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Motion Signatures for the Analysis of Seizure Evolution in Epilepsy

David Ahmedt-Aristizabal1,2, M. Saquib Sarfraz2,3, Simon Denman1, Kien Nguyen1,
Clinton Fookes1, Sasha Dionisio4, Rainer Stiefelhagen2

Abstract— In epilepsy, semiology refers to the study of patient
behavior and movement, and their temporal evolution during
epileptic seizures. Understanding semiology provides clues to
the cerebral networks underpinning the epileptic episode and is
a vital resource in the pre-surgical evaluation. Recent advances
in video analytics have been helpful in capturing and quantify-
ing epileptic seizures. Nevertheless, the automated representa-
tion of the evolution of semiology, as examined by neurologists,
has not been appropriately investigated. From initial seizure
symptoms until seizure termination, motion patterns of isolated
clinical manifestations vary over time. Furthermore, epileptic
seizures frequently evolve from one clinical manifestation to
another, and their understanding cannot be overlooked during
a presurgery evaluation. Here, we propose a system capable
of computing motion signatures from videos of face and hand
semiology to provide quantitative information on the motion,
and the correlation between motions. Each signature is derived
from a sparse saliency representation established by the magni-
tude of the optical flow field. The developed computer-aided tool
provides a novel approach for physicians to analyze semiology
as a flow of signals without interfering in the healthcare
environment. We detect and quantify semiology using detectors
based on deep learning and via a novel signature scheme, which
is independent of the amount of data and seizure differences.
The system reinforces the benefits of computer vision for non-
obstructive clinical applications to quantify epileptic seizures
recorded in real-life healthcare conditions.

I. INTRODUCTION

During seizures, patients with epilepsy may exhibit stereo-
typical behavior or motor manifestations. These can include
jerking, spasm or posturing, head turning, facial expres-
sions and hand movements. The analysis of such signs is
termed semiology. Along with the electrophysiological and
neuroimaging recordings, seizure semiology constitutes a
crucial set of clues, which provides localizing information
of the brain networks affected, enabling the progression to
successful surgery in patients who are drug-resistant [1],
[2]. Nevertheless, the study of video monitoring recordings
is, to a certain extent, dependent on the experience and
training of the clinician and the interpretation can differ
from physician to physician, and between cases. Automated
quantification and interpretation of semiology enables more
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objective information gathering from epileptic patients [3].
However, this is a challenging and largely underdeveloped
field due to a lack of datasets and the highly complex natural
clinical setting [4].

Recent advances in computer vision and deep learning
have shown promising results in quantifying and distinguish-
ing epileptic seizures [4] eliminating the need for feature
engineering. However, because of their reliance on super-
vised learning, when unusual seizures are encountered such
systems are of no use and they don’t provide clinicians with
intuitive tools to support the assessment of seizure evolution.
Approaches that use statistical information [5], provide quan-
titative movement parameters by considering the totality of
semiology duration i.e. one metric describes the motion for
the full length of the seizure; and as such, this method does
not capture information on the semiology changes. Deep
learning based approaches [6], [7], [8] cannot determine the
discriminative features that differentiate semiology and their
relationship with specific body movements, or what portion
of the body should be observed for diagnosis. These systems
provide a single result that reflects the classifier’s decision
and (to an extent) confidence. Additionally, by analyzing
short video sequences rather than a whole video of the
seizure [9], [10] the systems are limited when distinguishing
frames related to the clinical onset from those which show
the propagation of semiology. Overall, the task of develop-
ing a computer-based tool that may analyze the stepwise
progression of clinical features, which is the scope of this
manuscript, has neither been considered nor reported in the
literature.

The analysis of seizure evolution, which aims to identify
the presence or absence of certain movement features (in-
cluding the order in which they occurred) and the dynamic
changes in movement frequency and amplitude during a
seizure, is a major component of epilepsy patient assess-
ment [1]. This is an important step to evaluate electroclinical
patterns of a seizure, i.e. a close observation of clinical
features (semiology) and their relation to the region primarily
or secondarily involved in the epileptic discharge, allowing
a spatio-temporal profile of the seizure’s origin and propaga-
tion patterns to be obtained [2], [11]. Seizures characterized
by motor manifestations are analyzed and classified on the
basis of the type of motor symptomatology. Simple motor
seizures are defined by unnatural movements, which can be
divided into myoclonic, clonic, tonic, versive, and tonic-
clonic seizures; depending on the duration of the muscle
contraction, the rhythmicity of movement repetition, and
the muscle involved (e.g. asymmetric posture, flexion of the



Fig. 1. The proposed system that captures the motion dynamics of semiology and creates a motion signature that represents the evolution of an epileptic
seizure. A. Video recording during seizures. B. A region of interest is defined to improve the detection of isolated clinical manifestations: face and hands.
C. Sequences of facial semiology are created based on face detection and tracking. D. Sequences of hand semiology are produced via pose estimation
techniques. E. Extraction of motion features is performed using the optical flow from aligned sequences of consecutive images. F. Sequences of flow
vectors are used to compute the motion signature for the full length of semiology in terms of time and position. G. The computer-aided tool visualizes
semiology as a flow of signs to provide quantitative information to support the diagnosis of patients.

neck, abduction of both arms, turning of eyes and head to
one side). In more complicated motor manifestations, on the
other hand, patients may experience movements that appear
natural and involve different body segments (e.g. manual and
oral automatisms such as chewing, swallowing, smacking the
lips and flumbing) [1], [12]. Seizure manifestations may vary
from repetitive rhythmic movement of trunks, limbs or hands
such as whole body rocking or manipulation of an object to
a more extreme form of presentation with excessive amounts
of amplitude, speed, and acceleration [2], [13].

Motivated by the significance of analyzing the evolution
of semiology, in this contribution we provide a system that
visualizes the dynamic changes in semiology over an entire
seizure, which we term a motion signature. The system
has the potential to provide an overview of the motion
patterns observed and will support the assessment of patients
independent of the motion rate and range, and the amount of
data available. We adopt a framework that aims to capture
semiology from video recordings and provides interpretable
signals of the motion as presented in Fig. 1. We exploit the
discriminative power of deep learning architectures to detect
body regions for isolated clinical manifestations (face and
hand semiology), and to extract representations of motion
between consecutive frames. Then, we compute the motion
signature from a sparse saliency representation established
by the magnitude of the motion. The signature (the semi-
ology as a signal) highlights the motion history of the
seizure and correlates types of semiology in the case that a
patient experiences multiple semiologies simultaneously. The
motion profile uses sliding windows or sequences to simulta-
neously capture movement locations and temporal relations
of the motion based entirely on the flow information.

The contributions of our work are summarized as follows:

1) We present a first of its kind computer-aided system
that captures the dynamics of semiology as a flow of
signals enabling the visualization and diagnosis of the
seizure, e.g. semiology evolution and the correlation
between body parts in a real-life clinical setting.

2) The system forms the basis for further research to
assess electroclinical features [4] for monitoring tools,
based on multisensory feature techniques that can fuse
visual and time-series signals (electroencephalogra-
phy) [14].

The remainder of this paper is organized as follows: Sec-
tion II explains the video recordings used from patients with
epilepsy and discusses our proposed approach to develop
the motion signature; Section III presents the experimental
setup to validate the capability of the system and provides
examples of how time-frequency properties can be used for
semiology diagnosis. Finally, Section IV concludes the paper.

II. MATERIALS AND METHODS

In this paper, we propose a computer vision approach that
computes motion signatures that describe the evolution of
semiology from video recordings of patients with epilepsy.
A block diagram of the proposed system is displayed in
Fig. 1. Each recorded seizure has a duration of roughly 1-
2 minutes, and is captured at 25 frames per second. We
capture clinical manifestations from face and hand motions
by implementing deep learning and image processing tech-
niques. Then, we estimate the patterns of apparent motion in
a defined sequence at pixel-level by computing the optical
flow between consecutive frames (i.e. a displacement vector
assigned to each pixel position). This motion representation
is used to estimate the motion signature, which captures
the spatial location of semiology and the temporal relation
between frames. The proposed system enables the diagnosis
of seizures from video feeds as a flow of signals and we
show how the motion signature can be used for diagnosis of
epilepsy using quantitative information from signal process-
ing techniques. Details of our proposed system are described
in the following subsections.

A. Video monitoring of epileptic seizures

We acquired data to compute the motion signatures from
epileptic patients undergoing the routine Video-EEG (scalp
electroencephalography) and Video-SEEG (stereo electroen-
cephalography) monitoring protocol at the Mater Hospital in
Brisbane. Participants were diagnosed with mesial temporal
(MTLE) and extra-temporal (ETLE) lobe epilepsy. Cameras
are positioned on a wall, opposite the end of the bed
(Fig. 1A) and have an infrared capability, enabling night
monitoring. A total of 25 seizures from 7 patients were
analyzed. In this paper, we illustrate the potential of motion
signatures to evaluate the representation of semiology by
discussing three selected patients who show diverse face and
hand semiology.



Fig. 2. Selected sequences of facial semiology captured with the face
detection and tracking architecture.

Fig. 3. Selected sequences of hand semiology captured using the hand
detection strategy. Top: subtle finger motions; Middle: fast hand motions
(waving); Bottom: copped images with background removed.

B. The motion signature for analysis of seizure evolution

1) Region of interest definition: We define the region of
interest (RoI) as the location of the bed that contains the
patient. This ensures that motions from the face and hands
come from the patient, and not family members or physicians
also visible in the videos. This also helps overcome changes
in camera-bed viewing angles, in the inclination angle of the
bed, and camera resolution. The detection of this region is
inspired by the approach of [10], which uses the bounding
box coordinates of the detected patient and bed to define the
RoI in the x-axis of the frame, and retain the original height
of the video. To estimate the RoI, we use Mask-RCNN [15]
trained on the COCO dataset [16]. We expand the detected
RoI with an offset of 20% of the total width on each side to
avoid the extremities of the patient being located outside of
this boundary due to movements during a seizure. We crop
all images with the RoI as shown in Fig. 1B.

2) Face detection: From each seizure we extract se-
quences of images that capture facial modifications com-
monly exhibited such as unilateral blinking, chewing au-
tomatisms, ictal pouting, and smacking [1]. We adopt the
implementation of [17] to detect the patient’s face during
epileptic seizures. This approach can perform face detection
in challenging scenarios, and better deals with scale variation
in the benchmark face datasets FDDB [18] and Wider-
Face [19], outperforming the previous results documented
with seizures [7], [10]. The end-to-end trainable model,
which uses a backbone architecture based on ResNetXt with
a depth of 101 layers [20], first creates a coarse image
pyramid with the input image and 2X interpolation. Then,
shared CNNs predict template responses (for both detection
and regression) at every resolution. Finally, the model uses
non-maximum suppression (NMS) at the original resolution
to get the final detection results.

To consistently localize the face bounding box in terms
of size and position with minimal jitter between frames, we
fuse the face detector with a tracking algorithm for videos
sequences based on the open source SORT tracker [21] and
it’s extensions proposed in [22], which integrates appear-
ance information using a deep descriptor. Fig. 2 illustrates
sequences of facial semiology detected and cropped using
this approach.

3) Hand detection: We capture hand and finger semiology
such as waving, snapping fingers, tapping or grabbing, thumb
adduction, and fumbling [1], [23] by detecting both hands
automatically.

Based on the results in [10], we detect each hand using
region-based methods that detect hand-bounding boxes in
challenging healthcare conditions. Although hand detection
performance has progressed significantly with the use of
CNNs [24], we adopt a hand detection strategy based on
the body pose location, where the position of the wrist and
elbow are used to approximate the hand location as discussed
in [25]. This approach, which is heavily constrained by the
predicted pose, allows us to capture fast motions involving
upper limb translations (e.g. waving), and helps ensure that
the fingers of the patient are not located outside the bounding
box due to fast movements during a seizure.

For human pose estimation in videos, we adopt the archi-
tecture of [26]. This lightweight, yet highly effective two-
stage approach first uses a 3D Mask R-CNN [15] to predict
the human pose, then implements a lightweight optimization
that links the predictions in time. We use a model trained
on the PoseTrack [27] dataset to detect the patient wrist and
elbow in each frame. Once the pose estimation is performed,
we estimate the location of each hand according to [25] and
crop the images to a fixed bounding-box size of 120× 120
pixels.

The extracted hand bounding box captures all motions
related to the hand and fingers, but also includes information
pertaining to background motions such as movements in
the bedding, cables and monitoring equipment. To suppress
background motion, we adopt a simple strategy of skin
segmentation using thresholds adapted for the illumination
conditions of our dataset. This algorithm is implemented in
OpenCV [28] based on the HSV color space. Samples of
detected hands and the background removal are depicted in
Fig. 3.

4) Extraction of motion features in sequences: We adopt
an optical flow based strategy to capture important infor-
mation from each type of semiology, including the spatial
arrangement of body parts and the rate of change of the
arrangement [29].

Prior to computing the optical flow, successive frames
are geometrically aligned by warping the images relative to
each other and comparing the pixel intensity values using
the enhanced correlation coefficient (ECC) [30]. We use the
Euclidean transformation model where the aligned image is
a rotated and shifted version of the first image. This method
gives good results under various changes in brightness and
contrast. Once all successive pairs of images are aligned, we
resize all images to a resolution of height H = 224 and width
W = 224 pixels and compute the optical flow.

The optical flow is computed between adjacent frames
using FlowNet v2 [31], which is a coarse-to-fine approach
that uses stacking CNNs for optical flow refinement allowing
the robust analysis of small displacements. We use one
threshold on the flow to ensure that there is motion in the
frame, i.e. more than 10% pixels have optical flow values



Fig. 4. Selected samples of a motion signature of showing facial semiology. Upper: patient DG with a fast mouth and eye movement (ETLE-opercular-
upper bank). Lower: patient PU with subtle or slow lower mouth movements (MTLE-lower areas). At the right, representation of the landmarks used to
estimate the location of the nose.

Fig. 5. Selected samples visualizing the motion signature of face and hand
semiology. Patient MB with fast cheek motion is diagnosed with MTLE.

above zero. Finally, we obtain N − 1 optical flow maps for
N frames, where each flow map has horizontal and vertical
(u and v) components.

5) Constructing the proposed motion signature: To an-
alyze the evolution of a seizure as a flow of signs, we
develop a compact image representation of semiology, using
the optical flow information, which illustrates the location
variance and periodicity of motion. To have an intuitive
understanding of our proposal, consider two flow maps of
size H ×W (the same size as the original image/frame). We
can measure the change in the motion patterns between them
by computing an absolute difference. This should only be
high at spatial locations where there was strong movement.
We can summarize this change along a given direction in this
difference flow map. We sum the obtained difference values
along the horizontal direction W , thereby getting a H × 1
motion profile between two flow maps. This motion profile
represents spatial motion from top to bottom of the image
along the W direction. If we keep computing such motion
profiles between successive optical flow maps and stack them
together, we will have a motion signature that represents the
temporal change of motion along the horizontal x-axis over
time, and captures the spatial motion of body parts (e.g., eyes,
mouth, etc.) along the vertical y-axis. Together, one can see
the motion from top to bottom of the image and how it is
progressing over time.

To obtain a stable estimate of temporal motion change, we
define a temporal window of length L over successive optical

flow maps. The sequence of L flow maps in this window is
used to capture the motion change in the corresponding im-
age frames. In the sequence, the motion profile (as described
above) is computed between all combinations of optical flow
maps. To understand it better, if our sequence window length
L = 4, we will compute the motion profile between flow map
1 and 2, 3 and 4, similarly flow map 2 with 1, 3, 4 and
so on. Therefore, for a sequence length L we will have a
total of L× (L− 1) motion profiles. In our case for L = 4
we generate 12 motion profiles. Using such all combinations
provides a more stable motion progression and proves to be
more robust with respect to any noise such as misalignment
between frames. Since we have a defined sequence window
to compute such motion profiles we can use the average of
the values in the obtained motion profiles (a scalar) as a
threshold to only keep real motion. Such a binarization of
motion profiles helps to determine if a motion segment is
related to a clinical manifestation or noise from the optical
flow estimation. This strategy allows us to use it as an online
monitoring tool of the evolution of motion e.g. by using a
buffer of L+1 frames.

Fig. 4 illustrates the motion signature computed from two
patients that experienced facial semiology and Fig. 5 displays
the motion signature of a patient that exhibited face and hand
semiology simultaneously. The motion of each displacement
vector is summarized and represented by a red vertical bar
distributed in the x-axis from the start to the full expression
of the clinical manifestation and the y-axis corresponds to
the spatial location of the motion in the input frame. Black
means no seizure related motion.

For the diagnosis of facial semiology, we consider that the
location of the nose divides the face into two regions: upper
and lower areas. The upper area corresponds to motions in
upper facial regions (eyes and eyebrows), while the lower
area is related to mouth and chin motions as depicted in
Fig. 4. The continuous line in the facial semiology signature
represents the average location of the nose during the full
expression of semiology, in order to appreciate the difference
between motions from upper and lower facial regions. We
compute the location of the nose by adopting the state-of-the-



Fig. 6. Visualization of dominant motions in the face through normalized histograms. Patients exhibit semiology in the eyes, mouth, chin and cheeks.
The vertical line represents the average nose location.

Fig. 7. Visualization of the periodogram for the upper and lower facial regions for each patient.

art facial 2D & 3D landmark estimation system [32]. This
location is considered as the average estimation of the six
facial landmarks that represent the lower nose as shown at
the right in Fig. 4. To provide and display the information
in an appealing way, motion signatures are saved in a video
format that allows the user to visualize the motion and the
visible image for the entire seizure simultaneously.

III. EXPERIMENTS
A. Experimental setup

To demonstrate the capability of the system to quantify
semiology based on motion signatures, we show how this
representation can be used in a clinical environment by
providing quantitative information from the representation
of semiology as a flow of signs. We compute a flow that
highlights the most common events and the changes within
the recorded seizure, and we show how time-frequency
properties computed from the motion signatures can support
the assessment by:

• Analyzing the motion signature itself, e.g. which is the
dominant and most frequent sign, blinking or mouth
motion.

• Applying frequency-based analysis to identify periodic
motions, and showing how we can also use autocor-
relation to support this process, to illustrate if each
semiology is periodic or a single episode, and it’s speed.

• Using power spectrum analysis to quantify the strength
of periodic components to determine the dominant semi-
ology (face or hand).

• Displaying the order of signs as a stepwise progression,
which is very important as it allows the analysis of
underlying seizure spread.

B. Experimental results

Identifying dominant and frequent signs in facial semi-
ology: The motion signatures of three seizures from three
selected patients are represented as images in Fig. 4 and
Fig. 5. To calculate time-frequency properties of each sig-
nature, we represent the image as a one-dimensional signal,
which contains information of the motion location. Using
the one dimensional signal of the facial motion, we compute
histograms to quantify the number of events recorded in each
face location. These histograms are shown in Fig. 6. The x-
axis represents the face location (from lower face to upper
face in a scale of 0-224 pixels) and shows the location of
the nose. From the histograms, we can see that for the three
patients the dominant sign is mouth semiology. Patient PU
has motions in the lower mouth area, patient DG has motion
in the lower and upper mouth and patient MB has more
motions in the upper parts of the mouth (cheeks).

Identifying periodic motions in facial semiology: We
analyze the periodicity and speed of a signal via spectral
analysis based on the power spectral density (PSD) [33] by
computing the periodogram, which is given as the discrete-
time Fourier transformation of the auto-correlation function.
Fig. 7 illustrates the periodogram for the upper and lower
facial regions of each patient. Analyzing the lower facial
parts for patients DG and PU, the spectral analysis shows
statistically significant periods and harmonics, or cycles in
the data that stand out from the background noise. However,
for patient MB, there are no clear dominant oscillations or
periodicity in the motion of the lower face. For the upper
face for the three patients, there is considerable noise that
affects the identification of cyclic behaviour, and they also



Fig. 8. Visualization of the power spectrum for face and hands semiology for patient MB.

TABLE I
AUTOCORRELATION IN THE TIME-DOMAIN.

Patient Upper Face Lower Face Patient MB

DG 0.3938 3.2935 P Face 0.8684
PU 0.3745 2.2653 P Left Hand 1.3860 P

MB 0.6182 0.6204 Right Hand 0.6666
A value greater than one means the signal has high correlation once the lag
time matches the period and can be considered periodic. P: Periodic.

show several spurious peaks that are likely caused by noise.
Overall, patient DG exhibits cyclic behaviour in the lower

face with a frequency of approximately 25 Hz while patient
PU shows cyclic behaviour in the lower face with a frequency
of approximately 170 Hz. These dominant oscillations allow
us to confirm that the speed of the motion for patient PU is
higher than patient DG.

We confirm the analysis of periodicity of the fundamental
spikes in the frequency domain with the autocorrelation
of the signal in the time domain. The autocorrelation of
a periodic signal has the same cyclic characteristics as
the signal itself. Thus, autocorrelation can help verify the
presence of periodic behaviour and determine the period [34].
If the data is periodic, it should have high correlation once
the lag time matches the period. As shown in Table I, we
can confirm that the mouth motions of patients DG and PU
are periodic.

Dominant signs and periodicity considering face and
hand semiology: To evaluate dominant signs, we also can
estimate the power of each frequency by computing the
power spectrum (PS). The PS of a time-domain signal is
the distribution of power contained within the signal over
frequency, based on a finite set of data. Considering the
total average power as the sum of the power of all the
frequency components of the signal, it can be estimated
that the mouth motions are more powerful in patient DG
(2.1063) than patient PU (1.0581). For patient MB, who
experiences face and hands semiology (Fig. 5), we compute
the total average power of the PS as shown in Fig. 8. It is
possible to confirm that the facial motion is the dominant
sign in the semiology according to the average power: Face
(1.0271), right hand (0.0300) and left hand (0.0021). Only
in the left-hand signal are dominant oscillations clear, with
spikes in the other signals the result of noise. This periodicity
of the signals is confirmed with the autocorrelation results
(Table I), where the left hand can be considered to have
a cycle of subtle motion. Considering all motions from the
face compared with each hand it is possible to find matching
frequencies. It can be seen in Fig. 5 that the signals have a

Fig. 9. Order of signs as a stepwise progression for patient MB .

Fig. 10. Motion signature of the isolated semiology known as body turning.

similar component at 24 Hz. The order of signs of in patient
MB is illustrated in Fig. 9, which is important as it allows
the analysis of underlying seizure spread.

Analyzing the entire body simultaneously: The motion
signature can be also implemented to analyze the whole body
simultaneously, and to evaluate isolated semiology such as
the complex motor behaviour of body turning [13]. Fig. 10
illustrates the motion signature for this type of semiology
where it is possible to appreciate when the rotation happens
and how long it lasts for.
C. Discussion

In this manuscript, we present a novel and intuitive
computer-aided tool to support the expertise of clinical prac-
titioners in the complex area of seizure semiology. The mo-
tion signatures are flexible and provide diagnostic assistance
when analyzing videos in real-life healthcare conditions,
presenting semiology as a flow of signs. This strategy enables
the use of simple and robust time-frequency techniques to
evaluate seizure recordings and isolate repeating patterns.
The approach for assistive medical diagnosis in assessing
video recordings of seizures, quantifying the dominance,
correlation, and motion evolution of semiology from different
body parts, has not been previously documented.

One drawback of our system is the reliance on the accurate
detection of the regions we monitor for semiology (face



and hand), and their alignment and the extraction of flow
information; thereby triggering the need for further investi-
gation. However the system is flexible in that performance
of the motion detection and quantification can be easily
improved (Fig. 1C,D,E) by incorporating new computer
vision approaches. For example, it is worth evaluating the
computational cost of considering image registration using
deep convolutional techniques [35] which have comparable
or better accuracy than feature-based or direct methods.

IV. CONCLUSIONS
In this work, we have presented an efficient, in both com-

putation and architecture, computer vision approach to cap-
ture motion signatures of face and hand semiology, to provide
a diagnostic tool to clinicians to evaluate the evolution of
clinical manifestations in patients with epilepsy. The motion
signatures of epileptic seizures provide relevant features to
the physician and a way to intuitively assess the patient’s
movement, which is helpful for proper disease management.
We expect that a computer-aided tool visualizing semiology
as a signal could support the electroclinical analysis that
neurologists perform, to aid the progression to successful
surgery in patients who are drug-resistant to epilepsy. Finally,
the simplicity of our method may enable the diagnosis of
patients based on online and real-time monitoring of patients’
behavior.

Ethics statement: The experimental procedures involv-
ing human subjects described in this paper were approved
by the Mater Health Services Human Research Ethics Com-
mittee.
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J. Schramm, P. Kwan, L. K. Wong, and C. E. Elger, “Mesial frontal
epilepsy and ictal body turning along the horizontal body axis,”
Archives of neurology, vol. 65, no. 1, pp. 71–77, 2008.

[14] A. Owens and A. A. Efros, “Audio-visual scene analysis with self-
supervised multisensory features,” in ECCV, 2018.

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
ICCV. IEEE, 2017, pp. 2980–2988.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV. Springer, 2014, pp. 740–755.

[17] P. Hu and D. Ramanan, “Finding tiny faces,” in CVPR, 2017, pp.
1522–1530.

[18] V. Jain and E. G. Learned-Miller, “FDDB: A benchmark for face
detection in unconstrained settings,” UMass Amherst Technical Report,
2010.

[19] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection
benchmark,” in CVPR, 2016, pp. 5525–5533.

[20] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in CVPR. IEEE, 2017,
pp. 5987–5995.

[21] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in ICIP. IEEE, 2016, pp. 3464–3468.

[22] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in ICIP. IEEE, 2017, pp.
3645–3649.

[23] B. C. Jobst, A. M. Siegel, V. M. Thadani, D. W. Roberts, H. C.
Rhodes, and P. D. Williamson, “Intractable seizures of frontal lobe
origin: clinical characteristics, localizing signs, and results of surgery,”
Epilepsia, vol. 41, no. 9, pp. 1139–1152, 2000.

[24] S. Yan, Y. Xia, J. S. Smith, W. Lu, and B. Zhang, “Multiscale convo-
lutional neural networks for hand detection,” Applied Computational
Intelligence and Soft Computing, vol. 2017, 2017.

[25] T. Simon, H. Joo, I. A. Matthews, and Y. Sheikh, “Hand keypoint
detection in single images using multiview bootstrapping.” in CVPR,
vol. 1, 2017, p. 2.

[26] R. Girdhar, G. Gkioxari, L. Torresani, M. Paluri, and D. Tran, “Detect-
and-track: Efficient pose estimation in videos,” in CVPR, 2018, pp.
350–359.

[27] M. Andriluka, U. Iqbal, A. Milan, E. Insafutdinov, L. Pishchulin,
J. Gall, and B. Schiele, “Posetrack: A benchmark for human pose
estimation and tracking,” in CVPR, 2017.

[28] G. Bradski et al., “The opencv library,” Doctor Dobbs Journal, vol. 25,
no. 11, pp. 120–126, 2000.

[29] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[30] G. D. Evangelidis and E. Z. Psarakis, “Parametric image alignment
using enhanced correlation coefficient maximization,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 30, no. 10,
pp. 1858–1865, 2008.

[31] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep net-
works,” in CVPR, vol. 2, 2017.

[32] A. Bulat and G. Tzimiropoulos, “How far are we from solving the
2d & 3d face alignment problem?(and a dataset of 230,000 3d facial
landmarks),” in ICCV, 2017.

[33] S. A. Fulop and K. Fitz, “Algorithms for computing the time-corrected
instantaneous frequency (reassigned) spectrogram, with applications,”
The Journal of the Acoustical Society of America, vol. 119, no. 1, pp.
360–371, 2006.

[34] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and struc-
tural periodic similarity,” in Proceedings of the SIAM international
conference on data mining. SIAM, 2005, pp. 449–460.

[35] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Deep image homog-
raphy estimation,” arXiv preprint arXiv:1606.03798, 2016.


