machine Learning

Sequential Pattern

Sequential PAttern Discovery using Equivalence classes

Significant matched Pattern-Based Topic Model
Spectral Feature Selection

Supervised Selection of Informative Feature
Structural Topic Model

Support Vector Machine

Term Frequency

Term Frequency Inverse Document Frequency
Text Feature Selection

Text Mining

Topical N-Gram

Text REtrieval Conference

xvil



UR Uncertainty Reduction
USIF Unsupervised Selection of Informative Feature
VSM Vector Space Model

Wi Web Intelligence

xviii



List of Figures

1.1 A sample of a relevant long document from collection 10thefRCV1 dataset. 16
1.2 A TREC topic for collection 101 of the RCV1 dataset in whilsétitle element

"Economic espionageepresents explicit user information needs. . . . . . . 16
1.3 Asample of a relevant long document from collection 14thefRCV1 dataset

that discussedlliteracy Arab Africa as shown in Figure 1.4 with only a part

of a paragraph is considered relevant (the last paragraph). . . . . . . . .. 18
1.4 A TREC topic description for collection 142 of the RCV1akst in which the

title element llliteracy Arab Africd represents explicit user information needs18
1.5 Research methodology and thesis structure.. . . . . .. ... ... .. .. 26
2.1 KDDgeneralproCesSes. . . . . . . v v v it 31
2.2 TheBoWrepresentation.. . . . . . . . . . . . . i i 35
2.3 The general procedure of feature selection.. . . . . .. ... ... ..... 38
2.4 Theproposed TFStaxonomy. . . . . . . . . . . .. v i i i .. 40
2.5 Thefiltermodel. . . . . . . . .. 41
2.6 Thewrappermodel.. . . . . .. . . .. . . .. . . 42
2.7 Thehybridmodel. . . . . . . . . . . 43
2.8 Theembeddedmodel. . . . .. .. .. ... .. ... .. .. .. .. ... . 44
2.9 The graphical representation of the PLSA model in whiehd ¢ are the only

observablevariables. . . . . .. ... 55
2.10 TFSapplications. . . . . . . . . . e 68
3.1 TheSIFmodelstructure. . . . . . . ... ... ... .. ... ... ..., 76

Xix



3.2

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

6.4

6.5

6.6

The feature fusion module of the SIF model and the mapgdifhgamdl’~*. . . 87

The SIF2 model structure. . . . . . . . . . . . . . . 97

Thetd of three different relevant documents from Collection 101 of the RCV1

The feature fusion module of the SIF2 model and the mappingandI"'~!

betweenthe used entities.. . . . . . . . . . . . . e 102
The UR method structure.. . . . . . . . . . . e e e e 112

The feature fusion module of the UR method and the mapmhggleft) and

D=l(right). . . . 113
The structure of the USIF framework. . . . . . . .. .. ... ... ..... 124
The conceptual agglomeration of relevantclusters. . . . . . ... ... .. 129

The mappings df andI'~! for estimating the thematic significance of terms.131

The mappings df andI'~! for estimating the topical significance of terms.. 134

The structure of the SSIF framework. . . . . . . .. .. .. ... ...... 141
The structure of RCV1dataset.. . . . . .. ... ... ... ... ...... 154
A sample of an XML document from collection 101 of the RC\ataet.. . . 155

The distribution of paragraphs in positive training doemts of the first 50
collections of the RCV1 dataset that are used by all unsupervised TFS models

and frameworks, including the selected baseline models.. . . . . ... .. 156

The distribution of paragraphs in positive and negatigming documents of
the first 50 collections of the RCV1 dataset that are used by all supervised TFS

models and frameworks, including the selected baseline models. . . . . . 157

The number of training documents compared to the testiegrdents in the
first 50 collections of the RCV1 dataset that are used in the experiments of all

unsupervised TFS models and frameworks, including SIF, SIF2, UR and U358

The number of training documents compared to the testiegrdents in the
first 50 collections of the RCV1 dataset that are used in the experiments of the

SSIF framework and other supervised TFS baseline models.. . . . . . .. 159

XX



6.7 The preprocessing steps for all RCV1 documents.. . . . . ... .. .. .. 159
6.8 The main IF-based evaluation procedure.. . . . . . . .. ... ... .... 161
6.9 The RRT-based evaluationprocedure.. . . . . .. ... .. ... ...... 162

6.10 The training procedure for the proposed SIF, SIF2, UReisoand the USIF

framework. . . . . . . 163
6.11 The training procedure for the proposed SSIF framework. . . . . . . . .. 164

6.12 The 11-point results for IF (left) and the nDCG@esults for RRT (right) of
SIF in comparison with baselines averaged over the first 50 collections of the

RCV1dataset. . . . . . . . . . . e 175

6.13 The 11-point results for IF (left) and the nDCG@esults for RRT (right) of
SIF2 in comparison with baselines averaged over the first 50 collections of the
RCV1dataset. . . . . . . . . . . . 180

6.14 The changes in the MAP measure for each TFS model befdraftam applying
the UR method for the IF task using tofxto 100% of the terms space of each

collection averaged over all 50 collections. . . . . .. ... ... ...... 187

6.15 The changes in the nDCG@k measure for each TFS modekbafior after
applying the UR method for the RRT task using the top 25 tefdms ¢ < 25)

averaged over the 50 human-assessed collections of the RCV1 dataset. . 189

6.16 The 11-pointresult of the iISVM model for the IF task in g@mnson with other
TFS models (left) and iISVM compared to other improved models (right) all

averaged over the first 50 collections of the RCV1 dataset.. . . . . .. .. 191

6.17 The 11-point results for IF (left) and the nDCG@esults for RRT (right) of
USIF in comparison with baselines averaged over the first 50 collections of the

RCV1dataset. . . . . . . . . . . e 195

6.18 The 11-point results for IF (left) and the nDCG@esults for RRT (right) of
SSIF in comparison with baselines averaged over the first 50 collections of the
RCV1dataset. . . . . . . . . . . . 199

6.19 The results of 11-point measure (left) and nDCG at tofefs (right) of SIF's
generalised weighting function (Equation 3.3) with other global statistics of

terms averaged over the first 50 collections of the RCV1 dataset. . . . . . 206

xxi



6.20 The SIF sensitivity to the number of LDA topics (left) aiog-k terms (right)

forthe IF experiments.. . . . . . . . . . . . . 207

6.21 The SIF 11-point results for IF (left) and the SIF nDCG@sults for RRT
(right) over different number of LDAtopics. . . . . . . . . .. ... .. ... 207

6.22 The results of the 11-point measure (left) and the resfilthe nDCG measure
at top-25 terms (right) of SIF2’s weighting function (Equation 4.4) with other

global statistics averaged over the first 50 collections of the RCV1 dataset. 211

6.23 The SIF2 sensitivity to the number of LDA topics (leftdaonp+ terms (right)

forthe IF experiments.. . . . . . . . . . . . . . 212

6.24 The SIF2 11-point results for IF (left) and SIF2 nDC&@sults for RRT
(right) over different number of LDAtopics. . . . . . . . .. . ... ... .. 213

6.25 The 11-point results of supervised (left) and unsuped/{right) models after
the integration with the UR method all averaged over the first 50 collections of

theRCV1dataset. . . . . . . . . . . . . 216
6.26 The best value for each TFS model after and before applying the UR methat?

6.27 The 11-point result of the scenarios in Table 6.27 (&ft) the results of USIF
sensitivity test to thé parameter (right) all for IF and averaged over the same

RCV1collections. . . . . . . . . . . e 221

6.28 The IF results of USIF sensitivity test to thieparameter using all measures

averaged over the first 50 collections of the RCV1 dataset.. . . . . .. .. 221

6.29 The 11-point (left) and nDCGk)right) results for IF and RRT, respectively,
for all the proposed models and frameworks averaged over the first 50 collec-

tionsofthe RCVldataset. . . . . . . . . . . . . . . . v i 225

C.1 P@20 Results Before and After Uncertainty Reduction fachEModel from
1% to 100% of the Features Space. . . . . . . . . . . .. ... .. ..... 246

C.2 BP Results Before and After Uncertainty Reduction fortEslodel from 1%
to 100% of the Features Space. . . . . . . . . . . . . . . ... .. ... .. 247

C.3 Fj-; Results Before and After Uncertainty Reduction for Each Model from 1%
to 100% of the Features Space. . . . . . . . . . . . . . . i 248

xxil



C.4 1AP Results Before and After Uncertainty Reduction foctE&odel from 1%

to 100% of the Features Space. . . . . . . . . . . . . . . i 249
H.1 WI2017 BestPaper Award . . . . . . . . . . . 259
H.2 Al 2017 Best Student Paper Award. . . . . . . . ... ... ... ...... 259

xxiii



List of Tables

3.1

3.2

3.3

3.4

3.5

6.1

6.2

6.3

6.4

6.5

A sample of document collection with three hierarchig#ites: document,

paragraphandterm . . . . . . . . . ... 77

A set of paragraphs of the documents in Table 3.1 and #ranst which both
representthe inputtobe giventoLDA. . . . . . . . .. ... ... ..... 78

A sample of LDA topics generated from collection 101 of R@V1 dataset,
which shows how LDA represents a latent topic (i.e., a probability distribution

OVEItermS) . . . . . o o e e 78

Example of how LDA represents a paragraph (i.e., a prébadistribution

overlatenttopiCs). . . . . . . . . . 79

Document frequency of termgf{ for a set of relevant long documents in
which the local semantic and statistical details of each term in any document

are ignored, except for the presence and absence of terms in these docume8ts

The main statistics of the RCV1 dataset [Lewis et al., 2004. . . . . . . .. 154
The statistics of the training and testing sets of the RG&taset. . . . . . . . 160
The confusion matrix of classification . . . . . . .. ... ... ....... 169

SIF results for the IF task compared to the baselines pgebiased on the
type of feature used by the model) for all measures averaged over the first 50

collectionsofthe RCVldataset . . . .. . ... . . . . .. . ... ..... 175

The SIF results for the RRT task including the percenthgege and the t-test
p-value in comparison with some of the baselines averaged over the first 50

collectionsofthe RCVldataset . . . . . . .. . . . . . .. . ... ..... 176



6.6 The t-test p-values of the best baseline model in eacly@gtén comparison

with the SIF model for the IF task resultsin Table6.4 . . . . .. .. .. .. 176

6.7 The SIF2 results for the IF task compared to the baselgresifed as super-
vised and unsupervised) for all measures averaged over the first 50 document

collectionsofthe RCVldataset . . . . . . ... . . . . ... ... ..... 180

6.8 The SIF2 results for the RRT task including the percenthgage and the t-
test p-value in comparison with some of the baselines averaged over the first 50

collectionsofthe RCVldataset . . . . . . .. . .. . ... . ... ..... 181

6.9 The t-test p-values of the best baseline model in eaclyaatén comparison

with the SIF2 model for the IF task resultsin Table6.7. . . . . . ... ... 181

6.10 The performance improvements of all TFS models for thask after applying
the UR method compared to their original performance averaged over the first

50 collections of the RCV1dataset. . . . . . .. . ... ... ... ..... 186

6.11 The performance improvement of all TFS models for the RIRK after apply-
ing the UR method compared to their original performance averaged over the

first 50 collections of the RCVldataset . . . . . ... ... ... ...... 188

6.12 The t-test p-values for each TFS model in comparisonitgitmproved version

after applying the UR method for the IF task results in Table 6.1Q . . . . . 190

6.13 The results of the improved TFS models for the IF task @etpto the result
of the best improved model (i.e.,iSVM) . . . . . . ... .. ... ...... 190

6.14 The results of iISVM model for the IF task compared to offfeés models as

baselines (grouped as supervised and unsupervised). . . . . ... .. .. 191

6.15 The improved TFS models results for the RRT task comparéuke result of
the bestimproved model (i.e.,iPDS). . . . . . . .. .. ... ... ... .. 192

6.16 The USIF results for the IF task compared to the base(gesiped based
on the fusion strategy they use to early, late and hybrid fusion models) for all

measures averaged over the first 50 document collections of the RCV1 dataSdt

6.17 The USIF results for the RRT task including the percentdgange and the t-
test p-value in comparison with some of the baselines averaged over the first 50

collectionsofthe RCVldataset . . . . . . .. . . . . . .. . ... ..... 195

XXV



6.18 The t-test p-values of the best baseline model in eaelg@at in comparison

with the USIF framework for the IF task tesultsin Table 6.16 . . . . . . .. 195

6.19 The SSIF results for the IF task compared to the baseloresll measures

averaged over the first 50 document collections of the RCV1 dataset . . . 198

6.20 The SSIF results for the RRT task including the percentdgnge and the t-
test p-value in comparison with some of the baselines averaged over the first 50

collectionsofthe RCVldataset . . . . . . ... . . . . . . . ... ..... 199

6.21 The t-test p-values of the best baseline model in eaelg@at in comparison

with the SSIF framework for the IF task resultsin Table 6.19 . . . . . . .. 199

6.22 The top-10 stemmed terms from collection 101 of the RCataskt, which is
about economic espionag@aliscovered and ranked by different TFS models in

which only SIF was able to select both these relevant featutes. . . . . . . 204

6.23 The IF and RRT results of SIF's main weighting functiong&tion 3.3) inte-
grated with different global statistics of low-level terms averaged over the 50

collectionsofthe RCVldataset . . . . . . ... . . . . ... ... ..... 205

6.24 The top-10 stemmed terms from collection 101 of the RCataskt, which is
about economic espionagaliscovered and ranked by different TFS models in

which only SIF was able to select both these relevant features . . . . . . . 209

6.25 The IF and RRT results of SIF2’s main weighting functigqyation 4.4) in-
tegrated with different global statistics of low-level terms averaged over the 50

collectionsofthe RCVldataset . . . .. . .. . . . . . .. . ... ..... 211

6.26 The top-10 stemmed terms from collection 101 of the RC¥thgkt, which
about 'economic espionage’, discovered and ranked by different TFS models in
which only iPDS, iSVM and iBM25 was able to select both of these relevant

features.. . . . . . . e e, 215

6.27 A set of different scenarios designed for analysing tiseoh hypothesis of the

USIF framework . . . . . . . . . 219

6.28 The results of the scenarios in Table 6.27 for IF and RBRstasing all mea-

sures averaged over the first 50 document collections of the RCV1 dataset219

XXVvi



6.29 A comparison between the performances of all proposeatkim@nd frame-
works in IF and RRT tasks using six evaluation measures averaged over the first

50 collections of the RCV1ldataset. . . . . . ... ... ... ... ..... 224

A.1 Detailed Results of the SIF Model for the First 50 Collens of the RCV1

Dataset

B.1 Detailed Results of the SIF2 Model for the First 50 Coltmts of RCV1 Datase?44

D.1 Detailed Results of the USIF Framework for the First 50€xions of RCV1

Dataset . . . . . . .. 252
E.1 Detailed Results of the SSIF Framework for the First 5dgetbns of RCV1
Dataset . . . . . . .. 254

XXVil



Chapter 1

Introduction

1.1 Background and Motivation

Text documents grow exponentially and constitute more ®@% of the unstructured data
available on the web or in private storadehjar, 2013 Khan et al, 201J. Some forms of
unstructured text include emails, tweets, reports, a&diclogs and reviewsJei, 2012 Dhar,
2013. These documents contain invaluable information thadede be automatically ex-
tracted for the success of many organisations and busmfsehar et a).2014 Dhar, 2013.
However, it is particularly challenging for traditionalktemining (TM) and machine-learning
techniques to find useful information in textual data duentdize and nature of text in which
synonymy, polysemy and noise are commonly inherited probl€roft, 200Q Li et al., 2015
201Q 2013. As a dimensionality reduction technique, feature s@acplays a major role in
knowledge discovery in databases by improving accuracyeghacing the complexity of many
data-mining and machine-learning algorithmghinyanaphongs et al2014 Cai et al, 2010
Dasgupta et al2007. This can be done automatically by selecting a subset evasit features
and removing irrelevant, redundant and noisy featubdisgthan et al.2014 Li et al., 2015
Zhong et al.2012.

1.1.1 Text Feature Selection

Relevance discovery models endeavour to mine, interpndenstand and rank relevant features
that specifically represent what the user nedsisd et al. 2014h Li et al., 2015 2010 Man

et al, 2009 Zhong et al. 2013. User information needs can be explicitly expressed by a
search query or inferred from the user’s interests or seprofile, in the form of a set of

documents Algarni et al, 201Q Li and Yaq 20023 Tao et al, 2011, Yuefeng and Ning

1
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2009. Discovering and selecting features that are relevanh¢ouiser’'s needs or interests is
challenging, and remains the subject of much resedelo [et al. 2015 Li et al., 2015 2010.

In the absence of a user query, relevance feedback—as ad®tuwhents that can be relevant
or irrelevant to a particular topic—provides an effectivaywo identify text features that can
be used to describe user information neetlgdrni et al, 201Q Tao et al, 2011. However,
guaranteeing the quality of these features is challengiagext documents tend to have many
uncertainties in addition to a large number of terms, pastenoise and multiple unbalanced
sub-topics Alharbi et al, 20183 2017 Gao et al,. 2015 Li et al,, 2019. These problems
have interested TM, natural language processing (NLP)hmadearning (ML), information
filtering (IF) and information retrieval (IR) research comnities from both theoretical and

empirical perspectived [ et al., 2015 201Q.

In recent decades, a large number of text feature selecliBB)(techniques have been
developed by these research communities. Within each comtyndFS models and frame-
works have been categorised based on first, the intrinsailsleff the selection algorithm, into
filter, wrapper, embedded and hybrildlon-Canedo et gl2013 Li et al., 20173 Liu and Yy,
2005; second, whether it requires labelled training data, supervised, semi-supervised or
unsupervised methodsi[et al., 2017h Wang et al. 2017, Zhao et al. 2013; and third, the
structure of text feature being used, into simple, such aseim-based methods, or complex,
like the phrase-based, pattern-based, topic-based, gbased or hybrid techniquesi et al.,
2015 2010. In this thesis, a fourth categorisation for TFS techngjissadopted based on
integrating data fusion strategies like early, late andridybpproachesKozorovitsky and
Kurland 2011k Lillis et al., 2006 Wu et al, 2014 with the simple or complex structure of text
(identified above as the third classification). Thus, a TF8@hes considered an early fusion
model if it uses simple, low-level terms (i.e., no semaniioimation is considered between
the terms) Alharbi et al, 2018k Balazs and Velasque201§ and a late fusion model when
complex, high-level and semantically rich features (ggrases, patterns, concepts, topics or
a combination of these text features) are usélthdrbi et al, 2018. Also, a hybrid fusion
model can be developed by integrating different early atel fiasion models for even better

performanceAtrey et al, 201Q BaltruSaitis et al.2019.

A TFS model for relevance discovery selects the most inftismdext features, such as
terms [Combarro et a).2005 Man et al, 2009 Zheng et al.2004, phrasesfirnkranz 1998
Sebastiani2002 Shirakawa et al.2015, patterns Algarni and Li 2013 Li et al., 2015
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Yuefeng and Ning200€, conceptslLi and Zhong 2004 Shehata et gl1201Q Tao et al, 20117],
topics Blei et al, 2003 Deerwester et 311990 Hofmann 200] or different combinations of
these featuresjao et al.2015 Li et al., 2015 Wang et al.2007 that describe user information
needs. The selected features are used to represent dosuméeip TM algorithms, such as
filtering [Gao et al, 2015 Li et al.,, 2011, 2013, classification Li et al., 2017¢ Shehata et gl.
2007, Yang and Pederseri997 and clustering Cai et al, 201Q Liu et al, 2003 Shehata
et al, 2010, to be: (1) effective by increasing their accuracy, (2)adint by reducing the
dimensionality of the feature space and thus, the algosttake less computational time and
(3) tractable and understandallajet al., 2005 Song et al.2013. By focusing on the selected
features, it is possible to understand how and why such itigas behave a certain way and

produce certain result8pshar and Li2017 2018 Bashar et a).2017.

While each text feature has strengths and weaknessest fapécs that are extracted by
topic modelling algorithms have received much attentionmiany applicationsHlei et al,
2010a Blei, 2012 Blei et al, 2003 Hofmann 2001. However, exploiting these topics for
TFS for relevance discovery is still an open research pmpées these algorithms did not show
encouraging results in many recent studishfirbi et al, 2017¢ Bashar and Li2017, Bashar
et al, 2016 Gao et al. 2017, 2019. Therefore, the focus of this thesis is developing fusion-
based TFS models and frameworks for relevance discovergselmodels and frameworks
integrate early and late fusion strategies with other iegralgorithms to fuse different features
to manage uncertainties in relevance feedback and overttwmienitations of topic modelling
algorithms and other TFS techniques in selecting infovedipical terms that describe user

information preferences.

1.1.2 Text Feature Fusion Strategies

As there is no single text feature that can encompass akkpealof relevance available in a set
of documents that discusses user information needs, taxiréefusion offers an approach that
integrates different features of text with various degreeeelevance for better performance
in many IR, IF, TM and ML applicationsAnava et al. 2016 Li et al.,, 2013 Pickens and
Golovchinsky200§. The fused features are more reliable and can be used tol onockstainty
and thus, increase confidence and robustness of learningthigs Balazs and Velasquez
2014 Croft, 200Q Esteban et al2005. Two main fusion approaches have been employed in

IR and ML, commonly known as the early and late fusion stiae@Balazs and Velasquez
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2016 Zhang and Balog2017; however, there is also a hybrid strategy that combinegitsie
two approachedAtrey et al, 201Q Baltrusaitis et al.2019 Snoek et al.2003.

1.1.2.1 Early Fusion Strategy

Term-based Models

Most existing TFS models for relevance discovery adopt #ily dusion strategy in which no
semantic information is considered among the fused fesifbarbi et al, 2018. Popular
examples are the term-based methods, such as term frequwecye document frequency
(TFIDF) [Salton and Buckley198g, mutual information (MI) Manning et al. 20081, in-
formation gain (IG) Yang and Pedersen997, Gini-index (Gl) [Zhu and Lin 2013, Chi-
Square {?) [Chen and Cher2011], best matching 25 (BM25Hobertson and Zaragoz2009,
Rocchio algorithmRocchiq 1971], least absolute shrinkage and selection operator (LASSO)
[Tibshiranj 1994, ranking support vector machine (SVM)dachims2004 and many others.
These models are efficient and have been developed baseglusts@ted mathematical and
statistical weighting theorieg&et al., 2015 2017J. However, their use of low-level terms (i.e.,
individual words) makes them sensitive to noise and semaelkated issues, such as synonymy
and polysemy problemd.f et al., 2015 2012 Zhong et al. 2013. A synonymous word is
lexically different from another semantically identicabrd (e.g., ‘man’ and ‘guy’)Wu, 2007;
conversely, a polysemous word is lexically identical bug Hdferent contextual meanings (e.g.,

‘newspaper’ as a company and as a physical itabastianj2003.

In IR, term-based models suffer from mismatching and owaelilog as a result of synonymy
and polysemy issued.iu et al, 2016 Yuefeng and Ning200q4. Mismatching occurs when
guery terms do not exhaustively represent the user’s séagpah[Tao et al, 2011, Yuefeng and
Ning, 2004. For example, documents that only discuss the subjectradvikedge discovery’
will be missed if the user uses the query ‘data mining’, kmaythat data mining and knowledge
discovery are closely related subjects. This problem ialsueferred to as the synonymy
problem (synonymy can cause information mismat@&gghar and Li2018 Li et al., 2013.
Conversely, information overload can be caused by the polysproblem when query terms
can be used in different contex8dshar et a).2016 Tao et al, 2011]. A common example is
the use of the query term ‘Java’, whether it means coffeeistaad of Java in Indonesia or the
Java programming languag@dshar et a).2016 2017, Bing et al, 2015. Further, by using the

bag-of-words (BoW) representation, term-based methausréword order in documents and
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consequently miss the semantic relationships betweea thesls Li et al., 2009a Turney and

Pante] 2010Q.

1.1.2.2 Late Fusion Strategy

Phrase-based Models

TFS techniques that adopt the late fusion approach utili$erent high-level features that
have semantic information, such as phrases, patternsgptatopics or a combination of these
features Zhou et al, 201J. Phrase-based TFS models use phrases (@-grams) because
they are (1) more discriminative, (2) better able to contgmantic information than single
words and (3) less ambiguous gt al., 2015 2011, 2010 2013. Then-grams are commonly
extracted using different values for’; which are experimentally specified\[pathan et al.
2013 Furnkranz1998 Wang et al.2013. Language models (e.g:;grams models)Javrenko
and Croft 2001, Robertson and Zaragoz2009 Wang et al.2007] are particularly relevant in
the field where phrases, as a sequence of words, are pratiablly formulated and these
lexical features extracted using thegrams (e.g., unigramn€l), bi-gram =2), tri-gram
(n=3), etc.) to maintain the terms’ dependencies. Howevdijghed phrase-based experiments
do not show encouraging results compared to term-based Gaeset al.2015 Li et al., 2015
Moschitti and Basili 2004 Scott and Matwin1999 Wu et al, 2009. Wu et al. Wu et al,
2009 argue that this is because phrases’ statistical attrgbarte inferior to terms, they suffer
from redundancy and noise, and meaningful phrases sutier the low-frequency problem

that makes them hard to distinguish and thus, select.

Whether heuristically or probabilistically justified, @ise-weighting functions assign scores
to phrases to represent their relevance to user informageds. However, they treat a phrase
as an atomic unit of meaning and assume its terms are equgblgriant to the user’'s needs
[Shirakawa et a]2015 Wang et al, 2007. This assumption can be too simple for discovering
relevant features. For example, a traditionajram model would uniformly weigh the phrase
‘President Bill Clinton’ even though each term in the phrhss a specific meaning and can
be more important than the others and thus, should be askifififerent representative weights
[Hammache et gl2014 Metzler and Croft2005 Shi and Nig2009. It can also be too simple
to assume that phrases are more representative becausmthegemantic meaning and less
ambiguity than termsHe et al, 2011, Lv and Zhaj 2009 Miao et al, 2013. For example, if a
short document contains ‘deep hierarchical reinforcerfearhing’, then a popular phrase like

‘deep learning’ cannot be used as a representative featutlked document because ‘deep’ and
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‘learning’ do not sequentially appear in the document, éiengh the phrase is relevant to the

document{Gaqg 2015.

Pattern-based Models

To overcome the shortcomings of term- and phrase-basedodsthlifferent pattern-based
techniques have been introducéddarni et al, 201Q Li et al., 2015 2011 201Q 2012 Wu

et al, 2006 2004 Zhong et al.2013. A pattern, as a set of associated terms, has been used for
feature selection4lbathan et al.2013 2014 Li et al., 2015 201Q Zhou et al, 2011. Many
efficient pattern-mining algorithms have been developedata mining, such as Apriori-like
algorithms Agrawal and Srikant1994, Pre-fixSpan Pei et al, 2001, FP-tree Han et al,
2004, SPADE [zaki, 2001], SLPMiner [Seno and Karypi2003 and GST Huang and Lin
2003. These algorithms have been adapted for use with text datt pl., 2015 Wu, 2007,
Zhong et al. 2013; however, text patterns can still be redundant and nd&o et al. 2015
Lietal., 2019. Several pruning techniques, such as closed patt®aségt al, 2009, maximal
patterns Feldman et a).1997 and master pattern¥@n et al, 2005, have been developed in
the data-mining communities to remove noisy patterns andaga redundant patternisldn

et al, 2007, Mooney and Roddick2013 Xu et al, 2011. These pruning techniques make
closed sequential patterns as an alternative to phrasasdeethey are (1) more frequent, (2)
still possess some semantic information and (3) do not impbe strict rule of sequential
occurrence of termd j et al.,, 2010 Wu, 2007. However, extracting patterns from text data
seems to be less efficient than term-based technidgilgarpi, 2014 Zhong et al. 2013, and
discovering high-quality knowledge from patterns seemsmose further time complexity.f

et al, 201Q Wu, 2007, Zhong et al. 2013. Moreover, informative patterns can suffer from
the low-frequency problem if they are treated as a singlmdtu, 2007, Zhong et al. 2013.
Also, the assumption that all terms in a closed sequenti&imaare equally important to user

information needs can be too simple and needs to be relaxed.

Selecting the most useful patterns for relevance discoxechallenging due to the large
number of patterns generated from relevant documents psitbgrns’ interestingness measures
(i.e., supports and confidencé) et al., 2015 Yan et al, 20053. Such selection may also lead to
feature lossAlharbi et al, 2017ac]. Re-using minimum support and confidence in identifying
relevance patterns from the broad set of discovered ones effiective, because only statistical
information about the used patterns is revealeé{al., 201Q Zhong et al.2013. For example,

given a set of document® that describes user information needs, patterns with lqpeu
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values are generally short and highly frequexigprni, 2014 Li et al., 2015 2008 Zhong et al,
2017. Such patterns are more general and less specific to thestdisicussed iV. Conversely,
longer patterns have higher support and are more specifieettopics inD, but less frequent
[Gao et al. 2015 Li et al., 2019. However, identifying the best values for these measiges i
still experimental and hard to generalise, and adopting sugasures for pattern-based TFS can
make the model highly sensitive to thehi gt al., 2015 Zhong et al.2013. Moreover, textual
patterns like phrases order terms based on their positampaarance in documents and do not
arrange them according to relevance to the topics discussbd documents, or even to what
the user needs. Also, specifying the length of a pattern agarparameter (i.e., how many
terms a pattern must contain) is still beyond the user’slmiipa and generalising that longer

or shorter patterns are always informative is rather togkrand difficult to justify.

To address some of these limitations, pattern deploymehntques, such as pattern deploy-
ing with relevance function (PDRu et al, 2004, pattern deploying method (PDMXhong
et al, 2017 and pattern deploying based on support (PDSY,[2007, have been developed
and adopted to revise patterns extracted using the integastss measures by first, finding
some correlations between them, and then deploying (igtriiting) them to a hypothesis
space (e.g., a positive or negative term space or baihgt[al., 2004. This technique has
led to a significant performance in discovering relevantiiesss based on text pattermddarni
et al, 201Q Li et al., 2015 2011. However, we argue that this technique is still sensitive t
the selected hypothesis space, which is generally just a BspAésentation, and its statistical
features’ types, size, noise, redundancy, and generalitlyspecificity of this spaceAbul
Bashay2017 Bashar et a).2014. Further, this space is hard for users to govern as it isllysua
the whole term’s space of the collection, in which it has been assumed that each term leas th
same importance (e.g., relevance) to each document. Stagsamption can be too simple, as

terms tend to co-occur in every documént D unevenly.

Also, pattern deployment cannot deal with ambiguous patteérat appear in negative feed-
back [Li et al., 2009h Zhong et al. 2013. Such patterns can influence the identification of
relevant featureslj et al., 2010 2013. To deal with this issue and refine such problematic
patterns, the pattern evolution technigiféuj 2007, Zhong et al. 2013 has been introduced.
Techniques that use patterns in negative feedback havensbomsiderable improvement in
identifying relevant features. Popular examples are thepataxonomy model (PTMMWu
et al, 2006 2004, Relevance Feature Discovery (RBDLI et al., 201J and RFD [Li et al.,
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2019, which use different patterns and algorithms to reducedide effects of high-level
patterns and low-level terms that appear in both sets. Hexvthese pattern-based models may
not perform well if the positive and the negative feedbaekrautually exclusive, as negative
feedback can be any irrelevant documents. Pattern-midgayithms also appear to suffer
when the relevant documents are limited and collecting tiseempensive and time-consuming
[Algarni, 2011, Soleimani and Milley2014.

Concept-based Models

A concept is a set of semantically related words that togetéscribe a human understanding
of a particular object or ideaBjashar and Li2017 2018 Egozi et al, 200§. Concept-based
TFS is supposed to effectively identify user informatioed® as concepts that reflect human
understanding and knowledge of a particular tofdeghar et aJ.2017, Egozi et al, 200§.
However, concept-based models are sensitive to the typexbfdature adopted to represent
the agreeable concept as a set of related terms, whether tdrass come from phrasesii

et al, 2014, patterns Bashar and Li2018 Bashar et aJ.2017 or topics of topic modelling
algorithms Bashar and Li2017, Bashar et a).2014. Also, concept-based techniques can be
manual, semi-manual or entirely dependent on externatsswof knowledgeTao, 2009 such

as dictionaries (e.g., thesaurus) and domain ontologigisjvean be incomplete or ambiguous.
Moreover, the automatic specification of relevant andesraht concepts can be challenging, as
only the user can decide based on the concept map in his orihdrafter reading a retrieved
documentTao, 2009. Simulating this process is difficult because manual cphspecification
implicitly lacks a clear understanding of the user’s backmd knowledgeTao, 2009. Much
attention has been paid to learning personalised ontddigen a set of documents that repre-
sents the user’s profile to explicitly simulate user concegps Bashar et a).2016 2017, Shen
etal, 20123 Tao et al, 2011]. However, this process is challenging as it can be expensme-
consuming and requires verification by domain expdstshar et a.2016 Lee et al, 2015k

Li and Zhong 2004 Zhu and Iglesias2017. Constructing and updating ontologies for every
knowledge domain is also unrealistic, especially congidethe current exponential growth in

data sources.

Ontological concepts can be general, incomplete and sensitthe type of relations that
govern the hierarchal structure between these concepit iarttology (e.g., super-class, sub-
class, is-a, part-of, etc.) Bpshar et aJ.2016 Li and Zhong 2004 Tao, 2009 Tao et al,

2011, Yuefeng and Ning200q9. Further, relying on ontologies to select informativetteas
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[Bashar and Li2017 2018 Bashar et a).2016 2017 can lead to feature loss, as no complete
ontology can practically represent all existing human kieolge. Also, ontologies alone are
not an accurate way to estimate feature weight or efficiaefiyesent the relevance of features
[Luo et al, 201]. Concept-based TFS models endeavour to add more semaidddge

to discovered features, such as teriagqzi et al, 200§, phraseslfiu et al, 2014, patterns
[Bashar and L,i2018 Bashar et aJ.2017 and topics of topic modelling algorithmB@shar and
Li, 2017 Bashar et a).2016, using global knowledge base ontologies or those learread f
local user repositoriesShen et al.20123gb, Tao et al, 2011. However, while this approach
can help humans interpret the meaning of these featurdsl| daes not specify the features’
importance to user information needs, especially when flee query is absent. A knowledge
base ontology consists of a set of concepts with their semeagiations (e.g., is-a, part-of,
related-to, etc.) that together represent a human backdrkoowledge of a specific domain,
or many sub-domains, of knowledg&ul Bashay 2017 Tacg, 2009. In the absence of a user-
specific query, itis challenging to map user informationdss®at may be unevenly discussed in
a set of relevant documents to a domain ontology (i.e., nmgpmiany to many)Abul Bashay
2017. It could introduce ambiguity and feature loss if the ontpf is not comprehensive;
further, such an approach is expensive and highly sensitives feature type, semantic relations

and the ontology itself.

Overall, fusion-based TFS models that use terms, phraaéigris, concepts or a combi-
nation of these, do not explicitly assume that a long docuroan exhibit multiple topics or
themes Gao et al. 2014h 2013; yet in reality, they can contain multiple semanticallyated
topics or sub-topicsAnastasiu et aJ.2013 Gao et al. 2015. Topic-based models have been

developed to address this assumption.

Topic-based Models

Probabilistic topic modelling algorithms, such as the pitahbstic latent semantic analysis
(PLSA) [Hofmann 2007 and latent Dirichlet allocation (LDA)Blei et al, 2003, have gained
popularity and are widely accepted in IR, IF, NLP, TM and Misearch communitieBjei,
2012 Gao et al. 2015 Wei and Croff 2006 Xiong et al, 2015 Yi and Allan, 2009 Zhang
and Chow 2014. These algorithms discover latent topics that can be usedpresent user
information needsBashar and Li2017, Bashar et a).2016 Gao et al. 2017. Existing TFS
models that adopt terms, phrases, patterns, concepts orl@raion of these, do not explicitly

assume user information needs can discuss multiple toplbarbi et al, 2017hc, Gao et al,
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20143. For example, consider a researcher in forensic sciencewadnts to enrich his or
her knowledge about economic espionage by studying popatss that have been identified
worldwide. The two features (i.e., ‘economic espionagepresent the researcher’s information
needs (e.g., a query to a search engine) and can be regardgzhesse (bi-gram), two single
terms or a pattern. However, searching algorithms thattatiepe features do not consider that
such an information need (i.e., the query ‘economic esgen&an have multiple related topics
or sub-topics, such as ‘commercial espionage’, ‘indulsespionage’, ‘corporate espionage’
and ‘technical espionageGao et al.2017,2019. LDA is designed to consider this assumption
automatically, but it favours the most frequent topics dy-tapics in the collection)ing and
Yan, 2015 Mimno et al, 201]. Such algorithms can automatically, and in an unsupedvise
way, extract latent topics from pieces of teBi¢i et al, 2003 Hofmann 2001]. These topics
are a reduced intermediate representation that can be mselroad spectrum of applications
and tasksGao et al.2014h 2015.

Unlike the PLSA, LDA is the most popular technique and itsegated topic is a set of
semantically related word®B[ei et al, 2003 Gao et al. 2015. LDA defines a topic as a
probability distribution over all terms in the collectiormcabulary Blei, 2012 Blei et al,
2003, which (1) gives a user the ability to specify the length ofopic (i.e., how many
terms it should have), (2) arranges topic terms based on itheortance to the topic, and
(3) relaxes the constraint of the strict sequential appearaf terms in a single topic. Further,
LDA represents a document as a probabilistic mixture of ipleltopics Blei et al, 2003 Gao
et al, 2014, which allows the location of similar topics or sub-topiasross the collection
and cluster documents or paragraphs that discuss simliggcds or themesAnastasiu et a/.
2013 Blei, 2012 Blei and Lafferty 2009. Despite these advantages, using LDA or PLSA
for relevance discovery does not show encouraging perfocebecause they cannot estimate
a generalised (globally representative) weight for topieems to reflect their relevance in a
set of relevant documents that describe user informatiefepncesGao et al.2014h 2019.
This is because these types of documents usually contaartangties that come from irrelevant
parts in these documents, as users can label a documeneesntetven though only a small
part is relevant and the rest is irrelevaattjarbi et al, 20183 Bendersky and Kurlan@014.
Therefore, estimating the relevance of features globalti@collection level can be effective
if it is assumed that the relevant parts frequently appearsacall relevant documents in the

collection.
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Mixed-Features Models

Mixed-based TFS models use different combinations of legle! features to overcome the
limitations of single feature models or exploit the semamiformation of two or more of
these high-level featuresspo et al. 2015. For example,n-grams and latent topics have
been integrated into the topical n-grams model (TNGahg et al. 2007 to discover topical
phrases that are more discriminative and interpretablenil&@iy, patterns and topics have
been employedGao et al. 2017, 2014k 2019 to take advantage of the explicit relationships
between pattern terms and the multi-topics representafidocuments in the topic modelling
algorithms to produce a more discriminative and informeatepresentation for user information
needs. Further, ontological concepts have been used witdrpsBashar and L,i2018 Bashar
etal, 2017 and latent topicsBashar and L,i2017 Bashar et a)2014 to add explicit semantics
to these features and facilitate the interpretation ancerstanding of their meanings. Yet,
despite the advantages of mixed-based models, they cambestipensive and susceptible to

the previously mentioned inherited limitations of highdéfeatures.

1.1.2.3 Hybrid Fusion Strategy

A hybrid fusion strategy can exploit the advantages of théyemnd late fusion approaches
[Alghtani et al, 2018 Atrey et al, 201Q Baltrusaitis et al.2019. Thus, a hybrid fusion
based TFS model would integrate low-level terms with one orarhigh-level features. In
relevance discovery, this hybrid strategy brings the stiatil richness of individual terms in
relevant documents to the semantic information of higlellésatures extracted from the same
documents Abul Bashay 2017, Wu, 2007. The advantage of this strategy can be clearly
observed in the PDSNu et al, 2006 Zhong et al. 2013, RDF, [Li et al.,, 2010 and RDRk,

[Li et al., 2019 models, which map high-level patterns to low-level termssolve the low-
frequency problem of specific patterns. This strategy alsalenpattern mining a feasible
technique for discovering relevant features that desardes information needd\fu, 2007.
However, because text features can pass their limitatiotsstbe models and frameworks that
use them, adopting a mixture of low-level terms and higlellégatures can be ineffective as
it might implicitly inherit the limitations of each featutgpe, especially if no solution for the
limitations were provided beforehandlparbi et al, 20183. The critical problem in this issue
is how to present, model and understand the complex retdtipa between these different types
of features and relevant and/or irrelevant documents irictmas of weighting functions under

one framework, and use them to discover or re-rank releeattifes.
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1.1.3 Text Feature Weighting Schemes

The weighting function is the most important component iF& model flbathan et al.2013
2014 Li et al., 2015. If this function fails in assigning the best and most reemative weight
to the feature, the whole fusion-based model will fail{arbi et al, 20184. Term- and phrase-
based weighting functions are heuristic—even the prolsticibnes are frequency-based—and
do not show effective performance in IEi[et al., 2011, Zhong et al. 20173. Pattern-based
weighting functions are also heuristic and usually ignbeedriginal semantic information (i.e.,
break the relationships between pattern terrBg)shar et a).2016 Zhong et al.2017. They
are ineffective in accurately assigning a representatiggt to terms that show the terms’
relevance to the user information needdhfarbi et al, 20183. Further, weighting functions
do not address negative feedback. Existing supervised Isy@leh as BM25Robertson and
Zaragoza2009, SVM [Joachims2004 and Rocchio Rocchiq 1971], are term-based and do
not show sufficient performance as they ignore the multiepssumptionGao et al. 2015
Lietal, 2015 201Q 2012 Zhong et al.2013.

A global weighting scheme can assign a representative wéigfeatures because it is
explicitly related to relevance judgemenisalante et gl2015 Greiff, 1998 Man et al, 2009
Shirakawa et al.2015. However, such schemes suffer from a lack of relevancedldetathe
document level. Conversely, local weighting schemes edgérthe relevance of features at the
document level because a relevant document contains lataolut such relevance, but may
be implicitly related to relevance judgemenEsfalante et gl2015 Greiff, 1998 Liu et al,
2009 Sabbah et al2017 Wu and Gy 2017. Therefore, these details are hard to use because
they do not directly describe the available relevance attiection level. Thus, the research
issue is how to devise a middle solution that exploits thedraffs between a global and local
estimation of features relevance. Therefore, this rebeseks to integrate early and late fusion
strategies of different features by modelling complextrefeships between the entities in a
document collection (i.e., terms, topics, paragraphsyuo@nts or clusters of documents) that

share these features.

To do so, this research extends multiple random g8taufsias et al.1997, Molchanoy
2005 Nguyen 200§ to represent, describe and understand these compleiorahips via
multiple probabilistic functions. These functions arertlegfectively combined, globally and

locally, to re-weigh topical terms based on their appeaawoss the selected entities. The
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proposed models and frameworks will be used to rank andtskdatures for relevance dis-
covery. They are application independent and can be aptdigdrious tasks in text analysis.
However, in this thesis, we tested the proposed models angefvorks for IF, which can be
considered a special type of binary text classificati®ag et al. 2015 Li et al., 200§, as well

as for ranking relevant terms (RRT) that were selected byailoexperts.

1.1.4 Text Feature Selection Applications

Fusion-based TFS techniques have been experimentallyatedlfor different TM, IR, IF and

ML tasks [Forman 2003 Metzler, 2007, Yang and Pederseid997 Zhang et al.2014G. In

the absence of a query, which explicitly represents usernmtion needs in IR, the proposed
models and frameworks can be evaluated in the context ottassification and IF. However,
text classification ignores relevant information rankingile IF is considered a binary text
classification problem with more focus on the relevance irapkf information [Gao et al.
2015 Li et al,, 2011 2008. As the name implies, an IF system removes information or
documents from a stream of documents or information thatatanmeet user need#\[garni

et al, 201Q Belkin and Croff 1999. In this research, user information needs are represented
by a set of related terms—used as a query in our case—thaisoevdred by the proposed

models and frameworks from the set of documents in which lee ig interested.

Based on the quality of the set of terms produced by the pexpossearch, the IF system
is able to rank the most relevant documents that stronglyt teeuser’s needs or interests.
This research is evaluated empirically for IF and RRT. Areasive series of experiments have
been conducted on the first 50 collections of documents ctthedard Reuters Corpus Volume
1 (RCV1) datasetlewis et al, 2004, which are assessed by domain experts at the National
Institute of Standards and TechnololgyThese collections imitate real user information needs,
are high in terms of quality and reliability, and sufficient & stable experimenBLckley and
Voorhees200Q Li et al., 2013. The experimental results show that the proposed models an
frameworks significantly outperform all baseline modetgjardless of the type of text feature

they adopt, the fusion strategies they apply or the learaiggrithms they use.

Ihtt ps: // www. ni st. gov/
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1.2 Problem Statement and Objectives

The previous section introduced extensive background ledge on various TFS techniques
from different perspectives, including data fusion, andegally described their apparent limi-
tations in identifying relevant features that can be usedpoesent user information needs. The
discussion motivates the research work in this thesis byqanting the need for more effective
fusion-based techniques for relevant feature discoverg.féllowing section lists and discusses

the main research questions addressed in this thesis andbfetives.

1.2.1 Research Problems

Probabilistic topic modelling algorithms such as PL3#fmann 2007 and LDA [Blei et al,
2003 are widely researched and broadly appli&dkj et al, 2010a Blei, 2012 Griffiths and
Steyvers2004 Wei and Croff 2004. Most research in topic modelling addresses the issues of
efficiency and scalability of the algorithms, and the intetgation, semantics and cohesion of
generated topicBashar and Li2017 Chuang et a).2013 Gao et al. 2017, He et al, 2017,
Ramage et gl2011. However, searching for useful and relevant topical fezgus an ongoing
research problem, as demonstrated by some very recenestih et al, 2019 Wu et al,
2019 Xu et al, 2019.

In TFS, different types of text features are used to reptesser information needs dis-
cussed in a set of documents. While terms, phrases, pat@neepts or a combination of
these do not assume user information needs can exhibitpleuttpics or sub-topicsdao
et al, 2013 20143 2015, latent statistical topics discovered by topic modelliaghniques are
explicitly built on the assumption that a document can dssauultiple topicsBlei et al, 2003
Deerwester et 11990 Hofmann 2007, which makes them more representative of what the
user needsGao et al, 2014h 2015 Wu et al, 2019. As a set of semantically related terms
sorted in descending order based on their importance toothie,ta topic can alleviate the
problem of polysemy and synonymy to some extent by softlgteiung similar words together
in the form of a topic Blei et al, 2003 Hofmann 200]. Also, topic modelling can reduce
the dimensions of a text corpus to a set of a limited numberopics [Gao et al. 2014h
2019. However, as previously noted, topic modelling algorithdo not show encouraging
results for relevant feature discovery. Neverthelesgmall the advantages of topic modelling,
the primary problem concerns effectively utilising theatigered topics for selecting relevant

features.
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Fusion-based IR models that adopt data fusion or colledtision have shown remarkable
results compared to traditional techniques in the fielidi§ et al., 2006 2008 201Q Nuray
and Can 2006 Towell et al, 1995. Existing research demonstrates that fusing differept re
resentations of documents, queries, search resultsngskind scores can lead to substantial
improvements on single IR model&rjava et al.2016 Croft, 200Q Kozorovitsky and Kurland
2011ab, Pickens and Golovchinsk008 Zhang and Balog2017. However, applying similar
fusion techniques to TFS for relevance discovery under mi@icgies is limited, as no single
text feature can encompass information relevant to the mseds, which makes the feature
fusion strategies more prominent. Moreover, there is nal@rtechnique in current relevance
discovery literature that models the fusion of differemrarchal features and integrates multiple
relevance fusion models into supervised and unsupervisedefvorks for relevant feature
selection. This research gap is the basis of research guoggtiat will be answered in this

thesis.

As previously discussed, statistical topic modelling alipons reduce the dimensions of a
text corpus to a specified set of topics. Each topic groupssgoally related terms together
as they appear in the corpus, which alleviates the probldrsgrmonymy and polysemy to a
certain extentflofmann 2001, Steyvers and Griffith®2007. The algorithms also assume that
each document can discuss multiple topics to imitate tlatyeespecially long documents (see
Figurel.1), in which different themes tend to be discussed acrosgaetelocument paragraphs.
This assumption makes these algorithms more capable difideg the hidden needs of users
[Gao et al.2014h 2015. Figurel.2illustrates a real example of hidden needs from Collection
101 of the RCV1 dataset, which is about ‘economic espionageé narrative element in the
figure clearly shows the relevant themes or sub-topics sftilpe of espionage. However, in
the absence of user queries, such algorithms do not have @ititnmechanism to discover
the most relevant features because they cannot accuraegrajise the topical term weight
to a more representative global level, especially whendghma has an identical meaning (i.e.,
semantically the same) in a group of similar documents. &fbee, the first research problem

to be addressed is:

* RQ1: How do we effectively fuse different features from a cadlienc of documents that
describes user information needs to accurately genetalmseal term weight globally at

the collection level?
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GERMANY: German police detain 2 men in VW spy saga. Title

German authorities said on Friday that two men have been detained on suspicion of industrial

spying at German carmaker Volkswagen AG. parSEranhpl

The two men were believed to have planted secret cameras at a test track operated by Volkswagen,
Europe's largest carmaker. VW said the cameras, discovered last summer, had
apparently sent out photographs of vehicles under development. Paragraph 2

The public prosecutor's office in Braunschweig, located near the Wolfsburg headquarters
of VW, said the men did not work for Volkswagen or to competing car manufacturers. Paragraph 3

These men did not work for Volkswagen or another car company, said prosecutor

Eckehard Niestroj. Paragraph 4

VW management board chairman Ferdinand Piech said in late August that the cameras
had been sending out photographs from the track for some time, noting that he

. . . Paragraph 5
believed VW had been under surveillance for about eight years.

VW probed for cameras at the test track after four unauthorised photographs of prototypes
appeared in car magazines in recent months. Pictures of new models and

prototypes are highly valued by industry magazines. FEEEGNC

Figure 1.1 A sample of a relevant long document from collection 10lhef RCV1 dataset.

<top>

<num> Number: 101 </num>

<title> Economic espionage </title>

<desc> Description: What is being done to counter economic espionage internationally? </desc>
<narr> Narrative: Documents which identify economic espionage cases and provide action(s)
taken to reprimand offenders or terminate their behavior are relevant. Economic espionage would
encompass commercial, technical, industrial or corporate types of espionage. Documents about
military or political espionage would be irrelevant. </narr>

</top>

Figure 1.2 A TREC topic for collection 101 of the RCV1 dataset in whittetitle element
"Economic espionageepresents explicit user information needs.

Assuming a term has equal importance in a group of similaudh@nts that describe user
information needs can be a simple assumption. Global @agpus level or collection level)
feature selection methods have adopted such an assumptestitmating the importance (i.e.,
a relevance weight) of the term based on its global inforomatn the whole corpus, in a
heuristic way Chen et al.2016 Cummins and O’Riordgr2006 Shirakawa et al2019. Local
methods have tried to relax the constraint of a globally gaise=d term weight by considering
its importance locally, in a document-by-document man@#dren et al.2016 Sabbah et al.
2017. However, both approaches—especially those based on pémase, concept and pattern
methods—do not assume a document can exhibit multiple gomichemes even though in
reality, a long document can span different sub-topicssrsggments (i.e., its paragraphs or
sentences), as illustrated in Figurd. Topic-based techniques such as PL&®{mann 2007
and LDA [Blei et al, 2003 can be considered local TFS methods that have adopted-topits
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representation of documents.

Yet, despite relaxing the term global assumption, these-ogsed methods do not show
encouraging performances in identifying relevant featyfdharbi et al, 2018a 20173ab,c,
2018k Bashar and Li2017 Bashar et a).2016 Gao et al. 2015. From a data fusion per-
spective, this is because they estimate the local impagtafdcerms based on the fusion of
two topical features: the document topic and term topic abdliy distributions Blei et al,
2003. The former is flat and does not automatically consider ikeanchal sub-features of the
document (e.qg., its paragraph topic features), as both PAr&IAL DA use BoW representation
and do not retain the notion of a documeBldi, 2012 Wallach 2006 Wang et al.2007. The
latter is globally estimated from the entire corpus, whidcikes it sensitive to frequency as well
as uncertainties in relevance feedback. Therefore, tdoj@@aemore effective fusion-based TFS

for relevance discovery, the following research probleithaiso be addressed in this thesis:

* RQ2: How do we effectively fuse local and global features to maceurately estimate

the generalised topical term weight?

For most relevance discovery models, regardless of theriusirategy, feature type or
learning and mining algorithm used, the document level igddence space for identifying
relevant features to represent user information ne€ds[et al. 2017, 2014 2019. As
previously mentioned, a document can be labelled as relexam if only a small part of it
contains relevant informatiorBendersky and Kurland201Q Fan et al, 2018 Kaszkiel and
Zobel 1997 Liu and Croft 2003. This is demonstrated in the real example of a labelled
relevant document from collection 142 of the RCV1 datasetvshin Figurel.3 as only a
small segment of one particular paragraph is considerevaet based on the TREC topic
description of the collection (see Figuted). Thus, selecting features from all parts of such a
document leads to uncertainties and scatters the focudevant information because features
from non-relevant parts do not represent user informatesds flharbi et al, 2018a Lv and
Zhai, 2010. Consequently, the relevance of the corresponding parildibe considered when
selecting features from it. Research in IR shows that censid the evidence at the passage
level (e.g., a paragraph level) can improve retrieval amcyrespecially when documents are
long or span different subject ared®ejhdersky and Kurlan®01Q Callan 1994 Dang et al.
2015 Liu and Croft 2003. However, in TES for relevance discovery and in the absefhes

explicit query representing user needs, which can alscegtielsearch for a relevant paragraph,
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it becomes very challenging to explicitly estimate a paaipfis relevance in a set of documents
that describe user information needs. Therefore, an imptiechanism is needed to utilise the
paragraph level evidence. To reduce uncertainty in theaatdfeature discovery, we address

the following research problem in this thesis:

* RQ3: How do we effectively fuse multiple features in a colleatiaf relevant documents
to implicitly estimate the paragraph relevance and usentdoage uncertainties in rele-

vant features discovered by existing TFS models?

<?xml version="1.0" encoding="iso-8859-1" 72>

<newsitem itemid="28354" id="root" date="1996-09-02" xml:lang="en">

<title>MOROCCO: PRESS DIGEST - Morocco - Sept 2.</title>

<headline>PRESS DIGEST - Morocco - Sept 2.</headline>

<dateline>RABAT 1996-09-02</dateline>

<text>

<p>These are the leading stories in the Moroccan press on Monday.

Reuters has not verified these stories and does not vouch for their accuracy.</p>
<p>AL-BAYANE</p>

<p>- More than third of foreigners' requests in Spain for residence permits

come from Moroccans.</p>

<p>LIBERATION</p>

<p>- Gas price expected to rise on world market and this could affect local businesses.</p>
<p>AL-ALAM</p>

<p>- World Bank report says illiteracy puts Morocco at 119th rank.

The report advises the education ministry to take over building

schools -- rather than local communities -- to curb corruption and embezzlement.</p>
</text>

<copyright>(c) Reuters Limited 1996</copyright>

Figure 1.3 A sample of a relevant long document from collection 142he&f RCV1 dataset
that discussedlliteracy Arab Africa as shown in Figuré..4with only a part of a paragraph is
considered relevant (the last paragraph).

<top>

<num> Number: 142 </num>

<title> Illiteracy Arab Africa </title>

<desc> Description: Research reports on the illiteracy rates in African and Arab countries. </desc>
<narr> Narrative: Relevant documents discuss illiteracy in Africa and the Arab world, or

indicate the percentage of African and Arab people that are illiterate. </narr>

</top>

Figure 1.4 A TREC topic description for collection 142 of the RCV1 dsgain which theitle
element llliteracy Arab Africa represents explicit user information needs.

In addition to the research problems mentioned, unsupsEhispic modelling algorithms
seem to favour subjects that frequently appear in a textusofiping and Yan 2015 Mimno
et al, 2011, Xu et al, 2019. These highly frequent subjects can overshadow less éredout
equally important subjects, especially in relevance disop Given a set of documents relevant
to user needs, LDA assigns higher probabilities (i.e., Wasigto features that frequently appear
within a limited subset of documents while those occurringewer documents receive less

attention, even though they may be equally relevant to useds 1 Document clustering is also
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an unsupervised learning algorithm that appears to effggtiimit bias towards highly frequent
subjects by grouping documents that share common subjeetbard cluster4Aggarwal and
Zhai, 2012 Anastasiu et a]2013 Jain 2010. However, a traditional clustering algorithm does
not consider the detailed topics or themes exhibited actossments, and assuming a cluster
of similar documents only discusses one topic is too simpladrbi et al, 2017h Krikon
and Kurland 2011, Liu and Croft 2004. Further, selecting informative features from a set
of equally important clusters and assigning globally repreative weights to these features is
difficult when no search guide (e.g., a user query) is giveomkining these issues with the
previous research problems, especially uncertaintied@vance feedback, this thesis raises the

following research question:

* RQ4: How do we effectively develop an unsupervised relevansealiery framework by
integrating topic modelling, document clustering and glattatistics to effectively select,

weigh and ultimately fuse different intra- and inter-ckrstelevant features?

Discovering relevant features from a collection of reldvand irrelevant documents to
specifically describe what the user needs remains a majeanas problem in IR, IF, DM and
ML communities [5ao et al,2015 Liet al., 2015 Man et al, 2009 Yuefeng and Ning200§, as
it is both theoretically and empirically challenging et al., 2015 2010. From the data fusion
perspective, unsupervised TFS techniques that adopt, éatdyor both fusion strategies are
not discriminating enough to accurately weigh features fileguently appear in both relevant
and irrelevant documents$ipu et al, 201Q Man et al, 2009. Supervised techniques can be
discriminative in selecting specific features of the clabgl that separate relevant and irrelevant
documents, but because they do not consider the detailext Istructures of these labelled
documents, they cannot assign globally representativghi®ito show features’ relevance to
user needsAlharbi et al, 2018h Gao et al. 2015 Li et al,, 2015. Considering the research
problems of unsupervised topic modelling and the issuegatufe weighting in supervised
relevance discovery models, as well as the uncertaintiesl@vance feedback, the following

research question is posed:

* RQ5: How do we effectively develop a supervised relevance disigoframework by
integrating discriminative learning algorithms, topic aetling and global statistics and
effectively fuse both discriminative and descriptive teat to identify relevant features

that more specifically represent user information needs?
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To solve these five research questions, the thesis resebjettives are discussed in the

following section.

1.2.2 Research Objectives

The main objective of the research in this thesis is to dgveédter TFS models and frameworks
for relevance discovery. The selected features and theghtse must be informative and
representative to user information needs. Therefore,dbearch outcomes are not targeting
any specific areas of applications and should improve agiglkcnformation-oriented systems,
such as IF, IR, text classification and others. The reseanctributions made in this thesis are

original and highly significant, especially in the field ofeeant feature discovery in TM.

The research work in this thesis solves the identified problef topic modelling and brings
data fusion techniques into the area of relevance discoarynore effective TFS models
and frameworks. Unlike common practice in data fusion, whgrmultimodal data sources
are integrated to produce more accurate, consistent aral ugermation, this research only
depends on different text features from a single collectblocuments. The collection is
domain-specific and has a relatively small set of relevadtiaelevant documents that can be
used to discover user information needs. Features arectedriiom the collection using some
supervised and unsupervised learning algorithms, nampig imodelling, clustering and SVM,
including some global and local statistical features. Nieeal sources of knowledge are used

in this research.

* RO1: To accurately estimate a more globally representativgidor a topical term, a
hybrid fusion based model (called SIF) is proposed in whialitiple random sets are
extended to (1) manage a hybrid fusion of features of disentities in the document
collection and (2) model the complex relationships betwibere features and the entities

that influence the term weighting process.

Adopting a hybrid fusion strategy guarantees that the fusidased on some semantic in-
formation (i.e., extracted by topic modelling) rather theased solely on heuristics. The fusion
is between different features of the collection’s parafjsaghe latent topics extracted from these
paragraphs and all terms in the collection (i.e., the volzaiplist). As the associations between
these entities are complex—in the form of many-to-one arettoamany relationships—and
topical terms frequently appear across numerous docuraregraphs and even topics in the

collection, it is challenging to know which relationshipemntity is most important. Therefore,
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in the proposed SIF model, multiple random sets are exteadddised to represent and thus,
understand these relationships using probability funstid he fusion made by these functions
can effectively estimate a more representative and gesedaiopical term weight, as will be

fully described and evaluated in Chapt8rand6, respectively.

* RO2: To relax the assumption of the globally generalised tdgman weight, the SIF
model will be revisited and an integration between earlylatelfusion strategies of local

and global features will be modelled using multiple extehdndom sets (ERS).

The proposed SIF model adopts a hybrid fusion strategy exseiformative features for
relevance discovery. It is a collection-based model thatimes identical topical terms have
equal importance in every document in the corpus. Such amgsn can be too simple and
needs to be accurately relaxed. In Chagtdhe SIF2 model is introduced to solve the issue of
the SIF model. The proposed SIF2 model adopts a hybrid fustiategy of local and global
features that are modelled by ERS. Unlike SIF, four entiéied their complex relationships
are represented and probabilistically estimated on a dentdny-document basis to accurately
measure the topical term importance in each document imdigpely. As each document is
equally relevant to the user’s needs, it is difficult to idignihe most representative weight for
a topical term that is independently estimated in each deciiof the collection. To solve this
problem, SIF2 assumes all individual weights of a topicaintare important and combines
them with a more descriptive global statistic. In additiorChapter presenting the details of

the proposed SIF2 model, Chapéshows an extensive experimental evaluation for this model.

* RO3: To reduce uncertainties in relevant features discoveyeexisting TFS models,
an uncertainty reduction (UR) method is proposed to imgji@stimate the paragraph
level evidence of relevance and use it to re-rank the digeoMeatures after scaling their

original weights.

Generally, the ‘relevance’ of a text feature in this thesi®rs to the relevancy between a
document or set of documents in which this feature is diseaand user information needs,
which are supposed to be implicitly described across theéeods of the document(s). Most
existing relevance models treat all document segments paagraphs and sentences) equally
when discovering and weighing relevant features. Howekieyapproach can introduce uncer-

tainties to these features. The simple intuition behinsl thason is that document segments are
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not equal in terms of their relevance to what the user needlsame can be completely irrele-
vant. Thus, considering non-relevant or weakly relevantspahen discovering and weighing

relevant features can do more harm than good.

Numerous studies in IR confirm that adopting passage levd¢pue (e.g., paragraph level)
for relevance shows remarkable improvements for quergdasodels in different retrieval
tasks. However, in relevant feature discovery, such an@xkgluery can be either unavailable
or not considered, which makes this problem particularileimging. Therefore, in Chaptdr
a UR method is also proposed to implicitly estimate the watee of a document’s paragraph
by modelling the late fusion of different features of thegmaaph with latent topics and the
paragraph with terms. Multiple ERS with inverses are dgwedbto map, measure and under-
stand the relationships between the four entities. Basatl@proposed ERS theory, a feature
weighting formula is developed to scale and re-rank theveglefeatures discovered by existing

TFS models. The extensive evaluation of the proposed mashm@sented in Chaptér

* RO4: To force topic modelling algorithms to pay equal attentioboth frequent and less
frequent relevant topics of interest in an unsupervised aag to select and weigh rel-
evant features of these topics, an unsupervised relevaswevery framework of hybrid

fusions is proposed.

To limit the topic modelling bias towards highly frequentbgects, a document-clustering
technique will be employed to group documents that shardéasirsubjects in one cluster.
However, in IR it was assumed that clustered documents asluds one subjec@[harbi
et al, 2017k Krikon and Kurland 2011, Liu and Croft 2004; yet, such an assumption can
be unrealistic, as a single long document in a cluster caibigxhultiple topics or sub-topics.
Therefore, the clustering technique cannot reveal thalddttopical structures of documents
and provides no clear way to either select or weigh the irderntra-cluster features. Con-
versely, topic modelling is capable of such a task and has Heeeloped on the assumption
that a document can have multiple topics. Neverthelessapreaiously noted, topic modelling
still (1) suffers from its inability to generalise topic temweights to a global level, (2) does not
consider paragraph level evidence (as it is a document-miogel) and (3) pays no explicit

attention to the document’s hierarchal features when asitiig weight.

Therefore, in Chaptes, an unsupervised, two-stage, hybrid fusion based franmtewatied

unsupervised selection of informative features (USIF¥appsed to discover relevant features
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that represent user information needs. The framework tefédg integrates global statistics,
topic modelling and document clustering to select and rigghvelustered features. Multiple
ERS are also developed to model the integrated hybrid fassdmultiple cluster-based and
collection-based features and to describe and thus, uaddrghe complex relationships be-
tween them. The idea of concept agglomeration is introducdtis framework to effectively
identify the relevant inter-cluster features. The SIF m@a an adapted version of the UR
method are employed to estimate the topical and thematiifisignces of terms in the collec-
tion, respectively. These two significances will be usediszaler the intra-cluster relevant
features. The extensive experimental evaluation for tlopgsed framework is reported in
Chapter®.

* ROS5: To discover and accurately weigh specific relevant featuseng both relevant and
irrelevant documents, a supervised relevance discovamework of hybrid fusions is

proposed.

To reduce the impact of relevant features that frequentheapin both positive and negative
training documents, a discriminative supervised learaiggrithm will be used (e.g., SVM) to
delineate between positive and negative documents. Thedaoy (e.g., the hyperplane as in
SVM) is then used to select some discriminative specifiafest However, such algorithms can
implicitly inherit the limitations of the text feature thexge and the uncertainties available in the
training documents. In general, these algorithms do nosiden the hidden topical structure
of a training relevant document and have no explicit medrarin adopting paragraph level
evidence of relevance as a means to deal with the unceesinfihese reasons make them
ineffective in assigning a more representative weight eéodpecific feature they discover. As
already discussed, probabilistic topic modelling are pesused algorithms that effectively

reveal the internal topical structure of the document, bey tremain problematic.

SIF, SIF2 and the UR method have effectively solved thesbl@nas in a domain-specific
context. However, as they are also unsupervised, they taeabwith features that frequently
exist in both negative and positive documents, as negatuang documents, specifically, can
be much larger and topically diverse. In Chadien two-stage supervised and hybrid fusion
based framework, called supervised selection of infowveateatures (SSIF) is proposed to
specifically deal with negative documents and enhance godery of relevant features that

represent user information needs. The proposed SSIF frark@ffectively incorporates global
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statistics, topic modelling and SVM to select and re-weigdtgiminative specific features. A
multiple hybrid fusions strategy is adopted in SSIF, whglmiodelled by multiple ERS, as in

the USIF framework. Chaptérpresents an extensive experimental evaluation of SSIF.

1.3 Contributions

The research work in this thesis contributes theoreticaily practically to the field of TFS for
relevance discovery. The contributions are original agdificant and are implemented in the
forms of different models (SIF, SIF2 and the UR method) aadhiworks (USIF and SSIF) of
TFS. The research integrates supervised and unsupereelig algorithms and adopts data
fusion strategies to select, weigh (or re-weigh) and rankdaank) relevant features. A novel
ERS theory is developed to model the integrations and mathagesion of different local and
global features. Several accurate feature-weighing sebeme also proposed based on the ERS
modelling. The extensive experimental evaluation showsttie proposed models and frame-
works are effective and significantly outperform all statehe-art baseline models regardless
of the text features or the fusion strategies they utiliserdtietails on the contributions of this

thesis are provided in Sectigh2

The main contributions of this thesis to TFS for relevancscovery research are sum-

marised as follows:

* An innovative hybrid fusion based model that extends mldtrandom sets to generalise
the weight of topical terms in relevant documents based oeva and accurate term

weighting scheme.

* A new and effective ERS-based model that integrates eadylate fusion strategies to

relax the assumption of a generalised weight of a topicai ter

* An innovative and effective fusion-based method that éslppragraph level evidence,
at both the document and collection level, to reduce thertaogy in relevant features

discovered by existing TFS models.

* Anew and effective unsupervised framework that integradpic modelling, global statis-

tics and document clustering to select and accurately rghwelevant features.

* An effective and new supervised framework that combinpgtmodelling, global statis-

tics and SVM to select and accurately re-weigh relevaneeiip features using both
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relevant and non-relevant documents.

1.4 Research Methodology

The research methodology can be defined as the theoretamakwork through which re-
searchers analyse the method or set of methods that areedpplisolve the identified re-
search problemGable 1994 Leedy and Ormrod2005. Scientific [Galliers 1997, case study
[Gable 1994, action researchdomekh 2005 and prototyping Creswel|l 2013 are examples
of research methodologies that are applicable to the fickhaivledge discovery in text$\u,
2007. As this research aims to contribute to the knowledge disgoin text field, this makes

it an empirical research type that is applicable to the sifienesearch methodology. However,
as our proposed research has different stages and theifscierd@thodology consists of six
repetitive activities, an organising methodology suchama research is needed. Therefore,
after analysing all aspects of this research and the sficeatid action research methodologies,

we found the integration of scientific and action researcthoanlogies best fit this research.

To achieve the aims of this thesis and solve the identifiedaret problems, extensive
surveys are conducted against the relevant literature &, Tépic modelling, data fusion,
measuring uncertainty, TM, document clustering, textsifegtion and IF and retrieval. Then,
a hypothesis is developed for each problem and an initiakieol is proposed by developing a
theoretically sophisticated model. Next, an experimemtesigned to test the hypothesis and
the initial results are evaluated. If the results are notificantly better than state-of-the-art
baseline models, then iterative steps are taken until @hbstlution is achieved. These steps
are revising the literature, updating the hypothesis, owimg the proposed model, and testing

and evaluating the model. Figutesillustrates the research approach used in this thesis.

1.5 Publications

Some parts of the proposed models and frameworks in thissthad their results have been

published in (or submitted to) international conferenassjaurnals as follows:

Peer-Reviewed Journal Articles
» Abdullah Alharbi, Md Abul Bashar, Yuefeng Li, ‘Fusing chasing and topic modelling
for unsupervised relevant feature discovelfZEE Trans. Pattern Anal. Mach. Intell.

(To be submitted.
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Figure 1.5 Research methodology and thesis structure.

* Abdullah Alharbi, Md Abul Bashar, Yuefeng Li, ‘Combiningugervised and unsuper-
vised learning for an effective representation of specifiqpas’, IEEE Trans. Knowl.

Data Eng.(To be submitted).

Peer-Reviewed Full Conference Papers

» Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Enhancing topicgord semantic for rel-
evance feature selection’, iBroc. 1JCAI Workshop on Semantic Machine Learning
Melbourne, (vol. 1986), 2017, pp. 27-33.

» Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Integrating LDAIth clustering technique
for relevance feature selection’, in Peng W., AlahakooriDX. (eds)Al 2017: Advances

in artificial intelligence Lecture notes in computer science. Cham: Springer, 2647, v
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10400, pp. 274-286.

» Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘Topical term wdiging based on extended
random sets for relevance feature selectionRrac. Intern. Conf. on Web Intelligence

Leipzig, Germany, 2017, pp. 654—661.

» Abdullah Alharbi, Yuefeng Li and Yue Xu, ‘An extended ramdesets model for fusion-
based text feature selection’, in Phung D., Tseng V., WebiH@ B., Ganji M., Rashidi
L. (eds)Advances in knowledge discovery and data mining. Lectutesna computer

science Cham: Springer, 2018, vol 10939, pp. 126-138.

» Abdullah Alharbi, Md Abul Bashar and Yuefeng Li, ‘Randorets for dealing with uncer-
tainties in relevance feature’, in Li X., Mitrovic T., and ¥WB. (eds)Al 2018: Advances
in artificial intelligence. Lecture notes in computer sa@enCham: Springer, 2018, vol

11320, pp. 656—668.

1.6 Thesis Structure

This thesis is organised into seven chapters, as illustiaté-igure 1.5 and summarised as

follows:

» Chapter 2: This chapter is a literature review of disciplines relatecknowledge dis-
covery in databases, including text mining. It comprehesigireviews and critically dis-
cusses recent research in TFS; specifically, research fifteretht perspectives, including

TFS applications. Limitations are pointed out, and posssiollutions are suggested.

» Chapter 3: An innovative hybrid fusion based model for relevant featselection (called
SIF) is presented in this chapter. The model is unsupenasedproposed to address
the limitations of the topical features discussed earlethis chapter and Chaptér
The model extends multiple random sets to describe the @mmplationships between
topical terms and other entities in a document collectioasd®l on these relationships,
a weighting scheme is developed to estimate a generalisedsieore that effectively
reflects the relevance of a term to user information needsmanctains the same semantic

meaning of terms across all relevant documents.

» Chapter 4: This chapter describes SIF2, another novel, unsuperfisgsh-based model

for selecting informative features in a collection of do@nts that discusses a specific
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topic of interest that describes user information need$=2 Sklaxes the term weight
generalisation assumption of the SIF model, which has be&plaieed in Chaptef.

It also adopts the strategy of distributing global term ¢gpassignments generated by
LDA to a local hypothesis space to solve unbalanced frequeslated problems. This
chapter also presents the UR method, which is proposeduceadcertainties in relevant
features discovered by existing TFS models of relevanasmdesy. The UR method is
also unsupervised and estimates the relevance evidenassages of relevant documents

to scale the weight of these features and re-rank them aogtyd

Chapter 5: Two novel frameworks of fusion-based TFS for relevancealisry are pre-
sented in this chapter. The first proposed framework, USIsupervised and integrates
document clustering, topic modelling, concept agglomemnaand global statistics in a
two-stage approach to select and then re-weigh relevatnirésain the text collection that
describe a specific topic of interest that discusses usamnation preferences. The sec-
ond framework proposed is SSIF. It is a supervised, twoestagnework that combines
SVM linearly with topic modelling and global statistics.dan effectively deal with the

impact of topical terms that commonly appear in relevantienetevant documents.

Chapter 6: The evaluation methodology for the proposed models anddveorks are
detailed in this chapter, which includes evaluation hype#s, the benchmark dataset,
experimental design, evaluation measures and baselinelsmadd their settings. A
detailed analysis and discussion of the experimental tseful each proposed technique

in IF and RRT are also presented.

Chapter 7: This concluding chapter summarises the key outcomes asulises the
significant contributions of the thesis. Identified limitets are also reported in this

chapter, suggesting the direction of further research wotke future.



Chapter 2

Literature Review

This chapter undertakes a literature review of TFS techagqirhe review is organised around
the major areas of TFS to ensure that an exhaustive appredekan. The first part covers
knowledge discovery in databases in which feature seledican essential pre-processing
step. This section also describes strategies of text mioiegtract representative text features.
The second part of the review discusses the idea of TFS aqubges a taxonomic model to
organise the study of existing TFS models. While this stumyu$es on TFS from the data
fusion perspective, three other viewpoints are introdunpetthis chapter—namely, the search
strategy of the TFS models, the availability of semantiofinfation in the utilised features,
and the models need for labelled training documents. Eathese perspectives is presented
in a separate section, and popular TFS models are describectiéically discussed under the
relevant category. In an independent section, the apitabf TFS are explained and linked
to the proposed TFS taxonomy as each application requiragabke TFS method. The last

section presents a summary of this chapter.

As extensively discussed in Chapterthis study brought the feature fusion approaches
to TFS for discovering relevant features that reflect uskrimation needs. However, in the
literature, feature fusion strategies are mainly used fogxmultimodal data more than the
monomodal text. Therefore, we explicitly defined and cailic discussed the concept of text
feature fusion in Chapte3 instead of this chapter. Additionally, based on the redeatadies
reviewed in this chapter, it is clear that there is a resegaghon how feature fusion can be used
to combat uncertainties that affect most TFS models andewarks. This study aims to fill

this research gap.

29
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2.1 Knowledge Discovery in Databases

Knowledge discovery is commonly defined as the process oa&xig useful information
from large databases of particular interest to specificsugeryyad et al.1996 Frawley et al,
1997. The extraction process should be non-trivial, and thealisred information must: (1)
implicitly exist in the databases, (2) be previously unkndwthe users and (3) meet the users’
information needsHrawley et al.1997. From a formal point of view, knowledge discovery can
also be defined as follows: i is a set of facts that represent the given datés a language,
and C' is a set of certainty measures, then a statensert L is called a pattern, which is
discovered from the subsét, taken fromF’ based on a certainty [Wu, 2007. Thus, the
patternS must describe the relationships between the suliset /' and must be simpler than
the listing of all facts inF;. In this case, the pattern can be called knowledge if it minets
interestingness measures and certainty criteria impogetidouser. However, patterns with
insufficient certainties cannot be treated as knowledgausecthe certainty with an acceptable

degree is essential in the knowledge discovery prod&ss 2007.

Overall, a knowledge discovery system must output highiyyaatterns that demonstrate

the following characteristicdayyad et al.1996 Wu, 2007

* Interestingness On the basis that patterns must be novel, useful, and disedvn a

non-trivial way, it implies that the discovered knowledgasnbe interesting too.

» Accuracy: Based on the used certainty measure, the discoverednmtbould accu-
rately reflect the contents of the original dataset in whigccurate reflection should be

noted by the certainty measure.

* Efficiency: Given a large database, this characteristic implies tireakhowledge discov-
ery algorithms must be efficient in terms of run-time wheferiht means the algorithm

run-time is acceptable and can be theoretically predicted.

» Understandability: This characteristic emphasis that a discovered knowledgst be
interpretable using a high-level language. Thus, usersldhme able to understand this

interpretation.
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2.1.1 Knowledge Discovery Processes

Knowledge discovery is not a monolithic task. It involvevesal iterative and interactive
processes, as shown in the model in Fig2ire These processes are data selection, data pre-
processing, data transformation, data mining and pattexiu&tion or interpretation, and each
process depends on the output of the previous Bagyad et a].1996 Frawley et al. 1992

Wu, 2007, as illustrated in the figure. Each of these processesedlypdescribed below.

Knowledge

Interpretation
/ Evaluation

A

——
Patterns
/ Models
-

< Data Mining [«

A

)
Transformed
Data
-

< Transformation |«

A

D
Preprocessed
Data
-

Preprocessing |«#

A

)

Target Data [« Selection |-

T

—_————

Databases

Figure 2.1: KDD general processeblote. Adapted from Fayyad et a].199q.

1. Data Selection Given a large database, this process selects a subsetfectatabase in
which the user requires the knowledge discovery system dosfime useful knowledge.
Thus, the data selection process accepts a large databhseituts a target data, as
shown in Figure2.1. For example, given the World Wide Web, as a massive and multi
source database, in the data selection process, a set ofstmves webpages might be

collected for some Web mining applications.

2. Data Pre-Processing This process concerns about cleaning and removing the frois

the target data. The process also handles missing and rachuwhata and collects relevant
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information from the required fields of the target data. Hu previous case of Web
content mining, some elements from the news webpages ndael temoved, such as
metadata, pictures, hyperlinks, tags and CS codes. Algo,vgords are usually removed,

and word-stemming is performed, if required, in this praces

. Data Transformation: Following the pre-processing task, the transformatiomcess

takes place. Depends on the data mining application, th@noeessed data are trans-
formed into the required format, or some relevant featuressalected to reduce the
dimensionality of the pre-processed data. The selectédréssaare then used to represent
the data and used in the mining task. The output of the tramsfiion process (i.e., the
transformed data) is analogous to the subset of fAgtdiscussed above, which can be

passed to the data mining process.

. Data Mining: This process performs a specific mining task (e.g., sunsag@on, clas-

sification, regression, clustering or association ruleingretc. ) by searching for some
interesting patterns in the transformed data. These stiagepatterns can be in the form
of ordered co-occurring features, a set of maximum featowresen as simple as pairs of
features found in the data. The effectiveness of this psocas be enhanced if the user

manages to perform the previous three KDD process more aetyr

. Results Evaluation The main task of the evaluation process is to ensure thatithe

covered patterns meet the definition of knowledge notedigusly. Thus, the evaluation
process must confirm that the discovered patterns are nealal,and reflect the user’s
information needs. Only those patterns satisfy theseriaigge considered useful knowl-

edge.

2.1.2 Text Knowledge Discovery

Textual data have witnessed a dramatic increase sincettiogiiction of the web in the early

nineties. The amount of text continued to increase in an rampital rate, especially with the

wide-spread use of social networks applicatioGad¢ 2015 Khan et al, 201Q Sebastiani

2002 Wu, 2007. This text deluge has made the search for relevant infoamaixtremely

challenging as text tends to suffer from the high-dimenrealioy problem [Aphinyanaphongs

et al, 2014 Dasgupta et al.2007, Yang and Pedersei997. Also, textual data are sparse

and noisy Plbathan et al.2014 Algarni, 2011, Li et al.,, 2015. Text-based applications also
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suffer from semantics related problems like ambiguity,csymy and polysemyAlgarni and

Li, 2013 Bashar et a).2014 Li et al.,, 2010. Thus, unlike other types of data, texts need special
processing and analysis techniques to discover usefuhmaon from it. Knowledge discovery
in text (aka text mining or text analytics)Mu, 2007 is the process of finding meaningful and
interesting patterns from text collection using differanalysis tools and algorithms to suit what
the user needs. Unlike knowledge discovery from datababkesenthe stored data are usually
structured (e.g., relational tables), text mining usulaindles semi-structured and unstructured
text, which is no more than a sequence of words or even clasafdag 2015 Sebastiani
2003. Text mining also is interdisciplinary that can span diflet research communities,
including ML, IR, NLP and IF (Gao et al. 2015 Khan et al, 201Q Li et al., 2015 Moschitti
and Basilj 2004 Zhong et al.2013.

2.1.2.1 Text Pre-Processing

As noted above, textual data is noisy and can have an enormouber of errors and irreg-
ularities as well as noninformative words. Thus, beforeait be further analysed, texts need
to be pre-processed through the undertaking of some poprégprocessing tasks, including

tokenisation, lemmatisation, stemming and filtering. Enesks are described below.

1. Tokenisation: In the tokenisation process, the text is divided into fragts of words.
At the same time, punctuation is removed, and tabs (incudon-text characters) are

replaced with single spaceshan et al, 2010.

2. Lemmatisation: In the lemmatisation process, all verbs are converted tuaitie original

dictionary keywords and mapped to their original infinitif@ms.

3. Stemming In stemming, ends of words are sliced off in anticipatiorbahging them
back to their dictionary keywords. For example, presentigples’ —ing endings are

removed, and plurals are turned into singul&isdn et al, 201Q Porter 1980.

4. Filtering : Stop words are common words like conjunctions, articles@epositions that
are found in every text but have little or no meaning in relato the content{han et al,

201Q Porter 198(0. These are removed.
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2.1.3 User Relevance Feedback

Relevance is a fundamental concept in both IR and IF. IF isiipa&ioncerned with the doc-
ument's relevance to a query about a specific subjecef al., 2015 201J. However, IF
discusses the document’s relevance to the user’s infaomagedsGao et al. 2015 Li et al.,
201(0. Relevance feedback is a technique that has been extgnsserl mainly in IR, where a
user is involved in judging the relevance of the retrievesdilis [Algarni, 2011, Rocchiq 19717].

A user submits a querg) to a search engine that retrieves a list of documeétsvhich are
ranked based on their similarities to the user’s query. Heg,uhen, is involved in assessing the
relevance of a tog-documents collectio® to what he/she needs to either relevant (1 positive)
or irrelevant (0/-1 negative) documentddarni, 2011]. In this case, the collectiof is known

as the relevance feedback such thatt R and D has a subset of relevant documents and
another subset that are irrelevdnt. Due to the user judgement, relevance feedback has been
extensively used in TM, ML, IR and IF for a variety of applicats [Bashar et a).2016 Gao

et al, 2015 Li et al., 2015 Rocchiq 1977 to learn or mine useful information and knowledge.

» Positive Feedback This feedback refers to the subset of documents that seean to
what the user needs, which commonly representddfasuch thatD* c D. This subset
can be used to identify the main interests of the user, whiake®D* receives much
attention from many research communitidéharbi et al, 2017 Bashar and L,i2018
Gao et al.2017.

* Negative Feedback The negative feedback is the subset of irrelevant docuwsriand,
which is commonly referred to &3~ [Alharbi et al, 2018aLietal., 2010 2013. People
assume thab~— documents are useful for deciding the information or knolgkethat the
user is not interested in. However, this assumption canroelsj knowing that these
documents can be very topically diverse, which makes thetiitteation of what exactly

the user not interested in is rather challengibigef al., 2015 20174.

2.1.4 Text Representation

Text representation is a central problem in TM and ML in whicket of documents is numer-
ically represented in a specific spadégn et al, 2009 Sebastiani2002 Zhong et al. 2013.
For example, given a numerical spageand a document collectioR = {d;,ds,ds, ... ,d,}

where d, denotes the: document inD, the text representation model aims to represent
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each documeni, € D as a points, in the spaceS. The representation model allows the
documents to be mathematically defined, as pairs of pointkeispace, which can be efficiently
manipulated (e.g., measures the similarity or distancedxst two pairs)$alton and Buckley
1988 Salton et al.1979. Further, selecting the suitable representation modgiisial for the
success of the TM task being undertakéigpgrni, 2011, Sebastiani2003. The two primary

text representation models are the keyword-based andgzbesed, as described below.

2.1.4.1 Keyword-based Representation

Representation based on keywords, the so-called bag-afswWBoW) process (see Figuze?),

is extensively employed in IRJroft, 200Q Fang et al. 2004 Huston and Croft2014; it is
also known as the vector space model (VSM). Gerard Saltoelojeed this model in 1960 to
index and retrieve informatiorSalton and Buckleyl 988 Salton et al.1975. Most IR systems
and text extraction methods have employed this model, wimds similarities among the text
representations identifiedanning et al. 2008k Rocchiq 1971. Each document is repre-
sented by the VSM as a vector in the feature spac€) = {z(d,t,),z(d,t2), ..., x(d,t,)};
the frequency of the termis represented by each element of the vector in the docurSaftbh

and Buckley 1988 Salton et al.1979.
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Figure 2.2 The BoW representatiomote. Adapted from Joachims1994.

Although quite useful, the VSM representation is not withnitations: It poorly rep-
resents long documents, since these contain loose valussridarity, and keywords being
searched must concisely relate to the terms in the docurf@rd#t, 200Q Turney and Pantel

201Q. Besides, VSM does not retain semantic information abeums [Zhong et al.2017.
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2.1.4.2 Phrase-based Representation

The keyword-based representation, resembled by the VSMowv, Bvas not limitations free.
The absence of semantic knowledge (e.g., words order) akeywgprds in VSM made it suffer
from the synonymy and polysemy probleni¥rwester et gl199Q Li et al., 2015 Luo et al,
2017). Also, VSM considers each keyword as a separate dimensitreinumerical space can
be inefficient. Further, using VSM to find relations betweesrds in documents is distance-
based. It largely depends on the spatial information ofarscthat represent the documents
in which the sequence of the words is not considered. Thusn iattempt to address VSM'’s
limitations, a phrase-based representation was developeldich unstructured documents are
represented by a set of phrases instead of individual keysjatbathan et al.2013 Furnkranz
1998 Huston and Croft2014. A phrase is a set of keywords that appear together and aarry

specific meaning.

The phrase-based representation aims to add semantimetion to a word in documents
by capturing its correlation with other words across thetaiming corpus Albathan et al.
2013 Huston and Croft2014 Wang et al. 2013. The statistical.-grams model Jlanning
et al, 20080 is a widely used phrase-based representation with nureexpplications in IR,

IF and other related TM tasks. TheGram is employed to locate all the series of words that
do not exceed the length af [Albathan et al.2013 Wang et al. 2013. The n-gram-based
text representation offers a more rigorous means of hagpdiduments even in the presence of
typographical and grammatical errors and mistakes. Bsstties model does not require any
processes like tokenisation or stemming. Yet, there a alfew limitations in this model,
for example, the word patterns mined with this model will msited to a total ofn, possibly

limiting the discovery of long phrases or patteriéd, 2007.

2.2 Text Feature Selection

Having highly informative text features is crucial for thecsess of any text analysis applica-
tion [Algarni, 2011, Li et al., 2015 Zhong et al. 2013. Text data are extremely sparse and
suffer from the high-dimensionality problem, which can $aa learning algorithm to overfit
[Dasgupta et al.2007, Khan et al, 201Q Yang and Pederseni997. Also, text documents
suffer from feature redundancy and noise, which can caugelkage discovery algorithms to
be inefficient. Therefore, different TFS models and framéwdnave been extensively used in

the areas of TM and ML to overcome the curse of dimensionafity extract high-quality text
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features to support the different knowledge discoveryiappbns Li et al.,, 2015 2017¢ Tang
et al, 2016 Zhang et al.2016 Zheng et al.2004. Most TFS techniques exploit the statistical
information (frequency) of terms and patterns in a docurestt of documents for capturing
the importance of the different featuréddn et al, 2009 Robertson and ZaragozZ2009 Yang
and Pederser1997. However, two terms may have the same frequency in the saeent,
but it is hard to discover the one that contributes more séinaly to the sentence. Further,
the resulting features (terms or patterns) still suffenfrmise and redundancglpathan et al.

2013 2014 Li et al., 2013.

2.2.1 Definition

Instead of creating new features, a TFS model automatisalcts a subset of features from
the original set of features that discovered from a coldectof documents@ombarro et a).
2005 Dasgupta et al.2007, Forman 2003. The selected features must be relevant to the
topics discussed in the collection that might describe #es's information needsjao et al,
2015 Li et al., 2015 Zhong et al.2013. The features must also be sufficient to represent the
documents of the collection without losing important imf@tion. Additionally, the features
must be meaningful and easy to understand by users and nti& redlundant or noisyBashar

et al, 2014 Wu et al, 2004. Further, and based on the target application, the seldetgures
have to be informative (descriptive), in the case of unsuped TM or ML applications Cai

et al, 201Q Huston and Croft2014 Scott and Matwin1999, or discriminative (predictive or
support decision making), in the case of supervised legminblems Combarro et a).2005

Li et al,, 201Q Xue and Zhou2009. By selecting such a subset of features that maintains
those qualities, we can guarantee the removal of irreleeattires and, thus, reduce the total

dimensionality of the feature space that a document can Ippedkto.

Given a data collection, a general feature selection metketetts important features from
the full features set of the collection based on four maipstei et al., 2017h Liu and Yy,
2003. The steps are shown in Figue3 and they are subset selection (or generation), subset
evaluation, the stopping criterion and subset validatiionthe first step, the subset selection
searches for a subset of candidate features from the orfgatare set (e.g., the set of all terms
in a document collection). Next, the subset evaluation t#sfs, based on some criteria, the
goodness of the candidate subset of the first step. Beforesit validation step takes place,

the feature selection process must stop based on the sgog@rion. Usually, the selection



38 CHAPTER 2. LITERATURE REVIEW

process stops when the search for better features is cadpteta minimum number of features
is already obtained. However, these are not the only stgpgiteria available, and there are
many others depend on the learning or mining applicatiorstlizathe result validation step
measures the performance of the selected subset of febfased on some ground truth (e.g., a

prior known set of relevant featured)ifi and Yu, 2005.
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Figure 2.3 The general procedure of feature selectidote. Adapted from Liu and Yu, 2005.

Subset
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2.2.2 Benefits and Challenges

A TFS model does not construct new features (i.e., featinatsdo not belong to the original
feature set that is discovered from the training samples3tebd, the model selects relevant
features, removes those that are irrelevant and discaedsettundant onesAjbathan et al.
2013 Algarni and Li 2013 Li et al., 2015. As an automatic process, TFS comes with many
important benefits for learning algorithms, computer gjeradecision making, and computa-

tional time i et al., 2017aLiu and Yy, 2003 as follows:

1. Improving the learning algorithm performance: The number of features employed
determine the complexity of any learning algorithm, and isothe training set, the
elimination of noisy or redundant features should enhane@tcuracy of the system and
improve efficiency by decreasing the process of computdtqiinyanaphongs et al.

2014 Cai et al, 2010;

2. Reducing data size Storing or retrieving features requires storage space&hwdan be
a challenge. As it is not necessary to retrieve and storaalewant feature, reducing the

number of features will assist in retrieving data;

3. Enhancing data visualisation readability. Reducing to fewer dimensions helps in pro-

viding the increased readability of the data as it also exsmbktter visualisation and
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understanding of the dat&€haney and Blei2013; and

4. Improving computational resources utilisation: The training and testing time is also
reduced when redundant and noisy features are reducedhianchh facilitate the con-

servation of essential computation resources like memory.

Although a TFS model can offer significant benefits to diffénaining and learning algo-
rithms, the model is still subject to some challenges. Fstaimce, choosing the most relevant
feature is sensitive to the effectiveness of the selectigarithm, which indicates that there
might be a chance for some important features to be missSiaibi et al, 2017k Li et al.,
2017. A possible solution to prevent losing important featufiemn the training samples
is to find optimal TFS models that employ different selectasiteria and integrate between
them [Gao et al, 2014h 2015. Moreover, identifying noisy features is still challengi to
most TFS models to date, and require user’s involvementiwtan impose further restrictions

concerning the model’s learning time and scalability.

2.2.3 Models Taxonomy

There is a large number of TFS models and frameworks in theeculiterature. To study
them effectively, they have been categorised based onraliffeeharacteristics. In this study,
we proposed the taxonomy shown in Figird as an attempt to study these TFS models and
techniques comprehensively. Each category is separasayssed in the subsequent sections

except thefusiori category, which is described in Chapter

One of the most widely used categorisations of TFS modelassdbon the search strategy
employed to locate relevant featur@&o[on-Canedo et gl2013 Liu et al,, 2005 Liu and Yu,
2009. Common strategies are the filter, wrapper, embedded dmddstrategies, as illustrated
in the figure. Another categorisation approach is based®pribsence and absence of semantic
information in the extracted text featurds et al., 2015 201J. TFS models that adopt low-
level features, such as individual terms, do not considgsamantic information. However, the
models that use high-level features, such as phrases;nmitepics, concepts or a combination
of them, are semantic-awarglfarni, 2014 Bashar et a).2017 Gao et al.2015 Zhong et al.
2013.

Additionally, the class label information is also used ttegarise different TFS models and
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Figure 2.4 The proposed TFS taxonomy.

frameworks Aphinyanaphongs et al2014 Li et al., 2017ab]. A TFS model that requires la-
belled training set is called supervised while a model tbastot consider the class information
(i.e., use unlabelled training set) is known as unsupediSai et al, 2010 Hou et al, 2010Q.
However, those models use a few samples of labelled datalaagel samples of unlabelled
data are called semi-superviséd ¢t al., 2017gb]. Weakly supervised TFS techniques do not
require high-quality, human-labelled data samples faniing. They can work with noisy or

weakly labelled data that can be produced by learning dlgos BaltruSaitis et al.2019.

2.3 Search Strategy-based Models

The ultimate goal of any TFS model is selecting a subset afifea from the original feature
space. The selected subset is supposed to comprise themnpastant features (most informa-
tive or discriminative features) that represent the eféiature space almost equaldgng et al.
2005 Song et al.2013. The selection or the search strategy for relevant featisrene of the
keys for differentiating feature selection modeéd®[on-Canedo et 312013 Li et al., 20173ab].
Therefore, from the search strategy perspective, a featleetion model can be classified as

a filter-, wrapper-, hybrid- or embedded-based moéel$n-Canedo et gl2013 Liu et al,
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2005. More details about each strategy are given in the nextgabsections.

2.3.1 Filter-based Models

A filter TFS model attempts to exploit the characteristicgraining data samples and, then,
select important features without relying on any learnilggathms (e.qg., classifiers).u et al,,
2005 Liu and Yu, 2003. There are two essential steps in the filter model, whichaar®llows:

1) based on the model’s evaluation criterion, the origiealttdires are ranked; and 2) the top-
rankedk features are selecteB¢lon-Canedo et 312013 Liu and Yu, 2005. Figure2.5shows
the structure of the filter-based TFS model in which the feastubset selection module is the
core of this model. The figure does not only show the trainingse where the model selects
the most important features, but it also illustrates thértggphase in which the quality of the

selected features is evaluated using a learning algoritbsting data samples and evaluation

Original Feature
Feature Set Subset Selection

Selected
Features

@ Learning
V Algorithm

Testing Samples

Figure 2.5 The filter model.Note. Adapted from John et al.1994

measures.

0

Training Samples

Popular examples of TFS models that adopt the filter's gyasee information gain (1G)
[Yang and Pederseh997, BM25 [Robertson and ZaragoZ2009, MI [ Manning et al,20084,
x? [Chen and Chen2011], Prob [Jones et a).2000gb], TFIDF [Salton and Buckley1989
and other term weighting algorithmblpn et al, 2009 Wu and Gu 2017. The filter model
is computationally efficient and can remove noisy features @mplify training dataBolon-
Canedo et aJ.2013 Liu and Yu, 2003. The model can improve the performance of any TM
or ML algorithms because it does not require any classifeesetect features (i.e., not biased
towards any learning algorithmd)i[i et al,, 2005 Liu and Yu, 2005. However, the filter model
can miss some discriminative features and cannot valiti@tselected subset of features as it

ignores the learning algorithm during the training phase.
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2.3.2 Wrapper-based Models

A wrapper TFS model does not only exploit the charactegstictraining data, as in the filter
model but also uses a learning algorithm (e.g., a classifi@3sess the usefulness of the initially
selected subset of featurdddlon-Canedo et 812013 Kohavi and John1997, Liu et al,, 2005

Liu and Yu, 2003. Figure2.6[Kohavi and JohyiL997 shows the structure of the wrapper-based
model and how it can be used during both training and testivag@s. The shaded box in the
figure represents the central part of any wrapper-based Tdeelrand the learning algorithm is
what distinguishes the wrapper’s approach from the filtdicsselect the best subset of features,
the wrapper model performs three steps. First, it selectaiaal subset of features from the
original set based on some searching criteria. Then, thehuseés the learning algorithm, as a
black box, to evaluate the goodness of the selected subfestafes. Lastly, the model repeats

the previous two steps until the best subset of featuredastee Kohavi and John1997.
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Selected
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Testing Samples

Figure 2.6: The wrapper modeNote.Adapted from Kohavi and John1997

Different learning algorithms, such as C4.5, naive BayesIB3 [Khan et al, 2010, were
employed by various wrapper-based models to validate tladitguof the selected features
during training Bolon-Canedo et 312013 Liu and Yu, 2005. Adopting such algorithms
make the wrapper strategy more effective than the filter @gagr in selecting better features

that might increase the accuracy of classifiers during thng phase Bolon-Canedo et gl.
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2013 Li et al,, 20178. However, the effectiveness comes with higher computatidime.

Further, the wrapper model may not be applied with massaieitrg data because it cannot
manage and scale its sizei fet al., 20173. Also, it is well understood that the accuracy of
learning algorithms during the testing phase cannot beagieed based on the accuracy that
is estimated during the training phase. Thus, it cannot Inergdised that the best subset of

features selected by the wrapper model during training eafopn best during testing.

2.3.3 Hybrid-based Models

The hybrid TFS model takes the advantages of both the fil@maapper modeldfiu and Yu,

2003. As a middle-ground solution, the hybrid algorithm usesfilier model to select optimal
feature subsetsSong et al.2013. It also exploits the learning algorithm in the wrapper rabd
to decide the final best subset of featuresi [and Yu, 2005. Figure 2.7 depicts the structure
of the hybrid model and how the filter and wrapper algorithmesiategrated. The figure also

shows both the training and testing phases of the hybrid mode

Wrapper Model
Feature Search
J Original . A
§ Feature Set Filter Model
Y
Training Samples Learning Algorithm
Selected
Features
@ Learning
M Algorithm

Testing Samples

Figure 2.7: The hybrid modelNote.Adapted from Albathan 20195

The computation of the hybrid algorithm is fast and less carséme, and its interaction
with the learning algorithm enables it to generate an ogtsagof featureslfiu and Yu 2009.
The hybrid model also can handle large data collection aed dot need stopping criteria as the
learning algorithm naturally performs such a taSkig et al.2013. However, it is challenging
to guarantee the generalisability of the final subset ofufest selected by the hybrid model

because there might be some data samples in the testing thlasmuld not be seen in the
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model training phase.

2.3.4 Embedded-based Models

Unlike the hybrid selection strategy in which the advansageboth filter and wrapper are
combined, a TFS model that adopts the embedded strategynddeselect features before
learning a classifiergolon-Canedo et 812013. It embeds the selection process inside the
process of learning a classifier using some forms of regaaan or pruning for featured i

et al, 20174. Figure2.8illustrates the typical structure of an embedded TFS mouieé!rew
the model can be used during both the training and testinggshaBased on these criteria,
popular classifiers, such as random forests, weighted Baiyes and decision tree C4KHan

et al, 2010 can be considered as embedded models. Additionally, tteres selected based
on the SVM’s weighted vectordpachims2004 and LASSO modelTibshiranj 1994 are also
regarded as embedded modd@slpn-Canedo et 312013.
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Figure 2.8 The embedded modd\ote. Adapted from Bolon-Canedo et gl2013

In the literature, many hybrid models have been categorsedmbedded stressing that
there is no difference between the two gt al,, 2017h Liu and Yu, 2005. However, in the
embedded algorithm, no feature subsets are selected Heéoreng a classifier, as shown in
the figure. Instead, the classifier can only select impoffieatures during its learning phase.
The embedded model is more efficient than the hybrid one Isecduere is no need to re-train
the adopted classifier for each subset of featuBetdn-Canedo et gl2013. However, both
models produce better results compared to the filter andperaglgorithms Bolon-Canedo
etal, 2013 Lietal,, 20174.
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2.4 Semantic Information-based Models

Based on the availability of semantic information in texatiges, they can be classified to
low- and high-level featuresBshar et aJ.2014 Li et al., 2015 2010d. The low-levelness

here implies the absence of semantic information in theufeatused by a TFS model. The
high-level features retain some semantic information ¢taatmake them more meaningful and

understood by users. More details are given in the subségaetions.

2.4.1 Types of Text Features

In a document, text features can take different forms, ssohiads (terms), phrases, patterns,
n-grams structures, and part-of-speech constructs (eegbsyadverbs, nouns and adjectives)
[Li et al., 2015 201Q0. All these terminologies refer to thehysicalfeatures (whether lexical
or syntactic) that characterise the document’s text. Thems®ires can be used in representing
or indexing the document for a text analysis technique. Hewen the literature, the term
"feature” can also refer to some statistical attributes #va pertinent to a specific lexical or
syntactic features (e.g., frequency, conditional proltgadistribution, etc.) Kue and Zhou
2009. Li, Algarni and Zhong (2010)lfi et al., 201Q categorised text features into two groups
based on the semantic information they carry in relevantuad@nts. The first group, called
high-level features, is represented by text patterns,enthié second group, relates to low-level
features like words. However, patterns are not the only tyya¢ belongs to the high-level
group. Other features like phrases, concepts, topics fareift combinations of them can also
be classified as high-level featuresijathan et al.2013 Alharbi et al, 2017¢ Bashar et a.
2016 Gao et al.2015.

2.4.2 Low-level Features

From the semantic information perspective, low-leveldeas reside at the bottom of the seman-
tic taxonomy of text features with almost no semantic infation [Li et al., 2015 201Q. Low-
level terms (i.e., individual words) are the typical exaenpf such features that are extensively
used in IR and ML algorithms mainly to represent document8@4 in the VSM JAlbathan

et al, 2013 Gao et al. 20144. Due to the richness of their statistical properties, lewel
words were efficiently adopted by many TFS techniques in withe term’s statistics were
mathematically and heuristically modelled in the forms dfighting schemesdao et al.
2014h Li et al., 2011, Zhou et al, 2008. However, individual words suffer from the problem

of synonymy and polysemy due to the absence of semanti¢ordabetween themAlgarni,
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2014 Li et al., 2015 Zhong et al.2013. These problems are the leading cause of information
mismatch and overload that affect many IR and IF systdmest[al., 200§ 2013. Thus, itis
challenging to discover relevant terms that reflect the’siggiormation needs. Some popular

examples of term-based TFS models are described in the exbars.

2.4.2.1 Term-based Models

« TF*IDF
Term Frequency-Inverse Document Frequerglfon and Buckleyl198§ is a commonly
used weighting method in IR, TM and ML algorithmiglgn et al, 2009 Sebastiani2002
Zhong et al.2013. TF-IDF linearly combines term frequency (TF) of tetrm document

with the term inverse document frequency (IDF) at the ctibeclevel as follows:
tfidft,d = tft,d X idf (2.1)

wheret f, , is the term’st instances of occurrences in the documeént

The term inverse document frequencyii§,, which is employed to quantify the term’s
specificity in the collection of documents on the basis teant that frequently appear in
many documents are not robust determiners of specificityshodld be assigned less weight
compared to the ones appearing in just a small number of dextsmThus/ D F' of a term¢

can be calculated as follows:

idf, = log % (2.2)

whereN represents the number of documents in a collection.

* Rocchio’s Algorithm
Rocchio’s algorithm was introduced in 1971 with the SMARTrieval system [Rocchiq
1971. Even since, the algorithm has been used extensively inHRnd TM applications
[Li et al.,, 2015 2011, Robertson and Soboref2003. Rocchio’s algorithm is a relevance
feedback model that uses both positive and negative dodstiEme algorithm uses terms to
represent the documents in the VSMs in whighidf is used to give weight to documents
terms. Rocchio’s algorithm can be formulated as follows:

1 d 1 d
Z=a G, _ (2.3)
|DF| Z I|d]| |D~| Z |||

deD+ deD~

Despite its efficiency in discriminating between positinel @megative documents in the vector
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space, Rocchio’s algorithm has low classification accufdtghata et gl2007, Yuefeng and
Ning, 2004. It is because the algorithm uses low-level terms that nitaaleable to cope with

the problems of synonymy and polysemy.

» Okapi BM25
The Okapi BM25 Robertson and Zaragaza009 is considered one of the best ranking
algorithm in IR. Instead of representing documents in theMy 8M25 uses the ternt
frequency and length of documents to probabilisticallyigis® weight to the term at the
collection level using the following equation:

(r+0.5)

(n—r+0.5)
log —r=0s) (2.4)

(N—n—R+7r40.5)

tf X (k?l +]_)

w(t) = ky x (1= b) + b2L) +tf %

whereN is the number of training document®;is the number of positive documents in the
training set;t f is the term frequencyj andk; are experimental parameters whose values set
to 0.75 and 1.2 respectively as recommended Mdnning et al. 20084; DL and AVDL

are the document length and the average document lengthdr are the total number of
documents contain the tertn and the total number of positive documents that include the

same ternt.

* Mutual Information
The mutual information (MI) Manning et al. 20084 is derived from information theory and
widely used for measuring the mutual dependency betweearstgiven a specific collection
or class label. Thus, given a collection of documents thptesent a particular topic of
interest and a term the mutual information can be calculated as follows:

T n
—Jog — — log — 2.5
N =g —log (2.5)

mi(t) = log r _ R

n

whereR, r, N andn denote the same statistical information of BM25 as desdrdimve.

» Chi-Square
The chi-squarey®) [Chen and Cher2011]] is a statistical test that is widely used to measure
the strength of independence between a téramd a specific topic (i.e., a collection of
documents). Chi-square’s equation can be written as fatlow

B N x (rx N—n x R)’
 Rxnx(N—-R)x(N-n)

X2 (1) (2.6)
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whereR, r, N andn denote the same statistical information of BM25 and M| asdesd

above.

* Probabilistic Models
Four term-based methods are proposed by Jones ef@he$ et al.2000gb] and used as
relevance ranking functions for retrieval models. Thesdbabilistic methods assign weights
to search terms based on the independence and orderingsswsifor binary relevance

models. The four weighting functions are as follows:

e TR
Fi(t) = log TESS (2.7)
o B
Fy(t) =log =N (2.8)
(&)
F5(t) = log ) (2.9)
Fy(t) = logi (2.10)

(N=n=rr)
wheret is an individual termy is the number of documents iR* that contain the term
t, n is the number of documents iR that containt, N and R denote the total number of
documents inD and D™, respectively. Based on the experiment &thfng et al. 2013,
which was conducted on the RCV1 dataset, the following fongberformed best compared

to the others above:

W (t) = log < (2.11)

r—+0.5 N n—r—+0.5 )
R—r+05" (N—-n)—(R—7r)+05
* LASSO
LASSO [Tibshiranj 1999 is a linear regression model and stands for Least Absolutels
age and Selection Operator. LASSO is considered as an emthddeS model as it uses
l;-norm regularisation to eliminate unimportant featureddorging their weights ¢) to be
zero though some optimisation methods. Omcés calculated, the features are sorted in
descending order, and tdpean be selected. LASSO was used in this study is the same way

asinLietal, 2019.

Despite the efficiency of the term-based models describedealbhey suffer from the limi-

tations of low-level terms. These models cannot handleyhersymy and polysemy problems



2.4. SEMANTIC INFORMATION-BASED MODELS 49

[Li et al,, 2015 2013. The models do not assume that documents can discuss lautigcs
[Alharbi et al, 2017¢ Gao et al. 2015. Additionally, term-based TFS models are sensitive
to the noisy terms in the collection and cannot manage thertainties in relevant documents
[Albathan et al.2013 2014. To overcome the weaknesses of low-level terms, many agé-

features were proposed, as described in the followingmecti

2.4.3 High-level Features

Some text features are attributed as high-level due to threusgc information they contain
[Li et al., 2015 2017. Popular examples are phrases, patterns, topics, canoept mixture
of these features. Phrases were extracted and probatailigtmodelled to understand the
semantic meaning of user information needs and, thus, wegiee performance of many IR,
IF and TM applicationsAlbathan et al.2013 Furnkranz 1998 Wang et al.2017. Similarly,
different association rule mining methods were adaptedesnployed to discover interesting
text patterns i et al., 2012 Wu et al, 2006 2004 Zhong et al. 2013. These patterns
are semantically meaningful and used understand usematon preferences for many TM
problems Albathan et al.2013 2014 Li et al., 2015 201Q Zhou et al, 201]. Ontological
concepts were also used to add an explicit semantic layesaoinformation needs and, thus,
interpret their meanings for more reliable resuBaghar and Li2017 2018 Egozi et al,
2009. Statistical topic modelling algorithms were also adoii@ discover the topics that user
might interested in and, therefore, discover the more agietopical featureHlei et al, 2003
Hofmann 2001, Wei and Croff 200§. Additionally, these features above were also integrated
to solve the limitations of specific other high-level feasir Several popular and state-of-the-
art TFS models that adopted high-level features are destabd discussed in the following

sections.

2.4.3.1 Phrase-based Models

* n-Grams
Then-grams method extract a sequence of terms (words) or cleasdodbm a document by
moving a sliding window of size: [Albathan et al.2013 Furnkranz 1998. The simplest
form of n-grams is the unigram that can be extracted by assignirg 1 (i.e., move the
window one place at a time). The extractedrams become more meaningful and interesting
with higher values for, such as bigranm(= 2) and trigram ¢ = 3) etc. As phrases are more

semantically rich than individual words, thegrams language model has been widely used in
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IR, IF and other TM applicationd_pvrenko and Croft2001, Robertson and Zaragoz2009
Wang et al.2007. A common way to model a sequence of termsiaframs is through the
conditional probability of a term given the preceding teritblathan et al.2013. Thus, if

n-grams= {ty,t,t3,...,t,} thenit can be modelled as follows:
P(titgts ... t,) = P(t1)P(ta|tity) ... P(ty|tity .. . ta_1) (2.12)

where the conditional probability of a terty given its preceding terrty,_; (P(t,|t,—1)) can
be estimated using the following equation:

P(tn—la tn)

P(ty|tn-1) = P(t, 1)

(2.13)

Despite the meaningfulness of phrasesggtams), they did not show encouraging perfor-
mance in discovering relevant features that reflect usernmdtion needs, as can be seen in
many studies@Gao et al. 2015 Li et al., 2015 Moschitti and Basili 2004 Scott and Matwin
1999 Wu et al, 2009. One of the main reasons behind the poor performance-gfams
models is the existence of noisy termiljathan et al. 2013 Furnkranz 1998. The strict
sequential appearance of terms:igrams made it challenging to handle noisy terms and allows
them to be modelled alongside with important terms. Addgity, n-grams language models
cannot manage uncertainties in relevant documents and tdassame that these documents

might discuss multiple topics and themédHarbi et al, 2017¢ Gao et al, 2019.

2.4.3.2 Pattern-based Models

Text patterns, as sets of associated terms, are widely nsiterent TM, IR and IF applications
[Gao et al. 2015 Li et al,, 2015 2012 Wu et al, 2019 Zhong et al. 2013. Many pattern
mining algorithms are used to extract interesting textgua#t, such as frequent patteritah
etal, 2007, closed patternsvfan et al, 2005, sequential patterngfooney and Roddick013,
maximal patternsHeldman et a).1997 and master pattern¥én et al, 2003. These different
types of patterns are employed by many pattern-based TF8Isioddiscover relevant features
that describe user information needddarni et al, 201Q Li et al., 2011, 2010 2012 Wu et al,

2004. Some state-of-the-art examples are described below.

« MP
The master pattern modeYdn et al, 2005 groups frequent closed patterns into clusters

(aka pattern profiles or master patterns) based on somesiyid measures. The model was
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developed on the basis that individual text patterns mighbe representative but assembling
them together in one master pattern can increase theinaftbreness and lead to a better dis-
covery of knowledge. To summarise the set of closed patt€is= {cp,, cpy, cps, ..., cp,}
that was discovered from the set of all paragra@tos relevant document®*, the MP model
defines a master patteif as a triple(P, ¢, p) whereP is a probability distribution vector
of the pattern termsyp is the set of closed patterns apds the pattern support. The model
also combines master patterns that are closed in the déstataca single one and uses the

k-means clustering algorithm to generate the user-spédéifreimber of master patterns.

* PDS

Pattern Deploying Based on Suppathpng et al.2017 is one of the state-of-the-art pattern-
based feature selection models that adopt the late fusiozeps. It is an enhanced extension
to the PTM Wu et al, 2004 and the PDM YWu et al, 2006 to overcome the limitations of
pattern frequency and usage. PDS extracts closed seduyetteans in relevant documents as
a high-level features that represent user’s informati@usdased on a threshold of minimum
support (nin_sup). Then, the model deploys all the extracted patterns intogevhere each
term’s score (also calleslippor) can be calculated using the following equation:

p € SP;,t € p}
P

support(t, D1) = Z ity

(2.14)
i=1 Zp€SPi

where D is the relevant documents in the training set arid the total number oD*; | P|

is the total number of terms in pattesnS P is the set of all closed sequential pattern®in.

* RFD
The relevance feature discovery modsldt al., 2015 201Q is one of the state-of-the-art TFS
techniques that uses high-level pattern to weight low}lesens. The RFD model clusters
terms into three groups—positive specific, general and thegapecific— based on their
appearance in the positive™ and negativeD~ training documents. This clustering helps
to determine the specificity of each individual term to reerg the document collection that
discuss user information needs. Given a teéyitihe RFD model defines its specificity using

the following equation:

_ |coverage™ (t)| — |coverage™ ()|

spe(t) (2.15)

n

wheren = |D™

, the functioncoverage™ (¢) is defined to bgd € D" |t € d} and, inversely,
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the functioncoverage™(t) isas{d € D~ |t € d}.

Based on the value abe(t), for example, if thespe(t) > 0, then, the RFD model assumes
that the termt can be more relevant tb* rather thanD~. The model uses the classification
ruleG = {t € T|0; < spe(t) < 6} to group general terms together in the éetand
similarly uses the rul@d*+ = {t € T|spe(t) > 65} for the specifically positive termg™ and
the ruleT— = {t € T|spe(t) < 6, } for the specifically negative ternfs~. Both#; andé, are
experimental coefficients that denote the minimum and masirbounds of general terms

specificity, respectively.

The RFD model selects some tép-rrelevant documents (called offenders) to revise the
estimated weights of terms based on the specificity funcijelt) and the suppori(t) of

the mined sets of closed sequential pattétisthat terms appear in as follows:

w(t) + w(t) x spe(t), ifteTt

weight(t) = w(t), if tc (2.16)

w(t) — |w(t) x spe(t)], if t €T~

\

The RFD model assumest) = w(t, D) based on the following equation:

- plp € SP,,t€p
w(t, D*) = E P S 1) | (2.17)
i=1 p
peESP;

wheren = |D™|, pis a closed sequential pattern gptlis the length o (i.e., the number of

terms in the patterp).

PCM

The pattern co-occurrence matrix modélijathan et al.2017 defines an x n matrix over a
relevant document to represent the co-occurrence resdtips between the patterns extracted
from all paragraphs of the document collection. The matsixised to remove the noisy
patterns through a re-evaluation process. The PCM modsl aiset of closed sequential
patternsP extracted using a small minimum supporti¢._sup = 0.2). Thus, given a matrix
AandP = {p1,p2, ps, ..., pn}, the matrix element;; holds the the number of times pattern

p; comes (i.e., co-occur) after pattepnin the same paragraph. The PCM u$Eg(p;) =
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>~ A; ; to calculate the total co-occurrence of pattgyin relevant document; for a row in
j

the defined matrix. Similarly, the model also us€s(p;) = >_ A, for a column. Then,

J
PCM sums the total co-occurrences of the same pattefa¥ (p;) = Wg(p:) + We(pi)

before it normalises it based on the length of the target ishe@cu as follows:

Wr(p:) + We(pi)

nxm

PCM(p;) = (2.18)

wheren = | P| andm is the total number of paragraphs in the relevant document.

» SCSP
The specific closed sequential patterAtbpthan et al.2014 uses the ERS : 7' — 27x[0:1]
to weight patterns’tn based on the term distribution in patterns and the pattetnilali-
tion in documents such thatt) = {(ptn, f(ptn))|t € ptn, f(ptn) > 0} and f(ptn) can be

calculated as follows:

ZdGD-F Suppa<ptn7 D+)

Y supp,(ptn, D)
deD

f(ptn) = (2.19)
whereptn is a text pattern andupp, (ptn, D*) calculates the absolute supportof in Dt
paragraphs. Then, the SCSP model finds the specific closedrsé] patterns based on the

weightpr(ptn) for all patterngtn € Ptn. The weight is estimated as follows:

prptn) = f(ptn) x > p(t) (2.20)

teptn

w(t)

> w(ty)

t;eT

represent the collection of documents.

wherep(t) =

andw(t) = tfidf(t). The set of specific closed sequential patterns

As text patterns brought some interesting semantic infaonao the field of TFS for
relevance discover, they also come with many challengest, Belecting only relevant patterns
out of a vast number of extracted patterns is challenging @syrof these patterns are noisy,
redundant and difficult to be interpretdligshar and L,i2018 Gao et al, 2015 Li et al., 2015.
However, if some interesting patterns are selected, tieeseh process still experimental and
might lead to the loss of some important patterns or teitisgrbi et al, 2017hc]. Also, pattern
mining algorithms seem to impose further time-complexity acalability problems when

used with more massive datasets. Further, the patterrestiegness measures (e.g., support,
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confidence, etc.) are not informative about the relevangeatierns to the user information
needs [i et al., 2015 Zhong et al. 2013. Additionally, pattern mining models do not assume
that text documents can exhibit multiple topics and canaodte the uncertainties in relevant

long documentsAlharbi et al, 2018k Gao et al.2014h 20115.

2.4.3.3 Topic-based Models

A topic, as a set of semantically related terms, has extelysivsed in TM and ML prob-
lems, such as classificatio®¢leimani and Milley 2014, clustering [Yin and Wang 2014,
summarisation\|Vu et al, 2019, retrieval Wei and Croft 2004, filtering [Gao et al, 2015
and many others. Given a text corpus, a topic can be staligtigenerated from the corpus
using a probabilistic topic modelling algorithm. The mospplar examples of such algorithms
are PLSA Hofmann 2001, LDA [Blei et al, 2003 and their variations. However, LDA is
widely used, as a fully generative Bayesian model, and mifeeteve than PLSA Blei et al,
2003 Gao et al. 2015 Wei and Croff 2004. Both algorithms assume that a document can
discuss multiple topics, which, in many cases, reflect tharahstructure of long documents.
Thus, these algorithms represent the document as a mixtuopios in which each topic is
a probability distribution over all terms in the corpWBlgi et al, 2003 Gao et al. 20144.
This probabilistic representation is efficient and can cedihe corpus’s dimensionality to just a
limited number of topicsBashar et a).2016 Gao et al.2015. The topic representation itself
allows the selection of most probabilistically relevanthie based on their distribution in each
document and the entire corpus. More details about the PL&dehis given next, and the LDA

is extensively discussed in the next chapter.

* PLSA
Probabilistic Latent Semantic Analysis (PLSAY)dfmann 2007 is an enhanced probabilistic
model of the LSA, which is a linear algebra-based model. Th&A(see Figure?.9) is a
statistical topic model that relaxes the simple assumpifdhe unigram model that states a
document! contains only one topic. PLSA represents each document astarenof hidden
topics. However, given a latent topi¢ as an unobserved variable, the PLSA model was
developed on the basis that a documémind a term are conditionally independenBlei
et al, 2003, as can be seen from Figu2ed where the document is a sequenceN\oterms
from a collection of\/ documents. Thus, PLSA itis not entirely generative mod&i@sense

that it cannot generate new documents (infer unseen dodsrdenng the training phase).



2.4. SEMANTIC INFORMATION-BASED MODELS 55

s
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Figure 2.9 The graphical representation of the PLSA model in whicaAnd¢ are the only
observable variable®Note.Adapted from Blei et al, 2003

The PLSA model can deal with the problem of polysermdgfmann 2007 and will be used
as a baseline in our experiment in which a tefnin relevant documeni weight can be

calculated as per the following equation:
1Z]
p(d, 1) = p(d) Y pltilz;) x p(z;]d) (2.21)

j=1
where|Z| is the total number of topics.

Apart from their mathematical soundness and the flexiblessmtation they produce, topic-
based models adopt the BoW representation in which the ofderms is ignoredBlei, 2012
Blei et al, 2003 Wei and Croff 200d. The models also are sensitive to term frequency,
knowing that most frequent terms are general and less spexifie main topic in a document.
As probabilistic models, both PLSA and LDA are biased towdréquent topics in the text
corpus Ping and Yan 2015 Mimno et al, 2011, Xu et al, 2019, which can overshadow other
equally relevant but less frequent topics. The generatgdda@an be difficult to be understood
due to their term-based representation, and the topicergky lack explicit semantic8ashar
and Li, 2017, Bashar et a).2019. Further, as noted previously, both PLSA and LDA cannot
handle uncertainties in long documents and cannot deah&ghtive feedback. All these issues
made the PLSA and LDA models ineffective for selecting ratevterms that describe user
information needs, as shown in the experimental studiebetdésearches iM[harbi et al,

2017Rhc, Bashar et a).2016 Gao et al.2014h 2015.

2.4.3.4 Concept-based Models

Another approach to overcome the semantic limitations efdhove text features is to use
ontological concepts. Concepts reside at the highest Iavielrms of explicit human under-

standing to the real worldBashar and Li2017, Bashar et a.2016 Shehata et gl2007. A
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concept can be defined as a set of semantically related waitlsogether represent a specific
object or idea in domain-specific, human background knogdddbul Bashay 2017, Bashar
et al, 2014. Commonly, a knowledge-base ontology of a specific domsiansed to mimic
such background knowledge. A domain-specific ontologyngpdy a set of concepts that are
connected by specific semantic relations (e.g., Part-ed, Related-to, etc.)Tpo 2009 Tao

et al, 2011 Yuefeng and Ning200q4. Domain ontologies are widely used in information
gathering and semantic Web mining applicatioAbyl Bashay 2017, Tao et al, 2011]. Also,
they were used to interpret and understand the meaninggtdetdures, such as termsgozi
etal, 2008 Shen et a].20124, phrasesBing et al, 2015 Shehata et gl2007, patterns Bashar
and Li, 2018 Bashar et a).2014 2017 and topics Bashar and Li2017 Bashar et a).2014,
for discovering relevant features that describe user médion needs. A few state-of-the-art

concept-based TFS models are described below.

- CBM
Concept-based model (CBM$hehata et 812007 defines a concept as a labelled term (word
or phrase) that contributes to the semantics of a sentenaedimcument. This term can
then be analysed based on its importance at two differestdemamely, the sentence and
document levels. A concept can also be used as a text featuneeaisuring the similarity of
documents, which can be used in different text mining tagkesdlustering and classification.
A conceptual TF (CTF) model was proposed Bhghata et g1.201QJ for measuring the
similarity between documents based on the analysis of gase¢the sentence and document
levels. At the sentence level,f(c) is defined as the number of times a conceptcurs as an
argument of a verb structure in a senter@nd can be normalised asf ;.. (c). The more
c appears as an argument of different verb structures in asestthe more it contributes to

the meaning of sentence That is how each concept can be analysed at the sentente leve

In contrast, at the document level, each concept is analyg@alculating the frequency of
the concept term (word or phrase) in a document and repegsamd normalised as(c),

andct,.igni(c), respectively. Based on the above definitions, two diffecemcept weights
can be measured—at the sentence level and document levethefeame concept in which

its weight can be calculated agight(c) = ct fueight(¢) + ctueignt(c)

« POM
Personalised ontology model (POM3Hen et al.20121 uses the RFD model] et al.,
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2015 2010 to discover relevant terms from both relevant and negatveument sets, and
then maps (i.e., annotates) these terms to the concepte dflthary of Congress Subject
Headings (LCSH) ontology. The POM model assumes that netdeams are semantically
independent in each document. However, such an assumgtiobe too simple knowing
that relevant documents might share similar topics in wima@ny terms are semantically
related. This simple assumption made POM ineffective inogating relevant terms and,

thus, representing user information needs.

* PIM

Pattern Interpretation Model (PIMBRshar et a).2014 attempts to interpret text patterns
using high-level concepts taken from the LCSH ontology. muo&lel mines closed patterns
from relevant documents and, then, summarises them to 4 s&ister patterns. To explain
the meaning of master patterns and made them understartdabienans, PIM performs

four steps. First, it estimates the concept’s support baseitie overlap between the terms
in concepts and patterns. Then, PIM deploys and estimagesetvance weight for each
of the overlapping term in matched concepts. Lastly, asntlwano overlapping between
some concepts and patterns, the PIM model adds the norappery terms in patterns as
new concepts and estimates their relevance independ&h#ymodel achieved better results

compared to the pattern-based PDEhPnNg et al. 2019 model.

Despite their explicit specification of meaning, ontol@jiconcepts are not limitation free.
Domain-specific ontologies can be incomplete, imprecisgue and difficult to be updated
[Li and Zhong 2004 Tao, 2009 Yuefeng and Ning2004. Human-defined concepts, which
are constructed manually, are expensive and time-congumintomatically discovered ones
are less in terms of meaning and interpretation that maka therd to be understood\pul
Bashay 2017 Bashar and Li201§. Additionally, the use of knowledge-base ontology in TFS
impose further computational time-complexity and canrstineate the relevance of semanti-
cally related features. Ontologies also do not providera@chanism to identify and group
similar topics that co-occur in relevant documents. Alsiémitations can significantly impact
and limit the use of ontological concepts for identifyinderant features that represent user
information preferences. The experimental result8imshar and Li2017 Bashar et a).2016
2014 Shen et al.2012h Tao et al, 2011, Yuefeng and Ning20064 confirm the negative effects

of using ontological concepts in TFS for relevance discpver



58 CHAPTER 2. LITERATURE REVIEW

2.4.3.5 Hybrid-based Models

On the basis that each of the high-level features has limitatmany studies combine these fea-
tures in a unified framework to exploit their advantages.gxample, phrases and patterns were
combined in Albathan et al.2013 to remove noisy phrases through the exploitation of pagter
taxonomic relations. Also, topics and patterns were irgegt in [Gao et al. 2017, 2014k
2019 to understand user information needs by benefiting frormtiaéti-topic assumption of
documents in topic modelling and positional relations at fatterns. Similarly, ontological
concepts were incorporated with patterBaghar and Li2018 Bashar et a).2017 and topics
[Bashar and Li2017 Bashar et a).20149 to understand the meaning of these statistical and
semantic structures and use them to identify user infoongireferences. Some state-of-the-

art hybrid-based models are discussed below.

* TNG
The Topicaln-Grams model\Vang et al. 2007 integrates topic model with phrases-(
Grams) to discover topical phrases that are more discrimeand interpretable. Thus, TNG
can be considered as another type of hybrid-based modelsleatlatent topic and phrase
as representative text features. TNG has been treated dsvanee ranking model in our
experiment as it appears iGfo et al. 20144 as follows:

g

rank(d) = Z count(phji) x Ip+ ; (2.22)

j=1 k=1

whererank(d) is the relevance ranking of documeltb the user information needsjunt(ph,y,)
is the frequency of phrasein topic j which represents the topic relevance; finatly,: ; is
the proportion of topig in relevant document®™; V' is the number of topics; is the number

of phrases.

» Pattern-based Topic Models
Pattern-based Topic Models (PBTM}§o et al. 2013 2014h 201 are also another type
of hybrid-based TFS models where topics and patterns haee imeorporated to obtain
semantically rich and discriminative representation fdoimation filtering. PBTM-FP and
PBTM-FCP [Gao et al. 2013 integrate frequent patterns (FP) and frequent closea: et
(FCP) with latent topics to represent user profiles. The nsoa@i® also treated as relevance

ranking models where the document relevance ranking caalbelated as follows:
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nj

M<

rank(d) =

|PAGI™ X fijx X Op+ (2.23)

j=1 k=1

whererank(d) is the estimated relevance ranking for documg&nt is the number of LDA
topics; n is the number of used pattern8' P or F'C P); the parameter is the pattern
specificity scale and set t@5; |PA§?k|m is the matched patterns for topjcin document
d; the support of matched patternjis; finally, U+ ; is the proportion of topig in relevant
documentsD*. The SPBTM modelGao et al. 2014 enhances LDA topics by combining
them with significant matched patterns (SMPatterns). Theatis also treated as a relevance

ranking model based on the following equation:

Rankg(d ZZ >zl X[ x 6(X,d) % fir x Op, (2.24)
J=1 k= 1 XesMmyg,
where S M4 % represents the significant matched patterns set of the agone classvCj,
X is a matched pattern in documehtdp, ; is the ;" topic distribution,f;;. is the statistical
significance of the equivalence class aid’, d) is a function defined as follows:

1, if Xed
5(X,d) =

0, otherwise
Similarly, the MPBTM model Gao et al. 2019 is developed for IF and adheres almost to
the same steps of the SPBTM model. However, MPBTM integitaisnaximum matched

patterns instead and estimates the document relevanckaagsto

\%
Rankg(d ZZ|M |98 X S(MCS, d) X fi x Op (2.25)

j=1 k=1

where MCY, is the set of all maximum matched patterns. For all modelis #ssumed
that the higher the ranking value &fankg(d), the more likely that documemt meets user

information needs.

» LdaConcept
The latent Dirichlet allocation concept-based mod#i¢mudugunta et aR00g uses LDA
and a knowledge base (an ontology) to label a set of docunignising a set of human-
defined concept§' obtained from the used ontology. The model defines a conseptat of

unique words taken from a standard ontology. The LdaConoeptel imitates the LDA and
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defines each conceptas a constrained topic in whighiw;|c;) = 0 if the wordw; ¢ c;. The
model also similar to LDA and defines a document from a prdisdilsimixture of document-

specified concepts.

Thus, LdaConcept estimates the probability of the con@ptord w; being relevant to a
document/ as follows:

IC|
plwild) =Y plwile;) x plc;|d) (2.26)
j=1
wherep(w;|c;) andp(c;|d) were also inferred similarly using the Gibbs sampling altyon

as in the LDA.

While integrating different high-level features comes asapproach to exploit the advan-
tages of each type, this approach is not without limitatidnsaddition to the time-complexity
and scalability issues that can be imposed on the intendglicaipons, this approach is also
sensitive to the restraints of the candidate features. >ample, this sensitivity problem can be
seen in the TNGWang et al. 2007 model in which phrases and topics were probabilistically
modelled using Bayesian theory. Despite the sophisticatithe proposed theory, TNG did not
perform well as shown by many studieSifiarbi et al, 2017¢ Gao et al. 2017, 2014h 2013.
Possible reasons behind the TNG’s inferior performanceisymphrases and terms derived by
the strict sequential occurring of these terms in phrasks.s&@me problem continues to occur in
the patter-based topic modelSdo et al. 2017, 2014h 2015 where different types of patterns
combined with latent topics. These models could not addtesgroblems of noisy patterns,
interestingness measures and the informativeness of suprealt features. Similarly, adding
explicit semantics to patterns and topics though ontoldgioncepts Bashar and Li2017,
2018 Bashar et a).2016 2017 could not solve the patterns or the topics problems because
none of their original problems was effectively addresssghecially when uncertainties exist

in relevant document®harbi et al, 20184.

2.5 Label Information-based Models

Feature transformation (or extraction) techniques, susctha principal components analysis
model, can reduce the dimensionality of datasets by formavglow-level feature spacépas-
tasiu et al.2013 Liu et al,, 2009. This method has been successfully used in many text mining

applications, and it reduces the total dimensionality ofoauwinent collection; however, the
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new low-level representation (text features) does noy treppresent the original document set
[Anastasiu et a].2013 Cai et al, 201Q Liu et al, 2003. Thus, it is hard to trust such a
reduction, and it is not justifiable for further text analsiin contrast, feature selection can
select only informative features from the original set @ittees, without requiring any further
transformationsforman 2003 Li et al., 2017ab, Liu et al,, 2003. This can reduce the overall
dimensionality by focussing on a certain set of featuresdr@amore relevant to a text-domain

analyst.

In the relevant literature, due to TFS’s importance, theeevarious TFS techniques; how-
ever, they use different algorithms, which makes them dilifito study comparatively. Despite
the multiplicity of approaches, they all process just twpey of text data, namely, supervised
and unsupervised dathilet al., 2017g Man et al, 2009 Wang et al.2017. Supervised data
have been manually labelled by domain experts, whereasntgoervised ones are still unla-
belled (as they may naturally exist in an information refwsg). Therefore, broadly speaking,
TFS methods can be categorised, based on the class lab@hation, into supervised, semi-
supervised, weakly supervised and unsupervised modets l., 20174. However, the label
information does not give sufficient details about the imé¢structure of the TFS model. Thus,
in this study, each category can also be classified into,fikteapper and hybrid (or embedded)

models based on their internal learning algorithms.

Further, it is worth mentioning that some TFS techniquesveark well with any text data,
regardless of the class label. In the following subsectiamsief description of each category is
given. However, this study focuses on supervised and umgspd TFS models as the dominant

and widely used categories.

2.5.1 Supervised Models

Supervised TFS deals with labelled document datas@tisgnd Yu 2005 Man et al, 2009
Wang et al.2017. These can be collected based on specific class labels.d@&tollection
is usually manually labelled by domain experts. For examgldocument can be positive or
negative for the class label "sport”. Class labels (or proins/hypotheses) are of particular
importance to many text mining and ML applicatioriseyis et al, 2004 Li et al., 2015
Sebastiani200d. They are even crucial to TFS algorithms. For example, invergTFS
technique, a class label can guide the search process éwanglfeatures that can positively

correlate with the class labeBplon-Canedo et gl2013 Jian et al, 2016 Li et al., 20173.
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It is also important in the definition of a relevance measuue, (weighting function) that
differentiates features. Class labels can be utilised megeing descriptive corpus statistics
[Man et al, 2009 Zhu and Lin 2013.

As the name implies, supervised TFS models use the clagsnafimn to limit the search
space and evaluate featurés ¢t al., 20173 Zhao et al.2013. Therefore, a given class label
supervises the two most important tasks, namely, spacelsegrand feature evaluatiohifu
et al, 2005 Liu and Yu, 2009. Each of these tasks can employ a so-called induction idtgor
or learning algorithm to accomplish their jokdhavi and Johy1997, Li et al., 2017hQ Liu et al.,,
2003. Therefore, supervised TFS techniques are further dladsas filter, wrapper or hybrid

as described below.

Supervised Filter Model

The vast majority of TFS algorithms follow the filter modeledio its computational efficiency,
scalability and generalisabilityBplon-Canedo et gl2013 Combarro et a).2005 Li et al.,
20173ab]. This model does not depend on any learning algorithmseats it selects relevant
features based on the internal structure of the trainingsgatLiu et al., 2005 Liu and Yu,
2005. The supervised filter model not only depends on the chariagtits of the corpus but
also uses the class label to guide the search process anteviie extracted text features
based on specific criterid.i et al., 2017a Liu et al,, 2005. For example, a filter model that
uses the Fisher algorithm scores each feature indepepdisitd on the Fisher formul&ai

et al, 201Q Jian et al, 2016 Li et al., 201734. Many other techniques use different criteria for
defining the relevancy of features by assigning each feataedculated weight (or score). This
score differentiates features regarding which one is muii@mative than the other in terms
of the class labell]i et al., 2017a Man et al, 2009. For example, the Laplacian algorithm
and spectral feature selection (SPEC) techniques beloadaimily of algorithms that utilise a
weights matrix analysis system known as an eigensystenidotselevant featureJai et al,

201Q Hou et al, 2010 Wang et al.2017 Zhao et al.2013.

Another family of algorithms is LASSOTjibshirani 1994. It attracted many researchers
because it shows high performance in TES4t al., 20173 2015. It assigns a sparse weight
to informative features, while other, non-relevant feasureceive a zero score. For different
data structures, LASSO comes in various versions thattsenitt The most influential ones are

Graph Lasso, Group Lasso and Overlapping Group Ldsset pl., 20173.
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In the literature, most TFS algorithms belong to the filterdelodue to its advantages,
especially its independence of any learning algorithmas@ifiers). Popular algorithms like
ReliefF, CFS, FCBF, t-test, Gini index, Chi-Square, IG, mR&nd many more are all good
examples of TFS algorithms that follow the filter’'s struety€hen and Cher2011], Li et al.,
20173ab, Yang and Pedersed997 Zhu and Lin 2013. Text features produced by the filter
model are more general in nature. Therefore, if the user Eribe/type of classifier that he or
she is going to use for the text mining application, then arfélgorithm may not give accurate

results as the wrapper model does.

Supervised Wrapper Model

To overcome the apparent limitations of the filter model, vinapper method induces a classi-
fier, and sometimes a set of classifiers, to evaluate thetedlsatures regarding discriminating
guality on the class labeKphavi and John1997, Liu et al, 2005. This makes a wrapper
model a better alternative to a filter, especially when thsgifier is already known beforehand.
Thus, the resulting features of the wrapper model are marerate and can lead to higher
classification performance on the used classifier than thbtee filter model Bolon-Canedo
et al, 2013 Liu and Yu, 2003.

First, a wrapper algorithm starts by choosing a featureedutssed on some search tech-
niques, such as the greedy search algoritbinef al., 2017a Liu and Yu, 2009. Second, the
resulting features are passed to the given classifier fditgesaluation. If the features’ quality
is acceptable, then the wrapper stops selecting more é&satOtherwise, it continues searching
for another, better subset of features. This approach ipatationally expensive compared
with the filter model Bolon-Canedo et 12013 Cai et al, 201Q Forman 2003. Therefore, an

efficient search strategy is crucial to the success of a verapdel.

In the relevant literature, many researchers have propdsident wrapper methods by
combining different search algorithms with a variety ofsslifiers to achieve high-quality results
[Bolon-Canedo et 812013 Li et al., 201734. For example, the SVM classifier was combined
with a recursive feature elimination (RFE) search algonitto form the so-called RFE-SVM
wrapper a classification problem, and the same classifieingagporated with the L1 norm to

produce a more efficient embedded wrapper mddedfal., 2017a Liu and Yu, 2003.
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Supervised Hybrid Model

The hybrid model has been proposed to address the obvioubaltks of the filter and wrapper
models. It combines the advantages of a filter model for beffigient in terms of choosing
a subset of features and being scalable to a bigger featace §p et al., 20173 Liu and Yy,
2005 Song et al.2013. Also, it has the evaluation accuracy of a wrapper models Tiakes
hybrid algorithms capable of producing a subset of featinaisgives a higher classification per-
formance but that is small in feature number. Consequentiyprid model is considered more
accurate than a filter in producing quality features, antha@tsame time, less computationally

expensive than a wrappdrifet al., 2017h Liu and Yu, 2003.

As a hybrid model consists of two parts, similar to the wraptheere are different possible
combinations of classifiers and search criteria (filterintega) that could lead to even more
efficient hybrid algorithmslfi et al., 2017h Liu and Yu 2005. For example, attaching the
k-nearest neighbours classifier to the combination of theetation-based feature selection and
a genetic algorithm led to a new hybrid algorithm with higlt@@acy Bolon-Canedo et gl.
2013 Liu et al,, 2005. Similarly, in [Li et al., 2013, combining the SVM classifier with the
pattern mining algorithms has led to another new hybrid wetihat is capable of producing

more accurate and meaningful features.

2.5.2 Unsupervised Models

In DM and ML, extracting relevant features for training ddiers requires high-quality labelled
data. Providing such data for every knowledge domain is &lyugxpensive task in terms of
both time and costAlgarni, 2011, Soleimani and Miller2014. Further, labelling data man-
ually is infeasible, knowing that some domain knowledgenelvas sub-domains, making the
problem even harder. Unlabelled data, in contrast, aredamily available for free in different
information repositories, and they are growing expondgtevery few months Blei, 2012
Dhar, 2013 Khan et al, 201(. Such data are still useful and contain invaluable knogtethat

is crucial to the success of many businesses. Therefore, ihan imminent need for efficient

feature selection techniques that could handle unlabdb¢al

Supervised TFS methods cannot directly deal with unlatelita due to the absence of
the domain knowledge, which is represented by the clas$ tahecould guide the selection
algorithm [Li et al., 2017a Man et al, 2009. This makes unsupervised TFS a challenging

problem. To demonstrate this, imagine a collection of uellall text documents that have been
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collected from a news website, where the goal is to categdhiesm based on the similarity
of their contents. In this case, a document can be assignewite than one category. For
example, a document with a fictitious sentence, "An inteltigpair of shoes have been invented
by Google to monitor the blood glucose level for diabetidetés”, could be categorised into
different categories like technology, health, sport, andnemy. However, the absence of
themes (aka topics or class labels) makes the optimal titadsn of the document almost
impossible. TFS also cannot be done efficiently in the alse@ficdocument topics because
each topic has features. In this example, the topic of tdolgyohas the feature "Google”,
while the features "blood” and "diabetic” belong to the topf health and so on. Therefore, a
TFS algorithm cannot efficiently calculate the featurevatey weight (or score) in the absence

of the class label.

Unsupervised TFS techniques are not as mature as supeorisscare. However, in the
relevant literature, different models have been develdpethckle the problem of TFS for
unlabelled documents. One commonly used approach is atitathalabelling the training
document set by generating topics that could be used latéo gnide the TFS process and
handle it as supervised oneBl¢i et al, 2003 Hofmann 2001, Wei and Croff 2004. One
way to do this is by applying a k-means clustering techniguié¢ training sample to generate
labels [Cai et al, 2010 Hou et al, 201Q Li et al,, 20174. Another approach is employing
a spectral analysis technique to extract the underlyingisi@nt clustersQai et al, 201Q Li
et al, 2017h Zhao et al,2013. An example of this technique is SPEZHao and Liy 2007,

which is a unified TFS model for supervised and unsuperviséal d

As can be seen so far, clustering techniques are consideregoa approach for handling
unlabelled data for TFS. Different k-means algorithms Hasen proposed to tackle this prob-
lem. For example, in, an entropy weighting k-means clustetechnique has been proposed
for subspace clusterindgdpu et al, 201Q Liu et al, 2003. It employs a k-means clustering
algorithm to find document clusters by minimising sub-ausin each cluster and maximising
those with a negative weight. It keeps repeating these atgpst converges, and it then applies
a TFS algorithm on the data. Cai et al. (201Qg[ et al, 201J applied spectral analysis
to different features to measure the correlation betweemttvithout the need for any label
information. This method, called multi-cluster featuréestion, uses the top eigenvectors of a
Laplacian graph to form multiple clusters. Spectral cluistgcan group unlabelled data without

any class labels.
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Clustering-based TFS techniques are not the only methodimmdling unlabelled data.
Other algorithms evaluate features (or terms) using a bkl weight (or score). They do
not depend on any clustering techniques. For example, imtéxng, TF, IDF and TF*IDF
are considered the most used term-weighting functi@asdt¢n and Buckleyl98g. Besides,
other TFS techniques cluster all features first and therciséle most popular ones to be the
selected featured.[ et al., 2016 Song et al.2013. Unsupervised TFS methods follow the
same categorisation system as supervised ones. They cdasbdied as filter, wrapper and
hybrid models. These models can be developed based on theftymsupervised technique,
such as clusteringJong et al. 2013, association [], matrix factorisatiorDeerwester et al.
199(Q or topic modelling Blei et al, 2003 Hofmann 200]]. However, most models reported

in the literature were developed for clustering or utiligiéedent clustering algorithms.

Unsupervised Filter Model

The unsupervised filter model selects features based onwegyhts (or scores), which are
assigned by the selection criteri@di et al, 2010 Forman 2003 Hou et al, 201J. Only
features with higher weight are selected; those with lowessare filtered out as irrelevant or
redundant. This model does not use any unsupervised Igaatgorithm to judge the value of
the selected featureB§lon-Canedo et 812013 Li et al., 201734. Therefore, the filter model
is considered fast and efficient, and it scales well with nvasdata. The filter model can
evaluate each feature, either for its relation to the whe#gure space or independentyd

et al, 2010. The former is called the multivariate evaluation techugigwhere each feature is
evaluated regarding its spadgon-Canedo et gl2013 Li et al., 20173. Thus, itis capable of
finding redundant features. The latter evaluates eachréemtdependently of the feature space,
and it is known as the univariate evaluation techniduef al., 20174. This technique is much
faster than the multivariate one, but it cannot handle featedundancygolon-Canedo et al.
2013.

In the literature, there are many examples of unsupervitied digorithms. In Hou et al,
2014, the proposed technique utilises the entropy-basedratistas an evaluation criterion for
the selected features, while the selection techniquesaithesLaplacian score as a metric in the
evaluation and selection tasks. SPEAD4o and Liy 2007 is considered a univariate model,
and it has been extended to work as a multivariate technigually, the filtering algorithm in

[Hou et al, 2010 implements a feature-dependency metric for measurinfeiuere relevancy



2.5. LABEL INFORMATION-BASED MODELS 67

score.

Unsupervised Wrapper Model

This type of wrapper model is similar in its internal struetdo the supervised one, except
it utilises an unsupervised classifier (e.g. clustering@digm) [Hou et al, 201Q Li et al.,
20173 Liu and Yu, 2009. First, the model starts by selecting a subset of featuaed,then

it passes them to the unsupervised classifier. Second, dlssifoér evaluates those features
based on their discriminating quality. If they can form bettlusters, for example, then the
algorithm stops. Otherwise, the model repeats the first andral steps until it produces the
best possible cluster®f and Brodley 2004 Li et al., 20173. This makes the wrapper model
highly computationally expensive compared with the filteydal, as it tries to evaluate all the
available subsets of features. This can be a prohibitike &specially with a high-dimensional
datasetBolon-Canedo et gl2013. One possible solution to this problem is reducing theltota
search space in the sample features by implementing a nfaiemf search algorithm, such as
the heuristic methodqeng et al.2009. In addition, there is another problem with the wrapper
model: It can be biased to the chosen unsupervised clagdifiet al., 20178. However,
the wrapper model gives better features compared with tiee filodel because it selects only

features that form high-quality clusters.

In the literature, many different TFS techniques have beagh bn the wrapper model.
However, they differ in their search strategy and the unsugped learning algorithm. For
example, the classical k-means clustering algorithm has beed as a classifier, and it can be
accompanied by any search technique as a feature selectbid)., 20174. A second wrapper
example utilises Gaussian methods as unsupervised aassifid maximum-likelihood criteria
for selecting the subset of featurésd et al, 201J. A final example was reported ibly and
Brodley, 2004, where the authors used the expectation maximization (E&t}ering technique
to group the selected features and then evaluated theingstilisters based on specific criteria.

This technique is called feature subset selection wrappmehd EM clustering.

Unsupervised Hybrid Model

A hybrid model was developed to tackle the apparent linatetiof the unsupervised filter
and wrapper algorithms. This model tries to combine an efiicfiltering method with a
suitable unsupervised learning algorithm (or unsupedvisassifier) to produce a better subset

of features [[i et al., 20173 Liu et al, 2005 Liu and Yu, 2009. Typically, a hybrid model
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starts by selecting different subsets of features usinfgtising criteria. Then, it evaluates the
quality of each subset individually by passing them sedalyto the unsupervised classifier
(e.g. classical k-means clustering algorithi@g[ et al, 2010 Liu and Yu, 2005. Finally, the
model selects only one subset that has the highest qualiprgduces best clusters}4i et al,
201Q Li et al,, 20173. Clearly, the hybrid model is more efficient than the wrappedel in

terms of speed and quality results, but it is slower than ttex fnodel.

2.6 Feature Selection Applications

Due to their benefits discussed above, many TFS models anévrarks have been extensively
used in different applications of text-based informatioalgsis. As shown in Figur2.10, there
are many applications in which TFS can be used. Popularcgtjgns are text classification,
text clustering, text summarisation, information retalfilitering, natural language processing,
text visualisation, social media analysis and others. $tudy briefly discusses the use of TFS
with the applications depicted in the figure and how esskewta the role of TFS in helping

these applications to achieve their goals.

Text
Classification

Information
Filtering

Text
Visualisation

Text
Feature Selection
Applications

Natural
Language
Processing

Text
Clustering

Social Media
Analysis

Information
Retrieval

Text
Summarisation

Figure 2.10 TFS applications.

» Text Classification Supervised text classification (aka text categorisatisrthe task
of automatically assigning text documents to a predefinéegoay (i.e., class or label)
[Forman 2003 Khan et al, 201(J. Supervised and unsupervised TFS has been exten-

sively used with various text classifiers, such as SVM, k egtaneighbours, Rocchio,
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Naive Bayes, decision tree, neural networks and many o#rétions of these classifiers
[Aphinyanaphongs et al2014 Khan et al, 201Q Li et al., 2017¢ Yang and Pedersen
1997. Commonly, and before the training phase of a text classiéi€eTFS method is
used to select a small set of informative features from tbelled training collections
to reduce the total dimensionality of the feature space éndbilection. The selected
features can then be used to represent the training docartietdt the text classifier
will be trained on Pphinyanaphongs et al2014 Li et al,, 20174. The non-selected
features can be removed with minimal effects on the ovecalligcy of the classification
algorithms. Different experimental studies #yghinyanaphongs et aR014 Chen et al.
2016 Escalante et gl2015 Li et al., 2017¢ Liu et al,, 2009 clearly demonstrate that

TFS is an essential step for the effectiveness and efficiehtait classifiers.

» Text Clustering: Despite being an unsupervised learning task that groumpi¢asipieces
of text together Anastasiu et a/.2013 Jain 2010, text clustering still requires TFS to
identify and remove noisy features as well as reduce thedieensionality of the feature
space Aggarwal and Zhai2012 Liu et al,, 2003. Text clustering is used extensively to
find interesting patterns from unlabelled collections ofulments using some similarity
functions, and, then, organise these documents to impeskes tlike retrieval, filtering,
summarisation and other&dgarwal and Zhai2012 Alharbi et al, 2017h Huang 2008
Jain 201Q Liu and Croft 2004. However, the absence of the class label from the used
collection has made the selection of informative featuresenthallenging. In such a
case, supervised TFS techniques might not be applicaldeyrdy unsupervised TFS can
be used for text clustering. TFS methods, such as TF, TFI3A,LPLSA, LDA and
others have been widely used with text clusteridgdstasiu et al2013 Liu et al,, 2003
Shehata et 812010 Wang et al. 2015. The experimental studies ilBgil et al, 2002
Lee et al, 20150 Liu et al,, 2003 Shehata et §1201J show that TFS not only improves

the efficiency of clustering algorithms but also leads tdeigclustering performance.

» Text Summarisation: TFS models play an essential role in multi-document sunsaar
tion despite the underlying algorithm®iang et al. 2014. Text summarisation intends
to automatically produce a concise and coherent summatynibat retain the key in-
formation in the original textQiang et al. 2016 Wu et al, 2019. TFS models are
extensively employed with both extractive and abstractie¢hods of text summarisation

[Qiang et al.2016 Wu et al, 2019 2014. Unsupervised term-based TFS models, such
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as TF, TFIDF and other frequency-based schemes, are effjciesed to select infor-
mative terms, and, thus, indicate candidate sentencestsummarisation algorithms
[Qiang et al. 2016 Wu et al, 2019. Supervised term-based models are also used in
text summarisation, especially when training samples eadadble. However, the lack

of semantic information in low-level terms has limited these and moved the focus
towards semantically-rich text features. Therefore, adiggatterns and a combination of
patterns and latent topics have produced better summalespge their time-complexity
[Qiang et al. 2016 Wu et al, 2019. A more holistic approach is also taken through
the combination of low-level terms and high-level patteand topics, which gives better

summarisation performanc@/ et al, 2019.

Information Retrieval : For decades, different types of TFS models are employed by
many IR models. Generally, IR concerns about locating eglewnformation from a
collection of documents given a query that represents nsamnation needBelkin and
Croft, 1992 Croft, 200Q Gag 2015. Term-based TFS models received much atten-
tion in the IR community due to their efficiency and mathegaltsoundness. Popular
term-based models used in IR are TFIDFa[ton and Buckley198g, Rocchio Roc-
chio, 1971, BM25 [Robertson and Zaragoz2009, Prob Jones et al.2000ab], SVM
[Joachims 200 and many more. However, the sensitivity of these modelsatds/
semantic-related problems has impacted their performanagrieval tasksGag 2015

Li et al., 2015 Metzler, 2007. Thus, TFS techniques that adopt high-level features
are widely used in retrieval models instead of the term-thasdackle the problems of
information mismatch and overload. Thegrams statistical language modBEndersky
and Kurland 201Q Lavrenko and Croft200] is of a particular interest and shows
better retrieval results compared to the traditional tbased techniques. As the user’s
qguery and the collection might exhibit multiple topics,fdrent statistical, topic-based
TFS models are also used in IR. Models like LSBeprwester et 31.1990, PLSA
[Hofmann 2007 and LDA [Blei et al, 2003 and its variations are intensively used to
reduce the impact of synonymy and polysemy problems. Homvéwgic-based models
are limited in terms of their semantic capabilities. Thumeept-based TFS models that
use external knowledge bases, such as Wikipedia, WordiBgiedia, etc. are also used
in retrieval models to add explicit semantics to the documepresentation, and, thus,

solve the synonymy and polysemy problerBgfidersky et al2011, Egozi et al, 2009§.
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Nevertheless, the expensive time-complexity of these msaaied the effectiveness of
these external resources in a real retrieval system arérgniheir use. Overall, and
based on the above studies, it can be concluded that TFSaestto contribute to the

success of many IR applications.

* Information Filtering : As TFS plays a crucial role in the IR field, it is expected to
continue the same role in IF because both fields seek to fiesamei information that
suit user information needBeglkin and Croff 1992 Gag 2015 Robertson and Soboroff
2003. However, unlike IR, IF dynamically removes irrelevanmestm of documents based
on maintained user information needs (aka user profilesr@-term user interests).
etal, 2012 Robertson and Soborof2002 Soboroff and Robertso2003. Different TFS
models and frameworks are used to select relevant featorasfcollection of documents
that discusses user information preferences. SimilarédRhcontext, the conventional
term-based TFS models are widely used in IF, particuladystipervised models, such as
SVM [Li et al,, 2014, MI [ Manning et al. 2008, Chi-square Chen and Cher2011],
BM25 [Robertson and Zaragoz2009, Rocchio Rocchiqg 1971, LASSO [Tibshirani
1994 and many others. As term-based TFS models do not considesrtter of terms
in the documents, phrase-based methods are employed,alyptte n-grams-based
models Rlbathan et al.2013 Furnkranz 1999, because phrases carry more semantic
information than low-level terms. Data mining approachesadso used in IF to reduce
the effects of synonymy and polysemy problems, most nottigypattern-based TFS
techniques like PTM\\Vu et al, 2004, PDS [Zhong et al, 2013, MP [Yan et al, 2003,
RFD [Li et al., 2015, PCM [Albathan et al.2013 and SCSP Albathan et al.2014.
However, all these TFS models do not assume that user infanmiaterests can span
many topics and themeBlgi et al, 2003 Gao et al.2015. Thus, topic-based TFS mod-
els like PLSA Hofmann 20017], LDA [ Blei et al, 2003 and their extensions are adopted
by IF systems to handle the multiple topics assumption indib@uments that describe
user information preferences. Nevertheless, and on the et no single feature can
hold all relevant information, different hybrid-based T8dels and techniques are used
for IF. Popular examples are the pattern-based topic m¢egjs PBTM-FP (5ao et al.
2013, PBTM-FCP [Gao et al. 2013, SPBTM [Gao et al, 20144 and MPBTM [Gao
et al, 2019), the ontological concept-patterBgshar and Li2018 Bashar et a).2017
and concept-topic model8fshar and Li2017, Bashar et a).2014 approaches. The
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experimental studies in all these previously mentionedetswcearly show the important

role of TFS in IF and how some features are more informatiga the others.

2.7 Chapter Summary

This chapter provided an in-depth discussion of TFS tealesdn extant literature. First, the
discussion encompassed knowledge discovery in datalragdsdh feature selection plays an
important role. Next, the discussion outlined text minimgl éhe techniques of text representa-
tion and pre-processing. The discussion then focussedmrentonal TFS approaches along
with highlighting their challenges and issues. Howevewals determined that the presence
of uncertainties is still a challenging problem, causirigvant features to be missed, overesti-

mated or underestimated.

The next chapter introduces our innovative and effectiié l@bdel. The model adopts
a hybrid fusion strategy of different lexical and statiatiteatures that are discovered from a
set of relevant documents that discuss user informatiodsig@ur SIF model extends multiple
ERSs to accurately estimate the relevance of topical tedrat®tcur across the documents. The
chapter also presents essential definitions in relatiommdaom-sets, topic modelling, global

statistics and the specifically defined text feature fusion.



Chapter 3

Fusion Model for Relevant Feature Selection

3.1 Introduction

As noted in Chaptefl,, TFS has been extensively researched by many communiteesodu
its importance to a broad spectrum of applicatidBke( et al, 2010a Forman 2003 Li et al.,
2017aMan et al, 2009 Yang and Pederseh997 Zhao and Liy2007. In relevance discovery,
selecting features from the contents of a long documenthsgtdescribes user information
needs is difficult, due to the uncertainties in these docusngnand Zhong 2003 Li et al.,
2005 Zhong et al.2012 Zhou et al, 20117]. The selection problem becomes more challenging
in the absence of a user’s query that could guide the seargklévant features. However, in
IR, fusion-based techniques have shown remarkable raautientifying relevant documents
compared to traditional models in the fieldl[is et al., 2006 201J. These techniques show
that combining different representations of documentscpraties, search system outputs, and
ranking and scoring algorithms as evidence of relevanceariuce uncertainty and yield better
results Croft, 200Q Kozorovitsky and Kurland20114. However, adopting a similar approach
for TFS for relevance discovery is difficult, because whiekt features to fuse, how to fuse
them effectively and, ultimately, how to use the fusion featto manage uncertainties in the

relevant document set remains unknown.

Random sets are effective mathematical tools for handlhntgriainty and vagueness in an
information system@outsias et al.1997, Molchanoy 2005 Nguyen 200§ and can be ex-
tended to an ERSAlbathan et al.2014 Li, 2003. An ERS can be used to describe interesting
relationships that are inherited between conditional amclsibnal entitiesLfi, 2003 Li and
Yao, 20024, which makes it the best fit for modelling and managing tredn of text features

based on their importance to different entities in a docuroeltection. User information needs

73
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can implicitly cover several topics, as illustrated in Figl.2, and a long document (Figuiel)
that is relevant to the user information needs can also sisspwltiple subtopics or themes in
its segments (e.g., paragraphs or sentences). TradiiGimmethods do not assume that long
documents exhibit multiple topics—they also have no meigmato discover them or determine
their relevance to the user information nee@s et al. 2014k 2015. Topic-based methods,
such as PLSAHofmann 2007 and LDA [Blei et al, 2003, have been explicitly built to treat
documents as a mix of latent topics. Unlike PLSA, LDA is moopplar with many applications
Blei et al.[20104, Blei [2013. In the form of a language-modelling approach, LDA can also
adopt different document representations and accurastiyate features’ probabilitieB]ei

et al, 2003 Croft, 200Q Gao et al.2015, which makes the topical features of the LDA better

candidates for an effective fusion-based TFS.

Analogous to IR fusion-based techniques that reward higinked documents in retrieved
lists [Anava et al. 2016 Lillis et al., 2004, TFS models for relevance discovery must also
reward highly relevant features. The most critical compne any TFS model is thus the
weighting function [Li et al., 2015 2010 Wu et al, 2004. It assigns a numerical weight to
each feature, specifying how informative the feature ifieouser information needslpathan
etal, 2013 2014 Li et al., 2019. However, LDA estimates a tefimveight that is locally based
on two components: the topic—document distribution andeta—topic assignmenB[ei et al,
2003 Gao et al.2019. Therefore, in a set of similar documents, a specific terghiieceive
a different weight in each separate document, even thougltetin is semantically identical
across all the documents. Such an approach does not adguedlect the semantic meaning
and relevance of the term to the user information needs. En@nmance of LDA in TFS
for relevance discovery is influenced negatively, as it isautain and difficult to know which
weight is more representative; it should thus be assignétetmmtended relevant term. Several
experiments in different studied\lharbi et al, 2017hc, Bashar and Li2017 Bashar et a).
2016 Gao et al.2013 2014k 2015 confirm that the term probability (i.e., weight) functioh o

LDA make it ineffective in discovering relevant topical ies.

Identifying relevant terms from a collection of documerttattdescribe user information
needs can be achieved by combining evidence about thess ierdifferent representations
[Lee et al, 2015a Zhang and Balog2017. The global statistics of terms, such as document

frequency (df), term frequency (tf), paragraph frequern@y ¢r inverse document frequency

LIn this chapter, terms, words, keywords or unigrams are igecchangeably.
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(idf) are important evidence that reveal the discrimimajoower of terms [lan et al, 2009
Maxwell and Croft 2013. However, in IR, selecting terms that are based on glolalsst
tics did not show better retrieval performan&ehdersky et al.2011, Macdonald and Ounjs
2014, because global statistics cannot describe the local itapoe of termsN§axwell and
Croft, 2013. Inversely, LDA can estimate the local importance of teahthe document level
based on the two components that were mentioned previottslwever, LDA estimates the
term—topics probabilities globally, which does not cotiyeceflect the importance of the term
at the document level because terms usually appear uneserdgs the relevant document
set. Therefore, fusing the different weights of the LDA tmdifeatures in a global context is
challenging and remains uncertain due to the complex oglghips between terms and different
entities that represent the document collection. For exanapterm might appear in multiple
documents, paragraphs and LDA topics. Similarly, eachctapght be discussed, entirely or

partially, in many documents or paragraphs that contaisdnee term.

This chapter presents SiFa novel and effective fusion-based TFS model for relevance
discovery. SIF is proposed to solve the previous questiodsogercome the common lim-
itations of the existing TFS models of relevance discovess,(a more accurate estimation
of the relevant features). The proposed model is deriveah frandom set theory to handle
uncertainties, manage features fusion and model the camgliationships between essential
entities in a set of relevant documents. Fig8r& shows the SIF’s structure, with the feature
fusion module at the core of the model, and the main entitiezmely, the paragraph, term
and topic sets—that are adopted from the relevant docunodiection D*. Further, the flow
of different lexical (i.e., terms) and statistical featigge also depicted. The remainder of this
chapter provides basic definitions about topic modellinDAL global statistics, text feature
fusion and random sets in Secti@2 more details about the SIF model are presented in
Section3.3and a summary in Sectidh4. An extensive evaluation of the proposed SIF model

is presented in Chaptér

3.2 Basic Definitions

Given a document collectio®, the relevant long documents sBtt C D discusses user
information needs that might contain multiple topics oeneist. Notably, in the current study,

a topic of interest is different to a latent topic that can lecovered by a topic modelling

2This model was published im[harbi et al, 2017d and the acronyn$IF stands forSelection ofl nformative
Features.
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Figure 3.1 The SIF model structure.

algorithm (e.g., LDA). The SIF model usés" for training, whereby each documeiit € D+
has a set of paragraplssand each paragraph has a set of terms. Thé&'setthis thesis is the
set of all paragraphs i ", such thatS C G. The set of term$§) denotes the vocabulary list in
D*. Atermt is a keyword or unigram in which the functiearms(g) returns the set of terms

that appear in paragraph

In the proposed SIF model, the paragraphs of relevant dacisnaee split and each para-
graph is treated as an independent passage (i.e., a doguimentonsists of a bag of terms
(i.e., words), as illustrated in Tab&1in which a term¢;, for example, may appear more than
once in a paragrapf,. Before delving into the details of SIF, the next sectionvtes some
essential definitions of topic modelling and the LDA, follesvby global statistics and feature

fusion in this thesis, including its strategies.

3.2.1 Topic Modelling

Topic modelling algorithms, such as PLSAdfmann 200]] and LDA [Blei et al, 2003,
are proven to be effective in reducing the total dimensibnalf text documents to a set of

manageable topic€jao et al. 2013. LDA is more effective than PLSA in many applications
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Table 3.1 A sample of document collection with three hierarchicatitess: document,
paragraph and term

Document Paragraph Term
g1 {t1,to, ta, t3, t7, t2}
J 9o {ts. t1,t5,17, 11}
! g3 {ts,te, ta, ta, t1, ta, t7}
94 {ts, to, 3,17}
d s {t17t37t47t3)t87t2}
2 96 {ts, ta, 15,17}
g7 {ts, te, ts, ta, t1, t5, t7}
d3 gs {t17t27t37t7}
9o {ts, ts, 5,17, 13}

[Blei, 2012 Gao et al. 2014k 2015 and can statistically identify hidden topics from a text
collection to improve different tasks in IR\Nang et al, 2007, Wei and Croff 2009, IF [Gao

et al, 2019, document summarisatiol\ju et al, 2014, visualisation Chaney and Ble2013,
personalised ontology learninB4gshar et a).2019 and many other TM and ML applications.
LDA represents documents by a set of topics in which eacltisg set of semantically related
terms Blei et al, 2003 Gao et al. 2015. It can thus group related words in a document
collection, which can reduce the negative influence of comproblems like polysemy, syn-
onymy and information overloaddpggarwal and Zhgi2012 Gao et al. 20144. However, in
practice, LDA treats topics as multinomial distributiongowords and represents documents
as a probabilistic mix over a predefined number of latentmdiDA is discussed further in the

next section.

3.2.1.1 Latent Dirichlet Allocation

Given the set of relevant documer®s, the proposed SIF model uses LDA to reduce the total
dimensionality of D™ paragraphs to a set of manageable togicsn which V' denotes the
number of topics inZ. Therefore the input to LDA in our study is the set of all paegns

G, as illustrated in Tabl8.2. Splitting the paragraphs of the long documents beforedpe t
discovery step implicitly exploits the relationships beem terms that commonly appear in
similar contexts IKrikon and Kurland 2011, Xi et al., 2001]. Moreover, LDA assumes that
each paragraph has multiple latent topics and that eacth 4pgi Z is defined as a multinomial

probability distribution over all terms i, as shown in Table.3 that are represented as
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p(tilz;), inwhicht; € Qandl < j <V such that

€2

2.

Cpltilz) =1

Table 3.2 A set of paragraphs of the documents in TaBl& and their terms, which both
represent the input to be given to LDA

Paragraph Terms
g1 {t1,to, ty, t3, 17, 1o}
92 {ts, t1,ts,t7, 11}
g3 {ts, t6, ta, t2, 11, t2, t7}
94 {ta,ta, ts, t7}
95 {t1,ts, ta, 3, 15, L2}
96 {ts, ta, t5,17}
g7 {ta, to, ts, ta, 1y, 5, 17}
g8 {t1,to, 3,17}
99 {ts, ts, 5, t7,t3}

Table 3.3 A sample of LDA topics generated from collection 101 of tHeé\R. dataset, which
shows how LDA represents a latent topic (i.e., a probahdlisgribution over terms)

Topic 1 Topic 3 Topic 5 Topic 10
year 0.072 Piech 0.148 | Volkswagen 0.086 VW 0.264
federal 0.072 | economic 0.055 passed 0.06 house 0.059
AG 0.04 manager 0.047 laws 0.043 sale 0.045
seat 0.032 interview 0.032 million 0.035 theft 0.045

economic 0.032 use 0.032 Europe 0.035 GM 0.037
board 0.032 congress 0.032 USA 0.035 test 0.037
believed 0.024| computer 0.032 | prosecutor 0.035| fight 0.023
work 0.024 return 0.024 version 0.026 | appeared 0.015
suspect 0.024| organisation 0.024  Lopez 0.026 full 0.015
advances 0.024 agency 0.024 planted 0.018 lose 0.015

LDA also represents an individual paragrapés a probabilistic mixture of topics @éz;|g), as

illustrated in Table8.4. Consequently, and based on the number of latent topicertimbility

(i.e., local weight) of ternt; in paragraply can be calculated as

pltilg) =D pltlz) x pl(z19)

All hidden variablesp(t;|z;) andp(z;|g), are statistically estimated by the Gibbs sampling
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Table 3.4 Example of how LDA represents a paragraph (i.e., a protbalistribution over
latent topics)

Paragraph Zi(V,1) Z2(¥y2) Z3(Vy3) Za(0ya4)

@ 0.2 0.3 0.4 0.1
g5 0.4 0.3 0.1 0.2
gs 0.1 0.2 0.5 0.2
J6 0.3 0.2 0.2 0.3
g8 0.1 0.6 0.1 0.2

algorithm [Steyvers and Griffiths2007.

From a different perspective, LDA generates two distingépats that can be observed from
two levels. At the document level (or, in our case, the paplgievel), LDA represents each
paragraply, by the proportions of topics distributiaty, = (J,,1,7,,2,9y3,...,7,,). Atthe
collection level, which in our model is the set of relevantdmentsD", LDA representsD+
by a set of topicsZ, in which each topic is a probability distribution over @lms inD*, ¢;
for topic z; and® = {¢1, ¢2, ¢s, . . ., ¢, } for all topics. Different studiesHashar and Li2017,
Bashar et a).2016 Gao et al. 2014 2019 commonly only use the top 10 terms from each
topic, based on their probability distribution that is esited byp(¢|z). However, the proposed
model considers all terms in all topics to avoid any positybdf relevant feature loss during
the training phase of the SIF model. A third output that theALdan produce is the term—topic

assignment, in which a set of terms is assigned to a speqgiic boit not to other related topics.

3.2.2 Global Statistics

Global statistics are frequency-based evidence that aé tesindicate the informativeness
(i.e., importance) of text features (e.g., terms and plsjasehe entire collection of documents
[Macdonald and Ounj201Q Maxwell and Croff2013. In IR, and by using the global statistics
of terms, documents are usually scored and then rankeddicgoto the presence and/or
frequency count of query terms in the documeéviafdonald and Ounj201Q Maxwell and
Croft, 2013 Sebastiani2003. However, global statistics do not provide semantic infation
about terms and can be biased towards the most frequentitetinescollection, which are often
general and less discriminatinggndersky et a]2011, Maxwell and Croff2013. They thus do
not show significant improvement in IR, especially in weiggtmodels of proximity Huston
and Croff 2014 Macdonald and Ounj201Q Maxwell and Croft 2013. For relevant feature

discovery, global statistics show how terms are explicighated to relevance at the collection



80 CHAPTER 3. THE SIF MODEL

level, but they ignore the local (i.e., at document leveliade of relevanceNlacdonald and
Ounis 2010 Maxwell and Croff 2013, as illustrated in Tabl&.5 for the case of document
frequencydf. Additionally, global statistics cannot deal with latenfarmation (e.g., latent
topics) alone, and they ignore explicit semantic relatimos between term®endersky et al.
2017). In the current study, we divide global statistics into tgroups: raw statistics and hand-

crafted statistics.

Table 3.5 Document frequency of termdf() for a set of relevant long documents in which the
local semantic and statistical details of each term in argudeent are ignored, except for the
presence and absence of terms in these documents

Document ¢, to t3 ty t; t

=y
~+
=

dy 1 11 0 0 1 1
dy 60 1.1 1 0 1 1
ds 1 0 0 01 01
dy 0 1.1 0 0 0 1
ds 01 0 0 0 1 1
dg 11 0 1 0 1 1
df 3 53 2 1 4 6

3.2.2.1 Raw Statistics

As the name indicates, these statistics are non-estimatkg@ramarily based on the count of
the terms in the document collection. Popular exampleshaé/t ¢ f and other segment-based
frequencies, like f and sentence frequencyf(). Each of these global statistics is characterised
by identifying the discriminating power of a ternvipcdonald and Ounj201d. Therefore,
document frequency and term frequency form the basis foerdtiandcrafted global statis-
tics—like idf [Salton et al.1979 andt fidf [Salton and Buckleyl98§, which are discussed
in the next section. However, they can either underestimatyerestimate the importance of
terms to the user information needddcdonald and Ounj2201Q Maxwell and Croft 2013.
Given the collection of relevant documerds’, we define these raw statistics in this research

as follows:

Definition 1 (Document Frequency) Thedf of a termt is the number of relevant documents

in D that contain the term. df (¢) can be calculated as follows:

|D¥|

() = alt)
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where | D*| is the total number of relevant documentsiin® and f,,(t) can be defined as

follows:

1, if t € d,
fdi<t) =

0, otherwise

Definition 2 (Paragraph Frequency) Thepf of a term¢ is the number of paragraphs iR*
that contain the term. Thus, giverG, the set of all paragraphs i, pf(t) can be calculated

in a similar manner aglf using the following formula:

|G|

pF) =Y fo, (1)
y=1
where|G| is the total number of paragraphs @ and f,, (¢) is defined likef,, (¢) as follows:

1, ifteg,
fgy(t) =

0, otherwise

Definition 3 (Term Frequency) Thetf of a term¢ is the number of timesoccurs overD™.
Unlike the definitions aff andp f, which are only concerned about the binary occurrence,(i.e.
occur or does not occur) of the ternin a relevant document or paragrapty;(¢) also considers

redundant occurrences of¢f(t) can thus be calculated as follows:

2

() =Y frit.d)

wherefr(t, d;) counts the total occurrences of tefnm document/;

3.2.2.2 Handcrafted Statistics

Handcrafted statistics are developed and estimated talgigtent needs based on counting
term occurrences within a collection of documents. Widedgdiexamples are thdf and
term frequency—inverse document frequenglidf), which are essential components in many
term-weighting models, particularly in IR, such as BMZ%opertson and Zaragoza009,
language models and smoothing formulalsdi and Lafferty2004 for estimating the relevance
of documents given a user query. In this research, we defineltister frequency of terms as a

handcrafted statistic, in addition tdf andt fidf as follows:
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Definition 4 (Cluster Frequency) Given(C, as a set of document clusters fin", the cluster
frequency ¢ f) of a termt is the number of document clusters that contain the terihe term
t occurs in a cluster; € C if at least one relevant document in that cluster containk we

assume thaD* hasL clusters, ther:f(¢) can thus be calculated as follows:

ef(t) = Jo (1)

wheref., (t) can be defined as follows:

1, ifte &
f0j<t) =

0, otherwise

Definition 5 (Inverse Document Frequency)The idf is developed to quantify the informa-
tiveness of a termin D", assuming that the important terms appear less frequentfgwer
documents than the less-important terms. Using the prevdefinition ofif (¢), the formula of
idf for termt can be expressed as follows:

av-n 7

Definition 6 (Term Frequency—Inverse Document Frequency)Thet fidf combines a local
tf(t) in documentl as a representative statistic of the document’s conterits, thve global
idf (t) as a discriminating statistic. While there are many vargaott fidf [ Sebastiani2003,

the current study estimates it to be in accordance Bigitton and Buckle[1989, as follows:

tfidf (t) = fr(t,d) x idf (t)

Moreover, using global statistics alone can impose infiéipas each global statistic has
its own limited focus and does not consider other factors ihguence term weight. For
example, in IRjdf was introduced to control the effect of frequent terms indbiéection based
on the assumption that less frequent terms are more specifitinins and O’riordan2005
Macdonald and Ounj2201d. However,idf cannot look beyond the importance of document
frequency to termsHendersky et al.2017. These limitations make utilising global statistics

alone for term weighting ineffective due to their singlewievel focus. Therefore, there is
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a need to fuse informative global statistics with other Higlrel features to (1) increase the
flexibility of such statistics, (2) enhance the represéveaess of features, and (3) accurately

estimate the importance of other text features.

3.2.3 Text Feature Fusion

Text feature fusion can be defined as the process of intagrdifferent lexical, syntactic,
semantic and statistical features into a useful, congdisted accurate representation of text
documentsBalazs and Velasque2016 Egozi et al, 2008 Scott and Matwin1999 Wu et al,
2006 Xue and Zhoy2009. This fused representation is then used to enhance therpehce
of the related TM and ML tasks (e.g., retrievAlfava et al. 2016 Pickens and Golovchinsky
2009, filtering [Alharbi et al, 2018k Gao et al. 2013, classification Bharath Bhushan and
Danti, 2017, Xu et al, 2017 and clustering\Vang et al. 2019 Yu et al, 2011]), because no
specific feature can hold the available pieces of eviderfoenration singlehandedly. However,
as previously mentioned, it is challenging to know whicheygf text features to fuse, how
to fuse it and, ultimately, how to weight and select the me#tvant text features from the
contents of relevant documents that describe user infeomaeeds, knowing that plain text
is monomodal and suffers from inherited problems like symay polysemy, noise, feature
sparsity and many uncertaintiesdo et al. 2015 Jian et al, 2016 Li et al., 2015 Zhong et al.
2017.

A fusion-based TFS technique might first exploit inter-fgatsemantic relationships—such
as dependencyChen et al. 2017, Xu et al, 2017, co-occurrence Balazs and Velasquez
2016 Kludas 2011], correlation Kim et al,, 2010, causation Xiao et al, 2014 and mutual
information [Peng et al.2009—as evidence to locate interesting featurgtiflas 2011, Wu
and Mcclean200q. It could then combine their normalised scores (i.e., Wesyjor relevance
rankings before estimating the features’ final scotelig et al., 2006 2008 Nuray and Can
2009. The feature-scoring function is thus critical in the fusibased TFS algorithm and
should estimate an informative score to each fused feaRerdersky et al.2011, Li et al.,
2019. Despite the single modality of text, its feature fusiogaithms can still be divided
into the typical three groups of fusion strategies—eaalig bnd hybrid—as in multimodal ML
[Alghtani et al, 2018 BaltruSaitis et al.2019. However, in our research, the presence and
absence of semantic information in the used text featurdgyawern the distinction between

those strategies.
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3.2.3.1 Early Fusion

In this thesis, a TFS model can adopt the early fusion styafegonly integrates individual
terms by combining their scores (e.g., frequencies) hecally beforeand considering any
semantic relationships between these terms and relevdfdrarrelevant documents. In rele-
vant feature discovery, the traditional term-based temles, such as idHalton et al.1975,
tfidf Salton and Buckley198g, BM25 [Robertson and Zaragaza009, Prob [Jones et al.
20003gb], SVM [Joachims 2003, x? [Chen and Cher2011, MI [ Manning et al. 20084,
LASSO [Tibshiranj 199 and Rocchio Rocchiq 1971, are popular examples of early fusion-

based TFS models. Therefore, we generally define the eailyrfwf text features as follows:

Definition 7 (Early Fusion) A fusion strategy that integrates low-level terms befonesoder-

ing any form of semantic relationships between them andaelteand/or irrelevant documents.

Moreover, in multimodal fusion, early fusion strategy isrenonly used and known as the
feature-level fusionAtrey et al, 201Q Datta et al. 2017, 2019 or pre-classification fusion
[Jeng and Cher2014. It is claimed that the early fusion of features is best irme of perfor-
mance improvement, as the original raw source of infornmagaonsidered the riched®flazs
and Velasque2016 Kludas 2011, Zhang and Balog?017. However, in most cases, low-level
terms in text data suffer from inherited noise and cannotileesemantic-related problems (e.g.,
synonymy and polysemy) because they ignore the order ofetinestin documentd | et al.,
201Q 2012.

3.2.3.2 Late Fusion

High-level text features, such as phrasegams), patterns, topics, concepts or a combination
of these, are more semantically rich than low-level indigidkeywords (i.e., termsBlashar

et al, 2016 Gao et al. 2015 Li et al., 2015 Tao et al, 2011, Zhong et al. 2013. Therefore,
documents that share the same high-level features are kehg to be semantically related
[Gao et al.2015 Zhong et al.2013. In this research, and from a data fusion perspective, a TFS
model can apply the late fusion strategy if the featurestfescare combinedfter the extraction

of some high-level features from relevant and/or irrelédrruments. Popular examples of late
fusion—based TFS models are the phrase-basghms modelsHurnkranz 1998 Lavrenko
and Croft 2001]; the pattern-based PTMAu et al, 2004, PCM [Albathan et al.2013 and
SCSP Albathan et al.2014 models; the topic-based PLSAIpfmann 2001 and LDA [Blei

et al, 2003 models; the concept-based CBIMlehata et gl2007 model; and other hybrid,
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high-level features-based models, such as the patterie-taped PBTM-FPGao et al, 2013,
PBTM-FCP [Gao et al. 2013, SPBTM [Gao et al. 20144 and MPBTM [Gao et al. 2015
models; the topic—phrase TN@®/ang et al.2007 model; and the pattern—concept PIBidshar
and Li, 201§ and topic—concept Lda Concefiemudugunta et aR00g models. Therefore,

we define the late fusion of text features as follows:

Definition 8 (Late Fusion) A fusion strategy that integrates high-level featuresraftasider-

ing any form of semantic relationships between them andaealeand/or irrelevant documents.

In multimodality, the late fusion strategy is also known asidion-level fusionAtrey et al,
201Q Datta et al. 2017, Kludas 20117 or post-classification fusionAlghtani et al, 201§.
In this approach, the fusion occurs at the concept ledkg]Htani et al, 201§ because some
evidence-based decisions have already ocurred by mersipinong the feature scores from
each learning modelghtani et al, 2018 BaltruSaitis et al.2019. Adopting the late fusion
strategy has resulted in a more effective and robust pedocain both multimodallghtani
et al, 2018 Snoek et al.2009 and monomodal applicationBlei et al, 2003 Gao et al,2015
Wu et al, 2004. While the improved performance can be application depah@Balazs and
Velasquez2016 Snoek et al.2005, the reason for its robustness appears to be related to the
consideration of the semantic information of features te fasion Snoek et al.2003, even
in monomodality Blei et al, 2003 Gao et al.2015. However, late fusion can make learning
correlations between multimodel features less effecBadtfuSaitis et al.2019 Snoek et al.
2009 because these learned features are no longer flexible apddnot necessarily resemble

their original data sources.

3.2.3.3 Hybrid Fusion

On the basis that no specific fusion approach always perféaess a combination scheme
is necessary. A hybrid strategy in multimodal fusion inésgerforming fusion at both the
feature (i.e., early) and decision (i.e., late) levels tosproblems in multimodal data analysis
[Atrey et al, 201Q Wu et al, 2003. In this thesis, and for relevant feature discovery, a kimi
approach is possible by combining different high-levetdeas and low-level terms to exploit
the advantages of the previously defined early and lateiusiproaches. Therefore, we can

define the hybrid fusion of text features as follows:

Definition 9 (Hybrid Fusion) A fusion strategy that integrates early- and late-fuseduess
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into a composite semantic space between them and relevdfdrarrelevant documents.

Existing hybrid fusion—based TFS models are the pattermst®DS Fhong et al, 2017,
MP [Yan etal, 2003, RDF, [Lietal., 2010 and RDF, [Li et al., 2019 models. In these models,
fusing the semantic information of patterns with the ricks@.e., statistical properties) of low-
level terms has led to a better performandéuifet al, 2006 Zhong et al. 2017 than the late
fusion of patterns only or the early fusion of terms omJathan et al.2012 Wu et al, 2004.
Further, the hybrid fusion of patterns and terms facilgatd®etter exploitation of pattern mining
in text, which was a challenging issue in only pattern-bae modelsli et al., 2015 2011,
Wu et al, 2004 Zhong et al, 2013.

3.2.4 Random Sets

A random set is a random object that has values as subsetsftake some spacefoutsias

et al, 1997 Molchanoy 2003. As a general mathematical modelling tool with many aplic
tions, random sets work as an effective measure of uncerteinmprecise data for decision
analysis Nguyen 2009. For example, ifZ and2 are finite sets and is the evidence space,

we propose

I: Z—29

as a set-valued mapping frod onto (2. Because the SIF model aims to estimate a more
accurate weight for topical terms, a probability functiazeds to be defined on the evidence
space to specify the significance of the relationship thgbierned by the set-valued mapping.
Therefore, ifP is a probability function that is defined df, the pair(P, T") is called a random
set [Goutsias et a).1997 Kruse et al. 1991. However, because LDA defines a topic as a
probability distribution over all terms in the collectidhe random set will be extended to model
the resultant complex relationships between topics amast@nd vice versa, as described in the

next section.

3.3 The Proposed SIF Model

The proposed SIF model (see Figaré) fuses high-level topics with low-level terms to gener-
alise the local weight of a topical tertrin D", based on the set of topi¢sthat are generated

from the paragraphs i&' by exploring all possible relationships between differemntities that
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influence the term-weighting process. The targeted esiiti@eur model are paragraphs, topics
and terms. The possible relationships between theseasdite complex (a set of one-to-many
or many-to-one relationships). For example, a paragraphheae multiple topics, whereby

each topic is a probability distribution over all termgininversely, a topic can be discussed in

many paragraphs, and a term can frequently appear in martg tapd paragraphs.

An experimental practice commonly employed by most poptliE$ models is to select
top-k terms from(2 before training that is based on weighting schene®{ al., 2015 201Q
Zhong et al. 2013. In the case of LDA, some top-terms from each topic are also used
for many applicationsBashar and Li2017, Bashar et a).2016 Gao et al. 2014h 2019.
However, as LDA topics are a mix of multiple probability dibtitions of terms, we argue that
in TFS for relevance discovery, such a practice can leadadabs of some relevant features,
particularly those that are less frequent in the collectibhis practice can also make the TFS
model sensitive to the adopted weighting scheme. Therefatker than pre-selecting tdp-
terms from eithef2 or eachz; € Z in the collection, our SIF model extends multiple random

sets for this task.

Figure 3.2 The feature fusion module of the SIF model and the mappidgaddl’—!.

In this model, two ERSs and their inverses are proposed toridbessuch complex re-
lationships, in which each ERS can be interpreted as a pildpghnction from which the
importance of the main entity in the relationship can bemeiteed. The proposed ERS theory
is then used to develop a new weighting function to generali3A's local term probability to a
global one that is locally descriptive, as the relevancaitiedf the term in each document
in the collection are considered. The generalised term htaggalso more discriminating,

as it accurately represents the relevance of the term tog@einformation needs, especially
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when combined with the global document frequency. FiguPshows the structure of the SIF
model’s feature fusion module, as well as the adopted esaténd proposed ERSs, including

their inverses. The details of the ERSs are described ingkiesection.

3.3.1 Extended Random Sets

Let D = {dy,ds, ds, ..., d,} be a set of\l relevant long documents. Each documénton-
sists ofS paragraphs, such ds = {g1, g2, g5, - . ., gs }. A paragraply, is a bag of terms; for ex-
ample,g, = {t1,t2,t3, ..., t;}. Assuming we have a set of latent topi€s= {z1, 2o, 23, .. ., 2}
that are extracted by the LDA fro¥ as the set of all paragraphs in*, a topicz can be
defined as a probability distribution over the set of tefin@ whichterms(g,) C 2 for every

paragraply, € G.

However, as a term can appear in multiple topics, there is a need to estimatéothieal
significance of the termby measuring the strength of its relationship with eachdepie Z.

Therefore, we extentl to an extended set-valued mappihg, 2003 as follows:

o Z — 28x[0.1]

which satisfies
>, p=1
(t.p)EY(2)

for eachz € Z, whereZ is a set of topics (or evidences) afids a set of terms (objects) as

previously defined.

3.3.2 Generalised Weighting Scheme

Let P be a probability function otr, such that
> Pz)=1
z2€Z

We call(y, P) an ERS. For each € Z, let P,(t|z;) be a conditional probability function dn,

such that

[(z) = {t|t € Q, Bi(t|z) > 0}
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while the inverse mapping df is defined as follows:

. Q—2%

I '(t)={z€ZjteT(2)}
A probability functionpr(t) can be decided by the extendean (2, which satisfies
prQ —[0,1]

as follows:
prit) = 3 (P(=) x Btl=) (3.1)
2z, €0~1(t)

wherepr(t) is the generalised weight of terat the collection level that LDA does not estimate,
P(z;) represents the weight of topig, P;(t|z;) as the probability of termin topic z;, andl' !

is a mapping function.

Similarly, as a topic;; might appear in multiple paragraphs, it is necessary tonesé its
significance over. Therefore, the extended random Betis proposed to describe the rela-
tionships between paragraphs and topics by using the éonalipprobability function?, (z|g,)

as follows:
Ty : G— 22<0]
[i(gy) = {(21, Py(21lgy)), - - -}

Similarly, I'; is also proposed to describe the relationship betweenga@mid terms by using

the defined conditional probability functidf(¢|z;) as follows:
Ty: Z — 2901
Da(2) = {(t, Pi(t1] %)), - }

Based on the previously defined inverse mapping, the ilnER&sI'; ! andl'; ' are proposed.
I';! describes the inverse relationships between topics amgjgrhs by using the probability

function P,(z;), such that
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' z—2¢
I (2) = {gyl2€T1(9,)}

Conversely,[';' describes the inverse relationships between terms andstdyyi using the

probability functionpr(t), such that

F;l: 0 — 2%

Ty (t) = {z[teTs(2)}

3.3.2.1 Generalising Topic Weight

To estimate the generalised tetrweight in collectionD ™, we need to estimate two probabil-
ities that are based driy ' andI';!. The first is topic weight, which is the probability of each
topic P.(z;) in each paragraph it in which we assumé;(g,) = =, whereN is the total

number of paragraphs i@ as follows:

Pz = X (Poloy) x Palg)

9y€TT " (2:)

(3.2)

= % Z Py(zi|gy)

gyerfl(zi)

whereP, (z|g,) is estimated by LDAg, refers to the," paragraph irt; andl'; ! is a previously

defined mapping function.

3.3.2.2 Generalising Topical Term Weight

Second, for each topig in Z, we must estimate the conditional probability of tetngiven
topic z;, P;(t|z;). The generalised term weight can thus be calculated usingtie3.1, which

can be expanded by using Equati®a as follows:
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)= T (Pue) x Ptl=)

zi€l'y ! (t)

= X )[(% > Py(zilgy))xl%(tlzi)] (3.3)

zief‘gl(t gy€l17 1 (%)

>

z;€ly ! (t)

Pl-(t\zl-)x( > Py(zi‘gy))]

gyl ! (2:)

3.3.3 Score Fusion Scheme

Finally, the global term scorg(t) at the collection level is calculated as follows:

s(t) = pr(t) x df () (3.4)

wherepr(t) is the generalised weight of tertnwhich is estimated previously by Equati8r3,

anddf (t) is the document frequency of term

3.3.4 Hybrid Fusion Algorithm

Algorithm 1 describes our SIF model in which the term weighting func{iéguation3.3) is its
core. The algorithm begins with an initialisation step fbterms in 2 (steps 2-3). Then, the
algorithm splits all paragraphs in the training documets (steps 5-7) after removing stop
words and stemming all terms in each paragraph. Then, tlogithgn uses LDA to generate
two representations (steps 9-10). The first representatibe paragraph—topics coverage (i.e.,
paragraph—topic distributions). The second representéia specified number of latent topics
(10 topics in our case)l{ = 10), which are generated from the set of paragraphswhile

V' = 10 is reported in (5ao et al. 2019 as the best value for the used 50 collections of the
RCV1 dataset, our SIF model tends to be insensitive to therpgpametell” (see Section
6.9.1).

Then, the algorithm calculates the term weight based on titqua.3 for each term in(2
(steps 12—-22). To do so, the algorithm first applies Equa&iato calculate the topic probability
P, (z;) for each topicz;€Z in all paragraphs id- (steps 13-16). Then, the algorithm continues

to calculate the term probability in topics that contain saene term (steps 17—-21) based on
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Equation3.3. The previous steps generalise the local term weight to bafjlone r(¢;)).
Step 22 combines both global weighis-(¢;) and the document frequendy(¢;)). Notably,
paragraph splitting, stop word removal, term stemming aD@ kopic extraction can be done

once and offline in this model.

3.3.4.1 Time Complexity Analysis

The proposed SIF model is trained offline using a small seelgivant documents. The ex-
perimental results in Sectigh8.1show that SIF outperformed all baseline models in both IF
and RRT tasks. The experiments demonstrated that SIF doesed a large training set. On
average, our model needs only 13 relevant documents torpedtiectively. However, SIF’s
efficiency depends largely on LDA's time complexity, whi@nts to be affected by the Gibbs
sampling algorithm in which each of its iterations increalseearly with the number of topics
V' and number of documents (i.e., the number of paragraphsour case). Thus, as ifi5go

et al, 2015 Wei and Croff 2004, the LDA time complexity can be estimated@gV" x N).

However, as our SIF model is trained offline, it only needs LibAe run once. Also, as SIF
is not sensitive td/, the time complexity of LDA is proportional t&(/N). By analysing the
time complexity of Algorithml—especially the core section (steps 12—-22)—we can see that
lines two to 22 takeD (K x V x N) basic operations to complete, whékeis the size of the
vocabulary), V' is the number of topics and¥ is the number of paragraphs in the collection.
Because the number of topics can be as few as one and SIFmarfoe is not sensitive to it,

the required time complexity is practically estimated tahg< x N).

3.4 Chapter Summary

This chapter described SIF, an innovative and effectivefubased TFS model for relevance
discovery. SIF extends multiple random sets to model theagipe and complicated relation-
ships between terms, topics and paragraphs to effectivehage the hybrid fusion of different
lexical and topical features from a collection of relevaotyuments. Based on the proposed
ERS theory, a score fusion scheme is developed to estimatelkvance of topical terms at
the collection level. The estimated score accurately rsflde relevance of these terms to
the user information needs and maintains the same semaeéning of the terms across all
relevant documents. The proposed model demonstratesfadotivedness of the hybrid fusion

strategy, using high-level topical features and low-leieims statistics in an unsupervised
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Algorithm 1: Hybrid fusion-based TFS algorithm

Input : A set of relevant documenfd+, the vocabulary lisf2 and total number of
topicsV
Output: A functions : Q — [0,R)

172=T=G=);

2 foreacht; € Q2 do

3 L pr(t;) = 0;

a4/l split all paragraphs in DT
5 foreachd, € D" do

6 foreachg, € d, do

r | Le=cufg)

8 N =|G|;

o Generate paragraph-topic proportideg 4, . . . , v,.,,) by applying LDA toG;
10 Generate topicg€ = {z, ..., z,} by applying LDA toG;

11// calculate t; fused score based on Eq 3.3 & Eq 3.4
12 foreacht; € Q2 do

13 | foreachz; € Z do
14 P, =0;
15 foreachg, € G do
16 _sz:PZj+19y,j;
17 if tiGZj then
_ tf(tivz') .
18 t = (zwfw) X P,
tEZj
19 else
20 B t'=0;
21 | pr(t) = pr(t) +t;
2 | s(ti) = pT(ti);[df(ti);
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learning setting. Based on the first 50 assessors’ collestid the standard RCV1 dataset,
TREC relevance judgements and seven performance meastwesxperimental results (see
Section6.8.1) showed that the proposed SIF model significantly outperéal many state-of-

the-art baseline models for IF and RRT in all evaluation rogtrdespite the fusion strategies

used or type of text features adopted.

However, the proposed SIF model is not without limitatioh®ssumes that a topical term
is equally important to each relevant document. This assiomgan be too simple because
it ignores the local details about the term in each relevantuthent, knowing that the term is
more likely to appear unevenly across the paragraphs ofaelelocuments. Thus, itis essential
to revisit SIF and re-estimate the term’s importance at theuthent level before it is globally
generalised at the collection level. The next chapter de=sSIF2, a more effective TFS model

that overcomes the limitations of the SIF model.

Moreover, many existing TFS techniques for relevance disgohave no mechanism to
consider the evidence of relevance in a relevant documéesd TFS techniques assume either
all paragraphs in the relevant document are equally reteraadl information in the document
is necessary. A document is commonly labelled as relevamaiuse it contains a small part(s) of
relevant information in its segments; however, the noewaht parts can introduce uncertainties
into the discovered relevant features. Therefore, in thx¢ cleapter, we will also introduce the
UR method, which very effectively deals with uncertaintieselevant features discovered by

most existing TFS models and frameworks.



Chapter 4

Dealing with Uncertainties in Relevant Features

This chapter introduces two novel and highly effectivednsbased models for handling uncer-
tainties in relevant features that were discovered in acttin of documents discussing user
information needs. The first model is called SIF2 and is psepdo overcome the limitation
of our SIF model presented in Chaptgrand the limitations of similar TFS models. The
proposed SIF2 model delves into each document’s detailgtitn&e more accurate weights for
topical terms before generalising and integrating therh gibbally informative statistics. The
second model is developed to tackle the uncertainties @notiat arises from irrelevant parts of
relevant documents. The UR method is proposed to incomp@aatagraph-relevance evidence
estimated from document paragraphs and use these piecadariee to revise relevant features
discovered through various existing TFS models and framiesvd@ he details of the SIF2 model
and the UR method are presented in Seclidrand Sectiort.2, respectively, and the summary
of this chapter is presented in Sectidr8. An extensive experimental evaluation of the SIF2

and UR models for IF and RRT is presented in Chapter

4.1 The Proposed SIF2 Model

4.1.1 Introduction

Most fusion-based TFS models, including SIF, estimate ¢levance of features that describe
user information needs globally at the collection levesuasing that these features are equally
important to each document in the collectidariff, 1998 Robertson and Zaragoza009
Shirakawa et al2015. In this study, we argue that such an assumption is too €mipkn that
long documents can discuss many unbalanced topics acreispéragraphs, and even these

paragraphs can randomly describe multiple specific theksibi et al, 2017¢ Anastasiu

95
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et al, 2013 Chien 2016 Gao et al. 2013. Therefore, these TFS models must consider the
relevant details of features locally within each documezfole generalising their relevance to
all user’s needs in the collection. However, as noted presho most fusion-based models were
not developed on the basis that long documents or user iatdymneeds can exhibit multiple
topics; this negatively affected their performances irectihg relevant featureé\[harbi et al,
2017¢ Bashar et a).2016 Gao et al.2017 2013.

Topic-based models are explicitly developed presuming dioauments contain multiple
topics Blei et al, 2003 Hofmann 2001]. LDA is the most popular statistical topic modelling
algorithm and has many applications, including relevaatifee discoveryAlharbi et al, 2017¢
Bashar et a).2016 Gao et al,. 2015. However, LDA estimates terms’ relevance weights on a
document-by-document basis using the local topics—donuprebability proportions and the
global term—topics assignmen®lI¢§i et al, 2003 Gao et al. 2015. It does not automatically
consider the sub-hierarchal features of the document,asiith paragraphs—topics distributions
or the features higher up in the hierarchy that represertitheollection. Also, LDA represents
each generated topic as a probability distribution oveteaths in the collectiongashar and L,
2017 Blei et al, 2003. Such global representation might not accurately refleetiocal rele-
vance of topical terms at the document level because thess t&e not equally distributed over
all documents in the collection. Therefore, term weightsgsed by the LDA term probability
function do not accurately reflect the importance of thesmden their local documents or the
collection. Recent studies il\[harbi et al, 20183 2017h Bashar and Li2017 Bashar et aJ.
2016 Gao et al. 2019 confirmed that the LDA probability function negatively inéinced the

LDA's performance in discovering relevant features.

Relevant terms can be identified in a specific collection sy various instances (i.e.,
evidence) of these terms in different representati@sff, 2000 Zhang and Balog2017. At
the collection level, terms’ global statistics, such asuwtoent frequencydf), are important
pieces of evidence that represent terms more discrimelgtiivian et al, 2009 Sebastiani
2003. Nevertheless, in IR, representing the relevance of tersirgy global weighting schemes
cannot provide better retrieval results, because termaglstatistics cannot reveal the term’s
local importance at the document levigldcdonald and Ounj201Q Maxwell and Croff 2013,
and neither can the LDA. This research asked if there is aoddtihfuse the LDA's hierarchal
features with informative collection statistical featsirgarticularlypf anddf) to overcome

their limitations in representing the local and global valece of terms to the user information
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preferences.

This study aimed to develop an effective, fusion-based TE8eicalled SIFZ. The model
adopts a complex hierarchal representation for the cadlectconsisting of its documents,
paragraphs, latent topics and all terms in the collectiagurie 4. Lillustrates the main elements
of this representation and the different lexical and diatis features extracted from these
entities to be fused by the feature fusion module. As in 3I&féature fusion module of SIF2
is the main component of the model. This component modelsdh#plicated and imprecise
relationships between these hierarchal entities and ffexeht features, using multiple ERSs

to estimate a relevance score fusion function.

4[ Document Set D* ]7

A A 4 A 4

Split & Index Term Set O Term .Gl.obal
Paragraphs Statistics

Lexical Features

Statistical
Features

Statistical Features

o

Paragraph Set G

Y

Topic Modelling

$a4n1ead [B2IXT 73 [ED11SIIRIS

Statistical Features
\ 4 \ 4

. . S Fusi
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Figure 4.1 The SIF2 model structure.

The SIF2 model provides an elegant hybrid fusion approaahdbmbines both high-level
topics and local and global statistics of low-level termsatzurately score relevant topical
terms at the collection level. This fused score effectivelifects the informativeness of the

terms to the key topic of interest in a specific collectiort thescribes user information needs.

Parts of this model were published iAlharbi et al, 20174 and [Alharbi et al, 20184. The acronym SIF’
stands for th&election ofl nformativeFeatures while?’ refers to the use of both local and global statistics.
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The experimental results presented in Secidh2demonstrate that the framework was highly
effective and significantly outperformed both state-ad-trt and popular TFS methods in IF
and RRT, regardless of the fusion technique or the type dffeatures they used. Further
details about the proposed SIF2 model are described in tlosving sections. A background
overview and some basic definitions are provided in Sediar?, the theoretical details of the
developed ERSs and the feature fusion functions are pextenfectiond.1.3 4.1.4and4.1.5

and the SIF2 algorithm and its time complexity analysis ascdbed in Sectiod.1.6

4.1.2 Background and Basic Definitions

Assume that a researcher maintains a collection of longrdeats, denoted a8, describing

a particular topic of interest that might also have multigld-topics or themes. For purposes
of further investigation, the researcher wants to enriehdbllection by collecting documents

from the web. To achieve this goal, the researcher needs alrti@d can select and accurately
weight terms to effectively describe the collection. Thegheed terms’ are used to gather

relevant documents.

We assumed that the collectian™ = {d;, d», ds, . . ., d,} hasM documents that are related
to a particular topic of interest, which, as noted beforedifferent from a latent topic. A
documenti, consists of a set of paragrapBswvhile a paragraply consists of a bag of words
andg,, refers to they" paragraph of the'" document. Therefore, the set of all paragraphs in
the corpus iS5 = Ug,ep+{9zyl92y € d} @andS C G. The set of all unique words iD" is
Q = {ty,ta,13,...,tx}, whereK = |Q]. SIF2 uses the LDA to discover a set of latent topics
Z from G whereV denotes the number of topics. The LDA is an effective modeliscover
hidden topics from a corpus, but it does not demonstratecgeriti performance in TFS for

relevance discovery.

As noted before, LDA describes a topice Z as a probability distribution over all words
in © using p(t;|z;), in which ZLQ‘p(tAzj) = 1, wherel < j < V andt; € Q. Also,
LDA describes a document, by a probabilistic mixture of topics using z;|d,). All hidden
variables,p(t;|z;) andp(z;|d,), are inferred statistically by the Gibbs sampl8&tdyvers and
Griffiths, 2007. Consequently, and based @nthe local weight (i.e., probability) of word in

a documentl, can be estimated agt;|d,) = Z}/:lp(ti\zj) x p(z;]d;). Therefore, for every

2In this chapter, we continue to use 'terms’, 'words’, 'keyws’' and sometimes 'features’ interchangeably
unless explicitly stated otherwise.
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topic z; € Z, estimatingy(t;|d,,) requires the fusion of two hierarchal features: the worglieto
assignmeng(t;|z;) and the topic—-document distributip(x;|d,.). However, we argue that using
these features makes the LDA ineffective for selectingvegleterms in a specific collection,

whether at document level or paragraph level (see LDA's expntal results in Sectio.8.2).

Therefore, adapting LDA to estimate words’ informativenaas two challenges: a) how
to localise global features for a more accurate estimatfaheir local relevance and b) how
to fuse other hierarchal features for a better relevandenagon for topical terms. In the
following section, we define some informative local featutbat will be used to represent
relevance information in documents. These features vat &k integrated by the SIF2 model

to estimate the relevance of topical terms in the colledfan describe user information needs.

4.1.2.1 Informative Text Features

As in the SIF model, the proposed SIF2 model adheres to thedfsion strategy defined
in Section3.2.3.3through integration between high-level topics and loweléerms. However,
unlike SIF, the SIF2 model will estimate the relevance ofhetmpical term at the document
level, assuming that they have different degrees of relmvan each long document in the
collection. Therefore, some informative topical and levdl statistical features are adopted

and defined in this study as local features.

Local Features

Local features can be used to measure the importance of weithia a specific document
or even a fixed-size window of texMacdonald and Ounj201Q Maxwell and Croft 2013
Pickens and Golovchinsky00d. In low-level terms, popular local features are the local
statistics of terms, such as term frequengyparagraph frequengyf and sentence frequency
sf. Instead of using f, which is comparable tof, this study usepf at the document level
as a local low-level feature. Thef demonstrates better results thighin representing the
informativeness of relevant topical term in our SIF modslcan be observed in Tabe23
However, to calculatg f(¢) at the document level, we update its previous definition ictiSe

3.2.2.1to the following:
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Definition 10 (Document—Paragraph Frequency)Thepf of a termt¢ in documentd,, de-
noted apf(¢,d,), is the number of paragraphs i, that contain the term. Thus, knowing

that S is the set of all paragraphs id,, pf (¢, d,) can be calculated as follows:

5]

pf<t7 dm) = Z fgy (t)

where|S| is the total number of paragraphs ify and f,, () is defined as follows:

1, ifteg,
fgy(t) =

0, otherwise

Since low-level terms do not contain any semantic infororatind do not assume that
a document can exhibit multiple topics, using their locaitistics alone is not sufficient for
estimating the relevant information in the document. Tfoees a local feature that can reveal
the topical coverage of the document is required. The LDAsedufor this purpose to estimate
what we call in this study a topical paragrap)(that will be used to estimate the topical

coverage of the document. The topical paragraph is definéullaws:

Definition 11 (Topical Paragraph) The tp of a paragraphg, of documentd,, denoted as
tp(9.y), iS the proportions of the probability distribution 9f, over a specific number of latent
topics as follows:

tp(g:cy) = (ﬂmy,h ﬁxy,% ﬂmy,?n ceey ﬂmy,V)

where0 < 9,, v < 1 and V is the number of LDA topics.

Further, tp represents the topical coverage at the paragraph leveinkhis study, we
selected the document as our semantic space to estimatelévarnce of topical terms, as
noted previously. Therefore, and using the definitiorpofve call this semantic space a topical

document{d) and define it as follows:

Definition 12 (Topical Document) Thetd of documentl,, denoted asd(d.), is the sum of
the proportions of the identical topics in every topical @graphtp(g,) in d, whereg, € d,.

Therefore, thed(d,) can be calculated as follows:
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El S|
f;d(dm) = ( Z 19%1, ce Z 19%\/)

gyedac gyedx
whered,, ; is the proportion of topi¢ in paragraphy in document,,, and|S| is the total number

of paragraphs in documeant, .

Figure 4.2 illustrates the informativeness of in representing the topical coverage (i.e.,
topical information) of three different relevant docunsetdken from Collection 101 of the
RCV1 dataset. The figure demonstrates that these docunmemdstaover the same topics of
interest but with variant levels of significance. The figuxperimentally justifies our claim that

a topical term might have different degrees of relevancaaheelevant document.

0.4

39496.xml 82330.xml 82454.xml

Relevant Documents

Figure 4.2 Thetd of three different relevant documents from Collection 10the RCV1
dataset using 10 LDA topics.

4.1.3 Extending Multiple Random Sets

Distinct hierarchal entities and their relationships toteather can affect the term scoring in a
specific collection. As demonstrated in Figyr&, the SIF2 model uses four entities, which are
the collection document®™, their paragraphs/, the LDA latent topicsZ and the collection
keywords(2. Similar to our SIF model, SIF2 also models the complex r@teships between
these entities using the ERS theory to integrate and, thiegeimeralise the weight of a local

term to a global one that can be combined with a more infoneafiobal statistic.

However, in SIF2, we proposed three ERSsI'; andI's and their inverses to model the

one-to-many relationships between the used entitieslussrdted in Figure.3. In every ERS,
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including its inverse, a probabilistic function is used tsdribe a specific relationship and
assign a weight that represents the strength of the resdtipnvith the targeted entity. Then, a
new score fusion function is developed by integrating ttoppsed ERSs. The function assigns
highly informative scores to topical terms in the collentioepresenting their relevance to what

the user needs.

Figure 4.3 The feature fusion module of the SIF2 model and the mapping andI'!
between the used entities.

To effectively estimate the local relevance of topical teimevery document € D', we
first must consider the hidden topigsdiscussed in all documents ip™ and their relationships

with all terms in the collection (i.e?). Therefore, we proposed the set-valued function
r: 7Z-—2°

from Z onto$2. However, itis important to estimate the strength of evelgtronship between a

term and a topic in the collection. Therefore, let us considiéhe evidence space and propose
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P as a probability function specified ofi. However, because LDA defines each topic as a
probability distribution over all terms if2, not as a scalar value, and a tetrnan appear in
many topics, we extendddas

U 7 - 20x[0d]

and it is called an extended set-valued mapplngZ003 such that

> et

(t,p)eV(2)
for eachz € Z.

However, because LDA assumes that a document containgieutbpics, then, for every

topicz € Z, we define a probability functiof that satisfies

Y Pz)=1

zeZ

Therefore, we can call the pdi¥, P) an ERS, as noted previously. Consequently, and for every
z; € Z,we defineP;(t|z;) as a conditional probability function on the set of tetth® describe

the new relationship between the tetrand a set of topics such that the mapping
I'(z) = {t|t € Q, P(t|z)>0}

However, as our ultimate goal is to estimate the relevanedrofi document;, not only in a
topic z;, we much first estimateweights in all topics. Therefore, we consider! the inverse

function ofI" and define it as follows:
1. 094

Il(t) = {2 € Z|t € T(2)}

Nevertheless, as noted earlier, LDA estimatefrom all terms in the collection. Knowing
that these terms appear unevenly across all documents cotleetion and that all topics in
Z appear in an unbalanced way in each document, based on théides$ presented in the
last section, we must localise all topical information telea@ocument individually and the

relevance of at the document level, not the topic level. Therefore, basethe ERS defined
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above, we propose the score fusion functiof(t) on (2 such that

srg 2 — R
as follows:
1
srat) = > 3 (Pz(zi) x Pi(t|zz~)) (4.1)
- P;(t|d;) -
d;eT—1(t) z €T ~1(¢)

wheresry(t) is the fused score of topical tertrat the document level. The functiof$(t|d;)
and P;(t|z;) calculate the conditional probability of the tervin documentd; and topicz;,
respectively. FinallyP,(z;) estimates the generalised weight of topiin d; as it will appear

in Equatior4.2

4.1.4 Integrating Informative Features

To estimatesr,(t), we must investigaté; and accurately measure the strength of all possible
relationships between I andZ, 2) Z andt, and 3)t and D". Therefore, the ERE; defines
the conditional probability functio#,,, (z|g.,) on the set of paragraplis to describe the one-

to-many relationship between a paragraph and a topic as

Iy G —27x0n

[1(9ay) = {(21, Puy (21l 9ay)), - -}

Similarly, as a topic can have many terns, definesP;(t|z;) on Z as another conditional
probability function that estimates the probability of antebased on its appearance in each
topicz; € Z as

Ty: Z — 220

Fa(zi) = {(tx, Pi(t1]21)), - - -}

Further,I'5 is also proposed to describe the relationship between destsnand terms using

the defined probability functiof; (t|d;) as

I's: DV — 220
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I3(dj) = {(t1, P(t1ldy)), .. .}

Based on the inverse mapping described above, we habel';! andI';!. TheI !
describes the inverse relationships between topics aaggrhs using the probability function
P,(z;), such that

it z—2¢

Ffl(z) = {gay|z € T1(gay) }

I';!, conversely, describes the inverse relationships bettezars and topics using the (¢|z;)

function such that

t: Q—27

Ty (1) = {2t € Ta(2)}

I';! describes the inverse relationships between terms andreots using the functioR; (¢|d;)

such that

Fgl: O — 207

T3t (t) = {d;|t € Ts(d;)}

Inversely, as a topic also can appear in one or more paragtaplh belong to a certain
document]'; ! is proposed to describe such a relationship using®iie;) function, in which a

subset of paragraphtswill only be mapped to its document as

Fl_l(z) = {gwy|z € Fl(gﬂcy)agwy € S}

Similarly, as a ternt in a specific document can occur in multiple topiEs! is also proposed

to govern this relationship using the probability function(¢) as

Ty (1) = {2t € Ta(2)}
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4.1.4.1 Estimating Topical Relevance

To estimate the relevance of ternin a documentl,, I';!, I';> andT'; ' are used to calculate
two probabilistic scores based on the definitiongofndtd. The first score represents the
topical relevance at the document levgl z;) for every topic that appears in paragraghe
d.. TheT7' is used to integrate the topic—paragraph distributiop z;|g.,) for estimating
its topic-document marginal probability distribution. \&esume’;(g,,) = % denoting that

everyg, € d, is likely equally important, andv = |S| as follows:

P.(z) = > (P6(Gay) X Pry(2ilgey))

9oy €T ! (21)

(4.2)

= % > Pwy(zi|gxy)

9ay €T (2)

where P, (z;|¢.,) is estimated based on the definitiontpf andg,, denotes paragrapih of

documente.

4.1.4.2 Estimating Term Relevance

The second score estimates the relevanc¢eabthe document level and is calculated first using
', for every topicz; € Z based on the conditional probability distributié}(¢|z;). However,
I';! is adopted to localise the globally calculated probakgitbased o (, d;). Therefore,
the fused term score at a documernitlevel can be estimated by substitutiffg z;) in Equation

4.1with its formula in Equatiort.2 as follows:

srd(t):% > P_(;dj).[ > Pi(t|zz~)><< > ny(zi|g$y)>] (4.3)

_ J _ _
d;el; l(t) 2, €0y l(t) gay €l l(zz)

4.1.5 Score Fusion Scheme

As noted previously, the proposed SIF2 model adopts theidhyision strategy through the
integration of high-level topical features and both logad global statistics of low-level terms.

The proposedr,(t) function estimated the local relevance of tetrim a specific document
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though the fusion of informative local features. Howevetgvant terms that describe user
information needs must be estimated at the collection Jeval only at a specific document
level . Therefore, we estimated the global score for a teatthe collection level, denoted as
sc(t), to be the sum of itsr,(¢) in every documend; € D+ integrated with the informative

global statistiaif, as in the SIF model. The:(¢) is calculated as follows:

se(t) =df(t)- Y sra(t) (4.4)
ted;,d;e Dt
wheredf (t) is the document frequency of ternandsr, (¢) is the fused score dfin document
d;.

4.1.6 Hybrid Fusion Algorithm

Algorithm 2 illustrates the details of the proposed SIF2 model, in whighatior4.3represents
the main function in the model. The algorithm follows the sgome-processing and initialisation
steps of the SIF algorithm (Algorithid), except that each paragraph in the collection is indexed
to be mapped to its containing document. The LDA is also ug#dtthe SIF2 model to generate
10 topics from the set of all paragrapfisas illustrated in steps 8—9. The number of LDA topic
was set experimentally, but SIF2 is insensitive to this ngpemeter. Steps 11-25 are the core

steps of the algorithm, based on the details of Equatidn

4.1.6.1 Time Complexity Analysis

The proposed SIF2 models inherited the positive aspectiioS&F model in terms of the
insensitivity to the number of LDA topics (i.eV)), as illustrated in Figuré.23 Also, SIF2
does not require a large training set and is trained offlingn \&i single LDA run. Due to
SIF2’s insensitivity tol/, the time complexity of LDA isx O(N), where N is the total
number of paragraphs iP*. SIF2’s algorithm resembles much of the contents of SIfs; t
only noticeable difference is the use of a third loop to itertdrough the number of relevant
documents)M in the collection. Therefore, the time complexity of SIF2kgorithms iscx

O(K x M x N), whereK is the vocabulary size.
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Algorithm 2: Score fusion scheme

Input : A set of relevant documenif3*, the vocabulanf? and total number of
topicsV
Output: A functionsc: Q — [0, R)
1 Z=T=G=10;
2 foreacht; € Q2 do
3 L sc(t;) =0;
4 foreachd, € D" do
5 | foreachg, € d, do
6 L G =G U{gay}

7 N =|G|
8 Generate paragraph-topic proportidas, i, . . ., ¥, ) by applying LDA toG;
9 Generate topic& = {z, ..., z,} by applying LDA toG;

10// calcul ate sc(t) based on Equation 4.4
11 foreacht; € Q2 do

12 foreachd, € D* do
13 if ¢, € d, then
— pf(ti7dl') .
H w= < pf(ti) )’
15 foreach z; € Z do
16 sz — 0,
H foreach g,,, € d, do
' L sz = sz + '19]'71?4;
1 if ¢; € z; then
| tf(iz) ).
* W= (z tf(7t)>’
thj
21 t/ — (w/ + w) % sz;
22 else
23 L t/ — 0,
24 | ST, (t:) = sra, (t;) + t;
5 | sc(t;) = M;
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4.2 The Proposed UR Method

4.2.1 Introduction

As noted previously, relevance discovery algorithms fawdlenges in identifying relevant text
features from both a theoretical and empirical viewpokihfrbi et al, 2017hQ Li et al., 2015
2010. One main challenge is the uncertainties associated Wwéhfé@atures discovered from
irrelevant or less relevant paragraphs that might exiseievant documents. This is because
a document can be labelled relevant if only a small part obittains relevant information, as
previously illustrated in Figurd.3. Using only document-level evidence can select features
from all parts of the document, which can lead to uncertaéind scatter the focus of the
selection algorithm because the features coming fromeweglt parts do not describe user
information needs. Therefore, the relevance of the coomdipg part should be considered
when selecting features from it. Many studies have beenuwrd to develop TFS models of
relevance discovery over the last few decad#es] et al.2015 Li et al., 2015 Man et al, 2009
Song et al.2013 Tao et al, 2011. However, most of these consider only the document- or
collection-level evidence for discovering relevant feat) which makes them vulnerable to the

uncertainties present in a specific document or even theeartilection.

Research in IR has demonstrated that considering the eadainthe passage level can
improve document retrieval accuracy, especially when dumsus are long or span different
subject areagJallan 1994 Kozorovitsky and Kurland2011a Liu and Croft 2003. Generally,
the performance of IR models can dramatically improve ddpenon the amount of relevant
evidence available in each passagedva et al. 2016 Callan 1994 Fan et al. 201§. Most
existing IR research measures the amount of relevance betavéixed window-size passage
and a user query through the estimation of some query sityisgores as the passage-level
evidence Bendersky and Kurland201Q Xi et al.,, 200]. However, the explicit user query
may not always be available, as in the case of IF, which ferb@ estimation of such query
similarity scoresGao et al.2015 Li et al., 2017. Therefore, in a situation in which paragraphs
are variant in size (i.e., no fixed window-size passagesasidered), it becomes challenging
to explicitly estimate paragraph-level relevance evid@eimca set of relevant documents that
describes user information needs. Also, it is equally diffito use the estimated relevance at
the paragraph level to reduce uncertainties of relevamifes that already been discovered by
existing TFS models and frameworks. Therefore, implicith@isms are required to estimate

and then utilise paragraph-level relevance evidence.



110 CHAPTER 4. THE SIF2 & UR MODELS

Text feature fusion performed effectively in dealing withcertainty through the combina-
tion of multiple evidences available in different high-édand low-level text featuref\[harbi
et al, 2018h Gao et al, 2015 Li et al., 2015. However, these features are more likely to
be uncertain as they might be extracted from irrelevant ss kelevant parts of documents.
Therefore, it is challenging to know which features to fusew to deal with their inherent
uncertainties, how to fuse them to estimate the relevaneepafragraph and, ultimately, how
to use the paragraph-level evidence to deal with unceraiim relevant features discovered
by other relevance discovery models and frameworks. Tleatabpical features of LDARlei
et al, 2003 seem to be better candidates for estimating the relevavaiéable in different
entities (e.g., document, paragraph or sentence) of actioife This is because they are the
only features explicitly generated based on the assumpltiana text document (or even a
paragraph) can discuss multiple topics or themfdbdrbi et al, 2017¢ Gao et al. 2014h
2019. LDA defines each discovered topic as a multinomial distign over the terms in the
collection. It also represents each document or paragrspmaixture of the discovered topics
[Blei et al, 2003 Griffiths and Steyvers2004. However, LDA, as an unsupervised learning
algorithm, treats all documents or paragraphs equally ayd po attention to any relevance

evidence that might be available in them.

Therefore, in this section, we describe the uncertainéidsation (UR) method, which uses
paragraph relevance to reduce the uncertainties of theargléeatures discovered by existing
models (e.g., BM25Robertson and Zaragaz2009, Rocchio Rocchiq 1971, RFD, [Liet al.,
2019). The method adopts the late fusion strategy to integridfiereint features extracted from
the relevance feedback collection as an implicit mechatisestimate the paragraph relevance.
We call the user information needs’ specific subject mattefscs’. For example, the user
information needs oflobal warmingmay involve topics likegpollution, greenhouse gasesd
ozone layer depletionVe assume that frequent topics in the relevance feedbdlekction are
the most relevant ones and use them to estimate the relevbpasagraphs. LDA is used in this
study to discover these topics from the collection. Howgner UR method does not use topical
terms (i.e., LDA term—topic distributions) to avoid any @rent uncertainties that might exist in
these statistical features, knowing that they are esturfaden all terms of all paragraphs in the

collection without considering the relevance of any paapbr

3An adapted version of this model was publishedAthprbi et al, 20184.
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A relevance feedback collection that discusses user irdbom preferences, the relation-
ships between distinct entities in the collection—namidydocuments, paragraphs, topics and
terms—and the estimated strengths of these relationshipde modelled as extended set-
valued observation#lharbi et al, 2017hc, 20184. The uncertainties in phenomena that can
be observed and represented as multiple sets, not as exats, man accurately be modelled
using ERSLi, 2003 Li and Zhong 2003. Therefore, in the UR method, multiple ERSs are de-
veloped to effectively model these complex relationshgthat they can be understood and the
uncertainties dealt with through the hybrid fusion of diffiet representative features discovered
from the selected entities. Based on the ERSs, a weighiigaheme is also developed to use
the estimated paragraph-level relevance for uncertaingduction. The scheme is applied to
individual terms (i.e., lexical features), due to their flehty and shareability between different
entities and high-level features in the collection. Theref the developed scaling scheme
is used to scale the weights of relevant term sets discougred TFS model as an implicit
mechanism to reduce uncertainties in these terms. Theac#hed relevant terms are re-ranked

to represent a new term set that is less uncertain and mesarglto user information needs.

Figure 4.4 illustrates the structure of the UR method in which the feafiusion module
is the main component. The figure also shows the relatedemntind the flow of different
features from them to the feature fusion module. The URiscstire resembles that of SIF2 as
the UR also estimates the relevance of a paragraph loctltg, @document level, and globally,
at the collection level. Sectiof8.3in Chapter6 presents the results of experiments conducted
on the 50 human-assessed collections of documents frontahdasd RCV1 dataset and their
TREC filtering topics, showing that the proposed UR metholighly effective in reducing
uncertainties. When applied to the suitable existing TFSlehahe improved model signif-
icantly outperforms all the other models in all evaluatioatrits, regardless of the relevance
discovery technique or the type of text features they usereMetails about the proposed UR
method are presented as follows: the problem formulationtisduced in Sectiod.2.2 the
relevance estimation of paragraphs and the developedgdalction are described in Section
4.2.3and Sectior.2.4describes how the estimated paragraphs’ relevance cart¢aiseduce

uncertainties in relevant features selected by any TFS mode
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Figure 4.4 The UR method structure.

4.2.2 Problem Formulation

Given a set of document3 that discusses both relevant and irrelevant user infoonateeds
[Lietal, 2015 2014, the setD* denotes the positive (i.e., relevant) document®isuch that
Dt C D, andD~ represents the set of negative (i.e., irrelevant) docusnth thatD~ C D,
and, thereforeD = D+ U D~. Arelevant long document, € D" has a set of paragraplss
and the se€ denotes all paragraphs i, whereg,,, is they" paragraph of the document
andS C G. Also, each paragraph is a bag of terms énid the set of all terms iD*. As each
paragraph might discuss multiple sub-topics or themes, af statistical topicsZ is extracted
from G using the LDA model. These topics reduce the dimensionality to just a few topics,
whereV denotes the total number of topics4n The topics are integrated with other statistical

features to estimate the relevance of each paragragh in

In this study, we assume that a paragrapp has a local significance at its containing
document and another global relevance significance aDtheollection. A long document
can discuss many topics across its paragraphs, and thergatnagcan also exhibit multiple

smaller themesHlei et al, 2003 Gao et al. 2014 2015. Therefore, a relevant paragraph
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should summarise this topical information described imldsument. However, for user infor-
mation needs, these topics and themes might be discussgombnand unevenly across the
relevant documents, which makes the local relevance esbmaf the paragraph significantly
unrepresentative of what the user needs. Therefore, algklbaance for the paragraph must
also be estimated based on its local significances in alldeats. However, as noted before,
it is challenging to estimate paragraph relevance in theradesof a specific search guide for
such relevance (e.g., a user query), knowing that paragrégms can appear in many other
paragraphs, documents and topics. The topics, also, caandemly discussed in multiple

documents and paragraphs.

Moreover, as LDA defines its topics as multiple probabilitstdbutions over all terms if2
and represents each paragraph as a probabilistic mixtadetopics, it is difficult to model and
understand the highly complex relationships between thiéiesnthat influence the relevance
estimation of a paragraph, since they are not exact poiritsrefore, as shown in Figure5,
multiple ERSs and their inverses are developed to modeldhmpbcated relationships between
documents, their paragraphs, topics and terms. Furtheml@abpility function is developed
to estimate the strength of each relationship. Then, alttfans are effectively combined to
estimate the relevance of paragraphs based on their l@ndadtatistical features. More details

about the proposed ERSs are provided in the next section.

D)

AN\

lj
@W@(@

Figure 4.5 The feature fusion module of the UR method and the mappihgqleft) and' !
(right).
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4.2.3 Estimating Paragraph Relevance

To estimate the global relevance of a paragraplat the sefD* level, first we measure the local
significance ofy,,, in its containing document (i.ed,;) based on the relevance of thg, terms.
However, many subsets of these terms can appear in many maregraphs, documents and
topics in theD* collection, and many of these topics can also be discussgg,iknowing that
each topic; € Z might also be exhibited in many paragraphs. Therefore,iptelprobability
distributions are defined and then modelled using multi®&& Second, as in the SIF2 model,
we assume that the global relevanceggf is the summation of its local relevance in each
documentl, € D*. More details about the estimation of paragraph relevare@mvided in

the following two sections.

4.2.3.1 Local Relevance

As a paragraph is a set of terms, we assume that the relevaeeelo paragrapb,, € G is
defined by a probabilistic distribution over the term Q&nh D", which is modelled using the
set-valued mapping; (¢.,). To estimate the term relevance, we assume that the rekewdiac
term¢ depends on a probabilistic mixture @f which is modelled using the inverse set-valued
mappingl'; ! (t). The set’ is the evidence space in this case, and a set of terms carseapre
the relevance of a paragraph,, but its relevance level to the entire space is yet unknown as
depends on its local relevancedat Therefore, the probability distributio1; is defined onz

to indicate this uncertainty¥, is then used to estimate the relevance level,gto the terms.

Let the probability of a ternt relevant tog,, be P(t|g,,). Since each paragraph, is
described by the probability distribution over the Setwe have the set-valued mappihig to

represent and describe the relationship between a sehas tard a paragraph as follows:
TG — 20l
such that

[1(gay) = {t € Q| Py(t|g2y) > C}

whereT'1(g,y) = {(t1, Poy(t1|gsy)), ...} for all g,, € G and( is a user-defined threshold
assigned t@ = 0 in this study. Givenl, as a probability distribution defined @®, we call
the pair(¥,,I';) an ERS.
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Since there is a need to identify the significance level ofrmte the inverse set-valued
mapping ofl’; is considered to estimate a representative distributipon GG. For all terms

t € Q, the inverse set-valued mappinglafis defined as
ryt:0—2¢

such that

L1 (t) = {gsy € Glt € T1(gay)}
to also represent and understand the relationships betvesgm and a set of paragraphs.

However, whilel'; ! is used to estimate the significance level of the ténm a subset of
paragraphs frond:, these paragraphs might not be related to a particular destin € DT,
knowing that we assumé, is the local space used to estimate the relevance ofgany=
G. Therefore, and as in our SIF2 modédl,(¢) is relaxed by considering the relationships
between documents and terms. However, the relevance ledeglto the D is still unknown.
Consequently, we defing, as a probability distribution oveb* and propose the set-valued
mappingl’y as follows:

[y : DT — 2201
to represent each, as a probability distribution over all terms §hsuch that

[o(d,) = {t € Q|P.(t|d,) > 0}

and the probability of a termrelevant tai, is P(t|d,). We also cal(¥,, I';) an ERS. Therefore,

I'y(d,) can be described as
Pa(dy) = {(t1, Po(taldy)), - - -}

To estimate the relevance weight of a tetnto the user information needs, which are

represented in our study by, the inverse set-valued mappinglofis proposed as follows:
| P O 2b*

where

I54(t) = {d, € DY|t € T'y(d,)}
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We define the scoring function, () on 2 such that
sTg 1 (0 = Ry

and

R = {sr,(t) € Rlsr,(t) > 0}

as follows:

Ui(t) ocsrg(t) = Y S Paltlds) - | D Play) X Pay(tlgay) (4.5)

dzel—1(t) gzy€N1(2)
whereP(g,,) is the probability ofy,,, being relevant to what the user needs.

As the paragraph,, can discuss multiple sub-topics or themes, we assumeythas a
probabilistic mixture of a set of latent topiésin G, which is modelled using the set-valued
mappingl's(g,,). The topicZ is the evidence space in this case. TheZean represent the
relevance ofy,, to the user information needs. The more relevant topics agpaph covers,
the more the paragraph’s relevance increases. This imihleeselevance of frequent topics
(topics shared by many paragraphs). However, the relevamekof g,,, to the entireZ space

is unknown without estimating the relevanceggf to the topics ind,.

Similarly, as beforey; is a probability distribution defined afi to indicate this uncertainty,
andV; is used to estimate the relevance levgjgfto Z, managed by the paj’;, I';). As each
paragraply,, is described by the probability distribution over the getf topics, a set-valued
mapping ofl'; is proposed to represent the relationship between a patagrad a set of topic
as follows:

Ty: G — 272x01
and
I5(92y) = {2 € Z|Puy(2|92y) > 0}
wherel's(g.,) = {(21, Puy(21|0sy)), - - .} forall g,,, € G.

However, P(z;|g.,) can only estimate the topical significance x9fgiven g,,; we must
estimate the relevance ¢f, at d, instead. Therefore, let the probability of a paragrgph

relevant to a given topie; be P(g,,|2;). Further,I';! is proposed to describe and measure
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the strength of the inverse relationship between a topand the set of paragraplsC G as
follows:

;' 7z —2¢

and

F?Tl(gwy) = {Zj € 2,0y € S|Pj(gﬂcy|zj) > &}

where ¢ is another user-defined threshold assigned te 0 in this study. Therefore, the

relevance ofy,,, to d, can be estimated as follows:

U3(gay) < P(gay) x Z Pry(guyl2j) (4.6)
2 €05 (gay)
By integrating Equatiod.6into Equation4.5, the relevance score of the tetrfi.e., sr (1))

can be calculated as follows:

STg(t) = Z Pa&(t|d$) X Z m . Z P$y(ga:y|zj)

de €05 (t) 92y €T (1) 2 €05 (92y)

4.7)

To find the latent sub-topics i&, we use LDA, which provide$(z;|g,,). However, we

needP(g.,|2;), which is estimated as follows:

P(zj> X Pry(zj‘gmy)
Py (z5]d,)

Pry(gaylzj) =

Here, P(z;|d,) is estimated by the LDA model anél(z;) is the marginal probability of; in

G, which can be calculated based on the definitioh-pés follows:

P(z) = Z Pay(2|9zy)

2;€l'3(gay)

4.2.3.2 Global Relevance

The scoring functionr,(t) can be used to estimate the local relevance of a paragrgphG,

using the relevance of its terms to the user information sedtherefore, as indicated before,
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the global relevance aof,, to the complete user information needs that are discusgedsac
D' documents can then be calculated through the summatios @ddal relevance in every

d, € DT as follows:

Se) = ( > sw(t)) (4.8)

tedy,d, €D+ “gi€dz,tEg;
wheresr,, (t) estimates the relevance of tetrof paragraply; in documentl, € D™.

However, whileS;(t) can estimate the global relevance of the paragraph3finusing
this relevance to reduce uncertainties in relevant feattivat are discovered by various TFS
models and frameworks without losing the qualities of thginally discovered features must
be addressed. Therefore, in the next section, we addresstlesof adopting the proposed UR
method using a two-step tactic, by 1) scaling the relevahaeselected feature (e.g., a weighted

termt) and 2) re-ranking the scaled set of relevant features.

4.2.4 Re-Ranking Relevant Features

To effectively represent user information needs, we firssthaelect a set of terms that are
representative. To find such terms, a TFS model is seleated,as SVM Pumais et al.1999.

As a discriminative classifier, SVM finds a hyperplane thattlseparates the positive and the
negative classes. The discrepancy between normal valdebaimyperplane is used to weight
and thus rank the terms, and then a subset is empiricallgtedldrom these ranked terms.
Since SVM and other existing models consider a given doctineégvant if some parts of the
document are relevant, some terms selected by these mahetome from irrelevant or less
relevant parts of the document. Therefore, the selectedstetheir weights and their ranks
incorporate uncertainties. We aim to reduce these unoédsaiby effectively scaling the term

weights and re-ranking the terms based on their relevarioe eatimated by Equatioh8.

Let the weight of a ternmt estimated by a model (e.g., SVM) he,(¢) and its relevance,
estimated by Equatiod.8, be S (t). The re-ranking weight (i.e., scorej(t) of the term is
estimated by scaling,,, (t) by S(t) as follows:

w(t) = wn(t) x Se(t) (4.9)
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Then, the terms are re-ranked based on the new weight When re-ranking is applied to the
model (e.g., SVM), we call it the improved iModel (e.g., iISYMn intuitive interpretation of
w(t) is that it combines the paragraph-level relevance eviderittethe document-level rele-
vance evidence, which is estimated by the existing modelgefiucing uncertainty. However,
the sentence-level evidence is too specific, and our predirgiexperiments showed that such

evidence is not effective in our current relevant term mgiiag model.

4.3 Chapter Summary

This chapter presented SIF2, an innovative fusion-basetehfior selecting informative topical
terms from a collection of documents that discusses usemrdtion needs. The model extends
multiple random sets to fuse hierarchical LDA-based festiand accurately weight topical
terms on a document-by-document basis. SIF2 also comieeaggregated topical terms’
weights with their document frequencies to estimate a dlsbare. This fused global score
more accurately reflects the informativeness of a term tdkéyetopics of interest discussed
in the collection. The experimental results (see Sedi®&1) demonstrated that SIF2 attained
significant performance improvements in IF and RRT expenisieompared to all baseline
models. SIF2 demonstrates an effective hybrid fusionesgsator integrating the advantages of

unsupervised topic modelling and collection statistics.

This chapter also addressed the challenge of reducingtanuézs in relevant feature space
by using implicit paragraph relevance. The proposed UR atketlses topics in relevance
feedback discovered by LDA to estimate the implicit parpraelevance. Multiple ERSs
are used to model the complex relationships between featpegagraphs and topics, and to
deal with the associated uncertainties. The experimeesalts (see Sectioh 8.3 confirm the
proposed UR method’s merit as a feature re-ranking teclenigurelevance discovery. The
substantial improvement achieved by applying the propasetthod is due to the effective esti-
mation of paragraph relevance, as well as its use in estigiégature relevance. This research’s
theoretical contribution regards using multiple ERSs fodelling uncertainties associated with
the complex relationships between features, paragraphso@ics as essential entities in the
feature weight-scaling process. This study provides a @miog methodology for combining

paragraph-level evidence with document-level eviden@stionate feature relevance.

Despite the effectiveness of the proposed SIF, SIF2 and UtRlagathey are biased towards
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the most frequent topics or themes in the collection. Hidrdguent topics can overshadow less
frequent but equally important ones, which makes it chagilem to identify relevant features
that precisely describe the user information preferendésreover, the three fusion models
also cannot deal with relevant features that frequentlyeapin both positive and negative
feedback documents. Therefore, in the next chapter, twadvarks will be introduced to
deal with the limitations mentioned above by treating feagelection and feature weighting as
two independent tasks. To do this, the proposed framewottkkgwegrate different supervised
and unsupervised learning algorithms in addition to our&i& UR models to select and then

re-weight relevant features that describe user informateeds.



Chapter 5

Hybrid Fusions Frameworks for Relevant Feature

Discovery

This chapter describes two innovative and highly-effecframeworks that were developed to
identify relevant topical term§that reflect user information needs. The frameworks integra
different learning algorithms and multiple hybrid fusibased modules, which were developed
based on our SIF and UR models, to select and then re-weigitatderms at two separate
stages of features fusion. The first unsupervised framewsdakown as USIF. This framework
was especially developed to address LDA bias towards fregoeics in a collection of doc-
uments that can undermine less frequent but equally impioid@ics. The second supervised
framework is known as SSIF. The SSIF framework was develdapedanage the effects of
topical terms that appear repeatedly in both positive arghtnee user relevance feedback.
Section5.2 and Sectiorb.1, describe the USIF framework and SSIF framework, respelgtiv
Section5.3 provides a summary of this chapter. Both frameworks areuatadl in relation to

their IF and RRT applications. The experimental resultgaesented in Chaptéx

5.1 The Proposed USIF Framework

5.1.1 Introduction

As described above, relevant feature discovery aims tdifglenset of representative features
(feature selection) and estimate their relevance (feateighting) in relation to a user’s topics
of interest in a collection of relevant documen®ap et al. 2015 Li et al,, 2015 201Q 2013.
As noted above, as topic modelling algorithrniddi, 2012 Blei et al, 2003 Hofmann 2007]]

1The terms 'topical terms’, ’lexical features’, 'term’ anféatures’ are used interchangeably in this chapter.

121
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are the only algorithms that explicitly assume that docusiean exhibit multiple topics, they
are most suited to discovering relevant featulki[ et al, 2003 Gao et al. 2014h 2015.
Whether supervised or unsupervised, most relevance daisgcagchniques, including topic-
based models, conduct the selection and weighting of netefemtures as dependent tasks
[Manning et al. 2008h Robertson and Zaragoza009 Yang and Pederseri997. How-
ever, adopting a data fusion perspective, this study art¢juedtreating feature selection and
weighting dependently may be ineffective given the unaetiess in training collections and
that most these collections are topically unbalan@dddrbi et al, 2018a Lewis et al, 2004.
Notably, the use of sequential closed pattern mining tacsel@me representative features (i.e.,
patterns) has been effective in reducing noisy and reduridatures Li et al., 2015 201Q Wu

et al, 2009. However, the adoption of interestingness measures gugport and confidence)
in pattern mining algorithms to estimate the relevance etk¢hrepresentative patterns has
considerably undermined their effectiveness in représgniser information needs and led to

undesirable resultd [ et al., 2015 20117].

Both supervised and unsupervised relevance discoveryithlgs are affected by uncertain-
ties in the relevant documentalparbi et al, 20184. Notably, supervised algorithms require
large sets of manually-labelled training documents thay i@ labour expensive and time
consuming Algarni, 2011, Soleimani and Miller2014. Conversely, unsupervised algorithms,
particularly probabilistic topic modelling algorithmsgebiased towards the most dominant top-
ics in a document collection (i.e., topics that are sharethaypy documents in the collection).
However, even topics that are only briefly discussed in danismcould be important to users’
needs Alharbi et al, 2017h Anastasiu et al.2013 Jain 201J. Additionally, these methods
also appear to favour frequent sub-topics (i.e., themea)particular general topic of interest;
however, this can make it challenging to capture the themelevance of the features if these
themes are randomly discussed at the paragraph kNelibi et al, 20183 Chien 2014. Thus,
under an unsupervised framework, it is challenging to seégresentative features, as frequent
topics or themes may overshadow less frequent but equédlyaret themes. Additionally, can
also be challenging to accurately weight these featurethegsmay be unevenly distributed

across the relevant documents and paragraphs in a collectio

The unsupervised technique of clustering has widely beed ts gain an understanding
of unlabelled data and to facilitate the discovering of kiemlge from document collections

[Anastasiu et a].2013 Jain 201J. Document-clustering algorithms group similar docunsent



5.1. THE PROPOSED USIF FRAMEWORK 123

into clusters according to specified similarity measudeggarwal and Zhai2012 Anastasiu
etal, 2013. For many years, document clustering has been used iavatsystems to organise
documents around a single subject or topic. Such clustebéanguage models represent
a significant improvement over standard document-baseclinfitbzorovitsky and Kurland
2011aKrikon and Kurland2011, Liu and Croft 2004. However, the assumption that a cluster
of documents describes only one topic may be too simple gikahmost long documents
discuss multiple topics and themes. As the document-clagt@lgorithm does not depend
on the frequency of topics in documents to form a cluster wiilar documents Aggarwal
and Zhaj 2012 Li et al., 2014, it can be used to limit the impact of frequent relevant ¢spi
by treating each cluster in the collection as equally imguatrit However, unlike topic models,
clustering does not provide details of the topics in eacltely as these topics are hidden in
the clusters of the documents. Additionally, the clusgatgorithm does not explicitly provide
a way to select or weight the relevant features that may appeacluster (i.e., intra-cluster
features) or across all clusters (i.e., inter-clusteruieet). This study sought to address the
following question: Is there a method that effectively inmarates the advantages of document
clustering and topic modelling to discover the relevantuess that effectively represent user

information needs?

In this section, we present our innovative USIF framewarKThis framework integrates
document clustering and topic modelling to select and teemeight relevant topical terms that
describe users’ information preferences at imdependenstages. As Figuré.1 shows, the
USIF framework uses multiple fusion modules that were devadl based on the theoretical
foundations of our SIF and UR models. In the first stage, thB-Wi&mework selects a ranked
set of representative, inter-cluster, topical terms usingelegant method that conceptually
agglomerates relevant clusters in a taxonomic style amttsahe features at a specific level of
abstraction. This step ensures that the selected featwemabiased towards frequent topics,
as each cluster is considered equally important. The conabpgglomeration algorithm is also
integrated with our ERS-based SIF model to uncover eacheclsisiidden topics and estimate
the topical relevance of the intra-cluster features befbeeselection process occurs. In the
second stage, the framework estimates the relevance oélietesd topical terms based on the

fusion of their topical and thematic significances and tgebal representativeness across all

2Parts of this framework were published ilfiarbi et al, 2017t and [Alharbi et al, 20183. The abbreviation
'USIF’ stands forUnsupervisedelection ofl nfformativeFeatures.
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of the documents in the collection. Finally, the framewosesi the fused score estimated in
the second stage to re-weight the selected, ranked toproastidentified in the first stage. The
results of experiments, which were conducted using theFostollections of documents from
the standard RCV1 dataset and TREC filtering topics, shotoilvaJSIF framework is highly
effective. It significantly outperforms state-of-the-aupervised and unsupervised models as

presented in Sectiof.8.4and analysed and discussed in Sec@dh4
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Figure 5.1 The structure of the USIF framework.

Figure5.1 not only illustrates the fusion modules of our USIF framekydiut also depicts
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the used entities; that is, the relevant document clusigrthe set of paragraphs in the
collection D, their topicsZ and vocabulary lisf). This figure also shows the flow of the
adopted lexical (terms) and statistical features by thedéwmork’s fusion modules. Additional
details about the proposed USIF framework are describetianfdllowing sections. First,
Section5.1.2 discusses the problem formulation. Next, Secttoh.3 provides an overview
of unsupervised learning algorithms. Following this, 88tb.1.4.1describes the framework’s
first stage and Sectiob.1.4.2outlines the details of the second stage of the USIF algurith
Next, Sectiorb.1.5describes the fusion of the framework’s two stages of theFUsigorithm.

Finally, Sectiorb.1.60utlines the time complexity analysis.

5.1.2 Problem Formulation

It was assumed that a user has a collection of long docunigntthat are pertinent to the
subject ofeconomic espionagand its related topics of interest, suchiadustry espionage
technical espionagecommercial espionagand corporate espionageTo further investigate
this subject, the user wishes to enrich the collection blggyatg more relevant documents from
the Web. To achieve this goal, the researcher needs a refeature discovery framework that
can accurately select and give weight to a representativefgsepical terms that effectively
describe the collection. The user can then use these wdigétes to collect the required
relevant documents. However, it should be noted that symbg®f interest are not generally
evenly distributed in a collection in which some topics aexjient and other topics are non-

frequent.

Frequent topics refer to topics featured in many documerdsollection. Conversely, non-
frequent topics refer to topics featured in a lower numbeloguments. Many equally important
topics may be non-frequent, as a collection may not havecgrifidocuments to determine the
optimal frequency of these topics. LDA is an effective toml fliscovering latent topics in a
corpus that are different to those topics of interest (seea) However, LDA favours the most
frequent topics; for example, the generated topics miginbee relevant to the topic of interest
commercial espionageas it is featured in most documents in the collection. Cqusatly,
many useful but non-frequent topics are overshadowed loyémet topics; however, this makes
both the selection and weighting of the features descrilyetthése less frequent topics rather
challenging. This problem is further complicated in raatto long documents, as it is highly

likely that a topic may have multiple and unbalanced themes 6ub-topics). Further, as the
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long documents may suffer from uncertainties related &leéuant or not very relevant para-
graphs (see Figurke.3) and other LDA-related problems (see discussions in pusvebapters),
the necessity of a more holistic solution, which addresidbese problems in the form of a

framework for relevant feature discovery, increases.

One possible solution to the problem of the LDA bias towahgsftequent topics of interest
is to group the documents of the collection into clustergtam their similarities. Each cluster
identifies a topic regardless of the frequency of the docus#irat discuss this topic in the
collection. Each cluster is treated equally to limit theseffof frequent topics. Next, the clusters
in the collection are conceptually agglomerated in a taruocstyle to select a set of topical
terms that are representative of all topics in the clustéosvever, the selected terms might not
reflect the detailed topics and themes in the collection,@s maditional clustering algorithms
assume that a cluster describes a single topic; howeveragiproach may be ineffective, as
long documents often discuss multiple topics and themegs,TtDA was adapted and used to
discover the hidden topics and themes in every cluster aimdage the informativeness of each
topical term based on its topical and thematic significanoese original collection rather
than on any artificially formed clusters. The purpose of gsiiocument clusters to select
representative topical terms is to reduce the bias of tomdeting towards frequent topics.
In the following section, a brief description is provideddcument-clustering and the LDA

model in relation to two well-known unsupervised learnitgpaithms.

5.1.3 Background Overview

In the first stage of the proposed USIF framework, the reledanument seD* is statically
organised into groups (aka clusters) using a clusteringyihgn that is based on similarity (aka
distance) measuresifiang 200§. This study assumes that a relevant long docurddmis a
set of paragraphs and that each paragraph contains a bagnst t€he set; is the set of all
paragraphs inD*. Additionally, a cluster, in this study is considered a subset of relevant
documents that share a similar topic of interest. Thusster(D*) = {C},Cs, ..., C,}, such

thatC, = {d, : « < M,d, € D"}, whereM = |D*|, L is the total number of clusters iB*

that is automatically identified by a document-clusterilgpeathm and thus”, C D*.

5.1.3.1 Document Clustering

ClusteringD™ was completed in the first stage of our framework using thedbiisg K-means

(BKM) algorithm [Steinbach et al200(, which uses a partitional clustering technique. This
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algorithm is widely used by researchers to cluster largaud@nt collections because of its
low computational overheadé\fastasiu et al.2013 Beil et al, 2002 Savaresi and Boley
2001]. The BKM algorithm groups similar documents together idwster by maximising the
intra-cluster similarity between documents and miningdine similarity between each inter-
cluster (i.e., by maximising the inter-cluster distanc€he documents in our framework are
represented in the vector space model as BowW. The BKM algoniequires that pairwise doc-
ument similarity be calculated using some distance measaueh as the Euclidean distance,
cosine similarity, the Jaccard coefficient and the Pearswrelation coefficient $teinbach
et al, 200J. Our USIF framework uses cosine similarity as the distam@asure used by
the BKM algorithm, as it is the most widely used similarity asere and has been shown to
work effectively with the BKM algorithm $teinbach et al200J. The BKM algorithm also
requires that the number of clusteisbe specified beforehand. However, it is challenging to
specify the optimal number of clusters accuratéha$ et al. 2008 Jain 2010d. In our model,
we do not assume that the number of clusters would be optnailer, a trial-error approach
is adopted in our experiment. Secti®érY provides further details about how we experimentally

predetermined the number of clusters for a collection oLidoents.

5.1.3.2 Topic Modelling

In both stages and for both tle" collection and each clustét, C D, our USIF framework
uses LDA to reduce the dimensionality of the relevant doausig@aragraphs i to a set of
manageable topicg whereV is the number of topics. In accordance witbdo et al. 2013,
each paragraph, € G is assumed to contain multiple latent topics. As mentiorexya, LDA
defines each topig; € Z as a multinomial probability distribution over all termsfin or C,. as
p(ti|z;) inwhichQ represents all terms i+, ¢, € Qandl < j <V, such thag‘iﬂ'p(ti\zj) =

1. LDA also represents each individual paragrapld-ias a probabilistic mixture of topics as
p(zjlg). As a result, and based on the number of latent topics, thieapility (local weight)

of term¢; in paragraphy, is calculated byp(t;|g,) = Z;./Zl (p(t:]z;) x p(zlg,)). Finally,

all hidden variablesp(t;|z;) and p(z;|g), are statistically estimated by the Gibbs sampling

algorithm [Steyvers and Griffiths2007.

In the current literature (e.g.Bpshar and Li2017 Bashar et a).2016 Gao et al. 2014h
2019), each topic; is represented with the topterms sorted in descending orderjigy; |z;).

These topk terms inz; are closely related to topig, and there aré” such topics. This kind
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of representation is effective in the analysis of individiogics; however, this kind of topic
representation is not effective in estimating the topiestvance of features for representing
user information needs. If terms in a topic are discardetiateanot in the topk list, important
information may be missed. Thus, instead of representinl &pic by its topk features, we
use multiple ERS to model the complicated and impreciséogiship between the terms, topics
and the relevant collections’ paragraphs and to estimatéohical and thematic relevance of

the collection’s topical terms.

5.1.4 USIF Fusion Stages

Unlike traditional unsupervised relevance discovery nigdie proposed USIF framework
differentiates between the selection and weighting pseesf relevant features by using two
independent feature fusion stages. In the absence of ahsgaide and labelled training set
and given the existence of uncertainties, this differ¢imiaapproach facilitates the effective
fusion of different lexical and statistical features theg andependently discovered and esti-
mated at each stage. Thus, the selection task focuses aficspspects, such as identifying
representative topical terms from a set of equally relectudters, while the weighting task
accurately estimates a more accurate fused score for edbbs# topical terms using entities
in the collection other than the artificially formed clustemhe following two sections provide

further details about each stage of the proposed USIF framiew

5.1.4.1 Stage 1: Topical Term Selection

As noted above, a document-clustering algorithm is usetarfitst stage of our USIF frame-
work to alleviate the impact of frequent topics in the docabhwllection and thus limit the bias
of LDA towards these topics. The formed clusters are thed asdeaf nodes in a hierarchical
taxonomy that is conceptually agglomerated during thectdperm selection. Several studies
[Blei et al, 2010k Chien 2016 Weninger et al.2013 have used taxonomy models to represent
topics and documents of a corpus. A hierarchical taxononaydesmmon technique whereby
items are conceptually grouped into increasingly smaltanglarities within which each non-
leaf node is a conceptual agglomeration of its siblirggi fand Hofmany2004 Weninger et al.
2017. A node in a taxonomy can be described as the sum of its sugme-features and node-
specific modifier featuresfwang and Sigal2014. This implies that the features found on the
path from the root to the leaf describe the leaf (the clugigjinot et al.2011. The biological

classification of species is a good example of a taxonomyrunbieh species are placed only
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at the leaf nodes, while the inner nodes, such as those foapes and mammals, conceptually
agglomerate the species. The path of each species throaigdxttmnomy can be used to describe

such species.

Inter-Cluster Topical Term Selection

Figure5.2 shows the structure of our taxonomic selection model, wheirg a clusterg,, is a
non-leaf node that conceptually agglomerates clusters;asd topical term. In this taxonomy,
for example,a, is the conceptual agglomeration of the clustersc,, a; is the conceptual
agglomeration ofi, andas; anda; is the conceptual agglomeration @f anda;. The noder;

at abstraction level three is described by the topical tetranda; conceptually agglomerates
all the clustersd; to cg). This means that all the clusters share this topical termhe node,

at abstraction level two is described by its node-specifictd termst, andt; and the super-
node topical ternt; anda, conceptually agglomerates the clusters franto ¢,. This means
that the topical termgt,,t,,t3} are shared by the clusters framto ¢,. Thus, the nodes in
higher abstraction levels are more general and have fevpéraloterms, while the nodes in
lower abstraction levels are more specific and have moredbf@rms. The abstraction level
is determined based on the application, the topical teropsimed to describe the nodes at that

level are then selected as the representative topical w@frthe given collection.

) L) L L) L) L) L] (e

Figure 5.2 The conceptual agglomeration of relevant clusters.
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Intra-Cluster Topical Term Selection

As mentioned above, the assumption that a cluster of longrdeats can only discuss one topic
is rather simple, as a sample document may include multgiéeed sub-topics or themes (see
Figurel.l). Thus, these hidden sub-topics need to be uncovered atajical relevance of any
terms that appear frequently across the cluster’s docunfeet, the intra-cluster topical terms)
need to be estimated. For this task, our SIF model was apjaliedch cluster. Some systems
may ask for the tog: representative topical terms rather than terms at theaattistn level. For
example, an IF system may ask for the top six terms from Figuzelf we select level two,
only four terms (¢, ts, t3, t4}) are identified. Conversely, if we select level one, the fnge
depicted in the figure are identified; however, such a highbrams more than required. In this
case, we select all the topical terms required to describadldes in level two (the lowesill-
level)) and are given four terms. The remaining terms from level(time highespartial-level)
are then selected using the score fusion functi@p (as described in the following section).
The following section also discusses the second stage oU8UF framework in which the
topical and thematic relevance of the inter-cluster tdptieans are estimated based on their

appearance in the entire relevant documents of the calecti

5.1.4.2 Stage 2: Topical Term Weighting

In the first stage of the USIF framework, a set of represamdatinter-cluster topical terms are
selected via the integration of document-clustering apittmodelling (as determined by the
proposed conceptual agglomeration algorithm). Our preshoproposed SIF model was used
to relax the single topic assumption of the clustering appinand select the most representative
intra-cluster topical terms. The conceptual agglomenaticequally relevant clusters was used
to effectively select those terms that represent the eésstapics discussed across all the formed
clusters. However, the estimated topical relevance of éach in each cluster could not be
generalised due to the unbalanced set of clusters. Thuseigseicond stage, the thematic and
topical significances of each inter-cluster term are raveded based on its original appearance
in the collection. To do this, the theoretical merits of olif & odel and the UR method are

used.

Term Thematic Significance

Themes refer to the main ideas of a document set and are ittypdixpressed across paragraphs

[Chien 2014. Thus, paragraphs are used to capture the thematic relewdnerms. Thematic
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relevance captures the general focus of user informatiedsieLetG be the set of paragraphs
in the relevant document®*. Each paragraph, € G is a probabilistic distribution over the
term space?, which is modelled using set-valued mappingdg,). It is assumed that a term’s
t; thematic relevance is a probabilistic mixture@j which is modelled using the inverse set-

valued mappind’; *(¢;). Figure5.3shows all the proposed set-valued mappings.

- J

Figure 5.3 The mappings of andI'~*! for estimating the thematic significance of terms.

The setG is the evidence space and a set of terms represents a pdragrdpwever, a
term’s relevance level to the evidence space is unknowns,Tthe probability distribution,
is defined using~ to indicate this uncertainty. Let the probability of a tetnbe relevant tgy,
be P(t;|g,), where, for simplicity, it is assumed th&tt;|g,) = 1if t; € g, andP(t;|g,) = 0
if t; ¢ g,. Next, ERS(Vy,T) is used to model and describe the relationship between the
paragraphs and terms. As each paragrgpis described by the probability distribution over
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the set, the set-valued mapping of
TG — 2200 — ()

such that
[i(g,) = {t: € QP,(tilg,) > (}

is proposed to represent and describe the relationshipeleata set of terms and a paragraph,
wherel'y(g,) = {(t1, P,(t1]gy)), ...} for all g, € G and( is a user-defined threshold assigned
to¢ = 0.

As there is a need to identify the relevance level of a seleetent;, the inverse set-valued
mapping ofl’; is considered to estimate a representative distributipon GG. For all terms

t; € Q, the inverse set-valued mappinglafis defined as
ryt:0—2¢

such that
Il (t) ={g, € Glt; € T'1(gy)}

to represent and understand the relationships betweematet a set of paragraphs. Thus, the
thematic relevance weight, (¢;) of a term¢; to a user’s information needs can be estimated as

follows:

Wy (t:) oc wy(ti) o Z Py (tilgy) x P(gy) (5.1)

gyEI‘fl(ti)
whereP(g,) is the probability ofy, being significantly relevant to the main themes that describ

what the user wants (see discussion below).

As paragraply, may discuss multiple sub-topics (i.e., themes), it is agslithatg, is a
probabilistic mixture of a set of latent topi¢s in D", which is modelled using set-valued
mappingl'y(g,). In this case/ is the evidence space. The setrepresents the relevance of
g, to the user’s information needs. The more relevant topicaragsaph covers, the more the
paragraph’s relevance increases. This motivation imptieselevance of frequent topics (i.e.,

topics shared by many paragraphs). However, the relevaneedf g, is unknown. Similarly,
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as before W, is a probability distribution defined of to indicate this uncertainty. The pair
(Uy, I'y) represents an ERS that models the complex relationshipeleetparagraphs and latent

topics.

Let the probability of a paragrap) be relevant to a given topi¢ be P(g,|z;). As each
paragraply, is described by the probability distribution over the gebf topics, there is a
set-valued mapping of

Ty G — 22701 _ypy

such that
[a(gy) = {2 € Z|Py(gyl2;) > &}

wherel's(g,) = {(z1, Py(g9y|#1)), ...} for all g, € G and¢ is another user-defined threshold

assigned tg = 0 in this study. Thus, the relevancegfto D™ is estimated as follows:

W (gy) ox P(gy) o Z Py(gyl2) (5.2)
2j€l2(gy)
Using Equatiorb.1and Equatiord.2, the thematic relevance weight,(¢;) of the term; is

calculated as follows:

wy(t;) = Z Py(tilgy) % Z Py(gyl2) (5.3)

gy €T () z;€l2(gy)

To identify the latent topics inD*, the LDA was used to estimate z;|g,); however,
P(g,|%;) is needed. By applying Bayes’ theorem, it is found tRatg,|z;) = ’%
In this instancep(g,) is a prior distribution that can be ignored aptt;) is the marginal

probability ofz; in G.

Term Topical Significance

Topics are specific matters in a general subject in a catlectiopical relevance captures the
specific focus of user information needs. In accordance tepic modelling, it is assumed
that each topie; is defined by a probabilistic distribution over the termsha vocabulary?,
which is modelled with the set-valued mappifigz;). In estimating the topical relevance, it

is assumed that the topical relevance of a teroomes from a probabilistic mixture of a set of
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topicsZ, which is modelled with the inverse set-valued mapgigg(t;). Figure5.4shows the

proposed set-valued mappings.

( 7

. J

Figure 5.4 The mappings of andI'~! for estimating the topical significance of terms.

Additionally, similar to topic modelling, it is assumed tleparagraply, is a probabilistic
mixture of a set of topic&, which is modelled with the set-valued mappingg, ). It is also
assumed that frequent topics (i.e., topics featured in parggraphs) are important as, they are
more likely to discuss the general subject in the collectiDme relevance of a topic is defined

by a probabilistic mixture of a set of paragraghswhich is modelled with inverse set-valued
mappingl’; ' (z;).

In this case, the seX is our evidence space. A set of topics can represent thealopic
relevance of the selected tetmbut the relevance level remains unknown. Thsjs defined
as a probability distribution on the specified evidence spgacaepresent this uncertainty;
is also used to find the relevance level of the term. As thele;jsas probability distribution

defined on the evidence spakethen the pai(W;, I's) is an ERS. As each topig is described
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by the probability distribution over the set of terfiisthere is a set-valued mapping of
Ty Z — 201 _ fgy

Is3(z;) = {ti € QP;(ti]z;) > <}
wherel's(z;) = {(t1, Pj(t1]2;)), ...} forall z; € Z ands is assigned as ‘0’ in this research.

We also need to determine the relevance level of the terhus, we had to consider the
inverse set-valued mapping bf to estimate a suitable distribution fér; on Z. For all terms

t; € Q, the inverse set-valued mappinglofis defined as
;' 0 — 27

T3t (ti) = {2z € Z|t; € T3(z)}

Thus, the topical relevance weight (¢;) of the termt; is estimated as follows:

Uy(t) ocwa(t) oo > (Pyltilzy) x P(z)) (5.4)

z; €05 (1)
whereP(z;) is the marginal probability distribution of; over paragraph set. If P(t;|z;) is
normalised, them’;(¢;). This is the same as the marginal probability distributityi;) over the

evidence space.

However, the distributior(z;) is unknown. To estimaté’(z;), our next evidence space
G is considered. A set of paragraphs can define the relevanadagfic z; in the collection;
however, as before, the relevance level remains unknowns,Tih, is defined as a probability
distribution on the evidence spacgto indicate this uncertainty. Thus, the péir,,I';) is an
ERS and is defined on the evidence sp&ceAs each paragrapd), is defined as a mixture of

topicsZ in the collection, the set-valued mappinglafis defined as as
Iy:G— 22701 g

such that
F4(9y) = {zj € Z|Py(zj‘gy) >0}
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wherel'y(g,) = {(z1, Py(z1]9y)), ...} forall g, € G.

As the relevance level of a topig needs to be determined, the inverse set-valued mapping
of 'y must be considered to obtain a probability distributiort thatsW, on . For all topics

z; € Z, the inverse set-valued mappinglofis defined as
Itz —2¢

such that

Ly'(2) = {gy € Glz; € Tu(gy)}

The probability distributionV, is proportional to the relevance of a topic that is estimated

follows:

Uy(z) = P(z) o< > (Pylzlgy) x P(gy)) (5.5)
9y€Ty ' (25)
where P(g,) is the probability distribution o, over the given collection. In this research, it
is assumed thaP(g, ) is equally likely for allg, € G. If P(z;|g,) is normalised, them ,(z;),

which is the same as the marginal probability distributit(, ).

Thus, using EquationS.4 and 5.5, the topical relevance weight,(¢;) of the termt; is

calculated as follows:

w,(t;) = Z Pj(ti|z;) % Z Py(z19y) (5.6)

z; €05 (t) 9y€ly ' (%)

5.1.5 Ranked Feature Fusion

The feature fusion stages of the USIF framework operatepiecigently (see Figure 1). In the
first stage, two modules are integrated (i.e., the intrateltopical relevance and the conceptual
agglomeration) to select a set of representative topicald€i.e., lexical features). In Section
5.1.4.1 it was noted that some systems might ask for thektaoppresentative topical terms
rather than specifying the level of abstraction. In suctesawe select all the terms required
to describe the nodes in the lowest full-level. We then gdlee remaining terms from the

highest partial-level using a ranking score calculated-3y). In this study, we use(t;) =
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w,(t;), which is derived from each cluster rather than the colbectiWhen a parent node in the
taxonomy agglomerates children nodes, the score of teimmthe parent node is calculated by

summing up the term scores assigned-py) from the children nodes.

In the second stage, the selected topical terms, which akedabased on the aggregated
scores from the first stage, are re-weighted using the fuseé gstimated by the feature fusion
module (see Figur&.1). The module estimates the relevance of each selectedatdpitn
in relation to its topical relevance, thematic relevance s global statistic in the collection.
Thus, let the probability of a selected tetprof topically relevance bé(¢;|Z) and the term of
thematically relevance bE(¢;|G). The joint probability isP(¢;|Z) x P(t;|G). Additionally,
let df (¢;) be the document frequency &f If it assumed thaP(¢;|7) « w,(t;) andP(t;|G) =
wy(t;), we can writeP(t;|Z, G) o< w,(t;) x wy(t;). By using the concept of joint probability,

the fused feature score is calculated as follows:

w(ts) = w,(t) x w,y(t) x df (L) (5.7)

Thus, if the setl” = {t,t,,...,t} represents the topical terms that are selected in the first
stage, the ranked feature fusion module (see Figuehen produces the sét={(¢;, w(t;))|t; €

T"}, which represents the relevant features that describestrsunformation needs.

5.1.6 Unsupervised Multi-Fusions Algorithm

Algorithm 3 shows the implementation of the main steps of our proposed tr&8mework.
Lines 2 to 9 estimate the topical relevance of the selecteddefeatures, line 8 determines
a distribution proportional to marginal probability disution P(z;) and line 9 ascertains the
summation ofP(¢;|z;) x P(z;), which is the estimated topical relevanece(t;) for a termt,.
Lines 11 to 14 show the set of selected topical terms withesponding fused scores, line 12
checks whether the terfd[i] is a selected feature obtained by the integration of ouregtual
agglomeration of clusters and;), line 13 estimates the relative term importandé of term
T'[i] and line 14 adds the terff{[i] and its scorev[i] as a pair to the sét. Line 15 returns the

setT of feature score pairs.

5.1.6.1 Time Complexity Analysis

The proposed USIF framework uses LDA and the BKM algorithritsrfeature fusion stages.

As the USIF framework was based on our SIF model, it is in$iegio the number of topics
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Algorithm 3: USIF algorithm

Input : A matrix P,, that containg(z|g), a matrixP,, that contains
P(t|z), a vectordf that containsif (¢), a vectorl” that contains
the representative topical terms and a ve€ldhat contains the
vocabulary terms.

Output: A setT of relevant features with corresponding scores.

1 Letw, be a vector of siz&”;
2 fori=1toT" do

3 w,[i] = 0;

4 Let P, be a vector of siz&’;

5 for j=1toV do

6 Pz[]] = 0;

7 for k. =1to N do

8 | P.lj] = P.j] + Pyli][K];
9 w,[i] = w,[i] + Pe[i][j] x P:[j];
10 LetT = (;

11 for:=1t07" do

12 | if Q[i] € T" then

13 wli] = w,[i] x df]i];

w || T =TU{(Ti),wli)};

15 returnT

parameter(’) (see Sectiot®.9.4). Thus, the LDA'S time complexity continues to beO(|G|)

for the second stage and O(|G...| x |C|) for the first stage wherg7., | is the total number of
paragraphs in clustef. documents. The time complexity of the BKM algorithm is linéathe
|D*| [Steinbach et al2000Q, which is relatively small in our case. Thus, the time coextly

of the BKM for the first stage isc O(|D*|). However, both algorithms only need to be run

once and can be run offline.

Line 1 of Algorithm3 takesO(1) basic operations to complete. Lines 2 to 9 tédkeZ| x
|T"| x |G]) basic operations to complete. Line 10 tak@gl) basic operations to complete.
Lines 11 to 14 tak&)(|7"|) basic operations to complete. Line 15 tak®d ) basic operations
to complete. The total basic operations required by therihgo areO(1) + O(|7"| x |Z| x
IG]) +O01)+O(T"]) + O(1) o< O(|T'| x | Z| x |G|). Thus, the time complexity of Algorithm
3isO(|T"| x |Z| x |G]). As the number of topics is usually very small and the peréoroe is
not sensitive to the number of topics, the required time deriy is effectivelyO(|1"| x |G]).
However, it must be noted thét”’| is small wherel < |T’| < k and our USIF is not sensitive

to the parameter (see Figures.27][right]).
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5.2 The Proposed SSIF Framework

5.2.1 Introduction

As a set of irrelevant documents, negative feedback hasébeensively used in many relevance
discovery models to enhance the selection and weightirgpbfifes that are specifically relevant
to what the user needd.i[et al,, 2015 2011 2012 Tao et al, 2011, Yuefeng and Ning
20049. However, using negative feedback is challenging, asetllesuments are not domain-
specific; rather they are topically diverse, skewed ances@ifbm uncertaintied|i et al., 2011,
2012 Zhong et al.2013. Additionally, collecting high-quality negative documts is difficult,
expensive and time consumingl§arni, 2011, Soleimani and Miller2014. As unsupervised
relevance discovery models are not discriminative, thaynot deal with the features that
frequently appear in both positive and negative feedbgidu[et al, 2010 Man et al, 2009.
Such features are noisy and problematic and may hinder tHerpmnce of many IR, IF,
DM and ML applications, as these features cannot be usedstmgliish between relevant
and irrelevant documents. Supervised models are disaimenand developed to consider
positive and negative samples in training collectionsedédhtly Poachims2002 Man et al,
2009 Sebastiani2004. However, supervised models are sensitive to: (1) thaifeaype they
use Lietal, 2015 2013; (2) the uncertainties available in any positive sampfdlérbi et al,
2018aLi et al., 20174; (3) the skewness of one sample compared to anothet fal., 2017¢
Xue and Zhou2009; and (4) the effectiveness of the discrimination algarntfivian et al,
2009 Yang and Pederse@997. This study considered whether a method could be developed
that combines the advantages of both the supervised angemssed learning methods to

overcome their limitations.

Of numerous unsupervised fusion techniques, topic-basetels are the only models that
explicitly assume that a document may contain multipledsmir themesBlei et al, 2003
Gao et al. 2014h 2015. These models, specifically LDA, learn a function from a eét
unlabelled documents that describes the hidden topiaattstes (e.g., latent topics) available
in the documentsHlei et al, 2003 John Ly 201QJ. The focus of this learning is to weight
features from the detailed composition of the documents wag that allows the function
to generate the hidden structures. Thus, such models catifydeistributions of features to
summarise specific aspects in documents (e.g., the topitteres or some essential aspects
of meaning) Blei et al, 2003 Hofmann 2007. The feature distribution does not overfit the

given documents (or collectioniB[ei et al, 2003 Wei and Croff 2009. However, the features



140 CHAPTER 5. THE USIF & SSIF FRAMEWORKS

may not be specific to the topics of interest in the collectemssome features may appear in
documents that are not relevant to these topli¢sef al., 2015 201J. Additionally, unlike
many supervised models, the SVM uses a set of labelledigagnamples to learn a function
that associates new examples with corresponding laBelschims2002 Man et al, 2009.
The focus of this learning is to select and weight featuresifthe training examples in a way
that allows the learned function to separate one label frootheer. Thus, this learned function
can identify the discriminative power of features to sefmeagiven collection of documents
from other collections and can be used to select specifiafeafloachims1998 Sebastiani
2003. However, the function cannot address hidden semantictstres to summarise a given
collection. Consequently, the SVM model performs poorly felevant feature discovery as
reported in several studieslparni and Li 2013 Gao et al. 2015 Li et al., 2015 2011, 2010
Zhong et al.2012.

This section presents our innovative and highly-effeci@F framework. This framework
discovers specifically relevant topical terms that refles#rg’ information preferences. The
framework integrates supervised and unsupervised atgasito select and then weight these
topical terms at two independent stages of feature fusioike bur USIF framework, the
SSIF framework also adheres to the same multiple fusioreglyan its stages and the fusion
modules are also developed based on our SIF and UR modelbe liirgt stage (see Figure
5.5, the SSIF framework selects a set of representative, wasgtopical terms using the
discriminative SVM algorithm incorporated with the adaptéR method. This stage ensures
that the selected terms are specifically relevant to whaigkeneeds, as the SVM requires that
both relevant and irrelevant documents and the availaldertainties in the relevant documents
be considered before applying the SVM. In the second sthgeSSEIF framework estimates
the informativeness of the selected specific terms from tisé dtage via the integration of
their topical and thematic relevance and their global egheity in the collection of relevant
documents. As users are normally interested in relevanirdeats, the framework uses the
estimated relevance from the second stage to re-weightqca&e) the selected weighted terms
of the first stage. The experimental results, presentedatiddes.8.5and discussed in Section
6.9.5 show that our SSIF framework is more highly and significaetfective than both popular
and state-of-the-art baseline models despite the featinegduse, how they fuse them or even

the learning or mining algorithms that generate these featu

3'SSIF’ stands foiSupervisedSelection ofl nformativeFeatures.
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Figure 5.5 The structure of the SSIF framework.

As Figure5.5shows, the proposed SSIF framework uses both positive agatine training
documents for feature selection in the first stage and udggeevant documents for feature
weighting in the second stage. As noted above, the frameaddnds multiple random sets to
model the complex relationships between different emtitrethe relevant collection and thus
estimates a more accurate relevance score for topical teAsd-igure5.5 shows, the used
entities are the collection’s terms, paragraphs and tlemtidbpics in the paragraphs. Figure

5.5 also shows the flow of the features (lexical and statistibatjveen the fusion modules.
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The following sections describe our SSIF framework in defarst, Sectiorb.2.2outlines the
problem formulation. Next, Sectidn2.3provides details of the fusion stages of the framework.
Section5.2.4then outlines how our SSIF framework integrates betweerothputs of each

stage. Finally, Sectiof.2.5describes the SSIF algorithm and its time complexity.

5.2.2 Problem Formulation

Assume that a user maintains a collection of news stdnder research purposes. The col-
lection contains a set of documents that are related to sec@bmic espionage’ scenarios
that have occurred around the world. However, the user ig onérested in some forms
of espionage. Thus, the user decides to split the colledflanto a relevant (i.e., positive)
collection D* and an irrelevant (i.e., negative) collectidn. The relevant documents in
collectionD™ discuss the topics of the scenarios in which the user isdsted, such as ‘industry
espionage’, ‘technical espionage’, ‘commercial espi@amnd ‘corporate espionage’. The
user keeps irrelevant news documents in thecollection that discuss unwanted topics such
as ‘military espionage’ and ‘political espionage’. To ehwiD* and remain abreast of new
scenarios of economic espionage, the user needs to colteet news documents from the
Internet that are pertinent to the topics of interesbih. To achieve this goal, the user needs
a framework for selecting and weighting features to desctite collection effectively. The

weighted features will be used to gather the relevant doatsne

Based on the above example, it is likely that there will be ynstmared features between
relevant and irrelevant topics of interest in both thé and D~ documents. However, given
that the user is only interested in the topicsiof, it requires more emphases on the relevant
information that comes fron* documents. The irrelevant information available in fhe
documents is also useful and needs special treatment. Tihiile traditional, supervised, rele-
vant feature discovery models, the proposed SSIF framefetidws the approach of our USIF
framework by treating feature selection and feature wedghtwo independent feature fusion
tasks. The SSIF framework integrates three crucial cheniatits (see below) of important
features to ensure effective fusion and thus accuratefctseaind weights the topical terms to

effectively represent the user’s information needs.

 Feature Specificity Selecting features that can discriminate betweenttiecollection
and theD~ collection is critical Maxwell and Croft 2013. Fang et al. Fang et al.

2004 argue that a new document that has more occurrences ofisfgeatures should
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be favoured as relevant to a given corpus. Thus, the feasin@sld be specific to the
given collection. We argue that a supervised learning &lyaris effective for selecting
features that are specific to the collection. Some examplastential supervised learning
methods are SVMJoachims199g, BM25 [Robertson and Zaragoz2009 and RFDG,
[Lietal, 2019.

» Feature Informativeness The features should represent the essential aspects of mea
ings of the user’s information needs. If the informativeneka feature is increased, then
the chance of a document matching the feature being relévdahe user’s information

needs is increased. Thus, informativeness should incprasision.

» Feature Exhaustivity.: The features should be exhaustiveigfeng and Ning2004 of
the user’s information needs. It should be noted that thaestivity of a feature refers
to the coverage of various subjects of the user’s informmatieeds. If the exhaustivity
of a feature is increased, then the chance of the featurehingta relevant document is
increased. Thus, exhaustivity should increase the regadélducing the chance of dropout

of a relevant document.

The remaining problem relates to determining how to acelyastimate these three aspects
and integrate them. This research showed that a set of ésdfiust need to be found that are
specific to a user’s information needs. Next, the relevantiesse specific features needs to be
jointly estimated from their informativeness and exhawstess. This research incorporates su-
pervised (i.e., BM25 and SVM) and unsupervised (i.e., LD#grhing algorithms to determine
the specific features and uses both the topical relevancéhanthtic relevance of a feature to

estimate its informativeness.

5.2.3 SSIF Fusion Stages

Similar to the USIF framework, under the SSIF framework, thgks of feature selection
and feature weighting are undertaken independently at iffereht fusion stages. However,
unlike under the USIF model, the SSIF framework treats thectien task as a supervised
problem during the first stage to identify those features #éin@ specific to the relevant topics
of interest in theD™ collection, but not those that are irrelevant and capturgdhle D~

collection. Additionally, similar the USIF framework, asuser can only be interested in

relevant documents, the SSIF framework views the weightisg in the second stage to be
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an unsupervised problem. It uses the positive collecfiohto estimate a more accurate
weight for each specific feature selected from the first steigsvever, due to the uncertainties
available in positive documents, the hugely diverse topidhe negative documents and the
large number of common features between both positive agative documents, the selection
and the weighting problems are challenging. The next twd@ecexamine the feature fusion

stages of the proposed SSIF framework.

5.2.3.1 Stage 1: Selecting Specific Topical Terms

This research uses the supervised learning SVM to selecifispeatures (i.e., topical terms
that are related to the topics of interest). However, the S¥ term-based model and does
not consider any latent topical structure in either positivnegative training documents. Thus,
at the first stage, to add a topical representation in an amphanner, the SVM is integrated
with the adapted version of our UR method (see Sediidm4.9. This integration sought to
reduce the uncertainties il™ documents, as they discuss the topics of interest for theamse
thus assist the SVM to learn a more accurate hyperplane ¢asiloed in the following section).
To do this, the SVM has to first be trained. Different typesrofial feature weights are used
to represent the training documents (e.g., IDF, TFIDF, BM28 etc.). From those weights,
the BM25 is combined with our UR method, as it is superviseadl @grformed the best in our
UR experiments (see Secti@8.3and our study published imrA[harbi et al, 20183). The

following section gives a brief description of the SVM.

Support Vector Machine

A SVM is a supervised classifier that is theoretically defibgda hyperplane that separates
relevant and irrelevant documents of a class. First, thesilar learns a hyperplane from a
set of training examples. Then, the learned hyperplaneead ts categorise new examples
based on which side of the hyperplane a new example sits. alio tihe SVM to classify
documents, each document is represented with a list of texightvpairs. Each term in the list

is a unique term in the document and the corresponding watgitiuted to that term represents
its significance in the document. The equation of a hypemiaf - T + ¢ = 0, wheref is the
weight vector,z is the term vector and is a constant. In the learning process, the SVM sets
B andec. This allows the hyperplane to optimally separate the p@sftelevant) examples and
negative (irrelevant) examples. The distance of each elkadgzument from the hyperplane is

positional3. Such that each element gfis proportional to the distance of the corresponding
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term from the hyperplane. The main output of the SVM arge., the vector of terms in the

vocabulary) and (i.e., the distance vector of the corresponding termg)jn

5.2.3.2 Stage 2: Weighting Specific Topical Terms

The theoretical approach used in the second stage of the flu8ifework was adopted, as this
approach has been shown to effectively and accurately a&ithe relevance of the selected
features. Thus, at the second stage of the proposed SSIEviraik the topical and thematic
significances of a specific feature, which are estimated fitmenrelevant collectiorD*, are
used jointly. The estimated significances are also combivitdthe document frequency, as
this is the best global statistic to efficiently and effeetwindicates the exhaustivity of relevant
terms. The topical significance (i.e., relevance) of a sjget@rm ¢; to the hidden topics that
are discussed iB™ (i.e., P(t;|Z)) is estimated based on Equatitss, as theoretically justified
in Section5.1.4.2 Similarly, the thematic relevance of the tetm(i.e., P(¢;|G)), which is
selected at the first stage, is estimated using Equati®rBoth significances of the termare
probabilistically combined (i.e P(;|Z) x P(t;|G)) to estimate; informativeness globally at

the collectionD™ level (i.e.,P(t;|Z, G)).

5.2.4 Ranked Feature Fusion

Both the proposed SSIF and USIF frameworks conduct thetsaieand weighting of topical
terms as independent tasks at two separate stages. Howelke, the USIF framework, the
SSIF framework treats the selection task as a supervisdaigondo select those terms that are
specific to the topics of interest in the relevant collectidh using the negative documents of
D~. In relation to feature weighting, the SSIF framework addpe same approach as that
adopted by the USIF framework and treats this task as an engapd problem in which only
Dt is used. One issue that remained was to determine how taatéstie features produced
at each stage without losing any important information. Ated in Sectiorb.2.2 to create an
effective fusion between the estimated features of the tages and thus effectively select and
weight relevant features that are specific to what a userspéeelranked feature fusion module

(see Figures.5), incorporates the three previously identified charasties (see below).

» Specific The top4 ranked features (i.e., the topical terms sorted in desognalider)
are selected from the integration between BM25, our addgidnethod and the SVM
at the first stage. Let, = {ty,%s,13,...,1;}. Before training the SVM, each document
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d, € D is scored using the combination of BM25 and the UR methodh sisel, =
{(t;,bm25(t;) x ur(t;))|t; € Q} whereur(t;) = w,(¢;) in this study. This combination
sought to reduce the uncertainties in the relevant toperahs before the application
of the SVM (see the justification for this approach in Secdo®4). After training the
SVM, the SVM provides two vectors: (i.e., the vector of terms in the vocabulary) and
B (i.e., the distance vector of the corresponding terms)inLet H = {(t;, w,(t;))|t; €

T & w,(t;) € B}. H is sorted in descending order of(¢;) and the sef” C H of the

top-k terms is taken as specific topical terms.

Informative : The integration of the topical and thematic relevance nexi(see Figure
5.5 is used to represent the informativeness of the selecitiress. As the user’s
main interests are located in tii&" documents, these two modules fuse different topical
features to estimate the significance of the termB®1into the hidden topics and themes.
Thus, given a specific term) , its informativeness is estimated as the joint probability
of its topical relevanceP(t;|Z) with its thematic relevancé(¢;|G). In this study, as
we did in our study of the USIF framework, it was assumed f@t|7) « w,(t;) and

P(t;|G) = w,(t;). Their joint probability was written a®(¢;|Z, G) o< w,(t;) X wgy(t;).

Exhaustive Global frequency is a strong indicator of term importantcée collection
level [Bendersky and Crof2014 and can be used to optimise feature weigBtsridersky
and Croft 2008 Xue et al, 2010. The global frequency (or global statistic) of a feature
is defined as its frequency across all documents in the ¢mifecThis feature indicates
which portion of a collection (i.e., how many documents)aseared by a given feature
(e.g., aterm). This research uses document frequency astih@tion of the exhaustivity

of specific terms selected in the first stage.

The next issue is to determine how the above three charstatsrcan be accurately fused

in such a way that the specificity of the selected featureddwoot be compromised by their

informativeness and exhaustivity or vice versa. Thus,ismrsearch, the topspecific features

set I’ have their weights scaled by the linear combination of tlauiies’ topical, thematic

and global significances iP* ( previously estimated by Equatidn7, asF = {(¢;, ws(t;) X
w(t))|(t;,-) € H}).
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5.2.5 Supervised Multi-Fusions Algorithm

Algorithm 4 shows the main implementation steps of the proposed SSirefs@rk. The
algorithm is similar to that of the USIF framework, espédgial estimating the topical, thematic
and global relevance of the selected specific featuress(line 13). Additionally, as in the USIF
framework’s algorithm, the details of applying LDA to therpagraph sef: to generate the topic
setZ and the calculations of the required probabilities are tadjtas they can be learned from
the SIF and SIF2 algorithms (see SectiBrs4and4.1.6. However, two vectors” andF” are
defined to store the topfeatures produced by the first stage and their corresponaanghts,
respectively. Notably, Line 14 shows how the features frathlthe SSIF framework’s stages
can be effectively combined to maintain the specificitypinfativeness and exhaustivity of

features.

Algorithm 4: SSIF algorithm

Input : A matrix P,, that containg’(z|g), a matrix 7, that contains
P(t|z), a vectordf that containsif (¢), a vectorF"” that
contains the topg: terms of the SVM, a vectaF” that
contains the corresponding weights of the SVM terms’in
and a vectof? that contains the vocabulary terms.

Output: A setF’ of features with corresponding scaled scores.

1 Letw, be a vector of sizé”;
2 fori=1to F’'do

3 | w,[i| =0;

4 Let P, be a vector of sizé&’;

5 for j=1toV do

7 for k=1to N do

8 | P.lj] = P.[j] + Peyli[E];

9 w, [i] = w.[i] + Pp.[i][j] x P.[j];
10 Let ' = (;

11 for i =1to /" do

12 | if Q[i] € F' then

13 wli] = w,[i] x df[i];

1| F =FU{(F'[i], F"[i] x w[i])};
15 returnF;

5.2.5.1 Time Complexity Analysis
The time complexity of Algorithn¥ is similar that of the USIF framework’s algorithm (i.e.,
x O(|F'| x |G|)), as it linearly depends on the size@fand F’. However, it should be noted

thatT’ and F’ in the two algorithms are relatively small in size and dependhek parameter.
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As both frameworks were developed based on our SIF theotl, fommeworks inherited its
insensitivity to thek parameter (see the experimental evaluation chapter)hé&uminlike the
stages of the USIF framework where LDA appligd times in the first stage and once in the
second stage, our SSIF framework only needs to apply LDA,amicie the generated topics are
used across the two stages. The time complexity of the LDAanesthe same (i.ex O(|G|)),
the only difference is the use of the SVM in the first stage ef $$IF framework that requires
a polynomial computational time that depends on the trgimnstancesMan et al, 2009.
However, both the SVM and LDA were only required to be run cawce were run offline in our

experiments.

5.3 Chapter Summary

This chapter introduced two innovative and highly-effeetirameworks that can be used to
discover relevant features that describe user informgti@fierences. Unlike conventional
relevance discovery models, the proposed frameworksfeatire selection and weighting as
two independent tasks. Over two different stages, the fnaries first identify a representative
set of topical terms and then re-estimate their informaeas using a complex integration of
multiple learning algorithms and fusion-based models. ifkegration is managed by multiple
ERSs based on the theoretical merits of our SIF and UR modsldéscribed earlier in this

thesis).

The proposed unsupervised USIF framework elegantly addsdbe challenges that arise in
selecting representative terms from an unbalanced sepuafstdiscussed in a small collection
of relevant documents that describe a user’s informati@useln the first stage, a conceptual
agglomeration technique was developed that is based oruthenfof lexical and statistical
features that are discovered via the integration of docturokistering and topic modelling
algorithms. An agglomeration technique was used to selpt@determined set of inter-cluster,
topical terms from unbalanced but equally relevant clgstéidocuments. As traditional clus-
tering algorithms do not consider the multi-topic struetof documents, the identification of
relevant, intra-cluster topical terms is difficult. To adsls this issue, our USIF framework
employed the SIF model to estimate the topical relevancedaf terms. In the second stage, the
relevance of the selected terms was re-estimated basediongwof their topical, thematic and
global significance (as measured by our SIF model and an edlaptsion of the UR method)

at the collection level rather than at the unbalanced-etadével. The experimental results (see
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Section6.8.4 demonstrate the superiority of the performance of the UliRework in IF and
RRT over both supervised and unsupervised state-of-tHeaaeline models. The experimental
results also confirm the merits of the proposed framework hickvthe problems of feature
selection and feature weighting can be addressed indepiynd@he results also show how
topic modelling, document-clustering and multiple fustmased models can be integrated in an
unsupervised way to discover relevant features that oguewranly across the unbalanced topics

that appear in a collection of long documents.

Similarly, the proposed supervised SSIF framework solaitadly and effectively addressed
the difficulties that arose in discovering topical terms @ specifically relevant to a user’s
needs based on small samples of positive and negative dotsim&he SSIF framework is
similar to the USIF framework; however, it conducted theesgbn and weighting of topical
terms that frequently appear in both positive and negatipecs of interest over independent
stages differently. In the first stage, the selection pmobieas addressed via the fusion of
supervised (i.e., SVM) and unsupervised (i.e., LDA) leagralgorithms in which the inherited
uncertainties in positive documents were addressed ubm@dapted UR method. Second,
the proposed framework learned a more accurate weight émifsptopical terms, which were
selected during the first stage, via an unsupervised irttegraf multiple fusion-based models
that was managed by the ERSs theory of our SIF model and atealddR method. The weight-
ing problem was addressed by determining the joint estomatif the topical and thematic
relevance of the selected terms in the positive documermtshair global exhaustivity across
these documents. The experimental results (see Sec8d® showed that our SSIF framework
is highly effective and significantly outperformed all thaskeline models in all performance
measures across both IF and RRT tasks. This study developexirasing methodology that
combines the advantages of supervised and unsupervisedhigdor feature selection and

effectively uses the topical features and global statisif¢ow-level terms for feature weighting.

In the next chapter, an experimental evaluation is undenta¥ all the proposed models
and frameworks in this thesis based on the widely acceptdmhéed system methodology.
The proposed techniques are also evaluated in relatioreteatiking of relevant features that
were manually identified by NIST’s domain experts. Fifty leotions of long documents
from the popular RCV1 dataset are used for the evaluatiopgsas, including seven standard
performance measures, TREC filtering topics and more thadif®€rent baseline models.

Additional details about the experiments are provided eértext chapter.
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Chapter 6

Experimental Evaluation

6.1 Introduction

As mentioned in Chaptet, the research in this thesis proposes several TFS techinique

relevance discovery. These techniques deal with uncéesaim the relevant documents that
describe user information needs using data fusion appesackor example, the SIF model
fuses different features from relevant documents to discavformative topical terms on a

global level. The SIF2 model revises SIF model and solvegéheralised weight hypothesis of
topical terms that SIF was developed upon to tackle the nowotonic problem of some relevant
features. The UR method reduces uncertainties in releeantifes discovered by existing TFS
techniques by fusing different features to estimate thequges-level evidence of relevance. Two
other fusion-based frameworks, namely, USIF and SSIF aypgsed to deal with the bias

toward frequent topics and the features that appear in ebehrant and irrelevant documents,

respectively.

This chapter presents and thoroughly describes the exeetanevaluation methods for
the proposed TFS models and frameworks. The chapter desdtile essential aspects of
the experimental evaluation, including the evaluationdilipses, experimental design, data
collections, performance measures, baseline models aircettperimental settings. Then, the
results are presented, discussed and analysed sepapateyh model and framework based on
their evaluation hypotheses. The popular RCV1 is seledd¢deabenchmark dataset including
its TREC-11 topics for IF tasks. Seven standard evaluatietnios are used to measure different
aspects of the effectiveness of the performance of the peapmodels and frameworks in IF

and RRT applications. Also, the standard paired t-test Gikdent’s t-test) is used to test how
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significant the difference is between the results of the ggep techniques and the baseline

models in both the IF task as well as in ranking relevant festthat are identified by TREC'’s

domain experts. A variety of state-of-the-art and popuksdiine models are selected, and

their results are compared with the proposed models ancefranks. These baseline models

use different fusion strategies, text features and minil@arning algorithms.

6.2

Hypothesis

Several hypotheses were designed to verify the proposedmiédls and frameworks for

discovering relevant features that describe user infaonateeds. In this thesis, each hypoth-

esis was developed to validate the main aspects of a partioubdel or framework. These

hypotheses are presented as follows:

Hypothesis 1 The proposed SIF model can effectively select informatogcal terms
from a set of relevant documents through the hybrid fusioditbéérent global features

discovered by topic modelling and a collection statistic.

Hypothesis 2 The proposed SIF2 model can effectively select the mostrimdtive
topical terms learned from a collection of relevant docutsema the hybrid fusion of

different local and global features learned from topic niligg and collection statistics.

Hypothesis 3The proposed UR method can effectively reduce unceréainiti relevant
features through the estimation of the relevance of paphagréhat can be used to re-

estimate the relevance of features (i.e., terms) discdvgyexisting TFS techniques.

Hypothesis 4The proposed USIF framework can effectively select andegght topical
terms that occur in clusters of relevant documents thatatoritequent topics and less
frequent but equally important ones via the hybrid fusididifberent features discovered

by topic modelling, document clustering and global stafsst

Hypothesis 5 The proposed SSIF framework can effectively select angeight rele-
vant topical terms that frequently appear in relevant andnetevant training documents
through the hybrid fusions of different features learnaahfrthe same documents by a

combination of supervised and unsupervised algorithmsafisas global statistics.

In the following sections, each hypothesis will be expenitadly evaluated using the stan-

dard and widely accepted IF system-based methodologyasitoithe studies irBashar and L,
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2018 Bashar et a).2017, Gao et al. 2015 Li et al.,, 2015 Wu et al, 2006 Zhong et al.2013.
In addition to the IF-based methodology, the set of reletamhs identified by NIST domain
experts will be used to evaluate those topical terms digeovand re-ranked by the proposed

TFS models and frameworks.

6.3 Data Collection

Many published and publicly available datasets have beed inghe field of text classification,
IR and IF. Among the most popular ones, especially those bgefREC, are the standard
Reuters datasets. The Reuters Corpus Volume 1 (RQMYiE et al, 2004 is selected for all
the experiments in this chapter. In the following sectiooyendetails about the RCV1 dataset

are given.

6.3.1 RCV1

RCV1 consists of 100 collections of documents that cover @ewange of subjects to suit
different interests. The first 50 collections, from Collent101 to 150, are used in this research
due to their reliability and high quality as they were mahuaksessed by domain experts at
NIST for TREC in their filtering track Robertson and Soboref2002 Soboroff and Robert-
son 2003. These collections are usually known as the assessorsstopthat track because
they were assessed and labelled by human domain expertsevdnvin this research and to
differentiate between an LDA latent topic and the TREC tpparch assessor topic was called
a collection. According to Buckley and Voorhed3ufckley and Voorhee200(J and other
experimental studies irdao et al, 2015 Li et al., 2015 2012 Zhong et al. 2013, this number

of collections (i.e., the 50 collections) is sufficient atalde for better and reliable experiments.
The last 50 collections (aka intersection topics) were detety labelled by a machine learning
algorithm. Thus, they are less in terms of quality and rdliglj Li et al., 2012 Robertson and
Soboroff 2002 Soboroff and Robertsg2003. Each collectionD of the RCV1 has been split
into training and testing sets, and each set has some rél@kanpositive)D" and irrelevant

(aka negativeD~ documents to the topic they describe as illustrated in [Eiguk

RCV1 is a large dataset with more than 806,000 documentsatieatlistributed over the
100 different collections. Each document is a news storitevriby a journalist in English and
published by Reuters. Tabfel shows the main statistics of the RCV1 dataset while Figue

illustrates the topic’s description of Collection 101 asgmared by TREC’s assessors. Moreover,

http://trec.nist.gov/
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RCV1

|

Collection Collection Collection
101 102 200

Training \ Testing \
101 101

Positive Negative Positive Negative
document document document document

Figure 6.1 The structure of RCV1 dataset.

each document in the RCV1 is in an XML format that has many elgmas shown in Figure
6.2 The proposed models and frameworks including the baselise only théitle’ and’text’
elements during the training and testing phases. Each atefine., '<title>" and '<p>’) is
considered a separate paragraph to be used in trainingh8I15R, UR models and some parts
of the USIF and SSIF frameworks. Thus, each RCV1 documenahkesst two paragraphs,
the '<title>" and at least one content paragraph as a sub-element oktiext>’ element.
To eliminate bias in our experiments, all meta-data elembate been ignored. Also, each
and every paragraph of the relevant documents are sepasptitland indexed to facilitate the
extraction of smaller sub-topics using LDA as sub-documéne., passages or paragraphs)
show better results in IR{rikon and Kurland 2011, Xi et al., 2001].

Table 6.1 The main statistics of the RCV1 dataseeyvis et al, 2004

Statistic Value
The total number of documents 806,791
The total number of paragraphs 9,822,391
The total number of terms 96,969,056
The vocabulary size 391,523
The average vocabulary size in a document 75.7
The average document length 123.9

Moreover, each document in the RCV1 dataset is a long dociawigman average number
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<?xml version="1.0" encoding="iso-8859-1" ?>

<newsitem itemid="82454" id="root" date="1996-09-27" xml:lang="en">

<title>GERMANY: German police detain 2 men in VW spy saga.</title>

<headline>German police detain 2 men in VW spy saga.</headline>

<dateline>FRANKFURT 1996-09-27</dateline>

<text>

<p>German authorities said on Friday that two men have been detained on
suspicion of industrial spying at German carmaker Volkswagen AG.</p>

<p>The two men were believed to have planted secret cameras at a test
track operated by Volkswagen, Europe's largest carmaker.VW said the
cameras, discovered last summer, had apparently sent out photographs
of vehicles under development.</p>

<p>The public prosecutor's office in Braunschweig, located near the
Wolfsburg headquarters of VW, said the men did not work for Volkswagen
or to competing car manufacturers.</p>

<p>These men did not work for Volkswagen or another car company, said
prosecutor Eckehard Niestroj.</p>

<p>VW management board chairman Ferdinand Piech said in late August that
the cameras had been sending out photographs from the track for some
time, noting that he believed VW had been under surveillance for about
eight years.</p>

<p>VW probed for cameras at the test track after four unauthorised
photographs of prototypes appeared in car magazines in recent months.
Pictures of new models and prototypes are highly valued by industry
magazines.</p>

<p>--John Gilardi, Frankfurt Newsroom, +49 69 756525</p>

</text>

<copyright>(c) Reuters Limited 1996</copyright>

<metadata>

Figure 6.2 A sample of an XML document from collection 101 of the RCV Tadzet.

of more than 12 paragraphs. Figufe8and6.4 show the paragraphs distributions in the RCV1
training sets used with the experiments of the unsupenasedsupervised TFS models and
frameworks, respectively. These figures illustrate th&ability of RCV1 documents for topic

modelling as each document can discuss multiple topicstwtapics (i.e., themes) across its
paragraphs. Also, these multi-paragraph documents all@vto be applied at the paragraph-
level as each paragraph contains enough information taebdome topics from, as illustrated
in Figure6.2, and facilitate a more practical usage of the generatedtladpics, as shown in

Chapterd.
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Figure 6.3 The distribution of paragraphs in positive training doams of the first 50
collections of the RCV1 dataset that are used by all unsigeahvi FS models and frameworks,
including the selected baseline models.
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Table 6.2 shows a statistical summary of the first 50 collections of R@V1 dataset.
Only positive training documents are used in the experimehthe unsupervised TFS models
and frameworks with a total number of 639 documents. Thisbamis spread across the
50 collections with an average of fewer than 13 training adoents in each collection. This
makes most documents exist in the testing sets rather irmdheny sets as shown in Figure
6.5. Despite the low number of training samples, the proposethigues maintain higher and
robust performance compared to the used baseline modedenfged TFS algorithms, on the
other hand, including the proposed SSIF framework, use positive and negative training
documents in the 50 collections with an average of fewer #adocuments in each collection
compared to more than 377 documents in each testing sethwskilcmakes the testing set

much larger in number of documents than the training ondwestriated in Figuré.6.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
700, B Training | |
6501 B Testing

600 -

500 -

400 |-

350 -

umber of Documents

300

Ni

250 |-

200 -
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100

123 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
RCV1 Collections

Figure 6.5 The number of training documents compared to the testimgments in the first
50 collections of the RCV1 dataset that are used in the exeerts of all unsupervised TFS
models and frameworks, including SIF, SIF2, UR and USIF.

6.3.1.0.1 Document Preprocessing Steps

Few preprocessing steps were performed on all RCV1 docunaertt TREC topics titles
during the training and testing phases of the proposed mata frameworks including the
baselines. First, all meta-data and stop-words were retcho&econd, all keywords were
stemmed using the Porter Suffix Stripping algoritiPoifter 1980. These preprocessing steps

are illustrated in Figuré.7 and the list of stop-words can be found in Appen@ix
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Figure 6.6. The number of training documents compared to the testingments in the first
50 collections of the RCV1 dataset that are used in the exygats of the SSIF framework and
other supervised TFS baseline models.
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Figure 6.7: The preprocessing steps for all RCV1 documents.
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Table 6.2 The statistics of the training and testing sets of the RCathset

Training Set Testing Set
Collection# |D| |D*| |D~| |D| D |D|
101 23 7 16 577 307 270
102 199 135 64 308 159 149
103 64 14 50 528 61 467
104 194 120 74 279 94 185
105 37 16 21 258 50 208
106 44 4 40 321 31 290
107 61 3 58 571 37 534
108 53 3 50 386 15 371
109 40 20 20 240 74 166
110 91 5 86 491 31 460
111 52 3 49 451 15 436
112 57 6 51 481 20 461
113 68 12 56 552 70 482
114 25 5 20 361 62 299
115 46 3 43 357 63 294
116 46 16 30 298 87 211
117 13 3 10 297 32 265
118 32 3 29 293 14 279
119 26 4 22 271 40 231
120 54 9 45 415 158 257
121 81 14 67 597 84 513
122 70 15 55 393 51 342
123 51 3 48 342 17 325
124 33 6 27 250 33 217
125 36 12 24 544 132 412
126 29 19 10 270 172 98
127 32 5 27 238 42 196
128 51 4 47 276 33 243
129 72 17 55 507 57 450
130 24 3 21 307 16 291
131 31 4 27 252 74 178
132 103 7 96 446 22 424
133 47 5 42 380 28 352
134 31 5 26 351 67 284
135 29 14 15 501 337 164
136 46 8 38 452 67 385
137 50 3 47 325 9 316
138 98 7 91 328 44 284
139 21 3 18 253 17 236
140 59 11 48 432 67 365
141 56 24 32 379 82 297
142 28 4 24 198 24 174
143 52 4 48 417 23 394
144 50 6 44 380 55 325
145 95 5 90 488 27 461
146 32 13 19 280 111 169
147 62 6 56 380 34 346
148 33 12 21 380 228 152
149 26 5 21 449 57 392
150 51 4 47 371 54 317
Total 2704 639 2065 18901 3484 15417

Average 54.08 12.78 41.3 378.02 69.68 308.34
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6.4 Experimental Design

To demonstrate the validity of each of the evaluation hypsé#ls, a series of experiments have
been conducted using an IF system-based methodology asstethdard TREC Filtering Track
[Lewis et al, 2004 Robertson and Soboro200. These extensive experiments were carried
on the RCV1 50 assessors collections and their TREC relevaigigements. As mentioned
previously, an IF system filters out irrelevant documerdgfia stream of incoming documents
based on the user information needs. Out of different tyfpdE systems, including, batch,
routing and adaptive IF systems, the routing system is &dojpt the evaluation experiments
mainly to avoid the tuning of any required thresholds ane#b the performance of the system

based on a ranked list of documer&®poroff and Robertsg2003.

Figure 6.8 illustrates the evaluation procedure implemented in tbsearch. For each
collection, the proposed models and frameworks are traondte training set of the collection.
A set of discovered relevant features (i.e., relevant featand their estimated weights learned
from the training set) are used as a query= (t1,ts,ts,...,tx) submitted to the IF system
in whichqg C T"and1 < k£ < |T|. As in the TREC Filtering Tracklewis et al, 2004
Robertson and Soborgf2003 and for each new document comes from the testing set, the
system has to decide whether the new document is relevdre teser information needs, which
are represented by the selected set of features (i.e., #rg gjin this case). A similar approach

is applied to the baseline models.

<L
@ The Proposed . <term , weight>
v Model / Framework '/ pairs

Training Set

< Information Filtering |_

Testing Set

A

Performance

. “ Evaluation
Metrics Values

Figure 6.8 The main IF-based evaluation procedure.

Moreover, and in separate experiments, we used the terrhe 3REC topics for the RCV1

dataset (see Appendi) as relevant features. These terms are identified by the idarperts
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at NIST and will be used to evaluate the proposed TFS techsiqmd the baseline models
in automatically discovering and ranking these featuraguré 6.9 illustrates this evaluation

process. However, we do not assume that these terms arelyhelewant ones in the used 50
collections, but to avoid the expense of manually identidymore relevant terms from these

vast collections, we limited our study only to those termesspnted in Appendik.

The Proposed = <term , weight>
Model / Framework '/ pairs

Ranked e
relevant RRT System p
terms
terms
y
Performance )
/ Metric Value /L‘ Evaluation

Figure 6.9 The RRT-based evaluation procedure.

Domain Experts

If the results for the proposed models or frameworks areifgigntly better than the used

baselines, then, itis valid to claim that the proposed teglereflects the developed hypothesis.

6.4.1 Unsupervised Learning Setting

Figure 6.8 briefly shows both the training and the testing stages of ttaduation process.
Figure 6.10 further illustrates the training procedure of the proposedupervised models
(i.e., SIF, SIF2 and UR) including the USIF framework. Thesedels and the framework
use only the relevant documents det in each collection as a domain-specific set of long
documents. After completing the preprocessing steps dnsgt@s previously shown in Figure
6.7, all documents paragraphs are split, stored in separagafleéindexed for efficient mapping
between a document and its paragraphs. Then, the LDA is osexttact some latent topics
from all paragraphs in the collection. These topics are tlsea by the proposed SIF, SIF2 and

the UR models in their fusion modules.

The solid arrows in Figuré.10show the sequential flow of these steps for the SIF, SIF2
and UR models while the dotted arrows display the subsedquaining steps for the USIF

framework. As the USIF framework utilises a document clustealgorithm in one of its
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Figure 6.1Q The training procedure for the proposed SIF, SIF2, UR noded the USIF
framework.

stages, a term weighting scheme (i.e., TFIDF) is used onrgrpcessed documents. Then,
the bisecting k-means (BKM) algorithnSévaresi and Bolgy200]] is used to cluster these
documents based on the cosine similarity measure. Theeafdr cluster formed by the BKM
algorithm, the paragraphs of the documents in the cluseesglit, and some latent topics are
extracted using the LDA in a similar fashion as in trainingpst of the SIF, SIF2 and the UR
models. Lastly, all unsupervised baseline models wereddaas described in their original

studies.

6.4.2 Supervised Learning Setting

In the training phase of the proposed SSIF framework, bdévaat (positive)D ™ and irrelevant
(negative)D~ training documents sets were used as shown in Fi§urgé Each set is used
separately, and the latent topics only extracted fidmbecause it is domain-specific and its
subjects are more related to each other unlike the irretesgtnwhich has a diverse collection
of unrelated subjects. The negative set, on the other hanonly used for the supervised
learning algorithm, the support vector machine (SVM) irstheésearch, which also requires
the positive set as well. To train the SVM, a supervised temrghting scheme is used (i.e.,
BM25) to assign weights to terms in both documents sets #ieepreprocessing steps are
completed. These weighted terms are used to represenaialihy documents (positive and
negative) for the SVM. The SVM learns a hyperplane from thesi@ing documents, which
can be used to separate between positive and negative stformin those documents. The
same training steps of the SIF, SIF2 and UR models are ald@dmm the relevant documents
set for the SSIF framework. The solid green arrows in Figufd show the usage flow of the

relevant documents while the red dotted arrows display thve @if negative documents. The
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generated latent topics of the LDA and the learned hypeeptdithe SVM will be used by the
fusion modules of the SSIF framework. Lastly, all supertibaseline models were trained as

described in their original studies.
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Figure 6.11 The training procedure for the proposed SSIF framework.

6.5 Baseline Models

For a more comprehensive evaluation, the performance girthposed models and frameworks
were compared to a wide range of TFS models. Over 20 diffdyaséline models used for
relevance discovery were selected and tested for IF and B$KEt These models use different
types of text features, and they can be either supervisedsupervised learning techniques.
However, in this thesis, all the baseline models were caisgp based on the feature fusion
strategy they adopt. In the following sections, a shortdgson is given for each model under

its category, and more details about these baselines caubd in Chapte?®.

6.5.1 Early Fusion Models

Early fusion TFS models use low-level terms and consideengesitic information as described
in Chapter3. The following popular examples are selected as baselmexsii evaluation

experiments.

» TFIDF [Salton and Buckley198§: is a widely accepted term weighting scheme in many
IR applications. In an unsupervised manner, TFIDF assigyigeh weights to terms that

occur more frequently in a specific document.
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» Okapi BM25 [Robertson and Zaragoz2009: is a popular, supervised document rank-
ing algorithmin IR. It is term-based and its experimentabpaeters were set to= 0.75
andk; = 1.2 in this thesis as recommended {B4o et al. 2015 Manning et al. 2008k
Zhong et al.2013.

* Prob [Jones et a].2000ab]: is a supervised probabilistic method that estimates the

relevance weight of terms at the collection level.

 Chi-square (x?) [Chen and Cher2011]: is a popular statistical method that measures
the informativeness of a term to its class information. tvgh effective performance in
supervised text classification compared to many other Te§( et al. 2016 Yang and
Pedersenl997.

* MI [Manning et al.2008K: mutual information is another supervised TFS that messur

the mutual dependence between random terms and theirciagsenation.

* SVM [Joachims2003: support vector machine is a well-known supervised leayni
algorithm that discriminatively separates two differdiasses. Since IF can be considered
another type of binary classification problem, the rankebdaSVM was used in this
research similarly as inAlgarni and Li 2013 Gao et al. 2015 Li et al., 2008 Zhong
et al, 2013.

» LASSO [Tibshiranj 1994: the least absolute shrinkage and selection operator; com
monly known as Lasso, is a supervised linear regression mibdan be used in TFS for

relevance discovery as ihi[et al., 2015.

» Rocchio[Rocchiq 1971): is widely used in IR, IF and text classification as a cermtroi
based classifier. It revises relevant terms weights usiaghdgative training document

set. In this study, Rocchio is used aslin ¢t al., 2015 Wu et al, 2004.

6.5.2 Late Fusion Models

High-level features like phrases, patterns, topics, agjichl concepts or a different combina-
tion of them contain different semantic information thatkes them suitable for late feature
fusion. A wide variety of popular and state-of-the-art latsion models are selected as base-

lines in our experiments. They are briefly described asvlo
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n-grams:. is a standard phrase-based model that usgeams extracted from relevant
documents to represent user information needs, where [Atbiathan et al.2012 2014

Gao et al, 2015, the best value of. is empirically set to 3 (a tri-gram).

PCM [Albathan et al.2013: is the pattern co-occurrence matrix model that removes
noisy patterns extracted from a set of relevant documemnagpaphs. PCM is unsu-
pervised and utilises a pattern co-occurrence matrix totifyeinteresting set of closed

sequential patterns for relevance discovery.

SCSP[Albathan et al.2014: is a supervised pattern-based TFS model. It extends a
random-set to find specifically relevant closed sequenattepns extracted from both

positive and negative documents.

PLSA [Hofmann 2001]: is an unsupervised topic-based TFS model. It identifielslém
topics from a set of documents that can be used to representinfisermation needs.
These topics can alleviate the problem of polysemy to a icegstent as mentioned
previously. PLSA is a probabilistic enhancement to thenfasemantic analysis (LSA)
model Deerwester et gl199Qd.

LDA [Blei et al, 2003: is the most widely used topic modelling algorithm. Unlike
the PLSA, LDA is theoretically sound and more effective. nbipabilistically generates

latent topics from a collection of documents in an unsuediway. In our experiments,
PLSA and LdaDoc were trained ai™ documents while LdaPara was trained brn

paragraphs.

TNG [Wang et al,2007: is a topicaln-grams TFS model that integrates topic modelling
with phrases to discover topical phrases that are moreidistive and interpretable.
TNG is treated as a relevance ranking model in our experisresin [5ao et al, 2014k
2019.

PBTM-FP [Gao et al. 2013: is an unsupervised TFS model that incorporates latent
topics and frequent patterns (FP) to obtain a more semédwptrczh and discriminative

representation to be used for IF.

PBTM-FCP [Gao et al. 2013: is similar to the PBTM-FP model except it uses the
frequent closed pattern (FCP) instead in order to reducesitee of FP as redundant

patterns .
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* SPBTM [Gao et al. 20144: is a third extension to PBTM-FP and PBTM-FCP. It uses
significant matched patterns (i.e., significantly représtare and specific frequent pat-

terns) to represent latent topics.

* MPBTM [Gao et al,2015: is a more advanced extension to the PBTM-FP, PBTM-FCP
and SPBTM models. It uses maximum matched patterns (ieemtst representative and

specific frequent patterns) to represent latent topics.

» LdaConcept[Chemudugunta et aR008§: combines topic models with ontological con-
cepts to semantically represent user information needaChdcept is unsupervised and

is similarly adopted in our experiments as Befshar and Li2017, Bashar et a).2014.

6.5.3 Hybrid Fusion Models

A hybrid fusion can be developed through the combining offyeamd late fusions strategies to
exploit the advantages of both low- and high-level textdead in a unified framework. Three

state-of-the-art baseline models are selected to regréseitype of fusion.

 PDS[Zhong et al. 2017: is a pattern deploying technique based on support. It is an
unsupervised extension to the PTM mod#ljet al, 2004. PDS uses high-level patterns
extracted from relevant documents to accurately weightlewel terms to represent what

the user wants.

* MP [Yan et al, 20093: similar to the PDS model, the master pattern techniqus paé
terns to identify relevant low-level terms. Instead of dsihg patterns, MP summarises
or groups text patterns intb clusters (aka pattern profiles) based on defined similaritie
MP is used in our experiments as Bdshar and L,i2018 Bashar et a).2016 2017.

* RFD, [Lietal.,, 2015: is a supervised relevant feature discovery model. It isxd@ansion
of RFD [Li et al.,, 2010 and uses high-level patterns to discover relevant lovellearms
that are clustered into three distinct groups; positivegigegeneral and negative specific
sets of terms. RFPexperimental parameters are kept in our experiments agitjieal

study.

6.6 Performance Measures

Measuring the performance of an information system is aargisd step in any experimental

evaluation process. In our experiments, the effectivenéthe proposed TFS models and
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frameworks in IF is measured by six different evaluationnmostthat are well-established and
commonly used in the IR and IF research communities. Thesesunes are derived, in a way
or another, from the standard effectiveness metrics; gigciand recall. The six metrics are
the average precision of the top-20 ranked documents (P@2€gk-even point (BP), mean
average precision (MAP), F measure, interpolated avereggzgon (IAP) and the interpolated
precision averages at 11 standard recall levels (11-polach of these measures concerns
about a particular aspect of the model overall performancevall be described in this section.

More information about these measures can be fountllanping et al. 20083.

The previous six metrics are used to measure the effecigenfeour proposed techniques
for IF specifically in returning relevant documents from tésting sets of the first 50 collections
of the RCV1 dataset. However, there is a need to measurefdutiegness of the proposed tech-
nigues in identifying and ranking relevant features (itexms) that are identified and selected
by TREC’s domain experts. The standard, normalized digesuocumulative gain (nDCG)
measure is used for this task and it will be described belothisnsection. Moreover, in our
experiments, the percentage change and the Studenttsaréassed to analyse the significance
of the difference between the results of the proposed maateldrameworks and the selected

baselines.

6.6.1 Precision and Recall

For an IR system, the precision is the "fraction of retriexktuments that are relevant” to
the user query while the recall is the "fraction of relevaotaments that are retrievedVipn-
ning et al, 20083. For a text classifier, the accuracy measure, which is taetibn of the
classifier’s predictions that are correct, is usually usetieiad of the precision and recall. The
confusion matrix depicted in Tab&3, which is a special type of contingency table, is used for
binary classification judgement. Therefore and based oadheracy definition, a classifier’s
accuracy= (TP+ TN) =+ (TP+ FP+ FN + TN), where TP is the number of documents that
the classifier identified as relevant, TN is the number of doents that the classifier identified
as irrelevant, FP is the number of documents that the classitiorrectly identified as relevant
and FN is the number of relevant documents that the classifieid not identify Manning

et al, 20083 Wu, 2007.

Since an IR or IF system can be considered as a two-clasHigla§<., relevant-irrelevant),

it implies that the accuracy measure can be used in mead&iagd IF systems performance.
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Table 6.3 The confusion matrix of classification

Human judgement

Yes No

Yes True Positive (TP) Fale Positive (FP)

System judgement No False Negative (FN) True Negative (TN)

However, accuracy is not suitable for retrieval and filtgnomoblems as it is biased toward the
bigger class in the used dataselgnning et al.20083. For example, if an imbalanced dataset
has 98.% positive samples, then, a classifier can achieve’®&&curacy by just classifying all
documents as positive and vice-versa when most samplesgative. Instead, the precision
and recall are more suitable for IR and IF because users &amearested in positive class
[Algarni, 2017. Therefore and in a similar context as in the accuracy nmeagbove, Table
6.3 can be used to calculate precision (P) and recall (R) as PP+~ (TP + FP) and R=
TP = (TP + FN), respectively.

6.6.2 Effectiveness Measures

Based on the definitions of precision and recall, more prakcinetrics can be derived to solve

some problems that precision and recall alone cannot resolv

» Break-even Point(BP): Break-even point is a commonly used measure in thecdréa
and IF. It concerns about the relationship between P and Rnainchtes the point when
both P and R values are equal€PR). Thus, the higher the value of the BP measure, the

more effective the evaluated system is.

* F measure (Fs—;): F measure is another metric that concerns about the oritip
between P and R. Unlike the BP metric, which only concern aBed R, F measure can
be used to trade off between P and R because usually, in agesti, R can be high and
P may be low and vice versa. F measure is the weighted harmuao of P and R and
can be calculated as F meastré(1 + 3%) x P x R) + (8% x P+ R). As the harmonic
mean tends to be closer to the smallest value of either P orrRedSure is used in our
experiments when the value of both R and P wanted to be higbrahe higher, and the
other is lower and vice versa. Thus, we set the parameiebe equal to 1{ = 1) which

simplifies the last equation tg;E; = (2 x Px R) =+ (P+ R).

Despite the practicality of the P, R, BP ang_Ir measures, they ignore the order of the
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retrieved documentsanning et al. 20084. It is assumed that in a ranked list of documents
the topu documents are more relevant than those at the end of thé\lst, F;—; and BP, as

single-valued metrics, do not provide a more detailed pectdi the whole system performance.
To further address these issues, four effective measuesadmpted in our experiments and

described as follows:

 Precision at top-«u documents(P@u): Precision takes into account all retrieved docu-
ments by the IR/IF system, but a user might be interestedinnhe first or two dozens of
documents (i.e., a specified cut-off) ordered based on tékgivance to user information
needs. Thus, in this research, the precision of theutopturned documents (P@ is
used, and the value afis set to be 20 in our experiments, which is an agreeable numbe
within IR and IF communitiesGao et al. 2015 Manning et al. 20083 Zhong et al.
2017.

* Mean Average Precision(MAP): It is the most commonly used single-figure metric
among the TREC communityManning et al. 20084. MAP can be calculated by first
measuring P at each relevant document in a ranked list aévett documents based on
their relevance to a user information need (aka topic olectbn), and, then averaging
P over all topics (collections) in the testing sets. MAP pdeg an excellent indication
about the quality of the evaluated system as it combines #asarements of P, overall R

and the relevance ranking of the retrieved documents.

* Interpolated precision averages at 11 standard recall leve (11-point): It is an effec-
tive measure for comparing the performance of two or moremint IR/IF systems in
distinctive details. 11-point metric is the interpolatedtPll standard R-levels. This
measure examines the entire P-R curve at only 11 pdiris((1, 0.2, ..., 1.0) where the
first R point is equal to zero, which is the smallest value.(é.g- (TP + FN)) [Algarni,
20117).

« Interpolated Average Precision(IAP): Unlike the 11-point measure, the IAP is a single-
valued metric that can be calculated by averaging the iotetpd P at 11 standard R-
levels for one topic (i.e., TREC topic), in a similar fashasin MAP, and, then averaging

for all topics.
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As mentioned previously, the IF system in our experimenisrns a ranked list of docu-
ments after accepting a queyywhich is a sequence gferm weight pairs discovered by the
proposed TFS techniques and the baseline models. The gjuretlyis research represents a user
information need. All the six metrics discussed above aesl is measure the effectiveness of
the IF system in identifying relevant documents from théngssets of the RCV1 dataset based
onq. However, there is a need to measure the performance of opoged techniques as well
as the used baseline models in RRT. The nDCG measure &ttenpas is used for this task as

described below.

* normalized Discounted Cumulative Gain at top4 feature (nDCG@¥): Itis commonly
used within the IR/IF community to measure the effectiverad$R/IF models in ranking
highly relevant documents. nDCG is sensitive to the pasitibthe relevant document,
so as it rewards highly ranked documents, it also penalmsesetin lower ranks. Further
details about the nDCG metric can be foundJarjvelin and Kekalaine2004. However,
we adopted the nDCG to measure the effectiveness of the gedpoodels and frame-
works and the baseline models in ranking relevant termsaasof documents. We used
the terms of each TREC topic as our relevance judgment asilbed@reviously. As
nDCG is usually used for graded relevance judgment, it cem la¢ used for binary one
as in our case. The nDCG at tépterms is calculated in our experiments based on its

formula in [Manning et al.20083.

6.6.3 Statistical Significance Measures

It is @ common practice in scientific research to analyse raxgatal results using some well-
established mathematical tools. Two statistical signifteameasures are used to evaluate the
reliability and significance of the results of our experirtseThese measures are the Percentage
of Change and the Student’s Paired T-T&hLcker et a].2007, Urbano et al.2013. They are

described as follows:

» Percentage Changdimprovemen): It is commonly used to calculate the difference
between two mean values and show how statistically signifitas difference is in a
percentage formatdao et al. 2015 Li et al.,, 2015 201Q Wu et al, 200G9. In our
experiments, thimprovement” is used to denote the result of this test in several tables.
The percentage change between two TFS models can be cattakitprovement% =

, Wherev refers to the result of an experimental model (in our

(Vour - Vbase) - | Upase
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case, the result is averaged over the used 50 collectiods):ahis the absolute value of

that result.

« Student’s Paired T-Test (t-test): It is also widely used in IR and IF to statistically
measure how significant the improvement is between twoeelsets of resultsgmucker
et al, 2007, Urbano et al.2013. The t-test assesses the mean of two different numerical
groups and shows how significant is the difference betweainvhlues. Usually, the null
hypothesis of this test assumes that no significant difterexists between the results.
However, this hypothesis can be either rejected or accdpedd on th@-valueof the
test. If thep-valueis less than 0.0%p-value < 0.05), it indicates that the difference
between these two groups is significant, and the null hyttlean be rejected and vice

versa.

6.7 Experimental Settings

All experiments described in this chapter were conductealpersonal computer (PC) equipped
with an Intel® Core™ i7-4510U @ 2.00 GHz processor and a ma@mory of 8.00 GB
running on Microsoft® Windows® 10 Pro. The proposed models rlameworks and the IF
evaluation system including all baseline models were imgleted in the Java 8 programming
language (JRE 8.0.31) using the NetBeans IDE (version)3.0l2 RCV1 dataset was obtained
from a TREC licensed CD, and its relevance judgement infiomavas downloaded from the

TREC website?

The MALLET toolkit [McCallum, 2007 ° was used to implement all LDA-based models
and frameworks except for the PLSA model where the Lemukibblwas used instead. All
topic-based models require some parameters to be set. &~bb#-based models, the number
of iterations for the Gibbs sampling was set to W®0 and for the hyper-parameters to be
a = 50/V andg = 0.01 as they were justified iSteyvers and Griffith§2007. The number
of iterations for the PLSA was configured to be00 (default setting). Lastly, it should be

mentioned that the LDA training needs only to be done onceofirithe.

The CLUTO toolkit® was used to cluster the relevant documents of each coltetito

hard clusters using its graphical tool gCLUTRgsmussen and Karypi®004. The repeated

2https://trec.nist.gov/data/t2002 filtering.htm
Shttp://mall et.cs. umass. edu

*htt ps: // www. | errur proj ect . or g/

Shttp:// gl aros. dtc. uim. edu/ gkhone/ vi ews/ cl ut o


https://trec.nist.gov/data/t2002_filtering.html
http://mallet.cs.umass.edu
https://www.lemurproject.org/
http://glaros.dtc.umn.edu/gkhome/views/cluto
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bisecting algorithm is selected to be the clustering tempimiused with the USIF framework.
Other parameter settings in the gCLUTO environment aressielaws: the similarity function
is set to be the cosine; 12 is the criterion function; 10 fa ftumber of trials; the default values

are accepted for the remaining parameters.

It is challenging to predetermine the optimal number of itsfor a given collectionas
et al, 2008 Jain 201Q Liu and Croft 2004. However, in this research, and based on the USIF
performance on a sample of collections, the straight lingaggn . = mX + b was fitted
through the number of clustefs and the number of relevant documet¥s wherem is the

slope and is the bias. They were empirically set tote= 0.5 andb = 0.5.

6.8 Results

In this section, the experimental results of the propose8 iifodels and frameworks are pre-
sented and compared with the results of various baselimaigees. The results show the ef-
fectiveness of the proposed fusion-based techniques igiifg the 50 domain experts assessed
collections of the RCV1 dataset. The effectiveness is nredshy six standard evaluation
metrics. The results also demonstrate the effectivenessrgfroposed models and frameworks
in identifying and ranking relevant features that descuber information needs. The standard
nDCG measure is used for evaluating the quality of thesetiftnh features based on the
relevance judgment of NIST domain experts. Additionalyo tstatistical significance tests,
namely the percentage change and the t-test, are used t aetkeverify the improvement in

each result compared to the baselines.

These experimental results are presented in the followaatjans: the result of the SIF
model compared to the baseline models are given in Seéti®d. The results of the SIF2
model and the comparisons with the baselines are given itioc8eg.8.2 The UR method
improvements to many existing relevance discovery modelsdamonstrated by the results
presented in SectioB.8.3 Section6.8.4shows the results of the USIF framework compared
to the used baseline models and SecGdh5presents the results of the SSIF framework in a

similar way.

6.8.1 The Proposed SIF Model

The results of the SIF model and the selected baselineslaseated in Tablé.4 and Figure

6.12(left). These experimental results show the effectivenéS$F and the baseline models for
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the IF task measured by the standard metrics of P@20, BP, MAP, IAP and 11-point. The
baseline models in Tabl& 4 are categorised based on the type of text feature they udde Ta
6.5and Figures.12(right) illustrate the results of the SIF model and some lasenodels for
RRT measured by the nDCG metric. These results, in Téb#snd6.5, are the average of the
50 collections of the RCV1.

Moreover, Tablé.6and the p-value column in Tab&e5illustrate the results of the statistical
significance measure, the t-test, and the "improvefg&rin Tables6.4and6.5, represents the
percentage change, in our SIF model’s performance compatée best result of the baseline
model. We consider any improvement in the percentage chiwagés greater than 50to be
significant. From all these tables and figures, we can sedhtbe&IF model outperformed all
baseline methods in all measures for all experimental tagkse evaluation details are given

in the following sections.

» SIF Versus Term-based Models

The BM25 and the TFIDF models were selected to representkthelbased category and
their experimental performance in IF and RRT tasks were e@vetpto the proposed SIF
model. While BM25 maintained superior performance in bogpegimental tasks compared
to the TFIDF as can be seen in Taltlg and Figure6.12 (left) and in Table5.5 and Figure
6.12(right), respectively, our SIF model outperformed BM25 Kerin all five measures by
an overall average improvement of 20.866vith a minimum of 14.23% on F;_; and a
maximum of 27.41% on P@20. Figur®.12 (left) clearly shows the superior performance

of the SIF model in IF compared to the BM25 measured by thedidtpnetric.

Also, our model significantly outperformed BM25 in RRT by areeage improvement of
448.159%, measured by the nDCG metric using just the top-4 keywords fi.= 4) ranked
by each model as illustrated in Tal®es. While £ = 4 is the average number of terms in
the 50 titles of TREC topics (see Appendik Figure6.12(right) shows that our SIF model
was consistently significant in RRT compared to both BM25 &RtDF at all top#4 values.
The percentage change test results in Tablédsand6.5 show that all the performance im-
provements of the SIF model in IF and RRT over the BM25 wertssially very significant
as they were much higher than %0 The t-test results in Tablé.6 and6.5 confirmed this

significance because the p-values were much less than Od@fhinails of the test.

* S|F Versus Phrase-based Models
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Table 6.4 SIF results for the IF task compared to the baselines (gdlgased on the type of
feature used by the model) for all measures averaged ovéirsh80 collections of the RCV1
dataset

Model P@20 BP MAP | IAP

SIF 0.567 0.475 0.500 0.473 0.527
LDA 0.492 0.414 0.442 0.437 0.468
PLSA 0.423 0.386 0.379 0.392 0.404
improvemerfto, +15.33% +14.773% +13.273% +8.14% +12.507%
PDS 0.496 0.430 0.444 0.439 0.464
MP 0.426 0.392 0.393 0.409 0.421
improvemerfto, +14.31%, +10.388 +12.80% +7.68% +13.524%
n-grams 0.401 0.342 0.361 0.386 0.384
improvemerfto +41.39% +38.936% +38.6080 +22.5264 +37.287%
BM25 0.445 0.407 0.407 0.414 0.428
TFIDF 0.354 0.338 0.337 0.367 0.366
improvemerfty  +27.41646 +16.6200 +22.98%, +14.237 +23.076%
PBTM-FCP 0.489 0.420 0.423 0.422 0.447
PBTM-FP 0.470 0.402 0.427 0.423 0.449
TNG 0.447 0.360 0.372 0.386 0.394

improvemerfty, +15.95%% +13.0870 +17.214% +11.8564 +17.2204
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Figure 6.12 The 11-point results for IF (left) and the nDCG@esults for RRT (right) of SIF
in comparison with baselines averaged over the first 50 ciodies of the RCV1 dataset.
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Table 6.5 The SIF results for the RRT task including the percentagenghk and the t-test
p-value in comparison with some of the baselines averagedtbe first 50 collections of the

RCV1 dataset

Model nDCG@4 improvemefit p-value

SIF 0.457 0% N/A
LDA 0.356 +28.132% 6.581E-04
PDS 0.342 +33.536% 3.504E-04

PLSA 0.235 +94.08%% 3.055E-05
BM25 0.083 +448.159;  8.041E-11
TFIDF 0.025 +1706.215; 8.939E-12

Table 6.6 The t-test p-values of the best baseline model in each agtég comparison with
the SIF model for the IF task results in Talol€

Model  Tails) P@20 BP MAP =9 IAP
One 7.557E-04 5.117E-07 4.785E-05 7.002E-05 1.239E-05

LDA Two 1511E-03 1.023E-06 9.571E-05 1.400E-04 2.477E-05
One 3.435E-03 3.969E-03 9.530E-04 2.726E-03 1.298E-04
PDS 1w 6.869E-03 7.937E-03 1.906E-03 5.451E-03 2.596E-04
One 4.091E-09 3.483E-11 1.280E-12 5.943E-11 2.051E-13
n-grams 1o 8.181E-09 6.967E-11 2.560E-12 1.189E-10 4.102E-13
One 1.440E-04 1.103E-03 8.550E-05 1.065E-04 1.110E-05
BM25  qy0 2.879E-04 2.206E-03 1.710E-04 2.129E-04 2.220E-05

One 8.335E-03 3.411E-03 1.444E-04 9.346E-04 6.542E-05
PBTM-FCP 10 1.667E-02 6.823E-03 2.889E-04 1.869E-03 1.308E-04

One 5.664E-04 4.085E-05 1.271E-04 1.342E-04 1.965E-05

PBTM-FP 1o  1133E-03 8.171E-05 2.541E-04 2.683E-04 3.929E-05
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For the phrase-based category, the n-grams language madeisgd as a baseline for the IF
only. It was not used for the RRT task as it does not explieiyght single terms. As shown

in Table 6.4, the SIF model significantly outperformed the n-grams madelll measures
by an overall average improvement of 35.76With a minimum of 22.52% on the F_,
metric and a maximum of 41.397on the P@20 measure. Moreover, the 11-point result in
Figure6.12(right) illustrates the superiority of SIF over the n-gramgdel and confirms the
significant improvements that were shown in Tablé. All SIF improvements were much
higher than 5.%, and its t-test p-values in Tab&6 were largely less than 0.05, indicating

that SIF improvements were statistically very significant.

» SIF Versus Pattern-based Models
Our SIF model continues to perform significantly better ttrenstate-of-the-art pattern-based
techniques represented in our experiments by the PDS andPhmodels. For the IF and
the RRT tasks, SIF results were compared to the PDS becas®éd better results than the
MP model as illustrated in TabB4, and can rank relevant terms while the MP does not deal

with individual terms.

In Table6.4, SIF outperformed the PDS in all measures on average by amamiimprove-
ment of 7.68% and a maximum of 14.3%50n the F;_, and the P@20 respectively. Our SIF
model maintained an average improvement of 11% &der the PDS. Also, Figure.12(left)
illustrates the superiority of SIF compared to PDS on th@aitt measure. For the RRT task,
SIF was significantly better than the PDS by 33.%3#h the nDCG@ as shown in Tablé.5
and continues to perform consistently better with différevalues as illustrated in Figure
6.12(right). All SIF improvements over the PDS were statisticalgnificant as confirmed

by the percentage change as well as the t-test results iesi&ld] 6.5and6.6, respectively.

» SIF Versus Topic-based Models
We selected LDA and its predecessor, the PLSA, as baselidelsio represent this category.
LDA continues to achieve better results for the IF and RRKddkan the PLSA. Therefore,
our SIF model will be compared to LDA rather than the PLSA. Wssirated in Table5.4,
the SIF model outperformed the LDA for IF in all measures. @odel achieved a minimum
improvement of 8.14% on the F;_; measure over the LDA, and a maximum improvement
of 15.337% on the P@20 over the same model. On an overall average, the@IEl scored

an improvement of 12.806 over the LDA in the IF task. This improvement can be clearly
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seen in Figuré&.12(left) on the 11-point measure.

For the RRT task measured by the nDCG metric, SIF continuesutperform the LDA

by an average improvement of 28.132as illustrated in Tablé.5 using only the top 4
keywords from each training collection of the RCV1 dataddbreover, our model seems
to be insensitive to the value of thgparameter for the RRT task as can be seen in Figuir2
(right). SIF consistently performed very significantly dh favalues compared to the LDA
model. The percentage change in TalBe$and6.5 represented by the "improvemétit
shows that all SIF improvements are statistically signifa@abecause they are all over %.0
The t-test results in Tablés6 and6.5 confirmed these statistical significances as all p-values

were much less than 0.05 in all tails of the test.

» SIF Versus Hybrid Features-based Models
Three models were selected for this category. The pattasedtopic models (i.e., PBTM-FP
and PBTM-FCP) performed better than the topical N-gramsGJhodel in the IF task. As
all these models were not developed to deal with individeahs explicitly, they were not
used for the RRT task. For the IF task and according to Tédlehe SIF model outperformed
both PBTM models in all measures. SIF scored a minimum imgar@nt of 11.85% over the
PBTM-FP model on the k£, measure and a maximum improvement of 1722 the I1AP
metric over the same baseline model. Overall, our modeltaiaied an overage improvement
of 15.066% in all metrics over the two PBTM models. The 11-point resuigure6.12(left)
confirmed this improvement over all baseline models, incgdhe PBTMs. Moreover, the
percentage change and the t-test results in Tahkand 6.6, respectively, show that SIF
improvements over the baselines were statistically sicamti as these improvements were

higher than 5.% and their one- and -two-tailed p-values were less than 0.05.

Based on the results presented earlier, we are confiderdimiolg that our SIF model can
effectively generalise the local term weight at the docuinherel in the LDA term weighting
function and, thus, provide a more globally representatreght when it combined with the
term document frequency. Also, SIF is more effective in &alg relevant features to acquire
user information needs that represented by a set of longndeats. Overall, these results

support the hypothesis 1.

Despite its effectiveness, SIF was built on the hypothesiglentical topical terms are

equally important in all relevant documents. We argued shiah an assumption could be too
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simple and need to be relaxed. Therefore, we revisited StFexitended it to SIF2. The

following section shows the experimental results of SIFZli@ same experimental tasks.

6.8.2 The Proposed SIF2 Model

This section presents the experimental results of the Slé@ehthat has been introduced in
Chapterd. As in our SIF model, SIF2 was also tested for an IF applicadiod its performance

was measured by six different effectiveness metrics. SI&R also experimentally examined
for the RRT task, and its performance was measured by the i@ C@etric. Two groups

of different baseline models, supervised and unsuperyigere used for comparison with our
new model. These baseline models were examined for the Jamredl RRT tasks. However,
those baselines that do not have an explicit mechanism féing terms were exempted from

the RRT task. The detailed comparisons are given below bas#tese two groups.

Table 6.7 and Figure6.13 (left) illustrate SIF2 results as well as the baselines ffiar -
system while Tablé.8and Figures.13(right) show the results for the RRT task. The percentage

change and the t-test results were presented in T&ble§.8and6.9.

» Comparisons with Supervised Models
The upper part of Tablé.7 summarises the results of SIF2 and three supervised baselin
models for the IF task. These supervised models are thelias@d SVM and BM25 and the
pattern-based SCSP model. The results are sorted in désgemder, and SIF2’s results are

only compared with the best baselines.

As can be seen from Tab&7, our model outperformed the SVM in all measures. It main-
tained an overall average improvement of 20 Z1o/er the SVM with a minimum improve-
ment of 12.35% and a maximum of 23.2¥8 on the F;_, and P@20 measures, respectively.
This significant improvement can be seen clearly using thpdidt result in Figuré.13(left)

in which the SIF2 model outperformed all the baselined mootegjeneral and the supervised

ones more specifically.

For the RRT task results in Tab®8, SIF2 also kept its superiority over the SVM with
an average improvement of 713.793using only four terms. While BM25 scored better
than the SVM in this task, our model was significantly bettemntthe BM25 by an average
improvement of 466.77%. Moreover, Figuré.13(right) shows the significant performance
of SIF2 in the RRT experiment compared to all baseline modetduding the supervised

ones. The Figure also illustrates our model insensitivatshie hyperparametérin which it
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scored much higher than any baseline model at any diwexiue.

According to the percentage change test, all SIF2 impromsaver the supervised models
presented in Tableg 7and6.8were statistically significant as they were all much highant
5.0%. The t-test results in Tablés9 and6.8 further confirmed the statistical significance of

SIF2 results as each p-value of the test is much lower thanmf@rGall measures in the two

tails of the t-test.

Table 6.7 The SIF2 results for the IF task compared to the baselinesifgd as supervised
and unsupervised) for all measures averaged over the filsidiment collections of the RCV1

dataset

Model P@20 BP MAP F=1 IAP

SIF2 0.605 0.504 0.535 0.491 0.557
SVM 0.491 0.414 0.436 0.437 0.462
SCSP 0.480 0.407 0.420 0.423 0.442
BM25 0.445 0.407 0.407 0.414 0.428
improvementfoc +23.218%0 +21.73% +22.706%0 +12.357c +20.563%
SPBTM 0.527 0.448 0.456 0.445 0.478
PDS 0.496 0.430 0.444 0.439 0.464
LdaPara 0.492 0.414 0.442 0.437 0.468
PBTM-FP 0.470 0.402 0.427 0.423 0.449
PBTM-FCP 0.489 0.420 0.423 0.422 0.447
LdaDoc 0.457 0.391 0.400 0.413 0.434
PLSA 0.423 0.386 0.379 0.392 0.404
TNG 0.447 0.360 0.372 0.386 0.394
n-grams 0.401 0.342 0.361 0.386 0.384

improvementto +14.80%% +12.454% +17.42%, +10.227c +16.473%
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Figure 6.13 The 11-point results for IF (left) and the nDCG@esults for RRT (right) of SIF2
in comparison with baselines averaged over the first 50 ciodles of the RCV1 dataset.
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Table 6.8 The SIF2 results for the RRT task including the percentdgmge and the t-test
p-value in comparison with some of the baselines averagedtbe first 50 collections of the

RCV1 dataset

Model nDCG@4 improvemeft p-value

SIF2 0.472 0% N/A
LdaPara  0.356 +32.48% 8.057E-05
PDS 0.342 +38.071% 6.678E-05

LdaDoc 0.275 +71.636% 5.255E-06
PLSA 0.235 +100.6761  5.115E-06
BM25 0.083 +466.77%  6.530E-12
SVM 0.058 +713.79%  2.821E-13

Table 6.9 The t-test p-values of the best baseline model in each agtég comparison with
the SIF2 model for the IF task results in Tabl&

Model Tails) P@20 BP MAP =9 IAP

One 6.244E-03 1.294E-02 2.393E-04 1.048E-03 1.638E-04
Two 1.249E-02 2.588E-02 4.785E-04 2.096E-03 3.276E-04

SPBTM

One 1.847E-04 1.970E-04 6.051E-06 2.346E-05 2.904E-06

SVM Two 3.694E-04 3.940E-04 1.210E-05 4.693E-05 5.809E-06

» Comparisons with Unsupervised Models
In a similar setting, our SIF2 model was compared to a widgeaf unsupervised baseline
TFS models that use different text features. The SPBTM fgcienuses a combination of
high-level features (i.e., patterns and latent topics) arldeved the best result among the
other baseline models. Thus, SIF2 performance was comparteg SPBTM'’s for the IF
task and to the LDA instead for the RRT as the SPBTM does ndtvwdéalow-level terms

and LDA was the best unsupervised baseline model in this task

In IF, our model scored much higher than the SPBTM in all mezsby an overall average
of 14.27&%, as shown in Tablé.7. SIF2's lowest average improvement was 10%220
the F;_; metric and its highest average improvement was 17488 the MAP measure.
Further, the superiority of our model over the SPBTM can lensdearly on the 11-point
measure, which is illustrated in Figusel 3(left). SIF2 scored much higher precision than the
SPBTM model at every standard point of the 11 recall-lewvethe RRT task, our SIF2 model
outperformed the LDA by an average improvement of 32%488ing only four keywords as
shown in Table5.8. Figure6.13(right) clearly demonstrates the significant performarnice o
the SIF2 model in the RRT experiment compared to the unsigaehbaseline models not

only using four terms but at all used terms (i.e., top-25 kags).
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As per the percentage change measure, all SIF2 improvementthe SPBTM and the LDA
were statistically significant because they were much grahtin 5.9; as shown in Tables
6.7and6.8. The two-tailed p-values of the t-test confirmed the statassignificance of the

SIF2 results as illustrated in Tablé®®and6.8.

As per the results reported earlier, we can claim in much dentie that our SIF2 model
managed to relax the SIF hypothesis. It can effectivelynestit a more accurate weighting
function that measures the importance of topical termsc¢h ealevant document. SIF2 also can
better select relevant features from a document colle¢hiahdiscuss user information needs
via the fusion of the estimate weighting function with a moepresentative global statistic.

Therefore, the reported results support hypothesis 2.

SIF and SIF2 models managed to deal with some uncertainties wstimating the rel-
evance of topical terms in a collection of relevant docurserih the following section, we
experimentally demonstrate the effectiveness of our URhotkin dealing with uncertainties in

relevant features that are discovered by various TFS maaelsechniques.

6.8.3 The Proposed UR Method

In this section, the experimental evaluation of the prodod®& method is presented. The
UR method has been introduced in Chaptdaon deal with uncertainties in relevant features
discovered by various supervised and unsupervised TFS Imotlike the experiments of
our SIF and SIF2 models, the UR method is integrated with éaskeline model to scale and
then re-rank its weighted relevant terms. The integratrodpces an improved baseline model,
called 'iModel’ (e.g., ISVM), which is experimentally exaned for the IF and RRT tasks. The
iModel’s performance is measured by the seven effectigenestrics and compared with its
original performance before the integration with the UR moelt The statistical significance
tests, the percentage change and the t-test, are used tormdasimprovement in the iModel
performance and verify whether it is statistically difietrdrom the original’s. If the new
performance is significantly better than the original ohentwe can claim that the UR method

can reduce uncertainties and the evaluation hypothesadits v

All detailed results and comparisons are presented baséteaxperimental task and the
type of the baseline model (i.e., supervised or unsupatyidabless.10 6.12 6.13 6.14and
6.15as well as Figure$.16 and6.14 illustrate all models results for the IF task while Table

6.11and Figures.15show the models performance in the RRT’s experiments.
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* UR with Supervised Models
Eight supervised baseline models were used to evaluateRheéthod for the IF and RRT
tasks. These models are SVM, BM25, Prob, RFRocchio, LASSO, Chi-squargf) and
MI. All these models adopt the low-level terms as text feasuexcept the REDthat uses a
combination of patterns and terms. For the IF results, teedight rows of Tablé.10shows
each model performances before and after applying the URadetThe "improvemefit”
row shows the percentage of improvement achieved by agpthi@a UR method to the cor-
responding model’s original feature set. The table clesilyws that the re-ranking function
of the UR method can significantly improve the performanctheffeature set discovered by

each model.

As can be seen in Tab 10 all eight models gained significant improvements in all the
effectiveness measures. On an overall average acrosstieeseiresy? achieved the highest
improvement of 55.44% compared to its original performance in the IF task while the
lowest improvement (only 5.934) was obtained by the REDmodel. LASSO recorded the
second highest improvement (50.52after thex? followed by MI (48.771%), then BM25
(27.127%), Prob (27.06%) and lastly the SVM (24.262) in descending order. Rocchio
achieved a bit higher improvement (8.28¢than the RFD, which makes it the second lowest

model to be improved by the UR method.

While Table6.10 showed the best results of these models using different ttggms as
gueries to the IF system, Figufl14 shows the changes in MAP values for each model
with an incremental change in the percentage of thektdgrms starting from top<% to
100% of the entire terms space of each collection used by the mani&laveraged over
the used 50 collections. It is apparent from the figure thatréaranked term set performs
significantly better at any percentage of terms in the oalset, and usually, compared
with the original term set, requires less re-ranked termsumbers to obtain the highest
performance. Moreover, the re-ranked terms showed signifiperformance stability and
adequate sensitivity to the hyperparaméterompared to the original term sets. Similar

figures for the P@20, BPgE; and IAP measures can be found in Appendix

In the RRT task, all the eight models obtained significantrmmpments and outperformed
their original performances, as illustrated in Tablé1l The Ml model achieved the highest
average improvement (8027.12 compared to its original NDCG value. Rocchio scored the

lowest average improvement (20.876in the RRT task slightly proceeded by the RF&t
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21.976%. These results in Tabk 11were obtained using the top-4 terms from each term set
ranked by an original and improved model. However, Fighuddb shows the changes in the
nNnDCG measure over the first 25 terms<{ £ < 25) in which all improved models performed

significantly and consistently better than the originals.

The percentage of change and the t-test were also conductkd UR method experiments
in order to verify that the gained performances of the baseihodels were statistically
significant than their original ones. The percentage of ghamsults in Table$.10 and
6.11 clearly show that all models improvements were higher th&8f 5which implied that
all improvements were statistically different from thegonial performances. The t-test results
in Tables6.12and6.11 confirmed the results of the percentage change. All p-vadfied
seven measures for both IF and RRT tasks were largely lessOti@® in the two tails of
the t-test, which indicate that all improvements were stathlly significant. However, the
RFD, model did not achieve an improvement that is higher thafc%@ the _; measure
(3.784% < 5.0%) in the IF results in Tablé.10even though the t-test results of this measure
in Table6.12indicated the opposite as the p-value at the two tails weetlgan 0.05 (0.003
and 0.005, respectively). Moreover, the two-tailed p-gadfithe t-test did not show that the
improvement of the RFPon the BP measure was statistically different from the aagone.
However, the one-tailed shows the opposite as the p-valG87R) is less than 0.05 and the

percentage of change in TatfielOindicates that it is higher than 3/0(5.496%).

* UR with Unsupervised Models
Four unsupervised models were used in the experiments ofJBhenethod to assess its
effectiveness in reducing uncertainties. These TFS maelshe pattern-based PDS, the
topic-based LDA and its predecessor, the PLSA, and lastiyrdditional TFIDF as a term-
based method. These models, including the UR itself, weteramed on the negative
document sets of the 50 RCV1 collections. The models’ redaitthe IF task are presented
in Table6.10at its last four rows. By examining these rows, we can seettigat)R method

can significantly improve the performances of these modeddl measures.

In Table6.10 PLSA achieved the highest overall average improvemen® &2, across all
measures. The term-based TFIDF scored the second bestienpeat (15.99%) followed
by the LDA (14.107%) and lastly the PDS with an overall average improvement 84%%.
These results were the best results for each model, and tbey achieved using different

top-k terms based on the model’s ability to respond to the scalingtfon of the UR method.
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Therefore, for a much clearer picture, Figugd 4 illustrates the response of each model
to the UR method for the entire terms space of the model meddwy the MAP metric.
We can see that at each téf¢ of the terms the improved model achieved much higher
performance compared to the original model and at a muchlenmalmber of terms. Even
more, each improved model showed much performance syahilid adequate sensitivity to
the k hyperparameter. While this figure shows the MAP resultsilairfigures for the other

effectiveness measures can be located in Appe@dix

In the RRT experiments, the last four rows of Tablé1show the results of the used unsu-
pervised models measured by the nDCG metric. It is appanahipplying the UR method
to these models made them perform very effectively compiardéukir original performances
in the RRT task. TFIDF re-ranked terms scored the best agaragrovement of 361.903
compared to their original performance (0.13$70.025). The re-ranked topical terms of the
PLSA model also achieved significant improvement compapeiistoriginal performance
by an average of 77.774 while the improved terms of its successor, the LDA, only gdin
28.903% improvement. The re-ranked terms of the PDS patterns stioedaest nDCG result
(0.490) among all baseline models with an average improneofet3.418: compared to the
original model’s performance. Although these results vea@ed using the top+e-ranked
terms of each model, FiguG15shows that all the improved models performed consistently

much better than the originals at any tbpalue of the first 25 words.

The percentage of change results in Tabld9and6.11as well as the t-test results in Tables
6.12 and 6.11 strongly confirm that all the reported performances impnosets of these
unsupervised models are statistically different fromrtbeginal performances. As shown in
these tables, all improveménbf the percentage change test were much higher th&a is.0

all measures. Similarly, for the t-test, all p-values oftalls were much less than 0.05.

» Best Model Versus All Models
The previous sections presented the improvement gaingimdopervised and unsupervised
baseline models after applying the UR method. This sectiesgnts the results of the best-
improved model (i.e., iModel) compared to the other modetslie same IF and RRT tasks.

These results are shown in Tab&43 6.14, 6.15and Figures.16for all tasks.

The best performance in the IF task was scored by the impr&¥%d model (i.e., ISVM)
as shown in Tabl&.13 Compared to the second best-improved model, the iBM25MSV
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Table 6.1Q The performance improvements of all TFS models for the #k &ter applying
the UR method compared to their original performance awstayer the first 50 collections of
the RCV1 dataset

Model P@20 BP MAP =1 IAP
SVM 0.491 0.414 0.436 0.437 0.462
iISVM 0.613 0.531 0.559 0.502 0.578
improvemerfto +24.847, +28.44%%, +28.178: +14.817 +25.025%
BM25 0.445 0.407 0.407 0.414 0.428
iBM25 0.596 0.526 0.553 0.504 0.570
improvemerit, +33.933¢ +29.238 +35.872% +21.73% +33.178%
Prob 0.464 0.395 0.414 0.421 0.438
iProb 0.593 0.515 0.542 0.499 0.559
improvemerity +27.802% +30.486% +30.75%% +18.467% +27.794%
RFD, 0.525 0.461 0.474 0.459 0.497
iRFD, 0.563 0.487 0.506 0.476 0.529
improvemerfto  +7.238%  +5.4964 +6.598% +3.784%  +6.540%
Rocchio 0.509 0.430 0.456 0.446 0.480
iRocchio 0.559 0.469 0.496 0.469 0.521
improvemeritc  +9.823%  +8.927%  +8.847 +5.333% +8.541%
LASSO 0.329 0.325 0.318 0.354 0.347
iLASSO 0.565 0.467 0.495 0.468 0.516
improvemerfto +71.733% +43.6630 +55.99%0 +32.296%0 +48.920%
x? 0.316 0.309 0.304 0.346 0.329
iy? 0.541 0.467 0.492 0.472 0.514
improvemerito +71.203t +51.13% +62.153%: +36.38% +56.348%
Ml 0.328 0.319 0.309 0.344 0.341
iMI 0.545 0.458 0.476 0.460 0.498
improvemerity +66.159 +43.705, +54.33%, +33.544% +46.11%
PDS 0.496 0.430 0.444 0.439 0.464
iPDS 0.574 0.489 0.526 0.483 0.549
improvemeritc +15.726% +13.72%% +18.468; +10.0237 +18.31%
LDA 0.492 0.414 0.442 0.437 0.468
iLDA 0.565 0.483 0.512 0.479 0.532
improvemerfto +14.9306h +16.60%0 +15.8000 +9.576% +13.623%
PLSA 0.423 0.386 0.379 0.392 0.404
iPLSA 0.582 0.478 0.509 0.478 0.528
improvemerfto +37.58% +23.8340 +34.30% +21.93% +30.693%
TFIDF 0.354 0.338 0.337 0.367 0.366
iTFIDF 0.458 0.381 0.390 0.399 0.415

improvemerity +29.37% +12.723, +15.768 +8.76%% +13.31%
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Figure 6.14 The changes in the MAP measure for each TFS model beforef@rcapplying
the UR method for the IF task using tofclto 100% of the terms space of each collection
averaged over all 50 collections.



188 CHAPTER 6. EVALUATION

Table 6.11 The performance improvement of all TFS models for the RRK t&fter applying
the UR method compared to their original performance awestayer the first 50 collections of

the RCV1 dataset

Model nDCG@4 improvemefit T-Test p-value

SVM 0.058 One-Tailed 5.882E-13
iSVM 0422  T62L.46% 10 Tailed 1.176E-12
BM25 0.083 One-Tailed 3.220E-09
iBM25 0351 321618 10 Tailed 6.440E-09
Prob 0.060 One-Tailed 7.073E-10
iProb 0345 4706570 10 Tailled 1.415E-09
RFD, 0.355 One-Tailed 2.129E-04
iRFD, 0433 1219786 1y Talled 4.258E-04
Rocchio 0.330 One-Tailed 2.983E-04
iRocchio  0.309 12087680 0 Tailed  5.966E-04
LASSO  0.007 One-Tailed 2.186E-14
iLASSO  0.428  19680.76Y0 0 Tailed 4.372E-14
\? 0.009 One-Tailled 9.265E-10
i 0315 732514630 10 Tailed 1.853E-09
Ml 0.004 One-Tailed 2.511E-13
iMI 0320  18027.12% 10 Thiled 5.021E-13
PDS 0.342 One-Tailed 2.298E-05
iPDS 0490  T434180 10 Talled 4.596E-05
LDA 0.356 One-Tailed 9.279E-05
iLDA 0459 1289036 10 Tailed 1.856E-04
PLSA 0.235 One-Tailed 2.070E-05
iPLSA 0418  T1TTY%  1yoTailed 4.140E-05
TFIDF 0.025 One-Tailed 1.014E-04
iTFIDE 0117 3619030 10 Talled  2.029E-04
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Figure 6.15 The changes in the nDCG@k measure for each TFS model beforafter
applying the UR method for the RRT task using the top 25 termsi(k < 25) averaged

over the 50 human-assessed collections of the RCV1 dataset.
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Table 6.12 The t-test p-values for each TFS model in comparison wéhnitproved version
after applying the UR method for the IF task results in Tabl

Model Tails) P@20 BP MAP . IAP
One 2.275E-04 5.950E-06 1.509E-06 5.172E-06 7.557E-07
SVM 1o 4550E-04 1.190E-05 3.018E-06 1.034E-05 1.511E-06
One 1.098E-07 1.654E-09 1.258E-10 1.157E-10 4.135E-11
BM25 1o  2.195E-07 3.307E-09 2.517E-10 2.313E-10 8.270E-11
One 7.169E-06 3.123E-09 1.799E-09 3.145E-09 5.905E-10
Prob 1o 1.434E-05 6.246E-09 3.598E-09 6.290E-09 1.181E-09
One 1.087E-03 3.723E-02 3.128E-03 2.524E-03 1.457E-03
RFD:  Two 2.174E-03 7.446E-02 6.257E-03 5.049E-03 2.913E-03
~ One 1576E-03 2.052E-03 1.270E-04 5.256E-04 6.461E-05
Rocchio 6 3.153E-03 4.104E-03 2.539E-04 1.051E-03 1.292E-04
One 1.610E-09 4.341E-08 1.115E-10 9.176E-10 1.284E-10
LASSO 1o 3.220E-09 8.683E-08 2.230E-10 1.835E-09 2.568E-10
_ One LII6E-08 5550E-10 4502E-12 6.049E-11 3.737E-12
X Two 2.231E-08 1.110E-09 9.004E-12 1.210E-10 7.474E-12
One 8.130E-09 1.417E-08 6.982E-10 1.754E-09 1.128E-09
Ml Two 1.626E-08 2.834E-08 1.396E-09 3.507E-09 2.256E-09
One 7.058E-03 1.506E-02 1.333E-04 4.095E-04 2.691E-05
PDS  1wo 1.412E-02 3.012E-02 2.666E-04 8.190E-04 5.382E-05
One 1.867E-03 7.017E-06 2.513E-06 1.842E-06 3.113E-06
LDA Jwo 3.734E-03 1.403E-05 5.027E-06 3.684E-06 6.225E-06
One 3.329E-07 5.528E-06 2.352E-08 3.542E-08 2.754E-08
PLSA" Two 6.657E-07 1.106E-05 4.705E-08 7.085E-08 5.508E-08
One 1.143E-05 1.762E-03 2.549E-05 3.482E-05 4.150E-05

TFIDF

Two 2.286E-05 3.524E-03 5.098E-05 6.964E-05 8.299E-05

Table 6.13 The results of the improved TFS models for the IF task comegb&o the result of
the best improved model (i.e., ISVM)

Model P@20 BP MAP F=1 IAP
iSVM 0.613 0.531 0.559 0.502 0.578
iBM25 0.596 0.526 0.553 0.504 0.570
iProb 0.593 0.515 0.542 0.499 0.559
iPDS 0.574 0.489 0.526 0.483 0.549
iLDA 0.565 0.483 0.512 0.479 0.532
iPLSA 0.582 0.478 0.509 0.478 0.528
iRFD; 0.563 0.487 0.506 0.476 0.529
iRocchio 0.559 0.469 0.496 0.469 0.521
iLASSO 0.565 0.467 0.495 0.468 0.516
i 0.541 0.467 0.492 0.472 0.514
iMI 0.545 0.458 0.476 0.460 0.498
iTFIDF 0.458 0.381 0.390 0.399 0.415

improvemerftt, +2.852% +0.9764 +1.215% —0.4406 +1.41%
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Table 6.14 The results of iISVM model for the IF task compared to otheSTRodels as
baselines (grouped as supervised and unsupervised)

Model P@20 BP MAP F=1 I1AP
iISVM 0.613 0.531 0.559 0.502 0.578
RFD, 0.525 0.461 0.474 0.459 0.497
Rocchio 0.509 0.430 0.456 0.446 0.480
Prob 0.464 0.395 0.414 0.421 0.438
BM25 0.445 0.407 0.407 0.414 0.428
LASSO 0.329 0.325 0.318 0.354 0.347
MI 0.328 0.319 0.309 0.344 0.341
x? 0.316 0.309 0.304 0.346 0.329
improvementfc +16.762% +15.154%, +17.87% +9.231% +16.443%
PDS 0.496 0.430 0.444 0.439 0.464
LDA 0.492 0.414 0.442 0.437 0.468
PLSA 0.423 0.386 0.379 0.392 0.404
TFIDF 0.354 0.338 0.337 0.367 0.366

improvemerttoc +23.589, +23.4881 +25.90% +14.35%% +24.56%
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Figure 6.16 The 11-point result of the iISVM model for the IF task in compan with other
TFS models (left) and iSVM compared to other improved mod&ght) all averaged over the
first 50 collections of the RCV1 dataset.
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Table 6.15 The improved TFS models results for the RRT task comparddet@esult of the
best improved model (i.e., iPDS)

Model nDCG@4 improvemefit

iPDS 0.490 0%

iLDA 0.459 +6.754%
iRFD, 0.433 +13.164%
iLASSO 0.428 +14.486%
iISVM 0.422 +16.114%

iPLSA 0.418 +17.22%%
iRocchio 0.399 +22.80%
iBM25 0.351 +39.601%

iProb 0.345 +42.02%
iMI 0.329 +48.936%
ix? 0.315 +55.556%

iTFIDF 0.117 +318.803%

achieved an overall average improvement of 1%20%arly in all measures. iSVM scored
its highest average improvement on the P@20 measure whileviest was—0.440% on
the F;—; metric. These improvements indicate that iISVM performaisaeot significantly
different from the iBM25 in IF. Figures.16 (right) confirms this conclusion as these two
models performed similarly well in IF. In the RRT task, th®® model achieved the best
result of 0.490 on the nDCG measure, as illustrated in Taldlg with average improvements

of 6.754% and 13.16% compared to the iLDA and iRFDrespectively.

Table 6.14 and Figure6.16 (left) compare the performance of iISVM with all the baseline
models. The improveme¥itat the bottom of Tablé.14 shows the percentage of improve-
ment achieved by iSVM against the best-supervised baseimdel, RFD, and the best-
unsupervised baseline model, PDS. The iSVM model outpada@ll models in all five mea-
sures. The improvement of iISVM against the RRDodel is from a maximum of 17.876

to a minimum of 9.23% in all measures. The iSVM model also outperformed the PDS
by a maximum improvement of 25.9%1and a minimum of 14.35%. The performance
improvements against the most important measure for theyskes, MAP, are 17.875

and 25.90% compared to RFPand PDS, respectively. Generally, iISVM achieved average
improvements of 15.098 and 22.38(; in all measures against RE@and PDS, respectively.
The interpolated precision results of 11 standard recedli$ein Figure6.16 (left) show that

ISVM consistently outperforms any baseline models.
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Based on all results presented in previous sections, we @aciude that when our UR
method is applied to suitable relevant feature discovergehahe performance can be sig-
nificantly better than existing models. Therefore, all thessults support our hypothesis that

paragraph relevance can effectively reduce uncertaimiesevant feature space.

Apart from the effectiveness of SIF, SIF2 and the UR methothgahey (1) cannot deal
with the problem of unbalanced relevant topics in order lecdehe most relevant features.
Also, as they are unsupervised, they (2) cannot selectaieldeatures that frequently occur
in negative documents. In the following sections, the tssofl the proposed USIF and SSIF
frameworks will be presented. USIF was developed to addheséirst problem while SSIF
was proposed to deal with the second problem. Both framesvmidke use of SIF and the UR

methods in different ways to deal with uncertainties inteerin relevance feedback.

6.8.4 The Proposed USIF Framework

USIF results for the IF testing system are illustrated inl@#&b16 and Figure6.17 (left) and
compared to the results of different baseline models fos#ime task. The baseline models are
grouped based on the fusion strategy they use as eitheraddte or hybrid. Tabl&.17and
Figure6.17(right) show USIF results for the RRT task including the iass. The percentage
change and the t-test results are presented in Téhl€s6.18and6.17 showing the statistical
significance of USIF performance in both experimental tagjanst the best baseline models.

More evaluation details are described below.

* USIF Versus Early Fusion Models
USIF performance for IF was compared to Rocchio, SVM and BM&®arly fusion-based
models. Unlike USIF, they are supervised and use low-lereh$. Table5.16 shows these
models performances, including USIF, in the upper part eftdble measured by the five
standard metrics; P@20, BP, MAR;_k and IAP. The improvemefit row at the bottom of
this part shows the percentage of improvement achievedeby 81F against the best model
(i.e., Rocchio) among all the other baseline models in that g-igure6.17 (left) illustrates
the performance of USIF and these baseline models for the $iartask measured by the

11-point metric.

It is apparent from the first part of Tabel6and Figures.17that the USIF consistently per-
forms the best among all these early-fusion models. It stdpaed Rocchio’s performance

by an average improvement of 18.64hcross all measures with a maximum improvement
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of 21.022% on P@20 and a minimum of 12.290n F;_,. Moreover, USIF was significantly
better than Rocchio on the 11-point measure, as illustiateayure6.17 (left). For the RRT
task, our framework scored an average of 0.502 on nDCG@4ntiamtates that USIF was
significantly better than Rocchio by an average improvern€b2.112% as shown in Table
6.17

USIF's score on the nDCG@4 measure is the best score acheewedg all TFS models
used in this research, including our proposed works. Whiestore was achieved using four
terms discovered by USIF, Figugl7 (right) shows that our framework was consistently
better than all baseline models, including Rocchio. All B8&hprovements were statistically
significant compared to the baselines as confirmed by thepige change and t-test results
in Tables6.16 6.17and6.18 USIF improvements were much higher than%.and their

t-test p-values were largely less than 0.05 in both tailseftést.

Table 6.16 The USIF results for the IF task compared to the baselinesifged based on the
fusion strategy they use to early, late and hybrid fusion @e)dor all measures averaged over
the first 50 document collections of the RCV1 dataset

Model P@20 BP MAP B IAP
USIF 0.616 0.518 0.550 0.500 0.571
Rocchio 0.509 0.430 0.456 0.446 0.480
SVM 0.491 0.414 0.436 0.437 0.462
BM25 0.445 0.407 0.407 0.414 0.428
improvemerfto, +21.022% +20.285, +20.6380 +12.290h +18.822%
LDA 0.492 0.414 0.442 0.437 0.468
SCSP 0.480 0.407 0.420 0.423 0.442
TNG 0.447 0.360 0.372 0.386 0.394
LdaConcept 0.335 0.329 0.326 0.352 0.357
improvemenftc +25.3050 +25.063% +24.403, +14.4280 +21.85%
RFD, 0.561 0.473 0.493 0.470 0.514
PDS 0.496 0.430 0.444 0.439 0.464
MP 0.426 0.392 0.393 0.409 0.421

improvemenftc  +9.804% +9.506% +11.477% +6.504% +11.110%

* USIF Versus Late Fusion Models
Four baseline models were selected to represent this cgteddey are the supervised
pattern-based SCSP model and three unsupervised modet$, mbludes the topic-based
LDA, the topical phrase-based TNG and the topical concapel LdaConcept. The second

part of Table6.16 shows the IF results of these baseline models in descenddsy and
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Figure 6.17 The 11-pointresults for IF (left) and the nDCG@esults for RRT (right) of USIF

in comparison with baselines averaged over the first 50ciodies of the RCV1 dataset.

Table 6.17 The USIF results for the RRT task including the percentdgnge and the t-test
p-value in comparison with some of the baselines averagedtbe first 50 collections of the

RCV1 dataset

Model nDCG@4 improvemeft p-value
USIF 0.502 0% N/A
LDA 0.356 +40.788% 4.486E-06
RFD, 0.355 +41.37%% 3.009E-06
PDS 0.342 +46.726% 9.198E-06
Rocchio 0.330 +52.112% 4.717E-07
SVM 0.058 +758.7200c  2.288E-14

Table 6.18 The t-test p-values of the best baseline model in each agtég comparison with
the USIF framework for the IF task tesults in Tabld 6

Model Tails) P@20 BP MAP E IAP
 One 1594E-06 1.603E-05 9.837E-07 5.877E-06 7.206E-07
Rocchio 15 3.188E-06 3.205E-05 1.967E-06 1.175E-05 1.441E-06
One 1.001E-05 1.783E-08 2.999E-08 1.534E-07 7.729E-09

LDA Two 3.801E-05 3.567E-08 5.999E-08 3.068E-07 1.546E-08
One 2.458E-02 7.596E-03 1.528E-03 3.381E-03 6.739E-04

RFD:  Two 4.916E-02 1.519E-02 3.056E-03 6.761E-03 1.348E-03
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USIF was compared to the best model; the LDA. The performah¢$SIF is significantly
better than the performance of LDA by an overall average avgment of 22.21% across all
measures. The performance improvement by USIF is from amggeninimum of 14.428
on the F_; measure to a maximum of 25.3@5~vhen compared with LDA. The 11-point

results in Figuré.17show that the performance of USIF is consistently better tha LDA.

In the RRT experiment, Tablé.17 shows that USIF performance was superior to the LDA
by an average improvement of 40.78&n the nDCG@4 measure, and Figéré7 (right)
confirms the superiority of USIF at any number of terms ragdnom the topi to top25
keywords. All USIF improvements compared to the baselinesewot random as verified
by the statistical significance tests. The percentage eéhargasure and the t-test results in
Tables6.16 6.17and6.18show that all improvements in USIF performance were stedikby
different from the baselines as they were much higher tha{ .5The two tails t-test confirm

the results of the percentage change as all p-values werécagtly less than 0.05.

» USIF Versus Hybrid Fusion Models
The last part of Tablé.16shows the IF experimental results of the USIF framework caneqb
to three hybrid fusion-based baseline models. These mdasdshigh-level patterns with
low-level terms, and they are the supervised RRidel, and the unsupervised PDS and MP
models. USIF performances were compared against,R&®the best model in the group.
USIF outperformed RFPby an overall average improvement of 9.68 all measures. The
maximum average improvement achieved by USIF was 1¥4dYthe MAP metric, and the
minimum was 6.50% on the _; measure. Moreover, Figu17 (left) shows that USIF

continues to perform significantly better than RF@h the 11-point metric.

USIF was superior to REDin discovering relevant terms, as illustrated in TaBl&7. Our
framework achieved an average improvement of 41%3¢@mpared to the RFDand consis-
tently superior not only using four terms but at any numbetheffirst 25 words as can be
seen in Figuré.17 (right). USIF achievements against RfFD both IF and RRT tasks were
also statistically verified using the percentage of chamgktdest to make sure that they did
not occur randomly. All USIF improvements were higher tha0¥5in all seven measures as
illustrated in Table$.16and6.17. The two tails t-test results in Tablésl8and6.17strongly

confirm the results of the percentage of change as all p-saleee much less than 0.05.

As per the results presented earlier, we have much confidandaiming that the USIF
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framework can discover relevant features from a set of wmzald latent topics that discuss
user information preferences. USIF managed to effectigelgct and weight these features
using a combination of unsupervised learning algorithnt r@presentative global statistics.

Therefore, the experimental results discussed above supyothesis 4.

While USIF provided a comprehensive, unsupervised saidtiodiscovering relevant fea-
tures from a set of positive documents, it still cannot dedhwelevant features that also
frequently appear in negative documents. The followingigeqresents the results of our

SSIF framework that effectively addresses the limitatib SIF.

6.8.5 The Proposed SSIF Framework

The performances of SSIF in IF and RRT experiments are piedém this section and com-
pared to different state-of-the-art baseline models. Wiged supervised models together,
including SSIF for easier comparison. Also, we group otheseline models based on the
learning or mining algorithms they use for better analy$lee results of SSIF and the baseline
models for IF are given in Tabl6.19 and Figure6.18 (left) while their results in RRT are
illustrated in Table5.20and Figure6.18 (right). We also conducted two statistical tests; the
percentage change and t-test, to measure and verify houficagm the SSIF improvements
compared to the baselines. These tests results are preseibless.19 6.20and6.21 Itis
apparent from all these tables and figures that the SSIF stendliy performs the best among

all baseline models. More detailed comparisons are givleawbiea the following sections.

» Comparison with Supervised Learning
For IF, the first part of Tabl&.19 shows that the SSIF outperformed all other supervised
learning-based baseline models in all five measures. Theowements in this part shows
that SSIF, which combines both supervised and unsuperigaeaing, consistently achieved
the best performance when compared with baseline moddaisathabased on supervised
learning. The improvement of SSIF against the second besem®&®FD;,, was from a
minimum of 9.51% to a maximum of 16.88% on F;_, and MAP measures, respectively.
The performance improvement against the most importansareaf IF system, MAP, was
16.880%, and the average improvement in all five measures was 1%4.10Bhe 11-point
results in Figures.18(left) clearly shows that SSIF performance was signifigalpditter than
RFD, and all other models.

Table6.20shows SSIF and other suitable models performances in tha&dRTsing the first
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top four terms. SSIF scored 0.420 on the nDCG measure witlverage improvement of
18.292, compared to RFR For the same task, SSIF continued to perform consistently
better than RFD at differentk values, as shown in Figuré.18 (right). Moreover, the
percentage change results in Takes9and6.20show that all SSIF improvements against
RFD, were statistically significant as they were largely higheart 5.0% in all measures.
T-test results in Table§.21 and 6.20 further confirm the statistical significance of SSIF
performance compared to RED All p-values were much less than 0.05 in all measures

except for the nDCG@. It was not statistically different from REDesult (0.113 £ 0.05).

Table 6.19 The SSIF results for the IF task compared to the baselinedlfimeasures averaged
over the first 50 document collections of the RCV1 dataset

Model P@20 BP MAP s IAP
SSIF 0.631 0.550 0.576 0.515 0.592
RFD, 0.561 0.473 0.493 0.470 0.514
SVM 0.491 0.414 0.436 0.437 0.462
BM25 0.445 0.407 0.407 0.414 0.428
improvemerfty, +12.4780 +16.405%, +16.880% +9.51%% +15.256%
LDA 0.492 0.414 0.442 0.437 0.468
PLSA 0.423 0.386 0.379 0.392 0.404
TNG 0.447 0.360 0.372 0.386 0.394
improvemeritc +28.356%6 +32.942% +30.43% +17.667% +26.406%
PDS 0.496 0.430 0.444 0.439 0.464
SCSP 0.480 0.407 0.420 0.423 0.442
PCM 0.437 0.372 0.381 0.397 0.406
n-grams 0.401 0.342 0.361 0.386 0.384
improvemerfto +27.2180 +27.8630c +29.8930 +17.1740 +27.54%
MPBTM 0.552 0.466 0.477 0.459 0.496
SPBTM 0.527 0.448 0.456 0.445 0.478
PBTM-FP 0.470 0.402 0.427 0.423 0.449
PBTM-FCP 0.489 0.420 0.423 0.422 0.447

improvemeritc +14.312% +18.058 +20.762% +12.2187 +19.34%%

» Comparison with Topic Modelling
The performance of the topic modelling-based baseline fsaadéF are shown in the second
part of Table6.19 The best model in this part is LDA. The performance of SSIS sig-
nificantly better than the performance of topic modelliraséd baselines. The performance
improvement by SSIF was from a minimum average of 17%66@ a maximum of 32.%
when compared with LDA based on thg_k- and BP measures, respectively. SSIF maintained
an overall average improvement of 27.¥64across all measures. The 11-point result in Figure

6.18(left) confirms SSIF superiority over LDA and other topicsbd models. In RRT, SSIF
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Figure 6.18 The 11-point results for IF (left) and the nDCGu@esults for RRT (right) of SSIF
in comparison with baselines averaged over the first 50ciodies of the RCV1 dataset.

Table 6.2Q The SSIF results for the RRT task including the percentdgemge and the t-test
p-value in comparison with some of the baselines averagedtbe first 50 collections of the
RCV1 dataset

Model nDCG@4 improvemeft p-value

SSIF 0.420 0o N/A

LDA 0.356 +17.978% 1.367E-01
RFD, 0.355 +18.292% 1.133E-01
PDS 0.342 +22.807% 8.610E-02
BM25 0.083 +403.9741  4.187E-10
SVM 0.058 +618.533%c  3.321E-11

Table 6.21 The t-test p-values of the best baseline model in each @atég comparison with
the SSIF framework for the IF task results in Tabl&9

Model Tails) P@20 BP MAP E. IAP
One 5.463E-03 3.574E-04 2.866E-04 6.626E-04 2.347E-04
RFD:  two 1.093E-02 7.148E-04 5.733E-04 1.325E-03 4.693E-04

One 1.095E-05 1.132E-07 1.857E-07 5.673E-07 2.076E-07

LDA Two 2.191E-05 2.264E-07 3.715E-07 1.135E-06 4.153E-07

One 1.787E-06 4.254E-06 3.663E-07 8.594E-07 2.045E-07
PDS  1wo 3.574E-06 8.509E-06 7.325E-07 1.719E-06 4.089E-07

One 3.208E-03 7.582E-04 7.677E-05 2.075E-04 5.350E-05
Two 6.417E-03 1.516E-03 1.535E-04 4.149E-04 1.070E-04

MPBTM
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achieved better performance than LDA with an average imgrent of 17.97% over LDA
performance on the nDCG@neasure. Figur6.18(right) also illustrates SSIF performance

in RRT over LDA using the top 25 terms ranked by both SSIF and LD

SSIF improvements in all measures for the experimental waesle statistically significant
from the LDA as measured by the percentage change test. Tbenpage change results in
Tables6.19and6.20clearly indicate that SSIF improvements were much highan th0%.
The t-test confirmed the results of the percentage change.pMalues of both tails of the
test show that SSIF results were statistically differeatrfrthe LDA as their p-values were
much less than 0.05, as illustrated in Tab®e®1 and6.20. However, this was not the case
with the nDCG@! result because the t-test p-value of SSIF compared to LDAhgtser
than 0.05 indicating that SSIF performance in RRT was naissizlly significant than the

LDA's negating the outcome of the percentage change test.

» Comparison with Pattern Mining and N-Grams

The third part of Tabl&.19shows the performance of pattern mining-based baselinelmod
in IF including the phrase-based N-Grams model. The beseirindhis part is PDS. The
minimum and maximum improvements achieved by the SSIF ag&DS is 17.17%4 and
29.893% on the F;_; and MAP measures, respectively. Over all measures, SSIérpemce
was significantly better than PDS by an average improvemef6®3%%. The 11-point
results in Figures.18 (left) confirm the previous overall average improvement 8fFSover
the PDS model in the IF task. SSIF also continued to outp@arfaDS in the RRT experiment
achieving an average improvement of 22.803ver it on the nDCG@ measure, as shown

in Table6.20

Figure6.18 (right) shows that SSIF scored better results on nDCG naot whien £=4 but

at anyk value from 1 to 25. All SSIF improvements over PDS were diatily significant

as indicated by the percentage of change measure. Taldl@and6.20 clearly show that
SSIF performance improvements in both experimental tagke Vargely higher than 50
The two-tailed t-test confirmed the outcome of the percentdmange. Nearly all p-values
of the two tails of the test were much less than 0.05 as candeirelable.21and6.20
except for the nDCG@result. Its p-value was slightly higher than 0.05 refuting butcome

of the percentage change (22.807 which stated that SSIF improvement was statistically

significant than PDS.
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» Comparison with Topical Pattern Mining
The last part of Tabl&.19shows the performance of topical pattern mining-basedlinase
models. As these models combine the best of both topic modelhd pattern mining, they
outperform the models in the second part and the third paet.performances of the models
in this part are about the same as the models in the first pagpéxor SSIF. The best-
performing model in this part is MPBTM. The improvement ofiS&gainst MPBTM in IF
is from a minimum of 12.21% to a maximum of 20.762 on the ;_; and MAP measures,

respectively.

Across all five measures, SSIF outperformed MPBTM by an aeeiraprovement of 16.938.
The 11-point results in Figuré 18(left) can confirm this improvement in which SSIF main-
tained its superior performance over MPBTM. All SSIF impeoents against MPBTM were
statistically significant according to the percentage ange test. Its improvements were
higher than 5.6 as demonstrated by the improvenignin Table 6.19 T-test results in
Table6.21further confirm the statistical significance of SSIF impnoeats over the MPBTM

model. All the p-values of the test were much less than 0.@#H imeasures.

Based on the experimental results of the SSIF frameworlepted above, we are confident
of claiming that SSIF can effectively select and weightvatd features that appear across both
positive and negative documents. Our framework managea tinat through the combina-
tion of different supervised and unsupervised learningrigpes. Consequently, those results

presented earlier support hypothesis 5.

6.9 Analysis and Discussion

The previous section presented the extensive experimstudies that have been conducted
to assess the effectiveness of our proposed TFS models améviiorks. The experimental
results confirm the superiority of our techniques over afldiae models in both IF and RRT
tasks. In this section, we further analyse and discuss tiessiéts based on the effects of some
critical factors that influence the performance of our psggbmodels and frameworks as well
as the used baselines. These factors are linked to the u4¢ fofs{on strategies; (2) type of
text feature; (3) positive and/or negative feedback; andyldbal statistics. Also, the effects
of other factors such as the sophistication of the weightingtion and the learning algorithm

are worth to be taken into consideration, especially wh&gnrating different low-level and/or
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high-level features. A parameter-sensitivity analysis3t~, SIF2 and UR models as well as a
more in-depth investigation for the idea of separatinguiesaselection from feature weighting

in the proposed USIF and SSIF frameworks are also presemtagisection.

6.9.1 The Proposed SIF Model

» The Effects of Feature Type

As observed from the results shown in Tabie4and6.5 and illustrated in Figuré.12, the
SIF model outperformed all baseline models in all measundsdth IF and RRT experimental
tasks. Our SIF model achieved this superior performanaaithr the hybrid fusion of high-
level topics and low-level terms. Adopting only individuarms, as in BM25, TFIDF and
other early fusion baseline techniques, made them perfbpoerly in IF compared to the late
and hybrid fusion models. We speculate that the absencemafrge information among these
terms is one of the main reasons behind the poor performdribese techniques despite the
flexibility of terms and their rich statistical informatioThe inferior results of both TFIDF
and BM25 in the RRT task, as illustrated in Talslé and the right figure of Figuré.12
evidently confirm the negative effects of ignoring semamtformation in relevant feature

discovery.

However, (1) the efficient employment of the statisticalgaies of terms by the BM25
weighting function and, more specifically, (2) the utilisatof negative feedback made BM25
significantly better than TFIDF. Also, these two factors m&M25 competitive and some-
times even better, in some measures, than some of the IgteReSA,n-grams and TNG)
and hybrid (e.g., MP) fusion-based models in the IF taskil@stiated in Tablés.4. Despite
the positive effects of these factors on BM25, it still counlok discover the relevant terms
identified by the NIST experts, which made it performed vergnby in the RRT experiment.
Table6.22shows a real example from Collection 101 of the RCV1 datasathich BM25
could not highly rank any of these relevant terms (i.e., ‘fiaic” and “Espionage”). There-
fore, it is clear that the absence of semantic informatioeary fusion models has severely

impacted their performance in IF and most apparently in tR& Risk.

The effective integration of topical features and the aatiestimation of their importance
to some representative entities in relevant documentgusiritiple ERS have made our SIF
model significantly better than LDA and PLSA. Both PLSA andA_Bhare a similar term

weighting function, but LDA is more effective than PLSA inthdF and RRT experiments, as
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shown in Table$.4and6.5as well as in Figuré.12 It might be due to its underline Bayesian
generative algorithm that can estimate more semanticalgtad topical terms. All these
models, including our SIF, utilise the semantic informattbat latent topics provide, and
exploit the multi-topic assumption when representingvah documents that discuss user
information needs. However, the ERS-based weighting fanatf our SIF model assigns
more accurate weights to topical terms than the LDAs. Thasnt can be testified by the
performance of SIF in RRT, as illustrated in Tabl®, and also can be seen clearly in Table

6.22in which only SIF could automatically discover the humaasrtified relevant terms.

The adverse effects of (1) ignoring the multiple topics agstion in representing relevant
documents; (2) the too strict constraint of the sequenppkarance of terms in these doc-
uments; and (3) the ineffective term weighting functionseh&indered the performance
of phrase-, pattern-, and the hybrid feature-based modsigi@ the semantic information
in their high-level features. The negative effects of thésee factors can be seen on the
performance of the.-grams model, as illustrated in Tab®e4 and Figure6.12 While the
pattern-based MP and PDS models managed to solve the semad hot dealing with the
effects of the first and the third factors are clearly lingtitheir performance. However, the
PDS model demonstrated significant performance comparedatty baselines because it
integrates the semantics of patterns with the statisticglgrties of low-level terms. It allows

PDS to rank some relevant terms, as shown in TEl#1& and be competitive with LDA.

The topicaln-grams (TNG) model resolves the first factor, but clearlyt, ecansidering the

effects of the second and the third factors badly influentederformance. Despite dealing
with the effects of the first two factors, the performancehaf topical pattern-based models
(i.e., PBTM-FP and PBTM-FCP) obviously impacted by the iegision of their weighting

functions. The proposed SIF model significantly outperfednall these models in all exper-
imental tasks simply because SIF (1) represented the @guiag)of relevant documents with
multiple topics; (2) relaxed the constraint of the sequarappearance of topical terms and
(3) accurate estimated of the weight of these terms in trevaet documents that discuss

what the user needs.

» The Effects of Global Statistics
The proposed SIF model exploits the statistical propexie®w-level terms, represented

by the document frequencyf, to estimate the relevance of topical terms at the collactio



204 CHAPTER 6. EVALUATION

Table 6.22 The top-10 stemmed terms from collection 101 of the RCVasket, which is about
"economic espionagaliscovered and ranked by different TFS models in whiclty@IF was

able to select both these relevant features

SIF LDA BM25 PDS
Term Weight Term Weight  Term Weight Term Weight
vw 0.423 piech 0.245| secret 0.130 VW 0.617
espionag 0.236| carmak 0.194| technolog 0.112 bill 0.343
piech 0.225 bill 0.185 crime 0.112 piech 0.340
year 0.221 feder 0.185 pass 0.112 men 0.256
bill 0.221 | compani 0.180 fbi 0.098 econom 0.238
compani  0.216 men 0.171 bill 0.098 car 0.152
secret 0.194| photograph  0.145 cia 0.098 | photograph  0.150
econom 0.176| camera 0.143 law 0.098 carmak 0.150
carmak  0.163| volkswagen 0.141| softwar 0.098| camera 0.134
feder 0.163 year 0.139| comput  0.098| volkswagen 0.125

level. However, several statistics can reveal the globaloitrance of terms in a collection
of relevant documents. Therefore, further experimentgwenducted to measure the global
informativeness of paragraph frequencl and term frequencyf, as raw statistics of the
individual terms in the collection. The popular hand-adfstatistics, namely the inverse-
document frequencydf and the term frequency-inverse documefitif, were also used in
these experiments to measure their usability compared @and¢f. Moreover, the experi-
ments show how the inflexibility (e.g., low-frequency pretol) of high-level features spaces
(e.g., phrase space, pattern space, topic space, etc.eafidiently and effectively solved

through the utilisation of the various statistics of thertepace.

The experiments were conducted on the same 50 collectiotteedRCV1 dataset and for
the same IF and RRT tasks. Talii23and Figure6.19show the best results of the effects
of used global statistics when integrated with SIF’s wargifunction (Equatior8.3). For
IF, df remains the most representative global statistic when goedbwith SIF’s equation.
This combination scored an overall average improvement®#4% in all measures with a
minimum improvement of 2.976 and a maximum of 5.587% in F;_, and P@20 measures,
respectively, compared to the combination of the same emuaith the second-best statistic,
the paragraph frequengyf. The 11-point result exhibited on the left figure of Fig&.&9
shows that the combination wittf obtained better precision scores than the combinatfon
at most of the 11-recall levels. All these improvements wakieved using only the top-
k = 10 terms, as shown in Tablg.23 where the combination withf required the next

33 terms (i.e., requires three times more terms tgnto score its best results in IF. In
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the RRT task, the same combinationdffscored 0.457 on the nDCG&@neasure with an
average improvement of 16.5@3overpf’s score (0.392) on the same measure. While the
improvement obtained using tapterms, the right figure of Figuré.19illustrates that the
combination of SIF’'s generalised weighting function affdis consistently better than the

combination of the same equation wijiffi.

As seen from Tabl&.23 and Figure6.19 bothpf andtf performed comparably similar
when linearly integrated with SIF’s weighing function. Hewver, they were less effective in
revealing the global importance of relevant topical teraommpared taif as they might appear
unevenly across the documents in the collection. The haalftled statisticst fidf andidf,
performed very poorly on all measures for all tasks. Theifggenance was expected because
they no longer resembled the original terms frequency, aawleveloped based on some
assumptions to suit specific needs. Therefore, raw statisfiterms are more representative

and can be used to resolve some frequency-based problenghiteliel features.

Table 6.23 The IF and RRT results of SIF’'s main weighting function (Btjan 3.3) integrated
with different global statistics of low-level terms aveealgover the 50 collections of the RCV1
dataset

P@20 BP MAP B IAP  nDCG@4 k
pr(t) x df (t) 0567 0475 0500  0.473  0.527 0457 10
pr(t) x pf(t) 0537 0452  0.478  0.459 0.500 0.392 43
pr(t) x tf(t) 0520 0447 0475 0458  0.499 0372 44
pr(t) x tfidf(t) 0406 0357 0361 0380  0.390 0.069 49
pr(t) x idf () 0352 0335 0328  0.361 0.357 0.027 48

improvemerfto  +5.587%% +5.07%% +4.684% +2.976% +5.297% +16.50%%

» Parameters Sensitivity
SIF uses two experimental parameters. The first is the nuofleDA topics V' and, as a
hyperparameter, it can be difficult to be optimally set befaining. The second parameter
is the number of top relevant weighted terfmsvhich are used as a query to both IF and RRT
testing system. Similar t¥, it is challenging to know the optimal value férfrom the data.
Therefore, and to investigate the sensitivity of SIF to ¢éhego parameters, we conducted
extensive experiments on the same RCV1 collections usimgebrmance measures for the

same experimental tasks.

The results of these experiments are presented in Figu?€and6.21 For IF, and using

different values for’ and k, our SIF model showed a very stable performance in all six
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Figure 6.19 The results of 11-point measure (left) and nDCG at top-2msgright) of SIF's
generalised weighting function (Equati@?3) with other global statistics of terms averaged
over the first 50 collections of the RCV1 dataset.

measures at any number of topics, as illustrated in the tpitds of Figure$.20and6.21

The model also demonstrated a stable performance aftershofp ten termsi(= 10) in all
measures except some slight fluctuations on the P@20 neetretjown in the right figure of
Figure6.2Q0 SIF also maintained the same stable performance in the BSKT This can be
seen in the right figure of Figu@21where SIF obtained almost identical performance at any
given value of thé/ andk parameters. Overall, despite the challenge of specifypignal
values for thel” and ik parameters, our SIF model is insensitive to these parasetdich
gives it another significant advantage over many staté&@fart TFS models of relevance

discovery that might be sensitive to their experimentahpeaters.

6.9.2 The Proposed SIF2 Model

» The Effects of Fusion Strategy

The SIF model results that were presented and discussediioi®s5.8.1and6.9.1demon-

strated the merits of adopting the hybrid fusion of higheletopics and low-level terms.
The SIF2 model is regarded as an improved version of SIF.nticoes to adhere to the
same fusion strategy of SIF. However, SIF2 relaxes the cainsbf SIF's assumption, which
states that only one generalised score should be estimatedssigned to identical topical
terms in each relevant document in the collection. Thismp$ion means that each topical
term in equally important to every document, which, in rgalmight not be the case. To

relax such assumption, SIF2 assumes that each topical @snsgecific local significance
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at each document and has another global one at the colldetieh The two significances

must be integrated to represent the relevance of the terhretager information needs. The
experimental results of SIF2 presented in Sedfiéh2clearly demonstrated the superiority of
SIF2 over the baseline models. Also, the comparison bet@#ehand SIF results described

in Section6.9.6verified the validity of SIF2’s assumption.

By adapting some of SIF’s fusion steps and estimating mocerate weights for topical
terms, SIF2 significantly outperformed both the supervi®¢i and the unsupervised SPBTM
models, as the best baseline TFS models in their categobiespite the soundness of its
mathematical foundation and the utilisation of negativeuwtoents, which made the SVM
model performs better than many baselines, the model aggito show insufficient perfor-
mance in selecting features for relevance discovery inrdecwe with the different studies
in [Gao et al. 2015 Li et al., 2015 2010 2012 Zhong et al. 2013. As an adherent of the
early fusion strategy, the absence of semantics among wielel terms used to represent
documents for SVM apparently affected its performance. [Bte fusion-based SPBTM
model was the best among the baselines due to the explaittithe semantic information
in the integrated representation of topics and patternsveder, the challenge of selecting
the most important patterns extracted from relevant docusrend ignoring the terms-topics
distributions in these documents clearly hindered the S®WBPperformance compared to our
SIF2 model. We continue to argue that assuming that only tecplar group of patterns are

important and ignoring others will lead to the loss of sormevant features.

Representing the paragraphs of relevant documents bypieutopics has made both SIF
and SIF2 models performing effectively compared to thoseetsothat do not consider the
topics in the paragraphs. Measuring the relevance of tbfecas at the paragraph-level
even improved the performance of LDA (LdaPara) in IF and RBIk$ compared to its
performance at the document-level (LdaDoc), as can be se€ables6.7 and6.8 as well

as in Figure5.13 However, both, LdaPara and LdaDoc still could not estimates accurate
weights that reveal the relevance of topical terms for tlaswoas discussed previously. In the
case of our SIF model, SIF2 revised SIF's weighting functiod developed a more effective
one that can go deeper into the structure of each relevanhuent and assign more accurate
weights to topical terms. For example, in Tabl&4 it can be seen that only the SIF, SIF2 and
PDS models can discover and highly rank human-identifiezl/agit terms from Collection

101 of the RCV1 dataset.
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Moreover, only our SIF and SIF2 models could discover thet&spionagein which we
argue that it is more topically specific and representativéhe main topic of interest in
Collection 101 than the wor@tonomit However, while both SIF and SIF2 ranked the word
'espionageas the second most relevant topical term, SIF2 estimasagliévance two times
as much as SIF')(472 > 0.236). As we mentioned in Sectiod.4, we believe that these
two words are not the only relevant terms in the collectian,tb make the study simple and
reliable, we only used those words identified by the NIST domea&perts. Nevertheless, we
argue that the top-10 terms of SIF2, shown in T&bB are more meaningful and specifically
relevant than SIFs. For example, the wasdcretis more relevant to the collection topic than
'vw (acronym of Volkswagen), which is highly ranked by SIF. 8Jsve can see that SIF2
was able to underestimate some general and frequent tdwrigdiar and 'bill’, and discover

more specific ones to the context of "TEconomic Espionageh s1s trade and 'crimée.

Table 6.24 The top-10 stemmed terms from collection 101 of the RCVaskett which is about
"economic espionagaliscovered and ranked by different TFS models in whiclty@IF was
able to select both these relevant features

SIF2 SIF LdaPara SVM PDS
Term Weight  Term Weight Term Weight] Term Weight Term Weight
secret 0.709 vw 0.423 piech 0.245 vw 0.419 vw 0.617
espionag  0.472| espionag 0.236| carmak 0.194 piech 0.239 bill 0.343
compani 0.278| piech 0.225 bill 0.185 men 0.218 piech 0.340
trade 0.185| year 0.221 feder 0.185 bill 0.199 men 0.256
crime 0.179 bill 0.221 | compani 0.180| photograph  0.175 econom 0.238
feder 0.164| compani 0.216 men 0.171| carmak 0.174 car 0.152
piech 0.139| secret 0.194| photograph  0.145  return 0.153| photograph  0.150
repres 0.121] econom 0.176| camera 0.143| volkswagen 0.130, carmak 0.150
volkswagen 0.108 carmak 0.163| volkswagen 0.141 gm 0.127 | camera 0.134
pass 0.092| feder 0.163 year 0.139| camera 0.125| volkswagen 0.125

» The Effects of Combining Local and Global Statistics

Unlike SIF, the SIF2 model considered the local statistiasterm¢ in each document using
its paragraph frequency distribution. The paragraphibigion used to revise the term-topic
distribution, which is globally estimated from the entir@lection. By taking local details
of topical terms into consideration, our SIF model effesfyymanaged the hybrid fusion of
high-level topics with both local and global statistics @ivtlevel terms. Like the SIF model,
SIF2 continues to use document frequerdgyto reveal the global relevance of the revised
topical terms. Therefore, and, as other possible globéksta can be used for the same
purpose ofif, we conducted the same experiments of the effects of glaaastscs on the

SIF model, which are discussed in Sect®f.1 on Equatiord.4 of SIF2. For simplicity,
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we refer to the equation asp+ (t) instead of > srg4 () in the table and figures of the
results. ement

The experimental results presented in TaébB5and Figures.22clearly show thatlf remains
the most informative statistic for the global relevanceagital terms. In the IF task, and
compared to the second-best results, the integration kettzquatiors.4 and thelf obtained
an overall average improvement of 3.83t all measures with a minimum of 2.196and a
maximum of 4.85% on F;_; and P@20, respectively. The 11-point resultin the left ggofr
Figure6.22confirms the results in Tab&25in which the combination withif still perform
slightly better than other combinations. From the valuethefc parameter in Tablé.25 it

is apparent that combining Equatidm with df requires a smaller number of terms (the top-
16 terms from each collection) to score its best performavidée the combination withy f
required 3.3 times more terms to achieve their best redolthe RRT experiments, the same
integration withdf achieved an improvement of 1.986n the nDCG@ measure compared
to the integration withp f. While this improvement scored using the top-4 terms, tghtri
figure of Figure6.22 shows that the combination widf remains slightly better than other

combinations for the first 25 terms measured by the nDCG metri

In accordance with the same experiments conducted on them&dlel and reported in Table
6.23 and Figure6.19, we can see that even in SIF2's experiments that the ravststat
remains more representative compared to estimated omesi{¢.andt fidf). Both, pf and

tf, continues to show competitive performance compared ta/théMoreover, integrating

pf andtf with Equation4.4 of the SIF2 models made them performed almost equally the
same, as can be seen in Table5and Figure6.22 Besides, the SIF2 equation also made
botht fidf andidf perform similarly, which was not the case in SIF’s experitsei®verall,

we can conclude that (1) taking the local statistical detafllow-level terms into account
and the (2) effective integration between them and the eevispical statistics and th&

can estimate better weights that accurately represenet&eance of these terms to the user

information needs, as demonstrated in the experiments.

» Parameters Sensitivity
As an improved version of SIF, the SIF2 model inherited threesaxperimental parameters;
V', which denotes the number of LDA topics; ahdhat represents the number of top topical

terms discovered the model. The same experiments, whichbbad conducted for SIF
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Table 6.25 The IF and RRT results of SIF2’s main weighting function (&tjon4.4) integrated
with different global statistics of low-level terms aveeagover the 50 collections of the RCV1
dataset

P@20 BP MAP = IAP  nDCG@4
srp+ (t) - df (¢) 0.605 0.504 0.535 0.491 0.557 0472 16
st (t) - pf(t) 0.577 0.493 0.517 0.480 0.536 0.463 53
stpe(t) - tf(2) 0.574 0.486 0.515 0.479 0.535 0.453 45
srp(t) - tfidf(t)  0.444 0.382 0.395 0.403 0.423 0.124 39
s+ (t) - idf (t) 0.431 0.387 0.394  0.405 0.419 0.106 33

improvemenit +4.853% +2.208% +3.5480 +2.196% +3.855% +1.936%
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Figure 6.22 The results of the 11-point measure (left) and the resilteenDCG measure
at top-25 terms (right) of SIF2’s weighting function (Eqoat4.4) with other global statistics
averaged over the first 50 collections of the RCV1 dataset.
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parameters sensitivity, were also repeated on SIF2 toywaofv sensitive it is to these
parameters. The results illustrated in Figue23 and 6.24 show that SIF2 continues to
inherit the insensitivity of the SIF model towards the twograeters. In the IF task, our SIF2
model has stable performance in all measures at any giver althel” parameter, as can
be seen in the left figures of Figuré23and6.24, except some negligible fluctuations on the
P@20 measure. The model also shows a stable performancéhaftep five topical terms

(k = 5), as can be seen in the right figure of FigGra3 even though the best results reported
in Tables6.7 and6.25were for the top 16 words. However, and in the same figure, SIF2
performance in IF measured by the P@20 metric remains to stsgnificant fluctuations.

In the RRT task, our SIF2 model continues its insensitivatydrds the” andk parameters

as illustrated in the right figure of Figue24
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Figure 6.23 The SIF2 sensitivity to the number of LDA topics (left) argh#: terms (right) for
the IF experiments.

6.9.3 The Proposed UR Method

» UR Effects on Fusion Algorithms
As observed from the extensive results presented in Segi8 the UR method effectively
and significantly improved the performance of all the twealifeerent fusion-based TFS mod-
els in both the IF and RRT applications. The results expertaily demonstrated the merits
of the UR method in which the uncertainties available in tbsifve feedback (i.e., relevant
documents) can be reduced via the implicit estimation opdragraph-relevance using latent

topics. Inspired by the assumption of our SIF2 model in whai¢bpical term has both local
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Figure 6.24 The SIF2 11-point results for IF (left) and SIF2 nDCG@sults for RRT (right)
over different number of LDA topics.

and global significances, the UR method assumed that a patapas local relevance, at its
document, as well as another global relevance at the emilection of relevant documents.
The fusion of the paragraph relevance scores indicatesgtsfisance to the topic(s) of
interest in the collection that discusses user informateeds. However, unlike SIF and SIF2
models, the UR method did not consider the terms-topicaloligions because LDA estimates
them from all terms in the collection paragraphs withoutipgyattention to the evidence of
relevance in these paragraphs knowing that some of thesgrnaphs can be irrelevant as
illustrated in Figurel.3. Instead, the UR method relied on raw frequency distrilmgiof the
terms in their documents and all paragraphs in the colle@mthese distributions show to
be representative in revealing the importance of thesestaslemonstrated in SIF and SIF2

experiments.

As observed from the results of the UR method, the amount pforement in each feature
set discovered by a specific TFS model varies depends omcehnt@acteristics of the model.
For example, for IF, the best performance and the highestowements were achieved by
the supervised early fusion models, especially the SVM, BM&d Prob models, as it can
be seen from Tablé.10 and Figure6.14 We can speculate that (1) the effective use of
negative feedback by these models; (2) the soundness ofwikghting functions; and (3)
the flexibility of the low-level terms discovered by theseduats have positively affected
their performance. The UR method also brought the multietoppresentation to these

term-based models. Also, from the feature fusion persggcbur UR method implicitly
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integrated topical and local statistical features withsthenodels, which transferred them
to hybrid fusion models (i.e., iISVM, iBM25 and iProb). Hovesywhile the unsupervised
early fusion model (e.g., TFIDF) also gained significant ioygment compared to their
original performance, they did not show better performéaheea the supervised ones because
they could not deal with negative documents and their waigHtnctions are not sufficient
enough. Moreover, our UR method not only improved the peréorce of the early fusion
models in IF. It also significantly improved their perforncann the RRT task, as it can be
seen in Tablé.11and Figure6.15 The example in Tablé.26 shows how the UR method
managed to re-rank the original terms and bring forward tbstrrelevant ones. As can be
seen from the same table, the original SVM, BM25 and Prob fsadere not able to discover
any of the human-identified relevant terms. However, bygrate them with our UR method,
not only have the relevant terms started to appear among@h&Q terms, we argue that a
more accurate weight is also assigned to the original tegmisc@nfirmed by the models IF

results.

An interesting observation is that our UR method effecyivetproved the performance of
all unsupervised late fusion models in all experimentakgasintegrating the UR method
with the pattern-based PDS model not only significantly iowed its original performance,
but it also made it outperformed all the pattern-based tomdels (i.e., PBTM-FP, PBTM-
FCP, SPBTM and MPBTM) regardless of the type of patterns eyga by these complex
models. The UR method also not only brought the multitopguagption to pattern mining,
but it also provided an effective way to use patterns andialie the low-frequency of some
specific patterns. The example in Taldle6 illustrates the benefits that our UR method
brought to the PDS model. It can be seen how the UR methochkedathe PDS original
terms and thus allows some specific terms that were appeirilogv-frequent patterns to
be highly ranked in the list, such as the terespionageand 'secret Our method also
revised the original pattern-based term weight resultmgame scaling ups and downs of
some terms. For example, the original PDS assigned a higeigihwto the general word
"economit (0.238) while after the integration with the UR method theight scaled down
to (0.012) as general words are less specific. These beneaiits the improved PDS (iPDS)
achieved the best result (0.490) in RRT task measured byDRBG@4 metric compared to

all improved models.

More interestingly, the UR method also significantly impgdithe performance of LDA and
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PLSA in both IF and RRT experimental tasks. Both LDA and PL®Andt distinguish the
most relevant paragraphs even though LDA estimates theargde of terms based on the
topics extracted from all paragraphs in the collection,clkhimproves the performance of
LDA (LdaPara) compared to its performance using the whoteidents (LdaDoc) as shown
in Table6.7. The new improvements made by integrating LDA and PLSA withWR method
can confirm (1) the effectiveness of the UR method in estimgatie relevance of paragraphs
and utilising them in reducing uncertainties in relevantwaents; and (2) the existence of
uncertainties in the terms-topics distributions knowimgttour UR method does not use these
statistical features because they might be affected by niertainties in some paragraphs.
Overall, the UR method made several supervised and unsapdrgerformed comparably
similar despite the differences in their algorithms, thetdiee they use or the fusion strategy

they adhere to as illustrated in Figu@46and6.25

Table 6.26 The top-10 stemmed terms from collection 101 of the RCV skt which about
'economic espionage’, discovered and ranked by differdfs Thodels in which only iPDS,
iISVM and iBM25 was able to select both of these relevant festu

iPDS PDS iISVM SVM
Term Weight Term Weight  Term Weight Term Weight
espionag 0.896 vw 0.617 secret 0.537 vw 0.419
secret 0.433 bill 0.343 | compani  0.379 piech 0.239
crime 0.083 piech 0.340| espionag 0.372 men 0.218
compani  0.042 men 0.256| crime 0.292 bill 0.199
bill 0.036 econom 0.238 bill 0.234 | photograph  0.175
econom  0.012 car 0.152 | technolog 0.182| carmak 0.174
pass 0.006| photograph  0.150 econom  0.181 return 0.153
feder 0.006| carmak 0.150 pass 0.174| volkswagen 0.130
foreign 0.002 camera 0.134| foreign 0.146 gm 0.127
senat 0.001| volkswagen 0.125 piech 0.137| camera 0.125
iBM25 BM25 iProb Prob
Term Weight] Term Weight  Term Weight Term Weight
bill 0.423 secret 0.130 bill 0.444 secret 0.126
secret 0.402| technolog 0.112| secret 0.428 crime 0.109
crime 0.302 crime 0.112| crime 0.324 pass 0.109
espionag 0.264 pass 0.112| compani 0.232| technolog 0.109
compani  0.237 fbi 0.098 pass 0.202 bill 0.094
pass 0.189 bill 0.098 | technolog 0.202 cia 0.094
technolog 0.189 cia 0.098 theft 0.190 law 0.094
theft 0.181 law 0.098 feder 0.164| softwar 0.094
econom 0.178| softwar 0.098 | espionag 0.163 fbi 0.094
feder 0.175| comput 0.098 law 0.158 comput 0.094

+ UR Effect on &k Parameter
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Figure 6.25 The 11-point results of supervised (left) and unsuped/(sight) models after the
integration with the UR method all averaged over the first&@(ections of the RCV1 dataset.

Figure6.26 shows the best value for each TFS model used in the UR experiments. Both
values ofk, for the original and improved model, are reported in therggut seems com-
plicated to find any correlation between the use of the UR otktind thek parameter
because each model has its unique characteristics in dewlimthe identification of relevant
features. However, while applying the UR method signifiseimiproved the performance of
all models in both IF and RRT tasks, it also reduced the nurabtap terms (i.e.k value)
needed to achieve the best performance for most modelst amdels out of twelve had their

k values reduced after applying the UR method while the remgifour models got theik
value increased. We speculate that the influence of therfaotentioned at the beginning of
this section has made it difficult to establish any corretabetween applying the UR method

to any TFS model and the changing in the values ofitparameter.

6.9.4 The Proposed USIF Framework

The experimental results of our USIF framework presente8ection6.8.4clearly illustrated
its superiority in discovering relevant features that espnt user information preferences com-
pared to the used baseline models. Unlike our SIF, SIF2 andhoéels, the USIF framework
employed multiple hybrid fusions of different lexical antdtsstical features that were extracted
from a collection of relevant documents using documenttehisy and topic modelling algo-
rithms and the global statistics of the collection. The feaark utilised the hybrid fusions to

select and then re-weight topical terms that appear in ggredévant but unbalanced clusters.
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Figure 6.26 The best: value for each TFS model after and before applying the UR atkth

A conceptual agglomeration technique is developed to salspecified set of intra- and inter-
cluster terms based on a score fusion scherftg){. Then, the relevance of these representative
terms is estimated based on their topical and thematicfaignces as well as their document

frequencies in the collection. More analysis of the propdd8IF framework is given below.

» Feature Selection Versus Feature Weighting
Generally, the proposed USIF framework has dealt with feadalection and feature weight-
ing as two different problems. The representativenesseo$étected topical terms (i.e., fea-
ture selection) and their relevance estimated jointly ftopical significance and the thematic
significance (i.e., feature weighting) have substantiatioutions to the performance of the
proposed USIF framework. To analyse these contributioe$)ave designed seven scenarios.
The scenarios (scen-1 to scen-7) are summarised in BableEach scenario is designed to
analyse the effect of a change in one or more components girtp®sed framework on its
overall performance. The corresponding experimentalliesising the seven performance
measures (i.e., P@20, BP, MAR,F, IAP, 11-point and nDCG@®) are shown in Tablé.28
and the left figure of Figuré.27. The key observations obtained from these scenarios can be

summarised as follows:

(a) The performance of scen-1 is better than scen-2 and sc8eeh-1 uses topical signifi-
cancew,(t;) asr(t;), while scen-2 uses term frequencf(¢;) asr(t;) and scen-3 uses term
frequency-inverse document frequerngydf (t;) asr(t;), all learned from the corresponding
clusters. This means, (t;) is better in revealing the representativeness of intratetuerms

than simply using f(¢;) andtfidf(t;) as an estimation of(¢;). Further, from the results

of scen-2 and scen-3, we can see that integrating our caradeggglomeration of intra- and
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inter-cluster terms with the informativeness of our toparad thematic significances as well

as the document frequency greatly improved the originalop@ance of both f(¢;) and
tfidf (t;).

(b) The performance of scen-1 is significantly better than gceio select representative
terms, scen-1 uses conceptual agglomerate of clusteisatdprms and the(¢;) = w.(t;),
while scen-4 uses only thé€t;) = w.(¢;). This means conceptual agglomeration of clusters’
terms has a significant contribution to the performance efUlsIF framework. However,
while the selected terms are different in each of these simsndoth of them use the same

relevance score fusion function (i.e:(¢;)), which made scen-4 achieve competitive results.

(c) The performance of scen-1 is marginally better than scemen though both scenarios
share the same selected set of topical terms. The onlyelifteris the absence of using global
statistics represented in our framework by the documenugacydf (¢;). This means that

df (t;) has a marginal contribution in estimating the relevanceopicial terms based on the

BP and _; measures.

(d) Performances of scen-6 and scen-7 are significant andasiaslthey use the same set of
topical terms selected by our conceptual agglomeratidmigae. As the estimation of infor-
mativeness, scen-6 uses topical significamcé;), while scen-7 uses thematic significance
wy(t;). This means thematic significaneg(t;) is as essential as topical significancet;)

for estimating the relevance of the selected topical teasgecially when both significances

integrated together.

(e) The performance of scen-5 is significantly better than €cand scen-7. As the estimation
of the relevance, scen-5 jointly uses the topical signifiean, (¢;) and the thematic signif-
icancew,(t;), while scen-6 uses only the topical significancgt;) and scen-7 uses only
thematic significancey,(¢;). This means the relevance of topical terms should be estimat

jointly from both topical significance and thematic sigrafice.

Overall, the previous scenarios demonstrated the impoetaheach component of our USIF
framework and how they performed when they integrated tecs@ind then re-score relevant
topical terms that describe user information needs. Mogbmantly, the scenarios illustrated
the fact that term selection and term weighting can diffenfreach other, and an effective
integration between them can result in significant perferceafor unsupervised relevance

discovery.
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Table 6.27 A set of different scenarios designed for analysing théofusiypothesis of the

USIF framework

Scen-1

Scen-2

Scen-3

Scen-4

Scen-5
Scen-6
Scen-7

Our USIF (use conceptual agglomeration of clusters aftd = w,(t;)
learned from each cluster to select a set of representagpieal terms, and
usew(t;) = w,(t;) x wy(t;) x df (t;) to weight these terms).

User(t;) = tf(t;), term frequency learned from each cluster.

User(t;) = tfidf(t;), term frequency-inverse document frequency learned

from each cluster.

Instead of using clustering, use,(¢;) learned from the whole document
collection to select a set of representative topical terms.

Usew(t;) = w.(t;) x wy(t;) to weight topical terms.
Usew(t;) = w,(t;) to weight topical terms.
Usew(t;) = wy(t;) to weight topical terms.

Table 6.28 The results of the scenarios in Talel27for IF and RRT tasks using all measures
averaged over the first 50 document collections of the RC\{dsé

Scenario P@20

BP

MAP £,

IAP  nDCG@4

scen-1
scen-2
scen-3
scen-4
scen-5
scen-6
scen-7

0.616 0.518 0.550 0.500 0.571 0.502

0.570
0.570
0.576
0.584
0.550
0.555

0.495
0.483
0.487
0.500
0.467
0.471

0.517
0.507
0.514
0.523
0.488
0.496

0.482
0.477
0.481
0.486
0.468
0.473

0.539 0.460
0.529 0.447
0.534 0.457
0.544 0.502
0.5100.502
0.517 0.502
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» Parameters Sensitivity Test
The proposed USIF framework has three parameters: the muwhdecument clusters/y),
the number of LDA topicsi() and the number of top representative topical terisBecause
it is challenging to decide the optimal value bffor a given document collectios et al,
2008 Jain 2010 Liu and Croft 2004, a trial and error approach was used to develop the line
equation presented in Sectiér/ to predetermine the value @f. Regarding the number of
topicsV/, it is expected that USIF would not be sensitive to this hgpeameter because the
topical and thematic significances of terms in the frameveoekestimated by our SIF model
and the adapted version of our UR method, which already préoebe insensitive td’.
Moreover, given a topical term, thew(¢;) of that term is estimated using all relevant topics
in the D collection and not based on any specific topic Thus, regardless of the number
of topicsV' generated fronD™, they all represent the same collection and;) should not
strongly depend on their numbers, which is denoted’byl' he results of the sensitivity test
for USIF over different numbers of topics are given in Figar8 The results confirm our

expectation and show that(¢;) is quite insensitive to th&” parameter.

It is also expected that the performance of our USIF framkwserstable for a range of
top topical terms (i.e.k) because USIF was developed to treat term selection and term
weighting as two independent stages in the framework. THuwsme nonrepresentative
terms are accidentally selected by the first stage due todheptimal number of clusters
estimated from the collection, then, the second stage dhiutobust enough to weight them

as much less important compared with the most represeatatins in the collection. The
performance sensitivity of USIF for a range of tbperms (fromk = 1to k£ = 150) is givenin

the right figure of Figuré.27. It shows that after the 20 top terms, the performance besome

stable with occasional small fluctuations, which suppoutsexpectation.

6.9.5 The Proposed SSIF Framework

The results presented in Secti®®.5show the performance superiority of our SSIF framework
compared to all fusion-based TFS baseline models of retevdiscovery. The sophistica-
tion of SSIF and, more specifically, the effective use of tiggdeedback collections largely
contribute to its outstanding performance. As in our USkirfework, SSIF also deals with
feature selection and feature weighting as two indepergteilems through the integration of

multiple hybrid fusion-based models. However, and unlil&fk) our SSIF framework utilises
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supervised learning algorithms to select some discrinvielgtspecific features and re-weight
them using unsupervised learning algorithms. In the ligh88IF experimental results, we
discuss SSIF’s hypothesis in which supervised featuretsatecan discover more specifically

relevant features, but unsupervised feature weightindoe#ter estimate their informativeness.

As illustrated in Figures.5, the multiple hybrid fusions of different lexical and ssdittal
features extracted from the positive and negative feedbanlg supervised and unsupervised
algorithms have made our SSIF framework significantly odigpens all state-of-the-art base-
line models in discovering relevant features that desaud®r information needs. The SSIF
framework was developed on the basis that the discoveréarésaset must be (1) specific to
the main topics of interest in the document collection. SStéctively employed the integration
of our UR method, BM25 and SVM algorithms to meet this craari Also, as there might be
several topics and themes in the collection, the relevandki® set of features must be (2)
informative about the essential aspects of meanings oéttogacs and themes. To meet this
condition, our SSIF framework adopted both the topical &edrtatic significances in a similar
way as in the USIF framework. Further, the feature set mugglobally representative to the
given collection not to a larger document. Thus, and to niegtbndition, the SSIF framework

used the global statistics represented by the documentdray in this case.

From Table6.19 and Figure6.18 we can see that the sophistication of our SSIF frame-
work has made it significantly outperformed all supervisaddine models. Compared to the
best model in the group, the REDt is clear that SSIF effectively selected more specifycall
relevant features compared to the RABrough the integration of the UR, BM25 and SVM
models. SSIF also estimated more accurately informatieeescto these features via the
joint probability of topical and thematic significances bese features combined with their
document frequencies. Thus, it is apparent that the intiegraetween an effective supervised
selection and unsupervised weighting of features canfsigntly discover relevant features that
represent user information needs. Regarding the RWB can speculate that the (1) absence of
multi-topic assumption; (2) the challenge of selectingespntative patterns from both positive
and negative feedback and (3) ignoring the available uaiceits in positive documents have
contributed to its inferior performance compared to ourFSfBhmework. Moreover, despite
the cleverness of the REBpecificity function in classifying features to generaledfically
positive and specifically negative, we argue that this fiemat sensitive to the type of patternin

use, the size of terms space and most importantly to the iexgetal coefficients. However, and
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based on the experimental results in Figu@gg8and6.14 we can see that using the topical and
thematic significances as well as applying the UR method tM $8n make the performance

of discovering relevant features robust and insensitiantoparameters.

The MPBTM model is one of the state-of-the-art baseline nwutediscovering relevant
features that discuss user information needs thru theratieg of patterns and topics. It is
the best among all unsupervised baseline models, as sholabie6.19 However, our SSIF
framework significantly outperformed MPBTM in all performeze measures. The effectiveness
of SSIF in utilising the negative documents has given it tngesiority over MPBTM. Besides,
the MPBTM model effectively exploited the semantics of bptitterns and topics to rank
specifically relevant documents that meet user informatiterests. Nevertheless, the model
failed to address the uncertainties in training documesis assumed all documents contents
are important, which resulted in either selecting irrefévi@atures or inaccurately estimating
relevant documents. Also, it can be argued that selectingesmatterns and ignoring others
can cause the loss of some important features, especiallgsk frequent ones. Moreover, the
MPBTM model seems to be sensitive to the number of latent$ofiie., thel” parameter) as
its performance significantly fluctuated with differént However, our SSIF was more stable,

robust and insensitive to all its experimental parameters.

6.9.6 Comparison of Proposed Techniques

In the previous sections, we presented, analysed and detgsme of the experimental results
of our proposed models and frameworks. We also providedi@gtzomparisons between them
and many popular and state-of-the-art baseline modelfelfollowing sections, we compare
and briefly discuss the performances of SIF, SIF2, USIF anBl BSF and RRT as illustrated
in Table6.29and Figures.29

» SIF2 Versus SIF
The first part of Tablé.29shows the comparison between the performances of SIF2 &nd Sl
in both IF and RRT experimental tasks. SIF2 performance wasistently better than SIF
by an average improvement of 5.434n all measures. SIF2 achieved its best performance
(6.980%) on the MAP metric for the IF task, which is considered the nmgortant measure
in IR and IF experiments. However, SIF2 minimal performanoenpared to SIF was in
RRT by an average improvement of 3.282n the nDCG@ metric. The 11-point results in
Figure6.29(left) illustrates that SIF2 was performing better than, ®$pecially in the last
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nine recall levels. However, in the RRT task for the first 2%n® SIF2 was slightly better

than SIF, as shown in Figu&29 (right). Overall, all these results confirm the validity of
SIF2’s assumption that a topical term should not be equelgvant in every document of the
collection. Our SIF2 model shows that the accurate revisiaime global relevance details
of features can alleviate the uncertainties available énetire collection to a considerable
extent. The model demonstrates that localising globalaglee details of topical terms can
estimate more accurate weights to these terms and thusimgsaldiscovering more specifi-

cally relevant terms, especially when they are integratiéld wformative global statistics.

Table 6.29 A comparison between the performances of all proposed maeael frameworks
in IF and RRT tasks using six evaluation measures averagadiow first 50 collections of the
RCV1 dataset

Model P@20 BP MAP F—1 IAP nDCG@4
SIF2 0.605 0.504 0.535 0.491 0.557 0.472
SIF 0.567 0.475 0.500 0.473 0.527 0.457
improvement, +6.702%  +6.133% +6.980n +3.7950 +5.709% +3.282%
USIF 0.616 0.518 0.550 0.500 0.571 0.502
SIF 0.567 0.475 0.500 0.473 0.527 0.457
improvementt  +8.642, +8.966% +9.82%% +5.814% +8.312% +9.847%
SSIF 0.631 0.550 0.576 0.515 0.592 0.420
SIF 0.567 0.475 0.500 0.473 0.527 0.457

improvementt  +11.28% +15.83%% +15.14% +8.80% +12.354, —8.096%

USIF 0.616 0.518 0.550 0.500 0.571 0.502
SIF2 0.605 0.504 0.535 0.491 0.557 0.472
improvementc  +1.818% +2.669% +2.6606 +1.945% +2.462% +6.356%
SSIF 0.631 0.550 0.576 0.515 0.592 0.420
SIF2 0.605 0.504 0.535 0.491 0.557 0472
improvementy,  +4.298% +9.137%  +7.6360 +4.831% +6.2860 —11.017%
SSIF 0.631 0.550 0.576 0.515 0.592 0.420
USIF 0.616 0.518 0.550 0.500 0.571  0.502

improvementc  +2.435%  +6.3000  +4.847% +2.83T% +3.73%% —16.33%%

* USIF Versus SIF
The performance comparison between the SIF model and tHe ftshework in IF and RRT
experiments is given in the second part of TaBl29 As can be seen, USIF significantly
outperformed SIF in all measures for both experiments byanatl average improvement of
8.568%. In IF, USIF achieved its minimum improvement against SIRlwnF;_, metric by
an average of 5.8%4, and its maximum improvement for the same task was 9:8@56 the

MAP measure. Figur6.29(left) confirms the superiority of USIF in IF as it achievedher
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Figure 6.29 The 11-point (left) and nDCG®@&(right) results for IF and RRT, respectively, for
all the proposed models and frameworks averaged over thé@rsollections of the RCV1
dataset.

average precision scores at most recall levels compard&tt&RRT, USIF performance was
significantly better than SIF by an average improvement®®, on the nDCG@ measure,
as shown in Tabl€.29 Figure6.29(right) also shows that USIF is performing consistently
better in RRT at any value compared to the SIF model. All these significant imprognts

of USIF over SIF come as a result of the sophistication of tBéRUframework in integrating
topic modelling, document clustering and global statsstecdiscover representative features

and estimate their informativeness as previously dematestin Sectiors.9.4

» SSIF Versus SIF
The third part of Tablé.29 presents the results of the supervised SSIF framework and th
unsupervised SIF model. From the improveniemnow of that part of the table, we can see
than SSIF significantly outperformed SIF in IF in all five maaes. SSIF maintained an
overall average improvement of 12.68@ver SIF performance with a maximum of 15.831
and a minimum of 8.808 on the BP and k-, measures, respectively. The 11-point results
in Figure 6.29 (left) supports the previous measures and shows its sujpgraver the SIF
model at nearly all recall levels. However, in RRT, SSIF upd€formed compared to SIF
with an average of-8.096/% on the nDCG@ metric, as illustrated in Tab& 29 This can be
seen clearly in Figuré.29(right) in which SIF performed much better than SSIF, esgBci
in the last 24 values of theparameter. In general, the superiority of SSIF over SIF case

a result of its sophistication in selecting and weightingafically relevant features through
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the integration of supervised and unsupervised learniggrihms. However, USIF inferior

performance in RRT compared to SIF is expected as most ofijergsed models used in the
experiments of this thesis did not perform well compared&rtunsupervised counterparts.
We can speculate that the reason behind the poor perfornadiscgervised models in RRT
is that the human-identified relevant words are not compratie and only focus on general

ones.

* USIF Versus SIF2

The results of USIF and SIF2 for IF and RRT experiments arsgnted in the fourth part of
Table6.29 Both USIF and SIF2 are unsupervised TFS methods and pextbcompetitively

in our experimental tasks. However, USIF performed bettantSIF2 in IF by an overall
average improvement of 2.3%1 It achieved a minimum improvement of 1.81&n P@20
and a maximum of 2.669 on BP. On the 11-point measure, both techniques competéd wit
each other, but USIF scored higher precision than SIF2 ieraéxecall levels, as illustrated in
Figure6.29(left). In RRT, USIF significantly outperformed SIF2 by areaage improvement
of 6.356/% on the nDCG@ measure, as shown in Tab&e29 Figure6.29 (right) shows
the performance of USIF and SIF2 in RRT for the top-25 wordwlinmch USIF maintained
greater improvements at all terms. Despite the sophigircatf the USIF framework, the
SIF2 model demonstrated an adequate competency compateesigecially in IF. However,
USIF illustrated its capability in selecting represematieatures as can be seen in its RRT
results. Further, while USIF was developed before SIF2imttiesis, it might be feasible to

employ SIF2 capabilities in a similar research objective)8¢’s.

» SSIF Versus SIF2
The fifth part of Table5.29 shows the results of SSIF and SIF2 for both IF and RRT tasks.
As can be seen from that part of the table, SSIF outperfornied B IF and achieved a
minimum average improvement of 4.28&nd a maximum of 9.13% on the P@20 and BP
measures, respectively. Overall, SSIF maintained betidopnance than SIF2 by an average
improvement of 6.438 in all measures. The 11-point results in Fig6r&9(left) confirmed
SSIF better performance over SIF2 in IF. However, on thereoptSIF2 significantly out-
performed SSIF in the RRT task with an average improvemedtldd17% on nDCG@
metric, as shown in Tabl6.29 Moreover, SIF2 was performing significantly better than
SSIF nearly at any given topkeyword, as illustrated in Figui@29(right). As a supervised

framework, SSIF improvements over SIF2 were expected Isec8UF2 is considered as an
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improvement to the SIF model. It is apparent that the intigmaof different supervised and
unsupervised algorithms made SSIF capable of selectingvaighting specifically relevant
features compared to the unsupervised SIF2. The poor pafare of SSIF in RRT can be

justified as in the case of SSIF versus SIF mentioned prelyious

» SSIF Versus USIF

A comparison between the performances of our superviseB 8&d unsupervised USIF
frameworks are given in the last part of Tabl@Q In IF, SSIF maintained better performance
than USIF by an overall average improvement of 4%2&cross all five measures. SSIF
performed minimally by achieving an average improvemer.d485% on the P@20 metric
compared to USIF. Its maximum performance in IF was meashyethe BP metric and
obtained an average improvement of 6.200ver USIF. The 11-point measure in Figure
6.29 (left) confirmed the effectiveness of SSIF in IF against U&HE-it achieved higher
precision scores at nearly all the 11 recall levels. Howefagrthe RRT and as shown in
Table6.29 USIF was superior in performance than SSIF and outperfoihsggnificantly by

an average improvement of 16.33%n nDCG@!. Figure6.29(right) clearly shows USIF
superiority over SSIF in RRT as it maintained a significanfgenance at each top-term
for the first 25 terms. It is apparent that the use of negataichents has made SSIF better
than USIF, especially in selecting a set of specificallyvah features. It also alleviates
the problem of general features that keep appearing in bagitiye and negative training
documents. While the two frameworks deal with the problehisature selection and feature
weighting differently, they both demonstrated that theuaate integration of different lexical
and statistical features extracted by supervised and&mervised techniques could discover
more representative features that describe user infoomatteds and thus achieve higher

performance.

6.10 Chapter Summary

In this chapter, the extensive experiments conducted to@esthe proposed fusion-based TFS
models and frameworks were reported. The evaluation hgsethand the experimental design
were also described. The standard experimental benchrnatkricludes the RCV1 dataset

and the TREC-11 topics for IF and seven popular performaregsnres were presented in the
chapter including the statistical significance test; thed8nt's Paired T-Test and Percentage

Change. Many different state-of-the-art baseline model®wlso briefly described and used to
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evaluate the proposed methods. The experimental resulesreported in different forms and

compared to the baseline results to show the superiorityegbtoposed models and frameworks
in selecting and weighting relevant features. The nDGG@@asure clearly showed that SIF,
SIF2, UR, USIF and SSIF were able to discover relevant feattirat match those identified by

domain experts. The results were also discussed and adalgsey many scenarios to demon-
strate the robustness and effectiveness of fusion-basbditpies and the proposed solutions
for the discovered problems of selecting relevant featureter uncertainties as well as those
of the topic modelling algorithms. The next chapter conehuthis thesis and describes its
contributions. It also discusses the identified limitasi@amd some possible future directions for

the research presented in this thesis.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

For more than a decade, topic modelling has been extensinggg in TM to enhance the
automatic discovery of knowledge from texts in the form dékd topics. LDA is the most
widely used probabilistic topic modelling algorithm, sugeding its predecessor, the PLSA.
Both techniques have been adapted substantially to suttpleupplications. Many existing
projects focus on improving the algorithms’ efficiency, labdity and quality of generated
latent topics. However, using these topics to identify vaie features from a collection of
documents that describes user information needs is ine#gor several reasons. First, LDA
cannot generalise the weight of topical terms that appe@sadifferent entities in the col-
lection. Second, LDA favours the most frequently discussgajects in the collection, which
can overshadow less frequent but equally important sujéldtird, LDA does not provide a
mechanism to consider the hierarchical topical featureofiments and the skewness of terms
distribution across them when estimating the weight ofdaltierms. Further, LDA cannot deal
with uncertainties in relevant features, as it does notidengpassage level evidence. Finally,

LDA cannot discover relevant features using both positive @egative documents.

Data fusion is a well-known approach that is proven to becéffe in estimating relevant
information by combining different features that représearious aspects of the data. In this
thesis, effective fusion-based models and frameworksdimvant text feature weighting and
selection have been proposed. The models and frameworkdeaetoped to overcome the
already noted challenges of topic modelling and have betgiated with both supervised
and unsupervised learning algorithms and global stagi$ticbetter performance. A new and

elegant ERS theory was developed to efficiently and effelstimodel the complex relationships

229
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between different entities in document collection and toage the different types of fusion
between their features. Utilising the proposed models farave the performance of existing

relevant feature discovery techniques was also investigat

This thesis presents research in the field of TFS for relevaisrovery based on the con-
cept of data fusion. Different fusion strategies have bedopted and integrated to combine
latent topical features with global statistics, as well apesvised and unsupervised learning
algorithms. The SIF model (Chapt8y was developed based on the concept of hybrid fusion
to discover relevant topical terms by generalising theiigiveto the collection level. The SIF2
model (Chapted) re-visits the concept of generalised term weight in SIF snthtroduced
to integrate late and early fusion strategies to relax thightgeneralisation assumption. The
UR method (Chaptet) was developed to reduce uncertainty in relevant featuseedered by
existing models. USIF is a TFS framework built around thecemt of multiple hybrid fusions
to integrate topic modelling, document clustering and glstatistics for better relevant feature
discovery (Chapteb). SSIF is another framework introduced in Chageand developed to
discover relevant features from both relevant and irreledmcuments. Within each model
and framework, various mechanisms are proposed incluti@dgRS theory, term weighting
schemes, term scaling functions, concept agglomeratpical significance and thematic sig-

nificance to accomplish the aims of the proposed models anakfivorks.

The proposed TFS models and frameworks were experimemadlyated (Chaptes) for
IF and RRT using the 50 expert-assessed collections fronstdredard RCV1 dataset, their
TREC relevance judgements and seven widely adopted peaafar@nmeasures. The results
show that the proposed models and frameworks significanitpesform all state-of-the-art

baseline models regardless of the text feature or fusiategty used.

In the following, Sectior7.2 presents the main contributions of this research and Sectio
7.3discusses the limitations of the study and recommendsduwtork in feature selection and

weighting for relevance discovery.

7.2 Contributions

This thesis makes several contributions to the field of eeleveature discovery under uncer-

tainty using fusion-based approaches.

» Solving topic modelling problems It is possible to generate a specific number of latent
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topics from a document collection using probabilistic tomodelling algorithms. These
topics have been used extensively in a range of TM applieatiddowever, utilising these
topics in TFS for relevance discovery is ineffective due he specific characteristics of
generating algorithms (see Sectibn). In this thesis, effective models and frameworks have
been proposed to circumvent the limitations of topic madglby adopting and integrating
fusion strategies with global statistics and learning atgms. An innovative ERS theory was
developed to model the proposed fusion strategies. Furffective weighting and scaling
formulas were introduced to weigh or re-rank relevant fiestiso these features can be used

in TM systems.

* Innovative Hybrid Fusion-Based TFS modei An effective TFS model, SIF, was developed
based on a hybrid fusion strategy to discover relevant feat(.e., topical terms). The
model implements three knowledge discovery steps, inctudl) generating latent topics,
(2) modelling hybrid fusion and (3) ranking topical termg.the first step, SIF uses the LDA
to generate useful topics from all paragraphs in a colleatiocelevant documents. The topics
reduce the dimensionality of the collection and adequagyesent useful information (e.g.,
subjects or themes) discussed in the relevant paragraptie second step, multiple random
sets are extended to manage the hybrid fusion strategy fefetlit features between three
entities in the collection; namely, paragraphs, topicstanais. This is achieved by modelling
the complex relationships between these entities with baiitity function measuring the
strength of each relationship. In the final step, an effeailobal term weighting scheme is
introduced based on the ERS to rank topical terms (i.e vaatdeatures). To the best of our
knowledge, SIF is the first hybrid fusion model that uses p@tERSs for TFS. The SIF
model was extensively tested for IF and RRT and showed signifiperformance compared
to many competent baseline models of relevance discoveiyll description of the proposed
SIF model can be found in Chaptgand a detailed experimental evaluation is presented in
Section%.8.1and6.9.1

 Effective Hierarchical Feature Fusion TFS model A new and highly effective TFS model
for relevance discovery, SIF2, was developed based on tixgration of early and late fusion
strategies of hierarchical features. Unlike SIF, whicluasss that identical topical terms are
equally important in each relevant document, SIF2 relaxisssissumption and differentiates
these terms based on their local statistics in each documkatSIF2 model adopts the same

knowledge discovery steps as SIF, but it differs in the lagt $teps and introduces a new
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global weighting function. First, in the fusion modellingep, an extra ERS is introduced to
model the relationship between a fourth entity; namely,dbeument and its paragraphs.
Further, the function that represents the relationshipvbet a term and latent topics is
updated to allow topical terms to be deployed based on tlighilslitions in each document.

In the final step, the term weighting scheme is also updatesflext the changes in the second
step. The global weighting function can assign a more reptasive fused score to topical

terms, expressing the integration between late and easipriwof features. The proposed
SIF2 model was extensively evaluated and the experimesdalts demonstrate its significant
performance and confirm its merits. Chaptelescribes SIF2 in detail and Sectidh8.2and

6.9.2discuss its experimental evaluation.

* Innovative Uncertainty Reduction Method: Another effective late fusion-based technique,
the UR method, is proposed to reduce uncertainties in netégatures discovered by various
existing TFS models. The uncertainties are introduced wvithese models consider the entire
contents of a document knowing that a document can be labafieelevant even if it has
a small part(s) that matches what the user prefers. The URadetdheres to the same
knowledge discovery steps as the SIF2 model. However, thlymkeveloped ERS in the UR
method does not consider the topic—term relationship,uschDA estimates the term—topic
distribution using all the content of documents or paralgsapp the collection without dis-
tinguishing relevant passages. Instead, the ERS modeltethe-paragraph relationship.
A new term weight scaling function was developed and usectiamk relevant features
discovered by different TFS techniques. To the best of owwkedge, the proposed UR
method is the first of its kind that estimates the passagé televance without an explicit
query (i.e., a search guide) and uses multiple ERSs to mbddiybrid fusion of different
features from a document collection. The proposed UR metlasdtested extensively using
many existing relevance discovery models. The experinhesgalts show that the proposed
method significantly improved the performance of these rsdde relevant feature selection.
The UR method is described in more detail in Chagtand its experimental evaluation is

fully reported in Section§.8.3and6.9.3

» Novel Unsupervised TFS Framework A highly effective two-stage TFS framework, USIF,
was developed based on the integration of multiple earlyi@edusions for relevant feature
discovery. The framework treats term selection and wengjis two independent processes.

First, the integration of document clustering and topic sy was developed, in which
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the same knowledge discovery steps of SIF were used witly ehester of relevant doc-

uments. Then, a concept agglomeration technique was prdgosdiscover representative
terms among the many intra- and inter-cluster topical teffosther, an effective line-fitting

equation was developed to pre-select the number of clussexsond, an effective collection
level feature-weighting technique was used based on tleardioombination between the
SIF model and a modified UR method. The SIF model was used imagst the topical

significance of topical terms in the collection, while thedtieed UR method was adopted
to emphasise terms appearing in more relevant passagepdragraphs). To the best of our
knowledge, USIF is the first TFS framework that integrate#tiple early and late fusions of

different features discovered by unsupervised methodsethyg document clustering, topic
modelling and global statistics. Such sophisticated fusiare elegantly modelled by the
multiple ERSs. The framework was extensively tested ande®perimental results show
its significant performance compared to many superviseduiasdpervised baseline models.
Chaptels discusses the details of USIF and the results of its evaluatie reported, analysed

and discussed in SectioAs3.4and6.9.4

 Effective Supervised TFS Framework Another highly effective TFS framework was in-
troduced to discover relevant features not only from thetpes(i.e., relevant) documents,
as in SIF, SIF2, UR and USIF, but also from the negative (relevant) documents. Thus,
the framework is fully supervised and is referred to as S&#with USIF, SSIF uses mul-
tiple ERSs to model the integration of early and late fusibm@ormative features. Also,
SSIF treats feature selection and feature weighting asdependent tasks in two distinct
stages. First, specific features are selected using a ss@eralgorithm (e.g., SVM) after
integration with the UR method. Second, informative feasuare learned and weighted in an
unsupervised way using the combination of SIF, the UR me#imabglobal statistics. Finally,
an efficient tactic is introduced to combine the output oftthie stages. The proposed SSIF
framework provides an effective method for discoveringvaht features from both positive
and negative documents by combining both supervised 8¥\) and unsupervised (i.e.,
LDA) algorithms. The SSIF framework is innovative when daeglwith the challenging
problems of topical terms that frequently appear in bothtpesand negative contexts. The
experimental results confirm the superiority of SSIF coragdo major supervised and unsu-
pervised baseline models. The proposed SSIF frameworlsigitbed in detail in Chaptés,

while its experimental evaluation is discussed and andlys&ection$.8.5and6.9.5
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In summary, the research presented in this thesis demtesstize adoption of different

fusion-based techniques in TFS for relevance discovery.

1. The SIF model adopts a hybrid fusion strategy to seleotimétive features at the collection

level, which is achieved by:

generating latent topics from all paragraphs in the cttyec

extending multiple random sets to model the complex retetiips between different

entities in the collection from which the fused featuregimated

developing a new and effective term weighting scheme tgassgeneralised weight

to topical terms in the collection.

2. The SIF2 model adopts the hybrid fusion strategy to ran&lldocument-specific features

and select those that are informative based on their gl@mesentativeness. These pro-

posed tactics are achieved by:

generating latent topics from indexed paragraphs in thea®mn
adapting the ERS theory of SIF to model more entities froencibllection

localising the weighting scheme of topical terms basedhair tappearance in each
document and distributing their global topical assignniesed on their frequency in

the document

developing a new and effective term weighting scheme tsiden the previous local-

ising process

developing a score fusion function that can assign a gipbapresentative score to

topical terms.

3. The UR method also adopts the hybrid fusion strategy taaedincertainties in relevant

features discovered by different TFS models. The proposgs sire to:

Generate latent topics from indexed paragraphs in thecadin.
Adapt the ERS theory of SIF2 to model the exact collectidities.
Develop a new relevance function to estimate paragrap felevance.

Develop a weight scaling function to re-rank relevantiieas discovered by the exist-

ing TFS model.
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4. The USIF framework adopts multiple fusion models to dedad weight representative intra-
and inter-cluster features. The proposed steps are to:
* Cluster relevant documents based on a similarity measure.

» Develop a line-fitting equation to estimate the number o$tdrs in a document collec-

tion.
» Generate latent topics from all paragraphs within a cluste
» Adapt ERS to model the required entities.

« Utilise the SIF model to discover important topics in a tdusind facilitate the selection

of intra-cluster features.

» Develop a new UR method to estimate the relevance of allgpapés in the collection

and then utilise it for measuring the thematic significancepical terms.

» Develop a conceptual agglomeration technique to selgoesentative inter-cluster

topical terms from the discovered clusters.

» Re-weigh the selected representative terms using thehtweggscheme of SIF and
combining this in a linear fashion with the UR method and aformative global

statistic.

5. The SSIF framework also adopts multiple fusion modelsetecs and weigh specific fea-
tures. The proposed tactics are to:
» Generate latent topics from all paragraphs in the relesactiment collection.

* Integrate the UR method with BM25 to reduce uncertaintreseievant documents

before training the SVM.

» Select specific features from both relevant and irreledactuments in the collection

using the SVM.

« Utilise the SIF model and combine it in a linear fashion vitie adapted UR method

and an informative global statistic to weigh all topicalbe:

* Re-weigh the re-ranked features of the UR method and the $%iMg the weight
calculated by the combined SIF, UR method and global statist
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7.3 Limitations and Future Work

In this section, the limitations of the research presentedis thesis will be discussed and some

recommendations for future research outlined.

7.3.1 Limitations

Despite the superior performance of the proposed modelsrameéworks in selecting features

for relevance discovery, these models and frameworks dree®of limitations.

a) ldentical feature set This is a common challenge in most feature weighting sclseime
which equal weight is assigned to a subset of featurestérms). Equal weighting implies
these features have the same degree of relevance even ttimyghre not semantically
the same, which also implies the existence of inherited andencomplicated type of
uncertainties. Tackling this problem by revising the idealtset is critical to increase the

overall performance of the intended application.

b) Other types of features Only terms and topical statistical features (i.e., telpid as-
signment and paragraph—topic distribution) are consdiaré¢he fusion strategies adopted
in this research. However, other text features, such agrpattphrases, concepts or a
combination of these appear to be beneficial for relevariifealiscovery. Incorporating

these features into the proposed work might be useful, edpyefor the selection process.

c) Advanced clustering algorithms Traditional clustering algorithms use distance-based
measures to estimate the similarity between documentsiodaluster. These algorithms
are (1) only concerned with the spatial relationship betwte vectors that represent
documentslfi et al., 2014, (2) sensitive to the method of selecting the initial cerus
[Li et al., 2014 and (3) unaware of the internal structure of long documgBitehata et al.
2010. Thus, using more advanced clustering techniques migpttbediscover additional

interesting features.

d) Advanced topic modelling The proposed models and frameworks used the popular LDA
algorithm to extract latent topics. The LDA model forms thesis of many probabilistic
topic modelling techniques designed to improve the qualityenerated topics. Adopting
these enhanced topic models might be more effective iniigerg relevant topics or sub-

topics.
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e) Adding explicit semantics The semantic information used in this research is protlsioil
and based on the LDA topics. Such semantic information idiagm@and usually difficult
to interpret Baif et al, 2019. Therefore, using explicit semantics (e.g., those based o
advanced NLP techniques, ontologies and dictionarieshtragd in understanding the

meaning of discovered features and facilitate the selegiocess.

f) Introducing parameters: The proposed models and frameworks did not use any param-

eters except those of the LDA, clustering and the tdjgatures. However, it would be
practical to introduce certain parameters to control tasksh as weight optimisation and

noise reduction.

g) More specific features It is difficult to define the specificity of features using pnélevant
documents with SIF, SIF2, USIF and the UR method due to theradesof an explicit query
or negative context (i.e., irrelevant documents). Usirgptiee feedback to identify specific
relevant features (as done by the SSIF framework) significanproves the performance
of IF and allows the boundary of feature specificity to be defito some extent. However, if
the feature context in both positive and negative feedbaakutually exclusive, identifying
specific features is either impossible or ineffective. Thusight be useful to introduce
an appropriate clustering algorithm to the SSIF frameworkl¢lineate a clear boundary
between positive and negative feature contexts, which taiighin the selection of specific

features.

7.3.2 Future Work

Addressing the limitations outlined in the previous sati®the first intended step for future
work. Also, the research presented in this thesis can taleaduture directions, which are

noted in this section.

a) Despite the sophistication of the proposed models amdefnaorks in this thesis and the
way they tackle uncertainties in TFS, they still output itlead subsets of features (i.e.,
terms). These sets are problematic and hinder the perfaerardiscriminative algorithms
such as IF because it is difficult to differentiate betweandlements (i.e., features) of a
set. Knowing these elements are semantically differengssty a more comprehensive
solution is needed, as this problem is prevalent with almtsEFS techniques. Revising
the weight of these elements by integrating granular comg@y¥ao, 2007 and rough set

theory [Yao, 2009 into our ERS theory is a feasible solution. Both granulanpating and
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b)

d)

rough set theory have demonstrated interesting outcomeg(03 Li and Zhong 2003
and i et al., 2017 2017. Thus, this approach should be investigated in future work

The fusion strategies adopted in the proposed researictyndaal with statistical features
(i.e., topics) and lexical words. These features do notidenshe sequence of terms as
they originally appear in documents and paragraphs. Ther @fdvords is important, as it
conveys semantic information and discriminates betwelsttssl features. In future work,
the proposed models and frameworks will be adapted to censigrams Albathan et al.
2013, sequential patternd_[ et al., 2015 or ontological conceptsTpo et al, 2017 to

enhance the selection step of relevant features.

The document clustering algorithm used in this reseaashdmown remarkable improve-
ment to existing techniques. However, the limitationsioet in the previous section might
affect the performance of the USIF framework. It is worthdsiigating other advanced
clustering techniques, such as the collapsed Gibbs sagnalgorithm for the Dirichlet

multinomial mixture model (GSDMM)Yin and Wang 2014 and the constrained hetero-
geneous information network clustering model (CHIN@)ahg et al. 2015, which are

capable of digging deeper into the internal structures @udtents or even paragraphs.
Also, developing or adapting our intra- and inter-clustenaept agglomeration to select

informative features from the newly formed clusters is aseasial step forward.

The topical features used in this research have beenaeddry the LDA, which is cur-
rently the most widely used unsupervised topic modelliggpathm. However, there are
numerous other topic modelling techniques that might gerdoetter quality topics in a
supervised or unsupervised way, including the pachinkacation model (PAM) and the
hierarchical pachinko allocation model (hPAM)i [and McCallum 2006 Mimno et al,
2007, the segmented topic model (STM)(i et al, 201J and the maximum entropy dis-
crimination latent Dirichlet allocation (MedLDA)hu et al, 2017. It would be beneficial
to use these topics knowing that the proposed ERS theorygedria solve many issues of
the base topic model (i.e., LDA). Adapting our models andnieaorks to the new topics

would be useful.

e) Understanding the meaning behind the discovered featvoald also be useful, especially

in the selection process. However, no explicit semanticedge is used in our proposed

research, and the adopted semantic information is imglralt probabilistically generated.
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f)

Thus, adding an explicit semantic layer to the proposed msaated frameworks through
personalised ontology, advanced NLP methods or a combmatiboth could dramatically
improve our understanding of the topics discussed in themeat collection and enhance

the selection and weighting of relevant features.

In the proposed TFS research, a conservative approachkakes during the training phase
of the models and frameworks. No features were ignored éxbepstop words, as the
training documents were relevant. We assumed that allfesin these documents were
initially relevant. However, it would be practical to inttace control parameters (e.g.,
hyperparameters) to facilitate issues like noise redodgog., by specifying a cut-off) and
weight optimisation. Incorporating parameters into thepmsed models and frameworks is

feasible and will be considered in future work.

Our proposed models and frameworks can be extended andatedgyith potential theories

and techniques to explore different research problem$odlyh the proposed research has been

evaluated mainly in the context of IF, it has the potentigbéoemployed in other applications

such as IR, recommendation systems, text classificatiompimibn mining.

1.

3.

The proposed techniques have illustrated the capabiiitysion strategies to discover rel-
evant features from the contents of relevant and irreledactiments that represent user
information preferences. These techniques can be adapsaohilar content-based analysis
systems such as the recommender system. For example, tespbSIF, SIF2 or even the
USIF framework could be utilised to select and weigh intengstems from the content of

user profiles, and subsequently used to recommend ttgms.

No explicit users information needs (e.g., queries) Haen assumed to be given in the
research work in this thesis. However, for an IR applicatguch queries can be integrated
with the proposed techniques to guide the search for higttitgjufeatures. For example,
the proposed USIF framework would benefit from the user gteelycate the most relevant
cluster. Also, an explicit query can be utilised with thegweed UR method to categorise
paragraphs in relevant documents based on their spectfiditye query, allowing them to be
ranked accordingly. In the presence of short queries, thegsed techniques could be used

for a query expansion problem.

As previously mentioned, IF is regarded as a form of birdagsification. Therefore, it
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is feasible to adapt our proposed work for incorporatiom itite related centroid-based
or three-way decision methodologies for text classificagooblems or similar contexts,
like sentiment analysis. For instance, our proposed UR oae#ind the SSIF framework
significantly improved the performance of the SVM, whichigades the possibility for

further improvements in text classification.
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Collection# nDCG@4

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Avg.

0.3868528
0.0000000
0.2960819
0.0000000
0.3903800
0.3903800
0.4692787
0.3903800
0.2021073
0.2463024
0.0000000
0.9060254
0.4692787
0.6713861
0.4692787
0.0000000
1.0000000
0.5307213
0.7039181
0.6713861
0.8318725
0.4981893
0.6713861
0.6131472
0.0000000
0.5307213
0.0000000
0.7653606
0.1951900
0.7039181
0.0000000
0.0000000
0.6366824
0.3903800
0.7653606
0.2960819
0.7653606
0.8048100
0.9060254
1.0000000
0.7653606
0.4692787
0.2960819
0.2960819
0.2346394
0.0000000
1.0000000
0.0000000
0.2021073
1.0000000
0.4566359

Table A.1: Detailed Results of the SIF Model for the First 50 Collesi®f the RCV1 Dataset

P@20
1.0000000
0.9000000
0.7000000
0.8500000
0.7500000
0.1500000
0.2000000
0.4500000
0.9500000
0.7500000
0.1000000
0.5000000
0.3000000
0.5500000
0.8500000
0.8500000
0.9000000
0.3500000
0.2000000
0.8000000
0.9000000
0.8500000
0.1500000
0.1500000
1.0000000
0.9000000
0.7000000
0.4500000
0.6000000
0.2500000
0.8500000
0.2500000
0.4500000
0.6000000
0.9000000
0.4000000
0.2500000
0.2000000
0.6500000
0.6500000
0.8000000
0.3500000
0.1000000
0.9000000
0.1000000
0.6500000
0.5500000
0.8500000
0.1000000
0.7000000

BP
0.8631922
0.7798742
0.4918033
0.6276596
0.5400000
0.0967742
0.3513514
0.5333334
0.4189189
0.5483871
0.1333333
0.5000000
0.3428572
0.3709678
0.6031746
0.6666667
0.6250000
0.4285714
0.2750000
0.7531645
0.7380952
0.7450981
0.1764706
0.1818182
0.5151515
0.8953489
0.5476190
0.3636364
0.4210526
0.3125000
0.6486486
0.2727273
0.4642857
0.3432836
0.8427300
0.3731343
0.4444445
0.2045455
0.7058824
0.4477612
0.4878049
0.2916667
0.0869565
0.6545454
0.1111111
0.5495495
0.5294118
0.9254386
0.1754386
0.3518519

MAP
0.9288488
0.8059042
0.5020288
0.6456860
0.6219502
0.1646489
0.2442039
0.4073960
0.5425472
0.5387074
0.1331301
0.6568739
0.2690215
0.3942677
0.7465919
0.7344497
0.8293392
0.4644918
0.2841173
0.7701278
0.7765812
0.7061632
0.2478195
0.1865306
0.6232488
0.9283363
0.5850744
0.3840161
0.4228632
0.3078890
0.7233598
0.0856993
0.5016328
0.3310262
0.8729712
0.3206993
0.3760315
0.1996002
0.6765018
0.4639552
0.5906197
0.3653896
0.1121917
0.7393518
0.0851688
0.6302434
0.5209063
0.9280095
0.1730475
0.4694999

Fay IAP Recall

0.6514430
0.6195130
0.5050939
0.5669436
0.5604391
0.2496558
0.3309993
0.4619349
0.5240415
0.5271766
0.2130731
0.5835797
0.3515553
0.4439904
0.6045640
0.5990111
0.6358950
0.4975672
0.3655710
0.6086599
0.6127139
0.5921292
0.3376050
0.2738890
0.5571872
0.6523933
0.5460494
0.4400214
0.4618566
0.3898425
0.5959882
0.1472564
0.5096158
0.4006814
0.6370246
0.3930219
0.4484957
0.2871265
0.5939862
0.4847346
0.5451016
0.4294790
0.1846725
0.6029869
0.1463062
0.5604075
0.5177875
0.6517116
0.2582552
0.4885721

0720990.5016287
(088310.5031447
(©54470.5081967
0468270.5053192
(164830.5100000
(122030.5161290
(B38440.5135135
(0608570.5333334
(865320.5067568
(639280.5161290
(183550.5333334
(078560.5250000
038260.5071428
(643320.5080645
(B22970.5079367
0r14340.5057472
0188710.5156250
(848480.5357143
(034600.5125000
0477980.5031645
0742130.5059524
(B@8260.5098040
(839900.5294118
(0622560.5151515
(262010.5037879
(922780.5029069
0468430.5119048
(848910.5151515
0666410.5087720
(888240.5312500
(283300.5067568
0682070.5227273
(B52930.5178571
(0849110.5074626
(228860.5014837
0488530.5074626
(002850.5555556
0788630.5113636
®BD#570.5294118
0721450.5074626
0r89770.5060976
(6#46340.5208333
(253500.5217391
(0138250.5090909
(9688400.5185185
068480.5045044
(©80730.5147059
(193870.5021929
(BR2000.5087720
(242500.5092593

0
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.5000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.4242424
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.6666667
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.2400000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.1153846
1.0000000
0.7142857
1.0000000
0.2524272
1.0000000

0.1
1.0000000
0.9000000
0.7391304
0.8846154
1.0000000
0.1612903
0.5000000
0.6250000
1.0000000
0.8125000
0.2857143
1.0000000
0.4242424
0.7500000
1.0000000
0.9166667
1.0000000
1.0000000
0.3055556
0.9411765
0.9444444
1.0000000
1.0000000
0.1960784
0.9600000
0.9722222
0.7857143
0.5384616
1.0000000
1.0000000
0.8947368
0.2400000
1.0000000
0.7777778
0.9615384
0.3750000
1.0000000
0.2250000
1.0000000
0.8750000
1.0000000
1.0000000
0.0844156
0.8947368
0.1153846
0.8297873
0.7142857
0.9633027
0.2524272
1.0000000

0.2

1.0000000
0.9210526
0.7142857
0.8846154
1.0000000
0.1552795
0.3750000
0.7500000
1.0000000
0.7857143
0.0746269
0.8000000
0.4516129
0.6400000
0.9333333
0.8285714
1.0000000
0.5000000
0.3055556
0.8723404
0.9444444
0.9230769
0.2173913
0.2318841
0.9090909
0.9540230
0.8333333
0.7000000
0.6333333
0.5000000
0.8823530
0.2777778
0.8750000
0.3898305
0.9615384
0.4038461
0.4444445
0.2250000
1.0000000
0.6400000
0.7142857
0.8333333
0.0821918
0.9000000
0.0917431
0.8297873
0.6071429
0.9633027
0.2523364
0.8666667

0.3 0.4
0.9831938B02632
0.8600006G0@O80
0.714285018033
0.743589831280
0.772727378461
0.161290%12003
0.416666 7166667
0.6250000154686
0.4915254626866
0.8125000 28080
0.07299277280@7
0.7500006G0@0D0
0.381818B8E628
0.4444442940138
0.954545809624
0.80555567 71778
1.000000®@00000
0.500000@O@OB0
0.2772277 7227
0.875000B66687
0.82978729T833
0.86956552M630
0.195652D5@622
0.196078491753
0.740740B096@24
0.94915251 79187
0.6785714887/64
0.5384616:384636
0.473684210626
0.235294B52021
0.894736841688
0.084337H98403
0.8181818182749
0.315068H 76023
0.914634246642
0.362500628080
0.300000@B57123
0.17460374&082
1.000000®@00000
0.489795%7€2Z 1
0.55172450@060
0.476190561205
0.084415@44166
0.894736838633
0.097561®78600
0.829787328067
0.600000@BOE451
0.963302B38027
0.252427524272
0.39583338B186

0.5
0.9537572
0.8627451
0.4235294
0.7014926
0.5400000
0.1543210
0.1775701
0.5714286
0.3724138
0.7619048
0.0746269
0.5833333
0.2681159
0.2897196
0.7619048
0.7121212
1.0000000
0.4375000
0.2772277
0.8360656
0.8000000
0.8529412
0.1875000
0.1730769
0.5178571
0.9456522
0.5800000
0.3673469
0.3670886
0.2702703
0.8695652
0.0685358
0.4285714
0.2614108
0.9100529
0.3689320
0.3571429
0.1783784
0.7692308
0.4320988
0.5116279
0.1982759
0.0821918
0.7250000
0.0893471
0.5648148
0.6071429
0.9513889
0.2102273
0.3043478

0.6
0.9547738
0.8347826
0.4423077
0.6354167
0.4615385
0.1612903
0.1455696
0.4285714
0.3642384
0.5581396
0.0729927
0.6363636
0.2485549
0.2774194
0.8666667
0.6896552
0.8695652
0.5000000
0.2772277
0.8360656
0.7857143
0.8378378
0.1358025
0.1734104
0.4938272
0.9448819
0.5357143
0.3278689
0.2578616
0.2352941
0.7741935
0.0698413
0.3333333
0.2653061
0.8714860
0.3287671
0.2727273
0.1746032
0.5500000
0.4056604
0.5000000
0.1825397
0.0805085
0.7000000
0.0896552
0.5367647
0.5531915
0.9532164
0.1777778
0.2903226

0.7
0.9004149
0.8000000
0.4423077
0.5454546
0.4454545
0.1612903
0.1092437
0.1279070
0.3642384
0.5581396
0.0454545
0.6363636
0.2425743
0.2767296
0.7758621
0.6853933
0.7419355
0.3703704
0.2772277
0.8102190
0.7662337
0.7254902
0.1250000
0.1734104
0.4656863
0.9166667
0.5357143
0.2727273
0.2578616
0.2352941
0.5714286
0.0698413
0.2941177
0.2653061
0.8454810
0.3287671
0.2727273
0.1746032
0.5217391
0.3455882
0.5000000
0.1825397
0.0805085
0.6964286
0.0896552
0.5155280
0.5531915
0.9532164
0.1777778
0.2867647

0.8
0.8711864
0.7529412
0.4094488
0.4331551
0.4454545
0.1543210
0.0994318
0.1818182
0.3712575
0.2795699
0.0447761
0.4210526
0.1866667
0.2631579
0.4561403
0.6730769
0.5777778
0.3076923
0.2720588
0.6165049
0.6607143
0.1923077
0.0792079
0.1705882
0.4435147
0.9047619
0.4666667
0.2700000
0.2255319
0.1794872
0.4960630
0.0685358
0.2421053
0.2614108
0.8454810
0.3142857
0.2352941
0.1745283
0.6086956
0.2030075
0.4382716
0.1982759
0.0801688
0.6081081
0.0893471
0.5174419
0.4915254
0.9452736
0.1777778
0.2848101

0.9 1

0.80288:6732456
0.720008#26621
0.407402081911
0.40930232194424
0.445484%)32258
0.1465048965414
0.10000@B86456
0.092105%60793
0.346968 22363
0.076502639175
0.0414Q@B50467
0.345464898551
0.172083(01115
0.25000#50593
0.200704D74922
0.6165@1328261
0.391801871345
0.144484736842
0.270002B66667
0.518103®61697
0.633382906574
0.183503822973
0.0788010748899
0.1734004179821
0.36446:2953020
0.893268582806
0.417583659322
0.211267664706
0.1877Q3616868
0.159504568628
0.43312B523810
0.069881%598413
0.1529@11201717
0.265304D30836
0.825268847312
0.220208640260
0.2727Q2327273
0.162264565836
0.238804B47826
0.188963825613
0.42286:BB67925
0.182569481482
0.078261782313
0.5048644.04478
0.089665197674
0.4755630.11111
0.340425595420
0.927928815789
0.177701269488
0.255202327586

0.5670000 0.4751608 0.5003752 0.4729521 0.5268587 0.5137146 0.9182601 0.7569241 0.6615829 0.5769837 0.5413795 0.4941959 0.4619849 0.4303175 0.3738135 0.3217071 0.2582962
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Detailed Results: The Proposed SIF2 Model
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Collection# nDCG@4

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Avg.

0.3868528
0.0000000
0.4692787
0.0000000
0.3903800
0.5585076
0.4981893
0.3903800
0.4692787
0.3903800
0.0000000
0.5307213
0.6713861
0.7653606
0.4692787
0.0000000
0.7653606
0.2960819
0.5307213
0.6713861
0.8318725
0.7039181
0.6713861
0.6131472
0.0000000
0.4981893
0.0000000
0.7653606
0.2463024
0.6713861
0.2960819
0.0000000
0.8048100
0.3903800
0.7653606
0.2960819
0.7653606
0.8318725
0.9060254
1.0000000
0.7653606
0.4692787
0.2346394
0.2960819
0.2346394
0.0000000
1.0000000
0.0000000
0.2960819
1.0000000
0.4721432

Table B.1: Detailed Results of the SIF2 Model for the First 50 Collens of RCV1 Dataset

P@20
1.0000000
0.9500000
0.7000000
0.9500000
0.7000000
0.1500000
0.2500000
0.4000000
1.0000000
0.8000000
0.1500000
0.5500000
0.4500000
0.6000000
0.7000000
0.8500000
0.8500000
0.3500000
0.5500000
0.7500000
0.7500000
0.8500000
0.3000000
0.2000000
0.8500000
0.9500000
0.7000000
0.2500000
0.6500000
0.2000000
0.9000000
0.3000000
0.6000000
0.6000000
1.0000000
0.3000000
0.2500000
0.2500000
0.6500000
0.9500000
0.8000000
0.4000000
0.1500000
0.9000000
0.1000000
1.0000000
0.6000000
1.0000000
0.1500000
0.9500000

BP
0.8371335
0.7798742
0.5573770
0.6063830
0.5800000
0.0967742
0.2162162
0.5333334
0.5000000
0.8387097
0.1333333
0.5500000
0.4428572
0.4516129
0.5714286
0.7586207
0.5937500
0.2857143
0.3250000
0.7468355
0.8333333
0.8039216
0.2941177
0.1212121
0.5000000
0.8953489
0.6190476
0.3636364
0.4385965
0.2500000
0.7297297
0.2727273
0.5000000
0.5223880
0.8397626
0.3731343
0.2222222
0.1590909
0.7647059
0.5820895
0.5000000
0.3333333
0.1304348
0.7090909
0.0740741
0.6036036
0.6470588
0.9254386
0.2280702
0.5740741

MAP
0.9221295
0.8347064
0.5613163
0.6933501
0.6632540
0.1762388
0.2386212
0.3928076
0.6728416
0.6431335
0.1405291
0.6647796
0.3327282
0.4405396
0.6045777
0.8247380
0.6914657
0.2891648
0.4167015
0.7837759
0.8060027
0.8644753
0.2911162
0.1952800
0.5384228
0.9310888
0.6301055
0.2809189
0.4963182
0.3677687
0.8405771
0.2347347
0.5841202
0.5064644
0.8823375
0.3479407
0.2756401
0.2501396
0.7764128
0.6333755
0.6259098
0.3998019
0.0918632
0.7439543
0.0772089
0.7571582
0.5383474
0.9501113
0.1984578
0.6616644

Fay IAP Recall

0.6497825
0.6278399
0.5334373
0.5845868
0.5766177
0.2627561
0.3258331
0.4524093
0.5781071
0.5726742
0.2224456
0.5866789
0.4018253
0.4718988
0.5520597
0.6270028
0.5907377
0.3755937
0.4596624
0.6128772
0.6216661
0.6413732
0.3756614
0.2832047
0.5205299
0.6530716
0.5648882
0.3635753
0.5024679
0.4346453
0.6323127
0.3239826
0.5489964
0.5069631
0.6395015
0.4128273
0.3684653
0.3359468
0.6295518
0.5634707
0.5596632
0.4523619
0.1562205
0.6045119
0.1344045
0.6055338
0.5262612
0.6570788
0.2855359
0.5755435

0790910.5016287
0788740.5031447
(833710.5081967
(868760.5053192
(168080.5100000
(©38500.5161290
(124400.5135135
(B88790.5333334
(6@8980.5067568
0B8240.5161290
(686570.5333334
0462640.5250000
(936150.5071428
056640.5080645
(2@2670.5079367
(088840.5057472
0763660.5156250
(022240.5357143
(646070.5125000
(086260.5031645
0485240.5059524
(83@300.5098040
(280480.5294118
0723690.5151515
(158090.5037879
(093510.5029069
0788260.5119048
087240.5151515
(688680.5087720
(©88240.5312500
(888690.5067568
(1P8270.5227273
(838270.5178571
(B23460.5074626
0188520.5014837
0136740.5074626
(938500.5555556
(838140.5113636
(824670.5294118
482700.5074626
(©@8200.5060976
(948990.5208333
(880330.5217391
(653330.5090909
0683370.5185185
0708150.5045044
(668610.5147059
(288850.5021929
0738050.5087720
(B60010.5092593

0
1.0000000
1.0000000

0.1
1.0000000
0.9500000

0.2
1.0000000
0.9016393

0.7777778
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.8437500
1.0000000
1.0000000
0.5000000
0.8461539
1.0000000
1.0000000
1.0000000
0.5000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.3750000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.4000000
0.4000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.1666667
1.0000000
0.1333333
1.0000000
0.6571429
1.0000000
1.0000000
1.0000000

0.7777778
1.0000000
1.0000000
0.1896552
0.8333333
0.6666667
1.0000000
0.8437500
0.1818182
1.0000000
0.4912281
0.8461539
1.0000000
0.9230769
1.0000000
0.3846154
0.8000000
0.9000000
1.0000000
1.0000000
1.0000000
0.2222222
0.8571429
0.9777778
0.8571429
0.3750000
1.0000000
1.0000000
1.0000000
0.5555556
1.0000000
0.6666667
0.9500000
0.4000000
0.4000000
0.3333333
1.0000000
1.0000000
1.0000000
1.0000000
0.1666667
0.9130435
0.0928270
1.0000000
0.6571429
1.0000000
0.2708333
0.9500000

0.7777778
0.9565218
1.0000000
0.1896552
0.2162162
0.6000000
1.0000000
0.8437500
0.1500000
1.0000000
0.4912281
0.6363636
1.0000000
0.9038461
1.0000000
0.3846154
0.6666667
0.9000000
0.8636364
1.0000000
0.3157895
0.1913043
0.6923077
0.9777778
0.8333333
0.3750000
0.7200000
0.4000000
1.0000000
0.5555556
1.0000000
0.6551724
0.9078947
0.4000000
0.4000000
0.2530121
1.0000000
0.9600000
0.8181818
1.0000000
0.1333333
0.9130435
0.0928270
1.0000000
0.6571429
0.9800000
0.2708333
0.9500000

0.3 0.4
0.982758621292
0.9016398B540187
0.7419359.79487
0.833333358491
0.760000G10T4D7
0.189655B96652
0.150537615@882
0.533333838634
1.0000000/0%882
0.843750G13T680
0.093750®37600
1.000000G0@IVO
0.491228D17281
0.5263158917281
0.6410257.36864
0.903846 038481
1.000000®@00000
0.38461584®134
0.500000@0@OB0
0.900000@O@OA0
0.863636463E384
0.857142%71D429
0.315789%82027
0.191304318023
0.6557377.36864
0.970149%594695
0.736842538461
0.375000075@080
0.7200006+7®150
0.244898@148080
0.953488434884
0.179487B56061
0.750000@0@60
0.57894740@060
0.907894D780@7
0.400000@O@OA0
0.318181881838
0.253012530121
1.000000®@00000
0.960000G0@OD0
0.67441860@0H0
0.470588D3%628
0.117647B6@05
0.913043B88689
0.092827®28270
1.000000@3@769
0.657142%71D4@9
0.952095862M088
0.224299242091
0.950000G0@D0

0.5
0.9550562
0.8854167
0.6400000
0.6582279
0.6046512
0.1896552
0.1450382
0.5333334
0.7551020
0.8437500
0.0731707
0.5714286
0.3888889
0.3522727
0.5714286
0.9038461
1.0000000
0.3846154
0.3134328
0.9000000
0.8636364
0.8571429
0.2682927
0.1913043
0.5156250
0.9453125
0.6388889
0.3207547
0.4531250
0.2448980
0.9534884
0.0856031
0.5333334
0.5384616
0.8855932
0.4000000
0.3181818
0.2527473
0.8333333
0.6481481
0.5232558
0.2035398
0.0860215
0.8055556
0.0928270
0.8235294
0.6571429
0.9520958
0.1908397
0.7500000

0.6
0.9230769
0.8738739
0.5588235
0.6477273
0.5769231
0.1896552
0.1282051
0.2812500
0.4000000
0.8437500
0.0731707
0.5714286
0.2905406
0.3057325
0.5324675
0.8571429
0.4285714
0.3846154
0.3090909
0.8807340
0.8636364
0.8571429
0.2682927
0.1913043
0.4469274
0.9453125
0.6190476
0.2804878
0.3627451
0.2448980
0.8653846
0.0856031
0.5151515
0.4941177
0.8855932
0.4000000
0.3181818
0.2195122
0.8125000
0.5061728
0.5177305
0.2035398
0.0860215
0.7551020
0.0928270
0.6261683
0.6571429
0.9520958
0.1908397
0.5500000

0.7
0.8773235
0.8129497
0.4464286
0.5945946
0.4814815
0.1896552
0.1220657
0.1896552
0.4000000
0.8437500
0.0488889
0.5185185
0.2653061
0.3057325
0.5232558
0.8205128
0.2839506
0.3846154
0.3090909
0.8496240
0.8481013
0.8571429
0.1237113
0.1726619
0.3899614
0.9453125
0.5535714
0.2758621
0.2985075
0.2448980
0.7536232
0.0856031
0.3962264
0.4800000
0.8637993
0.3986014
0.3181818
0.2035928
0.8125000
0.4234234
0.5177305
0.2035398
0.0787037
0.7222222
0.0928270
0.5436242
0.6410257
0.9470588
0.1908397
0.4712644

0.8
0.8445122
0.7527472
0.4464286
0.4935897
0.4555556
0.1838235
0.1059603
0.1621622
0.3896104
0.8437500
0.0365535
0.4210526
0.2488889
0.2880435
0.4636364
0.7373737
0.2745098
0.2105263
0.3090909
0.6614583
0.8395062
0.8200000
0.0797872
0.1640212
0.3772242
0.9012346
0.5230770
0.2547170
0.2598870
0.1973684
0.7142857
0.0856031
0.3205128
0.4218750
0.8489426
0.3986014
0.2051282
0.1956522
0.3043478
0.2727273
0.5177305
0.2035398
0.0781250
0.6428571
0.0928270
0.5144509
0.4838710
0.9327354
0.1908397
0.4190476

0.9 1

0.844502215538
0.7272023213115
0.41048.8836478
0.40466818294424
0.4347824347826
0.1638@1808017
0.0974Q1703422
0.133383942574
0.35828148936
0.0687041639175
0.0365631857995
0.395833225806
0.187683313321
0.2864622160318
0.23849:2000000
0.6475@18214286
0.263666427711
0.071704%17949
0.30000209639
0.527402093264
0.61410:3169811
0.758084296296
0.076508565766
0.1640Q1273214
0.324802D66292
0.895963&%78571
0.381808818182
0.2343039©52663
0.242900B06355
0.197368882353
0.5726898104762
0.085603B56031
0.16456:4(308411
0.303768325287
0.8374658122907
0.269901544792
0.18000a®00000
0.194104582734
0.296202%556250
0.190909B61111
0.46626:8677130
0.20356498181482
0.073089649718
0.495089%81013
0.08126@r35695
0.478000W583544
0.4050833177570
0.9327654.29032
0.1884038143038
0.379883M14925

0.6050000 0.5043039 0.5353023 0.4909009 0.5569369 0.5137146 0.8919965 0.7686686 0.6986885 0.6332260 0.5878731 0.5500399 0.4974052 0.4624303 0.4117959 0.3457523 0.2784295
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Detailed Results: The Proposed UR Method
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246 APPENDIX C. APPENDIX C: UR METHOD
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Figure C.1. P@20 Results Before and After Uncertainty Reduction fazrBglodel from 1%
to 100% of the Features Space.
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Figure C.2: BP Results Before and After Uncertainty Reduction for Eltddel from 1% to
100% of the Features Space.
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Figure C.3: F3—; Results Before and After Uncertainty Reduction for Each Mdobm 1% to
100% of the Features Space.
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Figure C.4: IAP Results Before and After Uncertainty Reduction for Edtodel from 1% to
100% of the Features Space.
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Collection# nDCG@4

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Avg.

0.6131472
0.0000000
0.4692787
0.0000000
0.3903800
0.5855701
0.6131472
0.4692787
0.2021073
0.3868528
0.0000000
0.5307213
0.4692787
0.7653606
0.6131472
0.0000000
0.7653606
0.6131472
0.7653606
0.4692787
0.6366824
0.7039181
0.6713861
0.6131472
0.0000000
0.5307213
0.1951900
0.7039181
0.3903800
0.6713861
0.2346394
0.0000000
0.9060254
0.4692787
1.0000000
0.2960819
0.7653606
0.8318725
0.9060254
1.0000000
0.7653606
0.5000000
0.2346394
0.2346394
0.6131472
0.0000000
0.7653606
0.5000000
0.3065736
0.9197208
0.5017374

Table D.1: Detailed Results of the USIF Framework for the First 50 Ecibns of RCV1 Dataset

P@20
1.0000000
0.9000000
0.6000000
0.9500000
0.7000000
0.1500000
0.3500000
0.4000000
1.0000000
0.8000000
0.1000000
0.5500000
0.3000000
0.7000000
0.9500000
0.8500000
0.9500000
0.3500000
0.5500000
0.7500000
0.8500000
0.8500000
0.4000000
0.2000000
0.9000000
0.9500000
0.7500000
0.3000000
0.6000000
0.2000000
0.9500000
0.3000000
0.5500000
0.6500000
0.9000000
0.2500000
0.2500000
0.3500000
0.6500000
0.9000000
0.8500000
0.5000000
0.1000000
0.9000000
0.1000000
1.0000000
0.5500000
1.0000000
0.2500000
0.9000000

BP
0.8892508
0.7798742
0.5901640
0.6276596
0.5800000
0.0967742
0.2972973
0.4666667
0.4324324
0.7741935
0.0666667
0.5500000
0.4857143
0.3709678
0.6666667
0.7701150
0.7187500
0.3571429
0.4000000
0.7594937
0.8095238
0.7843137
0.4705882
0.1515152
0.5151515
0.8953489
0.6190476
0.3636364
0.4561403
0.2500000
0.6756757
0.2727273
0.5000000
0.4477612
0.8308606
0.3582090
0.4444445
0.2272727
0.7647059
0.5671642
0.5000000
0.4166667
0.0869565
0.7454546
0.0740741
0.5585586
0.6764706
0.9254386
0.2280702
0.5925926

MAP
0.9596796
0.8428251
0.5328653
0.7424275
0.6856604
0.1687288
0.3043028
0.4909103
0.6119888
0.6322939
0.1431067
0.6279055
0.3560422
0.4219602
0.7543512
0.8298371
0.8162860
0.3349426
0.4539210
0.7576152
0.7936722
0.7109390
0.5716386
0.2030395
0.5833250
0.9267689
0.6435965
0.3018966
0.4742413
0.4057498
0.8291577
0.1835725
0.5538344
0.4673399
0.8426890
0.3291611
0.4381790
0.2797645
0.7392536
0.6236919
0.6200349
0.4819365
0.0809907
0.7757996
0.0779815
0.7054864
0.5377863
0.9526129
0.1989377
0.6762447

Fay IAP Recall

0.6588655
0.6301226
0.5202387
0.6013446
0.5849267
0.2543180
0.3821484
0.5112433
0.5544236
0.5683363
0.2256625
0.5718602
0.4183674
0.4610265
0.6070923
0.6284707
0.6320204
0.4121796
0.4814351
0.6047133
0.6179636
0.5938016
0.5497155
0.2912766
0.5406468
0.6520059
0.5702463
0.3806936
0.4909002
0.4600953
0.6290542
0.2717214
0.5352419
0.4865756
0.6287805
0.3993121
0.4899352
0.3616642
0.6169784
0.5596058
0.5573024
0.5006306
0.1402154
0.6147645
0.1355737
0.5883037
0.5259931
0.6576760
0.2860324
0.5809916

(694370.5016287
(983530.5031447
(248830.5081967
(BB65360.5053192
07688830.5100000
(8B4300.5161290
(433060.5135135
(233630.5333334
0462540.5067568
(668560.5161290
(687040.5333334
0466110.5250000
(229650.5071428
(993820.5080645
(183690.5079367
0784580.5057472
(©P9660.5156250
(686640.5357143
(©49980.5125000
(©89530.5031645
08@860.5059524
069280.5098040
(626060.5294118
(626030.5151515
(B8§250.5037879
(098600.5029069
(6683790.5119048
(023530.5151515
088460.5087720
0493200.5312500
0420680.5067568
(0627090.5227273
(635400.5178571
0480480.5074626
(83@410.5014837
(23@410.5074626
0782540.5555556
(830510.5113636
(654910.5294118
(868220.5074626
0782460.5060976
(898320.5208333
(238800.5217391
(680030.5090909
(699620.5185185
0Ba600.5045044
0784530.5147059
(993460.5021929
(828240.5087720
(068510.5092593

0
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.8000000
1.0000000
1.0000000
0.5000000
0.8888889
1.0000000
1.0000000
1.0000000
0.5000000
1.0000000
0.9042553
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.4000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.3986014
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.1052632
1.0000000
0.1250000
1.0000000
0.6857143
1.0000000
0.2839506
1.0000000

0.1
1.0000000
0.9444444
0.6842105
1.0000000
1.0000000
0.1733333
1.0000000
1.0000000
1.0000000
0.8000000
0.1363636
1.0000000
0.5000000
0.8888889
1.0000000
0.9375000
1.0000000
0.4347826
1.0000000
0.9042553
0.8823530
0.9000000
1.0000000
0.2352941
0.9444444
0.9777778
0.8333333
0.4000000
1.0000000
1.0000000
1.0000000
0.5555556
1.0000000
0.6538461
0.8793104
0.3986014
1.0000000
0.5555556
1.0000000
1.0000000
1.0000000
1.0000000
0.1000000
0.9230769
0.0982659
1.0000000
0.6857143
1.0000000
0.2839506
0.9375000

0.2

1.0000000
0.9200000
0.7272728
1.0000000
1.0000000
0.1710526
0.2727273
0.7500000
1.0000000
0.8000000
0.1333333
1.0000000
0.5000000
0.7777778
0.9545454
0.9107143
1.0000000
0.4117647
0.6153846
0.9000000
0.8947368
0.8636364
1.0000000
0.1926606
0.8709678
0.9772728
0.8461539
0.4117647
0.6190476
0.8000000
1.0000000
0.5000000
0.8571429
0.6071429
0.8906250
0.4042553
1.0000000
0.2500000
0.8666667
0.9411765
0.8500000
1.0000000
0.0909091
0.9230769
0.0960699
0.9600000
0.6944444
0.9836066
0.2839506
0.9333333

0.3 0.4
1.000000®4%0¢6
0.8985508B4@184
0.707317B42165
0.926829268293
0.7500006G0@0D0
0.1710526738B83
0.209677491/81
0.750000@B68666
1.000000@11073
0.800000@O@OB0
0.133333368686
1.000000a.81888
0.500000@0@OB0
0.475000@5@0B0
0.954545851183
0.9107143011493
1.000000®@00000
0.411764B4T826
0.5714286:324624
0.901098D4 2683
0.859375G98780
0.863636461181
1.000000@00000
0.192660806%5812
0.693548412866 1
0.9666666G18684
0.833333311M67
0.400000@O@OH0
0.588235306683
0.320000@0@B0
0.9500006G0@090
0.107692B96203
0.7500000714286
0.600000Q. 78651
0.890625®4 1089
0.3986014986034
0.75000007 14286
0.231579@B4&039
0.866666B6EC87
0.920000a81888
0.650000@B 78046
0.800000G58656
0.090909B78786
0.923076230/89
0.096069982669
0.926829969667
0.694444857143
0.976470688633
0.2804878396D6
0.900000@88689

0.5
0.9945946
0.8709678
0.6181818
0.7968750
0.6279070
0.1733333
0.2065217
0.4705882
0.3703704
0.8000000
0.0849057
0.6666667
0.4929577
0.3027523
0.8684211
0.9107143
1.0000000
0.4347826
0.3428572
0.9042553
0.8593750
0.8611111
0.4074074
0.1965812
0.5317460
0.9304348
0.6410257
0.3600000
0.3717949
0.3200000
0.9500000
0.0696203
0.5000000
0.4565218
0.8529412
0.3986014
0.3181818
0.2346939
0.8666667
0.6415094
0.5384616
0.2053572
0.0873786
0.8297873
0.0982659
0.6222222
0.6857143
0.9527027
0.2000000
0.7297297

0.6
0.9893048
0.8608696
0.5967742
0.6744186
0.5882353
0.1733333
0.1678832
0.3666667
0.3703704
0.8000000
0.0849057
0.4615385
0.4285714
0.3014706
0.8125000
0.8571429
0.9545454
0.4347826
0.3428572
0.8909091
0.8593750
0.8611111
0.4074074
0.1965812
0.4408602
0.9304348
0.6279070
0.3194445
0.2923077
0.2857143
0.9183673
0.0696203
0.4594595
0.4565218
0.8529412
0.3986014
0.3181818
0.2196970
0.8666667
0.5857143
0.5376344
0.2053572
0.0873786
0.8297873
0.0982659
0.5583333
0.6857143
0.9527027
0.2000000
0.5789474

0.7
0.9579832
0.8115942
0.3896104
0.6111111
0.5362319
0.1733333
0.1152263
0.3666667
0.3703704
0.7941176
0.0472103
0.3454545
0.3202615
0.2795699
0.6233766
0.8227848
0.7419355
0.4347826
0.3130435
0.8538461
0.8500000
0.8510639
0.1363636
0.1714286
0.4170404
0.9000000
0.5303030
0.3012048
0.2697369
0.2727273
0.6547619
0.0696203
0.3859649
0.4392524
0.8529412
0.3986014
0.3181818
0.1968085
0.8666667
0.4476191
0.4963504
0.2053572
0.0873786
0.8297873
0.0975610
0.5337838
0.6857143
0.9485714
0.2000000
0.5066667

0.8
0.9503817
0.7513812
0.3391813
0.4782609
0.5000000
0.1733333
0.1456311
0.2500000
0.3703704
0.7941176
0.0391645
0.3454545
0.2978723
0.2795699
0.5862069
0.7692308
0.5777778
0.3870968
0.3130435
0.6464647
0.8500000
0.1891892
0.0727273
0.1666667
0.4030418
0.9000000
0.5223880
0.2929293
0.2658960
0.2372881
0.6354167
0.0696203
0.3382353
0.3417721
0.8358209
0.3986014
0.2142857
0.1968085
0.3469388
0.2231405
0.4963504
0.2053572
0.0837004
0.6521739
0.0944206
0.5235294
0.5800000
0.9377990
0.2000000
0.4423077

0.9 1

0.85496&3895834
0.727202596078
0.38960(3851648
0.4128848533835
0.4752872545455
0.1637@2280992
0.10000@®02439
0.123803853769
0.35050533 62393
0.0703818%36550
0.0397818897878
0.345464898551
0.188263338432
0.2753623170120
0.2226843981132
0.666666083916
0.333383%60976
0.073208%32984
0.313083547771
0.530683093264
0.64408:8860000
0.189189B808511
0.0727@71505394
0.16756.168179821
0.386002972973
0.890804%10917
0.40000BB20690
0.225563974194
0.241860511712
0.21428%025317
0.572688540670
0.0696Q@H96203
0.11818118.42857
0.279806805988
0.833363%22321
0.23736417749347
0.20000D00000
0.187703488448
0.3469688169388
0.190623B66295
0.48076%245378
0.20536:1538462
0.077103707692
0.5882638819445
0.082802539726
0.4800001B44352
0.1322611437124
0.929203822535
0.2000002+10891
0.398304204082

0.6160000 0.5177640 0.5495394 0.5004499 0.5706510 0.5137146 0.8918335 0.7929672 0.7290643 0.6718444 0.6234005 0.5531097 0.5251623 0.4765993 0.4142189 0.3339912 0.2649695
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Collection# nDCG@4

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Avg.

0.3065736
0.4692787
0.4692787
0.4692787
0.0000000
0.4414924
0.8772153
0.0000000
0.4692787
0.3868528
0.0000000
1.0000000
0.7039181
0.7653606
0.0000000
0.3065736
0.7039181
0.3065736
0.0000000
0.7039181
0.3903800
0.7039181
0.0000000
0.6131472
0.0000000
0.7653606
0.3903800
0.2960819
0.5585076
0.2346394
0.2346394
0.0000000
0.7039181
0.0000000
0.0000000
0.4692787
0.7653606
0.1681275
0.7653606
0.6131472
0.4692787
1.0000000
0.0000000
0.0000000
0.6131472
0.0000000
1.0000000
0.6309298
0.6131472
0.6131472
0.4198282

Table E.1: Detailed Results of the SSIF Framework for the First 50 &uibns of RCV1 Dataset

P@20
0.9500000
1.0000000
0.9500000
1.0000000
0.7500000
0.2000000
0.5000000
0.3500000
1.0000000
0.8000000
0.2500000
0.4500000
0.4500000
0.5500000
0.7000000
0.8000000
0.9500000
0.4000000
0.6500000
0.8500000
0.8000000
0.8000000
0.3500000
0.2500000
0.7000000
0.9500000
0.7500000
0.3000000
0.9000000
0.3500000
0.9500000
0.2000000
0.5000000
0.7000000
0.8500000
0.4000000
0.3500000
0.7500000
0.7000000
0.7000000
0.5000000
0.6000000
0.1000000
0.5000000
0.0500000
1.0000000
0.6500000
1.0000000
0.4000000
0.9500000

BP
0.8143323
0.8364780
0.6393443
0.6808510
0.5400000
0.2258064
0.3243243
0.4000000
0.7432432
0.8387097
0.2666667
0.4500000
0.4142857
0.4516129
0.3492064
0.7126437
0.7500000
0.5000000
0.4500000
0.7405064
0.7023810
0.8627451
0.4117647
0.2121212
0.4090909
0.9069768
0.6190476
0.3030303
0.6315789
0.4375000
0.6891892
0.1818182
0.5000000
0.5970149
0.7507418
0.3880597
0.3333333
0.5454546
0.7647059
0.6268657
0.5853658
0.5833333
0.1304348
0.5818182
0.1111111
0.8558559
0.6176471
0.9254386
0.3859649
0.7407407

MAP
0.8854953
0.9362046
0.7596180
0.7867288
0.6310720
0.1609772
0.3032707
0.3269585
0.8155494
0.6572248
0.2558650
0.4163052
0.3363194
0.4820915
0.4903236
0.7176548
0.8014183
0.4117887
0.5040684
0.8076689
0.7460529
0.8607025
0.3511035
0.2506422
0.5021803
0.9355398
0.6117654
0.2632897
0.6488366
0.4916600
0.8354376
0.2571957
0.6334676
0.6244991
0.8103175
0.3982233
0.2901000
0.5565589
0.8641524
0.6872808
0.5812025
0.6695839
0.1031015
0.5942110
0.0844872
0.9388253
0.6042943
0.9576538
0.3742748
0.7955762

Fay IAP Recall

0.6404472
0.6545268
0.6089776
0.6153783
0.5641129
0.2454121
0.3813335
0.4053924
0.6250976
0.5781935
0.3458227
0.4643770
0.4044330
0.4947374
0.4989748
0.5933485
0.6275137
0.4656472
0.5082492
0.6200488
0.6029803
0.6403319
0.4222035
0.3372154
0.5029828
0.6541632
0.5573978
0.3484761
0.5703308
0.5106889
0.6308530
0.3447602
0.5698578
0.5599305
0.6195467
0.4462550
0.3811639
0.5330049
0.6565790
0.5838397
0.5410561
0.5859149
0.1721785
0.5483674
0.1452994
0.6563178
0.5559138
0.6588732
0.4312807
0.6210048

(682350.5016287
088550.5031447
0D3760.5081967
(138280.5053192
(865780.5100000
(638610.5161290
(888320.5135135
(636070.5333334
(0188940.5067568
(80A600.5161290
(983140.5333334
(848270.5250000
(682440.5071428
(B42670.5080645
0722590.5079367
(136270.5057472
(6B4870.5156250
(943180.5357143
(682020.5125000
0788910.5031645
(BB8410.5059524
(126030.5098040
(038040.5294118
(127130.5151515
(1%2590.5037879
0784300.5029069
(682660.5119048
(©28180.5151515
0465450.5087720
(850980.5312500
(B684370.5067568
042@960.5227273
(282270.5178571
(162930.5074626
(682830.5014837
(858910.5074626
(631750.5555556
(687890.5113636
(185850.5294118
0488640.5074626
(233020.5060976
(686780.5208333
(BD8390.5217391
0162870.5090909
(600610.5185185
0482970.5045044
0668260.5147059
0798990.5021929
(840190.5087720
(278610.5092593

0
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.2333333
1.0000000
1.0000000
1.0000000
0.8437500
1.0000000
1.0000000
0.5357143
0.8333333
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.6666667
0.6666667
1.0000000
1.0000000
1.0000000
0.5000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.6666667
0.5000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.2500000
1.0000000
0.2500000
1.0000000
0.8750000
1.0000000
1.0000000
1.0000000

0.1
0.9821429
1.0000000
1.0000000
1.0000000
1.0000000
0.2333333
0.7142857
0.6666667
1.0000000
0.8437500
1.0000000
1.0000000
0.5357143
0.7333334
1.0000000
0.8333333
1.0000000
1.0000000
1.0000000
0.8947368
0.8333333
1.0000000
0.6666667
0.3333333
0.7941176
0.9726027
0.8888889
0.4166667
0.9285714
1.0000000
1.0000000
1.0000000
1.0000000
0.8461539
0.9387755
0.4666667
0.5000000
0.8750000
1.0000000
1.0000000
0.9000000
1.0000000
0.1666667
1.0000000
0.1111111
1.0000000
0.8750000
1.0000000
0.4411765
0.9729730

0.2

0.9450000
0.9905660
1.0000000
1.0000000
0.9230769
0.2333333
0.6250000
0.6000000
1.0000000
0.8437500
0.3125000
0.7777778
0.5357143
0.5925926
1.0000000
0.8181818
1.0000000
0.6666667
0.8888889
0.8765432
0.8307692
0.9285714
0.6363636
0.2758621
0.7941176
0.9726027
0.7619048
0.3125000
0.9285714
1.0000000
0.9714286
0.2142857
1.0000000
0.7500000
0.9333333
0.4255319
0.5000000
0.8333333
1.0000000
0.8292683
0.5903614
1.0000000
0.1282051
0.6551724
0.0934066
1.0000000
0.8750000
1.0000000
0.4411765
0.9729730

0.3 0.4
0.945000615@090
0.990566®08680
1.000000G1%5884
0.916666P58333
0.80769237@23
0.218750Q.876R0
0.4615382386D6
0.400000@O@OY0
1.0000000/0%882
0.843750G13T680
0.3125000721223
0.777777294138
0.491228D17281
0.558823208633
0.4313726.66667
0.7714286G806A5
1.000000®@00000
0.533333838634
0.750000a 51635
0.876543768482
0.830769307682
0.8653846G58646
0.636363668686
0.2758621758621
0.5263158116667
0.9726027726027
0.7619048278060
0.312500@30189
0.904761944184
0.555555684643.6
0.9714286 14286
0.21212177860Q6
0.9090909. 72484
0.750000291287
0.8897638.4@681
0.4252872526%4
0.42857140@080
0.833333%0@000
1.000000®@00000
0.829268297683
0.5903614008634
1.000000(B38883
0.1153846 366364
0.65517247@668
0.093406®34066
1.000000®0a000
0.6818183818162
0.985714%68346
0.431818B87@88
0.9729730729730

0.5
0.9450000
0.9905660
0.7804878
0.8750000
0.5952381
0.1550802
0.1810345
0.2162162
0.9069768
0.8437500
0.1904762
0.3750000
0.3846154
0.4782609
0.4166667
0.7580645
0.9500000
0.5333334
0.3278689
0.8585858
0.8307692
0.8653846
0.3913043
0.2531646
0.3948340
0.9569892
0.6279070
0.2656250
0.6470588
0.3200000
0.9500000
0.0786026
0.5172414
0.6727273
0.8095238
0.4252874
0.3500000
0.6764706
1.0000000
0.8292683
0.5903614
0.6153846
0.0903226
0.6400000
0.0934066
1.0000000
0.6451613
0.9568346
0.3734940
0.9729730

0.6
0.9450000
0.9905660
0.6491228
0.8219178
0.5344828
0.1550802
0.1533333
0.1718750
0.8823530
0.8437500
0.0757576
0.3750000
0.3467742
0.4148936
0.4166667
0.7307692
0.9166667
0.1149425
0.3181818
0.8571429
0.8307692
0.8653846
0.2115385
0.2531646
0.3948340
0.9459459
0.6279070
0.2222222

0.7
0.8506944
0.9743590
0.6231884
0.6930693
0.5147059
0.1550802
0.1232227
0.1718750
0.8666667
0.8437500
0.0421456
0.0773196
0.2318182
0.4017094
0.4166667
0.7209302
0.8846154
0.1149425
0.3181818
0.7555556
0.7763158
0.8653846
0.1645570
0.1678322
0.3948340
0.9416059
0.5454546
0.2222222

0.8
0.8211920
0.8724832
0.4833333
0.6363636
0.3703704
0.1550802
0.1016949
0.1643836
0.4460432
0.8437500
0.0396341
0.0614887
0.2298387
0.3472222
0.2830189
0.6862745
0.4333333
0.1142857
0.2370370
0.7555556
0.6915888
0.8653846
0.1102362
0.1677019
0.3948340
0.9276316
0.3673469
0.2222222

0.6379311
0.2666667
0.8490566
0.0786026
0.4791667
0.5714286
0.7649254
0.4141414
0.3500000
0.5090909
0.8666667
0.6666667
0.5842696
0.6153846
0.0903226
0.6065574
0.0934066
0.9750000
0.6388889
0.9529412
0.3448276
0.9729730

0.5555556
0.2666667
0.7093023
0.0786026
0.4791667
0.5632184
0.7597911
0.3984375
0.3500000
0.3478261
0.8666667
0.5222222
0.5652174
0.6071429
0.0746753
0.6029412
0.0909091
0.9750000
0.6315789
0.9529412
0.3448276
0.9090909

0.4476191
0.2542373
0.7093023
0.0786026
0.4791667
0.5321101
0.7597911
0.3875000
0.0548781
0.2264151
0.7777778
0.4782609
0.5546219
0.4347826
0.0746753
0.5238096
0.0879121
0.9673913
0.5714286
0.9497488
0.3430657
0.4489796

0.9 1

0.79820%518047
0.751205396078
0.4833838526012
0.399083730159
0.310384%531579
0.155080347826
0.100504P15842
0.1147641625000
0.40606(83148936
0.1089@9641822
0.035603¥851288
0.0614885654017
0.1981@2883399
0.311102719298
0.2830083816176
0.598484943182
0.2564023852941
0.07000@¥00000
0.2183008192537
0.748604D10152
0.6525829078723
0.800002#25532
0.087109B71795
0.1657@39193213
0.38126@B82927
0.907504037383
0.348204258064
0.185183586538
0.3058824196063
0.2542871%523810
0.59292663910
0.073363F33333
0.4561@01228070
0.2837@@2233333
0.7536@%B77551
0.387500B87324
0.054808648781
0.16940113176510
0.5925023300000
0.42758&@290706
0.458823980583
0.1965811538462
0.074605546753
0.292562825532
0.081961787172
0.757505522388
0.359560240876
0.92766%570605
0.288669857143
0.25000M14925

0.6310000 0.5503828 0.5761764 0.5146158 0.5919451 0.5137146 0.8964226 0.8273000 0.7456866 0.6900901 0.6416150 0.5920463 0.5478991 0.5102097 0.4394281 0.3595343 0.2611646
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Appendix F

TREC Topics of RCV1 Collections
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256 APPENDIX F. APPENDIX F: RCV1 TOPICS

Collection# Topic title

101 Economic Espionage

102 Convicts, Repeat Offenders
103 Ferry Boat Sinkings

104 Rescue of Kidnapped Children
105 Sport Utility Vehicles U.S.

106 Government Supported School Vouchers
107 Tourism Great Britain

108 Harmful Weight-loss Drugs
109 Child custody cases

110 Terrorism Middle East Tourism
111 Telemarketing Practices U.S.
112 School Bus Accidents

113 Ford Foreign Ventures

114 Effects of Global Warming

115 Indian Casino Laws

116 Archaeology Discoveries

117 Organ Transplants in the UK
118 Progress in Treatment of Schizophrenia
119 U.S. Gas Prices

120 Deaths Mining Accidents

121 China Pakistan Nuclear Missile
122 Symptoms Parkinson’s Disease
123 Newspaper Circulation Decline
124 Aborigine Health

125 Scottish Independence

126 Nuclear Plants U.S.

127 U.S. Automobile Seat Belt

128 Child Labor Laws

129 Problems lllegal Aliens U.S.
130 College Tuition Planning

131 Television U.S. Children

132 Friendly Fire Deaths

133 Anti-rejection Transplant Drugs
134 Crime Statistics Great Britain
135 WTO Trade Debates

136 Substance Abuse Crime

137 Sea Turtle Deaths

138 Creutzfeldt-Jakob, Mad Cow Disease
139 Pig Organ Transplants

140 Computer Simulation

141 Environment National Park
142 llliteracy Arab Africa

143 Improving Aircraft Safety

144 Mountain Climbing Deaths

145 Airline Passenger Disruptions
146 Germ Warfare

147 Natural Gas Vehicles

148 NAFTA

149 Aid to Handicapped People

150 Drive-by Shootings



Appendix G

Stop-Words List

a, a's, able, about, above, according, accordingly, acrassially, after, afterwards, again,
against, ain't, all, allow, allows, almost, alone, alongready, also, although, always, am,
among, amongst, an, and, another, any, anybody, anyhoanangnything, anyway, anyways,
anywhere, apart, appear, appreciate, appropriate, ae’t,aaround, as, aside, ask, asking,
associated, at, available, away, awfully, b, be, becaneguse, become, becomes, becoming,
been, before, beforehand, behind, being, believe, belesidb, besides, best, better, between,
beyond, both, brief, but, by, ¢, ¢’'mon, c’s, came, can, Gacénnot, cant, cause, causes,
certain, certainly, changes, clearly, co, com, come, cogwerning, consequently, consider,
considering, contain, containing, contains, correspagdcould, couldn’t, course, currently,
d, definitely, described, despite, did, didn’t, differedt, does, doesn't, doing, don'’t, done,
down, downwards, during, e, each, edu, eg, eight, eithee, @lsewhere, enough, entirely,
especially, et, etc, even, ever, every, everybody, everyeverything, everywhere, ex, exactly,
example, except, f, far, few, fifth, first, five, followed, lmlving, follows, for, former, formerly,
forth, four, from, further, furthermore, g, get, gets, gelt given, gives, go, goes, going, gone,
got, gotten, greetings, h, had, hadn’'t, happens, hardsy, lasn't, have, haven’t, having, he,
he’s, hello, help, hence, her, here, here’s, hereaftegblyeherein, hereupon, hers, herself,
hi, him, himself, his, hither, hopefully, how, howbeit, hever, i, i'd, I'll, i'm, ive, ie, if,
ignored, immediate, in, inasmuch, inc, indeed, indicatejdated, indicates, inner, insofar,
instead, into, inward, is, isn’t, it, itd, it'll, it's, itsitself, |, just, k, keep, keeps, kept, know,
knows, known, |, last, lately, later, latter, latterly, $aless, lest, let, let’s, like, liked, likely,
little, look, looking, looks, Itd, m, mainly, many, may, nag, me, mean, meanwhile, merely,

might, more, moreover, most, mostly, much, must, my, myselfname, namely, nd, near,
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nearly, necessary, need, needs, neither, never, ne\esshelew, next, nine, no, nobody, non,
none, noone, nor, normally, not, nothing, novel, now, nawhe, obviously, of, off, often,
oh, ok, okay, old, on, once, one, ones, only, onto, or, otbirers, otherwise, ought, our,
ours, ourselves, out, outside, over, overall, own, p, paldr, particularly, per, perhaps, placed,
please, plus, possible, presumably, probably, providesue, quite, qv, r, rather, rd, re, really,
reasonably, regarding, regardless, regards, relativepectively, right, s, said, same, saw,
say, saying, says, second, secondly, see, seeing, seamgdsegeeming, seems, seen, self,
selves, sensible, sent, serious, seriously, seven, $esbadl, she, should, shouldn’t, since,
six, so, some, somebody, somehow, someone, somethingtis@neometimes, somewhat,
somewhere, soon, sorry, specified, specify, specifyinly, stib, such, sup, sure, t, t's, take,
taken, tell, tends, th, than, thank, thanks, thanx, thatt'shthats, the, their, theirs, them,
themselves, then, thence, there, there’s, thereafteelipetherefore, therein, theres, thereupon,
these, they, they'd, they'll, they're, they've, think, tthj this, thorough, thoroughly, those,
though, three, through, throughout, thru, thus, to, togettoo, took, toward, towards, tried,
tries, truly, try, trying, twice, two, u, un, under, unfonately, unless, unlikely, until, unto,
up, upon, us, use, used, useful, uses, using, usually, wus@lue, various, very, via, viz,
Vs, w, want, wants, was, wasn't, way, we, we'd, we’ll, we'meg've, welcome, well, went,
were, weren'’t, what, what's, whatever, when, whence, whenevhere, where’s, whereafter,
whereas, whereby, wherein, whereupon, wherever, whethéh, while, whither, who, who’s,
whoever, whole, whom, whose, why, will, willing, wish, wjttvithin, without, won’t, wonder,
would, wouldn't, x, y, yes, yet, you, you'd, you'll, you'rgyou've, your, yours, yourself,

yourselves, z, zero



Appendix H

Research Awards

= &
2017 IEEE/WIC/ACM International Conference
on Web Intelligence (WI'17)

August 23-26, 2017 in Leipzig, Germany

BEST PAPER AWARD

Abdullah Semran Alharbi
. Topical Term Weighting based on Extended Random Sets
for Relevance Feature Selection”

n | + ' >
R NG / sy ! 7/
W R, v, o 1 T
Prof. Dr. Bogdan Franczyk  Prof. Dr. Rainer Unland H Prof. Dr. Rainer Alt Prof. Dr. Xiahui Tao
‘WI'17 General Chair Wi‘17 Organizing g Chair ‘WI'17 PC CoChair WI'17 PC CoChair

Figure H.1: WI 2017 Best Paper Award

The 30th Australasian Joint Conference on Artificial Intelligence
(AI’17)

Best Student Paper Award

Abdutlak Abharb; %efwy L and Yue Xa

For authoring the AT’ 17 paper “Integrating LDA with Clustering Technique for
Relevance Feature Selection”, in Proceedings of the 30" Australasian Joint
Conference on Artificial Intelligence, LNAI 10400, Springer, pages 274 — 286,
August 2017.

Xiaodong Li, AI'17 General Chair

Figure H.2: Al 2017 Best Student Paper Award
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Literature Cited

Abul Bashar, M. (2017). A Personalised Ontology Framework for Interpreting Diseed

Knowledge in Text InformatiorPhd thesis, Queensland University of Technology.

Aggarwal, C. C. and Zhai, C. (2012). A Survey of Text ClustgrAlgorithms. In Charu C.
Aggarwal and Zhai, C., editordjining Text Datapages 77—128. Springer Science+Business
Media.

Agrawal, R. and Srikant, R. (1994). Fast Algorithms for MigiAssociation Rules in Large
Databases. IfProceedings of 20th International Conference on Very Ldbgda Bases

(VLDB'94), pages 487-499, Santiago de Chile, Chile. Morgan Kaufmann.

Albathan, M., Li, Y., and Algarni, A. (2012). Using Patteit@e-occurrence Matrix for Cleaning
Closed Sequential Patterns for Text Mining. Pmoceedings of the 2012 IEEE/WIC/ACM
International Conferences on Web Intelligence (WI,J8ges 201-205, Macau, China. IEEE

Computer Society.

Albathan, M., Li, Y., and Algarni, A. (2013). Enhanced N-@r&xtraction Using Relevance
Feature Discovery. In Cranefield, S. and Nayak, A., editdr2013: Advances in Atrtificial
Intelligence pages 453-465. Springer, Cham.

Albathan, M., Li, Y., and Xu, Y. (2014). Using Extended Rand&et to Find Specific
Patterns. IfProceedings of the 2014 IEEE/WIC/ACM International Joiot€&rences on Web
Intelligence (WI) and Intelligent Agent Technologies (JAFages 30-37, Warsaw, Poland.
IEEE.

Albathan, M. M. M. (2015). Enhancement of relevant features for text minirighD thesis,

Queensland University of Technology, Brisbane, Australia
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Algarni, A. (2011). Relevance Feature Discovery for Text Analysihd thesis, Queensland

University of Technology.

Algarni, A. (2014). Mining Positive Relevance Feedback aa@mine User Information Needs.

Arabian Journal for Science and Engineerjr89(12):8765-8774.

Algarni, A. and Li, Y. (2013). Mining Specific Features for guring User Information Needs.
In Pei, J., Tseng, V. S., Cao, L., Motoda, H., and Xu, G., edjtAdvances in Knowledge
Discovery and Data Mining. PAKDD 201Pages 532-543, Gold Coast, Australia. Springer
Berlin Heidelberg.

Algarni, A., Li, Y., and Xu, Y. (2010). Selected New Trainiri@pcuments to Update User
Profile. In Proceedings of the 19th ACM international conference omrmation and
knowledge management (CIKM’'1@ages 799-808, Toronto, ON, Canada.

Alharbi, A. S., Bashar, A., and Li, Y. (2018a). Random-SetsDealing with Uncertainties
in Relevance Feature. In Mitrovic, T., Xue, B., and Li, X. teds, Al 2018: Advances in
Artificial Intelligence, Proceedings of the 31st AustradasJoint Conference on Atrtificial

Intelligence pages 656—-668, Wellington, New Zealand. Springer.

Alharbi, A. S., Li, Y., and Xu, Y. (2017a). Enhancing Topidabrd Semantic for Relevance
Feature Selection. In Kanagasabai, R., Morshed, A., andhiuiH., editors,Proceedings
of IJCAI Workshop on Semantic Machine Learning (SML 20p@yes 27-33, Melbourne,
Australia. CEUR.

Alharbi, A. S., Li, Y., and Xu, Y. (2017b). Integrating LDA i Clustering Technique for
Relevance Feature Selection. In Peng, W., Alahakoon, I, LanX., editors, Al 2017:
Advances in Atrtificial Intelligence, Proceedings of the3Qustralasian Joint Conference on

Artificial Intelligence pages 274-286, Melbourne, VIC, Australia. Springer.

Alharbi, A. S., Li, Y., and Xu, Y. (2017c). Topical Term Weityhg based on Extended Random
Sets for Relevance Feature SelectionPtaceedings of the International Conference on Web

Intelligence (WI'17) pages 654—-661, Leipzig, Germany. ACM Press.

Alharbi, A. S., Li, Y., and Xu, Y. (2018b). An Extended Randdets Model for Fusion-
Based Text Feature Selection. In Phung, D., Tseng, V. S..o\Wéb |., Ho, B., Ganiji,

M., and Rashidi, L., editorshdvances in Knowledge Discovery and Data Mining Part Ill,
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Proceedings of the 22nd Pacific-Asia Conference on Knowl&igcovery and Data Mining

(PAKDD 2018) pages 126—-138, Melbourne, Australia. Springer, Cham.

Alghtani, S. M., Luo, S., and Regan, B. (2018). A multiple k@rlearning based fusion
for earthquake detection from multimedia twitter dakdultimedia Tools and Applications

77(10):12519-12532.

Anastasiu, D., Tagarelli, A., and Karypis, G. (2013). DoeminClustering: The Next Frontier.
In Aggarwal, C. C. and Reddy, C. K., editoBata Clustering: Algorithms and Applications
pages 305—-338. CRC Press Taylor & Francis Group.

Anava, Y., Shtok, A., Kurland, O., and Rabinovich, E. (2016A Probabilistic Fusion
Framework. InProceedings of the 25th ACM International on Conferencerdarimation
and Knowledge Management (CIKM '1§)ages 1463-1472, Indianapolis, IN, USA. ACM

Press.

Aphinyanaphongs, Y., Fu, L. D., Li, Z., Peskin, E. R., Efstadlis, E., Aliferis, C. F., and
Statnikov, A. (2014). A Comprehensive Empirical Companistf Modern Supervised
Classification and Feature Selection Methods for Text Qaiegtion. Journal of the
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