
LOCALISED STRUCTURES IN SOME
NON–STANDARD, SINGULARLY PERTURBED

PARTIAL DIFFERENTIAL EQUATIONS

Paige N. Davis

Bachelor of Science (Advanced Mathematics) (Honours)

School of Mathematical Sciences

Science and Engineering Faculty

Queensland University of Technology

2020

Submitted in fulfilment of the requirement for the degree of

Doctor of Philosophy





Keywords

Stationary solutions

Travelling wave solutions

Linearised operators

Essential Spectrum

Absolute Spectrum

Point Spectrum

Geometric Singular Perturbation Theory

Heterogeneous equations

Jump-type defect

Evans Function

i



Abstract

This thesis addresses the existence and stability of localised solutions in some non-

standard systems of partial differential equations (PDEs). Extending the analysis to

these non-standard problems provides a foundation and insight for more general dynam-

ical systems. Three different models were chosen to act as a vehicle for this analysis, a

Keller-Segel model for bacterial chemotaxis, a Gatenby-Galenski model for tumour in-

vasion with the acid-mediation hypothesis and stationary solutions to reaction-diffusion

equations (RDEs) with a jump-type heterogeneity. The models are biologically and phys-

ically relevant RDEs which exhibit different non-standard structures and/or behaviours.

The Keller-Segel model chosen has a logarithmic chemotactic function, constant, sublinear

or linear consumption and zero growth or decay of the bacterial population and attractant.

This model supports travelling wave solutions which have been described in the literature

as both linearly stable and unstable and in the case of linear consumption (conditionally)

nonlinearly stable. We reconcile this apparent contradiction by locating the essential

spectrum, absolute spectrum and point spectrum of the linear operators associated with

the travelling wave solutions. We show that whilst all travelling wave solutions have

essential spectrum in the right half plane, in the case of constant or sublinear consumption

there exists a range of parameters such that the absolute spectrum is contained in the open

left half plane and the essential spectrum can thus be weighted into the open left half plane

implying a possible transient instability. For the constant and sublinear consumption

rate models we also determine critical parameter values for which the absolute spectrum

crosses into the right half plane, indicating the onset of an absolute instability of the

travelling wave solution. We observe that this crossing always occurs off of the real axis

which is atypical. Furthermore, we show that the absolute spectrum deforms as the

consumption is changed illustrating a connection between the constant, sublinear and

linear cases. We also show that there is an eigenvalue at zero which is order two for the

constant and sublinear cases and embedded in the absolute spectrum in the linear case,

proving spectral stability for the parameter range and weighted function space for which

the absolute spectrum is contained in the left half plane.

The Gatenby-Galenski model is a slow-fast system which supports travelling waves with

a range of speeds. For a high measure of tumour aggressivity travelling wave solutions

exhibit an interstitial gap which has previously been observed experimentally. We prove

the existence of the travelling wave solutions and give a geometric interpretation of the
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formal asymptotic analysis of the interstitial gap utilising geometric singular perturbation

theory to prove the persistence of the singular solution. It is shown that the width of the

interstitial gap is determined by the distance between a layer transition of the tumour

and a dynamical transcritical bifurcation of two components of the critical manifold.

Heterogeneous defects have been shown to have a profound impact on the existence of

localised solutions, potentially pinning, rebounding or annihilating solutions. The jump-

type defect is simple enough to make explicit analysis feasible while providing insight

for future analysis of more complicated heterogeneities. We examine pinned stationary

solutions located near the defect for which substantial existence analysis exists showing

there are three main types of solution, trivial defect solutions, local defect solutions and

global defect solutions. Through the use of an Evans function we locate the leading order

spectrum of the general trivial defect solution which agrees with that of the associated

homogeneous problem and derive the first order correction term, thus providing conditions

for spectral stability to first order.
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Chapter 1

Introduction

Reaction Diffusion Equations (RDEs) are partial differential equations (PDEs) which

exhibit a wide range of complex behaviours and patterns, and they are used to model

many different biological processes such as chemotaxis, population invasion, and wound

healing (see for example [58]). The building blocks of pattern formation analysis are

localised solutions; a solution that is arbitrarily close to a trivial background state except

in a localised region. This thesis addresses the existence and stability of two types of

localised solutions, stationary solutions and travelling waves (a solution that maintains

a constant speed and shape), in some non-standard systems of RDEs from biology and

physics.

In particular, we study the stability of travelling waves in a Keller-Segel model for bacterial

chemotaxis with a logarithmic chemosensitivity function, the existence of travelling waves

in the Gatenby-Gawlinski model for tumour invasion with the acid-mediation hypothesis,

and the stability of a type of stationary solutions of a general RDE with a spatially

dependent defect. Observe that these models are non–standard in various ways. The

motivation behind using these real-world models to drive our research is both to tie

our analysis to applications and to illustrate the insight that the rigorous and technical

dynamical systems and functional analysis methods provide.

We will first provide the background of the three models, after which we outline the anal-

ysis of RDEs for two paradigmatic problems for which the existence and stability results

are known in order to demonstrate the mathematical techniques that form the foundation

from which we approach our non-standard problems. We start with the stability analy-

sis for which we follow the framework outlined in [54, 88]. In order to perform stability

analysis, we must first establish the existence of localised solutions. These include fronts

or pulses which may be stationary solutions or travelling waves and which may evolve on

different time scales, for example if one population diffuses orders of magnitude slower

than the other. We use geometric singular perturbation theory (GSPT) [39, 51, 53] to

prove the existence of solutions to these systems if there is a scale separation.

1.1 Research objectives

The objectives of this thesis are to

1



Chapter 1 2

• to develop a deeper understanding of current stability techniques in the context of

systems of equations in homogeneous media through the application to a specific

example (the Keller-Segel model),

• to apply Geometric Singular Perturbation Theory to a non-standard fast-slow prob-

lem (the Gatenby-Gawlinski model) in order to answer open questions regarding the

existence and characteristics of the solution profiles,

• to extend the current stability techniques to determine the stability of a trivial

defect solution in systems with heterogeneous media, by tracking the potential point

spectra that emerges from the absolute spectrum as a result of the inclusion of a

heterogeneity.

1.2 Model equations

1.2.1 A Keller-Segel model for bacterial chemotaxis with a logarithmic chemosensitivity

function

The Keller-Segel model was originally proposed to model a band of bacteria consuming

a chemoattractant by E.F. Keller and L.A. Segel in [60, 61]. The model was based on

the early experimental observations by J. Adler in Chemotaxis in Bacteria [1] where it

was observed that E. coli would move towards a liquid solution in a travelling pulse of

bacteria driven by chemotaxis, see Figure 1.2.1. The proposed model was given by

ut = εuxx − αwum + κu,

wt = δwxx − β (Φx(u)w)x .
(1.1)

Here, x ∈ R and t ∈ R+ are the spatial and temporal variables, respectively, u(x, t),

w(x, t) represent nondimensionalised versions of the chemoattractant and bacterial cell

population, with α, κ ≥ 0,m ∈ R, and β, δ > 0. It is assumed that the diffusion of the

chemoattractant is taken to be much smaller than that of the bacteria, i.e. 0 ≤ ε ≪ δ. The

movement of the bacterial cell species is governed by the gradient of the chemoattractant.

The function Φ(u) is the so-called chemotactic function. The model (1.1) was shown to

support travelling waves only when the chemotactic function is singular [94]. Furthermore,

for a logarithmic chemosensitivity function Φ(u) = log(u) the model supports travelling

waves only if β > 1−m, 0 ≤ m ≤ 1. An overview of the model’s development and analysis

is given in [44].

The Keller-Segel model (1.1) is non–standard in two ways; the singularly perturbed nature

of the problem due to the small parameter ε and the singularity of the chemotactic function

as u → 0. The singularly perturbed nature of the problem requires the analysis of the

leading order (ε = 0 problem) and an argument of persistence of solutions and stability

when 0 < ε ≪ 1. The singularity in the chemotactic function leads to an unusual shape of

the spectrum. Specifically, the crossing of the absolute spectrum into the right half plane
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Fig. 1. Photograph showing bands of E. coli in a capillary tube. In all the experiments reported here, capillary tubes (18) were
filled with a liquid medium (19), inoculated at one end with 2 x 105 to 2 X 106 bacteria (20), and then closed at the ends
with plugs of agar and clay, all according to a procedure described in full elsewhere (8). The tubes were incubated horizontally
at 37 °C. The origin, which is turbid because of the bacteria that have not moved out, is visible at the left, then the second
band of bacteria, then the first band. Plugs at ends are not shown. The concentration of galactose was 2.5 X 10-' mole per liter.

are motile by virtue of several flagella
distributed around the cell. Beijerinck
(4) and Baracchini and Sherris (6) had
already tested a large number of species
and shown that E. coli are chemotactic
toward oxygen.
To study chemotaxis in a medium

containing only known chemicals, it was
necessary first to devise a simple chem-
ically defined medium that would still
allow motility, and to determine the
optimal conditions for motility by use
of an assay developed for this purpose
(7).

This article aims, first, to demon-
strate that chemotaxis does occur in E.
coli; second, to determine what kinds of
substances elicit chemotaxis in E. coli;
and, third, to discuss the mechanism
of chemotaxis.

Demonstration of Bands

About a million motile cells of E.
coli are placed at one end of a capillary
tube filled with a solution containing
2.5 X 1O-4 molar galactose as the
energy source, and the ends of the tube
are closed with plugs of agar and clay.
Soon afterward, two sharp, easily visible
bands of bacteria have moved out from
the origin, and some bacteria still re-
main at the origin. These features are
shown in Fig. 1.
The bands can be observed under

the microscope. For undistorted view-
ing, flat capillary tubes are used ac-
cording to the suggestion of Sherris,
Preston, and Shoesmith (5). The two
sharp bands are easily visible as highly
crowded regions of bacteria whose mo-
tion is extremely rapid and jerky; in
the first band the bacteria appear to be
considerably more motile than in the

12 AUGUST 1966

second, and the bacteria left at the
origin are not motile.
The bands can also be demonstrated

by dividing the tube into compartments,
plating the contents of each compart-
ment, and counting colonies to deter-
mine the number of viable bacteria
present throughout the tube (Fig. 2).
Another method for demonstrating the
bands and observing their rate of move-
ment is to scan the tube with a record-

100
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a)
.0
Q4-
0

0)

U)
L.
aD

ing microdensitometer (9) at various
times (Fig. 3).
The easiest way to locate the bands

is simply to measure their position with
a ruler, and this is the method used in
the work described in the remainder of
this article. Figure 4 shows the location
of the bands at several different times.
The "first" band is not only faster, but
it also forms first; it is visible after 5
minutes. The "sectond" band becomes

Second Fi rst
band band

Centimeters Centimeters
Fig. 2. Bands of bacteria shown by assay of viable bacteria. The tube contained 2.5 X
10-4M galactose and was incubated for 0 or 6 hours. At 6 hours the bands were visible
where shown by the arrows. The tubes were fractionated into ten compartments, each
8 mm long, by breaking at one end of the column of liquid and withdrawing samples
with a smaller capillary tube. A total of 9.8 x 105 viable bacteria were recovered at
0 hours and a total of 1.4 X 106 at 6 hours. The last eight compartments were free of
any viable bacteria in the tube harvested at zero time. The procedure is described in
full elsewhere (8).
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Figure 1.2.1: E. coli (white) consuming a liquid solution. Reprinted from J. Adler. Chemo-
taxis in bacteria. Science, 153(3737):708–716, 1966 with permission from AAAS. The E.
coli population moves as a travelling pulse driven by the chemotactic function.

as the chemotactic parameter β is increased occurs away from the real axis. Furthermore,

due to the second order derivative of the chemotactic function, when linearising about

the travelling wave solutions a quasilinear (rather than semilinear) operator is obtained.

Whilst the spectral stability of a parabolic, nonlinear operator implies the nonlinear

stability [41], in the case of quasilinear operators this result has only been proven for

certain cases [78]. The Keller-Segel model (1.1) for 0 ≤ m < 1 is not covered by [78] and

certain subcases of the linear (m = 1) case are shown to be nonlinearly stable or unstable

in [77].

The Keller-Segel model chosen supports travelling wave solutions which have been de-

scribed in the literature as both linearly stable [87] and linearly unstable [80], and in

the case of linear consumption (conditionally) nonlinearly stable [77]. We reconcile this

apparent contradiction by locating the spectrum of the linear operators associated with

the travelling wave solutions. We derive conditions for the spectral (in)stability of the

travelling wave solutions and the critical parameters that indicate a transition from a

transient to absolute instability. Furthermore, we show that the absolute spectrum de-

forms as the consumption parameter β is changed, illustrating a connection between the

constant (m = 0), sublinear (0 < m < 1) and linear (m = 1) cases. In addition, we prove

that the origin is a temporal eigenvalue of order 2 for 0 ≤ m < 1 and is embedded in the

absolute spectrum for m = 1.

1.2.2 The Gatenby-Gawlinski model for tumour invasion with the acid-mediation

hypothesis

The Gatenby–Gawlinski model was originally presented in [32] to model the invasion of

healthy cells by tumour cells under the acid-mediation hypothesis. The hypothesis is

that the tumour induces a change in the surrounding PH levels which is advantageous to

tumour growth and invasion. The acid-mediation hypothesis is supported by mathemat-

ical analysis, clinical data and experimental observations in [32]. A nondimensionalised

version of the Gatenby–Gawlinski model is given by the following system of singularly

perturbed PDEs with nonlinear diffusion in the V -component,
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Figure 1.2.2: Left panel: an interstitial gap present in a human squamous cell carcinoma.
Reprinted from R. A. Gatenby and E. T. Gawlinski. A reaction-diffusion model for cancer
invasion. Cancer Res., 56:5745–5753, 1996 with permission from AACR. Right panel: a
slow travelling wave solution with an interstitial gap supported by (1.2).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂U

∂τ
= U(1− U − αW ),

∂V

∂τ
= βV (1− V ) + ε

∂

∂x

[︃
(1− U)

∂V

∂x

]︃
,

∂W

∂τ
= γ(V −W ) +

∂2W

∂x2
.

(1.2)

Here, x ∈ R and τ ≥ 0 are the spatial and temporal variables, respectively, U(x, τ),

V (x, τ), and W (x, τ) represent nondimensionalised versions of the normal cell density,

tumour cell density, and excess acid concentration, respectively. As in [32], ε is assumed

to be a small nonnegative parameter, i.e. 0 ≤ ε ≪ 1, and the constants α, β, and γ are all

positive and strictly O(1) with respect to ε. Numerical experiments in [32] indicated the

presence of a region almost devoid of cells ahead of the travelling wave solution referred to

as the interstitial gap. This gap has also been observed experimentally, see Figure 1.2.2.

The Gatenby-Gawlinski model (1.2) is a slow-fast system which supports travelling waves

of various speeds. It was shown in [27] that the travelling waves supported by (1.2) fall

into two categories; fast travelling wave solutions with speed of O(1) which are stationary

solutions in the frame (z, t) = (x − cτ, τ) and slow travelling wave solutions with speed

of O(εp), 0 < p ≤ 1
2 which are stationary solutions in the (z, t) = (x − εpcτ, τ). The

parameter c is O(1) in both cases. It was shown in [27] that travelling waves are not

supported when p > 1
2 .

In Chapter 3 we focus on the two critical cases, examining the fast travelling wave solutions

(i.e. p = 0) and a slow travelling wave solution with p = 1
2 . We were motivated by the

findings of [27] where it was shown that the slow travelling wave solutions possess an

interstitial gap when α > 2 which ceases to exist for 0 < α ≤ 2. We prove the existence of

both the fast and slow travelling wave solutions and give a geometric interpretation of the

formal asymptotic analysis of the interstitial gap utilising geometric singular perturbation

theory to prove the persistence of the singular solution. We show that the width of the
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interstitial gap is determined by the distance between a layer transition of the tumour

and a dynamical transcritical bifurcation of two components of the critical manifold.

1.2.3 Reaction diffusion equations with a jump-type spatial defect

Heterogeneities can have an impact on the type of solutions, patterns formed and stability

conditions. For example, travelling waves may be pinned, reflected, annihilated or split

upon meeting the heterogeneity. See for example [100] where pinned solutions are shown

to exist for a three component FitzHugh-Nagumo type system. There has been activity in

the area of scalar equations, such as [14] which analyses the stability of pinned solutions

to the sine-Gordon equation with a jump inhomogeneity, [105] which considers scalar

reaction-advection-diffusion in periodic media, and [13, 64] which analyse the stability of

inhomogeneous wave equations. In contrast, there has been less work done on systems of

heterogeneous RDEs (see, however, [21, 46,98]).

In Chapter 4, we consider a general, heterogeneous, PDE of the form

ut = Duxx + f(u) +

⎧⎨⎩0 x < 0

εg(u) x ≥ 0
(1.3)

with u ∈ Rn, (x, t) ∈ (R,R+), D is a non-negative diagonal matrix, and f and g are

sufficiently smooth functions. In order to analyse the stability of stationary solutions

of heterogeneous PDEs we must first establish the existence and any assumptions or

conditions that arise from the existence problem must be taken into account in the stability

analysis. The existence equation for stationary solutions to (1.3) (i.e. ut = 0) can be

transformed into a first order system of ODEs which fits the more general form from [21]

u̇ =

⎧⎨⎩h(u) x ≤ 0,

h(u) + εj(u) x > 0,
(1.4)

where ̇= d/dx and h(u), j(u) : Rn → Rn are sufficiently smooth functions. The existence

of a heteroclinic orbit to (1.4), referred to as a defect solution, has been shown in [21]

under generic assumptions on h and j and under the assumption that the unperturbed

system u̇ = h(u) possesses a heteroclinic orbit. Homoclinic orbits may be considered

simply as a heteroclinic orbit with the same end points as x → ±∞.

The heteroclinic orbit in the homogeneous case is assumed to connect two hyperbolic

fixed points P− as x → −∞ and P+ as x → ∞. When ε ̸= 0 there exist perturbed fixed

points P±
ε which are O(ε) close to P± and have limε→0 P

±
ε = P± and x = 0. Without

loss of generality, it is assumed that the heteroclinic orbit in (1.4), if it exists, connects

the fixed point P− as x → −∞ to the perturbed fixed point P+
ε as x → ∞. In Chapter 4
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we further summarise these conditions, the existence results of [21] and begin to develop

the general theory for establishing the spectral stability of defect solutions to (1.3).

There are three types of defect solutions outlined in [21]. The first of these are trivial defect

solutions, see the leftmost image of Figure 1.2.3, which are, to leading order, constant

solutions P− = P+ in the unperturbed system with the defect occurring asymptotically

close to both end points. The heteroclinic orbit in the perturbed system connects P−

to P+
ε which is O(ε) away and the profile makes, at most, an O(ε) excursion from these

fixed points [21]. There exists a unique trivial defect solution and we can consider this as

a perturbation of the trivial solution in the homogenous case. Chapter 4 establishes the

conditions for stability of these trivial defect solutions.

Another type of solution, and the focus of both [21] and §5.4 as part of the ongoing

work, are local defect solutions, see the middle image of Figure 1.2.3. In these types of

solutions the defect occurs near either P+ or P−. The persistence or non-persistence of

the heteroclinic orbit from the unperturbed system is established in [21]. It is found that

the dimension of the problem and the nature of the linearised system near the end points

are key in the conditions for the existence of defect solutions. There may be a unique

local defect solution, a well-defined finite number of local defect solutions or a countably

infinite number [21]. The final type of defect solution, which are not considered in this

thesis are global defect solutions [21], see the rightmost image of Figure 1.2.3.

P−
P+

εP+

t = 0 t = 0
P−

P+
ε

P+
ε

P+

t = 0 x=0 x=0x=0

Figure 1.2.3: A depiction of three types of defect solutions. The defect occurs at the
point x = 0. Left: a trivial defect solution. Middle: a local defect solution. The defect
has occurred near P+

ε . Right: a global defect solution. Image is from A. Doelman, P. van
Heijster, and F. Xie. A geometric approach to stationary defect solutions in one space
dimension. SIAM Journal on Applied Dynamical Systems, 15:655–712, 2016 copyright
c⃝2016 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.

1.3 Spectral stability

We review some of the existing stability techniques in the context of second order systems

of equations in homogeneous media. These techniques are readily extendible to higher

order systems. The following overview is mainly based on [54] and [88] which contain

more detailed reviews of stability analysis techniques.
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1.3.1 Linearised operators

Consider a generic second order RDE

ut = Duxx + f(u), u ∈ RN , (1.5)

where D is an N ×N diagonal matrix with non-negative entries and f : RN → RN is a

sufficiently smooth function.

As we wish to focus on stability rather than existence, we make the assumption a solution

exists.

Hypothesis 1.1. The system (1.5) supports stationary solutions or travelling waves, i.e.

solutions that travel with a constant or zero speed and maintain their shape with respect

to time.

In the case of travelling wave solutions we pass to a moving frame via the change of

variables z = x− ct where c is the constant speed of the wave. Travelling wave solutions

to (1.5) are stationary solutions in this moving frame. We label the stationary solution

to (1.5) as û. In homogeneous media there will be a one parameter family of solutions to

(1.5) due to the translation invariance of solutions, i.e. if û(x) is a solution to (1.5) then

ũ := û(x+ κ) is also a solution.

We now linearise (1.5) about û via the substitution u(x, t) = û(x)+p(x, t) where p(x, t) ∈
Rn is a perturbation. Considering only first order perturbation terms we obtain the

linearised operator L : H1(RN ) → H1(RN );

pt = Lp := (D∂xx + Jf (û)) p, (1.6)

where Jf denotes the Jacobian of f(u) with respect to u and the Sobolev space H1(RN )

is the subset of once (weakly) differentiable functions such that both the function and its

weak derivative are in L2(RN ), i.e. square integrable. The eigenvalue problem associated

with (1.6) is

Lp = λp

with λ ∈ C.

Remark 1.3.1. The operator L in (1.6) is second order. However, we only require

p ∈ H1(RN ) implying a second order derivative need not exist necessarily. This is because

we consider weak solutions p to (1.6).

In particular, let φ be a test function, that is a smooth function with compact support. If

we multiply (1.6) by φ and integrate over the domain;∫︂ ∞

0

∫︂ ∞

−∞
ptφ−Dpxxφ− Jf (û)pφ dxdt = 0.



Chapter 1 8

We integrate the first term by parts in t (exchanging the order of integration), the second

by parts in x and leave the third term to obtain∫︂ ∞

0

∫︂ ∞

−∞
−pφt +Dpxφx − Jf (û)pφ dxdt = 0. (1.7)

A solution to (1.6) will also be a solution to (1.7) but there may be solutions p which

satisfy (1.7) for all test functions that are not twice differentiable. These are referred to

as weak solutions to (1.6). We refer to [9] for more details.

Definition 1.3.1. ([88] Definition 3.2) We say λ ∈ C is in the spectrum of the operator

L, denoted σ(L), if the operator L− λI, where I is the identity matrix, is not invertible,

i.e. the inverse does not exist or is not bounded.

We call the solution û spectrally stable if all λ ∈ σ(L) are contained in the left half plane,

i.e. the real part ℜ(λ) < 0 with the exception of λ = 0 which is the eigenvalue associ-

ated with the translational invariance of the solution. The spectrum of an operator falls

naturally into two parts; the essential spectrum, denoted σess(L) and the point spectrum,

denoted σpt(L) [41]. There are a few different ways in which an instability will manifest.

These instabilities are classified based on the manner in which a perturbation about a

steady state spreads in space and grows/decays in time. We follow the classifications

from [96]. An absolute instability is one where the norm of a perturbation, in a particular

(unweighted) function space, grows at every point where it is applied while a convective

instability is one where the perturbation moves as it grows, so the norm of the pertur-

bation decays at each spatial point with respect to time but grows in norm overall, see

Figure 1.3.1. If there are values of the spectrum in the right half plane in the unweighted

function space that are shifted into the open left half plane in a weighted space then the

steady state is referred to as transiently unstable with perturbations transmitted towards

spatial infinity, see §1.3.3 for details on weighted spaces. If there is no way to resolve

spectrum that has positive real part the steady state is referred to as remnant instabili-

ties. Note that the perturbed solution may decay to a translate of the original solution

due to the translation invariance of the solution. That is the solution û is still considered

stable if, when perturbed, it evolves to û(x + κ) rather than û(x). These solutions are

referred to as orbitally stable.
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Figure 1.3.1: Types of instabilities. The dotted curve represents a small perturbation
of a steady state of (1.5) and the arrows represent the direction of growth of the solid
black curves with respect to time. The leftmost graph depicts an absolute instability. An
absolute instability grows in norm with time at every spatial point where it is applied.
The middle graph depicts a convective instability that grows in one direction but decays in
norm with time at any specific spatial point. The right most graph depicts a convective
instability that grows in both directions but decays in norm with time at any specific
spatial point. This image was adapted from Figure 1. of [90] and Figure 2. of [96].

Much of the stability analysis we apply requires that the operator L is exponentially

asymptotic.

Definition 1.3.2. ([54] Definition 3.1.1) An nth order operator L of the form

Lp := ∂n
xp+ an−1(x)∂

n−1
x p+ · · ·+ a1(x)∂xp+ a0(x)p (1.8)

is called exponentially asymptotic if all of the coefficients aj are asymptotically constant,

i.e. if there exists r > 0 such that

lim
x→±∞

er|x||aj(x)− a±j | = 0,

where a±j := lim
x→±∞

aj(x) for j = 0, 1, ..., n− 1.

Definition 1.3.3. ([54] Definition 3.1.4) We define the asymptotic operator of (1.8)

L∞p := ∂n
xp+ a∞n−1(x)∂

n−1
x p+ · · ·+ a∞1 (x)∂xp+ a∞0 (x)p

where a∞j =

⎧⎨⎩a−j x < 0,

a+j x ≥ 0.

For simplicity, we assume we have a second order operator (n = 2) as is the case for our

generic RDE (1.6). It is more convenient to work with an equivalent first order system

of ODEs. To this end we take the eigenvalue problem Lp = λp and define the operator

T (λ), which is equivalent to L− λI, by expressing the eigenvalue problem as a system of

first order equations. This is done by introducing the variables qi = (pi)x for i = 1, . . . , N .
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We define the operator T (λ) : H1(RN )× L2(RN ) → H1(RN )× L2(RN ) by

T (λ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
...

pN

q1
...

qN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:=

(︃
d

dx
−A(x, λ)

)︃
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
...

pN

q1
...

qN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0, (1.9)

where A(x, λ) is a 2N×2N matrix and we use the notation p := (p1, . . . , pN , q1, . . . , qN )T

where convenient.

As in Definition 1.3.3, we define the asymptotic operator associated with T (λ) as

T∞(λ) :=

⎧⎨⎩d/dz −A−(λ) if z < 0,

d/dz −A+(λ) if z ≥ 0,
(1.10)

where A±(λ) := lim
z→±∞

A(z, λ).

Example 1. Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) example

Throughout this section we will use the prototypical FKPP equation as an illustrative

example. This second order, scalar (i.e. N = 1) equation was developed in [31, 65] to

model the invasion of a gene in a population. The existence and stability of travelling wave

solutions for this problem has been well studied, see for example [35, 88] and references

therein for an overview of known results. The non-dimensional FKPP equation is

ut = uxx + u(1− u), (1.11)

where x ∈ R, u ∈ R and t ∈ R+.

We pass to a moving frame z = x− ct, τ = t, where c is the speed of the travelling wave.

In this frame (1.11) becomes

uτ = uzz + cuz + u(1− u). (1.12)

It is well known that a family of travelling wave front solutions û(z) exist for this problem

for all non-negative wave speeds c with lim
z→−∞

û(z) = 1 and lim
z→∞

û(z) = 0. For c ≥ 2 these

wave fronts are non-negative, monotone and spectrally stable.

To derive this stability result we make the substitution u(z, τ) = û(z)+ p(z, τ) into (1.12)

where p(z, τ) is a small perturbation and û(z) the travelling wave solution. By considering

only leading order perturbation terms, we obtain the linearised operator

pτ = (∂zz + c∂z + 1− 2û)p,
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and define the associated second order operator L : H1(R) → H1(R) by

Lp = (∂zz + c∂z + 1− 2û)p. (1.13)

For the eigenvalue problem Lp = λp we set q := pz and define the operator T (λ) :

H1(R)× L2(R) → H1(R)× L2(R) by

T (λ)

(︄
p

q

)︄
:=

(︃
d

dz
−A(z, λ)

)︃(︄
p

q

)︄
= 0, with A(z, λ) :=

(︄
0 1

λ− 1 + 2û −c

)︄
. (1.14)

For (1.14) the asymptotic matrices are

A−(λ) =

(︄
0 1

λ+ 1 −c

)︄
and A+(λ) =

(︄
0 1

λ− 1 −c

)︄
.

In the next sections we will introduce the essential spectrum and two related concepts;

weighted spaces and the absolute spectrum. We will then introduce the point spectrum.

1.3.2 Essential spectrum

The essential spectrum provides information on the (in)stability of the asymptotic end

states of the stationary solution (which may be a travelling wave solution in a moving

frame). If part of the essential spectrum is in the right half plane, then the stationary

solution is unstable and there is a continuum of unstable modes. The essential spectrum is

found by analysing the dimensions of the unstable, stable and centre subspaces of A±(λ)

(1.10). A convenient measure of the size of these subspaces is the Morse index, i(A),

which for a constant matrix A is defined as the dimension of its unstable subspace, see

[54] Definition 3.1.9. So, for an asymptotic operator of the form of (1.10), we denote the

Morse indices i± := i(A±(λ)) := dim(Eu
±), where Eu

± denotes the unstable subspace of

A±(λ) respectively. We have the following definition for the essential spectrum;

Definition 1.3.4. ([54] Definition 3.1.11) We say λ ∈ σess(T∞), the essential spectrum

of T∞, if either

i. A+(λ) and A−(λ) are hyperbolic with a different number of unstable matrix eigenval-

ues, i.e. i+ − i− ̸= 0; or

ii. A+(λ) or A−(λ) has at least one purely imaginary matrix eigenvalue.

Due to the continuous dependence of the matrix eigenvalues on λ we have that the bound-

aries of the essential spectrum will consist of the values of λ that satisfy Definition 1.3.4

ii. These boundaries are the so-called dispersion relations which relate the temporal

eigenvalues λ to the spatial eigenvalues µ (which are the matrix eigenvalues of A±(λ)).
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We have from [54] Section 2.2 that the asymptotic operator T∞ is a relatively compact

perturbation of T and thus by Weyl’s theorem (see for example [54] Section 2.2) the

essential spectrum of T∞ and T coincide.

In general, we assume that the operator L (and therefore T ) is well-posed, i.e. there

exists some a0 ∈ R such that for all λ with ℜ(λ) > a0 we have λ /∈ σ(L). If there exist

values ℜ(λ) ≫ 1 in the spectrum then the stationary solution would be unstable to high

frequency perturbations [54].

Example 1. FKPP example continued

We return to the operator T (λ) from (1.14) and its associated asymptotic matrices. The

matrix eigenvalues of A−(λ) and A+(λ) are respectively

µ−
1,2 =

−c±
√︁
c2 + 4(λ+ 1)

2
and µ+

1,2 =
−c±

√︁
c2 + 4(λ− 1)

2
.

We take µ = ik where k ∈ R is a parameter, then the boundaries of the essential spectrum,

also called the dispersion relations, (Part ii of Definition 2.4.) are

λ = −k2 + ick − 1 (1.15a)

λ = −k2 + ick + 1 (1.15b)

These parametric equations divide the complex plane into three regions, see Figure 1.3.2.

Figure 1.3.2: The essential spectrum of the FKPP equation in the unweighted spaceH1(R)
for c = 2. In the region to the right of the parametric curves (1.15), labelled Ω1, we have
that ℜ(µ−

1 ) > 0 > ℜ(µ−
2 ) and ℜ(µ+

1 ) > 0 > ℜ(µ+
2 ). Thus, this region is not part of the

essential spectrum. In the interior of the region labelled Ω2 we have ℜ(µ−
1 ) > 0 > ℜ(µ−

2 )
and 0 > ℜ(µ+

1 ) ≥ ℜ(µ+
2 ). By Definition 1.3.4 i. Ω2 is part of the essential spectrum.

In Ω3, we have 0 > ℜ(µ−
1 ) ≥ ℜ(µ−

2 ) and 0 > ℜ(µ+
1 ) ≥ ℜ(µ+

2 ) so this region is also not
essential spectrum. The parabolic curves bounding Ω2 are the dispersion relations (1.15a)
and (1.15b) from left to right.
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Note in (1.15b) k = 0 gives λ = 1 for all values of c. This is the rightmost point of

the essential spectrum and as it is in the right half plane every wave is unstable in the

unweighted space H1(R), independent of the speed.

1.3.3 Weighted spaces

In many cases, such as in Example 1, the essential spectrum associated with a solution

contains purely imaginary values of λ and/or enters into the right half plane, implying in-

stability. However, often solutions can be found through numerical simulations, implying

some sort of stability. In [93] a cure proposed for this apparent contradiction is to work

in an appropriately weighted space. If we weight the space, we are restricting the types

of perturbations p(x, t) we allow to apply to the travelling waves or stationary solutions.

The weights shift the essential spectrum. If weights can be found that shift the essential

spectrum into the open left half plane then the wave is stable to perturbations that decay

at a rate faster than these weights (provided there are no values in the point spectrum

with positive real part). In numerical simulations the perturbations typically used have

compact support which is why the instability in the unweighted space is not observed;

the essential spectrum indicates the (in)stability of perturbations at ∞.

Let p̃(z, t) := eνzp(z, t) in the weighted space H1
ν (R) defined by the norm

∥p∥H1
ν
= ∥eνzp∥H1 = ∥p̃∥H1 .

In particular, we have that p ∈ H1
ν if p̃ ∈ H1 and q̃ ∈ L2

ν is defined similarly with respect

to q ∈ L2. If there exists ν that shifts the essential spectrum into the left half plane

(provided there are no values in the point spectrum with positive real part) then we say

the travelling wave solution is stable in H1
ν (R). This substitution transforms (1.9) into

Tν(λ)
(︄
p

q

)︄
:=

(︃
d

dz
− (A(z, λ) + νI)

)︃(︄
p

q

)︄
= 0,

where I is the 2N × 2N identity matrix and A(z, λ) is defined as before. We now cal-

culate the weighted essential spectrum, denoted σν
ess, defined as those values for which

(A±(λ) + νI) have a different number of eigenvalues, Definition 1.3.4. The characteristic

equation of (A+(λ) + νI) is given by

det
(︁
A+(λ) + νI − µ+I

)︁
= 0,

where µ+ is the spatial/matrix eigenvalue of A+(λ). The boundaries of the weighted

essential spectrum are the values of λ such that µ+ = ik + ν. That is, we are now

comparing the magnitude of the real part of the spatial eigenvalue to the value ν rather

than zero. This has the effect of shifting the essential spectrum.
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By weighting the space, we are restricting our perturbations that grow and decay at a

rate greater than ν as z → ±∞. The sign of ν also indicate which asymptotic state of the

wave is more sensitive to perturbations. For instance, if ν > 0 then the weight penalises

perturbations as z → ∞, while allowing for perturbations that grow slower than e−νz as

z → −∞. We note that we can also use a two-sided weight

ν =

⎧⎨⎩ν− if z < 0,

ν+ if z > 0,

which requires that the perturbation must decay exponentially in both directions.

Example 1. FKPP example continued

If we make the substitution

(︄
p̃

q̃

)︄
:= eνz

(︄
p

q

)︄
then the asymptotic operator associated with

(1.14) becomes

Tν(λ)
(︄
p

q

)︄
=

(︃
d

dz
− (A±(λ) + νI)

)︃(︄
p

q

)︄
= 0.

The characteristic equations (A±(λ) + νI) are

from A−(λ) + νI : (µ− ν)2 + c(µ− ν)− λ− 1 = 0

from A+(λ) + νI : (µ− ν)2 + c(µ− ν)− λ+ 1 = 0.

If we once again set µ = ik the boundaries of the weighted essential spectrum are

λ = −k2 − 2ikν + ν2 + ick − cν − 1 and λ = −k2 − 2ikν + ν2 + ick − cν + 1.

The rightmost points of these boundaries are found when k = 0 and these points are

ν(ν − c) ± 1. These points are the most negative when ν = c
2 . For this value of ν the

boundaries of the weighted essential spectrum are

λ = −1− c2

4
− k2 and λ = 1− c2

4
− k2.

These boundaries correspond to the optimally weighted essential spectrum and, in this

case, coincide with the absolute spectrum. Furthermore, for c > 2, these boundaries are

real with λ < 0, ∀k ∈ R.

1.3.4 Absolute spectrum

Another important concept is that of the absolute spectrum, denoted σabs. For this we

again follow the definitions from [54, 88]. The absolute spectrum is not spectrum in the

usual sense as it does not arise from the definition that L is not invertible (Definition
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1.3.1) but it provides important information about stability and gives an indication of

how far the essential spectrum can be weighted. If the absolute spectrum moves into

the right half plane when a parameter is changed then the essential spectrum cannot be

weighted into the left half plane indicating the onset of an absolute instability.

For our generic operator T (λ) = d/dz − A(z, λ), whose asymptotic matrices A±(λ) are

2N × 2N , the well-posedness assumption states that λ ∈ C with ℜ(λ) ≫ 1 is not part

of the spectrum, thus dim(Eu
−) = dim(Eu

+) =: j where Eu
± are the unstable subspaces of

A±(λ) respectively. We have the following definition for the absolute spectrum.

Definition 1.3.5. For λ ∈ C we rank the 2N spatial eigenvalues of A±, labelled µ±
i for

i = 1, ..., 2N , by the magnitude of their real parts, i.e.

ℜ(µ±
1 (λ)) ≥ ℜ(µ±

2 (λ)) ≥ . . . ≥ ℜ(µ±
j (λ)) ≥ ℜ(µ±

j+1(λ)) ≥ . . . ≥ ℜ(µ±
2N (λ)).

We say λ is in the absolute spectrum of T , denoted σabs(T ) if either ℜ(µ+
j (λ)) = ℜ(µ+

j+1(λ))

or ℜ(µ−
j (λ)) = ℜ(µ−

j+1(λ)).

If λ /∈ σabs(T ) then there exists ν± ∈ R such that ℜ(µ+
j (λ)) > ν+ > ℜ(µ+

j+1(λ)) and

ℜ(µ−
j (λ)) > ν− > ℜ(µ−

j+1(λ)). This means that if λ /∈ σabs(T ) then there exists a

weight such that λ is not in the weighted essential spectrum. Values of λ such that

ℜ(µ+
i ) = ℜ(µ+

i+1) or ℜ(µ−
i ) = ℜ(µ−

i+1) for i ̸= j are referred to as the generalised absolute

spectrum [54,88]. We also note that the absolute spectrum is unaffected by weighting the

space.

In the case N = 1, i.e. scalar 2nd order equations, the asymptotic matrices A±(λ) are

2×2 and the definition of the absolute spectrum simplifies immensely. Notably, for scalar

equations, there is no generalised absolute spectrum. Nonetheless, it is worthwhile to

consider the statement of Definition 1.3.5 in the scalar case. That is, ‘For a 2× 2 system

(such as Example 1) the absolute spectrum is defined as the values of λ ∈ C where the

real parts of the spatial eigenvalues, µ−
1,2 of A−(λ) are equal or the real parts of the spatial

eigenvalues, µ+
1,2 of A+(λ) are equal.’

Example 1. FKPP example continued

The absolute spectrum consists of λ ∈ C such that either µ−
1 = µ−

2 or µ+
1 = µ+

2 . We have

µ−
1 = µ−

2 when λ is on the real line with λ ≤ −c2

4 − 1 and µ+
1 = µ+

2 when λ is on the real

line with λ ≤ −c2

4 + 1. Thus, we have

σabs =

{︃
λ : Im(λ) = 0 and λ ≤ −c2

4
+ 1

}︃
. (1.16)

Note that the minimum wave speed c = 2 corresponds to σabs = (−∞, 0]. For c < 2 the

absolute spectrum enters into the right half plane corresponding to the onset of absolute

instability.
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1.3.5 Point spectrum

The point spectrum consists of isolated eigenvalues with finite multiplicity [88]. For

λ ∈ σpt the null space of L− λI (1.8) (equivalently of T (λ) (1.9)) is non-trivial and finite

dimensional and as λ is isolated L− λI is invertible in a δ-neighbourhood of λ, except at

λ.

ν = 0

ν = 1

ν = 2

Figure 1.3.3: Weighted essential spectrum for the FKPP model with c = 4 and various
weights. The unweighted essential spectrum (ν = 0) is shown with blue solid boundary
curves and a weighted essential spectrum with weight ν = 1 is shown with dashed bound-
ary curves. For these parameter values the absolute spectrum (red solid line) is λ ∈ R
with λ ∈ (−∞,−3]. The weighted essential spectrum with ν = 2 coincides with the ab-
solute spectrum. The associated travelling wave solution is potentially spectrally stable
in H1

1(RN ) × L2
1(RN ) and H1

2(RN ) × L2
2(RN ) but is unstable in H1(RN ) × L2(RN ) (the

unweighted space). The lack of point spectrum in the right half plane must be established
before spectral stability in the weighted spaces can be concluded for the FKPP travelling
waves. We do not examine the point spectrum of the FKPP in this thesis.

To locate the point spectrum, we look for non-trivial solutions in the kernel of (1.9). That

is, we look for p ∈ H1(RN )× L2(RN ), or an appropriately weighted space, such that

p′ = A(x;λ)p (1.17)

where p := (p1, . . . , pN , q1, . . . , qN )T as before.

Definition 1.3.6. A value λ ∈ C\σess(L) is a temporal eigenvalue of L if we can find a

non-trivial solution to (1.17) in H1(RN ) × L2(RN ). The function p will be the temporal

eigenfunction corresponding to λ.
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For p to be a solution to (1.17) it will necessarily decay to zero as x → ±∞. For non-

trivial solutions this can only happen in a specific way. For example, for x ≪ 0 the system

(1.17) behaves like

p′ = A−(λ)p

and for λ /∈ σess we have that A−(λ) is hyperbolic. Thus, only solutions in the unstable

subspace of A−(λ) can decay to zero as x → −∞.

From [35] we have the following proposition.

Proposition 1.3.2. For λ ∈ C\σess(L), if p is a solution to (1.17) with p ∈ H1(RN ) ×
L2(RN ) then we have

lim
z→−∞

p → Eu
− and lim

z→∞
p → Es

+

where Eu
− is the unstable subspace of A−(λ) as z → −∞ and Es

+ is the stable subspace of

A+(λ) as z → ∞.

One important feature of the point spectrum is that it is unaffected by weights, i.e. the

location of a temporal eigenvalue λ cannot be changed. If λ is an eigenvalue in the point

spectrum with eigenvector p then p̃ = eνzp is also an eigenfunction in the sense that

it is a solution to the eigenvalue problem. However, this eigenfunction may not exist

in the weighted space. We consider such values λ as temporal eigenvalues regardless of

the weight used to shift the essential spectrum. Furthermore, if the essential spectrum

is shifted so it encompasses λ, then λ is no longer isolated and so does not meet our

definition of a temporal eigenvalue. We will refer to values λ that are encompassed by the

essential spectrum in the unweighted space but isolated in a weighted space as a temporal

eigenvalue of that weighted space.

The value λ = 0 is an eigenvalue in the point spectrum with eigenfunction ∂xû. If λ = 0

is not encompassed by the essential spectrum (in a weighted or unweighted space) and

∂xû exists in the function space then λ = 0 is a value in the point spectrum. Taking a

solution û to (1.5) we consider p = ûx in the eigenvalue problem Lp = λp associated with

(1.6). As L = Dûxx + Jf (û), this gives

D(ûx)xx + Jf (û)ûx = (Dûxx + f(û))x = 0. (1.18)

So λ = 0 is an eigenvalue with eigenfunction ∂xû. This eigenfunction is associated with

the translation invariance of the problem.
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1.3.6 The Evans function

The Evans function is an analytic tool for locating the point spectrum and it was originally

developed by Evans to study nerve impulses [23–26]. The Evans function was used and

further developed in [50] to study the stability of travelling wave solutions to the Fitzhugh-

Nagumo model. It was further extended in [2] where it was used to study the stability of

travelling wave solutions to a singularly perturbed system of RDEs.

For (1.10) we denote the unstable eigenspace associated with A−(λ) as Eu
− and similarly

the stable subspace of A+(λ) as Es
+. We define the largest connected component to the

right of the essential spectrum as Ω1. By the well-posedness assumption the region Ω1

contains λ ∈ C with ℜ(λ) ≫ 1, see Figure 1.3.3 for an example. This region Ω1 is the

natural domain of the Evans function. On Ω1 the matrices A±(λ) are hyperbolic with the

same number of unstable eigenvalues. This means we must have dim(Eu
−)+dim(Es

+) = 2N

on Ω1. Let dim(Eu
−) = j and dim(Es

+) = 2N − j with 0 ≤ j ≤ 2N .

The Evans function is a Wronskian and for our generic second order system (1.6) it is

defined as

E(λ) := det
(︂
W1, . . .Wj ,Wj+1, . . . ,W2N

)︂
(1.19)

where Wi for i = 1, . . . , j are linearly independent solutions to (1.17) that decay to Eu
−

as x → −∞ and Wi for i = j + 1, . . . , 2N are linearly independent solutions to (1.17)

that decay to Es
+ as x → ∞. The Evans function is analytic on Ω1 [88] and for λ ∈ Ω1

the Evans function has the following properties

Theorem 1.3.3. ([88] Theorem 4.1):

– E(λ) is real if λ is real,

– E(λ) = 0 if and only if λ is a point eigenvalue,

– The order of λ as a root of the Evans function corresponds to the algebraic multi-

plicity of λ as an eigenvalue.

Thus, we locate the point spectrum in Ω1 as the zeros of the Evans function. As the

solutions Wi for i = 1, ..., j are linearly independent they form a basis of Eu
−, similarly

the solutions Wi for i = j + 1, ..., 2N form a basis of Es
+. This choice of basis is not

unique, however, the Evans function in two different bases will differ only by a non-zero

function. This non-zero function corresponds to the determinant of a change of basis

matrix. So, while the Evans function is dependent on the choice of basis, the zeros of the

Evans function (i.e. the location of the point spectrum) are unaffected.

Remark 1.3.4. The Evans function can be extended into the essential and absolute spec-

trum on an appropriate Riemann surface, see [54–56]. Zeroes of the Evans function on
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this extended domain give additional information about the transition from stable solu-

tions to unstable ones by indicating where/whether new point spectrum will emerge under

perturbations.

1.4 Geometric Singular Perturbation Theory

Many systems, especially those modelling natural processes, evolve according to time or

length scales that differ on many orders of magnitude. A logical first step is to assume

that the processes that evolve relatively slowly are constant or to assume the relatively

fast processes are instantaneous. However, this leading order approach only works for

regularly perturbed problems. In the case of a singularly perturbed problem a leading

order approach results in a reduction of order of the problem and significant information

is lost. Our aim is to construct the stationary solutions or travelling wave solutions to

these singularly perturbed problems. The existence equation associated with singularly

perturbed RDEs can often be written in the form

εẋ = f(x, y, ε), ẏ = g(x, y, ε), (1.20)

where ̇= d/dτ , x ∈ Rn, y ∈ Rm and 0 < ε ≪ 1. This formulation is referred to as the slow

problem, the variable x is referred to as the fast variable and y is referred to as the slow

variable. Taking the ε → 0 limit is equivalent to assuming the change in the fast variable

is instantaneous. However, in taking the ε → 0 limit we lose the information pertaining

to the fast transition and flow is restricted to the set f(x, y, 0) = 0. The singular (ε → 0)

limit of (1.20) is referred to as the reduced problem and is given by,

0 = f(x, y, 0), ẏ = g(x, y, 0). (1.21)

An alternative method is to rescale the area in which the fast transition occurs by setting

t = τ
ε , i.e.

x′ = f(x, y, ε), y′ = εg(x, y, ε), (1.22)

where ′ = d/dt. This formulation is referred to as the fast problem. Taking the ε → 0

limit of the fast problem is equivalent to assuming the slow variable y is constant. The

singular limit of (1.22) is referred to as the layer problem and is given by,

x′ = f(x, y, 0), y′ = 0. (1.23)

The singular limits of (1.20) and of (1.22) contain crucial information and each describes a

different aspect of the dynamics. GSPT is a useful tool for singularly perturbed problems,

giving a geometric approach for obtaining an approximation to solutions that capture both

the slow and fast dynamics utilising these singular limits. The fundamental tool used in
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GSPT is the invariant manifold theory developed by Fenichel [29,30] which has been used

extensively for problems with a clear time scale separation, see for instance [39, 51, 53]

which provide in depth introductions to GSPT. In this section we will cover Fenichel’s

three main theorems and demonstrate the use of GSPT with an example.

1.4.1 Fenichel Theory and GSPT

We refer to f(x, y, 0) = 0 as the critical manifold, which we denote M0. The critical

manifold is normally hyperbolic if the Jacobian of f(x, y, 0) with respect to the fast variable

x, restricted to M0, only has eigenvalues with non-zero real part. We denote the unstable

and stable manifold associated with the manifold M0 as Wu,s(M0) respectively.

We include Fenichel’s three theorems below. The theorems below can be found, with

minor stylistic changes, in, for example, [39, 51,53].

Theorem 1.4.1. Fenichel’s First Theorem Suppose the critical manifold M0 is com-

pact and normally hyperbolic. Further, suppose f and g are smooth. Then, for 0 < ε ≪ 1

sufficiently small, there exists a manifold Mε diffeomorphic to and given to leading order

in ε by, M0, that is locally invariant under the flow of the full problem (1.20).

Theorem 1.4.2. Fenichel’s Second Theorem Suppose the critical manifold M0 is

compact, possibly with boundary, and normally hyperbolic, and suppose f and g are

smooth. Then for ε sufficiently small, there exist manifolds Ws(Mε) and Wu(Mε),

that are close and diffeomorphic to Ws(M0) and Wu(M0), respectively. The manifolds

Ws(Mε) and Wu(Mε) are locally invariant under the flow of (1.20).

Theorem 1.4.3. Fenichel’s Third Theorem Suppose M0 is compact, possibly with

boundary, and normally hyperbolic, and suppose f and g are smooth. Then, for every

vε ∈ Mε with ε > 0 sufficiently small, there is an n-dimensional manifold Ws(vε) ⊂
Ws(Mε), and an m-dimensional manifold Wu(vε) ⊂ Wu(Mε), that are O(ε) close to,

and diffeomorphic, to Ws(v0) and Wu(v0), respectively. The families {Wu,s(vε)|vε ∈ Mε}
are invariant in the sense that

Ws(vε) · t ⊂ Ws(vε · t),

for all t > 0, and

Wu(vε) · t ⊂ Wu(vε · t)

for all t < 0, where t is an evolution parameter. That is, if vε = v(0) then vε · t = v(t).

Often, the critical manifold M0 under consideration is not necessarily compact, but the

compactification of the manifold is usually straightforward; we consider a compact subset

of M0 with a boundary well outside of our domain of interest (i.e. a boundary well outside

of the asymptotic limits of our singular solutions).
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Example 2. This example is a special case of the equation studied in [20,99,101]. While

the existence and stability of this system is known, we use it throughout this section to

demonstrate the use of GSPT. Consider

ut = ε2uxx + u− u3 + ε(αv + γ), vt = vxx + u− v, (1.24)

where 0 < ε ≪ 1. We seek stationary solutions to (1.24) and so set ut = vt = 0 and

express the equations as a system of first order ODEs using the substitutions ux =: p and

vx =: q:

εu′ = p, v′ = q,

εp′ = u3 − u− ε(αv + γ), q′ = v − u, (1.25)

where ′ = d/dx. This is the slow system and x the slow scale. Taking ε → 0 gives

p = 0, u3 − u = 0. (1.26)

Making the substitution ξ = x
ε in (1.24) gives

u̇ = p, v̇ = εq,

ṗ = u3 − u− ε(αv + γ), q̇ = ε(v − u), (1.27)

where ̇= d/dξ. This is the fast system and ξ the fast scale. Taking ε → 0 gives

u̇ = p, v̇ = 0,

ṗ = u3 − u ,q̇ = 0. (1.28)

So v = v0 and q = q0 are constant. The fast and slow systems ( (1.27) and (1.25),

respectively) are equivalent for ε ̸= 0 and solutions to (1.26) are the fixed points to (1.28)

however, they are not equivalent in the ε → 0 limit as (1.25) with ε = 0 is not defined

away from these fixed points, i.e. the limit ε → 0 is singular.

We have three critical manifolds of fixed points for ε = 0:

M±
0 := {p = 0, u = ±1, v, q ∈ R} , M0

0 := {p = 0, u = 0, v, q ∈ R} . (1.29)

M±
0 are normally hyperbolic, i.e. if we take any point on either manifold the Jacobian of

(1.28) has one positive and one negative eigenvalue. Points on M0
0 are centres and as we

are looking for heteroclinic or homoclinic solutions we do not consider this manifold. If we

assume v and q are bounded we can take M±
0 to be compact. We can thus use the theory

of Fenichel [29], [30] which states there exists perturbed manifolds M±
ε with unstable and

stable manifolds that are O(ε) close and diffeomorphic to M±
0 and its unstable and stable

manifolds respectively. M±
ε is locally invariant under the flow of (1.27) (ε ̸= 0). We
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expand u(x) = u0(x) + εu1(x) +O(ε2) and similarly for p(x) and match order ε terms in

(1.25) to find the perturbed manifolds

M±
ε :=

{︃
p = O(ε2), u = ±1 + ε

(αv + γ)

2
+O(ε2), v, q ∈ R

}︃
.

We now look for solutions that are O(ε) close to either M±
ε except in a localised region.

As one example we look for a solution that approaches the unstable manifold of M−
ε as

x → −∞ and the stable manifold of M+
ε as x → ∞. This solution will have a slow-fast-

slow structure. We label these parts I, II and III respectively. To fulfil the asymptotic

conditions u = −1, to leading order, on part I and u = 1, to leading order, on part III.

The equation for v, to leading order, in the slow variable x is then

vxx =

⎧⎨⎩v + 1 if x < −√
ε

v − 1 if x >
√
ε.

We apply the boundary conditions that v is finite as x → ±∞ and by symmetry v → 0 as

x → 0. The solution for v is then

v =

⎧⎨⎩ex − 1 if x < −√
ε

e−x + 1 if x >
√
ε.

On part II we assume v is a constant with respect to the fast variable ξ (this can be shown

integrating q over all of ξ to show ∆v = O(ε)). Thus, the equation for u becomes

uξξ = u3 − u and u = tanh

(︃
ξ√
2

)︃
.

There is a Hamiltonian associated with (1.25) for ε = 0;

H =
1

2
(u2 + p2)− 1

4
(u4 + 1).

Thus, the solutions to (1.25) are level sets of the above Hamiltonian. Our problem with

0 < ε ≪ 1 is then a perturbed Hamiltonian problem and we can show a solution exists

by showing the solution on the two manifolds (the Hamiltonian restricted to M±
ε ) on the
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same level set are equal to leading order of ε.

∆H = H|M+
ε
− H|M−

ε
= O(ε2) (1.30)

But we also have

∆H =

∫︂ 1√
ε

− 1√
ε

dH

dξ
dξ =

∫︂ 1√
ε

− 1√
ε

εp(αv + γ) +O(ε2)dξ,

and since v = 0 in the fast system, we have

∆H = εγ

∫︂ 1√
ε

− 1√
ε

p dξ +O(ε
√︁
(ε)) = 2εγ +O(ε

√︁
(ε)). (1.31)

By equating powers of ε in (1.30) and (1.31) we have γ = 0 as a condition for existence of a

solution of this form to the (1.24). The expressions for ∆H are Melnikov type calculations

(see [51]) for which v = 0 is a simple zero. Thus, the intersection of the unstable and

stable manifolds of M−
ε and M+

ε , respectively, is transversal. This is sufficient to show

the solution (which is in this intersection) persists under perturbation by ε, as long as

γ = 0.

We must establish the conditions for existence of solutions and perform our stability

analysis under these conditions. Additionally, many of the ideas and procedures from

GSPT are used in the Non-local eigenvalue problem (NLEP) approach [17–19]. The

NLEP approach is covered in §3.6.1 as part of future work.

1.5 Outline and original contributions

This thesis is comprised of a combination of published and unpublished work. The main

goal of this work was to develop the theory and techniques for the existence and stability

analysis of some non–standard RDEs.

The contents of Chapter 2 concern the spectral stability of a Keller-Segel model for

bacterial chemotaxis with no growth or decay of the chemoattractant or the bacterial

population and a logarithmic chemotactic function. The majority of the contents of this

chapter were published across two manuscripts, listed below.

• P.N. Davis, P. van Heijster, and R. Marangell. Absolute instabilities of travelling

wave solutions in a Keller–Segel model. Nonlinearity, 30:4029–4061, 2017 ([10] in

reference list).

• P.N. Davis, P. van Heijster, and R. Marangell. Spectral stability of travelling wave

solutions in a Keller–Segel model. Appl. Numer. Math., 141:54–61, 2018 ([11] in

reference list).
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The first manuscript was primarily concerned with the essential spectrum and the ab-

solute spectrum. In this manuscript, we provide a full analysis and classification of the

essential and absolute spectrum. The main result of the manuscript is that travelling

wave solutions are transiently unstable for a small range of the chemotactic parameter

before a bifurcation to an absolutely unstable regime. In the second manuscript we com-

plete the spectral results by proving that the origin λ = 0 is an eigenvalue in the point

spectrum with multiplicity two for all parameter values in the model with sublinear or

constant consumption rate of the chemoattractant. This chapter clarifies the nature of

the instabilities in the Keller-Segel model. Moreover, the spectrum of the linearised oper-

ator about the travelling waves is non–standard in that the leading edge of the absolute

spectrum crosses into the right half plane away from the real axis. In many well studied

problems the absolute spectrum consists of values that are purely real, for example, the

FKPP equations shown in Example 1 above, or purely imaginary, for example, the non-

linear Schrödinger equation. The structure of the absolute spectrum of the Keller-Segel

model is somewhat reminiscent of the example in [85] which was constructed to have such

non–standard absolute spectrum.

Author contributions for [10,11]

• All authors participated in useful discussions pertaining to the set-up of the problem,

the interpretation and presentation of results.

• P.N. Davis (candidate) was primary author for both [10, 11], performed the calcu-

lations, interpretations and presentation in [10] and in collaboration performed the

calculations, interpretations and presentation in [11]. The candidate also acted as

corresponding author for [10].

• P. van Heijster guided and supervised the research, checked the analytic calcu-

lations, assisted with interpretation and presentation in [10] and in collaboration

performed the calculations, interpretations and presentation in [11]. He also proof-

read and edited the manuscripts.

• R. Marangell guided and supervised the research, checked the analytic calculations,

assisted with interpretation and presentation in [10, 11] and in collaboration per-

formed the calculations, interpretations and presentation in [11]. He also proofread

and edited the manuscripts and acted as corresponding author for [11].

The contents of Chapter 3 concern the proof of the existence of heteroclinic solutions in

the Gatenby-Gawlinski model for tumour invasion with the acid-mediation hypothesis.

The majority of the contents of this chapter was submitted as the following manuscript.

• P.N. Davis, P. van Heijster, R. Marangell, and M.R. Rodrigo. Traveling wave solu-

tions in a model for tumor invasion with the acid-mediation hypothesis. Submitted,

2018 ([12] in reference list).
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Numerical simulations by M.R. Rodrigo had shown the existence of both slow and fast

(in terms of wave speed) travelling waves and, in certain parameter regimes, the existence

of an ‘interstitial gap’-a region mostly devoid of cells ahead of the invading population of

tumour cells. The main goal of this project was to prove the existence of these travelling

wave solutions from a dynamical systems perspective and to explain the existence and

width of the interstitial gap. The differing timescales in the model allowed for a GSPT

approach and we use this approach to prove the existence of the travelling wave solu-

tions, give a leading-order approximation based on the singular limit of the slow and fast

problems and prove the persistence of these approximations in the full system. It was

through the use of GSPT that we were able to give a mathematical explanation of the

interstitial gap: the width of the interstitial gap is determined by the distance between

a layer transition of the tumour and a dynamical transcritical bifurcation of two compo-

nents of the critical manifold. The existence of this dynamical transcritical bifurcation

is non–standard as the loss of normal hyperbolicity means that Fenichel theory does not

apply at the bifurcation. We prove the persistence of solutions as the trajectories cross

the bifurcation and conclude the chapter with some open questions and suggestions for

future work.

Author contributions for [12]

• All authors participated in useful discussions pertaining to the set-up of the problem,

the interpretation and presentation of results.

• P.N. Davis (candidate) was primary author for the main section (and calculations

therein) §3.5 The candidate also co-authored the set-up of the GSPT problem,

§3.3, and participated in discussions of and analysis of all remaining sections. The

candidate acted as corresponding author, checked the analytic calculations and up-

dated the manuscript for consistency with her thesis. The candidate also wrote

§3.1 extended §3.6 for inclusion in her thesis. She also proofread and edited the full

manuscript.

• P. van Heijster was primary author for the sections §3.2 and §3.3 and co-authored

sections §3.4 and §3.6 with the candidate. He participated in discussions of and

analysis of the all sections. He also proofread and edited the manuscript.

• R. Marangell assisted with the set-up of the problem, participated in discussions of

and analysis of the all sections, checked the analytic calculations. He also proofread

and edited the manuscript.

• M.R. Rodrigo wrote the more biologically motivated components of the introduc-

tion §3.2 and conclusion §3.6, participated in discussions of and analysis of the all

sections, performed the numerical simulations and generated the figures of travelling

wave profiles. He also proofread and edited the manuscript.
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Chapter 4 regards the stability of defect solutions, following on from the existence results

of [21] by A. Doelman, P. van Heijster and F. Xie. In this chapter we formulate the Evans

function for the model (1.3). For the trivial defect solution, we calculate the leading order

Evans function as well as the first and second order correction terms for a scalar PDE

example. From this we prove that the roots of the Evans function are given, to leading

order, by the branch points of the absolute spectrum of the associated homogeneous

problem. Furthermore, we show that any point spectrum that emerges as a result of the

inclusion of the defect is within O(ε) of the branch points. The candidate (P.N. Davis) is

the primary author for this chapter and this work has been done under the supervision

and guidance of P. van Heijster and R. Marangell.

Author contributions for Chapter 4

• All authors participated in useful discussions pertaining to the set-up of the problem,

the interpretation and presentation of results.

• P.N. Davis (candidate) was primary author for this chapter and performed the

calculations therein.

• P. van Heijster guided and supervised the research, checked the analytic calcula-

tions, proofread and edited the Chapter.

• R. Marangell guided and supervised the research, checked the analytic calculations,

proofread and edited the Chapter.

The thesis concludes with a discussion and summary of the results, open questions and the

future directions of research. Specifically, we are interested in the dynamical implications

of the Keller-Segel model’s spectral instability, the nonlinear stability of solutions to

the Keller-Segel model, extensions and generalisations of both the Keller-Segel model

and the Gatenby-Gawlinski model and the stability of the travelling wave solutions to

the Gatenby-Gawlinski model. Current and future work also includes generalising the

Evans function approach to the stability of the trivial defect solution to encompass the

n−dimensional trivial defect solution, local defect solution and the application to known

problems with the addition of defects; the Fitzhugh-Nagumo model and the extended

Fisher-Kolmogorov model.
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The spectral stability of a Keller-Segel model with logarithmic

chemosensitivity

2.1 Preface

The contents of this chapter were published across two manuscripts, [10] and [11]. For the

sake of presentation, the introduction, set-up and conclusion sections have been merged.

Sections §2.4 to §2.6, in combination with parts of the introduction, set-up and conclusion

sections, were published in [10] whilst §2.7, in combination with parts of the introduction,

set-up and conclusion sections, was published in [11].

2.1.1 Abstract

We investigate the spectral stability of travelling wave solutions in a Keller-Segel model

of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sub-

linear, or linear consumption rate. Linearising around the travelling wave solutions, we

first locate the essential and absolute spectrum of the associated linear operators and find

that all travelling wave solutions have essential spectrum in the right half plane. However,

we show that in the case of constant or sublinear consumption there exists a range of pa-

rameters such that the absolute spectrum is contained in the open left half plane and the

essential spectrum can thus be weighted into the open left half plane. For the constant

and sublinear consumption rate models we also determine critical parameter values for

which the absolute spectrum crosses into the right half plane, indicating the onset of an

absolute instability of the travelling wave solution. We observe that this crossing always

occurs off of the real axis. We then investigate the point spectrum associated with the

travelling wave solutions. We show that, for constant or sublinear consumption, there is

an eigenvalue at the origin of order two. This is associated with the translation invari-

ance of the model and the existence of a continuous family of solutions with varying wave

speed. The full spectral analysis implies that the travelling wave solutions are absolutely

unstable if the chemotactic coefficient is above the critical value, while they are transiently

unstable otherwise.

27
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2.2 Introduction

2.2.1 The Keller-Segel model

A general Keller-Segel model of chemotaxis is

ut = εuxx − αwum + κu,

wt = δwxx − β (Φx(u)w)x ,
(2.1)

with (x, t) ∈ (R,R+). The model represents the directed movement of a cell species w,

such as a bacterial population, governed by the gradient of a chemical u. The function

Φ(u) is the so-called chemotactic function. We take (x, t) ∈ R×R+, with α, κ ≥ 0,m ∈ R,
and β, δ > 0 and assume that the diffusion of the chemical is taken to be much smaller

than that of the bacteria, i.e. 0 ≤ ε ≪ δ.

Originally proposed by Keller and Segel in the 1970’s (see [60,61]) much of the focus in the

literature has been on the so-called minimal Keller-Segel model (see, for example, [45,52]

and references therein, as well as the review paper [44]). This is (2.1) with a chemotactic

function of the form Φx(u) = u and κ = 0 (representing no growth of the chemical in the

absence of the bacteria). The minimal Keller-Segel model admits solutions that blow-up

in finite or infinite time [44]. As blow-up solutions are not biologically feasible, efforts

have been made to prevent, or bound, blow-up solutions in the minimal Keller-Segel model

by appending the model; for instance by selecting an appropriate growth term [66], by

bounding the chemotactic function [45], or by incorporating nonlinear diffusivity [103].

Alternatively, by moving away from the minimal Keller-Segel model, one can find travel-

ling wave solutions by the choice of a singular chemotactic function [61,94]. The literature

predominantly discusses the case when the growth term κ = 0, and when Φ(u) = log(u)

[22,28,49,59,61,94]. For instance, it was shown in [61,94] that, in the absence of a growth

term for the bacterial population w, the chemosensitivity function must be singular for

travelling wave solutions to exist. In this chapter, we consider such a Keller-Segel model:

ut = εuxx − αwum,

wt = δwxx − β
(︂wux

u

)︂
x
.

(2.2)

The condition β/δ +m > 1 is necessary for finite solutions [61]. It has been shown that

for m > 1 and m < 0, (2.2) admits no travelling wave solutions [94, 103], thus we take

0 ≤ m ≤ 1. When 0 ≤ m ≤ 1, there are two main cases; first, for 0 ≤ m < 1, the

model supports a travelling front of the chemical attractant coupled with a travelling

pulse for the bacterial population [80,103]. This has been used to model travelling bands

of bacteria [43, 82]. When m = 1, (2.2) supports a pair of travelling fronts and has been
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used to model the boundary behaviours of populations of bacteria [81]. See Figure 2.3.1

for plots of travelling wave solutions in these two cases.

While the existence of travelling wave solutions to (2.2) has been studied since the model’s

inception, stability analysis of these travelling wave solutions has been comparatively

limited. A typical first step in the stability analysis of travelling wave solutions is to

linearise around the travelling wave solution and to compute the spectrum of the resulting

linearised operator. For travelling wave solutions in (2.2), with ε = m = 0, the essential

spectrum (see Definition 2.3.2) of the associated linear operator, dealing with instabilities

at infinity, was located in [80]. It was shown that the essential spectrum always intersects

the right half plane and so the waves are (spectrally) unstable. It is possible to shift the

essential spectrum using weighted function spaces, see §2.3.3. In [80] a weighted function

space was considered for a range of weights and it was shown that in this range the

spectrum remains unstable. However, the reason for restricting weights to a small range

is unclear. These results were generalised in [103] for 0 ≤ m ≤ 1. In [35], (2.2) was studied

with m = 0 = ε and it was shown, via a numerical Evans function computation, that the

point spectrum of L0
0 contains no eigenvalues with positive real part for complex values

with norm up to O(109). In addition, it was shown that the origin is a second order root

of the Evans function and hence is an eigenvalue with algebraic multiplicity two.

In this chapter, we locate the essential spectrum associated with travelling wave solutions

in (2.2). By computing the absolute spectrum (see Definition 2.3.3), we show that for all

0 ≤ m < 1 there exists a range of the chemotactic parameter β, independent of the speed

of the travelling wave solution, such that the essential spectrum can be weighted fully

into the left half plane for an appropriate two-sided weight. We also prove that the origin

is an eigenvalue with algebraic multiplicity two, confirming the numerical results of [35].

An early proof offered by [87] shows that there are no positive eigenvalues for 0 ≤ ε ≪ 1

under the assumption that eigenvalues are real-valued. However, it is unclear that this

assumption holds, since the linearised operator L (2.9) is not self-adjoint. The results

of this chapter, that the origin is an eigenvalue of order 2, together with the numerical

results of [35], confirm that there is a parameter range where the travelling wave solutions

are transiently unstable. However, we do emphasize that as the linearised operator is

quasilinear, the spectral stability results do not allow us to immediately conclude the

nonlinear stability of solutions. See §2.3.4 for a more in depth explanation of the main

results and §2.8 for a discussion of nonlinear stability.

In §2.3, we describe the linearised eigenvalue problem associated with a travelling wave

solution to (2.2), outline the relevant spectral theory, and state our main results. In §2.4,
we locate the essential and absolute spectrum and explain the procedure for calculating

the so-called ideal weight (see Definition 2.3.4), in the case of constant consumption and

zero diffusivity of the attractant, i.e. ε = m = 0. We also calculate the range of β values

for which the essential spectrum can be weighted into the left half plane. Outside this
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Figure 2.3.1: Travelling wave solutions to (2.5) for ε = 0, β = c = 2. Left panel: For
m = 0 the travelling wave solutions are a front and a pulse. Right panel: For m = 1 the
travelling wave solutions are a pair of travelling fronts.

range the travelling wave solutions are absolutely unstable. In §2.5, we extend the results

of the constant consumption case (m = 0) to the case of sublinear (0 < m < 1) and

linear consumption (m = 1), still in the absence of diffusion of the attractant. While the

procedures of §2.5 are similar to the procedures of §2.4, the computations are algebraically

more involved and therefore we split these two sections. In §2.6, we include a small, non-

zero, diffusivity of the attractant in the model, i.e. 0 < ε ≪ 1, and show that (in)stability

conditions are to leading order the same as before. In §2.7.1 we present the results from

[11]. That is, we prove that the origin persists as an element of the point spectrum with

algebraic multiplicity two for travelling wave solutions to (2.2) with 0 ≤ m < 1 and

0 ≤ ε ≪ 1. We conclude the chapter with a summary and discussion of future work.

2.3 Set-up, definitions, and main results

We briefly discuss the existence of travelling wave solutions to (2.2) and define the stability

problem. Following [80], we nondimensionalise (2.2) through the change of variables

x̃ :=
√︁

α
δ x, t̃ := αt. Then, (2.2) becomes

ut̃ = ε̃ux̃x̃ − wum,

wt̃ = wx̃x̃ − β̃
(︂wux̃

u

)︂
x̃
,

(2.3)

where we have set ε̃ := ε
δ and β̃ := β

δ . We drop the tildes for notational convenience

ut = εuxx − wum,

wt = wxx − β
(︂wux

u

)︂
x
,

(2.4)

and the conditions on our parameters are now 0 ≤ ε ≪ 1, β +m > 1 and 0 ≤ m ≤ 1.
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2.3.1 Travelling wave solutions

We make the change of variables z = x− ct, where c > 0 is a constant, finite wave speed.

In this moving frame, we have

ut = εuzz + cuz − wum,

wt = wzz + cwz − β
(︂wuz

u

)︂
z
.

(2.5)

Travelling wave solutions exist as stationary solutions to (2.5), i.e. (u(z, t), w(z, t)) =

(u(z), w(z)) and satisfy

0 = εuzz + cuz − wum,

0 = wzz + cwz − β
(︂wuz

u

)︂
z
.

(2.6)

When 0 ≤ m < 1, travelling wave solutions satisfy (2.6) with

lim
z→−∞

u(z) = lim
z→−∞

w(z) = 0, lim
z→∞

u(z) = ur, lim
z→∞

w(z) = 0,

where u(z) is a wavefront and w(z) is a pulse [80,103] (see the left panel of Figure 2.3.1).

When m = 1 travelling wave solutions satisfy (2.6) with

lim
z→−∞

u(z) = 0, lim
z→−∞

w(z) =
c2

β
+ ε

c2

β2
, lim

z→∞
u(z) = ur, lim

z→∞
w(z) = 0,

where both u(z) and w(z) are now wavefronts [103] (see the right panel of Figure 2.3.1).

Though explicit formulas for travelling wave solutions are known only for ε = 0 (i.e.

zero-diffusivity of the chemoattractant), the existence of travelling wave solutions in (2.2)

has been shown for 0 ≤ m ≤ 1 and small enough values of the diffusivity of the chemoat-

tractant (i.e. 0 ≤ ε ≪ 1), see, for example, [38, 80, 103] and the references therein. To

leading order in ε, the profiles of travelling wave solutions are given by

u(z) =
(︂
u−1/γ
r + σe−c(z+z∗)

)︂−γ
,

w(z) = e−c(z+z∗) (u(z))β , (2.7)

γ =
1

β +m− 1
, σ =

β +m− 1

c2
,

where z∗ is a constant associated with the location of the centre of the travelling wave

solution, and ur is the end state of the chemoattractant [28,80,103]. Because of translation

invariance, we set z∗ = 0, and because of scaling invariance in the nondimensionalisation

of (2.2) to (2.3), we take ur = 1 [38], in the remainder of this chapter without loss of

generality. Furthermore, from [80,103] we have the following limits for the travelling wave
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solutions

lim
z→−∞

uz
u

=
c

β +m− 1
, lim

z→−∞

w

u1−m
=

c

β +m− 1

(︃
cε

β +m− 1
+ c

)︃
, (2.8)

which will be useful for the stability analysis in the upcoming sections.

2.3.2 The spectral problem

To determine the stability of the travelling wave solutions (u,w) of (2.4), we consider

U(z, t) = u(z)+p(z, t), and W (z, t) = w(z)+ q(z, t), where p, q are perturbations in some

appropriately chosen Banach space X . Substituting U and W into (2.5) and considering

only leading order terms for p and q, we obtain the linear operator Lm
ε defined by,(︄

p

q

)︄
t

= Lm
ε

(︄
p

q

)︄
, Lm

ε :=

(︄
ε∂zz + c ∂

∂z −mwum−1 −um

L21 L22

)︄
(2.9)

where the entries of Lm
ε are

L11 := ε
∂2

∂z2
+ c

∂

∂z
−mwum−1,

L12 := −um,

L21 := β

(︃
wzuz
u2

+
wuzz
u2

− 2wu2z
u3

)︃
+ β

(︃
2wuz
u2

− wz

u

)︃
∂

∂z
− βw

u

∂2

∂z2
,

L22 := β

(︃
u2z
u2

− uzz
u

)︃
+

(︃
c− βuz

u

)︃
∂

∂z
+

∂2

∂z2
.

(2.10)

Though the terms of (2.10) appear singular as umε → 0 in the z → −∞ limit, they are in

fact bounded [103].

The associated eigenvalue problem is obtained by taking perturbations of the form(︄
p(z, t)

q(z, t)

)︄
= eλt

(︄
p(z)

q(z)

)︄

where we now make the choice that p, q ∈ H1(R). Here, H1(R) is the usual Sobolev space

of once (weakly) differentiable functions such that both the function and its first (weak)

derivative (in z) are in L2(R), i.e. square integrable. Equation (2.9) becomes

Lm
ε : H1(R)×H1(R) → H1(R)×H1(R)

Lm
ε

(︄
p

q

)︄
= λ

(︄
p

q

)︄
.

(2.11)
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2.3.3 Spectral stability: Background and definitions

A travelling wave solution is said to be spectrally stable if the spectrum of the associated

linear operator σ(L) is contained in the closed left half plane except for the origin. The

spectrum σ(L) is defined in the following definition.

Definition 2.3.1. ([88] Definition 3.2) We say λ ∈ C is in the spectrum of a linear

operator L, denoted σ(L), if the operator L− λI, where I is the identity operator, is not

invertible, i.e. the inverse does not exist or is not bounded.

The spectrum of a linear operator L falls naturally into two parts, the essential spectrum,

denoted σess(L), and the point spectrum, denoted σpt(L) [91].

The essential spectrum

We define an operator T (λ), equivalent to L−λI, by transforming the eigenvalue problem

into a system of first order order ordinary differential equations (ODEs);

T (λ)p :=

(︃
d

dz
−M(z, λ)

)︃
p = 0. (2.12)

The essential spectrum of an operator of the form in (2.12) is found by analysing the

asymptotic behaviour of the operator T (λ). We set M±(λ) := lim
z→±∞

M(z, λ) and define

the asymptotic operator associated with T (λ) as the piecewise constant operator

T∞(λ) :=

⎧⎪⎨⎪⎩
d

dz
−M−(λ) if z < 0,

d

dz
−M+(λ) if z ≥ 0.

(2.13)

The essential spectrum is found by analysing the dimensions of the unstable, stable and

centre subspaces of M±(λ). We define the Morse index i(A) of a constant matrix A as

the dimension of its unstable subspace, see [54] Definition 3.1.9. So, for an asymptotic

operator of the form of (2.13), we denote the Morse indices i± := i(M±(λ)) := dim(Eu
±),

where Eu
± denotes the unstable subspace of M±(λ) respectively.

Definition 2.3.2. ([54] Definition 3.1.11) We say λ ∈ σess(T∞), the essential spectrum

of T∞, if either

1. M+(λ) and M−(λ) are hyperbolic with a different number of unstable matrix eigen-

values, i.e. i+ − i− ̸= 0; or

2. M+(λ) or M−(λ) has at least one purely imaginary matrix eigenvalue.

The essential spectrum is conserved under relatively compact perturbations of an opera-

tor. This follows from Weyl’s essential spectrum theorem, see for example [54] Theorem
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2.2.6 and [57] Theorem 5.35. In a variety of operators that arise from linearisation about

travelling wave solutions, including the Keller-Segel model (2.5), the operator T∞ is a

relatively compact perturbation of T (see for example [54] Theorem 3.1.11 or [41]) and

so their essential spectra coincide.

Due to the continuous dependence of T (λ) on λ we have that the essential spectrum is

bounded by the values of λ where M+(λ) or M−(λ) has at least one purely imaginary

matrix eigenvalue. These λ values form curves in the complex plane referred to as the

dispersion relations of the respective matrices.

Generally, the region of the complex plane containing ℜ(λ) ≫ 1 is not contained in the

essential spectrum, i.e. the region to the right of the essential spectrum has i+ = i−.

This condition is related to well-posedness of the eigenvalue problem [54] (see also the left

panel of Figure 2.3.2) and is satisfied for the Keller-Segel model discussed in this chapter.

Remark 2.3.1. Following the terminology of [54,91], we refer to the matrix eigenvalues

µ of M±(λ) as the spatial eigenvalues and to λ as the temporal spectral parameter. Values

λ for which there is a solution to (2.11) are referred to as temporal eigenvalues. We note

that temporal eigenvalues as defined here can be either in σess or in σpt.

The absolute spectrum

The absolute spectrum, denoted σabs, is not spectrum in the usual sense as it does not arise

from Definition 2.3.1, see, for instance, [54,88,90]. However, it provides important stability

information as it gives an indication of how far the essential spectrum can be shifted by

allowing for perturbations in weighted spaces (instead of H1), see also Figure 2.3.2. If

the absolute spectrum contains values in the right half plane the solutions are said to be

absolutely unstable [54, 90]. The absolute spectrum of T∞ (equivalently of T ) is defined

in the following definition

Definition 2.3.3. ([88] Definition 6.1) Take an N dimensional asymptotic operator, T∞,

in the form of (2.13), that is well-posed in the sense that i+ = i− = j for ℜ(λ) ≫ 1.

For λ ∈ C we rank the N spatial eigenvalues µ±
i of the asymptotic matrices M± by the

magnitude of their real parts, i.e.

ℜ(µ±
1 (λ)) ≥ ℜ(µ±

2 (λ)) ≥ . . . ≥ ℜ(µ±
j (λ)) ≥ ℜ(µ±

j+1(λ)) ≥ . . . ≥ ℜ(µ±
N (λ)).

We define the sets

σ+
abs =

{︂
λ ∈ C

⃓⃓⃓
ℜ(µ+

j ) = ℜ(µ+
j+1)

}︂
and σ−

abs =
{︂
λ ∈ C

⃓⃓⃓
ℜ(µ−

j ) = ℜ(µ−
j+1)

}︂
, (2.14)

and the absolute spectrum of T∞ (and of T ) is σabs := σ+
abs ∪ σ−

abs.

Due to the continuous dependence of T on λ, the Morse indices will only change upon

crossing one of the dispersion relations and so the absolute spectrum will always be to the
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Figure 2.3.2: A schematic of the spatial eigenvalues of the asymptotic matrices M+(λ)
(dots) and M−(λ) (crosses), with M±(λ) 3× 3 matrices, for three distinct values λ ∈ C.
Left panel: for ℜ(λ) ≫ 1, M±(λ) are hyperbolic and i± = 2. Middle panel: λ ∈ σess
since M+(λ) has a purely imaginary spatial eigenvalue. However, there exists a weight,
represented by the red line, such that i+ = 2 in this weighted space. So, λ /∈ σess in the
weighted space (and λ /∈ σ+

abs). Right panel: ℜ(µ+
1 ) > ℜ(µ+

2 ) = ℜ(µ+
3 ), so λ ∈ σ+

abs (since
i+ = 2 for ℜ(λ) ≫ 1, see left panel). Observe that the order of the spatial eigenvalues
persists under all weights, i.e. the absolute spectrum does not change under weighting the
space. However, there exists a unique weight, represented by the red line, such that λ is
in the boundary of the weighted essential spectrum. This image is adapted from Figure
3.6 of [54].

left of the rightmost boundary of the essential spectrum. That is, moving λ from right

to left in the complex plane we will first encounter a dispersion relation of either M±(λ)

before (potentially) encountering the absolute spectrum, see also Figure 2.3.2.

Remark 2.3.2. For an operator T , with Morse indices i+ = i− = j in the region to

the right of the essential spectrum, the set of λ ∈ C with ℜ(µ+
i (λ)) = ℜ(µ+

i+1(λ)) or

ℜ(µ−
i (λ)) = ℜ(µ−

i+1(λ)) where i ̸= j is referred to as the generalised absolute spectrum.

Weighted spaces

The presence of essential spectrum of a linear operator in the right half plane implies

instability of the travelling wave solution in H1. However, for many travelling wave so-

lutions that are widely considered ‘stable’, the linearised operator associated with them

has essential spectrum in the right half plane; one such example is the well-known Fisher-

Kolmogorov-Petrovsky-Piscounov (F-KPP) equation. A resolution proposed for this ap-

parent contradiction is to work in an appropriately weighted space [93]. Weighting the

space adjusts the types of perturbations allowed. Following [54], we define the weighted

space H1
ν(R) by the norm

∥p∥H1
ν
= ∥eνzp∥H1 = ∥p̃∥H1 , (2.15)

where p̃ := eνzp. So, p ∈ H1
ν if and only if p̃ ∈ H1. We define L2

ν similarly. The weight

provides information as to whether the travelling wave solutions are more sensitive to

perturbations in front of the wavefront (i.e. as z → ∞) or behind the wavefront (i.e. as

z → −∞). In other words, if ν > 0 then the perturbation p(z, t) must decay at a rate



Chapter 2 36

faster than e−νz as z → ∞, while it is allowed to grow exponentially at any rate less than

e−νz as z → −∞. We can also consider a two-sided weight

ν =

⎧⎨⎩ν− if z ≤ 0,

ν+ if z > 0,
(2.16)

which forces the perturbation to decay exponentially in both directions. It turns out that

we need to consider a two-sided weight (2.67) in the case of the Keller-Segel model (2.4).

A practical consequence of considering L on weighted function spaces is that the essential

spectrum is moved. In particular, assume we have an operator T of the form of (2.12)

coming from the linearisation around a travelling wave solution and with asymptotic

operator (2.13). The operator T (λ) in the weighted space is given by

T (λ)p̃ = p′ − (M(z, λ) + νI)p = 0,

with asymptotic matrices M±(λ)+νI [54]. Hence, we need to consider the magnitude and

sign of the real part of the spatial eigenvalues compared to the weight, i.e. we consider

µ−ν, the spatial eigenvalues of M±(λ)+νI, instead of µ, the spatial eigenvalues of M±(λ)

(see Figure 2.3.2). If the operator T has its essential spectrum in the right half plane in

the unweighted space, weights of interest are those that move this essential spectrum into

the open left half plane. If such weights ν exist (and if there is no point spectrum in the

right half plane), we say the travelling wave solution is spectrally stable in H1
ν(R) and it

is referred to as being transiently unstable [90, 96].

Since the order of the spatial eigenvalues is not changed, the absolute spectrum is un-

affected by weighting the function space and the presence of absolute spectrum in the

right half plane indicates an absolute instability. In particular, in the case of an absolute

instability no weights can be found that move the essential spectrum into the left half

plane since the absolute spectrum is to the left of the rightmost boundary of the essential

spectrum.

2.3.4 Main results

In this section, we state the main results of this chapter related to the location of the

absolute spectrum of travelling wave solutions supported by (2.4).

Theorem 2.3.3. Assume that c > 0, 0 ≤ m < 1 and β > 1−m. Let βcrit be the unique

real root larger than one of

f(β) = 310β10 − 3234β9 + 17112β8 − 49101β7 + 76180β6 − 58398β5

+ 10056β4 + 15040β3 − 9680β2 + 1716β − 4.
(2.17)
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Then, there exists an ε0 > 0 such that for all 0 ≤ ε < ε0 the absolute spectrum of L given

in (2.9) is fully contained in the left half plane for all 1−m < β < βm
crit(ε), with βm

crit(ε)

to leading order given by βm
crit := βcrit(1 − m). Crucially, at β = βm

crit(ε) the absolute

spectrum crosses the imaginary axis into the right half plane away from the real axis with

increasing β. For β > βm
crit(ε) the absolute spectrum of L (2.9) contains values in the

right half plane and the travelling wave solutions of (2.4) are thus absolutely unstable.

For m = 1, the absolute spectrum of L (2.9) includes the origin for all parameter values.

The fact that the polynomial f (2.17) has only one real root larger than one follows

directly from Sturm’s Theorem, see, for instance, Theorem 6.3d in [40]. This result is

summarised in the following lemma, the proof of which is contained in Appendix A.

Lemma 2.3.4. The polynomial

f(β) = 310β10 − 3234β9 + 17112β8 − 49101β7 + 76180β6 − 58398β5

+ 10056β4 + 15040β3 − 9680β2 + 1716β − 4.
(2.18)

has only one real root for β ∈ [1,∞). Moreover, this root is irrational.

In particular, βcrit ≈ 1.6195. Moreover, for every 0 ≤ m < 1 and 1 < β < βm
crit(ε)

there exists a range of two-sided weights ν (2.67) such that weighted essential spectrum is

contained in the open left half plane, see Remark 2.4.2 and Remark 2.5.2. Also, observe

that the above leading order results are independent of the wave speed c, see Remark 2.4.3.

Thus, we fully classify the (in)stabilities coming from the weighted essential spectrum of

travelling wave solutions of (2.4) for the complete parameter range for which travelling

wave solutions exist, i.e. for 0 ≤ m ≤ 1 and 1 −m < β [94, 103]. In essence, we obtain

the complete picture of the essential spectrum, extending the initial results obtained in

[80,103].

As we are primarily concerned with the absolute spectrum, we define the ideal weight as

the weight such that the weighted dispersion relations intersect the rightmost points of

the absolute spectrum.

Definition 2.3.4. The ideal weight for the operator (2.9) is the unique two-sided weight

such that the dispersion relations of M±(λ) + ν±I intersect the leading edges of the σ±
abs

respectively.

This definition is motivated by the fact that as β increases, the ideally weighted essential

spectrum and the absolute spectrum cross into the right half plane simultaneously.
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2.4 Constant consumption and zero diffusivity of the chemoattractant

For clarity of presentation, we first prove Theorem 2.3.3 in the case of constant consump-

tion (m = 0) and zero diffusivity of the chemoattractant (ε = 0). We show that the

absolute spectrum is contained in the left half plane when 1 < β < βcrit (with βcrit the

root of (2.17)), while it contains values in the right half plane when β > βcrit. Con-

sequently, when 1 < β < βcrit, there exists a two-sided weight ν (2.67) such that the

essential spectrum is contained in the open left half plane in the ideally weighted space,

while all travelling wave solutions are absolutely unstable when β ≥ βcrit.

2.4.1 Set-up

In the ε = m = 0 case, the eigenvalue problem (2.11) reduces to

L0
0

(︄
p

q

)︄
= λ

(︄
p

q

)︄
, with L0

0 =

(︄
c ∂
∂z −1

L21 L22

)︄
,

where L21 and L22 are given by (2.10), restated here for convenience,

L21 := β

(︃
wzuz
u2

+
wuzz
u2

− 2wu2z
u3

)︃
+ β

(︃
2wuz
u2

− wz

u

)︃
∂

∂z
− βw

u

∂2

∂z2
,

L22 := β

(︃
u2z
u2

− uzz
u

)︃
+

(︃
c− βuz

u

)︃
∂

∂z
+

∂2

∂z2
.

Here (u,w) are the (explicit) travelling wave solutions given in (2.7). We define the

operator T0(λ), equivalent to L − λI, by setting s = qz. The operator T0(λ), with

p, q ∈ H1(R) and s ∈ L2(R), is given by

T0(λ)

⎛⎜⎝p

q

s

⎞⎟⎠ :=

⎛⎜⎝p

q

s

⎞⎟⎠
′

−M0(z, λ)

⎛⎜⎝p

q

s

⎞⎟⎠ = 0, M0(z, λ) :=

⎛⎜⎝
λ
c

1
c 0

0 0 1

A0 B0 C0

⎞⎟⎠ , (2.20)

with

A0 = β

(︃
2wu2z
u3

− wzuz
u2

− wuzz
u2

)︃
+

λβ

c

(︃
wz

u
− 2wuz

u2

)︃
+

λ2βw

c2u
,

B0 = β

(︃
uzz
u

− u2z
u2

)︃
+

β

c

(︃
wz

u
− 2wuz

u2

)︃
+

λβ

c2

(︂w
u

)︂
+ λ,

C0 =
βuz
u

− c+
β

c

w

u
.

2.4.2 Essential spectrum

We first locate the essential spectrum in the unweighted function space. We calculate

the dispersion relations of the asymptotic matrices as these act as the boundaries of the
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essential spectrum. From (2.6), with ε = 0, we have uz = w/c and by integrating the

second equation we get wz = −cw + β (wuz/u) (where the integration constant is zero

[38, 61]). Thus, all terms of M0 can be written in terms of w/u. From (2.8), or directly

from the travelling wave profiles (2.7), we have,

lim
z→∞

w

u
= 0, lim

z→−∞

w

u
=

c2

β − 1

Using these facts, the limits of A0, B0 and C0 as z → ±∞, denoted A±
0 , B±

0 and C±
0 , are

straightforward to compute and are, respectively, given by

A+
0 = 0, A−

0 =
βλ
(︁
(β − 1)λ− c2

)︁
(β − 1)2

,

B+
0 = λ, B−

0 =

(︁
2β2 − 3β + 1

)︁
λ− c2β

(β − 1)2
,

C+
0 = −c, C−

0 =
c(β + 1)

β − 1
.

We also define the asymptotic matrices,

M±
0 (λ) := lim

z→±∞
M0(z, λ) =

⎛⎜⎝
λ
c

1
c 0

0 0 1

A±
0 B±

0 C±
0

⎞⎟⎠ .

Setting the spatial eigenvalues to be purely imaginary, i.e. µ = ik, k ∈ R in the charac-

teristic polynomials of M±
0 we obtain their dispersion relations. The dispersion relations

of M+
0 are

λ = −k2 + ick, and λ = ick. (2.21)

Note that the imaginary axis is one of the dispersion relations, while the other is a parabola

opening to the left half plan with vertex at the origin, see Figure 2.4.2.

The dispersion relations of M−
0 are given by

λ2 +

(︃
k2 − i(β − 2)ck

β − 1

)︃
λ+

(β + 1)c2k2

β − 1
+ ick

(︃
βc2

(β − 1)2
− k2

)︃
= 0. (2.22)

Equation (2.22) is quadratic in the temporal parameter λ and cubic in the parameter k

(and thus in the spatial eigenvalue).

The boundary of the essential spectrum is traced out by the solutions λ ∈ C, parametrised

by k, from (2.21) and (2.22). We label the connected set containing ℜ(λ) ≫ 1 as Ω1,

see Figure 2.4.1. For λ ∈ Ω1, we have that the dimensions of the unstable subspaces of

M±
0 are both two, i.e. i± = 2. There are two other regions in the complex plane where

i+ = i−. We denote these regions Ω2 and Ω3, see Figure 2.4.1. The remaining part
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Figure 2.4.1: The essential spectrum σess of the operator L about the travelling wave
solutions (u,w) (2.7) for ε = m = 0 and β = c = 2. The solid curves are the dispersion
relations of M−

0 , while the dashed curves are the dispersion relations of M+
0 . The shaded

region is λ ∈ C such that i+ ̸= i− and the essential spectrum is the union of the shaded
region and the dispersion relations. Observe that the entire imaginary axis is included
in the essential spectrum. The general shape of the unweighted essential spectrum is
qualitatively similar for all values β > 1, while changing the wave speed c only affects the
scaling of the image, see Remark 2.4.3. Note this figure is a slight correction to Figure 6
from [35].

of the complex plane is the essential spectrum. It is clear from Figure 2.4.1 that part

of the essential spectrum is in the right half plane. This agrees with previous results;

by considering (2.22) for small |k| values it was shown all travelling wave solutions for

ε = m = 0 are unstable in the unweighted space [80].

2.4.3 The weighted essential spectrum and the absolute spectrum

To further investigate the stability properties of the travelling wave solutions, we consider

the spectrum in various two-sided weighted spaces, locate the absolute spectrum and

identify the ideal weight. We substitute p̃ = eνzp, where p = (p, q, s)T , into (2.20) and

consider the weighted space H1
ν (2.66) with ν a two-sided weight (2.67). This substitution

transforms (2.20) into

T0(λ)p̃ = p′ − (M0(z, λ) + νI)p = 0,

with M0(z, λ) as given in (2.20). The essential spectrum in the weighted space is bounded

by the dispersion relations of the asymptotic matrices M±
0 + ν±I.
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The weighted dispersion relations and absolute spectrum from M+
0

First, we consider the dispersion relations of M+
0 (λ) + ν+I;

λ = −cν+ + ick, and λ = −k2 − ν+(c− ν+) + i(ck − 2kν+). (2.23)

For ν+ ∈ (0, c) the real part of the dispersion relations (2.23) have strictly negative real

parts and the furthest left these relations can be shifted is for the ideal weight ν∗+ = c/2.

Under this weight, the dispersion relations (2.23) reduce to

λ = −c2

2
+ ick, and λ = −c2

4
− k2. (2.24)

Next, we calculate σ+
abs, the subset of the absolute spectrum arising from the spatial

eigenvalues for z → ∞. Since i+ = 2 = i− for ℜ(λ) ≫ 1, we search for λ ∈ C such that

the spatial eigenvalues with the second and third largest real part have the same real part

(see Definition 2.3.3). The spatial eigenvalues of M+
0 are

µ+
1 =

λ

c
, µ+

2 =
−c+

√
c2 + 4λ

2
, µ+

3 =
−c−

√
c2 + 4λ

2
. (2.25)

For ℜ(λ) ≥ − c2

2 , we have that ℜ(µ+
1 ) ≥ ℜ(µ+

2 ) ≥ ℜ(µ+
3 ). Consequently, the abso-

lute spectrum in this region is given by λ ∈ C such that ℜ(µ+
2 ) = ℜ(µ+

3 ). That is,{︂
λ ∈ R

⃓⃓⃓
− c2

2 ≤ λ ≤ −c2

4

}︂
. For ℜ(λ) < − c2

2 , we have that µ
+
2 has the largest real part and

the absolute spectrum in this region is thus given by λ ∈ C such that ℜ(µ1) = ℜ(µ3).

That is,
{︂
λ = λ1 + iλ2, λ1, λ2 ∈ R

⃓⃓⃓
λ1 < − c2

2 ; λ2 = ±λ1

(︂
1 + 2λ1

c2

)︂}︂
. So, σ+

abs is given by

σ+
abs =

{︃
λ ∈ R

⃓⃓⃓⃓
−c2

2
≤ λ ≤ −c2

4

}︃
∪{︃

λ = λ1 + iλ2, λ1, λ2 ∈ R
⃓⃓⃓⃓
λ1 < −c2

2
; λ2 = ±λ1

(︃
1 +

2λ1

c2

)︃}︃
.

(2.26)

Obviously, σ+
abs is fully contained in the left half plane for all c > 0. Consequently, no

absolute instabilities arise from z → ∞. See Figure 2.4.2 for a plot of σ+
abs (2.26) and the

ideally weighted dispersion relations (2.24) and the unweighted dispersion relations (2.21)

(or (2.23) with ν+ = 0).

The weighted dispersion relations and absolute spectrum from M−
0

The characteristic equation of M−
0 is given by

µ3 − µ2

(︃
(β + 1)c

β − 1
+

λ

c

)︃
+ µ

(︃
(2− β)λ

β − 1
+

βc2

(β − 1)2

)︃
+

λ2

c
= 0, (2.27)
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Figure 2.4.2: The subset of the absolute spectrum σ+
abs (red) and the dispersion relations

of M+
0 + ν+I (black). Left panel: the dispersion relations (2.23) in the unweighted space,

i.e. ν+ = 0. The imaginary axis is one of the dispersion relations. Right panel: the ideally
weighted dispersion relations (2.24), i.e. ν∗+ = c/2. Note that the parabola from the left
panel collapses to the real line under the ideal weight.

and the dispersion relations of M−
0 + ν−I are implicitly given by

λ2 +

(︃
c(2− β)(ik − ν−)

β − 1
− (ik − ν−)

2

)︃
λ+

βc3(ik − ν−)

(β − 1)2

− (β + 1)c2(ik − ν−)
2

β − 1
+ c(ik − ν−)

3 = 0.

(2.28)

For a fixed β and c and for various weights ν−, we can plot the weighted dispersion

relations (2.28), see, for example, Figure 2.4.3. Observe that the weighted dispersion

relations (2.28) have self-intersections for some λ ∈ C over a large range of weights ν−,

including ν− = 0 (related to the unweighted space). This self-intersection corresponds to

two complex roots of the characteristic polynomial (2.27) of the form µ−
1,2 = −ν− + ik1,2

with k1,2 ∈ R. Thus, we have ℜ(µ−
1 ) = ℜ(µ−

2 ), while the third spatial eigenvalue µ−
3 has a

larger real part. Consequently, the λ value at the self-intersection is part of the absolute

spectrum.

There exists some weight ν∗− < 0 such that the self-intersection vanishes for ν− < ν∗−, see,

for instance, the right panel of Figure 2.4.3. For ν− = ν∗−, the self-intersection forms a cusp

of the weighted dispersion relations (2.28) and is thus the ideal weight, see Figure 2.4.4.

For ν− > ν∗−, the self-intersections trace out the subset of the absolute spectrum σ−
abs.

This allows us to directly locate σ−
abs using a root-finding algorithm on the dispersion

relations of M−
0 + ν−I. Values λ ∈ σ−

abs such that there is a second order root (in µ) of

the characteristic polynomial (2.27) are referred to as branch points λbr, see Remark 2.4.1

and Figure 2.4.4. For the Keller-Segel model, the cusp of the ideally weighted dispersion

relations correspond to the second order root and so the branch points are the rightmost

points of σ−
abs, see Figure 2.4.4.

To locate the branch points λbr, we treat the characteristic polynomial (2.27) as a cubic

polynomial in µ and determine the second order roots. This requires finding λ ∈ C such
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Figure 2.4.3: The subset of the absolute spectrum σ−
abs (red) and the dispersion relations

of M−
0 + ν−I (black) for β = c = 2 and various weights ν−. The dispersion relations

(2.28) in the unweighted space (left panel), a weighted space with ν− = −1/4 (middle
panel), and a weighted space with ν− = −3/2 (right panel). As ν− is further decreased,
the dispersion relations move further into the right half plane. For ν− > 0, the leading
edge of the weighted dispersion relation also moves further into the right half plane.

that the discriminant of (2.27) is zero. That is, we solve

λ5 +
(2β − 1)2c2λ4

4(β − 1)2
+

β(18β2 − 37β + 20)c4λ3

2(β − 1)3
+

β(5β3 − 28β2 + 50β − 26)c6λ2

4(β − 1)4

− β(β2 − 6β + 2)c8λ

2(β − 1)4
+

β2c10

4(β − 1)4
= 0. (2.29)

We look for roots of (2.29) that correspond to the two smallest spatial eigenvalues having

the same real part, i.e. the values λ ∈ σ−
abs that solve (2.29). For given parameters, we find

a pair of complex conjugate solutions to (2.29) that are in the absolute spectrum; these

solutions are the branch points λ±
br that form the leading edge of σ−

abs. Note that the other

three roots of (2.29) are part of the generalised absolute spectrum, see Remark 2.3.2.

Locating the branch points λ±
br also allows us to compute the ideal weight ν∗−, since ν∗−

corresponds to the negative of the real part of the second order root µ evaluated at the

branch point λ±
br. That is,

ν∗− := −min{ℜ(µi(λbr)), i = 1, 2, 3}. (2.30)
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Figure 2.4.4: The subset of the absolute spectrum σ−
abs (red) and the ideally weighted

dispersion relations ofM−
0 +ν∗−I (black) for β = c = 2, where the ideal weight ν∗− ≈ −0.73.

The weighted dispersion relations form cusps whose tips coincide with the leading edge of
the absolute spectrum, i.e. the branch points λ±

br (see Remark 2.4.1). Since the absolute
spectrum, and thus the essential spectrum, enter into the right half plane, the travelling
wave solution is absolutely unstable for this parameter set.

We have outlined how to locate the full essential and absolute spectrum, as well as how

to compute the ideal weights, for a given parameter set. See, for example, Figures 2.4.5

and 2.4.6. For the parameter values used in Figure 2.4.5, the ideally weighted essential

spectrum and absolute spectrum contain values in the right half plane and the travelling

wave solution is thus absolutely unstable. In contrast, for the parameter values used

in Figure 2.4.6, there exists a range of weights such that the essential spectrum (in the

weighted space) is in the open left half plane and the travelling wave solution is potentially

only transiently unstable. Observe that M+
0 requires positive weights ν+ to shift its

dispersion relations into the open left half plane, while M−
0 requires negative weights ν−,

necessitating the two-sided weight (2.67).

Remark 2.4.1. We refer to the value λ such that µ(λ) is a second order root of (2.27)

and λ ∈ σabs as a branch point because it is a branch point of the Evans function, an

analytic tool used to locate the point spectrum. In general, not all spatial eigenvalues with

algebraic multiplicity greater than one are contained in the absolute spectrum, they also

occur in the generalised absolute spectrum. It is also not always the case that the leading

edge of the absolute spectrum is a branch point, see for example [90]. However, for the

Keller-Segel model the leading edge of the sets σ±
abs do coincide with branch points.
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Figure 2.4.5: The essential and absolute spectrum in the unweighted space (left panel)
and in the ideally weighted space (right panel) for β = c = 2, ε = 0 and m = 0, where the
ideal weight is ν∗− ≈ −0.73 and ν∗+ = c/2 = 1. The dispersion relations of M+

0 +ν+I (2.23)
are shown as black dashed lines, while those of M−

0 + ν−I (2.28) are shown as black solid
lines, σ+

abs is shown as red dashed lines and σ−
abs as red solid lines. The shaded regions

are the interior of the (weighted) essential spectrum. Note the ideally weighted essential
spectrum still contains values in the right half plane and the travelling wave solutions are
thus absolutely unstable.

2.4.4 Proof of Theorem 2.3.3 for ε = m = 0

From Figures 2.4.5 and 2.4.6 it is clear that there is a transition from absolute spectrum

fully contained in the left half plane to absolute spectrum entering into the right half

plane. Consequently, there must be a critical set of parameters such that the branch

point λbr solving (2.29) is purely imaginary. Thus, we set λbr := iλ, λ ∈ R, and equate

the real and imaginary parts of (2.29) to zero. This gives

λ4 − β
(︁
5β3 − 28β2 + 50β − 26

)︁
c4λ2

(β − 1)2(2β − 1)2
+

β2c8

(β − 1)2(2β − 1)2
= 0, (2.31)

λ

(︄
λ4 − β

(︁
18β2 − 37β + 20

)︁
c4λ2

2(β − 1)3
− β

(︁
β2 − 6β + 2

)︁
c8

2(β − 1)4

)︄
= 0. (2.32)

Since λ = 0 is not a solution of (2.31), the transition occurs away from the real axis, i.e.

the branch points form a complex conjugate pair. Moreover, we can divide out λ from

(2.32) and the roots of (2.32) are given by λ = ±
√︁
Λ1,2 with

Λ1,2 =
c4
(︂
β
(︁
18β2 − 37β + 20

)︁
±
√
∆
)︂

4(β − 1)3
, (2.33)
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Figure 2.4.6: The essential and absolute spectrum in the unweighted space (left panel)
and in the ideally weighted space (right panel) for β = 1.3 < βcrit (2.17), c = 2, ε = 0 and
m = 0, where the ideal weight is ν∗− ≈ −2.445 and ν∗+ = c/2 = 1. The dispersion relations
of M+

0 + ν+I (2.23) are shown as black dashed lines, while those of M−
0 + ν−I (2.28) are

shown as black solid lines, σ+
abs is shown as red dashed lines and σ−

abs as red solid lines.
The shaded regions are the interior of the (weighted) essential spectrum. Note the ideally
weighted essential spectrum is fully contained in the left half plane.

where

∆ := β
(︁
324β5 − 1324β4 + 2025β3 − 1360β2 + 320β + 16

)︁
.

It follows from Sturm’s Theorem, see, for instance, Theorem 6.3d in [40], that ∆ > 0 for

all β > 1, i.e. Λ1,2 are real-valued for β > 1. Substituting these roots into (2.31) gives

βc8

8(β − 1)4

(︂
1116β7 − 5050β6 + 8422β5 − 5440β4 − 455β3

+2104β2 − 704β + 8±
(︁
62β4 − 154β3 + 90β2 + 35β − 32

)︁√
∆
)︂
= 0.

Since β > 1 and c > 0, this is equivalent to(︁
1116β7 − 5050β6 + 8422β5 − 5440β4 − 455β3 + 2104β2 − 704β + 8

)︁
= ±

(︁
−62β4 + 154β3 − 90β2 − 35β + 32

)︁√
∆,

(2.34)
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which is independent of c, see Remark 2.4.3. Squaring (2.34) gives

16(β − 1)3f(β) = 16(β − 1)3
(︁
310β10 − 3234β9 + 17112β8 − 49101β7 + 76180β6

−58398β5 + 10056β4 + 15040β3 − 9680β2 + 1716β − 4
)︁

= 0,

where f(β) is the same polynomial as the polynomial (2.17) of Theorem 2.3.3. The

purely imaginary branch points indicating the transition to absolute instability are de-

termined by the root βcrit. In particular, βcrit ≈ 1.6195 solves (2.31) and (2.32) with

λ±
br = ±i

√︁
Λ1(βcrit) ≈ ±1.0883 c2 i.

As there is only one root of (2.17) satisfying the condition β > 1, the absolute spectrum

is fully contained in the open left half plane for 1 < β < βcrit, i.e. the transition into the

right half plane only happens for β = βcrit. Since the absolute spectrum always contains

values in the right half plane for β > βcrit, all travelling wave solutions with β > βcrit are

absolutely unstable. This concludes the proof of Theorem 2.3.3 for ε = m = 0.

Remark 2.4.2. It is possible for the absolute spectrum of an operator to be contained

in the open left half plane, yet the weighted essential spectrum contains values in the

right half plane for all weights. This is referred to as an essential instability, see [90] for

examples of essential instabilities. We now show that for a range of weights, the weighted

dispersion relations, and thus the weighted essential spectrum, do not cross into the right

half plane for 1 < β < βcrit, i.e. travelling wave solutions in the Keller-Segel model do

not exhibit essential instabilities. The ideally weighted dispersion relations (2.24) and

absolute spectrum σ+
abs (2.26) associated with M+

0 are contained in the open left half plane

for 1 < β < βcrit. What remains to prove is that there exists a range of weights such that

the weighted dispersion relations of M−
0 (2.28) are fully contained in the open left half

plane for 1 < β < βcrit.

The characteristic polynomial of M−
0 + ν−I (2.28) is quadratic in λ ∈ C. So, we can

explicitly solve for λ1,2 and extract the real parts of the solutions. It follows that

lim
|k|→∞

ℜ(λ1) = −c

(︃
cβ

β − 1
+ ν−

)︃
, lim

|k|→∞
ℜ(λ2) = −∞. (2.35)

That is, the dispersion relations of M−
0 + ν−I approach vertical lines in the complex

plane. Requiring that ℜ(λ1) < 0 as |k| → ∞ gives a lower bound on admissible weights

ν− > − cβ
β−1 (note that it turns out that this lower bound is not sharp, see Figure 2.4.7).

Next, we compute the values λ where the dispersion relations of M−
0 +ν−I (2.28) cross the

imaginary axis. Therefore, we assume that λ is purely imaginary and solve (2.28). This

way, we eliminate the parameter k and obtain a cubic polynomial equation in Λ := ℑ(λ)2
(with unknowns β, c and ν−). Non-negative real roots of this polynomial in Λ correspond

to the intersections of the dispersion relations ofM−
0 +ν−I with the imaginary axis. In the
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Figure 2.4.7: The area in between the curves νmin and νmax indicates the range of weights
ν− such that the absolute spectrum and weighted essential spectrum are contained in the
open left half plane for c = 1, m = 0, ε = 0 (and ν∗+ = c/2 = 1/2). For β = βcrit the
values νmin, νmax and the ideal weight ν∗− coincide and so the essential spectrum cannot
be weighted into the open left half plane for β ≥ βcrit. The dot-dashed curve represents
the asymptotic condition ν− > − β

β−1 coming from (2.35).

unweighted case ν− = 0 it has one positive root and a root at the origin, see also the left

panels of Figure 2.4.5 and 2.4.6. For decreasing ν−, these two roots approach each other

and collide at νmax = νmax(β, c) (while the third root stays negative). The polynomial

has no non-negative real roots if we further decrease ν−. These weights correspond to

the case where the weighted dispersion relations do not intersect the imaginary axis and

are thus fully contained in the open left half plane. At νmin = νmin(β, c) two positive

roots reappear (while the third root is still negative) and these positive roots persist

upon further decreasing ν−. In other words, for weights ν− ∈ (νmin, νmax) the dispersion

relations of M−
0 + ν−I (2.28) never intersect the imaginary axis and are fully contained

in the open left half plane. The values νmin and νmax are given as the roots of an 11th

order polynomial in ν− and the range of admissible weights shrinks to a point as β ↑ βcrit,

see Figure 2.4.7. In particular, one rediscovers f(β) (2.17) by equating the derivative of

this 11th order polynomial to zero. This is equivalent to finding β such that νmin = νmax.

Obtaining the range of admissible weights is straightforward for given values of β and c,

but complicated to determine for general 1 < β < βcrit and c. See Figure 2.4.7 for a plot

of νmax and νmin (and the ideal weight ν∗− obtained from (2.30)) versus β.

Remark 2.4.3. The results on the existence of a range of weights to move the essential

spectrum into the open left half plane and the (in)stability of the absolute spectrum are

independent of the wave speed c. This is not a coincidence as the dispersion relations can

be rescaled to be independent of c. In particular, the substitutions λ = c2λ̃, ν = cν̃, k = ck̃

transform the dispersion relations of M+
0 + ν+I (2.23) into

c2λ̃ = c2
(︂
−ν̃+ + ik̃

)︂
, and c2λ̃ = c2

(︂
−k̃

2 − ν̃+(1− ν̃) + i(k̃ − 2k̃ν̃+

)︂
,
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which is equivalent to the dispersion relations of M+
0 + ν+I (2.23) for c = 1. Similarly,

the dispersion relations of M−
0 + ν−I (2.28) become

c4
(︃
λ̃
2
+

(︄
(2− β)(ik̃ − ν̃−)

β − 1
− (ik̃ − ν̃−)

2

)︄
λ̃+

β(ik̃ − ν̃−)

(β − 1)2

− (β + 1)(ik̃ − ν̃−)
2

β − 1
+ (ik̃ − ν̃−)

3

)︃
= 0,

which is equivalent to the dispersion relations of M−
0 + ν−I (2.28) for c = 1. In other

words, the magnitude of c does not affect the (in)stability results and only affects the

multiplicative scaling of the spectrum. As a consequence, all the figures presented in this

chapter are generic in c up to the above scaling of λ, ν and k.

2.5 Sublinear and linear consumption and zero diffusivity of the

chemoattractant

In this section, we examine the effect of the parameter m on the location of the weighted

essential spectrum and absolute spectrum associated with a travelling wave solution.

Since travelling wave solutions only exist for 0 ≤ m ≤ 1, e.g. [103], we take 0 < m ≤ 1.

We prove Theorem 2.3.3 for 0 < m ≤ 1 and ε = 0. It turns out that the analysis for

0 < m < 1 is similar, at least qualitatively, to the analysis of the previous section for

m = 0. The analysis simplifies significantly for m = 1 and we note that the results of

this case can be in part deduced from [77] where a version of the Keller-Segel model with

nonzero growth rate is studied.

In particular, we show that for sublinear consumption, i.e. 0 < m < 1, there exists a

critical value βm
crit = βcrit(1−m) (with βcrit the root of (2.17)) such that for 1−m < β <

βm
crit the absolute spectrum is fully contained in the open left half plane. The absolute

spectrum enters the right half plane for β > βm
crit and all travelling wave solutions are

thus absolutely unstable for β > βm
crit. For linear consumption, i.e. m = 1, we show that

the absolute spectrum always contains the origin. Consequently, the essential spectrum

cannot be weighted into the open left half plane.

2.5.1 Set-up

For 0 < m ≤ 1 and ε = 0, the eigenvalue problem is given by (2.11), which we restate for

convenience

Lm
0

(︄
p

q

)︄
= λ

(︄
p

q

)︄
, Lm

0 :=

(︄
c ∂
∂z −mwum−1 −um

L21 L22

)︄
(2.36)
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with

L21 := β

(︃
wzuz
u2

+
wuzz
u2

− 2wu2z
u3

)︃
+ β

(︃
2wuz
u2

− wz

u

)︃
∂

∂z
− βw

u

∂2

∂z2
,

L22 := β

(︃
u2z
u2

− uzz
u

)︃
+

(︃
c− βuz

u

)︃
∂

∂z
+

∂2

∂z2
,

(2.37)

where u and w are the travelling wave solutions given in (2.7). Observe that the first row

of L simplifies significantly in the cases m = 0 and m = 1. We take a slightly different

approach as in §2.4 and first write (2.36) as a third order equation in p, see Remark 2.5.1.

From the first row of (2.36) we have

q = cu−mpz − (mwu−1 + λu−m)p , (2.38)

and we differentiate this to obtain

qz = cu−mpzz + ((cu−m)z − (mwu−1 + λu−m))pz

−
(︁
mwu−1 + λu−m

)︁
z
p,

qzz = cu−mpzzz +
(︁
2(cu−m)z − (mwu−1 + λu−m)

)︁
pzz

+
(︁
(cmu−m)zz − 2(mwu−1 + λu−m)z

)︁
pz − (mwu−1 + λu−m)zzp.

(2.39)

We substitute (2.38) and (2.39) into the second row of (2.36), that is into Lpp+Lqq = λq,

and we eliminate w using w = cuzu
−m ((2.6) with ε = 0). The resulting third order

operator is

pzzz − Cmpzz − Bmpz −Amp = 0 (2.40)

where

Am =
(︁
λ(m+ 1)(β +m)− c2m

)︁ u2z
cu2

+ 2(m+ 1)(β +m)
u3z
u3

− 2λm
uz
u

− (2β + 3m)
uzuzz
u2

− λ(β +m)
uzz
cu

− λ2

c
,

Bm =
(︁
2c2m− λ(β + 2m)

)︁ uz
cu

− 3(m+ 1)(β +m)
u2z
u2

+ (2β + 3m)
uzz
u

+ 2λ,

Cm =
λ

c
− c+ (2β + 3m)

uz
u
.

(2.41)
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Next, we define p1 := pz and p2 := pzz to obtain the operator Tm(λ)

Tm(λ)

⎛⎜⎝ p

p1

p2

⎞⎟⎠ :=

⎛⎜⎝ p

p1

p2

⎞⎟⎠
′

−Mm(z, λ)

⎛⎜⎝ p

p1

p2

⎞⎟⎠ = 0,

Mm(z, λ) :=

⎛⎜⎝ 0 1 0

0 0 1

Am Bm Cm

⎞⎟⎠ .

(2.42)

While we have used a slightly different approach compared to §2.4, the spectrum of T0(λ)
in (2.20) and the spectrum of Tm(λ) (2.42) agree in the limit m → 0.

Remark 2.5.1. The substitutions (2.38) and (2.39) are necessary due to the appearance

of the term w/u appearing in Lp (2.37). While the term w/u is bounded for m = 0,

the term is unbounded as z → −∞ for 0 < m ≤ 1. However, by making the substi-

tutions (2.38) and (2.39) in (2.36), we obtain (2.40), which is asymptotically constant

and equivalent to L (2.36). The equivalence of (2.40) and L (2.36) becomes clearer when

we see that (2.40) is actually the linearised eigenvalue problem obtained from eliminating

w(z, t) = u−m(z, t) (cuz(z, t)− ut(z, t)) from (2.5) first.

2.5.2 Essential spectrum

We use the limits given in (2.8) (with ε = 0) and the fact that uzz = (wum)z/c (2.6), to

obtain

lim
z→−∞

uz
u

=
c

β +m− 1
, lim

z→−∞

uzz
u

=
c2

(β +m− 1)2
, lim

z→∞
(u, uz, uzz) = (1, 0, 0).

Using these limits, the asymptotic values ofAm, Bm and Cm as z → ±∞, denotedA±
m, B±

m

and C±
m respectively, are

A+
m = − λ2

c
, B+

m = 2λ, C+
m =

λ

c
− c, (2.43)

and

A−
m = − λ2

c
− cm(β +m− 2)

(β +m− 1)2
λ+

c3m(β +m)

(β +m− 1)3
,

B−
m =

(β − 2)

β +m− 1
λ− c2 (β +m(β +m+ 2))

(β +m− 1)2
,

C−
m =

λ

c
+

c(β + 2m+ 1)

β +m− 1
.

(2.44)
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Figure 2.5.1: The essential and absolute spectrum form = 0.1 (upper panels) andm = 0.7
(lower panels) with β = c = 2 and ε = 0. The dispersion relations of M+

m + ν+I (dashed
black) and σm,+

abs (dashed red) are the same in all four panels and the ideal weight for
z → ∞ is still given by ν∗+ = c/2 = 1. The dispersion relations of M−

m +ν−I are shown as

solid black lines and σm,−
abs as solid red. Upper left panel: the spectrum in the unweighted

space for m = 0.1. Upper right panel: the ideally weighted space for m = 0.1, where
the ideal weight is ν∗− ≈ −0.778. Lower left panel: the spectrum in the unweighted
space for m = 0.7. Lower right panel: the ideally weighted space for m = 0.7, where
ν∗− ≈ −0.959. As m increases to one, the real and imaginary components of the branch
points λ±

br decrease and approach the origin, see §2.5.5.

We define the asymptotic matrices

M±
m(λ) := lim

z→±∞
Mm(z, λ) =

⎛⎜⎝ 0 1 0

0 0 1

A±
m B±

m C±
m

⎞⎟⎠ , (2.45)

related to the asymptotic operator associated with Tm (2.42). The dispersion relations

of M+
m are independent of m and β, and the same as for m = 0 (2.21). The dispersion
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relations of M−
m depend on m and are implicitly given by

λ2 +

(︃
k2 +

c2m(β +m− 2)

(β +m− 1)2
− ick(β − 2)

β +m− 1

)︃
λ+

c2k2(β + 2m+ 1)

β +m− 1

− c4m(β +m)

(β +m− 1)3
+

ic3k (β +m(m+ β + 2))

(β +m− 1)2
− ick3 = 0.

(2.46)

In the limit m → 0, (2.46) coincides with the dispersion relations of M−
0 (2.22). The

dispersion relations M+
m (2.21) and M−

m (2.46) form the boundaries of the essential spec-

trum and λ ∈ C such that i.e. i+ ̸= i− (see Definition 2.3.2) forms the interior of the

(unweighted) essential spectrum. See the two left panels of Figure 2.5.1 for the unweighted

essential spectrum for two different values of m.

2.5.3 The weighted essential spectrum and the absolute spectrum

As for m = 0, we consider a two-sided weight of the form (2.67). Since the dispersion

relations of M+
m and M+

0 are the same, the ideal weight for z → ∞ are unchanged for

0 < m ≤ 1. That is, ν∗+ = c/2. Consequently, σm,+
abs = σ+

abs (2.26). See also Figure 2.4.2.

The dispersion relations of M−
m + ν−I are implicitly given by

λ2 + λ

(︃
−(ik − ν−)

2 +
c2m(β +m− 2)

(β +m− 1)2
− c(ik − ν−)(β − 2)

β +m− 1

)︃
− c2(ik − ν−)

2(β + 2m+ 1)

β +m− 1
− c4m(β +m)

(β +m− 1)3

+
c3(ik − ν−)(β +m(β +m+ 2))

(β +m− 1)2
+ c(ik − ν−)

3 = 0.

(2.47)

The shift in the essential spectrum due to weighting in the 0 < m ≤ 1 case is qualitatively

similar to the behaviour shown in Figure 2.4.3. That is, under a large range of weights

the dispersion relations have self-intersections and these self-intersections form part of

the absolute spectrum σm,−
abs . Thus, we can once again use a find root procedure on the

weighted dispersion relations (2.47) to locate σm,−
abs . See Figure 2.5.1 for the unweighted

essential spectrum, the ideally weighted essential spectrum, and the absolute spectrum

for two different values of m.

2.5.4 Proof of Theorem 2.3.3 for 0 < m < 1 and ε = 0

For 0 < m < 1 and ε = 0, a polynomial fm(β), similar to the polynomial f(β) (2.17) for

m = 0, can be derived. Its root βm
crit = βcrit(1 − m) > 1 − m predicts the transition of

the absolute spectrum into the right half plane (for increasing β). For 1−m < β < βm
crit,

the absolute spectrum is fully contained in the open left half plane. For β > βm
crit, the

absolute spectrum enters the right half plane and the travelling wave solutions are thus

absolutely unstable.
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To determine the transition of the absolute spectrum into the right half plane we follow

the same procedure as in §2.4.4 and we treat the characteristic polynomial of M−
m as a

cubic polynomial in µ and equate the discriminant to zero. This gives

λ5 +
c2(2β +m− 1)2

4(β +m− 1)2
λ4 +

βc4
(︁
18β2 + 37β(m− 1) + 20(m− 1)2

)︁
2(β +m− 1)3

λ3

+
βc6

(︁
5β3 + 28β2(m− 1) + 50β(m− 1)2 + 26(m− 1)3

)︁
4(β +m− 1)4

λ2

+
βc8(m− 1)

(︁
β2 + 6β(m− 1) + 2(m− 1)2

)︁
2(β +m− 1)4

λ+
β2c10(m− 1)2

4(β +m− 1)4
= 0.

(2.48)

This discriminant has a purely imaginary root under the condition

0 =
β2c20(m− 1)

64(β +m− 1)13
fm(β) (2.49)

where

fm(β) :=
(︁
310β10 + 3234β9(m− 1) + 17112β8(m− 1)2 + 49101β7(m− 1)3

+ 76180β6(m− 1)4 + 58398β5(m− 1)5 + 10056β4(m− 1)6

−15040β3(m− 1)7 − 9680β2(m− 1)8 − 1716β(m− 1)9 − 4(m− 1)10
)︁
.

(2.50)

For m = 1, (2.49) is trivially satisfied. Therefore, we treat the m = 1 case separately,

see §2.5.5. Upon introducing the variable B = β
(1−m) (and setting 0 < m < 1), (2.49)

becomes,

0 =
−B2c20

64(B − 1)13
(︁
310B10 − 3234B9 + 17112B8 − 49101B7 + 76180B6

−58398B5 + 10056B4 + 15040B3 − 9680B2 + 1716B − 4
)︁

=
−B2c20

64(B − 1)13
f(B),

(2.51)

where f is given by (2.17). The roots of fm and f are related by βm
crit = βcrit(1 − m),

and βm
crit is the only root of (2.49) that satisfies the condition β +m > 1. In conclusion,

we have that the absolute spectrum is fully contained in the open left half plane for

0 ≤ m < 1, ε = 0 and 1−m < β < βm
crit, while the absolute spectrum enters into the right

half plane for 0 ≤ m < 1, ε = 0 and β > βm
crit. This concludes the proof of Theorem 2.3.3

for 0 < m < 1 and ε = 0.

Remark 2.5.2. Similar to the m = 0 case, there also exist a range of weights νmmin <

ν− < νmmax for 0 < m < 1 and ε = 0, such that the weighted essential spectrum is contained

in the open left half plane for 1 −m < β < βm
crit. In other words, there are no essential

instabilities in this case. See also Remark 2.4.2.
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2.5.5 Linear consumption

In the case of linear consumption, i.e. m = 1, the travelling wave solutions (u,w) (2.7)

are a pair of wavefronts, rather than a pulse and a wavefront, see, for example, the right

panel of Figure 2.3.1. In this case, the absolute spectrum and the ideally weighted essential

spectrum contain the origin for all β and as a result the essential spectrum cannot be

weighted into the open left half plane.

The dispersion relations of M+
1 are independent of m and β, see §2.5.2, and therefore

σ1,+
abs = σ+

abs (2.26) is fully contained in the open left half plane. Consequently, we only

need to examine σ1,−
abs . The characteristic polynomial of M−

1 is

µ3 − µ2

(︃
β (β + 3) c

β2
+

λ

c

)︃
+ µ

(︄
(2− β)λ

β
+

β
(︁
β2 + (β − 1) + 4β

)︁
c2

β3

)︄

− (β + 1)c3

β3
+

(β − 1)cλ

β2
+

λ2

c
= 0.

(2.52)

To locate σ1,−
abs , we follow the same process as for 0 ≤ m < 1. In particular, we locate

λ ∈ σ1,−
abs such that the characteristic polynomial (2.52) has a second order root in µ.

That is, we locate the branch points λ±
br. We equate the discriminant of (2.52) to zero to

obtain

λ2
(︁
4λ3 + 4c2λ2 + 36c4λ+ 5c6

)︁
= 0, (2.53)

which has a second order root λ = 0. For λ = 0, (2.52) becomes

(βµ− c(β + 1))(c− βµ)2 = 0 =⇒ µ1 =
(β + 1)c

β
, µ2,3 =

c

β
. (2.54)

Since ℜ(µ1) > ℜ(µ2) = ℜ(µ3), 0 ∈ σ1,−
abs and the ideal weight is ν∗− = −ℜ(µ2,3) = − c

β

(2.30). Furthermore, the ideally weighted essential spectrum and the absolute spectrum

contain the origin for all β. That is, there are no parameter values such that the essential

spectrum can be weighted fully into the open left half plane, see, for example, Figure 2.5.2.

Note that the other three roots of (2.53) are part of the generalised absolute spectrum.

This concludes the proof of Theorem 2.3.3 for m = 1 and ε = 0.

Remark 2.5.3. For 0 ≤ m < 1, ε = 0 and β > βm
crit, the absolute spectrum contains

values in the right half plane. However, for a large chemotactic parameter, i.e. β ≫ 1, the

end points of the absolute spectrum λ±
br approach zero, see Figure 2.5.3. Actually, in the

limit β → ∞, the discriminant of the characteristic polynomial of M−
m (2.48) reduces to

the discriminant of the characteristic polynomial of M−
1 (2.53). That is, the branch points

λ±
br of the absolute spectrum approach the origin from the right. Furthermore, the ideally

weighted essential spectrum for 0 ≤ m < 1, ε = 0 and β large is qualitatively similar to
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Figure 2.5.2: The essential and absolute spectrum in the unweighted space (left panel)
and in the ideally weighted space (right panel) for β = c = 2, ε = 0 and m = 1, where
the ideal weight is ν∗− = −c/β = −1 and ν∗+ = c/2 = 1. The dispersion relations of
M+

1 + ν+I (2.23) are shown as black dashed lines, while those of M−
1 + ν−I (2.47) are

shown as black solid lines, σ1,+
abs is shown as red dashed lines and σ1,−

abs as red solid lines.
The shaded regions are the interior of the (weighted) essential spectrum. The absolute
spectrum contains the origin (for all parameter values β and c) and the essential spectrum
thus cannot be weighted into the open left half plane.

the ideally weighted essential spectrum shown in the right panel of Figure 2.5.2 for m = 1

and ε = 0.

2.6 Small diffusion

In this section, we finish the proof of Theorem 2.3.3 and show that the results obtained

for ε = 0 persist to leading order when we allow for small diffusion of the attractant u

in (2.4) (i.e. for 0 < ε ≪ 1). In particular, we show that for |λ| = O(1) the weighted

essential spectrum and absolute spectrum correspond, in leading order, to the spectra in

the ε = 0 case. For |λ| large, the spectra differ significantly, however, the differences do

not alter the explicit stability results since they occur in the open left half plane.

2.6.1 Set-up

We treat the various consumption rates 0 ≤ m ≤ 1 simultaneously. First, we eliminate

the perturbation q, and its derivatives, from (2.9). From the first row of (2.9) we have

q = εu−mpzz + cu−mpz − (mwu−1 + λu−m)p. (2.55)
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Figure 2.5.3: Plot of the real component of the branch points versus the magnitude of
the imaginary component of the branch points parametrised by β > 1 for m = 0, ε = 0
and c = 1 (dashed line) and c = 2 (solid line). For both curves the intersections with the
imaginary axis away from the origin correspond to β = βcrit and limβ→∞ |λbr| = 0. Note
that the figure is qualitatively similar for 0 < m < 1.

Differentiating (2.55) gives

qz = εu−mp(3) +
(︁
(εu−m)z + cu−m

)︁
pzz

+ ((cu−m)z − (mwu−1 + λu−m))pzq + (mwu−1 + λu−m)zp,

qzz = εu−mp(4) +
(︁
2(εu−m)z + cu−m

)︁
p(3)

+
(︁
(εu−m)zz + 2(cu−m)z − (mwu−1 + λu−m)

)︁
pzz

+
(︁
(cmu−m)zz − 2(mwu−1 + λu−m)z

)︁
pz + (mwu−1 + λu−m)zzp.

(2.56)

We substitute (2.55) and (2.56) into the second row of (2.9) Lpp+Lqq = λq. The resulting

singular fourth ODE is

εpzzzz −Dm,εpzzz − Cm,εpzz − Bm,εpz −Am,εp = 0 (2.57)
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where

Am,ε :=(β +m)
(︁
c2 + λ+ λm

)︁ u2z
u2

− 2cλm
uz
u

− c(β +m)
uzuzz
u2

− λ2

− λ(β +m)
uzz
u

− c(β − 2)(β +m)
u3z
u3

+ ε

(︃
c(β +m)

uzuzz
u2

− (β − 2)(β +m)
u2zuzz
u3

− (β +m)
u2zz
u2

− λm
uzz
u

)︃
,

Bm,ε :=2cλ−
(︁
βc2 + λ(β + 2m)

)︁ uz
u

+ c(β −m− 3)(β +m)
u2z
u2

+ c(β +m)
uzz
u

+ ε
(︂
(β − 2)(β +m)

uzuzz
u2

− c(β +m)
uzz
u

)︂
,

Cm,ε :=− c2 + c(2(β +m) +m)
uz
u

+ λ+ ε

(︃
λ− (m+ 1)(β +m)

u2z
u2

+ cm
uz
u

+ 2(β +m)
uzz
u

)︃
,

Dm,ε :=− c+ ε
(︂
(β + 2m)

uz
u

− c
)︂
,

with (u,w) the travelling wave solutions given, to leading order, by (2.7). We set p1 := pz,

p2 := pzz and p3 := pzzz and define the operator Tε by

Tm,ε(λ)

⎛⎜⎜⎜⎜⎝
p

p1

p2

p3

⎞⎟⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎝
p

p1

p2

p3

⎞⎟⎟⎟⎟⎠
′

−Mm,ε(z, λ)

⎛⎜⎜⎜⎜⎝
p

p1

p2

p3

⎞⎟⎟⎟⎟⎠ = 0,

where

Mm,ε(z, λ) :=

⎛⎜⎜⎜⎜⎝
0 1 0 0

0 0 1 0

0 0 0 1

Am,ε/ε Bm,ε/ε Cm,ε/ε Dm,ε/ε

⎞⎟⎟⎟⎟⎠ . (2.58)

All terms in Tm,ε can be expressed in terms of either uz/u or w/u, since uzz = (cuz − w) /ε

and wz = −cw + β
(︁
wuz
u

)︁
(2.6). Using (2.8), the limits of Am,ε, Bm,ε, Cm,ε and Dm,ε as

z → ±∞ are

A+
m,ε := −λ2, B+

m,ε := 2cλ, C+
m,ε := −c2 + λ(1 + ε), D+

m,ε := −c(1 + ε),
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and

A−
m,ε =

c4m(β +m)

(β +m− 1)3
− λ2 − c2λm(β +m− 2)

(β +m− 1)2
− ε

(︃
λc2m

(β +m− 1)2
− c4m(β +m)

(β +m− 1)4

)︃
B−
m,ε =

cλ(β − 2)

(β +m− 1)
− c3(β +m(β +m+ 2))

(β +m− 1)2
+ ε

c3(m+ 1)(β +m)

(β +m− 1)3
,

C−
m,ε =

(︃
c2(β + 2m+ 1)

β +m− 1
+ λ

)︃
+ ε

(︃
βc2

(β +m− 1)2
+ λ

)︃
,

D−
m,ε = − c+ ε

c(m+ 1)

β +m− 1
.

(2.59)

We define the asymptotic matrices M±
m,ε(λ) := lim

z→±∞
Mm

ε (z, λ). That is,

M±
m,ε(λ) =

⎛⎜⎜⎜⎜⎝
0 1 0 0

0 0 1 0

0 0 0 1

A±
m,ε/ε B±

m,ε/ε C±
m,ε/ε D±

m,ε/ε

⎞⎟⎟⎟⎟⎠ . (2.60)

2.6.2 Proof of Theorem 2.3.3 for 0 ≤ m ≤ 1 and 0 < ε ≪ 1

The matrices M±
m,ε have four spatial eigenvalues, while M±

m have only three. We show

that the fourth spatial eigenvalue is far into the left half plane for both asymptotic matrices

M±
m,ε (and for |λ| = O(1)), while the other three spatial eigenvalues are, to leading order,

given by the spatial eigenvalues of M±
m.

The characteristic polynomial of M+
m,ε is

ε
(︁
µ4 + cµ3 − λµ2

)︁
+ (µ2 + cµ− λ)(cµ− λ) = 0, (2.61)

which is regular in λ, but singularly perturbed in µ. In the limit ε → 0, we recover the

characteristic polynomial of M+
m. The dispersion relations of M+

m,ε + ν+I are

λ = −k2− ν+(c− ν+)+ i(ck− 2kν+) , λ = −εk2− ν+(c− ν+ε)+ i(ck− 2εkν+). (2.62)

For ν+ ∈ (0, c), (2.62) is fully contained in the open left half plane and the ideal weight

is still ν∗+ = c/2. Observe that, unlike the ε = 0 case, both dispersion relations of

Mm,+
ε + ν+I are parabolas in k and consequently they no longer approach a vertical line

in the limit |k| → ∞.



Chapter 2 60

<(�)

=(�)

�+
abs��

abs

10

�ess

40

�40

�40
<(�)

=(�)

�+
abs

��
abs

0 10

�ess

40

�40

�40

Figure 2.6.1: The essential and absolute spectrum in the unweighted space (left panel)
and in the ideally weighted space (right panel) for β = 1.3 < βcrit (2.17), c = 2, ε = 0.02
and m = 0, where the ideal weight is ν∗− ≈ −2.447 and ν∗+ = c/2 = 1. The dispersion
relations of M+

m,ε+ν+I (2.62) are shown as black dashed lines, while those of M−
m,ε+ν−I

are shown as black solid lines, σ+
abs is shown as red dashed lines and σ−

abs as red solid lines.
The shaded regions are the interior of the (weighted) essential spectrum. Observe that the
(weighted) essential spectra and absolute spectra agree, to leading order, for |λ| = O(1),
but not for |λ| large, to the spectra for the same parameter set but with ε = 0, see Figure
2.4.6. Also note that the ideal weights are similar.

The spatial eigenvalues of (2.61) are

µ+
1 =

−c+
√
c2 + 4ελ

2ε
=

λ

c
− λ2ε

c3
+O(ε2),

µ+
2,3 =

−c±
√
c2 + 4λ

2
,

µ+
4 =

−c−
√
c2 + 4ελ

2ε
= −c

ε
− λ

c
+

λ2ε

c3
+O(ε2),

where the asymptotic expansions only hold for |λ| = O(1). The spatial eigenvalues µ+
1,2,3

are, to leading order, the same as those in the ε = 0 case (2.25). The singular spatial

eigenvalue µ+
4 approaches −∞ as ε → 0 (for |λ| = O(1)).
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The characteristic polynomial of M−
m,ε is

µ2

(︃
−c2(β + 2m+ 1)

β +m− 1
− λ

)︃
+

µ
(︁
c3(β +m(β +m+ 2))− (β − 2)cλ(β +m− 1)

)︁
(β +m− 1)2

+
c2λm(β +m− 2)

(β +m− 1)2
− c4m(β +m)

(β +m− 1)3
+ cµ3 + λ2 + ε

(︃
c3µ(m+ 1)(β +m)

(β +m− 1)3

+ µ2

(︃
− βc2

(β +m− 1)2
− λ

)︃
+

c2m
(︁
λ(β +m− 1)2 − c2(β +m)

)︁
(β +m− 1)4

− cµ3(m+ 1)

β +m− 1
+ µ4

)︃
.

(2.63)

which is still regular in λ, but singularly perturbed in µ. In the limit ε → 0, we recover

the characteristic polynomial of M−
m

cµ3 − µ2

(︃
c2(β + 2m+ 1)

β +m− 1
+ λ

)︃
+ µ

(︃
c3(β +m(r + 2))

(β +m− 1)2
− (β − 2)cλ

(β +m− 1)

)︃
− c4m(β +m)

(β +m− 1)3
+

c2λm(β +m− 2)

(β +m− 1)2
+ λ2 = 0,

and three of the spatial eigenvalues of M−
m,ε are, to leading order, thus given by the

spatial eigenvalues of M−
m for |λ| = O(1). We use the expansion µ = η−1/ε + η0 + O(ε)

to determine the leading order contribution of the singular spatial eigenvalue of M−
m,ε.

Substituting this expansion into (2.63) gives, to leading order, η3−1(η−1 + c) = 0. The

singular spatial eigenvalue of M−
m,ε is µ−

4 = −c/ε +O(1) (for |λ| = O(1)). In particular,

both singular spatial eigenvalues are to leading order the same and approach −∞ as

ε → 0.

For |λ| = O(1), the (weighted) dispersion relations of M±
m,ε are O(ε) perturbations of

those from M±
m, since µ±

1,2,3 are, to leading order, the same as those in the ε = 0 case.

Furthermore, the singular spatial eigenvalues µ±
4 have asymptotically large negative real

parts (for |λ| = O(1)) and thus do not affect the dispersion relations or Morse indices.

Moreover, the characteristic polynomials of M±
m,ε are regularly perturbed in λ. Conse-

quently, the Morse indices i± and the interior of the essential spectrum are unaffected by

the singular spatial eigenvalues µ±
4 . Similarly, since µ±

4 also does not affect the ranking

of µ±
1,2,3, the absolute spectrum is, to leading order, the same as for the ε = 0 case. In

particular, the branch points λ±
br are, to leading order, the same as those for the ε = 0

case and there is some parameter βm
crit(ε), given to leading order by βm

crit, such that the

branch points, and therefore the absolute spectrum, are contained in the open left half

plane for 1−m < β < βm
crit(ε).

The above asymptotic analysis is only valid for |λ| = O(1), since the singular spatial

eigenvalues µ±
4 become O(1) for |λ| large. However, we show, using asymptotic analysis
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that, to leading order, there are no additional intersections between the dispersion rela-

tions of M±
m,ε + ν±I and the imaginary axis for |λ| large as long as ν− > − c(β+m)

β+m−1 . This

condition arises from the asymptotic limits of the weighted dispersion relations M−
m+ν−I

(see (2.35) for the analogous condition for m = 0).

Lemma 2.6.1. Let ν− > − c(β+m)
β+m−1 and |λ| = Θ(ε−ζ) with1 ζ > 0. There are no intersec-

tions between the dispersion relations of M−
m + ν−I and the imaginary axis.2

Proof. We show that there are no intersections between M−
m + ν−I and the imaginary

axis by considering all possible rescalings of λ and k larger than Θ(1). That is, we take

the dispersion relations of M−
m + ν−I and set λ = ε−ζ λ̃ and k = ε−θk̃ where |λ̃| = Θ(1),

k̃ = Θ(1), k̃ ̸= 0 and ζ, θ > 0. This results in the rescaled weighted dispersion relations,

c
(︁
−ν + ikε−θ

)︁ (︁
c2
(︁
β +m2 + (β + 2)m

)︁
− (β − 2)λε−ζ(β +m− 1)

)︁
(β +m− 1)2

−
(︁
−ν + ikε−θ

)︁2 (︁
c2(β + 2m+ 1) + λε−ζ(β +m− 1)

)︁
β +m− 1

+
−c4m(β +m) + c2λmε−ζ

(︁
β2 − 3β +m2 + (2β − 3)m+ 2

)︁
+ λ2ε−2ζ(β +m− 1)3

(β +m− 1)3

+ ε

(︄
c3(m+ 1)(β +m)

(︁
−ν + ikε−θ

)︁
(β +m− 1)3

−
(︁
−ν + ikε−θ

)︁2 (︁
βc2 + λε−ζ(β +m− 1)2

)︁
(β +m− 1)2

+
c2λmε−ζ(β +m− 1)2 − c4m(β +m)

(β +m− 1)4
− c(m+ 1)

(︁
−ν + ikε−θ

)︁3
β +m− 1

+
(︂
−ν + ikε−θ

)︂4)︄
+ c

(︂
−ν + ikε−θ

)︂3
= 0

(2.64)

We now consider the leading order terms of the rescaled weighted dispersion relations.

To determine viable values of ζ and θ we use the method of dominant balance, see for

example [6]. We find that there are three different cases, (i) 0 < θ < 1, (ii) θ = 1 and (iii)

θ > 1, that lead to three different dominant balances. Depending on the values of ζ, θ the

leading order term is O(ε1−4θ), O(ε−3θ), and/or O(ε−ζ−2θ). We consider the dominant

balance between the leading order terms in each of the three cases and show that for

these balances that the leading order terms of the rescaled weighted dispersion relations

are never purely imaginary.

(i) For 0 < θ < 1 the leading order terms of (2.64) are O(ε−3θ) and O(ε−ζ−2θ) with

the dominant balance −3θ = −ζ − 2θ. This balance implies ζ = θ and that this

dominant balance is valid for 0 < ζ, θ < 1. The leading order term of (2.64) gives λ̃

as purely imaginary and thus to find the leading order term of the real component

1The expression |λ| = Θ(ε−ζ) is also often written as |λ| = Os(ε
−ζ) and denotes ‘strict order’, i.e.

|λ| = O(ε−ζ) and ε−ζ = O(|λ|).
2The technical details of the proof of this lemma were omitted from [10].
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of λ̃ we must consider the next order term. This in turn leads us to three subcases,

0 < θ < 1
2 , θ = 1

2 ,
1
2 < θ < 1.

When 0 < θ < 1/2 (and ζ = θ), the next order term is O(ε−2θ). The weighted

dispersion relations (2.64), with θ = ζ, to O(ε−2θ), are then

ε−3θ(λ̃k̃
2 − ick̃

3
) + ε−2θ

(︄
c2k̃

2
(β + 2m+ 1) + ck̃(3k̃ν(β +m− 1)

β +m− 1

− i(β − 2)λ̃) + λ̃(β +m− 1)(λ̃+ 2ik̃ν)

β +m− 1

)︄
+O(ε−2θ) = 0,

which, after solving explicitly for λ̃ gives, to O(εθ),

λ = −k2ε−θ − ik(c(m+ 1) + 2ν(β +m− 1))

β +m− 1
+O(εθ),

λ = ick − c(c(β +m) + ν(β +m− 1))

β +m− 1
εθ +O(ε2θ),

which, have negative real part, to leading order, when ν− > − c(β+m)
β+m−1 .

When θ = ζ = 1
2 , the leading order termsO(ε−3θ) andO(ε−ζ−2θ) are ofO(ε−3/2) and

the next order terms are those of order O(ε1−4θ), O(ε−2θ), O(ε−ζ−2θ) and O(ε−2ζ),

which are all of O(ε−1). The dispersion relations (2.64) to O(ε−1) are

ε−3/2(λ̃k̃
2 − ick̃

3
) +

(︄
c2k2(β + 2m+ 1)− ick(β − 2)λ̃

β +m− 1
+ λ̃

2
+ k4

+3ck2ν + 2iλ̃kν
)︂
ε−1 +O(ε−1/2) = 0

which, after solving explicitly for λ̃ gives, to O(εθ),

λ = −k̃
2
ε−

1
2 − ik̃(c(m+ 1) + 2ν(β +m− 1))

β +m− 1
+O(ε

1
2 ),

λ = ick̃ −√
ε

(︃
c2(β +m)

β +m− 1
+
(︂
cν + k̃

2
)︂)︃

+O(ε)

which, have negative real part, to leading order, when ν− > − c(β+m)
β+m−1 .

When 1
2 < θ < 1, the next order terms are those of O(ε1−4θ), however, to this order

the dispersion relations (2.64) gives ε−3θ(λ̃k̃
2 − ick̃

3
) + ε1−4θk̃

4
= 0 which implies

the second dispersion relation is k̃ = 0. Thus, we take (2.64) to O(ε−2θ),

ε−3θ(λ̃k̃
2 − ick̃

3
) + ε1−4θk̃

4
+ ε−2θ

(︄
c2k̃

2
(β + 2m+ 1)− i(β − 2)ck̃λ̃

β +m− 1

+3ck̃
2
ν + 2ik̃λ̃ν + λ̃

2
)︂
+O(ε1−3θ) = 0,
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which, after solving explicitly for λ̃ gives, to O(ε1−θ),

λ = −k̃
2
ε−θ − ik̃(c(m+ 1) + 2ν(β +m− 1))

β +m− 1
+O(ε1−θ),

λ = ick̃ − k̃
2
εθ +O(ε1−θ),

which, have negative real part, to leading order, when ν− > − c(β+m)
β+m−1 .

(ii) For θ = 1 the leading order terms are of O(ε1−4θ) and O(ε−3θ) with the dominant

balance 1 − 4θ = −3θ. This dominant balance holds for ζ ≤ 1. However, if ζ < 1

the leading order term of (2.64) is k̃
4 − ick̃

3
= 0 implying k̃ = 0 to leading order,

independent of λ̃. Therefore, if θ = 1 we must also have ζ = 1. For θ = ζ = 1, the

leading order term of (2.64) is −ick̃
3
+ k̃

4
+ λ̃k̃

2
= 0 which implies λ̃ = −k2̃ + ick̃

which is always in the left half plane, independent of the weight.

(iii) For θ > 1 the leading order terms are of O(ε1−4θ) and O(ε−ζ−2θ) with the dominant

balance −ζ−2θ. This implies ζ = 2θ−1 and the dominant balance holds for ζ, θ > 1.

The leading order term of (2.64) is then k̃
2
(︂
k̃
2
+ λ̃

)︂
= 0 and λ̃ = −k̃

2
, to leading

order, and is thus contained in the open left half plane independent of ν−.

As the dispersion relations do not intersect the imaginary axis for large |λ|, the essential

spectrum, and therefore the absolute spectrum, does not enter into the right half plane,

except in the region |λ| = O(1). See Figure 2.6.1 for an example of the spectral picture

in the case ε ̸= 0. This concludes the complete proof of Theorem 2.3.3.

2.7 Point Spectrum

In this section we prove that the origin persists as an element of the point spectrum with

algebraic multiplicity two for travelling wave solutions to (2.2) with 0 ≤ m < 1 and 0 ≤
ε ≪ 1. This is done by explicitly solving the associated (generalised) eigenvalue problem

and analysing the asymptotic behaviour of the (generalised) eigenfunctions. In §2.7.1, we
study the eigenvalue problem by first computing the eigenfunction of the origin associated

with the translation invariance of (2.2). Next, we compute a generalised eigenfunction,

which is due to the existence of a family of travelling wave solutions under varying the

wave speed c. By analysing the asymptotic behaviour of the (generalised) eigenfunctions

we prove that they are contained in the range of exponentially weighted function spaces for

which the essential spectrum is stable. This concludes the spectral stability of travelling

wave solutions to (2.2) in these weighted function spaces. In §2.7.4 we extend the analysis

to them = 1 case. In this case, we cannot conclude spectral stability as there is no spectral

gap in any exponentially weighted function space. However, nonlinear (in)stability results

have been obtained in certain cases for Keller-Segel models with linear consumption rate
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[70, 71, 77]. We include the m = 1 case for completeness and to highlight how and why

the spectral gap vanishes in the m → 1 limit. We begin this section with a brief summary

of the relevant results regarding the essential and absolute spectrum.

Throughout this section we refer to the travelling wave solutions (u(z), w(z)) to (2.6) as

(umε , wm
ε ) with subscripts and superscripts explicitly denoting the dependence on ε and

m respectively. Furthermore, observe that the relationship between wm
0 and um0 shown in

(2.7) also holds for ε ̸= 0. That is, wm
ε (z) = e−cz (umε (z))β [28].

We again consider the linear operator Lm
ε : H1(R) × H1(R) → H1(R) × H1(R) and the

associated eigenvalue problem (2.11), restated here for convenience

Lm
ε

(︄
p

q

)︄
= λ

(︄
p

q

)︄
, Lm

ε :=

(︄
L11 L12

L21 L22.

)︄
.

The entries of Lm
ε are

L11 := ε
∂2

∂z2
+ c

∂

∂z
−mwum−1,

L12 := −um,

L21 := β

(︃
wzuz
u2

+
wuzz
u2

− 2wu2z
u3

)︃
+ β

(︃
2wuz
u2

− wz

u

)︃
∂

∂z
− βw

u

∂2

∂z2
,

L22 := β

(︃
u2z
u2

− uzz
u

)︃
+

(︃
c− βuz

u

)︃
∂

∂z
+

∂2

∂z2
,

where we have dropped the ε subscripts andm superscripts from (umε , wm
ε ) for convenience.

The spectrum of an operator consists of values of λ ∈ C such that the inverse of the

eigenvalue operator L − λI does not exist or is unbounded. Recall Definition 2.7.1,

Definition 2.7.1. ([54] Definition 2.2.3) For a closed linear operator L : D(L) ⊂ X → X,

where X is a Banach space and D(L) is dense in X, the spectrum is decomposed into two

sets:

(a) The essential spectrum σess of the operator L is the set of all λ ∈ C such that

• L − λI is not Fredholm or,

• L − λI is Fredholm with a non zero Fredholm index,

where the Fredholm index of L is

ind(L) = dim(ker(L))− codim(range(L)).

(b) The point spectrum of the operator L is the set of all λ ∈ C such that the operator

L − λI is Fredholm with index zero, but the operator is not invertible. That is,

σpt =
{︁
λ ∈ C : ind(L − λI) = 0, but (L − λI)−1 does not exist

}︁
.
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As in [54], we use the term eigenvalue to refer to all values λ in the spectrum of the opera-

tor whereas point spectrum refers to isolated eigenvalues of finite multiplicity. Eigenvalues

which have eigenfunctions that decay to zero as z → ±∞ may be embedded in the essen-

tial spectrum and are thus not considered point spectra.

Throughout this section we will also consider the fourth order ODE associated with the

eigenvalue problem, (2.57),

εpzzzz −Dm,εpzzz − Cm,εpzz − Bm,εpz −Am,εp = 0.

The essential spectrum of the operator L in (2.36) depends on the asymptotic behaviour

of the operator. In particular, it depends on the magnitude and signs of the spatial

eigenvalues of the asymptotic states as z → ±∞. These spatial eigenvalues are found as

the roots of the following equations

ε(µ+)4 −D+
m,ε(µ

+)3 − C+
m,ε(µ

+)2 − B+
m,ε(µ

+)−A+
m,ε = 0,

ε(µ−)4 −D−
m,ε(µ

−)3 − C−
m,ε(µ

−)2 − B−
m,ε(µ

−)−A−
m,ε = 0,

(2.65)

where A±
m,ε, B±

m,ε, C±
m,ε and D±

m,ε respectively denote the limits of Am,ε, Bm,ε, Cm,ε and

Dm,ε as z → ±∞. Observe that the expressions (2.65) are exactly the characteristic

equations of (2.57) in the limit z → ±∞. The essential spectrum consists of values λ ∈ C
such that any of the spatial eigenvalues µ± are purely imaginary or the number of unstable

spatial eigenvalues at ±∞ differ. This is equivalent to Definition 2.7.1 [54].

All travelling wave solutions to (2.5) have essential spectra in the right half plane for

perturbations in H1(R) [10,80]. Thus, we follow the usual procedure outlined in [54] and

introduce the weighted function space H1
ν(R) defined by the norm

∥p∥H1
ν
= ∥eνzp∥H1 = ∥p̃∥H1 , (2.66)

where p̃ := eνzp. So, p ∈ H1
ν if and only if p̃ ∈ H1. We define L2

ν similarly. It was shown

in previous sections that a two-sided weight is required for the current problem. That is,

ν =

⎧⎨⎩ν− if z ≤ 0,

ν+ if z > 0,
(2.67)

which forces the perturbation to decay exponentially in both directions. Using a weighted

function space has the effect of shifting the essential spectrum. In particular, in the

weighted function space we consider the spatial eigenvalues are µ+ + ν+ and µ− + ν− as

z → ±∞ respectively. In other words, the weighted essential spectrum consists of values

λ ∈ C such that any of the spatial eigenvalues µ±+ν± are purely imaginary or the number

of weighted unstable spatial eigenvalues at ±∞ differ.
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ℜ(λ) ℜ(λ) ℜ(λ) ℜ(λ)

ℑ(λ) ℑ(λ) ℑ(λ) ℑ(λ)

Unweighted Weighted Unweighted Weighted

1−m < β < βm
crit(ε) β > βm

crit(ε)

Figure 2.7.1: A schematic of the typical weighted and unweighted essential spectra (blue
regions) associated with travelling wave solutions (umε , wm

ε ) of (2.2). The red curves indi-
cate the subset of the absolute spectrum that determines how far the essential spectrum
can be shifted by weighting the function space. For 1 − m < β < βm

crit(ε) the absolute
spectrum is contained in the left half plant and a two-sided weight exists such that the
weighted essential spectrum is contained in the open left half plane.

Recall the result from Theorem 2.3.3; all travelling wave solutions (umε (z), wm
ε (z)) are

absolutely unstable for β > βm
crit(ε), precluding the possibility of spectral stability. Thus,

we focus on the parameter regime that is potentially transiently unstable, i.e. 1−m < β <

βm
crit(ε) in the remainder of this chapter. To be able to conclude transient instability, i.e.

spectral stability in an exponentially weighted function space [88], we must show that for

the weights that shift the essential spectrum into the left half plane, there are no values

λ in the point spectrum with ℜ(λ) ≥ 0 other than for λ = 0. The location of the point

spectrum does not change upon moving to a weighted space [54], however, it is necessary

to show that the eigenfunctions associated with the point spectrum are contained in these

weighted function spaces. See Figure 2.7.1.

2.7.1 Locating the point spectrum

Locating the point spectrum amounts to finding nontrivial solutions (p, q)T to (2.36)

that decay to zero as z → ±∞ for some λ ∈ C\σess. While λ = 0 is in the essential

spectrum in the unweighted space for all m it is not in the weighted function space for

a range of weights when 0 ≤ m < 1 [10, 35], see also Figure 2.7.1. It was shown in [35]

that λ = 0 is a root of order two of the Evans function for travelling solutions to (2.2)

with ε = m = 0. Thus, in these appropriately weighted function spaces λ = 0 is an

isolated eigenvalue associated to the invariances of the problem. Hence, λ = 0 is part of

the point spectrum. We show that the eigenvalue λ = 0 persists with multiplicity two

for 0 ≤ m < 1 by determining two linearly independent eigenfunctions that form the

generalised eigenspace. In the singular limit ε → 0, these functions and their norms are
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explicitly computed. We also show these eigenfunctions persist for sufficiently small ε > 0

and are contained in the weighted function spaces that have stable essential spectrum.3

2.7.2 The generalised eigenspace at λ = 0

In order to obtain the eigenfunction, we first differentiate (2.6) with respect to z and

obtain

0 = εuzzz + cuzz − wzu
m −mwum−1uz = L11uz + L12wz,

0 = wzzz + cwzz − β(
wzuz
u

)z − β(
wuzz
u

)z + (β
wu2z
u2

)z = L21uz + L22wz,

which is equivalent to

0 = L
(︄

uz(z)

wz(z),

)︄

where we have omitted the ε subscripts and m superscripts. Hence ((umε )z, (w
m
ε )z) solves

the linearised eigenvalue problem (2.36) for λ = 0, and λ = 0 is thus an eigenvalue with

associated eigenfunction ((umε )z, (w
m
ε )z). This is typical for travelling wave solutions and

arises from the translation invariance of solutions in the moving frame z.

If we instead differentiate (2.6) with respect to the wave speed c, we obtain

0 = εuzzc + uz + cuzc − wcu
m −mwum−1uc

= L11uc + L12wc + uz,

0 = wzzc + wz + cwzc − β
(︂wzuz

u

)︂
c
− β

(︂wuzz
u

)︂
c
+ β

(︃
wu2z
u2

)︃
c

= L21uc + L22wc + wz,

which is equivalent to

L
(︄
uc(z)

wc(z)

)︄
= −

(︄
uz(z)

wz(z)

)︄
.

Hence ((umε )c, (w
m
ε )c) is a generalised eigenfunction of (2.36) for λ = 0 and λ = 0 has

algebraic multiplicity at least two and a geometric multiplicity of at least two. It was

shown in [35] that λ = 0 is a second order root of the Evans function and thus the

algebraic and geometric multiplicity are each precisely two.

3The formulation of the (generalised) eigenfunctions, eigenspace and analysis of the asymptotic be-
haviour of these functions remains valid when β > βm

crit(ε).
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Figure 2.7.2: The L2 norm squared of the generalised eigenfunction for ε = 0, i.e.
||((u0m)c, (w

0
m)c||2L2 , is shown for β = 1.1 over varying values of m and two different wave

speeds c. The solid curves represent m values such that 1 − m < β < βm
crit(0) and the

dashed line represent values such that β > βm
crit(0). Observe that both squared norms

have an asymptote at m = 1.

For ε small we can explicitly compute the leading order (generalised) eigenfunctions from

(2.7). In particular,

(um0 )z(z) =
1

c
e−cz(um0 )β+m,

(wm
0 )z(z) = −ce−cz (um0 )β + βe−cz (um0 )β−1 (um0 )z,

(um0 )c(z) =
(cz + 2)um0

c (c2ecz + β +m− 1)
,

(wm
0 )c(z) = −ze−cz (um0 )β + βe−cz (um0 )β−1 (um0 )c.

(2.68)

We have ((um0 )z, (w
m
0 )z) ∈ L2 × L2 and ((um0 )c, (w

m
0 )c) ∈ L2 × L2 with

||((um0 )z, (w
m
0 )z)||2L2 =

c

4 + 2(β +m− 1)
+

c5

β2 − 2(β +m− 1)2
. (2.69)

The exact expression for ||(uc, wc)||L2 is not informative; instead see Figure 2.7.2 for

computations of ||(uc, wc)||L2 specific values of β,m, c.

2.7.3 Behaviour of eigenfunctions as z → ±∞

As we have shown the existence and boundedness of the (generalised) eigenfunctions,

what remains is to show that the functions are contained in the weighted spaces H1
ν(R)

where the essential spectrum is weighted into the left half plane. We do this through

examining the asymptotic behaviour of the eigenfunctions. The exponential decay rate

of the eigenfunctions as z → ±∞ are greater than the weighted spatial eigenvalues at

z → ±∞. Hence, we conclude that λ = 0 is in fact point spectrum for all 0 ≤ m < 1 in
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the space H1
ν(R). Since the eigenvalue problem can be expressed as an equivalent ODE

(2.57) in p, u and their derivatives, it is sufficient to show uz and uc are contained in

H1
ν(R). It was shown in [103] that solutions to (2.6) can be related to solutions of a Fisher

equation by first eliminating w(z) using wm
ε (z) = e−cz (umε (z))β. Then, by introducing

the change of variable umε (z) = v(z) exp
(︂

c
β+m−1z

)︂
the following ODE in v(z) is obtained

εv′′ + sv′ + ηv − vβ+m = 0, (2.70)

where s = c
(︂
1 + 2ε

β+m−1

)︂
and η = c2(ε+β+m−1)

(β+m−1)2
. We have the following result for v(z)

adapted from Lemma 3.1 ii a of [103]

Lemma 2.7.1. ([103]) There exists a nonnegative travelling wave solution v(z) of (2.70)

if and only if β ≥ 1−m. For β > 1−m the travelling wave solution v(z) is a wavefront

with v′(z) < 0 and satisfies the asymptotic conditions

lim
z→−∞

v(z) = η
1

β+m−1 , lim
z→∞

v(z) = 0.

The wavefront v(z) has the following asymptotic behaviours:

v(z) ∼ η
1

β+m−1 − C1e
κ1z, as z → −∞ and v(z) ∼ C2e

κ2z, as z → ∞ (2.71)

where

κ1 = κ2 −
c

2ε
+

c

2ε

√︄
1 +

4ε(β +m)(ε+ β +m− 1)

(β +m− 1)2
and κ2 = − c

β +m− 1
.

From (2.65) the unweighted spatial eigenvalues µ− for λ = 0 are given by

µ−
1 =

c

β +m− 1
, µ−

2 = µ−
1 m,

µ−
3,4 = − c

2ε
∓ c

2ε

√︄
1 +

4ε(β +m)(β +m+ ε− 1)

(β +m− 1)2
.

Using (2.71) and umε (z) = v(z)e
c

β+m−1
z
we have the following asymptotic behaviour as

z → −∞
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(umε )z(z) ∼
cη

1
β+m−1

β +m− 1
e

c
β+m−1

z − C1

(︃
κ1 +

c

β +m− 1

)︃
e

(︂
κ1+

c
β+m−1

)︂
z

∼ cη
1

β+m−1

β +m− 1
eµ

−
1 z − C1

(︃
κ1 +

c

β +m− 1

)︃
eµ

−
4 z,

(umε )c(z) ∼
(︄
η

1
β+m−1 + ηcη

2−β−m
β+m−1

β +m− 1

)︄
e

c
β+m−1

z − C1

(︃
1

β +m− 1
+ (κ1)c

)︃
ze

(︂
κ1+

c
β+m−1

)︂
z

∼
(︄
η

1
β+m−1 + ηcη

2−β−m
β+m−1

β +m− 1

)︄
eµ

−
1 z − C1

(︃
1

β +m− 1
+ (κ1)c

)︃
zeµ

−
4 z.

The asymptotic decay rates of uz, uc as z → −∞ are precisely the two largest unstable

unweighted spatial eigenvalues. In the weighted space H1
ν(R) the spatial eigenvalues are

µi
− + ν− for i = 1, 2, 3, 4. It was shown in §2.4.3 that the range of weights for z → −∞

are negative. Thus, the eigenfunctions decay faster than the weighted spatial eigenvalues

as z → −∞.

From (2.65) we have the unweighted spatial eigenvalues as z → ∞ for λ = 0,

µ1
+ = −c, µ2

+ = −c

ε
, µ3,4

+ = 0.

From (2.71) we have umε (z) ∼ C2, as z → ∞ and so we cannot compare the exact asymp-

totic exponential decay rates of the derivatives of umε (z) to the spatial eigenvalues. It

was shown in §2.4.3 that positive weights ν+ ∈ (0, c) can be used to weight the essential

spectrum into the open left half plane. Thus, as (umε )z and (umε )c are solutions to the

eigenvalue problem both (generalised) eigenfunctions will decay to zero exponentially in

the stable subspace spanned by the eigenvectors associated with µ1,2
+ . Thus as ν+ > 0 we

can conclude that there is some weighted space such that the (generalised) eigenfunctions

decay faster than the weighted spatial eigenvalues as z → ∞.

Hence, as the (generalised) eigenfunctions decay faster than the weighted spatial eigenval-

ues as z → ±∞ we can conclude that (uc, wc), (uz, wz) ∈ H1
ν(R) for the range of weights

that shift the essential spectrum into the open left half plane. Thus, the eigenvalue λ = 0

is isolated and in the point spectrum in these weighted spaces.

The inclusion of a small diffusion parameter amounts to a perturbation of the operator

and there are only a few possible ways new point eigenvalues can appear. These point

eigenvalues emerge as perturbations of the eigenvalues in the ε = 0 case or as new eigen-

values emerging from, and to leading order given by, the branch points of the absolute

spectrum. From [54] it follows that eigenvalues in the point spectrum are, to leading

order, given by those in the ε = 0 case. It has been shown via a numerical Evans function

computation that there are no point eigenvalues in the open right half plane (excluding
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λ = 0) when ε = 0 up to |λ| ∼ O(109) [35]. As a result, there can be no point spectra

in this region for 0 < ε ≪ 1. The ODE (2.57) varies smoothly in λ as m → 0 and so the

results of [35] hold for 0 < m < 1. Thus, the only eigenvalues that can potentially desta-

bilise the ε = 0 spectrum are those that emerge from the branch points of the absolute

spectrum. As the operator L− λI (2.36) varies smoothly in λ near ε = 0 any eigenvalues

that emerge from the branch points will be of the form

λ = λbr + Cε2 +O(ε3),

for some C ∈ C [54]. Therefore, choosing β < βm
crit(ε) such that |ℜ(λbr)| is not O(ε2) will

prevent any emerging point spectrum from destabilising the spectrum.

2.7.4 The limit m → 1

In the case of linear consumption, the travelling wave solutions are a pair of travelling

wavefronts given, to leading order, by (2.7) with m = 1. These wavefronts satisfy (2.6)

and asymptote to

lim
z→−∞

(u1ε(z), w
1
ε(z)) =

(︃
0,

c2

β
+ ε

c2

β2

)︃
, lim

z→∞
(u1ε(z), w

1
ε(z)) = (ur, 0), (2.72)

with ur scaled to one without loss of generality. Furthermore, the essential spectrum of

L1
ε (2.36) includes the origin for all parameter values and all possible weights (2.67), see

Theorem 2.3.3. Therefore, this case is markedly different from 0 ≤ m < 1 and must be

treated separately.

Similar to the previous analysis in §2.7.1, we compute the functions ((u1ε)z, (w
1
ε)z) and

((u1ε)c, (w
1
ε)c). These functions are given, to leading order, by (2.68) with m = 1. While

the function ((u1ε)z, (w
1
ε)z) persists as a solution to the eigenvalue problem (2.36) with a

finite norm ||((u1ε)z, (w1
ε)z)||L2 given, to leading order, by (2.69), the leading order function

((u10)c, (w
1
0)c) is unbounded and hence ((u1ε)c, (w

1
ε)c) is not a solution to the generalised

eigenvalue problem, see Figure 2.7.2. The eigenvalue λ = 0 is order one, in the sense

that one of the eigenfunctions associated with λ = 0 persists when m → 1. As there is

no exponentially weighted function space such that λ = 0 is isolated, it is not considered

point spectrum.

The intuitive reason for the reduction of order as m → 1 is that there is no longer a

family of solutions in c, since, when m = 1, the end state of w1
ε as z → −∞ depends on

c, see (2.72). Thus, for fixed end states a travelling wave solution exists with a unique

wave speed c, whereas for 0 ≤ m < 1 travelling wave solutions exist for any wave speed

c. Alternatively, the reduction of order can be seen by examining the deformation of

the absolute spectrum as m → 1. The absolute spectrum does not contain λ = 0 for
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0 ≤ m < 1 but, as m → 1 the branches of absolute spectrum approach λ = 0. Thus the

order is reduced as m → 1 due to an eigenvalue disappearing into the absolute spectrum.

2.8 Summary and outlook

In this chapter, we located the weighted essential spectrum and absolute spectrum as-

sociated with travelling wave solutions to the Keller-Segel model (2.4) for 0 ≤ m ≤ 1,

β > 1−m and 0 ≤ ε ≪ 1. By locating the branch points, that form the leading edge of

the absolute spectrum, we proved that the absolute spectrum and ideally weighted essen-

tial spectrum are contained in the open left half plane for 1 −m < β < βm
crit(ε) and we

derived leading order expressions determining βm
crit(ε). We also developed a procedure for

locating the range of weighted spaces for which the weighted essential spectrum is in the

open left half plane. For β > βm
crit(ε), all travelling wave solutions have absolute spectrum

in the right half plane and the travelling wave solutions are thus absolutely unstable.

These results provide a complete picture of the absolute spectrum and weighted essential

spectrum associated with all possible travelling wave solutions to the Keller-Segel model

(2.4) and they expand on the previous results for the essential spectrum known in the

literature [80,103]. Furthermore, it is now clear how the absolute spectrum and weighted

essential spectrum deform between the limit cases m = 0 and m = 1. Moreover, we

showed that the transition to the absolutely unstable parameter regime is characterised

by the absolute spectrum crossing into the right half plane away from the real axis (similar

to the example in [85]).

In [35], the Evans function associated with travelling wave solutions to (2.4) with m = 0

and ε = 0 was calculated numerically using a Riccati transformation. It was shown that

there is a second order temporal eigenvalue at the origin and that there are no other

eigenvalues in the right half plane with |λ| < 107. Due to the translation invariance,

λ = 0 was expected to persist as an eigenvalue (with order at least one) for 0 < ε ≪ 1.

We have now proved, barring the existence of extremely large values of |λ| in the right half

plane, that the travelling wave solutions to (2.2) are spectrally stable in an appropriately

weighted function space for 1 − m < β < βm
crit(ε) for 0 ≤ m < 1 and 0 ≤ ε ≪ 1, i.e.

transiently unstable. In particular, the point eigenvalue λ = 0, proven to be of order two

when ε = m = 0 in [35], does not perturb in the ε ̸= 0 case. This is because the existence

of a continuous family of solutions in c and the existence of a family of solutions due to

translation invariance is preserved when ε ̸= 0.

2.8.1 Nonlinear (in)stability

Ideally, one would like to use the spectral stability results presented in this chapter to

conclude nonlinear (in)stability of the travelling wave solutions. For a sectorial semilinear

operator with a spectral gap (i.e. the spectrum is contained in the open left half plane
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except for the translation invariance eigenvalue at the origin), spectral stability implies

nonlinear (orbital) stability of the associated travelling wave solution [41, 91]. However,

while the operator L (2.9) appears to be sectorial for 0 < ε ≪ 1, see, for instance,

Figure 2.6.1, it is quasilinear rather than semilinear. In [78], it was shown that for a large

class of quasilinear parabolic reaction-diffusion systems one can still deduce nonlinear

stability results from the spectral stability results, as long as the linearised operator fulfils

certain conditions. Unfortunately, the Keller-Segel model studied in this chapter does not

fall into the class of quasilinear parabolic reaction-diffusion systems considered in [78],

though potentially the analysis of [78] could be extended to encompass this model. For the

Keller-Segel model (2.1) with nonlinear diffusion and with logarithmic chemosensitivity

(i.e. Φ(u) = log(u)), linear consumption (i.e. m = 1) and nonzero growth (i.e. κ > 0), the

general theory for semilinear operators was extended in [77] to prove nonlinear instability

results in certain cases of the model.

In the case that m = 1 one can use a Hopf-Cole transformation in conjunction with

energy estimates in order to prove the nonlinear (orbital) stability of travelling waves for

0 ≤ ε ≪ 1 [49,70,71,77,103]. These energy estimates have the potential to provide a bound

on large λ. However, these energy estimates are notoriously difficult for specific linearised

operators and the computation is further complicated by both the non-self-adjointness

of the operator Lm
ε given in (2.36) and the fact that the Hopf-Cole transformation is

not applicable when 0 ≤ m < 1. Alternatively, in order to apply the general theory

for semilinear systems, [41] proposes to transform a quasilinear system to a semilinear

system. Observe that this approach is akin to the method used in §2.5. It is a challenge

to see if any of these methods can be used to obtain nonlinear stability results for the

travelling wave solutions of (2.4) studied in this chapter.

2.8.2 Dynamical implications of the spectral structure

The dynamical implications of the absolute spectrum in the right half plane for travelling

wave solutions of the Keller-Segel model (2.4) are not known. In typical examples, such

as the F-KPP equation, the transition to an absolutely unstable regime is associated

with the so-called linear spreading speed, i.e. the speed ‘generic’ initial conditions will

eventually travel at. Note that in the F-KPP equation this is known as the minimal wave

speed. In other words, the linear spreading speed is the speed of a travelling wave solution

‘selected’ by the model. However, in the Keller-Segel model (2.4) the transition to the

absolutely unstable regime is, to leading order, independent of the wave speed and it thus

does not seem to have an influence on the asymptotic speed of a generic initial condition

(that evolves to a travelling wave solution). Rather, the initial condition of the bacteria

population w determines the wave speed [80]. Note that in the case of a Keller-Segel

model (2.1) with a growth term, the absolute spectrum does appear to have an influence

on the wave speed selection [8, 77]. Moreover, as the transition of the absolute spectrum
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into the right half plane is complex valued, one expects oscillatory instabilities to manifest

themselves near this critical parameter. These type of bifurcations have been studied in

[89, 92]. As there are no instabilities arising from the point spectrum (barring extremely

large values of |λ|) it is of interest to examine the dynamical implications and nature of

this bifurcation as it is atypical for the absolute spectrum to cross into the right half plane

away from the real line. Future work will examine this bifurcation, both analytically and

numerically, to determine the impact, if any, on the wave speed, wavefront selection and

whether oscillatory behaviour is observed.
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Travelling wave solutions in a model for tumour invasion with the

acid-mediation hypothesis

3.1 Preface

The contents of this chapter were submitted for publication under the title “Traveling

wave solutions in a model for tumor invasion with the acid-mediation hypothesis” [12].

The manuscript is presented here with minor stylistic changes, expanded discussion and

outlook given in §3.6.

Abstract

In this chapter, we prove the existence of slow and fast travelling wave solutions in the

original Gatenby–Gawlinski model. We prove the existence of a slow travelling wave

solution with an interstitial gap. This interstitial gap has previously been observed ex-

perimentally, and here we derive its origin from a mathematical perspective. We give

a geometric interpretation of the formal asymptotic analysis of the interstitial gap and

show that it is determined by the distance between a layer transition of the tumour and

a dynamical transcritical bifurcation of two components of the critical manifold. This

distance depends, in a nonlinear fashion, on the destructive influence of the acid and the

rate at which the acid is being pumped.

3.2 Introduction

Altered energy metabolism is a characteristic feature of many solid cancer tumours and it

has been recognised as a possible phenotypic hallmark [34]. The discovery of this altered

metabolism feature dates back to the seminal work of Warburg [104], who observed that

certain carcinomas undergo glucose metabolism by glycolysis and not by mitochondrial

oxidative phosphorylation (MOP), as normal cells do. MOP produces lactic acid as a

toxic by-product and is usually reserved for conditions of hypoxia. Paradoxically, cancer

cells maintain the glycolytic phenotype even in the presence of sufficient oxygen to un-

dergo MOP. This phenomenon is known as aerobic glycolysis or the Warburg effect. The

underlying causes of the Warburg effect still remain largely unknown. One explanation for

this phenomenon is the so-called acid-mediation hypothesis, that is, the hypothesis that

tumour progression is facilitated by the acidification of the region around the tumour-host

interface. This leads to a comparative advantage for tumour cells since they are more

76
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adapted to low pH environmental conditions than healthy cells. The resulting tissue

degradation facilitates tumour invasion of the tissue microenvironment [33].

Gatenby and Gawlinski [32] formulated the acid-mediation hypothesis in a reaction-

diffusion framework. They proposed a reaction-diffusion system in which tumour cells

produce an excess of H+ ions due to aerobic glycolysis, which results in local acidification

and thus destruction of the surrounding healthy tissue. After a suitable nondimension-

alisation [32], the Gatenby–Gawlinski model can be written as the following system of

singularly perturbed partial differential equations (PDEs) with nonlinear diffusion (in the

V -component): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂U

∂τ
= U(1− U − αW ),

∂V

∂τ
= βV (1− V ) + ε

∂

∂x

[︃
(1− U)

∂V

∂x

]︃
,

∂W

∂τ
= γ(V −W ) +

∂2W

∂x2
.

(3.1)

Here, x ∈ R and τ ≥ 0 are the spatial and temporal variables, respectively. The quanti-

ties U(x, τ), V (x, τ), andW (x, τ) represent nondimensionalised versions of the normal cell

density, tumour cell density, and excess acid concentration, respectively. As in the quan-

titative discussions presented in [32], ε is assumed to be a small nonnegative parameter,

i.e. 0 ≤ ε ≪ 1. In addition, the constants α, β, and γ are all positive and strictly O(1)

with respect to ε. The parameter α measures the destructive influence of H+ ions on the

normal tissue and therefore its value can be taken as an indicator of tumour aggressivity.

For α ≥ 1, solutions of (3.1) model the situation in which total destruction of normal

tissue occurs after the invasion of tumour tissue. On the other hand, for 0 < α < 1,

solutions of (3.1) correspond to the case where a residual concentration with value 1− α

of healthy tissue remains behind the spreading benign wave.

Gatenby and Gawlinski [32] investigated the travelling wave (TW) solutions that are

compatible with (3.1) and a number of interesting results were obtained. For instance,

numerical simulations hinted at the existence of an interstitial gap (i.e. a region practically

devoid of cells and located ahead of the invading tumour front) for large values of the pa-

rameter α. Subsequently, the existence of such a gap was verified experimentally [32, Fig.

4]. In addition, arguments pointing toward comparatively faster invasive processes when

α > 1 were provided in [32]. Fasano, Herrero, and Rodrigo [27] further investigated the

TW solutions that are compatible with (3.1). Using a nonstandard matched asymptotic

analysis they showed that (3.1) supports TW solutions that travel with speed O(1) and

TW solutions that travel with speed O(εp) for 0 < p ≤ 1/2. They called the former TWs

fast TW solutions and the latter TWs slow TW solutions, and the authors also obtained

bounds for the wave speed in terms of the model parameters. Most notably, the authors
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Figure 3.2.1: Left panel: an interstitial gap present in a human squamous cell carcinoma.
Reprinted from R. A. Gatenby and E. T. Gawlinski. A reaction-diffusion model for cancer
invasion. Cancer Res., 56:5745–5753, 1996 with permission from AACR. Right panel: a
slow TW solution with an interstitial gap supported by (3.1).

identified slow TWs with an interstitial gap when α > 2 and the leading order width of

this gap was estimated as

z+ =
1√
γ
log

α

2
> 0. (3.2)

This interstitial gap ceases to exist when 0 < α ≤ 2. Finally, the authors of [27] showed

that TW solutions cannot be found when p > 1/2. See Fig. 3.2.1 for a slow TW solution

with an interstitial gap obtained by a numerical simulation of (3.1).

Different generalizations of the original Gatenby–Gawlinski model have also been proposed

in the literature. For instance, Holder, Rodrigo, and Herrero [42] included a cellular

competition term in the U -equation and replaced the acid production term in the W -

equation by a logistic-type reaction term. After nondimensionalisation, this generalised

Gatenby–Gawlinski model becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂U

∂τ
= U(1− U − α(V +W )),

∂V

∂τ
= βV (1− V ) + ε

∂

∂x

[︃
(1− U)

∂V

∂x

]︃
,

∂W

∂τ
= δV (1− V )− γW +

∂2W

∂x2
.

(3.3)

This generalization was motivated by the fact that tumours tend to present with very

heterogeneous acid profiles and there is some experimental evidence of higher acid con-

centrations near the region of the interstitial gap. As a consequence of the addition of the

nonlinear acid production term to the model, the profile of the excess acid concentration

became pulse-like (instead of front-like in the original Gatenby–Gawlinski model; see, for

instance, Fig. 3.2.1). The authors obtained results with regards to fast and slow TW

solutions via matched asymptotic analysis similar to those in [27] and they also obtained

estimates for the interstitial gap.
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A different generalization of the Gatenby–Gawlinski model (3.1) was given by McGillen

et al. [75]. Here, the authors added cellular competition terms for both the U - and V -

equations, as well as a term in the V -equation that incorporates acid-mediated tumour cell

death. After nondimensionalisation, this generalised Gatenby–Gawlinski model becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂U

∂τ
= U(1− U − α1V − α2W ),

∂V

∂τ
= βV (1− V )− δ1UV − δ2VW + ε

∂

∂x

[︃
(1− U)

∂V

∂x

]︃
,

∂W

∂τ
= γ(V −W ) +

∂2W

∂x2
,

(3.4)

and results analogous to those in [27,42] were derived.

3.2.1 Results and outline

In this chapter, we study the original nondimensionalised Gatenby–Gawlinski model (3.1)

and prove the formal results of [27] regarding the existence of fast and slow TW solutions1.

Moreover, we explain – from a mathematical perspective – the origin of the interstitial

gap. We focus on the two critical cases p = 0 (fast TW solutions) and p = 1/2 (slow TW

solutions). To prove the asymptotic results from [27], we rewrite the PDE model (3.1)

in its travelling wave framework upon introducing (z, t) := (x − εpcτ, τ) with p = 0 or

p = 1/2 and with O(1) wave speed c. TW solutions to (3.1) now correspond to stationary

solutions in this new framework and the problem reduces to studying heteroclinic orbits

in an ordinary differential equation (ODE). Next, we use the multi-scale structure of

(3.1) to write this resulting ODE problem in a five-dimensional slow-fast system of first

order ODEs [68]2. For the fast TW solutions there will be one fast component and four

slow components, while the slow-fast splitting for the slow TW solutions is three fast

components and two slow components. The details regarding the formulation of the

slow-fast systems are given in §3.3.

We study these slow-fast systems for the fast TW solutions (see §3.4) and the slow TW

solutions (see §3.5) using geometric singular perturbation theory (GSPT) [39, 51, 53]. In

particular, we study the dynamics of the associated lower dimensional fast layer problems

and slow reduced problems in the singular limits as ε → 0. Next, we appropriately con-

catenate the dynamics of these lower dimensional systems to obtain information regarding

the heteroclinic orbit – and thus fast and slow TW solutions to (3.1) – in the singular

limit as ε → 0. Finally, we use Fenichel theory [30] to show that these solutions persist for

positive but small ε. It turns out that for the fast TW solutions, independent of the value

1See the discussion in §3.6 regarding using the techniques of this chapter to analyse TW solutions
found in (3.3) and (3.4).

2Note that the slow and fast in slow-fast system is not related to the slow and fast in slow TW solution
and fast TW solution. This terminology is standard in the GSPT literature and we decided not to change
it.
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of α, all the dynamics take place on the attracting critical manifold of the slow reduced

problem and the application of GSPT and Fenichel theory is straightforward. In essence,

the model is a regularly perturbed problem for the fast TW solutions, and we will show

that the asymptotic results of [27] are correct and persist for 0 < ε ≪ 1. See §3.4 for the

details.

In §3.5 we study the slow TW solutions and now the tumour aggressivity parameter α

becomes important. In particular, we have to distinguish between three cases: 0 < α < 1,

1 < α < 2, and α > 2. In the first case, a slow TW solution in the singular limit ε → 0

starts on one branch of the critical manifold (at z = −∞) and transitions through the

fast layer problem (which we assume, without loss of generality, to happen at z = 0) to

a second branch of the critical manifold, and the layer dynamics will have a Fisher–KPP

imprint [69, 79, 102, e.g]. Again, we will show that such a slow TW solution persists for

0 < ε ≪ 1 by applying GSPT and Fenichel Theory. In the latter two cases (1 < α < 2 and

α > 2) there is an additional complication related to a dynamical transcritical bifurcation

of the two connected components on each branch of the critical manifold [67,68, e.g]. For

1 < α < 2, the transcritical bifurcation happens before the fast transition through the

layer problem (at z = 0), while the bifurcation happens after the transition for α > 2, see

Fig. 3.5.2. For 1 < α < 2 the transcritical bifurcation happens (to leading order in ε) at

z− =
1√
γ
log

2(α− 1)

α
< 0 , (3.5)

while the transcritical bifurcation happens (to leading order in ε) at z+ (3.2) for α > 2,

see also [27]. In other words, for α > 2 the length of the interstitial gap is to leading

order determined by the distance between the fast transition through the layer problem

and the dynamical transcritical bifurcation. We conclude the chapter with a summary

and outlook regarding future projects.

3.3 Setup of the slow-fast systems

Since we are looking for TW solutions supported by (3.1), we introduce the travelling

frame coordinates (z, t) := (x−εpcτ, τ) for 0 ≤ p. Here, the speed c of the TW solution is

assumed to be strictly O(1) with respect to ε. Moreover, as we are interested in waves of

invasion, we assume, without loss of generality, that c > 0. A TW solution is stationary

in this co-moving frame and will therefore satisfy the following system of ODEs:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−εpc
du

dz
= u(1− u− αw),

−εpc
dv

dz
= βv(1− v) + ε

d

dz

[︃
(1− u)

dv

dz

]︃
,

−εpc
dw

dz
= γ(v − w) +

d2w

dz2
.

(3.6)
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The fixed points of (3.6) are (u, v, w) = (0, 0, 0), (1, 0, 0), (0, 1, 1) and (1 − α, 1, 1). We

examine TW solutions with asymptotic boundary conditions (u, v, w) → ((1 − α)+, 1, 1)

as z → −∞ and (u, v, w) → (1, 0, 0) as z → ∞ as these solutions represent tumour

invasion into healthy tissue. Here,

(1− α)+ = max{1− α, 0},

which represents the residual concentration of healthy tissue that remains behind the

TW solution. Upon introducing the two new variables r := ε1−p(1 − u)vz + cv (see

Remark 3.3.1) and s := wz, we can rewrite (3.6) as an equivalent slow-fast system of five

first order ODEs ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εp
du

dz
= −1

c
u(1− u− αw),

ε1−pdv

dz
=

r − cv

1− u
,

εp
dr

dz
= −βv(1− v),

dw

dz
= s,

ds

dz
= −εpcs− γ(v − w).

(3.7)

TW solutions of (3.1) now correspond to heteroclinic orbits of (3.7) connecting its two

equilibrium points. That is,

lim
z→−∞

(u, v, r, w, s) = ((1− α)+, 1, c, 1, 0) =: Z− ,

lim
z→∞

(u, v, r, w, s) = (1, 0, 0, 0, 0) =: Z+ .
(3.8)

There are three critical p-values that balance the asymptotic scalings of (3.7), namely,

p = 0, p = 1/2, and p = 1. In [27] it was shown that the case p = 1 does not lead to

TW solutions and we therefore do not consider this case in this chapter (actually it was

shown in [27] that there are no TWs for p > 1/2). In addition, (3.7) has three asymptotic

scalings for 0 ≤ p ≤ 1/2. In this chapter we consider only the cases p = 0 – corresponding

to fast TW solutions – and p = 1/2 – corresponding to slow TW solutions. We refer the

reader to [27] for the procedure to apply when 0 < p < 1/2.
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Equation (3.7) is in its slow formulation3 [51, 53, 68]. Upon introducing the fast variable

y := εp−1z, the ODEs can be written in their fast formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dy
= −ε1−2p

c
u(1− u− αw),

dv

dy
=

r − cv

1− u
,

dr

dy
= −ε1−2pβv(1− v),

dw

dy
= ε1−ps,

ds

dy
= −εcs− ε1−pγ(v − w).

(3.9)

The slow problem (3.7) and fast problem (3.9) are equivalent for ε ̸= 0. However, they

differ in the singular limit ε → 0. In particular, for the fast TW solutions, i.e. when

p = 0, the (u, r, w, s)-variables are slow variables and the v-variable is a fast variable.

That is, for p = 0 the slow problem (3.7) in the singular limit ε → 0 is a four-dimensional

system of ODEs (in the slow variables) with one algebraic constraint (determined by the

original equation for the fast variable). In contrast, the fast problem (3.9) for p = 0 in

the singular limit ε → 0 is a one-dimensional ODE (in the fast variable) with (up to) four

additional parameters (coming from the slow equations). For the slow TW solutions, i.e.

when p = 1/2, only the (w, s)-variables are slow variables and the (u, v, r)-variables are

fast variables.

Remark 3.3.1. The scaling of the new variable r as r := ε1−p(1 − u)vz + cv is chosen

such that −εprz is equal to the reaction term of the v-component in the original ODE

model (3.6). That is, −εprz = βv(1−v) (3.7). This particular scaling of r is inspired by a

series of manuscripts [3,36,37,84] on TW solutions for chemotaxis-driven and haptotaxis-

driven cell migration problems and it arises naturally when writing an extended version

of (3.6) as a singularly perturbed system of coupled balance laws.

3.4 The existence of fast travelling wave solutions

We start with studying the fast TW solutions supported by (3.1) and prove that the

asymptotic results of [27] persist for 0 < ε ≪ 1. In particular, we show that, for sufficiently

small ε, (3.1) supports fast TW solutions (UF, VF,WF)(x, τ) (see Fig. 3.4.1 for a fast TW

3Recall that the slow in slow formulation is not related to the slow in slow TW solution, that is, (3.7)
is the slow formulation of the ODEs associated to both the slow TW solutions with p = 1/2 and the fast
TW solutions with p = 0.
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Figure 3.4.1: A fast TW solution obtained from numerically simulating the Gatenby–
Gawlinsky model (3.1) on a domain of size 60 with (α, β, γ, ε) = (3, 4, 2, 4× 10−5). The
observed wave speed is c ≈ 0.985, which is, as expected, O(1).

solution obtained by directly simulating (3.1)). These fast TW solution are, to leading

order in ε, given by (UF, VF,WF)(x, τ) = (u0, v0, w0)(z), with

v0(z) =
1

1 + eβz/c
,

w0(z) =
γ

ρ+ − ρ−

⎛⎝ ∞∫︂
z

eρ+(z−ξ)v0(ξ) dξ +

z∫︂
−∞

eρ−(z−ξ)v0(ξ) dξ

⎞⎠ ,

u0(z) =
cΦ0(z)

∞∫︁
z
Φ0(ξ) dξ

, Φ0(z) = e
−(1/c)

z∫︁
0

(1−αw0(ξ)) dξ
,

(3.10)

where ρ± = (−c±
√︁
c2 + 4γ)/2.

Taking p = 0 in the fast system of ODEs (3.9) and considering the singular limit ε → 0

leads to the fast layer problem for the fast TW solutions4⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv

dy
=

r − cv

1− u
,

du

dy
= 0,

dr

dy
= 0,

dw

dy
= 0,

ds

dy
= 0.

(3.11)

All of the variables except v are constant in (3.11) and it can thus be seen as a single first

order ODE with four additional parameters. It follows directly from (3.11) that v = r/c

is an equilibrium point. Therefore, we define the four-dimensional critical manifold

S0
F :=

{︂
(u, v, r, w, s)

⃓⃓⃓
v =

r

c

}︂
. (3.12)

4We rearranged the order of the equations in (3.11) to emphasise the slow-fast structure of the problem.
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Since c > 0 by assumption, we have that the critical manifold S0
F is an attracting, nor-

mally hyperbolic manifold [51, 53, e.g] for u < 1. The critical manifold S0
F loses normal

hyperbolicity for u = 1 and is repelling for u > 1. As we will show, the u-component

is always between 0 and 1 and only approaches 1 as z → ∞; see (3.8), (3.10) and, in

particular, Remark 3.4.1. Moreover, both asymptotic boundary conditions Z± (3.8) lie

on the critical manifold S0
F.

Taking p = 0 in the slow system of ODEs (3.7) and considering the singular limit ε → 0

leads to the slow reduced problem for the fast TW solutions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 =
r − cv

1− u
,

du

dz
= −1

c
u(1− u− αw),

dr

dz
= −βv(1− v),

dw

dz
= s,

ds

dz
= −cs− γ(v − w).

(3.13)

Hence, the reduced problem is a system of four first order ODEs restricted to the critical

manifold S0
F (3.12). Upon imposing the algebraic constraint v = r/c, the system of four

first order ODEs of (3.13) can be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du

dz
= −1

c
u(1− u− αw),

dv

dz
= −β

c
v(1− v),

d2w

dz2
+ c

dw

dz
− γw = −γv .

It was shown in [27] that this system, with boundary conditions as in (3.8), is solved by

(3.10). Hence, the u-component is strictly increasing and approaching one in the limit

z → ∞ [27].

In the singular limit ε → 0, the critical manifold S0
F (3.12) is normally hyperbolic and

attracting in the fast direction for u < 1, the asymptotic boundary conditions (3.8) lie

on S0
F, and the reduced problem (3.13) restricted to the critical manifold supports the

appropriate heteroclinic orbit (for which u(z) < 1 for all z ∈ R). Therefore, by applying

standard GSPT and Fenichel theory [30,39,51,53,68] (see Remark 3.4.1), we can conclude

that this heteroclinic orbit persists in (3.7)-(3.9), with p = 0, for 0 < ε ≪ 1. Moreover,

the persisting heteroclinic orbit is to leading order in ε given by its singular limit. This

heteroclinic orbit corresponds to the fast TWs of (3.1) and the fast TWs are thus to

leading order given by (3.10).
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Figure 3.5.1: Three typical profiles of slow TW solutions obtained from numerically sim-
ulating the Gatenby–Gawlinsky model (3.1) on a domain of size 60 for three different α
values and with (β, γ, ε) = (1, 0.5, 4× 10−5). In the left panel, α = 0.5 and the observed
wave speed is c ≈ 0.0188 = 2.97 × √

ε. In the middle panel, α = 1.5 and the observed
wave speed is c ≈ 0.0375 = 5.93×√

ε. In the right panel, α = 15 and the observed wave
speed is c ≈ 0.0375 = 5.93×√

ε. The interstitial gap is only observed in the right panel
where α = 15 > 2.

Remark 3.4.1. The slow problem (3.7) and fast problem (3.9) are – both for p = 0 and

p = 1/2 – singular along {u = 1}. However, u is always smaller than one, and it only

approaches one in the limit z → ∞, see, for instance, (3.8) and (3.10). A similar type of

singularity is encountered in, for instance, a version of the generalised Gierer–Meinhardt

model [18] and the Keller–Segel model [38]. We refer to [18] for details on how GSPT

and Fenichel theory can be extended to deal with this type of singularity at an asymptotic

boundary condition.

3.5 The existence of slow travelling wave solutions

Next, we study the slow TW solutions (US, VS,WS) supported by the Gatenby–Gawlinsky

model (3.1) and prove the formal asymptotic results of [27] and show their persistence for

sufficiently small ε. Depending on the magnitude of α, there are three different types of

slow TW solutions [27], see Fig. 3.5.1.

Taking p = 1/2 in the fast system of ODEs (3.9) and considering the singular limit ε → 0

leads to the fast layer problem for the slow TW solutions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dy
= −1

c
u(1− u− αw),

dv

dy
=

r − cv

1− u
,

dr

dy
= −βv(1− v),

dw

dy
= 0,

ds

dy
= 0.

(3.14)
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The fast layer problem (3.14) is again singular for u = 1. However, as in the fast TW case,

we will show that the u-components associated to the heteroclinic orbits of interest stay

smaller than one and only approach one in the limit z → ∞. Therefore, this singularity

does not lead to any significant complications, see Remark 3.4.1. Analysis of the equilib-

rium points of the layer problem (3.14) yields a two-dimensional critical manifold S0
S in

R5. This critical manifold consists of two disjoint branches SA,B
S . In turn, each of these

branches consists of two connected components. In other words, the critical manifold

S0
S is the union of the four two-dimensional manifolds S1,2,3,4

S . These four manifolds are

parameterised by the slow variables (w, s) and are given by

SA
S :

{︄
S1
S :=

{︁
(u, v, r, w, s)

⃓⃓
u = 0, v = 0, r = 0

}︁
,

S2
S :=

{︁
(u, v, r, w, s)

⃓⃓
u = 1− αw, v = 0, r = 0

}︁
,

SB
S :

{︄
S3
S :=

{︁
(u, v, r, w, s)

⃓⃓
u = 0, v = 1, r = c

}︁
,

S4
S :=

{︁
(u, v, r, w, s)

⃓⃓
u = 1− αw, v = 1, r = c

}︁
.

(3.15)

The manifolds S1
S and S2

S intersect on SA
S along the line αw = 1. Similarly, S3

S and S4
S

intersect on SB
S (which is disjoint from SA

S ) along the line αw = 1. These intersections

are nondegenerate in nature since α ̸= 0, see Fig. 3.5.2.

The three different types of slow TW solutions, see Fig. 3.5.1, can now be understood

from the different pathways these TW solutions take through phase space along the four

manifolds S1,2,3,4
S in the singular limit:

• For 0 < α < 1, the right asymptotic boundary condition Z+ (3.8) is located on S2
S

(as is the case for α > 1), while the left5 asymptotic boundary condition Z− (3.8)

is located on S4
S. Since both α and w are positive but less than 1, αw ̸= 1. As a

result, the heteroclinic orbit associated to a slow TW solution starts at Z− on S4
S

and transitions, via the layer dynamics, to S2
S. Subsequently, it asymptotes to Z+.

• For 1 < α < 2, the right asymptotic boundary condition Z+ (3.8) is located on

S2
S, while the left asymptotic boundary condition Z− (3.8) is located on S3

S. The

heteroclinic orbit associated to a slow TW solution thus starts at Z− on S3
S, switches

– via a dynamical transcritical bifurcation [67] – to S4
S at z = z− (3.5) (i.e. when

w(z−) = 1/α), before transitioning, via the layer dynamics, to S2
S. Subsequently, it

asymptotes to Z+.

• For α > 2, the right asymptotic boundary condition Z+ (3.8) is located on S2
S,

while the left asymptotic boundary condition Z− (3.8) is again located on S3
S. The

heteroclinic orbit associated to a slow TW solution now starts at Z− on S3
S, tran-

sitions, via the layer dynamics, to S1
S and switches – via a dynamical transcritical

bifurcation – to S2
S at z = z+ (3.2) (i.e. when w(z+) = 1/α). Subsequently, it

5Throughout this chapter ‘left’ and ‘right’ refer to position relative to the layer transition for a solution
plotted against z. Thus, z < 0 is ‘left’ and z > 0 is ‘right’
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Figure 3.5.2: Schematic depiction of the four manifolds S1,2,3,4
S (3.15) and the three dif-

ferent heteroclinic orbits associated to the three different types of slow TW solutions, see
also Fig. 3.5.1 and Fig. 3.5.3. The dots indicate the equilibrium points Z± that determine
the asymptotic boundary conditions (3.8). (Recall that Z− depends on α for α < 1 and
note that the horizontal axis represents αw. Consequently, the location of Z− changes
for different α values). The black dotted line at αw = 1 indicates the location where the
manifolds coincide and where the critical manifold S0

S loses normal hyperbolicity. The
interstitial gap is related to the part of the heteroclinic orbit on S1

S (i.e. the red curve
labelled I) since here both u (normal cell density) and v (tumour cell density) are zero.
This only happens for α > 2.

asymptotes to Z+. In this case we expect to see an interstitial gap since both u and

v are (to leading order) zero on S1
S.

See also Fig. 3.5.2 for a schematic depiction of the four manifolds S1,2,3,4
S (3.15) and

the three different heteroclinic orbits associated to the three different types of slow TW

solutions. Finally, note that Z− lies on the intersection of S3
S and S4

S for the boundary

case α = 1. Similarly, for α = 2 the transition through the fast field occurs, in the singular

limit, at the intersection of S3
S and S4

S.
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3.5.1 The properties of the critical manifold

To understand the hyperbolic properties of the critical manifold S0
S, we compute Jacobian

J of the fast equations of (3.14)

J =

⎛⎜⎜⎜⎝
−1

c
(1− 2u− αw) 0 0

r − cv

(1− u)2
− c

1− u

1

1− u

0 β(2v − 1) 0

⎞⎟⎟⎟⎠ .

The eigenvalues of the Jacobian J are given by

λ1 = −1

c
(1− 2u− αw) , λ2,3 =

1

2(1− u)

(︂
−c±

√︁
c2 + 4β(2v − 1)(1− u)

)︂
, (3.16)

with the associated eigenvectors

v⃗1 = (f(u, r, v;α, c, w), λ1(r − cv), β(2v − 1)(r − cv))T ,

v⃗2,3 = (0, λ2,3, β(2v − 1))T ,
(3.17)

where

f(u, r, v;α, c, w) = (1− u) (λ1 (λ1(1− u) + c)− β(2v − 1)) .

The eigenvalues (3.16) on the four manifolds S1,2,3,4
S (3.15) reduce to

S1
S : λ1

1 = −1

c
(1− αw) , λ1

2,3 =
1

2

(︂
−c±

√︁
c2 − 4β

)︂
,

S2
S : λ2

1 =
1

c
(1− αw) , λ2

2,3 =
1

2αw

(︂
−c±

√︁
c2 − 4αβw

)︂
,

S3
S : λ3

1 = −1

c
(1− αw) , λ3

2,3 =
1

2

(︂
−c±

√︁
c2 + 4β

)︂
,

S4
S : λ4

1 =
1

c
(1− αw) , λ4

2,3 =
1

2αw

(︂
−c±

√︁
c2 + 4αβw

)︂
.

(3.18)

So, since the system parameters and the speed c are assumed to be positive, ℜ(λ1,2,3,4
3 ) < 0

on the associated manifolds. In addition, ℜ(λ1,2
2 ) < 0, while λ3,4

2 > 0 (since β and αβw

are positive). The signs of the eigenvalues indicate that the fast transition, which is either

from S4
S to S2

S or from S3
S to S1

S, is always from a component of the manifold with two

unstable eigenvalues to a component with only one unstable eigenvalue (since, as will

follow from the upcoming analysis, λ1,2,3,4
1 > 0 during the fast transition). Crucially,

this latter unstable eigenvalue remains unchanged by the fast transition, i.e. λ1
1 = λ3

1 and

λ2
1 = λ4

1. Furthermore, λ1,2,3,4
1 have real part zero if, and only if, αw = 1. Consequently,

the critical manifold S0
S loses normal hyperbolicity at w = 1/α (i.e. where S1

S coincides

with S2
S and S3

S coincides with S4
S) and this loss happens through the first eigenvalue. This

loss of normal hyperbolicity is nondegenerate and transcritical in nature since α ̸= 0, see

Fig. 3.5.2. In other words, we have an exchange of stability between the two components
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on each of the two branches SA,B
S at w = 1/α and the critical manifold S0

S undergoes a

dynamical transcritical bifurcation [67]. For α > 2, this point (w = 1/α) determines the

rightmost point of the interstitial gap.

We next study the slow reduced dynamics on the critical manifold S0
S. Taking p = 1/2 in

the slow system of ODEs (3.7) and considering the singular limit ε → 0 leads to the slow

reduced problem for the slow TW solutions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −1

c
u(1− u− αw),

0 =
r − cv

1− u
,

0 = −βv(1− v),

dw

dz
= s,

ds

dz
= −γ(v − w).

So, the slow reduced dynamics on the four manifolds S1,2,3,4
S is given by the linear equa-

tions

dw

dz
= s,

ds

dz
= −γ(v∗ − w),

where v∗ = 0 on S1,2
S and v∗ = 1 on S3,4

S . These are solved by

w(z) = C1,2
1 e

√
γz + C1,2

2 e−
√
γz, s(z) = C1,2

1

√
γe

√
γz − C1,2

2

√
γe−

√
γz (3.19)

on S1,2
S , and

w(z) = 1 + C3,4
1 e

√
γz + C3,4

2 e−
√
γz, s(z) = C3,4

1

√
γe

√
γz − C3,4

2

√
γe−

√
γz (3.20)

on S3,4
S , for arbitrary constants C1,2,3,4

1,2 ∈ R. These constants are determined by the

asymptotic boundary conditions (3.8) and by the dynamics of the layer problem (3.14).

Consequently, the constants are dependent on the specific α-value, see Fig. 3.5.3. We now

must distinguish between the three different α-cases, 0 < α < 1, 1 < α < 2, α > 2, in

order to analyse the specific dynamics in each case.

3.5.2 0 < α < 1

To further study the slow TW solutions for 0 < α < 1, we divide our spatial domain (in

the slow variable z) into two slow fields I±s – away from the layer dynamics – and one

fast field If – near the layer dynamics. In particular,

I−s := (−∞,−ε3/8) , If := [−ε3/8, ε3/8] , I+s := (ε3/8,∞) , (3.21)
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Figure 3.5.3: Schematic depiction of the slow flow on the different components of the
critical manifold for the three different heteroclinic orbits associated to the three different
types of slow TW solutions, see also Fig. 3.5.1 and Fig. 3.5.2. The jump between the
branches of the slow manifold, i.e. the fast transition, occurs at w = 1/2 in each of the
three cases. The black dashed lines at αw = 1 indicate the locations where the manifolds
coincide on the respective branches and where the heteroclinic orbits change manifolds.
We only observe an interstitial gap in the latter case where α > 2 (i.e. red curve labelled
I on S1

S in the bottom right frame).

where we, without loss of generality, assumed that the layer dynamics is centred around

zero. The asymptotic scaling ε3/8 of the boundaries of these fast and slow fields is chosen

such that it is asymptotically small with respect to the slow variable z and asymptoti-

cally large with respect to the fast variable y := ε−1/2z. In particular, ε3/8 ≪ 1, while

ε3/8−1/2 ≫ 1.

As z → −∞ the heteroclinic orbit associated to the slow TW solution should approach

Z− (3.8) and, hence, the critical manifold of interest is S4
S for z ∈ I−s (see the top left

frame of Fig. 3.5.3). Consequently, the slow w and s components are given by (3.20). To

ensure that the solution has the correct asymptotic behaviour as z → −∞ we must set

C4
2 = 0. Similarly, for z ∈ I+s the critical manifold of interest is S2

S (see the bottom left

frame of Fig. 3.5.3) and the slow w and s components are given by (3.19) with C2
1 = 0.

During the transition through the fast field If , the ε-dependent slow equations (w, s) are

given by

dw

dy
=

√
εs,

ds

dy
= −εcs−√

εγ(v − w). (3.22)
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Therefore, and by the asymptotic scale of the fast field, the change of both w and s are,

to leading order, constant during this transition. In other words, both w and s should

match to leading order at zero. This determines the two remaining integration constants

C4
1 and C2

2 and gives

w(z) =

⎧⎪⎨⎪⎩
1− 1

2
e
√
γz , z ∈ I−s ,

1

2
e−

√
γz , z ∈ I+s ,

s(z) =

⎧⎪⎨⎪⎩
−1

2

√
γe

√
γz , z ∈ I−s ,

−1

2

√
γe−

√
γz , z ∈ I+s .

(3.23)

Hence, the fast transition always occurs at w = 1/2 and the leading order profiles in

the slow fields are now known (by combining (3.15) and (3.23)) for the five different

components. In particular,

u(z) =

⎧⎨⎩(1− α) +
α

2
e
√
γz , z ∈ I−s ,

1− α

2
e−

√
γz , z ∈ I+s .

(3.24)

What remains is understanding the layer dynamics in the fast field If . In this fast field the

dynamics of the heteroclinic orbit is, to leading order, determined by (3.14), and the orbit

has to transition from S4
S (where ℜ(λ4

1,2) > 0 and ℜ(λ4
3) < 0) to S2

S (where ℜ(λ2
1) > 0

and ℜ(λ2
2,3) < 0). Since w is to leading order constant in the fast field, the u-equation

of (3.14) is of logistic-type and, by (3.15), u = 1 − αw on both S2,4
S . Consequently, and

since the logistic equation does not support pulse-type solutions, u is also constant during

the fast transition. In particular, u = 1 − αw = 1 − α/2 in If , see (3.24). The resulting

(v, r)-equations (3.14), with u = 1− α/2, can be written as

α

2

d2v

dy2
+ c

dv

dy
+ βv(1− v) = 0 , (3.25)

which is exactly the TW ODE associated to TWs in the classical Fisher–KPP equation6.

Hence, there exists a heteroclinic connection between (v, r) = (1, 0) and (v, r) = (0, 0) in

the fast field. In addition, the (v, r)-components are nonnegative during this transition

if, and only if, c ≥ cmin :=
√
2αβ 7 – the so-called minimum wave speed of the associated

Fisher-KPP equation – see, for instance, [79] and references therein. The last observation

also follows directly from the fact that λ2
2,3 (3.18) – with w = 1/2 – are complex-valued

for c < cmin. Moreover, observe that the first components of the eigenvectors v⃗2,3 (3.17)

associated to λ2,3 are zero, that is, the u-component indeed does not change during the

fast transition. This completes the analysis of the layer problem, and hence the analysis

of the heteroclinic orbits for 0 < α < 1, in the singular limit ε → 0.

6This does not come as a surprise since the V -component of the original PDE (3.1), in the fast variable
y and for U = 1− 1

2
α, is the Fisher–KPP equation Vτ = βV (1− V ) + α

2
Vyy.

7The expression for cmin also arose from the formal analysis of [27].
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Persistence for 0 < ε ≪ 1

For 0 < α < 1, we show the persistence of the singular heteroclinic orbits for sufficiently

small ε in (3.7)-(3.9) (with p = 1/2) and thus the existence of slow TW solutions in

(3.1). By (3.24), a singular orbit only approaches u = 1 in the limit z → ∞ (see also

Remark 3.4.1). Furthermore, as 0 < α < 1 and as w is given by (3.23), we have that

αw ̸= 1 along the singular orbit. Therefore, the critical manifold S0
S does not lose normal

hyperbolicity along the singulars orbit and each singular orbit is a heteroclinic connection

between two normally hyperbolic components of the critical manifold. Fenichel’s First

Persistence Theorem [30] states that, for ε small enough (and after appropriately com-

pactifying S2
S and S4

S), there exist locally invariant slow manifolds S2
S,ε and S4

S,ε in the

full ε-dependent system (i.e. (3.7)-(3.9) with p = 1/2) that are O(
√
ε)-close to S2

S and

S4
S, respectively. Observe that Z± (3.8) are independent of ε and, hence, S2,4

S,ε coincide

with S2,4
S in the asymptotic limits z → ±∞. Fenichel’s Second Persistence Theorem [30]

states that the full ε-dependent system also possesses locally invariant stable and unsta-

ble manifolds Wu(S4
S,ε) and Ws(S2

S,ε) which are O(
√
ε)-close to the stable and unstable

manifolds Wu(S4
S) and Ws(S2

S), respectively. We also have the necessary property of the

singular problem that the heteroclinic connections (singular orbits) are contained in the

intersection Wu(S4
S)∩Ws(S2

S) and it follows that the orbit persists (in the intersection of

Wu(S4
S,ε) ∩Ws(S2

S,ε)) for 0 < ε ≪ 1 if the intersection Wu(S4
S) ∩Ws(S2

S) is transversal,

see [39,51,53, e.g.].

The slow TW problem has three fast variables (u, v, r) and two slow variables (w, s). More-

over, for 0 < α < 1, ℜ(λ2
1) > 0 and ℜ(λ2

2,3) < 0, see (3.18). Therefore, dim(Ws(S2
S,ε)) =

dim(Ws(S2
S)) = 2 + 2 = 4.8 Similarly, ℜ(λ4

1,2) > 0 and ℜ(λ4
3) < 0 and, consequently,

dim(Wu(S4
S,ε)) = dim(Wu(S4

S)) = 2 + 2 = 4. Generically, two four-dimensional objects

in a five-dimensional phase space intersect transversally. The transversality of the inter-

sections is typically shown through a Melnikov integral [68,86,97, e.g.]. However, for this

specific system, we take advantage of the additional structures of the problem. We define

the so-called take-off curve as the unstable direction from which the singular orbit leaves

Z− on SB
S , the jump point as the point on the take-off curve where a solution leaves the

critical manifold to make the fast transition, and the touchdown curve as the union of

points on SA
S a solution could land on after the fast transition. Due to the fact that u,w, s

are, to leading order, constant across the fast transition, the touchdown curve is the pro-

jection of the take-off curve onto SA
S . The existence of an orbit relies on the fact that the

touchdown curve intersects the stable direction of Z+ and it is clear this intersection is

transversal, see Fig. 3.5.3. The fact that this stable direction intersects the touchdown

curve transversally is an indicator that the intersection Wu(S4
S)∩Ws(S2

S) is also transver-

sal. Furthermore, during the fast transition, i.e. in the intersection Ws(S4
S) ∩Wu(S4

S), u

is constant and the dynamics during this transition are controlled by a Fisher-KPP-type

8The first “2” originates from the number of eigenvalues (3.18) on S2
S with negative real part (i.e the

number of fast stable eigenvalues), while the second “2” comes from the number of slow variables.
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equation (3.25) whose end state (in the two-dimensional state space (v, r)) has no un-

stable directions and supports a continuous family of TWs in c, implying the persistence

of solutions under an ε perturbation. We exploit these structures in order to prove the

transversality of the intersection Wu(S4
S) ∩Ws(S2

S).

We first analyse the behaviour of the 4−dimensional stable subspace Ws(S2
S) and ob-

serve that the tangent space TWs(S2
S) at points in S2

S is spanned by the four vectors

(0, λ2
2,3,−β, 0, 0)T , ((1 − α)+, 0, 0, 1, 0)

T , (0, 0, 0, 0, 1)T . The first three elements of the

vectors (0, λ2
2,3,−β, 0, 0)T are the stable eigenvectors v⃗2,3 respectively, see (3.17), of the

Jacobian evaluated on S2
S appended with two 0 components representing w, s – com-

ponents which remain constant across the fast transition. The latter vectors ((1 −
α)+, 0, 0, 1, 0)

T , (0, 0, 0, 0, 1)T span the manifold S2
S. Of the vectors that span TWs(S2

S)

only (0, λ2
2,3,−β, 0, 0)T will change under the evolution along the layer fibre. This is be-

cause the layer transition is governed by a Fisher-KPP-type equation in v, r, and the other

components are to leading order constant. Additionally, as the end state of the Fisher-

KPP equation has no unstable directions the space spanned by these two vectors will al-

ways contain the space spanned by (0, 1, 0, 0, 0)T and (0, 0, 1, 0, 0)T , i.e. the basis vectors of

the (v, r) phase space. Furthermore, v⃗1 ∈ Wu(S4
S) and v⃗1 → (f(1− α, 1, c, α, c, 1/2), 0, 0)

as the orbit approaches S4
S in backwards z. Thus, v⃗1, appended with zeros for w, s, is in

the tangent space TWu(S4
s ) and is proportional to (1, 0, 0, 0, 0)T . This vector is linearly

independent to the four vectors that span TWs(S2
S). At any point along the layer fibre,

the combined tangent spaces of Ws(S2
S) and Wu(S4

S) contain the full tangent space to

R5. From this, it follows directly that the intersection is transversal and the heteroclinic

connection persists for 0 < ε ≪ 1 [39, 51, 53, 97, e.g.]. Consequently, (3.1) supports slow

TW solutions for 0 < α < 1 and for sufficiently small ε.

3.5.3 α > 1

For α > 1 the situation is more involved since a dynamical transcritical bifurcation of

critical manifolds is involved (when αw = 1), see Fig. 3.5.2. This critical bifurcation

occurs to the left (with respect to z) of the layer transition (at z = 0) for 1 < α < 2,

while it occurs to the right of the layer transition for α > 2. The latter case results

in an interstitial gap only because part of the heteroclinic orbit is on S1
S where both u,

representing the normal cell density, and v, representing the tumour cell density, are zero

to leading order. However, in both cases we can still use the same slow-fast splitting of

the spatial domain (3.21) in the singular limit ε → 0. Furthermore, the layer problem

still exhibits Fisher–KPP type behaviour.

In more detail, since α > 1 the heteroclinic orbit associated to the slow TW solution

should approach Z− ∈ S3
S, see (3.8) and (3.15), as z → −∞. Hence, the critical manifold

of interest is S3
S (3.15) for −z ≫ 1. Consequently, the slow w and s components are
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given by (3.20) and – to ensure that the solution has the correct asymptotic behaviour –

C3
2 = 0. That is,

w(z) = 1 + C3
1e

√
γz , s(z) = C3

1

√
γe

√
γz , for − z ≫ 1. (3.26)

Similarly, for z ∈ I+s the critical manifold of interest is S2
S (since Z+ ∈ S2

S) and the slow

w and s components are given by (3.19) with C2
1 = 0:

w(z) = C2
2e

−√
γz , s(z) = −C2

2

√
γe−

√
γz , for z ∈ I+s . (3.27)

The two critical manifolds S2,3
S both undergo a (different) dynamical transcritical bifurca-

tion at αw = 1. If this bifurcation occurs at z = ž < 0 (to the left of the layer transition

at z = 0) then the heteroclinic orbit passes from S3
S onto S4

S. In contrast, if this bifurca-

tion occurs at z = ẑ > 0 (to the right of the layer transition) then the heteroclinic orbit

transitions from S1
S onto S2

S.

In the former case where the transition occurs at z = ž < 0, we get that the slow w and

s components after the transition are given by

w(z) = 1 + C4
1e

√
γz + C4

2e
−√

γz , s(z) = C4
1

√
γe

√
γz − C4

2

√
γe−

√
γz ,

for z ∈ I−s and z > ž,
(3.28)

see (3.20). However, by construction, the slow components should match as z approaches

ž. So, from combining (3.26) and (3.28), we get

w(z) = 1 + C3
1e

√
γz , s(z) = C3

1

√
γe

√
γz , for z ∈ I−s , (3.29)

see Fig. 3.5.3. Since the change of both w and s are, to leading order, constant during

the transition through the fast field If , see (3.22), if follows that (3.27) and (3.29) should

match as z approaches zero. Furthermore, for α < 1, the slow components are given by

(3.23). Hence, ž ∈ I−s such that αw(ž) = 1 is given by ž = γ−1/2 log(2(α − 1)/α) =: z−

(3.5), and ž is negative only for 1 < α < 2. That is, the dynamical transcritical bifurcation

occurs only to the left of the layer transition, and the heteroclinic orbit transitions from

S3
S to S4

S, if 1 < α < 2. See also Fig. 3.5.2 and Fig. 3.5.3. As before, the leading order

profiles in the slow fields are now known for all the components, and, in particular,

u(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , z < z− ,

(1− α) +
α

2
e
√
γz , z > z− and z ∈ I−s ,

1− α

2
e−

√
γz , z ∈ I+s .

(3.30)

We proceed in a similarly fashion in the case where the bifurcation occurs to the right

of the layer transition at z = ẑ > 0. Again, we obtain that the slow components in the
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slow fields are given by (3.23). Consequently, ẑ ∈ I+s such that αw(ẑ) = 1 is given by

ẑ = γ−1/2 log(α/2) =: z+ (3.2), and ẑ is positive only for α > 2. That is, the dynamical

transcritical bifurcation only occurs to the right of the layer transition and the heteroclinic

orbit transitions from S1
S to S2

S, if α > 2, see Fig. 3.5.2 and Fig. 3.5.3. The leading order

profiles in the slow fields are now known and the u-component is given by

u(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , z ∈ I−s ,

0 , z < z+ and z ∈ I−s ,

1− α

2
e−

√
γz , z > z+.

(3.31)

For both 1 < α < 2 and α > 2, the layer dynamics in the fast field If is the same as for

0 < α < 1 in §3.5.2. That is, due to the logistic nature of the u-component in (3.14) and

the particulars of the critical manifolds involved, the fast u-component actually does not

change during the transition through the fast field If . Consequently, the layer transition

is associated to a Fisher–KPP equation. In particular, for 1 < α < 2 the associated TW

ODE is still given by (3.25) (since u is still 1−α/2 during the transition, see (3.30)). For

α > 2 the associated TW ODE is

d2v

dy2
+ c

dv

dy
+ βv(1− v) = 0 ,

since u = 0 during the transition, see (3.31). Hence, in both cases there exists a het-

eroclinic connection between (v, r) = (1, 0) and (v, r) = (0, 0) in the fast field. The

(v, r)-components are nonnegative for 1 < α < 2 if, and only if, c ≥ cmin :=
√
2αβ (i.e.

λ2
2,3 (3.18) are real-valued). In contrast, the (v, r)-components are nonnegative for α > 2

if, and only if, c ≥ c̄min := 2
√
β (i.e. λ1

2,3 (3.18) are real-valued). This completes the

analysis of the layer problem, and hence the analysis of the heteroclinic orbits in the

singular limit ε → 0, for α > 1.

Persistence for 0 < ε ≪ 1

For α > 1, we show the persistence of the singular heteroclinic orbits for sufficiently small

ε in (3.7)-(3.9) (with p = 1/2) and thus the existence of slow TW solutions in (3.1).

The added complexity – compared to the 0 < α < 1 case discussed in §3.5.2 – is related

to showing the persistence of the transcritical dynamical bifurcation structure around

αw = 1 since the critical manifold S0
S loses normal hyperbolicity here. In addition, as in

the 0 < α < 1 case, the persistence of solutions across the fast transition will be shown.

The transcritical singularity results from the self-intersection of the critical manifold along

the line αw = 1. The persistence of the transcritical dynamical bifurcation structure

around αw = 1 follows from the observation that u = 0 is invariant for the full ε-

dependent system ((3.7) with p = 1/2). Hence, we have u = 0 on the perturbed manifolds
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S1,3
S,ε . Furthermore, away from αw = 1 the perturbed manifolds S2,4

S,ε are, to leading order,

given by S2,4
S . Therefore, the intersection between S4

S and S3
S and the intersection between

S2
S and S1

S must persist in the full ε-dependent system.

The persistence of singular orbits across the fast transition for 0 < ε ≪ 1 is shown by

proving the transversality of the intersection Wu(S4
S) ∩ Ws(S2

S) for 1 < α < 2, and the

transversality of the intersection Wu(S3
S) ∩ Ws(S1

S) for α > 2. The argument follows

similarly to the 0 < α < 1 case. The fast transition is governed by a Fisher-KPP-type

equation (3.25) in each case and one can explicitly calculate the spanning vectors of the

relevant tangent spaces in order to prove that the combined tangent spaces (of Wu(S4
S)

and Ws(S2
S) for 1 < α < 2 and of Wu(S3

S) and Ws(S1
S) for α > 2) contain the full tangent

space to R5. Hence, the intersection is transversal in each case and the heteroclinic

connections persists for 1 < α < 2 and α > 2 [39, 51, 53, 97, e.g.]. Consequently, (3.1)

supports slow TW solutions for 1 < α < 2 and α > 2 for sufficiently small ε.

3.6 Summary and outlook

In this chapter, we analysed TW solutions supported by the nondimensionalised Gatenby–

Gawlinski model (3.1). This model was originally proposed by Gatenby and Gawlinski

in [32] to investigate the acid-mediation hypothesis of the Warburg effect, also known as

aerobic glycolysis [104]. This hypothesis postulates that this Warburg effect is caused

by the fact that the progression of certain tumours is facilitated by the acidification of

the region around the tumour-host TW interface and this leads to an advantage of the

tumour cells [33]. In the model, the acid-mediation hypothesis is characterised by an

interstitial gap, a region in front of the invading TW interface devoid of cells, see also

Fig. 3.2.1. The TW solutions of (3.1) have been analysed numerically in [32] and by

using formal matched asymptotics in [27]. In particular, in [27] it was shown that the

Gatenby–Gawlinski model (3.1) supports slow and fast TW solutions. Here, “slow” and

“fast” refer to the asymptotic scaling of the speed c of a TW solution with respect to the

small parameter ε (that measures the strength of the nonlinear diffusion of the tumour).

In this chapter, we embedded the TW problem associated to (3.1) into a slow-fast9 struc-

ture and use geometric singular perturbation techniques to prove the formal results of

[27] in the critical cases (c ∼ O(1) and c ∼ O(
√
ε)). In particular, we showed that the

interstitial gap is present only if the destructive influence of the acid, modelled by the

parameter α in (3.1), is strong enough. That is, the interstitial gap exists only for α > 2,

see also [27]. We showed that, from a geometric perspective, the interstitial gap can be

understood as the distance between the TW interface – which has the characteristics of

a Fisher–KPP wave – and a dynamical transcritical bifurcation of two parts of the crit-

ical manifold. For moderate strengths of the destructive influence of the acid, i.e. for

9Here, slow-fast refers to the difference in asymptotic scaling of the (nonlinear) diffusion coefficient of
(3.1)
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1 < α < 2, parts of the critical manifold involved still undergo a dynamical transcritical

bifurcation, however, this now occurs behind the TW interface and no region devoid of

cells is thus created, see, for instance, the middle panel of Fig. 3.5.1.

3.6.1 Spectral stability of the Gatenby-Galenski model

The results of this chapter show that the Gatenby–Gawlinski model (3.1) supports, even

for a fixed parameter set, a myriad of TW solutions with different speeds. A logical next

question to answer is related to wave speed selection. That is, given a specific parameter

set and initial condition, what is – if any – the speed of the TW solution the initial

condition converge to? Because of the Fisher-KPP imprint of the V -component of the

model, it can be expected that a dispersion relation relating the asymptotic behaviour of

an initial condition around plus infinity and the linear spreading speed of the TW solution

can be derived, see, for instance, [69,76,79]. However, a TW solution will not always travel

with this linear spreading speed, see, for instance, [36]. It is also interesting to see if the

observed wave speeds for the slow TW solutions equal the minimum wave speeds of the

associated Fisher-KPP equations (cmin :=
√
2αβ for 0 < α < 2 and c̄min := 2

√
β for

α > 2, see §3.5). That is, are the observed slow TW solutions pushed or pulled fronts

[102]?

A first natural step to start tackling these questions is to study the stability properties

of the slow and fast TW solutions, and a potential approach is to combine the analytic

approach used in Chapter 2 with the Riccati Evans function approach developed in [35]

to numerically compute eigenvalues.

3.6.2 Extensions and generalisations of the Gatenby-Galenski model

The Gatenby–Gawlinski model (3.1) is amendable for analysis because the nonlinear dif-

fusion term in the equation for the tumour cells acts as a regular perturbation to the

normal diffusion term (as U is constant to leading order during the fast transition), and

the underlying equation has a Fisher-KPP imprint. A simplified model, obtained via a

quasi-steady state reduction [62] of the full model, is given by⎧⎪⎨⎪⎩
∂U

∂τ
= U(1− U − αW ),

∂W

∂τ
= γ(H(−x)−W ) +

∂2W

∂x2
,

where H(·) is the Heaviside step-function replacing the V -component of (3.1). This

simplified model has similar characteristics to the full model (3.1), and, crucially, still

supports TW solutions with an interstitial gap of length z+ for α > 2.
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Finally, while we only establish the existence of slow and fast TW solutions to the original

Gatenby–Gawlinski model (3.1), the methodology of embedding the problem into a slow-

fast structure and subsequently studying the dynamics of the reduced and layer problems

can also be used to prove the existence of TW solutions in generalizations of the Gatenby–

Gawlinski model (such as models (3.3) and (3.4) studied in [42], respectively [75]). The

argument for the persistence of solutions across the dynamical transcritical bifurcation

for 0 < ε ≪ 1 follows from the invariance of u = 0 in the full ε-dependent system (3.7).

A mathematically interesting question is whether this dynamical transcritical bifurcation

also persists for similar systems where this invariance is broken, see [67,72].
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Stability of defect solutions

Abstract

In this chapter we analyse the stability of trivial defect solutions. These solutions are,

to leading order, constant solutions to a general n−dimensional system of RDEs with a

small, spatially dependent, jump-type defect included. This work can be seen as a natural

extension of [21] where the existence conditions for trivial and local defect solutions were

established for a general system of ODEs with a small, spatially dependent, jump-type

defect. We utilise these existence results as we analyse the stability of defect solutions to

the RDE studied in this chapter. The analysis of trivial defect solutions in this chapter

primarily concerns tracking potential point spectra that, upon the inclusion of the jump-

type defect, emerge from the branch points of the absolute spectrum associated with the

spatially homogeneous problem (see §1.3.4 for an introduction to the absolute spectrum).

These potential point spectra are tracked as roots of an expansion of the Evans function

(see §1.3.6 for an introduction to the Evans function) and emerge as O(ε) corrections to

the temporal eigenvalue. The stability analysis of the trivial defect solutions can be seen

as first step towards the stability analysis of local defect solutions.

4.1 Introduction

RDEs are relatively simple partial differential equations which exhibit a wide range of

complex behaviours and patterns. The analysis of spatially localized stationary solutions

and travelling waves, solutions that move with a constant speed and maintain their shape,

are integral in the study of pattern formation. Much of the existing analysis on the

existence and stability of stationary and travelling wave solutions has assumed spatially

homogeneous background states. However, spatially dependent inhomogeneities can have

a profound impact on the type of solutions, patterns formed and stability conditions. For

example, travelling waves may be pinned, reflected, annihilated or split upon meeting an

inhomogeneity [98, 100]. The analysis in this chapter focuses on step-function defects.

Various approaches have been used for both the existence and stability analysis of RDEs

with a step-function defect, such as [100] where pinned solutions are shown to exist for

a three component FitzHugh-Nagumo type system using geometric singular perturbation

theory. In [14] the stability of pinned solutions to the sine-Gordon equation with a

step-function inhomogeneity are analysed using the underlying Hamiltonian structure.

In [55] perturbations of near integrable problems are analysed utilising the structure of

the leading order problem and in [13, 64] the stability of inhomogeneous waves with an

99
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underlying Hamiltonian structure were studied. In [13] a finite length inhomogeneity was

considered. A finite length inhomogeneity can be treated as two jump-type defects. As

long as the inhomogeneity is sufficiently small it can be treated as weak defects and dealt

with through the same methods outlined in this chapter. In [105] the authors analyse

the front selection, existence and stability of travelling wave solutions to scalar equations

in periodic media, slowly varying media and randomly varying media. The stability of

stationary solutions to a perturbed RDE was considered in [54]. An expansion of the Evans

function was formulated and a stability condition derived under the assumption that

the perturbation is smooth, whilst the analysis of this chapter violates this smoothness

assumption.

Here, we consider a generic RDE and add a step-function type perturbation. That is, we

take the following n−dimensional RDE,

Ut = DUxx + f(U), (4.1)

with (x, t) ∈ R×R+, f(U) : Rn → Rn is a sufficiently smooth function and D is a diagonal

matrix of diffusion coefficients which are assumed to be strictly positive, see Remark 4.1.1.

We add a spatially dependent jump-type perturbation to obtain,

Ut = DUxx + f(U) +

⎧⎨⎩0 x ≤ 0

εg(U) x > 0,
(4.2)

where ε is a small parameter and g(U) : Rn → Rn is a sufficiently smooth function that

is O(1) with respect to ε. We will refer to (4.1) as the unperturbed PDE and (4.2) as

the perturbed PDE. The techniques outlined in [105] cannot be directly applied to (4.2)

as the analysis of scalar solutions relies quite heavily on considering sub-solutions and

super-solutions.

We analyse the impact of the jump-type defect on the stability of stable, stationary

solutions to (4.1). However, we must first establish the existence of these stationary

solutions as any assumptions, or conditions, that arise must be taken into account in the

stability analysis. The existence equation associated with the unperturbed PDE (4.1),

expressed as a system of first order ODEs, is the following 2n-dimensional system,(︄
u

v

)︄′

=

(︄
v

−D−1f(u)

)︄
. (4.3)
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Similarly, the existence equation associated with the perturbed PDE (4.2), expressed as

a system of first order ODEs, is the following 2n-dimensional system,

(︄
u

v

)︄′

=

(︄
v

−D−1f(u)

)︄
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝0

0

⎞⎠ x ≤ 0,⎛⎝ 0

−εD−1g(u)

⎞⎠ x > 0,

(4.4)

with ′ = d/dx, v := ux and u, v ∈ Rn. We will refer to (4.3) as the unperturbed exis-

tence equation and to (4.4) as the perturbed existence equation. For the sake of clarity,

throughout this chapter we will refer to the Jacobian matrices of the right-hand sides of

(4.4) and (4.3) as the Jacobian matrices whereas we will refer to the Jacobian matrices

associated with f(u) and g(u), denoted Jf (u) and Jg(u) respectively, as the sub-Jacobian

matrices. Furthermore, we will refer to the eigenvalues of the Jacobian and sub-Jacobian

matrices as matrix eigenvalues.

Following the definition of [21], a defect solution Γε(x) of (4.4) is defined as a solution to

the perturbed existence equation (4.4) that approaches (in a graph sense) a solution Γ(x)

to the unperturbed existence equation (4.3) in the ε → 0 limit, i.e. limε→0 Γε(x) = Γ(x).

There are three types of defect solutions identified in [21]; trivial defect solutions, local

defect solutions and global defect solutions, see Figure 4.2.1 and Definition 4.2.1. This

chapter will focus primarily on the analysis of the stability of trivial defect solutions.

In §4.2 we begin with a recap of the relevant existence analysis of [21] outlining how the

hypotheses, assumptions and existence conditions of that paper apply to (4.4) in order

to proceed with our stability analysis. We then set-up the perturbed stability problem.

In §4.3 we formulate the Evans function for a trivial defect solution to a scalar bistable

PDE as an illustrative example. We end the chapter by outlining how this method will

be generalised for the stability analysis of the trivial defect solution to the n-dimensional

problem.

Remark 4.1.1. The assumption that the matrix of diffusion coefficients contains strictly

positive entries is necessary as we frequently utilise the inverse of the diffusion matrix. If

there is a zero entry in the diffusion matrix the existence problem associated with the per-

turbed problem (4.2) is a diffeo-algebraic problem which must be restricted to the manifold

defined by the algebraic constraints before proceeding in a similar fashion.

4.2 Set-up, definitions, and main results

We first outline the relevant existence results of the defect solutions as derived in [21]

and set-up the stability problem. We begin with the formal definition of the different

types of defect solutions, then we establish the existence and stability hypotheses of the
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P−
P+

εP+

t = 0 t = 0
P−

P+
ε

P+
ε

P+

t = 0 x=0 x=0x=0

Figure 4.2.1: A depiction of three types of defect solutions. The defect occurs at the
point x = 0. Left: a trivial defect solution. Centre: a local defect solution. The defect
has occurred near P+

ε . Right: a global defect solution. Image is from A. Doelman, P. van
Heijster, and F. Xie. A geometric approach to stationary defect solutions in one space
dimension. SIAM Journal on Applied Dynamical Systems, 15:655–712, 2016 copyright
c⃝2016 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.

equilibrium solutions to the unperturbed PDE. We summarise the existence conditions for

trivial defect solutions that were established in [21] and formulate the stability problem

by linearising about these defect solutions. We follow the definitions and notation of [21]

where possible and adapt the analysis and results therein to the format of (4.2).

4.2.1 Types of defect solution

There are two key differences between our formulation of the unperturbed and perturbed

existence equations compared to that of [21]. In [21] a general ODE of the form

u̇ =

⎧⎨⎩h(u) t ≤ 0,

h(u) + εj(u) t > 0,

is considered, where t ∈ R and h(u), j(u) : Rk → Rk are sufficiently smooth functions. In

contrast, our existence equation arises from an n-dimensional PDE. Thus, we have defined

the first n entries of our 2n-dimensional function by ux =: v in both the perturbed and

unperturbed existence equations. As a result, our functions (compared to h) and our

perturbations (compared to j) are special cases from the ones studied in [21]. Secondly,

as our primary focus is on the analysis of the trivial defect solutions our assumptions on

the unperturbed and perturbed existence equations are less restrictive and will be stated

in terms of f(u) and g(u) rather than the full right hand side of the existence equations.

We label the roots of f(u) for which the Jacobian of (4.3) is hyperbolic as ρi for i =

1, 2, ..., N where N is a positive (possibly infinite) integer. These roots correspond to

equilibrium solutions of the unperturbed existence equation (4.3) when v = 0, i.e. when

(u, v) = (ρi, 0) for i = 1, 2, ..., N which we denote by Pi := (ρi, 0) for i = 1, 2, ..., N . For

the existence and stability analysis we require that the function f(u) has at least one such

isolated root that is hyperbolic, i.e. we require N ≥ 1. However, we utilise the following

lemma to simplify this requirement.
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Lemma 4.2.1. For i = 1, 2, ..., N the equilibrium solution Pi are hyperbolic in the sense

that the Jacobian of (4.3) has no purely imaginary matrix eigenvalues if and only if all

of the matrix eigenvalues of D−1Jf (ρi) have negative real part.

Proof. The Jacobian associated with the unperturbed existence equation (4.3) at the

equilibrium solution u = ρi is given by,(︄
0 In

−D−1Jf (ρi) 0

)︄
,

for i = 1, 2, ..., N , where In is the n-dimensional identity matrix. The characteristic

polynomial of this Jacobian matrix is given by

det(µ2In +D−1Jf (ρi)) = 0.

It is clear that the eigenvalues of the Jacobian are given by the square root of the eigenval-

ues of −D−1Jf (ρi). Therefore, the equilibrium solutions Pi are hyperbolic (in the sense

that the Jacobian matrix has no purely imaginary matrix eigenvalues) if and only if the

matrix D−1Jf (ρi) has only matrix eigenvalues with strictly negative real part.

In other words, we only need to make the following assumption on f(u).

Hypothesis 4.1. The function f(u) has at least one isolated root, denoted u0. The

matrix D−1Jf (u0) associated with this solution has eigenvalues with strictly negative real

part and these matrix eigenvalues are simple.

Cases with purely imaginary eigenvalues are of interest in applications such as edge bi-

furcations [55]. However, these cases are marginally spectrally stable. We only consider

equilibria with negative-definite sub-Jacobians as we focus on the impact of the inclusion

of a jump-type defect on an otherwise spectrally stable solution.

A consequence of Hypothesis 4.1 is that the unperturbed existence equation (4.3) has at

least one equilibrium solution (u, v) ≡ (u0, 0) and the Jacobian matrix associated with

(4.3) is also hyperbolic at this equilibrium solution with 2n simple eigenvalues. For ε

sufficiently small, the implicit function theorem implies that the fully perturbed existence

equation, (︄
u

v

)︄′

=

(︄
v

−D−1 (f(u) + εg(u))

)︄
, (4.5)

also has an isolated, hyperbolic equilibrium, see, for instance, [51]. More precisely, if

(4.3) has N isolated hyperbolic equilibria then (4.5) has N isolated hyperbolic equilibria,

P ε
i , such that limε→0 P

ε
i = Pi. The eigenvalues of the Jacobian associated with (4.5)

evaluated at these equilibria P ε
i are also O(1) with respect to ε. Furthermore, Hypothesis

4.1, together with the implicit function theorem, implies that there exists at least one
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root of f(u) + εg(u), denoted uε, which is isolated such that limε→0 u
ε = u0. Thus,

The Jacobian matrix associated with (4.5) is hyperbolic with simple matrix eigenvalues

when (u, v) ≡ (uε, 0). Defect solutions Γε(x) are solutions to (4.2) that approach (in a

graph sense) a solution Γ(x) to (4.1) in the limit ε → 0 and we only consider Γ(x) that

connect hyperbolic equilibria. From Hypothesis 4.1 we know that there exists at least

one such equilibria (u0, 0). We denote the end points of Γ(x) as P± := limx→±∞ Γ(x)

and P±
ε := limx→±∞ Γε(x) respectively, with the observation that P− can be equal to

P+. Furthermore, one end point of Γε(x) will be equal to the corresponding end point of

Γ(x), i.e. either P−
ε = P− or P+

ε = P+, see Figure 4.2.1.

As in [21], (4.2) has been parametrised in such a way that the defect occurs at x = 0. We

refer to x = 0 as the defect point in the remainder of this thesis. We may now distinguish

between three types of defect solutions by the location of the defect point in the phase

portrait of the solution.

Definition 4.2.1. ([21] Definition 1.4) A defect solution Γε(x) is called

• a trivial defect solution if P− = P+ and

lim
ε→0

(︃
sup
x∈R

||Γε(x)− P+||
)︃

= 0;

• a local defect solution if either

lim
ε→0

(︃
sup
x>0

||Γε(x)− P+||
)︃

= 0 or lim
ε→0

(︃
sup
x≤0

||Γε(x)− P−||
)︃

= 0

• a global defect solution if

lim
ε→0

(︃
sup
x>0

||Γε(x)− P+||
)︃

> 0 and lim
ε→0

(︃
sup
x≤0

||Γε(x)− P−||
)︃

> 0.

As we are primarily interested in the trivial defect solution, we choose that the defect

solution occurs near a single hyperbolic equilibrium u = u0 described in Hypothesis

4.1, that is P− = P+ = (u0, 0). Hence, the trivial defect solution Γε(x) asymptotes to

limx→−∞ Γε(x) = P+ and limx→∞ Γε(x) = P+
ε = (uε, 0). Moreover, Γ(x) ≡ P+.

4.2.2 The stability of equilibrium solutions to the unperturbed PDE

As we are motivated by the analysis of local defect solutions, we focus on the effect of

the introduced defect on equilibrium solutions P+ = (u0, 0) that are spectrally stable,

see §5.4.1 for further discussion of local defect solutions. In this section we establish the

spectral stability of the equilibrium solution P+. We approach this problem in two ways in

this chapter; in this section we locate the essential and absolute spectrum associated with

the equilibrium solution and in §4.2.5 we formulate the Evans function associated with the

equilibrium solution. Note, there is no point spectrum associated with constant solutions.
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This can be seen through the calculation of the Evans function or by observing that for

any given value λ ∈ C, to the right of the essential and absolute spectrum, the Jacobian

matrix associated with (4.3) is constant and invertible. Thus, locating the essential and

absolute spectrum is sufficient to establish the spectral stability of an equilibrium solution

to the unperturbed PDE. We formulate the Evans function in §4.2.5 as it is the basis for

our analysis of the trivial defect solution and is thus necessary in this case.

We perturb about the equilibrium solution via the substitution u(x, t) = u0 + ε1p(x, t)

where 0 < ε1 ≪ 1 and p(x, t) is the perturbation. We take the perturbation to be of the

form p(x, t) = eλtp(x). The linearised equation associated with (4.1) (i.e. to leading order

in ε1), referred to as the unperturbed eigenvalue problem, is,

λp =Dpxx + Jf (u0)p =: L0p. (4.6)

The natural domain for the linear operator L0 is H2(Rn) as it is derived from a second

order reaction diffusion equation. We seek the spectrum of L0 for which we have the

following definition stated in Chapter 1 as Definition 1.3.1 and restated here for conve-

nience;

Definition 4.2.2. ([88] Definition 3.2) We say λ ∈ C is in the spectrum of an operator

L, denoted σ(L), if the operator L− λI, where I is the identity matrix, is not invertible,

i.e. the inverse does not exist or is not bounded.

The spectrum of an operator falls naturally into two parts; the essential spectrum, denoted

σess(L) and the point spectrum, denoted σpt(L) [41]. It is more straightforward to use a

system of first order system of ODEs. Therefore, we transform (4.6) into such a system

via the introduction of the variable q := px. This results in the equivalent eigenvalue

problem,

T0(λ)
(︄
p

q

)︄
:=

(︄
0 In

D−1 (λIn − Jf (u0)) 0

)︄
⏞ ⏟⏟ ⏞

A0(λ)

(︄
p

q

)︄
= 0.

(4.7)

As in Definition 1.3.3, we define the asymptotic operator associated with T0,

T0,∞(λ) :=

⎧⎪⎨⎪⎩
A−(λ) := lim

x→−∞
A0(λ) x ≤ 0,

A+(λ) := lim
x→∞

A0(λ) x > 0.
(4.8)

We have the following definition for the essential spectrum stated in Chapter 1 as Defini-

tion 1.3.4 and restated here for convenience;

Definition 4.2.3. ([54] Definition 3.1.11) . We say λ ∈ σess(T∞), the essential spectrum

of T0,∞, if either
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i. A+(λ) and A−(λ) are hyperbolic with a different number of unstable matrix eigenval-

ues, equivalently the Morse indices i±(A) as discussed in §1.3.2 differ, i.e. i+−i− ̸= 0;

or

ii. A+(λ) or A−(λ) has at least one purely imaginary matrix eigenvalue.

In our case, the operator T0(λ) is spatially invariant and the associated asymptotic op-

erator is thus simply given by T0,∞(λ) = T0(λ) and the so-called asymptotic matrices

are equal, i.e. A−(λ) = A+(λ) = A0(λ). This simplifies the computation of the essential

spectrum significantly. As the asymptotic matrices are equal, they always have the same

number of unstable matrix eigenvalues for all λ ∈ C. Thus, the essential spectrum consists

only of values λ ∈ C such that A0(λ) has at least one purely imaginary matrix eigenvalue

i.e. they are determined by the roots of the dispersion relations.

Another important concept in stability analysis is that of the absolute spectrum. This

is not spectrum in the sense that is does not arise from Definition 4.2.2. However, the

absolute spectrum is contained to the left (in the complex plane) of the borders of the

essential spectrum. The essential spectrum can be shifted by weighting the function space,

i.e. by only allowing perturbations with exponential decay (the rate of which is referred

to as the weight) as x → −∞ and/or as x → ∞ [54, 93], see also §1.3.3. However, the

absolute spectrum is not shifted by weighting the space. Thus, the absolute spectrum

marks the potential maximum for how far the essential spectrum can be shifted into the

left half plane. The presence of absolute spectrum in the right half plane causes the

solution to be spectrally unstable in all weighted spaces as it indicates the presence of

essential spectrum in the right half plane. The absolute spectrum will also come into play

in the use of the Evans function, see §4.2.5.
Definition 4.2.4. ([88] Definition 6.1) Take an N dimensional asymptotic operator,

T∞, in the form of (4.8), that is well-posed in the sense that i+ = i− = j for ℜ(λ) ≫ 1.

For λ ∈ C we rank the N spatial eigenvalues µ±
i of the asymptotic matrices M± by the

magnitude of their real parts, i.e.

ℜ(µ±
1 (λ)) ≥ ℜ(µ±

2 (λ)) ≥ . . . ≥ ℜ(µ±
j (λ)) ≥ ℜ(µ±

j+1(λ)) ≥ . . . ≥ ℜ(µ±
N (λ)).

We define the sets

σ+
abs =

{︂
λ ∈ C

⃓⃓⃓
ℜ(µ+

j ) = ℜ(µ+
j+1)

}︂
and σ−

abs =
{︂
λ ∈ C

⃓⃓⃓
ℜ(µ−

j ) = ℜ(µ−
j+1)

}︂
, (4.9)

and the absolute spectrum of T∞ (and of T ) is σabs := σ+
abs ∪ σ−

abs.

In the case of trivial defect solutions we have, to leading order, σ+
abs = σ−

abs thus we will

drop the superscript.

As the equation (4.6) is spatially independent, the essential spectrum can be calculated

directly from the dispersion relations of A0(λ). The characteristic polynomial of A0(λ)
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is det(A0(λ) − µIn) = 0 where µ are the spatial eigenvalues. As A0(λ) consists of block

matrices which commute this expression is given by

det
(︁
µ2In −D−1(λIn − Jf (u0))

)︁
= 0.

This brings us to our most restrictive assumption. In order to make explicit calculations of

the Evans function tractable we must assume that D−1 and D−1Jf (u0) are simultaneously

diagonalisable. This requires either that Jf (u0) is diagonal or that the diagonal entries

of D are equal. The assumption that is less restrictive and more relevant to our interests

is the latter.

Hypothesis 4.2. The diffusion coefficient of every population is given by the constant δ,

that is D = δIn.

The matrix eigenvalues of the Jacobian of (4.3) are ±
√︁
−νi

δ for i = 1, 2, ..., n. Though

Hypothesis 4.2 is restrictive, it is necessary as the stability analysis for general func-

tions f(u), g(u) is computationally prohibitive without explicit knowledge of the form of

f(u), g(u) and of the entries of the matrix D. However, if the explicit form of the model

is known one may invert the matrix D and continue the calculation as presented here.

In other words, systems that do not satisfy Hypothesis 4.2 will follow the methodology

presented within this chapter. Moreover, Hypothesis 4.2 is always true for scalar equa-

tions. We denote the matrix eigenvalues of Jf (u0) as νi for i = 1, 2, ..., n. In this case

Hypotheses 4.1 and 4.2 imply ℜ(νi) < 0 and νi ̸= νj for i, j = 1, 2, ..., n, i ̸= j.

As we assumed that D−1Jf (u0) has simple eigenvalues with non-zero real part we know
1
δJf (u0) is diagonalisable and thus we set 1

δJf (u0) = 1
δPΛP−1 where P is an invertible

matrix and Λ = diag(ν1, ν2, ..., νn) is the diagonal matrix of eigenvalues of Jf (u0). Then,

from the characteristic polynomial of A0(λ),

0 = det

(︃
Pµ2InP

−1 − P
λ

δ
InP

−1 − 1

δ
PΛP−1

)︃
= det

(︃
P

(︃
µ2In − 1

δ
(λIn − Λ)

)︃
P−1

)︃
= |P |det

(︃
µ2In − 1

δ
(λIn − Λ)

)︃
|P−1|

= det

(︃
µ2In − 1

δ
(λIn − Λ)

)︃
=

n∏︂
i=1

(︃
µ2 − 1

δ
(λ− νi)

)︃
.

So, the 2n spatial eigenvalues associated with A0(λ) are µ±
i = ±

√︂
1
δ (λ− νi) for i =

1, 2, ..., n. Recall that, as the A0(λ) is spatially independent, the asymptotic matrices at

the two end states x → ±∞ are both given by A0(λ). Setting µ = ik gives the n dispersion
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relations associated with A0(λ) at each end state x → ±∞ as λ = −δk2 + νi. We denote

the spatial eigenvalue with the largest real part as ν∗. We can see from the spatial

eigenvalues µi that the Morse indices i+(λ) and i−(λ) are equal when ℜ(λ) > ℜ(ν∗).
That is, if ℜ(λ) > ℜ(ν∗) then λ is in the resolvent of the essential spectrum. Thus, in an

unweighted space, we can see that the essential spectrum consists of horizontal lines in the

complex plane consisting of values of λ with ℜ(λ) ≤ ℜ(νi), recalling that, by assumption,

ℜ(νi) < 0 for all i. Furthermore, we can conclude that all values λ such that λ = νi are

branch points of the absolute spectrum as at these points the pair of spatial eigenvalues

µ±
i = ±

√︂
1
δ (λ− νi) for a given i have ℜ(µ±

i ) = 0 and thus, by Definition 4.2.4, λ = νi

for i = 1, 2, ..., n are contained in the absolute spectrum. We denote the leading branch

point, that is λ = ν∗, as λ∗
br.

Remark 4.2.2. The assumption in Hypothesis 4.1 that the sub-Jacobian associated with

f(u) at u = u0 has only simple eigenvalues can be relaxed. Under the assumption the

n matrix eigenvalues of Jf (u0) each have algebraic and geometric multiplicity of 1. As

a result, the 2n spatial eigenvalues of the unperturbed eigenvalue problem are simple for

ℜ(λ) > ℜ(λ∗
br). If we relax this assumption, i.e. we allow the algebraic and/or geometric

multiplicity of the matrix eigenvalues of Jf (u0) to be greater than 1 we can use the Jordan

normal form rather than the diagonal matrix Λ to calculate the spatial eigenvalues. This is

algebraically more intensive but the stability analysis follows similarly. The main issue is

the branch point of the absolute spectrum. If the leading matrix eigenvalue, ν∗i , of Jf (u0)

has multiplicity greater than 1 then the leading branch point λ∗
br will be of higher order.

This will increase the complexity of calculations greatly. If any matrix eigenvalue other

than the leading matrix eigenvalue has algebraic or geometric multiplicity greater than 1

then the spatial eigenvalues will have corresponding increased multiplicity but will only

contribute to the generalised absolute spectrum and furthermore, will be to the left of the

branch point, which we do not consider as part of the domain of the Evans function.

4.2.3 The existence trivial defect solutions to the perturbed PDE

In order to establish the groundwork for the analysis of local defect solutions, we re-

quire the following assumption regarding the 2n-length perturbation with n zero entries,

(0, εD−1g(u))T . This assumption is adapted from Hypothesis 3 of [21].

Hypothesis 4.3. The term D−1g(u) is asymptotically strictly order 1. In other words,

limx→±∞D−1g(u) is Θ(1) with respect to ε.

This assumption is decidedly weaker than Hypothesis 3 of [21] though strong enough for

our analysis of the trivial defect solution.

We now state the primary result of [21] utilised in this chapter.
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Lemma 4.2.3. ([21] Lemma 1.7) Assume that Hypotheses 4.1 and 4.3 hold. Then, for

ε > 0 small enough, system (4.4) has a unique trivial defect solution Γε(x) connecting P+

and P+
ε , where P+ = limε→0 P

+
ε .

Remark 4.2.4. There are several assumptions made on the perturbed and unperturbed

equations by [21] that we have not included here. These assumptions were omitted as

they are not necessary for the existence or stability analysis of the trivial defect solution.

These assumptions are, however, necessary for the analysis of the local defect solutions,

see §5.4.1.

4.2.4 The perturbed spectral problem

To determine the spectral stability of Γε(x) we must linearise the perturbed PDE (4.2)

about the trivial defect solution. Let U(x, t) = Γε(x) + ε2p(x, t) with 0 < ε2 ≪ 1 where

p(x, t) is a perturbation in an appropriately chosen Banach space. As in the unperturbed

case we take p(x, t) = eλtp(x). The linearised eigenvalue problem associated with the

perturbed PDE (4.2), referred to as the perturbed eigenvalue problem is thus,

λp =Dpxx + Jf (Γε)p+

⎧⎨⎩0 x ≤ 0

εJg(Γε)p x > 0,

=:Lεp,

(4.10)

where we have omitted the argument of the trivial defect solution. The natural domain

for a second order reaction diffusion equation is H2(Rn). However, due to the loss of

continuity, caused by the defect, the domain of Lε is reduced to H1(Rn). As for the

unperturbed problem we set q := px to obtain the equivalent operator,

Tε(λ)
(︄
p

q

)︄
:=

(︄
0 In

D−1 (λIn − Jf (Γε)) 0

)︄(︄
p

q

)︄
−

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝0

0

⎞⎠ x ≤ 0⎛⎝ 0

D−1εJg(Γε)p

⎞⎠ x > 0

(4.11)

4.2.5 The Evans function

The primary tool we will be using for our analysis in this chapter is the Evans function

which was introduced in §1.3.6. The Evans function is an analytic tool for locating the

point spectrum associated with an operator. Though our solution to the unperturbed

existence equation (and leading order solution to the perturbed existence equation) is

an equilibrium solution, and thus, has no associated point spectrum, the Evans function

proves useful for tracking any potential spectra that emerge from the branch points of

the absolute spectrum upon the introduction of the jump-type defect.
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Recalling that, for (4.7) the asymptotic matrices are equal, i.e. A−(λ) = A+(λ) = A0(λ),

we denote the unstable eigenspace associated with A0(λ) as Eu
− and similarly the stable

subspace of A0(λ) as Es
+. The natural domain of the Evans function is the region denoted

Ω1 which consists of the values λ ∈ C to the right of the rightmost boundary of the

essential spectrum, i.e. the region containing λ with ℜ(λ) ≫ 1. On this domain A0(λ) is

hyperbolic as it is outside of the essential spectrum as established in §4.2.2. Furthermore,

as our solution is hyperbolic (in the sense that the Jacobian of (4.4) is hyperbolic) and by

our explicit calculation of the spatial eigenvalues in §4.2.2 we have dim(Eu
−) = dim(Es

+) =

n.

The natural domain Ω1 of the Evans function does not include the essential spectrum nor

the absolute spectrum, [54]. However, the Evans function can be extended analytically

into the essential spectrum and the absolute spectrum acts as a branch cut for the Evans

function. The branch points of the absolute spectrum are also roots of the Evans function

though they are not in Ω1.

The Evans function E(λ) is independent of the choice of x and is analytic on Ω1 [88].

For λ ∈ Ω1 the Evans function has the following properties. This theorem was stated

previously as 1.3.3 and is restated here for convenience.

Theorem 4.2.5. ([88] Theorem 4.1):

– E(λ) is real if λ is real.

– E(λ) = 0 if and only if λ is a point eigenvalue of the associated linear operator.

– The order of λ as a root of the Evans function corresponds to the algebraic multi-

plicity of λ as an eigenvalue.

We consider a regular expansion of λ ∈ Ω1, i.e. λ = λ0 + ελ1 + ε2λ2 +O(ε3), and, as the

Evans function is analytic in λ, we obtain the expansion of the Evans function,

E(λ(ε), ε, x) = E(λ0, 0, x) + ε

(︃
∂E

∂ε
(λ0, 0, x) + λ1

∂E

∂λ
(λ0, 0, x)

)︃
+

1

2
ε2
(︃
∂2E

∂ε2
(λ0, 0, x) + 2λ2

∂E

∂λ
(λ0, 0, x) + 2λ1

∂2E

∂λε
+ λ2

1

∂2E

∂λ2

)︃
+O(ε3).

(4.12)

By Abel’s formula the Evans function E(λ(ε), ε, x) is independent of the spatial variable x

since Tr(A0(λ) = 0 and the coefficient matrix of Tε(λ) has trace of 0. We have deliberately

included x above for clarity as we later equate at x = 0. The Evans function for the defect

solution is defined as

E(λ(ε), ε, x) := det
(︂
p1L(x), . . . p

n
L(x), p

1
R(x), . . . , p

2n
R (x)

)︂
(4.13)



111 Chapter 4

where piL for i = 1, . . . , n are linearly independent solutions to (4.10) that decay to Eu
− as

x → −∞ and piR for i = 1, . . . , n are linearly independent solutions to (4.10) that decay to

Es
+ as x → ∞. In order to simplify calculations, we will be evaluating the Evans function

at x = 0.

The roots of the Evans function of a trivial defect solution are, to leading order, given by

those of the constant solution to the homogeneous case. The spectrum of the constant

solution consists only of the essential spectrum (which coincides with the absolute spec-

trum). The inclusion of a small, spatially dependent, jump-type defect causes the branch

point of the absolute spectrum associated with an equilibrium solution of the unperturbed

PDE (4.1) to split into two branch points of the absolute spectrum associated with the

trivial defect solution to the perturbed PDE (4.2). These two perturbed branch points

are O(ε) perturbations of the unperturbed branch point. Any point spectra that emerge

as a result of the inclusion of the jump-type defect will be given, to leading order, by the

two branch points of the perturbed system. Note that, in order to obtain the O(εk) term

of the eigenvalue expansion one must calculate the O(εk+1) term of the Evans function

expansion.

4.3 A scalar example: The bistable equation with a generic defect

In this section, we will derive the profile of a trivial defect solution for a perturbed scalar

example and perform the stability analysis of this trivial defect solution as an illustrative

example with explicit functions.

Consider the scalar bistable equation,

ut = uxx + u− u3, (4.14)

with (x, t) ∈ R × R+, u ∈ R. The bistable equation has three equilibrium solutions;

u = ±1, which are spectrally stable solutions, and u = 0 which is spectrally unstable.

We analyse the stability of the trivial defect solution about the homogeneous steady state

u = −1 for the scalar bistable equation with an added linear jump defect. That is, (4.2)

with n = 1, f(u) = u− u3 and g(u) = u, i.e.

ut = uxx + u− u3 +

⎧⎨⎩0 x ≤ 0,

εu x > 0.
(4.15)

The choice g(u) = u is a generic perturbation for the steady state u = −1 as outlined

above, however this function is not a generic defect for the steady state u = 0.

We consider the trivial defect solution û near the equilibrium u = −1 with limx→−∞ û =

−1 =: P− and limx→+∞ û = −
√
1 + ε = −1 − ε

2 + ε2

8 + O
(︁
ε3
)︁
=: P+

ε . The Jacobian

associated with f(u) in this example is Jf (u) = 1−3u2. The isolated equilibrium solution
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Figure 4.3.1: Trivial defect solution profile to the scalar bistable equation. In both images
blue represents solutions to (4.3) for x < 0 and red represents solutions to (4.3) for x ≥ 0.
Left panel: The trivial defect solution to the scalar bistable equation. Solution profile is
calculated to Θ(ε2). Right panel: The Θ(ε) solution profile u1(x) (dashed) and the Θ(ε2)
solution profile u2(x) (solid).

u = −1 thus has Jf (−1) = −2, satisfying Hypothesis 4.1 and as g(u) = u is generic for

u = −1 Hypothesis 4.3 is also satisfied. Thus Lemma 4.2.3 guarantees the existence of a

unique trivial defect solution.

4.3.1 The essential and absolute spectrum of the unperturbed bistable equation

We now compute the essential and absolute spectrum of the unperturbed bistable equa-

tion. The results of this section are well-known, see for example [54], but are included

here for completeness. As in Example 1 of Chapter 1, we make the substitution u(x, t) =

u0+ p(x, t) = −1+ eλtp(x) into (4.15) where p(x) is a small perturbation. By considering

only leading order perturbation terms, we obtain the linearised operator

λp = pxx + (1− 3u20)p = pxx − 2p =: L0p,

with L0 : H1(R) → H1(R). We set q := px and define the operator T (λ) : H1(R) ×
L2(R) → H1(R)× L2(R) by

T (λ)

(︄
p

q

)︄
:=

(︃
d

dx
−A(λ)

)︃(︄
p

q

)︄
= 0, with A(λ) :=

(︄
0 1

λ+ 2 0

)︄
.

As A(λ) is spatially homogeneous, the asymptotic operators are simply A±(λ) = A(λ).

Thus, to calculate the dispersion relation we take µ = ik as the matrix eigenvalue of A(λ)

where k ∈ R is a parameter and evaluate the characteristic polynomial of A(λ). The

boundary of the essential spectrum (Part ii of Definition 2.4.) is

λ = −k2 − 2.
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The essential spectrum consists only of this dispersion relation as for λ ̸= −k2 − 2, k ∈ R
the number of unstable eigenvalues of A−(λ) and A+(λ) are equal.

The matrix eigenvalues of A(λ) are given by

µ1,2 = ±
√
λ+ 2,

where, as A+(λ) = A−(λ), we have dropped the superscript. The absolute spectrum of

the operator L0 consists of the values of λ for which the real part of these two matrix

eigenvalues are equal, i.e.

σabs = {λ : Im(λ) = 0 and λ ≤ −2}.

As the solution is constant, the essential spectrum and the absolute spectrum coincide in

this case.

4.3.2 The solution profile of the trivial defect solution

We now derive the solution profile for the trivial defect solution to (4.15) about u = −1

to Θ(ε2). We use a regular expansion, u = u0 + εu1 + ε2u2 + O(ε3), with u0 = −1 and

find u1 and u2. Solutions to the unperturbed PDE (4.15) can be taken as u ∈ C2 but

the introduction of the discontinuous spatial defect implies u ∈ C1. The leading order

existence equation is 0 = (u0)xx + u0 − u30, ∀x ∈ R. The Θ(ε) existence equation is

0 = (u1)xx + (1− 3u20)u1 +

⎧⎨⎩0 x ≤ 0,

u0 x > 0.

As u0 = −1 this ODE is linear and homogeneous for x < 0 and is linear and non-

homogeneous for x ≥ 0. We use variation of parameters to obtain the solution,

u1 =

⎧⎨⎩− e
√

2x

4 =: u1,L x ≤ 0,

−1
2 + 1

4e
−
√
2x =: u1,R x > 0.

Where the subscripts L and R to denote solutions defined on the ‘left’ domain (x < 0)

and ‘right’ domain (x ≥ 0) respectively. The Θ(ε2) existence equation is

0 = (u2)xx +
(︁
1− 3u20

)︁
u2 − 3u0u

2
1 +

⎧⎨⎩0 x ≤ 0,

u1 x > 0.

For all x this ODE is non-homogeneous and the associated homogeneous ODE is

0 = (u2)xx +
(︁
1− 3u20

)︁
u2.
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We again use variation of constant to obtain the solution,

u2 =

⎧⎨⎩ 1
16e

√
2x − 1

32e
2
√
2x =: u2,L x ≤ 0,

1
8 − 1

16

(︁
1 + 2

√
2x
)︁
e−

√
2x − 1

32e
−2

√
2x =: u2,R x > 0.

Calculating the solution profile to Θ(ε2) is sufficient to track the Θ(ε) corrections of the

temporal eigenvalues and thus we move on to the stability analysis of the trivial defect

solution.

4.3.3 The eigenvalue problem and the Evans function

To determine the stability of the trivial defect solution u = u0 + εu1 + ε2u2 + O(ε3)

of (4.15), we consider U(x, t) = u(x) + ε1p(x, t) with 0 < ε1 ≪ 1 and where p is a

perturbation in some appropriately chosen Banach space with p(x, t) = eλtp(x). In this

case we take p(x) ∈ H1(R). Substituting U into (4.15) and by considering only leading

order terms of p(x) we obtain the eigenvalue problem for the linearised system, i.e.

λp = pxx + (1− 3u2)p+

⎧⎨⎩0 x ≤ 0,

εp x > 0.
(4.16)

In order to obtain and explicit expression for the Θ(ε2) correction term of the Evans

function, which provides the Θ(ε) correction term of λ, we must calculate the explicit

solutions to (4.16) up to Θ(ε2). Specifically, we seek solutions (4.16), calculated on x < 0,

with limx→−∞ p(x) = 0, which we denote with the subscript L and solutions calculated

on x ≥ 0 with limx→∞ p(x) = 0, which we denote with a subscript R. We take λ =

λ0 + ελ1 + ε2λ2 + O(ε3) with ℜ(λ0) > −2 (i.e. to the right of σabs) and p(x, λ) =

p0(x, λ) + εp1(x, λ) + ε2p2(x, λ) +O(ε3) and solve each order of the eigenvalue problem.

The leading order eigenvalue problem is,

λ0p0 = (p0)xx + (1− 3u20)p0,

which is linear in p0 leading to the solution,

p0,L(x) = A0e
√
λ0+2x, p0,R(x) = B0e

−
√
λ0+2x,
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where A0, B0 are arbitrary integration constants. The Θ(ε) term of the eigenvalue problem

is given by,

λ0p1 + λ1p0 = (p1)xx + (1− 3u20)p1 − 6(u0u1)p0 +

⎧⎨⎩0 x ≤ 0,

p0 x > 0.

which, by variation of parameters, has the solution,

p1,L(x) = e
√
λ0+2x

(︃
A1 +A0λ1

(︃
x

2
√
λ0 + 2

− 1

4(λ0 + 2)

)︃)︃
+

3A0e
(
√
2+

√
λ0+2)x

4(1 +
√
2
√
λ0 + 2)

,

p1,R(x) = e−
√
λ0+2x

(︃
B1 −B0(λ1 + 2)

(︃
x

2
√
λ0 + 2

+
1

8 + 4λ0

)︃)︃
− 3B0e

−(
√
2+

√
λ0+2)x

4
√
2
√
λ0 + 2 + 4

,

where A1, B1 are arbitrary integration constants. The Θ(ε2) term of the eigenvalue prob-

lem is given by,

λ0p2 + λ1p1 + λ2p0 = (p2)xx + (1− 3u20)p2 − 6(u0u1)p1

− (3u21 + 6u0u2)p0 +

⎧⎨⎩0 x ≤ 0,

p1 x > 0.



Chapter 4 116

which, by variation of parameters, has the solution,

p2,L(x) = e
√
λ0+2x

(︄
A2 + λ2

1

A0

(︁
1 +

√
λ0 + 2x

(︁√
λ0 + 2x− 2

)︁)︁
8 (λ0 + 2) 2

+
1

4
(A0λ2 +A1λ1)

(︃
2x√
λ0 + 2

− 1

λ0 + 2

)︃)︃
+ e(

√
2+

√
λ0+2)x

(︄
−3
(︁√

2
√
λ0 + 2− 1

)︁
(A0 − 4A1)

32λ0 + 48

+ 3A0λ1

(︄
−7
(︁√

2
√
λ0 + 2 + 2

)︁
− λ0

(︁
3
√
2
√
λ0 + 2 + 7

)︁
8(λ0 + 2)3/2

(︁√
λ0 + 2 +

√
2
)︁ (︁

2
√
λ0 + 2 +

√
2
)︁2

+

(︁√
2λ0 + 3

(︁√
λ0 + 2 +

√
2
)︁)︁

x

4
√
λ0 + 2

(︁√
λ0 + 2 +

√
2
)︁ (︁

2
√
λ0 + 2 +

√
2
)︁2
)︄)︄

+ e(
√
λ0+2+2

√
2)x 3A0

(︁√
2
√
λ0 + 2(λ0 − 3) + λ0 + 6

)︁
32λ0(2λ0 + 3)

p2,R(x) = e−
√
λ0+2x

(︄
B2 + λ2

1

B0

(︁
1 +

√
λ0 + 2x

(︁√
λ0 + 2x+ 2

)︁)︁
8 (λ0 + 2) 2

+B0

(︃
1

2 (λ0 + 2) 2
+

x2(λ1 + 1)

2(λ0 + 2)
+

x

(λ0 + 2) 3/2

)︃
−
(︃
B1 +

1

2
(B1λ1 +B0λ2)−

B0λ1

λ0 + 2

)︃(︃
1

2 (λ0 + 2)
+

x√
λ0 + 2

)︃)︃
+ e−(

√
2+

√
λ0+2)x

(︄
3B1

4
(︁√

2
√
λ0 + 2 + 1

)︁ + 3 (λ0 (2λ0 − 9)− 24)

16 (λ0 + 2) (2λ0 + 3) 2

+
3 (λ0 (2λ0 + 15) + 24)

8
√
2
√
λ0 + 2 (2λ0 + 3) 2

+

(︃
3 (λ0 + 1)

4
√
λ0 + 2 (2λ0 + 3)

+
3√

2 (8λ0 + 12)

)︃
x

+
3λ1B0

4
√
2
√
λ0 + 2

(︁
2
√
λ0 + 2 +

√
2
)︁
2

(︄
(2λ0 + 3)x(︁√
λ0 + 2 +

√
2
)︁ + √

2

2
√
λ0 + 2

+ 3

)︄)︄

+ e−(2
√
2+

√
λ0+2)xB0

(︃
3
√
λ0 + 2 (λ0 − 3)

16
√
2λ0 (2λ0 + 3)

+
3 (λ0 + 6)

32λ0 (2λ0 + 3)

)︃
where A2, B2 are arbitrary constants.

We are now equipped to calculate the Evans function to Θ(ε2). We formulate the Evans

function for the trivial defect solution

E(λ(ε), ε, x) =

⃓⃓⃓⃓
⃓pL(x) pR(x)

p′L(x) p′R(x)

⃓⃓⃓⃓
⃓ ,

where pL = p0,L+εp1,L+ε2p2,L+O(ε3) and similar for pR. As we calculated pL on x < 0

and pR on x ≥ 0 it is natural to evaluate the Evans function at x = 0. Thus, we have the

expansion of the Evans function,
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E(λ(ε), ε, 0) = E0 + εE1 + ε2E2 +O(ε3)

=

⃓⃓⃓⃓
⃓p0,L(0) p0,R(0)

p′0,L(0) p′0,R(0)

⃓⃓⃓⃓
⃓+ ε

(︄⃓⃓⃓⃓
⃓p0,L(0) p1,R(0)

p′0,L(0) p′1,R(0)

⃓⃓⃓⃓
⃓+
⃓⃓⃓⃓
⃓p1,L(0) p0,R(0)

p′1,L(0) p′0,R(0)

⃓⃓⃓⃓
⃓
)︄

+ ε2

(︄⃓⃓⃓⃓
⃓p0,L(0) p2,R(0)

p′0,L(0) p′2,R(0)

⃓⃓⃓⃓
⃓+
⃓⃓⃓⃓
⃓p1,L(0) p1,R(0)

p′1,L(0) p′1,R(0)

⃓⃓⃓⃓
⃓+
⃓⃓⃓⃓
⃓p2,L(0) p0,R(0)

p′2,L(0) p′0,R(0)

⃓⃓⃓⃓
⃓
)︄

+O(ε3)

The Θ(1) term of this expansion gives,

E0 = −2A0B0

√︁
λ0 + 2,

which has no roots in the natural domain of the Evans function, ℜ(λ) > −2. Obviously,

restricting λ to the real line and in the limit limλ0→−2E0 = 0, i.e. the function has a root

on the boundary of the natural domain Ω1. This root is the branch point of the absolute

spectrum.

The Θ(ε) term of the Evans function expansion is

E1 = −2(A0B1 +A1B0)
√︁
λ0 + 2.

Again, this term has no roots other than in the limit λ0 → −2 (with λ0 restricted to the

real line) and this root is the branch point of the absolute spectrum. The Θ(ε2) term of

the Evans function expansion is

E2(λ) = −2(A0B2 +A1B1 +A2B0)
√︁
λ0 + 2 +

A0B0λ
2
1

8(λ0 + 2)3/2
+

A0B0λ1

4(λ0 + 2)3/2

3A0B0λ0

4
√
λ0 + 2 (2λ0 + 3) 2

− 3A0B0 (λ0 + 1) (2λ0 + 9)

4
√
2 (2λ0 + 3) 2

,

which is quadratic in λ1. The limit limλ0→−2E2 does not exist. However, in equating each

term in the expansion of the Evans function to zero we obtain the following expression

for λ1

λ±
1 = −1± (λ0 + 2)

A0B0

(︄
3
√
2A2

0B
2
0 (λ0 + 1) (2λ0 + 9)√

λ0 + 2 (2λ0 + 3) 2

+A0B0

(︄
A0B0

(︁
9− 2λ2

0

)︁
(λ0 + 2) 2 (2λ0 + 3) 2

+ 16(A2B0 +A1B1 +A0B2)

)︄)︄ 1
2
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which is the O(ε) correction to the temporal eigenvalue resulting from the inclusion of

the jump-type defect. In the limit λ0 → −2 we have

lim
λ0→−2

λ+
1 = 0 and lim

λ0→−2
λ−
1 = −2.

Hence, the ‘roots’ of the Evans function about the trivial defect solution are λ = −2 −
2ε+O(ε2) and λ = −2 +O(ε2). These values are both outside of the natural domain of

the Evans function to Θ(ε) and could potentially emerge into the natural domain of the

Evans function at higher order correction terms through complex terms. However, they

will not destabilise the trivial defect solution.

4.4 Summary and outlook

In this chapter we demonstrated the expansion of the Evans function for the trivial defect

solution to a 2nd order scalar PDE, the bistable equation. Here we outline the proce-

dure for the full problem; the stability of the trivial defect solution to the n-dimensional

problem (4.2). As per Hypothesis 4.1 we assume there exists an isolated, hyperbolic equi-

librium point u = u0 to (4.1), by Hypothesis 4.2 we assume all diffusion coefficients are

given by δ. Therefore, by Lemma (4.2.3), a trivial defect solution exists. Furthermore, we

take the equilibrium point to be a spectrally stable solution to (4.1) as we are interested

in the effect the defect has on a spectrally stable solution. We must first derive the trivial

defect solution profile to Θ(ε2), then we formulate the Evans function to Θ(ε2) in order

to track the potential point spectra that emerge from the branch points to Θ(ε).

As in the scalar case we use a regular expansion, u = u0 + εu1 + ε2u2 + O(ε3), and

take u ∈ C1 and solve each order of the existence equation to obtain u0, u1 and u2.

We will derive explicit expression for the Θ(ε2) correction term of the Evans function,

which provides the Θ(ε) correction term of λ. We take λ = λ0 + ελ1 + ε2λ2 + O(ε3)

with ℜ(λ0) > ℜ(ν∗), i.e. to the right of the leading edge of the absolute spectrum, and

p(x, λ) = p0(x, λ) + εp1(x, λ) + ε2p2(x, λ) +O(ε3).

As the roots of the Evans function are, to leading order, in the left half plane the solution

will remain spectrally stable. We can obtain an explicit expression for the Θ(ε) correction

term to λ for the trivial defect solution. This calculation will inform our analysis of local

defect solutions which can be interpreted as a concatenation of a trivial defect solution

and a stationary solution, see Figure 4.2.1.
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Summary and outlook

5.1 Summary

Throughout this thesis we have analysed the existence and/or spectral stability of three

dynamical systems that are each non–standard in different ways. First, a Keller-Segel

model for bacterial chemotaxis for which we have proved the previously unknown re-

sult that there exists a range of parameters such that the travelling wave solutions are

transiently unstable, i.e. spectrally stable in an appropriately weighted function space.

The motion of travelling wave solutions is driven by the chemotactic function with the

wave speed determined by the size of the bacterial population rather than an inherent

wave speed that arises from changing to a moving frame of reference as is the case in

most well known travelling wave problems (such as the Fisher-Kolmogorov-Petrovsky-

Piscounov equation). This structure resulted in an atypical spectral structure with the

leading edge of the absolute spectrum crossing into the right half plane away from the

real axis as the chemotactic parameter β increases. Furthermore, we showed a connection

from the sublinear and constant consumption cases (0 ≤ m < 1) to the more well studied

linear consumption case (m = 1) which has been shown to be nonlinearly stable under

certain conditions [77]. The relationship is seen through the absolute spectrum which

deforms with increasing m until we have the marginal case m = 1, where the absolute

spectrum does not enter into the right half plane but tangentially contains the origin. We

also showed that the eigenvalue λ = 0 is of multiplicity two in the sublinear and constant

consumption cases and is embedded in the absolute spectrum in the linear consumption

case.

This work has opened several new questions and provided a foundation for future work

to address these open questions. Though there exists results pertaining to the nonlinear

stability of the linear consumption case, the nonlinear stability of the sublinear and con-

stant consumption cases remains open. The quasilinear nature of the linearised operator

associated with the travelling waves prevents us from immediately concluding nonlinear

stability in the parameter regimes that are transiently unstable and more analysis is re-

quired. There is also the question of the dynamical implications of the onset of absolute

instability with the increase of the chemotactic parameter β. Specifically one expects

oscillatory behaviour due to the complex valued leading edge of the absolute spectrum.

There is potential for more numerical and theoretical analysis of this bifurcation.

In Chapter 3 we examined the existence of travelling wave solutions in the Gatenby-

Galenski model for tumour invasion with the acid-mediation hypothesis. We rigorously
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proved the existence of these travelling wave solutions and we provide a mathematical

explanation for the existence of an interstitial gap. This interstitial gap has previously

been observed both numerically and experimentally [27, 32]. The width of the gap is

determined by the distance between a layer transition of the tumour and a dynamical

transcritical bifurcation of two components of the critical manifold. This transcritical

bifurcation prevented us from using GSPT directly as Fenichel theory does not apply at

the transcritical bifurcation where normal hyperbolicity is lost. We proved the persistence

of the singular solutions across the fast transition (which is standard in the application

of GSPT) and across this dynamical transcritical bifurcation. The logical next step for

the analysis of the Gatenby-Gawlenski model is to analyse the spectral stability of the

travelling wave solutions. The complication arises in that the fast-slow structure of the

problem results in a non-local eigenvalue problem, see §3.6.1.

In Chapter 4 we studied the spectral stability of a trivial defect solution for a second order

scalar PDE. The existence of both trivial and local defect solutions was established in [21]

for general n-dimensional reaction diffusion models with a jump-type defect. Through

the use of an Evans function expansion we show that for a sufficiently small defect a

stable constant solution in the associated homogeneous problem remains stable with the

inclusion of a jump-type defect. Moreover, we show that the correction term for the roots

of the Evans function are, to leading order, given by the branch point of the absolute

spectrum associated with the constant solution. These roots may be either perturbed

branch points or point spectra that emerge from the absolute spectrum under the inclusion

of the defect. There are many open questions in the area of stability of defect solutions,

with the overall goal of a unified and general theory for spectral analysis of defect solutions.

Local defect solutions are, in general, not explicitly solvable in terms of their profiles and,

in turn, the eigenvalue problem is not explicitly solvable. The suggested path forward is

the analysis of specific models for which the existence of local defect solutions has been

proved such as the Fitzhugh-Nagumo (FHN) model or the Extended Fisher-Kolmogorov

(EFK) equation.

5.2 Future work for the Keller-Segel model with logarithmic

chemosensitivity

The future work for the Keller-Segel model with logarithmic chemosensitivity was dis-

cussed in detail in §2.8. We refer to §2.8 for a discussion of the nonlinear (in)stability of

the Keller-Segel model, the quasilinear nature of the linearised operator, and the dynam-

ical implications of the spectral structure and the bifurcation from a transiently unstable

state to an absolutely unstable state as the chemotactic parameter increases.



121 Chapter 5

5.3 Future work for the Gatenby-Gawlinski model with the

acid-mediation hypothesis

The future work for the Gatenby-Gawlinski model with the acid-mediation hypothesis

was discussed in detail in §3.6. We refer to §3.6 for a discussion of the generalisations

of the model as well as a discussion of numerical stability analysis. Here we discuss a

potential approach for the theoretical stability analysis.

5.3.1 Stability of solutions to the Gatenby-Gawlinski model

As stated in Chapter 1, it is often difficult to calculate the Evans function explicitly.

The Non Local Eigenvalue Problem (NLEP) approach offers an alternative method for

calculating the Evans function explicitly by utilising the additional structure in singularly

perturbed equations [17–19]. Consider the fast system

u̇ = f(u, v, ε, p),

v̇ = εg(u, v, ε, p), (5.1)

where ̇ = d/dx, 0 < ε ≪ 1 and p represents the system parameters. We can make the

change of variable z = εx to obtain the slow system

εu′ = f(u, v, ε, p),

v′ = g(u, v, ε, p), (5.2)

where ′ = d/dz. We describe u as the fast variable and v as the slow variable as in (5.1)

v is approximately constant while u varies. The two systems are equivalent as long as

ε ̸= 0 but no longer agree in the ε → 0 limit. This is what makes the problem singularly

perturbed and gives it a fast-slow structure. If T (λ) (1.9) is a singularly perturbed system

we can decompose the Evans function to the product of the analytic Evans function for

the fast system and the meromorphic Evans function for the slow system for ε → 0. That

is, the Evans function E(λ) is, to leading order, given by

E(λ) = Efast(λ)Eslow(λ).

The fast and slow systems are lower dimensional than the full problem. If they are

explicitly solvable we may obtain the explicit Evans function (to leading order in ε) using

this decomposition. The NLEP approach was developed in [17] to analyse the stability

of the 1D Gray-Scott model. This model has one fast variable and one slow variable

resulting in a four dimensional eigenvalue problem. Using the NLEP approach the Evans

function is decomposed to a 2D eigenvalue problem in the fast dynamics and a 2D non-

local eigenvalue problem in the slow dynamics. In [99] the authors extend the NLEP

method for N -dimensional eigenvalue problems with one fast variable and N − 1 slow
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variables. The NLEP approach requires careful analysis as it introduces extraneous poles

and zeroes to the Evans function which cancel with each other. This is referred to as the

NLEP paradox [17]. Part of future work is the utilisation of the NLEP approach for the

stability analysis of the travelling wave solutions to the Gatenby-Gawlenski model.

5.4 Future work on the stability of defect solutions

The future work for trivial defect solutions to n−dimensional RDEs is discussed in §4.4.
Here we discuss the setup and a potential approach for the analysis of local defect solutions

to n−dimensional RDEs.

5.4.1 Local defect solutions to n−dimensional RDEs

In ongoing and future work, we return to (4.2) and consider a local defect solution as

defined in Definition 4.2.1. A local defect solution is, to leading order, a non-constant,

solution to the homogeneous problem. The leading order solution is translation invariant

in the homogeneous system. We assume there exists such a stationary solution that

persists in (4.2). Furthermore, we assume that the solution to the homogeneous problem

is spectrally stable; the eigenvalue λ = 0 is simple and the essential spectrum and all

non-zero point spectrum are contained in the open left half plane.

The added complexity for the analysis of local defect solutions is the leading order profile

u0 is nonlinear and thus the linearised eigenvalue problem is not, in general, explicitly

solvable. There is some added information in the case of a local defect solution in that the

leading order eigenfunction associated with λ = 0 is known to be the spatial derivative

of the solution to the homogeneous problem, see (1.18). In general, the Evans function

cannot be computed explicitly, however we aim to use the structure and approach used

for the Evans function of the trivial defect solution to analogously approach local defect

solutions for specific models.

5.4.2 The Fitzhugh-Nagumo model with a jump-type spatial defect

The Fitzhugh-Nagumo (FHN) model is an example of a relaxation oscillator and is often

used to model excitable media. Due to the oscillatory and/or spiking behaviour of this

model it is receptive to GSPT analysis. The FHN model is a higher dimensional model

in terms of populations. The model has the potential to support local defect structures.

In particular, we consider the modified FHN equation with a jump-type defect;

ut = ε2uxx + u− u3 − ε(αv + βw + γ(x))

τvt = vxx + u− v

θwt = D2wxx + u− w.

(5.3)
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where

γ(x) =

⎧⎨⎩εγ1, x ≤ 0,

γ2, x > 0.

The equation (5.3) has been studied in terms of both existence and stability in [21,98,100]

where it was shown that the model supports stationary solution in the form of pinned

fronts and pulses. The existence conditions, stability conditions and the relationship

between the stability condition and the pinning distance were shown in [21,98,100]. Thus,

(5.3) acts as a testbed for the extension of the theory developed in Chapter 4 to higher

dimensional systems. We aim to compare our Evans function approach to the stability

conditions derived in the literature to confirm the accuracy of our method.

There are added complexities to the modified FHN defect model that will also help us

expand and generalise our Evans function approach. The equation (5.3) has a clear slow

fast structure and thus GSPT will be necessary for the existence analysis. The slow-fast

structure also adds an extra level of complexity to the stability analysis. It is not yet

clear if the Evans function for defect solutions outlined in Chapter 4 will capture the

eigenvalues of the system correctly and it is possible a modified version of the NLEP

approach, discussed in §5.3.1, may be needed.

5.4.3 The extended Fisher-Kolmogorov equation with a jump-type spatial defect

As part of the ongoing and future work we will also consider the Extended Fisher-

Kolmogorov (EFK) equation.

ut = −huxxxx + uxx + u− u3 +

⎧⎨⎩0, x ≤ 0,

εg(u, ux, uxx, uxxx), x > 0.

The associated homogeneous problem (i.e. when ε = 0) has been studied in terms of ex-

istence and stability, see [83,102] and references therein. Furthermore, the EFK equation

with a defect was shown in [21] to support countably many local defect kink solutions (un-

der a condition on h). The existence analysis for the EFK model and EFK defect model

facilitate our use of this example to test our Evans function approach for the stability

of defect solutions. The EFK also provides a contrasting example to the FHN model.

Whilst the FHN has pinned solutions with stability dependent on the pinning distance,

the EFK has countably many local defect solutions [21]. There is no explicit expression

known for the solution profiles and we would have to rely on numerical methods. This

provides a good opportunity to explore how the Evans function for defect models can be

implemented numerically.
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Appendix A

Proof of Lemma 2.3.4

Lemma. 2.3.4 The polynomial

f(β) = 310β10 − 3234β9 + 17112β8 − 49101β7 + 76180β6 − 58398β5

+ 10056β4 + 15040β3 − 9680β2 + 1716β − 4.

has only one real root for β ∈ [1,∞). Moreover, this root is irrational.

Proof. The second part of the lemma is straightforward to prove and follows immediately from
the rational root theorem.

To prove the first part of the lemma, we use Sturm’s theorem, see, for example [48]. Therefore,
we form the Sturm chain or Sturm sequence of f(β). The Sturm chain or Sturm sequence S(β) =
{f0(β), f1, · · · , fm} is defined as follows

f0(β) := f(β) ,

f1(β) := f ′(β)

f2(β) := −rem(f0, f1) = f1(β)q1(β)− f0(β) ,

f3(β) := −rem(f1, f2) = f2(β)q2(β)− f1(β) ,

...

0 := −rem(fm−1, fm) ,

with rem(fi, fi+1) and qi are the remainder and the quotient of the polynomial long division of fi
by fi+1, and where m is the minimal number of polynomial divisions (never greater than deg(f))
needed to obtain a zero remainder. Next, define σ(x) as the number of sign changes in the sequence
S(x). Then, Sturm’s theorem says that the number of zeros of f(β) in (a, b] is determined by
σ(a)− σ(b).
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In our case we have

f0(β) = f(β)

f1(β) = 1716− 19360β + 45120β2 + 40224β3 − 291990β4 + 457080β5 − 343707β6 + 136896β7

−29106β8 + 3100β9

f2(β) = −(678193/3875) + (368346β)/775 + (2353648β2)/775− (57056552β3)/3875

+(37862703β4)/1550− (14325693β5)/775 + (83458219β6)/15500

+(112239β7)/250− (2991399β8)/7750

f3(β) = −(β13202524226091000/994274219689) + (155600128891066000β)/2982822659067

+(150831661766230000β2)/994274219689

−(3094307548371224000β3)/2982822659067

+(6037396562666682500β4)/2982822659067

−(1863731780029233000β5)/994274219689

+(843031062821452750β6)/994274219689− (448854351815897500β7)/2982822659067

f4(β) = 147664044068346108125812836215849/6499039649808693140507539693750

+(289074016797973589265502093074606β)/3249519824904346570253769846875

−(756002276511436691382377635171201β2)/649903964980869314050753969375

+ (10448326275315050230926591637980806β3)/3249519824904346570253769846875

−(402818871981926830989502045670781β4)/103984634396939090248120635100

+(7076238838093329734182445338966056β5)/3249519824904346570253769846875

−(12160141588823059777538357270448989β6)/25996158599234772562030158775000

f5(β) = 910380870870605372791056705511093436245713011845912326500000/

148720584856837895782576386225683871616736400724421088289−
(10838520128580040986986933988664109542082221078104692489800000β)/

148720584856837895782576386225683871616736400724421088289 +

(36190383628040042980417879995753984274979401140531887144600000 β2)/

148720584856837895782576386225683871616736400724421088289−
(52004824040349424279680794372886495070307424566774046048400000β3)/

148720584856837895782576386225683871616736400724421088289 +

(34292164307308671014701162854870465140219078147059489624200000 β4)/

148720584856837895782576386225683871616736400724421088289−
(8580698314603391647111856748076868179029710291689536639500000 β5)/

148720584856837895782576386225683871616736400724421088289
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f6(β) = −(98108027422508408083023217604345852503705114055693172543204724650896 · · ·
1042915390122319460073/

177017460303742780328656529787727302193457160179853775040055246930 · · ·
97905570347626186937500) +

(619563023803823243811857208813244103721010429950791043830027191308423 · · ·
74392827893549019414731β)/

17701746030374278032865652978772730219345716017985377504005524693097 · · ·
9055703476261869375000−
(585441803838940638681131033195409616298924066478481618119761419343361 · · ·
1070527800066533467191β2)/

80462481956246718331207513539876046451571436445388079563661475877717 · · ·
75259248920994062500 +

(553713717514326562346968543531239584025630628584967740247621971794488 · · ·
58538196680136104333689β3)/

88508730151871390164328264893863651096728580089926887520027623465489 · · ·
527851738130934687500−
(170790832841801459698209804427557507587467962277379871592871002085977 · · ·
64088867929139865667747β4)/

88508730151871390164328264893863651096728580089926887520027623465489 · · ·
527851738130934687500

f7(β) = 1251283856820957258191318829739316639308756723880152636374607691728303 · · ·
7942891563169843757272776908779474315395278673493466555000000/

19613632242554355674354701676793503233404936046372052590275919918344 · · ·
74334095827109929019024409454132898634532919716476058701481−
(444028913557567116589689512970848889708577149020019170325236438590676 · · ·
10954162748007758991285149755339239535473809849388144438750000β)/

19613632242554355674354701676793503233404936046372052590275919918344 · · ·
74334095827109929019024409454132898634532919716476058701481 +

(498606374738963810406233650144849202383287593387769359462270580704127 · · ·
57659121858541242649980136393768988580766478204138667526250000β2)/

19613632242554355674354701676793503233404936046372052590275919 · · ·
91834474334095827109929019024409454132898634532919716476058701481−
(176148691099545269678983956558766862299335203258634679948642980254673 · · ·
64105352113283178148604660702698220469811371323298848970000000β3)/

19613632242554355674354701676793503233404936046372052590275919 · · ·
91834474334095827109929019024409454132898634532919716476058701481
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f8(β) = −(17846112922078425485045612709308038793270467820684368730326071705764 · · ·
0465887353397713924784351000148285563603149170841310284463980781099083 · · ·
01270241561373454298319074182909/

182587693390773153404389550525547068416557854745041275633586263104 · · ·
8036441887569734586555167168909327953264911979335388134178259567209744 · · ·
5936082868263696252741792665000000)−
(280151629817665084131074850110916186948426182502189400646410963395582 · · ·
2381826041116809829756419182109190709053063304276842671659405986326115 · · ·
604503279471807994986734933871193β)/

21910523206892778408526746063065648209986942569404953076030351572576 · · ·
4373026508368150386620060269119354391789437520246576101391148065169351 · · ·
232994419164355032901511980000000 +

(360124371840328494499475719671847497051007054870344794211764348035556 · · ·
5065289480733863382673918320015176471541612300465997966601867521644010 · · ·
374981147561546934659810731311227β2)/

21910523206892778408526746063065648209986942569404953076030351572576 · · ·
4373026508368150386620060269119354391789437520246576101391148065169351 · · ·
232994419164355032901511980000000

f9(β) = −(49432407126386176344097831763209942578480422043519856589011831246073 · · ·
5537656088579235594820660595058308883185226949745131701727056554970726 · · ·
7225458758148461284239827907569131499955412180458936903721706944669568 · · ·
9377360000000/

661221550346052743899274602671590371863363151355691757588365447750 · · ·
9433177057509755202155983217101333142197102463413757595705302596236395 · · ·
5589553922384779427300483534253384756913109423134870856935932743496323 · · ·
20308756209) +

(583977905288760792634591263057998969411946078726057982120972555937081 · · ·
1510855968502071296707367743199087566622400955280424115363220003366431 · · ·
0006518392292062409054219202564293734988040539306244806300616508864493 · · ·
114760000000β)/

66122155034605274389927460267159037186336315135569175758836544775094 · · ·
3317705750975520215598321710133314219710246341375759570530259623639555 · · ·
8955392238477942730048353425338475691310942313487085693593274349632320 · · ·
308756209

f10(β) = 1538028730561098315444895328322471196628762708801194031957392738908315 · · ·
2631062736893663178108237486011649940344893052470429790995148866370295 · · ·
2293290271434573986960745221739570698788632233605152245886767297898720 · · ·
83258302282525017558495099901619129980010947051355960270559/

6485281650686556253652090111327837661629865631503998869442518790865676 · · ·
7005685613468341269527821251642555791481950157098280570475032095739859 · · ·
0019849690795408802134275960191501047350025378042655852850300690206681 · · ·
291556209142368412429096344436502195892712362520624130000000 .
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Since f10(β) ̸= 0 our polynomial is square free [48]. So,

sgn(S(1)) = {−1,−1, 1, 1,−1,−1,−1, 1, 1, 1, 1}

and we get σ(1) = 3. Similarly, by looking at the signs of the leading terms of the polynomials we
have

sgn(S(∞)) = {1, 1,−1,−1,−1,−1,−1,−1, 1, 1, 1},
so σ(∞) = 3. Hence, f(β) has only root in (1,∞). Moreover, f(1) ̸= 0, so f(β) has only root in
[1,∞). Finally, f(1) < 0 while f(2) > 0 which shows that the root is inside (1, 2).
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