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 
Abstract— Traditional bi-level origin-destination (OD) matrix 

estimation process adjusts the matrix (at the upper level) based on 
the deviation between the observed and simulated traffic counts. 
The problem is mathematically highly underdetermined, and the 
quality of the solution can be enhanced by restricting the upper 
level search space with information from other sources. 
Addressing this need, this paper presents a methodology that 
assimilates additional structural information of sub-path flows in 
the aforementioned upper level objective function. By assuming 
assignment and sub-path proportion matrices are locally constant, 
the proposed objective function is differentiable, and the 
optimization can be achieved using gradient-based approach. The 
sub-path flows can be estimated from advanced data sources such 
as Bluetooth MAC scanner. The proposed methodology is tested 
using simulation on a real network from Brisbane, Australia and 
results indicate its practical relevance for situations when the 
penetration rate of Bluetooth trajectories is generally low and 
unknown. The proposed method has a better ability to maintain 
structural consistency in the OD estimates as compared to the 
traditional traffic counts-based approach; and considerable 
improvements in the quality of OD estimates are achieved even at 
lower penetration rates of sub-path flows.  

 
Index Terms: OD matrix estimation; bi-level optimization, 

Bluetooth; sub-path flows; gradient descent; OD structure; 
Brisbane, market penetration rates 
 

I.INTRODUCTION 

rigin - destination (OD) matrix is a tabular 
representation of travel demand (flows) from different 
origins to destinations on the transport network. Such 

matrices are vital inputs for different levels of transport 
modelling- ranging from traditional strategic planning of 
transport infrastructure to advanced real-time operations and 
control of the network. 

Ground truth of OD flows for large scale road network can’t 
be directly measured with limited observations. Traditionally, 
road network is equipped with loop detectors and OD 
estimation process is modelled as a bi-level optimization 
problem [1, 2] where (see Fig.1): a) at upper level the OD 
matrix (𝐱) is adjusted by minimising the gap between the 
observed (𝐲෤) and estimated (𝐲) traffic counts; and b) at lower 
level traffic counts are estimated (simulated) by assigning 
traffic on the network using the adjusted OD matrix.  
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In Fig.1, the upper level formulation, is generally expressed 

in terms of observed (𝐲෤) and estimated (𝐲) link flows and 
assumes one of the following forms: Information 
minimization/entropy maximization [3]; maximum likelihood 
approach [4]; Bayesian inference methods [5], and generalized 
least squares (GLS) [6]. The lower level of the bi-level 
framework runs traffic assignment (𝐏) that is either analytically 
derived [7] or simulation-based say, from Aimsun [8]. Equation 
1 is the popular Spiess [9]’s formulation using matrix algebra 
where T denotes the transpose operation. 

 
                                                                             

Various techniques have been proposed to solve the above 
optimization function. This includes, fixed-point approaches 
[10], gradient-based [9], gradient approximations [11]; and 
evolutionary-algorithms (genetic algorithms, see [12]). Among 
these, gradient-based techniques are quite popular and different 
forms of the gradient based techniques are applied. This 
includes, coordinate descent method [13], mini-batch gradient 
descent [14], extended gradient method [15], projected gradient 
method [16], and the stochastic gradient method [17]. 

While most studies focused on developing new solution 
algorithms, estimating OD matrix using traffic counts is still an 
under-determined problem. This is because a number of 
combinations of OD flows (or OD matrices of different 
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Fig. 1: Traffic counts-based bi-level OD estimation 
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structures) could exist to reproduce the same set of link flows, 
and thus the quality OD estimates cannot not be guaranteed if 
the objective function focusses only on the deviation of traffic 
counts [18]. This demands the need to maintain consistency in 
the structure of OD matrix (as per [19] the trip distribution 
pattern between different OD pairs within an OD matrix defines 
the OD structure) during every iteration of bi-level estimation 
process [20]. To preserve the OD structure, [21] proposed to 
use target trip matrix (𝐱෤) in the objective function in order to 
confine the feasible region of OD estimates (refer Equation 2); 
and many other studies [6, 16, 22-24] have later adopted this 
approach. The weight factors for objectives based on traffic 
counts and target OD matrix in Equation 2 are denoted by β୷ 

and βx, respectively. 

 
Researchers have also proposed constraints outside the 

objective function to maintain structural consistency. For 
instance, [20] proposed constraints on the columns of OD 
matrix using additional information from parking surveys, and 
[12] proposed constraints on the rows of OD matrix using the 
ratio of OD flows to origin flows. However, the prior 
knowledge (either in the form of target OD or trip 
production/attraction constraints) is based on outdated travel 
surveys and can lead to biased estimates [6].  

With the availability of big traffic data, researchers have tried 
to address the OD under-determinacy problem by introducing 
vehicle trajectory information into the objective function 
formulation. [25-27] considered the deviations between the 
estimated and sub-path flows (from AVI measurements) by 
assuming that their market penetration rate is known. Few [28-
30] developed methods to estimate the penetration rates. For 
instance, [28] used the deviations between estimated and 
observed link probe ratios (ratio of link flows observed from 
probes and loops) where the estimated link probe ratio is further 
dependent on OD probe ratio that is estimated using direct 
scaling method. [29] assumed that penetration rates of 
Bluetooth counts is same as that of Bluetooth trajectories, and 
used it to scale up the vehicle trajectories in the objective 
function. [30] used simulator-based approach to estimate the 
scaling factor of trajectories that are inferred from call detail 
records. Thus, no technique has been proposed until now to use 
the additional vehicle trajectories/sub-path flows information 
into the OD estimation formulation without prior knowledge of 
the penetration rates. 

The sub-path in this paper is defined as the portion of 
vehicle’s path inferred by series of sensors detections during the 
course of its complete traverse, and the observations of flows 
passing through the sub-path is referred as sub-path flows (𝐬෤). 
A sub-path can also be considered as a sequence of links. If it 
constitutes only two detections at the extreme ends of a road 
segment, then sub-path flows refer to link flows. If the vehicle’s 
trip is continuously monitored (as in GPS) from its origin until 
its destination then sub-path represents a complete path. 

However, misdetections at a few sensor locations (as in case 
with Bluetooth scanners) could result in many such sub-paths 
for the same vehicle. In such cases the trips along those sub-
paths can lead to redundancy in the information as they relate 
to the same original trip. Thus, right selection of un-correlated 
sub-paths is crucial in the OD estimation problem. Although 
sub-paths (sequence of links) are similar to links in terms of 
unknown trip ends, they can capture trip distribution better than 
the point-based link flows. Thus, any extra information related 
to trip distribution in the objective function tends to improve the 
quality of OD estimate. The major contribution of this research 
is the novel consideration of the structural information from 
sub-path flows in the upper level objective function 
formulation. The study defines the structure of sub-path flows 
vector as “the arrangement of and the correlation that exist 
between the sub-path flows”. The objective function is 
differentiable (if the mapping relationships for link flows and 
sub-path flows to OD flows are assumed locally constant), and 
the bi-level optimization can be achieved using gradient decent 
algorithm. The proposed methodology also relaxes the 
requirement of the known penetration rate of the vehicles 
providing the sub-path flow information. 

The proposed methodology is generic and for ease of 
presentation, a network of Bluetooth MAC Scanner (BMS) 
based sub-path flow information is considered in this paper. 
The methodology is thoroughly tested on a simulation model 
from Brisbane, Australia.  

The remainder of the paper is structured as follows: Section 
II describes the notations of terms used in this study; Section III 
discusses the proposed methodology; Section IV focusses on 
the experiments and results; Section V discusses the results of 
experiments; and finally the study concludes in Section VI with 
future study recommendations. 

II.NOTATIONS OF THE TERMS 

In order to describe the formulations relevant to this paper, the 
following mathematical notations are used. 
 𝒜 denotes selected links of the study network; 𝑦෤௔ and 𝑦௔ 

represent observed (say, from loop detectors) and 
simulated traffic counts/link flows on link a ∈ 𝒜. 𝐲෤  ∈
𝑅|𝒜| and 𝐲 ∈ 𝑅|𝒜| denote vectors of observed and 
simulated link flows, respectively. 

 ℋ represents the set of complete vehicle trajectories in a 
study network. ℬ denotes set of sub-paths and ℒ represent 
the total set of sub-trajectories (say, as sequence of BMS 
IDs) along |ℬ| sub-paths. If the study performs analysis 
on only a random sample of sub-trajectories (ℒሚሻ, then we 
define ƞ = หℒሚห |ℒ|⁄ . ƞb is used to represent the penetration 
rate of observed vehicle trajectories on bth sub-path. 𝜼 ∈
𝑅|ℬ| is vector representing market penetration rates of 
observed trips on |ℬ| sub-paths. 

 D denotes days of similar travel patterns. 𝑠௕
∗, 𝑠̃௕,ௗ, 𝑠̃௕ and 

𝑠௕ represent actual, observed (say, from Bluetooth) on dth 
day (𝑑 ∈ ℕ|஽|), consolidated observations over |𝐷| days, 
and simulated sub-path flows on a sub-path b ∈ ℬ, 
respectively. 𝐬∗  ∈ 𝑅|ℬ| , 𝐬෤𝐝 ∈ 𝑅

|ℬ|, 𝐬෤  ∈ 𝑅|ℬ| and 𝐬 ∈ 𝑅|ℬ| 
denote vectors of actual, observed (on dth day), observed 
(consolidated over |𝐷| days), and simulated sub-path 

 
min
𝐱

Zሺ𝐱ሻ ൌ 

min
𝐱
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subject to: 𝐲 ൌ 𝐏𝐱 (2a) 
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flows, respectively. 𝛍𝐬∗ ∈ 𝑅
|ℬ| is a vector with each cell 

value equal to mean of flow values in 𝐬∗, and similarly 𝛍𝐬෤ 
∈ 𝑅|ℬ| , 𝛍𝐬 ∈ 𝑅

|ℬ| correspond to 𝐬෤ and 𝐬, respectively.  
 𝑊 denotes the set of OD pairs in the study network. 𝑥௪ 

represents the number of estimated non-negative trips (by 
car) for OD pair w ∈ 𝑊, and similarly 𝑥෤௪ and 𝑥∗௪ are for 
prior and true OD flows.  𝐱 ∈ R|W| , 𝐱෤ ∈ R|W| , and  𝐱∗ ∈ R|W| 

denote estimated, prior, and true OD vectors, 
respectively.  𝛍𝐱  ∈ 𝑅

|ௐ| is a vector with each cell value 
equal to mean of x. Similarly 𝛍𝐱෤ ∈ 𝑅

|ௐ| and 𝛍𝐱∗ ∈
𝑅|ௐ|correspond to 𝐱෤ and 𝐱∗, respectively. 

 𝑝௪௔  is proportion of trips between wth OD pair passing 
through link a. 𝐏 ∈ 𝑅|𝒜|ൈ|ௐ| represents the link proportion 
matrix. 

 𝑞௪௕  is proportion of trips between wth OD pair passing 
through sub-path b. 𝐐 ∈ 𝑅|ℬ|ൈ|ௐ| represents the sub-path 
proportion matrix. 

III. PROPOSED METHODOLOGY 

The proposed methodology is illustrated in Fig.2. The new 
upper level formulation (Z(x)) includes two objectives: one 
based on traffic counts (𝐲෤ and 𝐲) and other based on sub-path 
flows (𝐬෤ and 𝐬). Details into the development of the objective 
function formulation, method of gradient-based OD estimation, 
procedure to implement the proposed approach, and 
development of Bluetooth based sub-path flows are presented 
in Section III.A, Section III.B, Section III.C, and Section III.D, 
respectively. 

 

A. Proposed objective function formulation 

The study assumes that the structural differences between 
observed (𝐬෤) and simulated (𝐬) sub-path flows can be used as 
proxy for the structural differences between the actual (𝐱∗ሻ and 
estimated (𝐱) OD vectors. The structural deviations between the 
sub-path flows can be quantified using Pearson correlation 
coefficient (𝜌). A higher correlation implies that both vectors 
(i. e. 𝐬 and 𝐬෤) are structurally closer to each other. This concept 
is borrowed from bio-medical analytics discipline where 

models with high dimensional data points are updated using 
similarity measures such as correlation coefficient [31]. 

The new upper-level formulation can be expressed in terms 
of the deviation between the observed (𝐲෤) and estimated (𝐲) link 
flows and the structural comparison between observed (𝐬෤) and 
simulated (𝐬) sub-path flows as shown in Equation 3. 

 

 
The second objective,𝑓ሺ𝐬, 𝐬෤ሻ ൌ cଶ ൅

1െρሺ𝐬,𝐬෩ሻ
2 , considers any 

structural differences between the estimated/simulated and 
observed trip distribution from the perspective of sub-path 
flows. This acts as a scaling factor to the original traffic counts-
based objective. Here, the similarity measure (𝜌ሺ𝐬, 𝐬෤ሻ) is 

converted to a dissimilarity measure (
ଵି஡ሺ𝐬,𝐬෤ሻ

ଶ
) with the addition 

of a constant “c” for stability. 
This implies, when 𝜌(𝐬, 𝐬෤) = 1, 𝑍ሺ𝐱ሻ is multiplied by a factor 
of c2 and for 𝜌(𝐬, 𝐬෤) = -1, 𝑍ሺ𝐱ሻ is scaled up (c+1)2 times.  

What should be the value of  cଶ? Ideally, cଶ ൅ ቀ
ଵି஡ሺ𝐬,𝐬෤ሻ

ଶ
ቁ ് 0 

a) When structures of 𝐬 and 𝐬෤ are same then 𝜌(𝐬, 𝐬෤) is equal to 

1 and ቀc ൅
ଵି஡ሺ𝐬,𝐬෤ሻ

ଶ
ቁ ⇒ c. Here, the objective function, 𝑍ሺ𝐱ሻ, 

is multiplied by a factor of cଶ2. Therefore, cଶ=0 should not 
be considered as it will make the objective function zero. 

b) When structures of 𝐬 and 𝐬෤ are extremely opposite then 𝜌(𝐬,

𝐬෤) is equal to -1 and ቀcଶ ൅
ଵି஡ሺ𝐬,𝐬෤ሻ

ଶ
ቁ ⇒ ሺcଶ ൅ 1ሻ. Here, the 

objective function, 𝑍ሺ𝐱ሻ is multiplied by a factor of (cଶ+1)2. 
Therefore, cଶ=-1 should not be considered as it will make 
the objective function zero. 

For the current study we consider cଶ=1. In this case,  
a) When the structures of 𝐬 and 𝐬෤ are same then  𝑍ሺ𝐱ሻ reduces 

to a traditional link counts deviation; that is, 
ଵ

ଶ
ሺ𝐲 െ 𝐲෤ሻ୘ሺ𝐲 െ

𝐲෤ሻ. This implies that simulated trip distribution matches the 
actual trip distribution, and simply minimizing traffic 
counts deviations should be sufficient to estimate OD. 

b) When the structures of 𝐬 and  𝐬෤ are extremely opposite, the 
objective function multiplies (2)2 times and becomes 
2ሺ𝐲 െ 𝐲෤ሻ୘ሺ𝐲 െ 𝐲෤ሻ. This implies that deviation between 
traffic counts are amplified considering the extreme 
variations in the sub-path flows.  

B. Gradient-based method for optimization of the objective 
function 

The gradient descent optimization method is used to iteratively 
update 𝐱. The updating step is based on two major factors: 
search direction and step-size (λ): 
a) The search direction is determined by the gradient of 𝑍ሺ𝐱ሻ 

∘The step-size (λ) parameter determines the number of 

 
Fig. 2: Generic OD estimation algorithm based on the proposed approach
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such that 𝐲 ൌ 𝐏𝐱 ;  𝐬 ൌ 𝐐𝐱 (3b) 
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iterations required for the convergence. Lower values of λ 
ensure that the path of the gradient is smooth but 
computationally expensive. Higher values of λ can lead to 
higher values of the objective function, and the 
convergence could be affected.  

Assuming P and Q are locally constant, the functions 
involved in Equation 3 are differentiable with respect to 𝐱 and 
its gradient is expressed as shown in Equation 4 and 4a. 

 
 

 
            
using 𝐲 ൌ 𝐏𝐱 

Using the mapping relationship (𝐐) between 𝐬 and x, 
Equation 3b can be simplified as shown in Equation 5.  

 
                
Where, 

  
 

Now, 
డఘሺ𝐐𝐱,𝐬෤ ሻ

డ𝐱
 can be expressed as shown in Equation 6. 

 

 
                                                    

Thus, the differential objective function provides 
opportunities to consider standard gradient based method to 
update the OD vector; that is, during any kth iteration 𝐱𝐤 is 
updated to 𝐱𝐤ା𝟏 using the search direction and optimal step-size 

as expressed in the Equation 7. Here, 𝑍ሺ𝐱ሻ and 𝐱 in 
ப௓ሺ𝐱ሻ

ப𝐱
 refer 

to the values corresponding to kth iteration; e is vector of 1s and 
of dimension same as x; and Hadamard product “∘” is used for 
element wise multiplication between 𝜆௞ and the gradient, and 

𝐱୩ and ቀ𝑒 െ 𝜆௞ ∘
డ௓ሺ𝐱ሻ

డ𝐱
ቁ. 

 

C. Procedure to implement the proposed methodology 

To execute the framework illustrated in Fig. 2 under 
controlled environment, we need to run upper-level and lower 
optimizations one after another in an integrated manner. The 
step by step procedure for which is outlined below: 
 Step-0: Obtain the observed sub-path flows (𝐬෤) and 

observed link flows (𝐲෤). 
 Step-1: Set k=1; 𝐱𝐤 = 𝐱෤. 
 Step-2: Load the study network in Aimsun next [32] with 

demand, 𝐱𝐤,  and run traffic assignment (either stochastic 
route choice (SRC) assignment or dynamic user 
equilibrium). The outputs of the simulation are link 
flowsሺ𝐲𝐤ሻ, sub-path flows (𝐬𝐤), link-proportion 
matrix ሺ𝐏𝐤ሻ and sub-path proportion-matrix (𝐐𝐤).  

 Step-3: Minimise the objective function, Z(x) with respect 
to 𝐱𝐤 (refer Equation 3). 

 Step-4: Check for termination criterion, and if it is not met, 
set k := k+1; update the demand (𝐱𝐤) for the next iteration 
(refer Equation 7), and go to Step 2. Else terminate the 
optimisation, and value of 𝐱𝐤 is the final estimated OD 
vector. 

The termination criterion can be either based on maximum 
relative change in the elements of estimated OD flows at 
successive iterations [1] or observed convergence for a fixed 
number of iterations [8].  

For the current analysis, the codes for the optimisation are 
written in MATLAB (2017 version), and lower level traffic 
assignment is optimised using Aimsun next [32]. We have used 
the default parameter values for both demand scenarios and 
experiments in Aimsun. A Python script is written to integrate 
the optimisation model (in MATLAB) with the traffic 
assignment (in Aimsun). However, MATLAB is the primary 
platform that writes OD data into Aimsun OD format, runs the 
simulation, executes the Python script, and reads the simulation 
outputs for further optimisation process. The integration of both 
platforms is further shown in Fig. 3. This integration of Aimsun 
with Matlab is similar to the one presented in Antoniou et al., 
[18]. 
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(5) 

 
Γଵ = ሺ𝐬෤ െ 𝛍𝐬෤ሻ୘൫𝐐𝐱 െ 𝛍𝐐𝐱൯;   (5a) 

Γଶ = ሺ𝐬෤ െ 𝛍𝐬෤ሻ୘ሺ𝐬෤ െ 𝛍𝐬෤ሻ;  (5b) 

Γଷ = ൫𝐐𝐱 െ 𝛍𝐐𝐱൯
୘
൫𝐐𝐱 െ 𝛍𝐐𝐱൯. (5c) 

 

𝜕𝜌ሺ𝐐𝐱, 𝐬෤ ሻ

𝜕𝐱
ൌ
𝐐𝐓 ቆሺ𝐬෤ െ 𝛍𝐬෤ሻ െ

Γଵ
Γଷ
൫𝐐𝐱 െ 𝛍𝐐𝐱൯ቇ

ඥΓଶඥΓଷ
 

 
(6) 

 

𝐱୩ାଵ=  𝐱୩ ∘ ቀ𝑒 െ 𝜆௞ ∘
డ௓ሺ𝐱ሻ

డ𝐱
ቁ   (7) 

𝜆௞ ∘
𝜕𝑍ሺ𝐱ሻ

𝜕𝐱
൏ 1 

(7a) 
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The aforementioned sections demonstrate that an additional 
objective based on sub-path flows can be incorporated into bi-
level formulation. The next section discusses the development 
of sub-path flows from the network of Bluetooth MAC scanners 
(BMS). 

D. Bluetooth sub-path flows 

We assume that the road network is equipped with Bluetooth 
MAC Scanners (BMS) [33].  For instance, in Brisbane, 
Australia we have over 1200 BMSs monitoring traffic on the 
Brisbane City Council (BCC) region[34]. The data from these 
network of BMSs can be integrated to define the trajectories of 
the Bluetooth vehicles [35] and the corresponding paths. 

These paths inferred from BMS detections are only sub-paths 
of actual paths traversed by vehicles. This is because, a) not all 
Bluetooth equipped vehicles are detected at the scanning zone; 
and b) the entire network is not fully equipped with the BMS, 
and the origin/destination BMS for the Bluetooth vehicle 
trajectory might not truly correspond to the true 
origin/destination zone for the network for which the OD is 
estimated. 

For ease of understanding, refer to Fig. 4 that illustrates the 
difference between complete paths and a sub-path. The 
complete paths between the OD pairs Kelvin Grove-Ext-5, and 
Ext-1-Gabba share a common subpath that can be represented 
as a sequence of BMS – 185-78-61-64. Note that the BMS_54 
is not in the sequence due to missed detection. Thus, it can be 
seen that it is not possible to infer the true trip ends (i.e. Ext-1 
or Kelvin Grove and Ext-5 or Gabba) from the above sub-path. 

Sometimes, a set of sub-paths can belong to the same trip due 
to missed detections during the course of travel. In such cases 
the trips along those sub-paths can lead to redundancy in the 
information as they relate to the same original trip. Thus, right 
selection of un-correlated sub-paths is crucial in the OD 
estimation problem. 
 

 
The penetration rate of Bluetooth based counts at a specific 

level can range from 10%-30% [29]. However, the penetration 
rate for the observed path flows from BMS can be much lower 
say, around 5% ([36] reported 4.4% average detection rate for 
12 OD pairs at an interchange level) and can vary over different 
paths. We address this issue as follows: We propose to generate 
a sub-path flow vector by combining sub-path flows observed 
from several days of similar travel patterns. For instance, the 
observed sub-path flows from |𝐷| regular working Mondays 
can be used to develop a consolidated vector of observed sub-
path flows for a typical working Monday. Thus, 𝑠̃௕ can be 
considered as a consolidation of several observations of 
Bluetooth flows on sub-path b as shown in Equation 8. 

 
The consolidated vector 𝐬෤ can then be expressed as shown in 
Equation 9. 

 

IV.EXPERIMENTS AND RESULTS 

A. Study network  

To test the proposed methodology, the study network should 
have the following properties: 

1. It should be realistic and representative of the existing 
infrastructure; 

2. It should have sufficient route choice options; 
3. It should have a combination of at least two different 

types of road hierarchy i.e. motorway and arterial; 
4. OD pairs should have sufficient overlap between the 

paths; 
5. It should have sufficient Bluetooth connectivity; that is, 

the subpaths should be along the major routes; and 
6. Loop detectors to be located on important corridors. 

The study network meeting the above-mentioned criteria is 
presented in Fig. 5. It represents the core of the Brisbane city 
network imported into Aimsun next [32] from open street map 
[37]. The network comprises of 15 centroids (zones), 24 loop 

 
Fig. 3: Matlab-Aimsun next integration framework Fig. 4: Complete path vs Bluetooth sub-path 

 

𝑠̃௕ ൌ  ෍ 𝑠̃௕,ௗ

ௗୀ|஽|

ௗୀଵ

 

 
(8) 

 

𝐬෤ ൌ  ෍ 𝐬෤𝐝
ௗୀ|஽|

ௗୀଵ
 

 
(9) 
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detectors (red squares in Fig. 5), and 20 Bluetooth scanners 
(blue circles in Fig. 5) and 5 external zones. The loop detectors 
and BMS are placed on the major roadways such as Pacific 
Motorway, Clem Jones Tunnel, Coronation Drive, Inner City 
Bypass, and Kelvin Grove Road etc.  

The OD matrix is designed at a zonal level equivalent to 
Statistical Area 2 (SA2) [38] and is 15 x 15 in size. Internal trips 
are excluded in the analysis. Since, the number of OD pairs is 
greater than 200 it is a high dimensional OD matrix [39]. The 
15 zonal centroids shown are:  

 West End-South Bank-Highgate Hill;  
 Gabba;  
 Brisbane (BNE) Inner East;  
 New Farm;  
 Fortitude Valley;  
 Spring Hill;  
 Central Business District (CBD);  
 Newstead-Bowen Hills;  
 Kelvin Grove–Herston;  
 Red Hill–Milton–Auchenflower;  
 Five external zonal centroids; that is, Ext-1, Ext-2, 

Ext-3, Ext-4, and Ext-5, respectively.  

The traffic from each zone is loaded into to the network 
through a number of connectors. The zones, namely Ext-1, Ext-
2, Ext-3, Ext-5 and New Farm have 2 connectors each; Ext-4, 
Kelvin Grove, Newstead-Bowen hills and BNE Inner East have 
3 each; West End-South bank- Highgate Hill, Red Hill-Milton-
Auchenflower, Fortitude Valley, and Gabba have 4 each; and 
Brisbane CBD has 5 connectors, respectively. The number of 
paths per OD pair are chosen to be greater than one, and the 
paths connecting different OD pairs have sufficient overlap. 
Refer to Fig. 6 for multiple (6 paths) and overlapping route 
choice options between the OD pair - Kelvin Grove-Herston to 
Ext-5. 

Each zone/centroid is connected by one or more than one 
BMS so that complete path can be identified as a sequence of 
BMS IDs between any OD pair. Although complete trajectories 
are available in the simulation, the analysis in this study is 
performed using Bluetooth sub-paths only. Refer Section IV.B 
for more details.  

 

 
B. Design of Experiments  

For the current analysis we aim to estimate typical OD for the 
network, given data from several days. For instance, we are 
interested in typical OD during morning peak hours of regular 
Monday using loop detector and BMS data from several regular 
Mondays. To generate synthetic data for such application we do 
the following: 

a) Define number of similar OD matrices representing 
normal day-to-day travel demand variability. The 
average of these OD represents the typical OD and is the 
ground truth for the study. The details are presented in 
Section IV.B.1). 

b) Simulate the traffic with an OD and export the loop and 
Bluetooth data. Repeat this process over all the defined 
ODs. This provides database for individual day loop 
counts and BMS based sub-path flows (refer Section 
IV.B.3). 

 Defining similar OD matrices 

For the study network, we develop a database of OD matrices 
that are structurally similar to each other. Here, we define a 
typical OD matrix 𝐱∗ (one hour demand equal to 6736 trips) and 
generate additional four similar OD matrices by randomly 
perturbing 𝐱∗ with a standard deviation of 5%. Refer Fig. 7 for 
matrix version of 𝐱∗. The OD matrices are denoted by 𝐱𝒊∗, 
where 𝐱𝟏∗ ൌ 𝐱∗ and 𝐱𝒊∗ = randሺ𝐱∗, 5%ሻ ∀ 2 ൑ 𝑖 ൑ 5 such that 
𝑥௪,௜

∗ >0. 
 

 

 Traffic Simulation 

For the current analysis, one hour (7: 30 AM- 8:30 AM) 
simulation is performed using Aimsun micro- which is a 

Fig. 5: Study site with Bluetooth scanners (dotted circles) and Loop
detectors (dotted rectangles) 

 
Fig. 6: Demonstration of route choice options between the OD pair -
Kelvin Grove-Herston to Ext-5 

Fig 7: Matrix version of true OD vector (x*) used for the study region 

Zones Origin 
Dest

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15

Ext1 Z1 0 60 40 30 60 10 20 30 44 50 20 20 40 44 40
Kelvin Grove-Herston Z2 60 0 10 20 24 26 28 40 38 34 16 10 20 38 56

Red Hill-Milton-Auchen Flower Z3 40 10 0 50 20 16 20 40 20 10 20 4 8 20 40
Ext 3 Z4 30 20 50 0 6 20 24 26 28 40 38 8 16 28 48

WestEnd-SouthBank-Highgate Hill Z5 60 24 20 6 0 30 44 50 20 16 20 20 40 20 88
Ext 5 Z6 10 26 16 20 30 0 20 50 20 16 20 20 40 20 40

Gabba Z7 20 28 20 24 44 20 0 30 44 50 20 20 40 44 30
BNE Inner East Z8 30 40 40 26 50 50 30 0 6 20 24 28 56 6 60

New Farm Z9 44 38 20 28 20 20 44 6 0 30 44 20 40 30 88
Newstead-Bowen Hills Z10 50 34 10 40 16 16 50 20 30 0 4 20 40 30 100

Ext2 Z11 20 16 20 38 20 20 20 24 44 4 0 20 40 44 40
Ext4 Z12 20 10 4 8 20 20 20 28 20 20 20 0 30 20 40

Fortitude Valley Z13 40 20 8 16 40 40 40 56 40 40 40 30 0 30 80
Spring Hill Z14 44 38 20 28 20 20 44 6 30 30 44 20 30 0 88

CBD Z15 40 56 40 48 88 40 30 60 88 100 40 40 80 88 0
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stochastic simulation at the microscopic level. The assignment 
model considered is stochastic route choice. The demand for 
each simulation is defined as per Section IV.B.1) resulting in 
five different scenarios for a typical OD. For each scenario five 
replications are simulated. Each replication has its own random 
seed, resulting in a simulation with different random selection 
of the stochastic parameters. 

 Traffic database (Loops and BMS) 

The traffic database consists of loops and Bluetooth records 
from a total of 25 simulation runs (5 similar demand patterns 
and 5 replications for each demand). Refer Fig. 8 that explains 
the process of generating 𝐬෤ and 𝐲෤.  

The network has 24 loop detectors (see Fig. 5). Total vehicle 
counts at each detector location during each simulation run is 
obtained. Finally traffic count at each detector location is 
defined by average of the counts at the location from 25 
simulations.  

The network has 20 BMSs (see Fig. 5) that detects Bluetooth 
equipped vehicles. Interested readers can refer to the traffic and 
communication simulation model for simulating BMS dataset 
using Aimsun [33]. In this study, the sub-paths are pre-selected 
before conducting the analysis. The number of common sub-
paths in all 25 simulation runs is identified to be |ℬ|=113. For 
the analysis we have considered four different cases with 
Bluetooth penetration rates (see Section IV.B.4). Bluetooth 
sub-path trajectories are estimated independently for each case. 

The process of generating 𝐲෤ and 𝐬෤  illustrated in Fig. 8 is 
briefly explained as follows:  
 First, initiate 𝐲෤𝒊,𝒓 and 𝐬෤𝒊,𝒓 of dimensions |𝒜| x 1 = 24 x 1 

and |ℬ| x 1=113 x 1, respectively for ith OD matrix (𝐱𝒊∗) 
and rth replication with zero flow values.  

 Second, simulated traffic counts from |𝒜|=24 loops are 
denoted by 𝐲෤𝒊,𝒓. The database of vehicle trajectories are 
stored as a complete sequence of BMS in ℋ௜,௥. The first 
and last BMSs of each complete trajectory sequence are 
directly linked to the actual origin and destination zones 
of the simulated trip.  

 Third, convert ℋ௜,௥ to sub-trajectories (ℒ௜,௥) by de-
selecting a few scanner IDs from the beginning and ending 
of the complete trajectory sequence (this is done because 
the actual Bluetooth trajectories do not always represent 
true trip ends) and due to the deselection process |ℒ௜,௥| is 
less than |ℋ௜,௥|. For instance, |ℋଵ,ଵ|=5,273 and 
|ℒଵ,ଵ|=3,875 in our study. 

 Fourth, identify η percent of sub-trajectories (ℒሚ௜,௥) from 
the set ℒ௜,௥. For instance, |ℒሚଵ,ଵ|=97 for 𝜂% ൌ 2.5% of 
3,875 of total sub-trajectories. 

 Fifth, count the number of sub-trajectories (from ℒ෩ ௜,௥) 
passing through each sub-path in ℬ and add it to 𝐬෤𝒊,𝒓. Note 
that η% random selection in the previous step might not 
account all subpaths, and in such cases, some of the 
subpaths can contain zero flow values in 𝐬෤𝒊,𝒓. For 
instance, |ℒሚଵ,ଵ|=97 sub-trajectories (for 𝜂% ൌ 2.5%) 
resulted in only 44 out of |ℬ| = 113 sub-paths, which 
means the flows for the rest are zeros. 

 Repeat steps from first to fifth for all 25 simulations (i.e. 
i=1 to 5 and r=1 to 5). The average traffic counts 

observations are obtained as 𝐲෤ ൌ
∑ ∑ 𝐲෤𝒊,𝒓

ఱ
ೝసభ

ఱ
೔సభ

𝟐𝟓
 and the final 

consolidated vector of subpath flows is obtained as 𝐬෤ ൌ
∑ ∑ 𝐬෤𝒊,𝒓ହ

௥ୀଵ
ହ
௜ୀଵ . 

 

 

 Experiment cases 

To evaluate the impact of the Bluetooth penetration rate we 
consider different scenarios as follows:  
a) Traditional case: Z(x) is expressed only in terms of traffic 

counts deviations (Equation 1). No Bluetooth based sub-
path trajectories are considered.  

b) Case-1: Here, 𝐬෤ is generated using η% = 2.5% and Z(x) is 
expressed using Equation 3. 

c) Case -2: Here, 𝐬෤ is generated using η% = 5% and Z(x) is 
expressed using Equation 3. 

d) Case -3: Here, 𝐬෤ is generated using η% = 7.5% and Z(x) 
is expressed using Equation 3. 

e) Case -4: Here, 𝐬෤ is generated using η% = 10% and Z(x) is 
expressed using Equation 3. 

C. Performance evaluation 

To check the efficiency of the proposed methodology, the final 
estimated OD (x) individually for different cases is compared 
with ground truth, 𝐱∗ using following two indicators  
a) RMSEሺ𝐱, 𝐱∗ሻ (Equation 10): It is a standard measure to 

quantify average deviation of individual elements of the 
estimated OD vector (𝑥௪ሻ with that of ground truth (𝑥∗୵). 
In the Equation 10, |𝑊| is the size of the OD vector. 

 
                             

b) 𝜌(𝐱, 𝐱∗) (Equation 11): This measure is more robust [19] 
and is used to compare only the structural deviation 
between the estimated OD matrix (𝐱 ) and ground truth 
OD vector (𝐱∗ሻ. Notations of terms used in Equation 11 
are explained in Section II. 

 

 
Fig. 8: Method to generate synthetic data (𝒚෥ and 𝒔෤) 

𝐱∗

𝐱𝟐∗ 𝐱𝟑∗ 𝐱𝟒∗ 𝐱𝟓∗

Aimsun model run for 
5 replications for each 

demand

Sub-trajectories database from 
25 simulations

Selected 
sub-paths

Sub-path flows database from 
25 simulations

Consolidated 
sub-path flow 

vector (𝐬෤)

Random perturbation of 𝐱∗

Average link 

flows vector (𝐲෤)

Loop counts database 
from 25 simulations

 

RMSEሺ𝐱, 𝐱∗ሻ ൌ ඨ
1

|𝑊|
෍ሺ𝑥௪ െ  𝑥∗௪ሻଶ

୵∈୛

 
 

 (10) 

 

𝜌(𝐱, 𝐱∗) =  
ሺ𝐱ି𝛍𝐱ሻ౐൫𝐱∗ି𝛍𝐱∗൯

ඥሺ𝐱ି𝛍𝐱ሻ౐ሺ𝐱ି𝛍𝐱ሻට൫𝐱∗ି𝛍𝐱∗൯
౐
൫𝐱∗ି𝛍𝐱∗൯

  
 

 (11) 
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D. A Priori OD matrix for optimization 

To test the robustness of the proposed methodology with 
respect to the consideration of the a priori OD matrix for 
optimization, we perform the analysis independently on three 
different a priori OD matrices (𝐱෤𝟏, 𝐱෥𝟐, and 𝐱෤𝟑). Table I presents 
the quality of the priori OD matrix (𝐱෤௖ሻ  with respect to the 
ground-truth (𝐱∗), and are chosen such a way that the error 
values of the a priori matrices are in decreasing order while the 
structures are almost similar. 

 

E. Results 

In this section, we discuss the quality of the OD estimates (x) 
resulted from different cases and consideration of different a 
priori OD matrices. 

 Quality assessment of OD estimates using RMSE (𝒙,𝒙∗) 
Fig. 9 summarizes the results using RMSE as the performance 
indicator. Here, different link graph corresponds to different a 
priori-OD matrix. The x-axis represents different cases. 
The results indicate a gradual improvement in the quality of 𝐱  
as measured through RMSE. For instance, the set of 
experiments initiated with 𝐱෤𝟏 improved from RMSE (𝐱෤ଵ, 𝐱∗) 
=14.02 to RMSEሺ𝐱, 𝐱∗ሻ =11.34 (for η%=10%). Similarly, the 
results for the experiments initiated with 𝐱෤𝟐, and 𝐱෤𝟑 have also 
demonstrated significant improvements. 

The percent improvements in RMSEሺ𝐱, 𝐱∗ሻ are illustrated in 
Fig. 10. The percent improvement is calculated with respect 
to 𝐱෤௖, and we can observe greater improvements in all cases 
with higher error values of a priori increase. For example, at 
η%=2.5%, there is 6.88% improvement (from RMSE (𝐱෤ଷ, 𝐱∗) 
=12.36 to RMSEሺ𝐱, 𝐱∗ሻ =11.50) as against 17.05% 
improvement (from RMSE (𝐱෤ଵ, 𝐱∗) =14.02 to RMSEሺ𝐱, 𝐱∗ሻ 
=11.63). However, the traditional case showed lesser 
improvement in RMSE as compared to other cases that are sub-
path flows based objective function. The percentage RMSE 
improvement is only slightly improved from case-1 to case-4. 
 

 

 

 Quality assessment of OD estimates using 𝜌(𝒙,𝒙∗) 

The 𝜌ሺ𝐱, 𝐱∗ሻ results as shown in Fig. 11 demonstrate that there 
is structural improvement in the OD estimates as η% increases 
from 2.5% to 10%. Fig. 11 also highlights that the traditional 
traffic counts-based approach could not bring any significant 
structural improvements in the OD estimates unless additional 
information from Bluetooth sub-path flows is introduced. 
The percent improvement in 𝜌ሺ𝐱, 𝐱∗ሻ is illustrated in Fig. 12. It 
can be seen that rates of improvement for sub-path flows based 
cases are better than that of traditional method. In the traditional 
case, the percentage improvement is negative for 𝐱෤ଵ based 
experiment, which implies a structural degradation, and 
simulation runs based on 𝐱෤ଶ and 𝐱෤ଷ have showed only little 
improvement. While, the percent improvement in 𝜌ሺ𝐱, 𝐱∗ሻ is 
higher for the rest (i.e. case-1 to case-4), there is no significant 
difference in the improvements within them. 

 

 

 Statistical assessment of the results 

The difference between the results obtained from traditional 
method and those from the cases with Bluetooth penetration 
rates are statistically compared at α=5% level of significance 
using paired t-test, and are shown in the Table II.  

TABLE I 

COMPARISON OF 𝐱̃𝑐WITH  𝐱∗ 

Prior ODs (𝐱෤௖) RMSEሺ𝐱෤௖ , 𝐱∗ ሻ  𝜌ሺ𝐱෤௖ , 𝐱∗ ሻ 

𝐱෤𝟏 14.02 0.8142 

𝐱෤𝟐 13.24 0.8178 

𝐱෤𝟑 12.34 0.7964 

 
Fig 9: RMSE (𝒙෥௖ ,𝒙∗) vs 𝑅𝑀𝑆𝐸ሺ𝒙,𝒙∗ሻ for all experiments 

 
Fig 10: Percentage improvements in 𝑅𝑀𝑆𝐸ሺ𝒙,𝒙∗ሻ with respect to RMSE 
(𝒙෥௖ ,𝒙∗) 

 
Fig 11: 𝜌 (𝒙෥௖ ,𝒙∗) vs 𝜌ሺ𝒙, 𝒙∗ሻ for all experiments 

 
Fig 12: Percentage improvements in 𝜌ሺ𝒙,𝒙∗ሻ with respect to 𝜌(𝒙෥௖ ,𝒙∗) 
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Although, the improvements in the absolute values of both 

RMSE (Fig. 9 and Fig. 10) and 𝜌 (Fig. 11 and Fig. 12) seem to 
be marginal, Table II demonstrates that that the absolute t-
values are greater than the critical value (i.e. 3.182 for 3 degrees 
of freedom) at 95% confidence level, and thus the differences 
between traditional and Bluetooth sub-paths based results are 
statistically significant.  

V.DISCUSSION  

The goodness of fit measurements namely, RMSEሺ𝐱, 𝐱∗ሻ and 
𝜌ሺ𝐱, 𝐱∗ሻ showed significant improvement with respect to both 
a priori OD and traditional method even at lower penetration 
rates of Bluetooth trips (i.e. η%=2.5% consolidated over 
|𝐷|=25 simulations). We can also see that the results for η% > 
2.5% (i.e. case-2 to case-4) are better than η%=2.5% (case-1). 
However, in practice, the chances of η%=2.5% is higher than 
η% = 10%, and significant improvement in the results for case-
1 demonstrated the practical significance of the proposed 
methodology. For instance, few samples of Bluetooth 
trajectories through key corridors that serve higher traffic 
demand such as, major arterials and motorways, should serve 
the purpose of enhancing the quality of OD estimates for large 
scale urban networks. 

The traditional method did not show any significant 
structural enhancements (Fig. 11 and Fig. 12) although the 
RMSEሺ𝐱, 𝐱∗ሻ measure is improved (Fig. 9 and Fig. 10). This 
shows that preserving the OD structure using additional path-
based information from Bluetooth short trips (which we 
referred as sub-path flows in this paper) helps to direct OD 
convergence towards a better solution estimate instead of 
‘getting stuck’ in the local optima. The trend of improvement 
in both RMSEሺ𝐱, 𝐱∗ሻ and 𝜌ሺ𝐱, 𝐱∗ሻ is same for experiments that 
are based on Bluetooth sub-path flows and the difference 
among them is not very significant. This is because subpath 
flows with η%=2.5% observed from several days (25 in this 
study) of similar travel patterns amounts to 62.5% (i.e. 
25*2.5%) of total Bluetooth trips. This significant rise in the 
consolidated sample rate is sufficient to cause considerable 
improvement even at daily market penetration rate of 2.5%. 

The experiments are tested in a controlled environment due 
to the unavailability of the ground truth (i.e. true OD). 
Nevertheless, the study demonstrates that the proposed 
methodology is robust for different prior OD matrices and 
lower sample of random Bluetooth observations. The Brisbane 
City Council (BCC) and the Department of Transport Main 
Roads (TMR) have been recording the Bluetooth observations 
on a continuous basis, and it is possible to have the database of 
traffic observations from several days representing similar 

travel patterns [40]. Thus, the proposed methodology is ready 
for practical implementation on real world networks with 
trajectories and loop counts database. 

VI. CONCLUSION  

One of the major limitations of traffic counts-based OD 
estimation is the problem of under-determinacy, and due to 
which the quality of OD estimates cannot always be guaranteed. 
With the advancements in technology, many emerging data 
sources such as Bluetooth are able to provide additional travel 
related information such as vehicle trajectories. However, they 
are only partial observations of complete trips with random and 
unknown market penetration rates. Studies in the past have 
developed objective function based on partial path (referred as 
sub-path in this study) information but with an assumption that 
their penetration rate is known. 

To this end, the study develops a new upper level formulation 
in the bi-level OD estimation problem that incorporates 
additional structural information of sub-path flows. The 
proposed sub-paths flows based approach maintains structural 
consistency in the OD matrix estimates and is better than 
traditional traffic counts-based technique. This is because the 
structure of Bluetooth sub-path flows, which is independent of 
the penetration rates, provides an additional higher-dimensional 
information about trip distribution as against point-based 
observations of link flows. The robustness of the proposed 
methodology, tested through several experiments, has 
demonstrated its practical relevance for situations when the 
penetration rate of Bluetooth trajectories is very low.  

Although, the present study demonstrated results better than 
the traditional approach (as also observed from t-test results), 
the study can be extended in the following research directions. 
First, the solution algorithm that is adopted is still a classical 
gradient descent and the issue of “stuck at local minima” needs 
to be addressed. The step size is crucial in gradient descent 
algorithm and needs to be adjusted for different OD flow 
values. A stochastic gradient decent algorithm can introduce 
some randomness to escape from local minima in order to reach 
a better minimal value. Thus, as a continuation of the current 
study, we propose to test the methodology across different 
state-of-the-art optimization algorithms such as stochastic 
perturbation and simultaneous approximation (SPSA), Genetic 
Algorithms etc. Second, more experiments shall be conducted 
in future for different spatial coverages of Bluetooth sub-paths. 
Third, the current study is based on a synthetic network, and we 
would like to test it on a real case study network for the future 
study.  

Although, the study demonstrated using Bluetooth sub-path 
flows, the proposed approach is generic in nature and the 
formulation holds good for path (partial/complete) flows 
observed from any other emerging data sources such as WIFY, 
GPS, mobile phone etc.    
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TABLE II 
STATISTICAL DIFFERENCE BETWEEN TRADITIONAL AND REST OF THE CASES 

 
 

RMSEሺ𝐱, 𝐱∗ሻ 𝜌(𝒙,𝒙∗) 
t-value p-value t-value p-value 

Trad. vs Case-1 5.4012 0.0326 -4.6663 0.0430 
Trad. vs Case-2 5.6788 0.0296 -7.6341 0.0167 
Trad. vs Case-3 7.0463 0.0196 -8.4856 0.0136 
Trad. vs Case-4 8.8218 0.0126 -10.1708 0.0095 
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