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Abstract

This thesis addresses the existence and stability of localised solutions in some non-
standard systems of partial differential equations (PDEs). Extending the analysis to
these non-standard problems provides a foundation and insight for more general dynam-
ical systems. Three different models were chosen to act as a vehicle for this analysis, a
Keller-Segel model for bacterial chemotaxis, a Gatenby-Galenski model for tumour in-
vasion with the acid-mediation hypothesis and stationary solutions to reaction-diffusion
equations (RDEs) with a jump-type heterogeneity. The models are biologically and phys-

ically relevant RDEs which exhibit different non-standard structures and/or behaviours.

The Keller-Segel model chosen has a logarithmic chemotactic function, constant, sublinear
or linear consumption and zero growth or decay of the bacterial population and attractant.
This model supports travelling wave solutions which have been described in the literature
as both linearly stable and unstable and in the case of linear consumption (conditionally)
nonlinearly stable. We reconcile this apparent contradiction by locating the essential
spectrum, absolute spectrum and point spectrum of the linear operators associated with
the travelling wave solutions. We show that whilst all travelling wave solutions have
essential spectrum in the right half plane, in the case of constant or sublinear consumption
there exists a range of parameters such that the absolute spectrum is contained in the open
left half plane and the essential spectrum can thus be weighted into the open left half plane
implying a possible transient instability. For the constant and sublinear consumption
rate models we also determine critical parameter values for which the absolute spectrum
crosses into the right half plane, indicating the onset of an absolute instability of the
travelling wave solution. We observe that this crossing always occurs off of the real axis
which is atypical. Furthermore, we show that the absolute spectrum deforms as the
consumption is changed illustrating a connection between the constant, sublinear and
linear cases. We also show that there is an eigenvalue at zero which is order two for the
constant and sublinear cases and embedded in the absolute spectrum in the linear case,
proving spectral stability for the parameter range and weighted function space for which

the absolute spectrum is contained in the left half plane.

The Gatenby-Galenski model is a slow-fast system which supports travelling waves with
a range of speeds. For a high measure of tumour aggressivity travelling wave solutions
exhibit an interstitial gap which has previously been observed experimentally. We prove

the existence of the travelling wave solutions and give a geometric interpretation of the

ii



formal asymptotic analysis of the interstitial gap utilising geometric singular perturbation
theory to prove the persistence of the singular solution. It is shown that the width of the
interstitial gap is determined by the distance between a layer transition of the tumour

and a dynamical transcritical bifurcation of two components of the critical manifold.

Heterogeneous defects have been shown to have a profound impact on the existence of
localised solutions, potentially pinning, rebounding or annihilating solutions. The jump-
type defect is simple enough to make explicit analysis feasible while providing insight
for future analysis of more complicated heterogeneities. We examine pinned stationary
solutions located near the defect for which substantial existence analysis exists showing
there are three main types of solution, trivial defect solutions, local defect solutions and
global defect solutions. Through the use of an Evans function we locate the leading order
spectrum of the general trivial defect solution which agrees with that of the associated
homogeneous problem and derive the first order correction term, thus providing conditions

for spectral stability to first order.
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CHAPTER 1

Introduction

Reaction Diffusion Equations (RDEs) are partial differential equations (PDEs) which
exhibit a wide range of complex behaviours and patterns, and they are used to model
many different biological processes such as chemotaxis, population invasion, and wound
healing (see for example [58]). The building blocks of pattern formation analysis are
localised solutions; a solution that is arbitrarily close to a trivial background state except
in a localised region. This thesis addresses the existence and stability of two types of
localised solutions, stationary solutions and travelling waves (a solution that maintains
a constant speed and shape), in some non-standard systems of RDEs from biology and

physics.

In particular, we study the stability of travelling waves in a Keller-Segel model for bacterial
chemotaxis with a logarithmic chemosensitivity function, the existence of travelling waves
in the Gatenby-Gawlinski model for tumour invasion with the acid-mediation hypothesis,
and the stability of a type of stationary solutions of a general RDE with a spatially
dependent defect. Observe that these models are non-standard in various ways. The
motivation behind using these real-world models to drive our research is both to tie
our analysis to applications and to illustrate the insight that the rigorous and technical

dynamical systems and functional analysis methods provide.

We will first provide the background of the three models, after which we outline the anal-
ysis of RDEs for two paradigmatic problems for which the existence and stability results
are known in order to demonstrate the mathematical techniques that form the foundation
from which we approach our non-standard problems. We start with the stability analy-
sis for which we follow the framework outlined in [54,88]. In order to perform stability
analysis, we must first establish the existence of localised solutions. These include fronts
or pulses which may be stationary solutions or travelling waves and which may evolve on
different time scales, for example if one population diffuses orders of magnitude slower
than the other. We use geometric singular perturbation theory (GSPT) [39,51, 53] to

prove the existence of solutions to these systems if there is a scale separation.

1.1 Research objectives

The objectives of this thesis are to
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e to develop a deeper understanding of current stability techniques in the context of
systems of equations in homogeneous media through the application to a specific
example (the Keller-Segel model),

e to apply Geometric Singular Perturbation Theory to a non-standard fast-slow prob-
lem (the Gatenby-Gawlinski model) in order to answer open questions regarding the
existence and characteristics of the solution profiles,

e to extend the current stability techniques to determine the stability of a trivial
defect solution in systems with heterogeneous media, by tracking the potential point
spectra that emerges from the absolute spectrum as a result of the inclusion of a

heterogeneity.

1.2 Model equations

1.2.1 A Keller-Segel model for bacterial chemotaxis with a logarithmic chemosensitivity

function

The Keller-Segel model was originally proposed to model a band of bacteria consuming
a chemoattractant by E.F. Keller and L.A. Segel in [60,61]. The model was based on
the early experimental observations by J. Adler in Chemotaxis in Bacteria [1] where it
was observed that E. coli would move towards a liquid solution in a travelling pulse of

bacteria driven by chemotaxis, see Figure 1.2.1. The proposed model was given by

Up = EUgy — qwu” + Ku,

(1.1)
Wy = OWgq — B ((I)x(u)w);c .

Here, x € R and t € RT are the spatial and temporal variables, respectively, u(x,t),
w(x,t) represent nondimensionalised versions of the chemoattractant and bacterial cell
population, with «, kK > 0,m € R, and 8, § > 0. It is assumed that the diffusion of the
chemoattractant is taken to be much smaller than that of the bacteria, i.e. 0 < e < 4. The
movement of the bacterial cell species is governed by the gradient of the chemoattractant.
The function ®(u) is the so-called chemotactic function. The model (1.1) was shown to
support travelling waves only when the chemotactic function is singular [94]. Furthermore,
for a logarithmic chemosensitivity function ®(u) = log(u) the model supports travelling
waves only if 5 > 1—m,0 < m < 1. An overview of the model’s development and analysis

is given in [44].

The Keller-Segel model (1.1) is non—standard in two ways; the singularly perturbed nature
of the problem due to the small parameter € and the singularity of the chemotactic function
as u — 0. The singularly perturbed nature of the problem requires the analysis of the
leading order (¢ = 0 problem) and an argument of persistence of solutions and stability
when 0 < ¢ < 1. The singularity in the chemotactic function leads to an unusual shape of

the spectrum. Specifically, the crossing of the absolute spectrum into the right half plane
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Figure 1.2.1: E. coli (white) consuming a liquid solution. Reprinted from J. Adler. Chemo-
taxis in bacteria. Science, 153(3737):708-716, 1966 with permission from AAAS. The E.
coli population moves as a travelling pulse driven by the chemotactic function.

as the chemotactic parameter (3 is increased occurs away from the real axis. Furthermore,
due to the second order derivative of the chemotactic function, when linearising about
the travelling wave solutions a quasilinear (rather than semilinear) operator is obtained.
Whilst the spectral stability of a parabolic, nonlinear operator implies the nonlinear
stability [41], in the case of quasilinear operators this result has only been proven for
certain cases [78]. The Keller-Segel model (1.1) for 0 < m < 1 is not covered by [78] and
certain subcases of the linear (m = 1) case are shown to be nonlinearly stable or unstable
in [77].

The Keller-Segel model chosen supports travelling wave solutions which have been de-
scribed in the literature as both linearly stable [87] and linearly unstable [80], and in
the case of linear consumption (conditionally) nonlinearly stable [77]. We reconcile this
apparent contradiction by locating the spectrum of the linear operators associated with
the travelling wave solutions. We derive conditions for the spectral (in)stability of the
travelling wave solutions and the critical parameters that indicate a transition from a
transient to absolute instability. Furthermore, we show that the absolute spectrum de-
forms as the consumption parameter § is changed, illustrating a connection between the
constant (m = 0), sublinear (0 < m < 1) and linear (m = 1) cases. In addition, we prove
that the origin is a temporal eigenvalue of order 2 for 0 < m < 1 and is embedded in the

absolute spectrum for m = 1.

1.2.2  The Gatenby-Gawlinski model for tumour invasion with the acid-mediation

hypothesis

The Gatenby—Gawlinski model was originally presented in [32] to model the invasion of
healthy cells by tumour cells under the acid-mediation hypothesis. The hypothesis is
that the tumour induces a change in the surrounding PH levels which is advantageous to
tumour growth and invasion. The acid-mediation hypothesis is supported by mathemat-
ical analysis, clinical data and experimental observations in [32]. A nondimensionalised
version of the Gatenby—Gawlinski model is given by the following system of singularly

perturbed PDEs with nonlinear diffusion in the V-component,



Chapter 1 4

a > 2
R —
. % U—
N o0 I
g
\‘g
=0 =5 0, 5

Figure 1.2.2: Left panel: an interstitial gap present in a human squamous cell carcinoma.
Reprinted from R. A. Gatenby and E. T. Gawlinski. A reaction-diffusion model for cancer
invasion. Cancer Res., 56:5745-5753, 1996 with permission from AACR. Right panel: a
slow travelling wave solution with an interstitial gap supported by (1.2).

(oU

o5 =U(-U=-aw),
ov 0 ov
ow Pw

(or =V =Wt

Here, x € R and 7 > 0 are the spatial and temporal variables, respectively, U(z,T),
V(z,7), and W(z,T) represent nondimensionalised versions of the normal cell density,
tumour cell density, and excess acid concentration, respectively. As in [32], € is assumed
to be a small nonnegative parameter, i.e. 0 < & < 1, and the constants «, 3, and ~ are all
positive and strictly O(1) with respect to €. Numerical experiments in [32] indicated the
presence of a region almost devoid of cells ahead of the travelling wave solution referred to

as the interstitial gap. This gap has also been observed experimentally, see Figure 1.2.2.

The Gatenby-Gawlinski model (1.2) is a slow-fast system which supports travelling waves
of various speeds. It was shown in [27] that the travelling waves supported by (1.2) fall
into two categories; fast travelling wave solutions with speed of O(1) which are stationary
solutions in the frame (z,t) = (z — ¢7,7) and slow travelling wave solutions with speed
of O(eP), 0 < p < % which are stationary solutions in the (z,t) = (z — ePer, 7). The
parameter ¢ is O(1) in both cases. It was shown in [27] that travelling waves are not

supported when p > %

In Chapter 3 we focus on the two critical cases, examining the fast travelling wave solutions
(i.e. p = 0) and a slow travelling wave solution with p = % We were motivated by the
findings of [27] where it was shown that the slow travelling wave solutions possess an
interstitial gap when « > 2 which ceases to exist for 0 < a < 2. We prove the existence of
both the fast and slow travelling wave solutions and give a geometric interpretation of the
formal asymptotic analysis of the interstitial gap utilising geometric singular perturbation

theory to prove the persistence of the singular solution. We show that the width of the
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interstitial gap is determined by the distance between a layer transition of the tumour

and a dynamical transcritical bifurcation of two components of the critical manifold.

1.2.8 Reaction diffusion equations with a jump-type spatial defect

Heterogeneities can have an impact on the type of solutions, patterns formed and stability
conditions. For example, travelling waves may be pinned, reflected, annihilated or split
upon meeting the heterogeneity. See for example [100] where pinned solutions are shown
to exist for a three component FitzHugh-Nagumo type system. There has been activity in
the area of scalar equations, such as [14] which analyses the stability of pinned solutions
to the sine-Gordon equation with a jump inhomogeneity, [105] which considers scalar
reaction-advection-diffusion in periodic media, and [13,64] which analyse the stability of
inhomogeneous wave equations. In contrast, there has been less work done on systems of
heterogeneous RDEs (see, however, [21,46,98]).

In Chapter 4, we consider a general, heterogeneous, PDE of the form

0 z <0
uy = Dugy + f(u) + (1.3)
eg(u) x>0

with u € R", (z,t) € (R,R"), D is a non-negative diagonal matrix, and f and g are
sufficiently smooth functions. In order to analyse the stability of stationary solutions
of heterogeneous PDEs we must first establish the existence and any assumptions or
conditions that arise from the existence problem must be taken into account in the stability
analysis. The existence equation for stationary solutions to (1.3) (i.e. uy = 0) can be

transformed into a first order system of ODEs which fits the more general form from [21]

] h(u) x <0,
U= (1.4)
h(u) +¢ej(u) x>0,

where "= d/dx and h(u), j(u) : R™ — R™ are sufficiently smooth functions. The existence
of a heteroclinic orbit to (1.4), referred to as a defect solution, has been shown in [21]
under generic assumptions on A and j and under the assumption that the unperturbed
system 4 = h(u) possesses a heteroclinic orbit. Homoclinic orbits may be considered

simply as a heteroclinic orbit with the same end points as x+ — 4o0.

The heteroclinic orbit in the homogeneous case is assumed to connect two hyperbolic
fixed points P~ as x — —oo and Pt as x — co. When ¢ # 0 there exist perturbed fixed
points Pei which are O(g) close to P* and have lim, s P€jE = P* and = 0. Without

loss of generality, it is assumed that the heteroclinic orbit in (1.4), if it exists, connects

the fixed point P~ as x — —oo to the perturbed fixed point P as x — oco. In Chapter 4
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we further summarise these conditions, the existence results of [21] and begin to develop

the general theory for establishing the spectral stability of defect solutions to (1.3).

There are three types of defect solutions outlined in [21]. The first of these are trivial defect
solutions, see the leftmost image of Figure 1.2.3, which are, to leading order, constant
solutions P~ = P in the unperturbed system with the defect occurring asymptotically
close to both end points. The heteroclinic orbit in the perturbed system connects P~
to P which is O(e) away and the profile makes, at most, an O(e) excursion from these
fixed points [21]. There exists a unique trivial defect solution and we can consider this as
a perturbation of the trivial solution in the homogenous case. Chapter 4 establishes the

conditions for stability of these trivial defect solutions.

Another type of solution, and the focus of both [21] and §5.4 as part of the ongoing
work, are local defect solutions, see the middle image of Figure 1.2.3. In these types of
solutions the defect occurs near either P or P~. The persistence or non-persistence of
the heteroclinic orbit from the unperturbed system is established in [21]. It is found that
the dimension of the problem and the nature of the linearised system near the end points
are key in the conditions for the existence of defect solutions. There may be a unique
local defect solution, a well-defined finite number of local defect solutions or a countably
infinite number [21]. The final type of defect solution, which are not considered in this

thesis are global defect solutions [21], see the rightmost image of Figure 1.2.3.

A W

P+ P+ X ; € j : €
+ T e - | - |
P x=0 P x=0 P x=0

Figure 1.2.3: A depiction of three types of defect solutions. The defect occurs at the
point x = 0. Left: a trivial defect solution. Middle: a local defect solution. The defect
has occurred near P-. Right: a global defect solution. Image is from A. Doelman, P. van
Heijster, and F. Xie. A geometric approach to stationary defect solutions in one space
dimension. SIAM Journal on Applied Dynamical Systems, 15:655-712, 2016 copyright
(©2016 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.

1.3 Spectral stability

We review some of the existing stability techniques in the context of second order systems
of equations in homogeneous media. These techniques are readily extendible to higher
order systems. The following overview is mainly based on [54] and [88] which contain

more detailed reviews of stability analysis techniques.
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1.5.1 Linearised operators
Consider a generic second order RDE
ug = Dugy + f(u), UGRNv (1.5)

where D is an N x N diagonal matrix with non-negative entries and f : RY — RV is a

sufficiently smooth function.

As we wish to focus on stability rather than existence, we make the assumption a solution
exists.

Hypothesis 1.1. The system (1.5) supports stationary solutions or travelling waves, i.e.
solutions that travel with a constant or zero speed and maintain their shape with respect

to time.

In the case of travelling wave solutions we pass to a moving frame via the change of
variables z = x — ¢t where c is the constant speed of the wave. Travelling wave solutions
to (1.5) are stationary solutions in this moving frame. We label the stationary solution
to (1.5) as 4. In homogeneous media there will be a one parameter family of solutions to
(1.5) due to the translation invariance of solutions, i.e. if 4(x) is a solution to (1.5) then

@ := a(x + k) is also a solution.

We now linearise (1.5) about @ via the substitution u(x,t) = @(x)+p(z,t) where p(x,t) €
R™ is a perturbation. Considering only first order perturbation terms we obtain the
linearised operator £ : H'(RY) — HY(RY);

Dt = Ep = (Da:rx + Jf(ﬂ))l% (16)

where J; denotes the Jacobian of f(u) with respect to u and the Sobolev space H*(RY)
is the subset of once (weakly) differentiable functions such that both the function and its
weak derivative are in L?(R"), i.e. square integrable. The eigenvalue problem associated
with (1.6) is

Lp=Ap

with A € C.

Remark 1.3.1. The operator L in (1.6) is second order. However, we only require
p € HY(RYN) implying a second order derivative need not exist necessarily. This is because

we consider weak solutions p to (1.6).

In particular, let ¢ be a test function, that is a smooth function with compact support. If

we multiply (1.6) by ¢ and integrate over the domain;

/ / Ptd — Dppad — J¢(4)pg dxdt = 0.
0 —00
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We integrate the first term by parts in t (exchanging the order of integration), the second

by parts in x and leave the third term to obtain

/0 /_ —po + Dppdy — Jp(U)pd dadt = 0. (1.7)

A solution to (1.6) will also be a solution to (1.7) but there may be solutions p which
satisfy (1.7) for all test functions that are not twice differentiable. These are referred to

as weak solutions to (1.6). We refer to [9] for more details.

Definition 1.3.1. (/88 Definition 3.2) We say A € C is in the spectrum of the operator
L, denoted o(L), if the operator L — X\, where I is the identity matriz, is not invertible,

i.e. the inverse does not exist or is not bounded.

We call the solution @ spectrally stable if all A € o(L) are contained in the left half plane,
i.e. the real part R(\) < 0 with the exception of A = 0 which is the eigenvalue associ-
ated with the translational invariance of the solution. The spectrum of an operator falls
naturally into two parts; the essential spectrum, denoted o.ss(L) and the point spectrum,
denoted o, (L) [41]. There are a few different ways in which an instability will manifest.
These instabilities are classified based on the manner in which a perturbation about a
steady state spreads in space and grows/decays in time. We follow the classifications
from [96]. An absolute instability is one where the norm of a perturbation, in a particular
(unweighted) function space, grows at every point where it is applied while a convective
instability is one where the perturbation moves as it grows, so the norm of the pertur-
bation decays at each spatial point with respect to time but grows in norm overall, see
Figure 1.3.1. If there are values of the spectrum in the right half plane in the unweighted
function space that are shifted into the open left half plane in a weighted space then the
steady state is referred to as transiently unstable with perturbations transmitted towards
spatial infinity, see §1.3.3 for details on weighted spaces. If there is no way to resolve
spectrum that has positive real part the steady state is referred to as remnant instabili-
ties. Note that the perturbed solution may decay to a translate of the original solution
due to the translation invariance of the solution. That is the solution @ is still considered
stable if, when perturbed, it evolves to u(xz + k) rather than @(z). These solutions are

referred to as orbitally stable.
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Figure 1.3.1: Types of instabilities. The dotted curve represents a small perturbation
of a steady state of (1.5) and the arrows represent the direction of growth of the solid
black curves with respect to time. The leftmost graph depicts an absolute instability. An
absolute instability grows in norm with time at every spatial point where it is applied.
The middle graph depicts a convective instability that grows in one direction but decays in
norm with time at any specific spatial point. The right most graph depicts a convective
instability that grows in both directions but decays in norm with time at any specific
spatial point. This image was adapted from Figure 1. of [90] and Figure 2. of [96].

Much of the stability analysis we apply requires that the operator L is exponentially
asymptotic.

Definition 1.3.2. (/54 Definition 3.1.1) An nth order operator L of the form
Lp:=0pp+an1(x)0} 'p+ -+ a1(x)ep + ao(x)p (1.8)

is called exponentially asymptotic if all of the coefficients a; are asymptotically constant,
i.e. if there exists r > 0 such that

i el g (2) — aT| =
zgrinooe |a;(x) aj|—0,

where a}t =

m aj(z) forj=0,1,...,n—1.

i
r—+00o

Definition 1.3.3. ([54] Definition 3.1.4) We define the asymptotic operator of (1.8)

Loop = 0pp+ a4 (2)0 'p+ -+ + af®(2)0up + a5’ (z)p
where a® =

For simplicity, we assume we have a second order operator (n = 2) as is the case for our
generic RDE (1.6). It is more convenient to work with an equivalent first order system
of ODEs. To this end we take the eigenvalue problem Lp = Ap and define the operator
T (), which is equivalent to £ — AI, by expressing the eigenvalue problem as a system of

first order equations. This is done by introducing the variables ¢; = (p;), fori =1,..., N.
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We define the operator T(A\) : HY(RN) x L2(RY) — HYRY) x L2(RY) by

b1 p1
d
T [PV | = <d—A(:c,/\)> PN, (1.9)
q € Q1
gN gN

where A(z, \) is a 2N x 2N matrix and we use the notation p := (p1,...,DN+ 1, .-+, an) "

where convenient.

As in Definition 1.3.3, we define the asymptotic operator associated with 7 (\) as

Te(\) = d/dz—A_(\) ifz <0, (1.10)
d/dz—Ay(\) if 2 >0,

where AL (\) ;== lim A(z,\).

z—+oo
Example 1. Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) example
Throughout this section we will use the prototypical FKPP equation as an illustrative
example. This second order, scalar (i.e. N = 1) equation was developed in [31, 65] to
model the invasion of a gene in a population. The existence and stability of travelling wave
solutions for this problem has been well studied, see for example [35, 88] and references

therein for an overview of known results. The non-dimensional FKPP equation is
Up = Ugy + (1l —u), (1.11)
where x €ER, u € R and t € RT.

We pass to a moving frame z = x — ct, T = t, where c is the speed of the travelling wave.
In this frame (1.11) becomes

Ur = Uy + cuy + u(l — u). (1.12)

It is well known that a family of travelling wave front solutions u(z) exist for this problem

for all non-negative wave speeds ¢ with lim 4(z) =1 and lim @(z) = 0. For ¢ > 2 these
Z——00 Z—r00

wave fronts are non-negative, monotone and spectrally stable.

To derive this stability result we make the substitution u(z,7) = (2) +p(z,7) into (1.12)
where p(z,7) is a small perturbation and 4(z) the travelling wave solution. By considering

only leading order perturbation terms, we obtain the linearised operator

Pr = (azz +c0,+1— 2&)]9,
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and define the associated second order operator £ : H'(R) — H'(R) by

For the eigenvalue problem Lp = Ap we set q := p, and define the operator T (\) :
H'(R) x L?(R) — HY(R) x L*(R) by

T(N) (2) = (;i —A(z,)\)) <Z> =0, with A(z,)) == (A_ 10+ - _16> . (1.14)

For (1.14) the asymptotic matrices are

A\ = (Ail 1C> and A, (A) = <A01 IC>.

In the next sections we will introduce the essential spectrum and two related concepts;

weighted spaces and the absolute spectrum. We will then introduce the point spectrum.

1.3.2 Essential spectrum

The essential spectrum provides information on the (in)stability of the asymptotic end
states of the stationary solution (which may be a travelling wave solution in a moving
frame). If part of the essential spectrum is in the right half plane, then the stationary
solution is unstable and there is a continuum of unstable modes. The essential spectrum is
found by analysing the dimensions of the unstable, stable and centre subspaces of A4 (\)
(1.10). A convenient measure of the size of these subspaces is the Morse index, i(A),
which for a constant matrix A is defined as the dimension of its unstable subspace, see
[54] Definition 3.1.9. So, for an asymptotic operator of the form of (1.10), we denote the
Morse indices iy = i(A4(N\)) := dim(E!%), where EY denotes the unstable subspace of

A4 (N) respectively. We have the following definition for the essential spectrum;

Definition 1.3.4. ([54] Definition 3.1.11) We say X € 0ess(Too), the essential spectrum
of Too, if either

i. Ay (X) and A_(X) are hyperbolic with a different number of unstable matriz eigenval-
ues, i.e. iy —i_ # 0; or

it. Ay (X) or A_(N\) has at least one purely imaginary matriz eigenvalue.

Due to the continuous dependence of the matrix eigenvalues on A we have that the bound-
aries of the essential spectrum will consist of the values of A\ that satisfy Definition 1.3.4
ii. These boundaries are the so-called dispersion relations which relate the temporal

eigenvalues A to the spatial eigenvalues p (which are the matrix eigenvalues of AL ()\)).
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We have from [54] Section 2.2 that the asymptotic operator T, is a relatively compact
perturbation of 7 and thus by Weyl’s theorem (see for example [54] Section 2.2) the

essential spectrum of 7, and 7 coincide.

In general, we assume that the operator £ (and therefore 7) is well-posed, i.e. there
exists some ag € R such that for all A with R(A\) > ag we have A ¢ o(L). If there exist
values R(A) > 1 in the spectrum then the stationary solution would be unstable to high
frequency perturbations [54].

Example 1. FKPP example continued

We return to the operator T (X) from (1.14) and its associated asymptotic matrices. The

matriz eigenvalues of A_(X\) and A () are respectively

_ —cE\/A+4N+1)

Hi2 =

—ct /2 +4(A-1)
) 2 )

2

and pi, =

We take u = ik where k € R is a parameter, then the boundaries of the essential spectrum,

also called the dispersion relations, (Part i of Definition 2.4.) are

= —k*+ick—1 (1.15a)

A
A =—k*+ick+1 (1.15b)

These parametric equations divide the complex plane into three regions, see Figure 1.3.2.

Im(A)
4

Q4

1.15b

2' Re(A)

Figure 1.3.2: The essential spectrum of the FKPP equation in the unweighted space H'(R)
for ¢ = 2. In the region to the right of the parametric curves (1.15), labelled 2, we have
that R(u;) > 0 > R(uy ) and R(ui) > 0 > R(ug ). Thus, this region is not part of the
essential spectrum. In the interior of the region labelled €22 we have R(p;) > 0> R(uy)
and 0 > R(uf) > R(ug). By Definition 1.3.4 i. Q is part of the essential spectrum.
In Q3, we have 0 > R(u;) > R(py) and 0 > R(u) > R(ig) so this region is also not
essential spectrum. The parabolic curves bounding {2, are the dispersion relations (1.15a)
and (1.15b) from left to right.
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Note in (1.15b) k = 0 gives X = 1 for all values of c. This is the rightmost point of
the essential spectrum and as it is in the right half plane every wave is unstable in the

unweighted space H'(R), independent of the speed.

1.3.3 Weighted spaces

In many cases, such as in Example 1, the essential spectrum associated with a solution
contains purely imaginary values of A\ and/or enters into the right half plane, implying in-
stability. However, often solutions can be found through numerical simulations, implying
some sort of stability. In [93] a cure proposed for this apparent contradiction is to work
in an appropriately weighted space. If we weight the space, we are restricting the types
of perturbations p(z,t) we allow to apply to the travelling waves or stationary solutions.
The weights shift the essential spectrum. If weights can be found that shift the essential
spectrum into the open left half plane then the wave is stable to perturbations that decay
at a rate faster than these weights (provided there are no values in the point spectrum
with positive real part). In numerical simulations the perturbations typically used have
compact support which is why the instability in the unweighted space is not observed;

the essential spectrum indicates the (in)stability of perturbations at cc.

Let p(z,t) := e*p(z,t) in the weighted space H}(R) defined by the norm

1PNy = le”* Pl = 1Bl -

In particular, we have that p € H} if p € H! and § € L? is defined similarly with respect
to ¢ € L% If there exists v that shifts the essential spectrum into the left half plane
(provided there are no values in the point spectrum with positive real part) then we say

the travelling wave solution is stable in H}(R). This substitution transforms (1.9) into

P\ _ (4 as 5 P\ _
) (q) = (- (4G +vn) (q) ,

where I is the 2N x 2N identity matrix and A(z,\) is defined as before. We now cal-

culate the weighted essential spectrum, denoted o

Vs, defined as those values for which

(A+(X) 4+ vI) have a different number of eigenvalues, Definition 1.3.4. The characteristic
equation of (A4 (\) + vI) is given by

det (Ax(X\) + vl —p'I) =0,

where pT is the spatial/matrix eigenvalue of A4 ()\). The boundaries of the weighted
essential spectrum are the values of A such that u* = ik + v. That is, we are now
comparing the magnitude of the real part of the spatial eigenvalue to the value v rather

than zero. This has the effect of shifting the essential spectrum.
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By weighting the space, we are restricting our perturbations that grow and decay at a
rate greater than v as z — +o0o. The sign of v also indicate which asymptotic state of the
wave is more sensitive to perturbations. For instance, if ¥ > 0 then the weight penalises
perturbations as z — oo, while allowing for perturbations that grow slower than e as

z — —oo. We note that we can also use a two-sided weight

v_ if z <0,
V=

Vy if Z>0,

which requires that the perturbation must decay exponentially in both directions.

Example 1. FKPP example continued

If we make the substitution (?) = e (p
q q

(1.14) becomes
py_(d 5 P\ _
T,(N) (q) = <dz (Ax(N) + I)) <q> 0.

The characteristic equations (AL (X)) +vI) are

) then the asymptotic operator associated with

from A_(\) +vI: (u—v)?+c(u—v)—A—-1=0
from AL(\) +vl: (u—v)?+c(p—v)—A+1=0.

If we once again set = ik the boundaries of the weighted essential spectrum are
A= —k* = 2ikv+1v* +ick —cv — 1 and A = —k* — 2ikv + v* + ick — cv + 1.

The rightmost points of these boundaries are found when k = 0 and these points are
v(v —c) £ 1. These points are the most negative when v = §. For this value of v the
boundaries of the weighted essential spectrum are

2 2
A:—l—%—kz and A=1— S 2.

4
These boundaries correspond to the optimally weighted essential spectrum and, in this

case, coincide with the absolute spectrum. Furthermore, for ¢ > 2, these boundaries are

real with A < 0, Vk € R.

1.8.4 Absolute spectrum

Another important concept is that of the absolute spectrum, denoted ogs. For this we
again follow the definitions from [54,88]. The absolute spectrum is not spectrum in the

usual sense as it does not arise from the definition that £ is not invertible (Definition
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1.3.1) but it provides important information about stability and gives an indication of
how far the essential spectrum can be weighted. If the absolute spectrum moves into
the right half plane when a parameter is changed then the essential spectrum cannot be

weighted into the left half plane indicating the onset of an absolute instability.

For our generic operator 7(\) = d/dz — A(z,\), whose asymptotic matrices A4 () are
2N x 2N, the well-posedness assumption states that A € C with ®(\) > 1 is not part
of the spectrum, thus dim(E") = dim(E!) =: j where E! are the unstable subspaces of
A4 (X) respectively. We have the following definition for the absolute spectrum.
Definition 1.3.5. For A € C we rank the 2N spatial eigenvalues of AL, labelled ,ufc for
1=1,...,2N, by the magnitude of their real parts, i.e.

Rl (V) 2 Rl (V) = - 2 Rlpy (V) = R(pjia (V) = - 2 Rlugy (V)

We say A is in the absolute spectrum of T, denoted oaps(T) if either %(M;'()\)) = §R(uj+1()\))
or R(pz (A) = R(pj 1 (V)

If A\ & o4s(7T) then there exists v+ € R such that %(u;r()\)) > vy > §R(,u;r+1()\)) and
R(p;(A) > v— > R(u;1(A)). This means that if A ¢ 04s(7) then there exists a
weight such that X\ is not in the weighted essential spectrum. Values of A\ such that
R(p) = R(pi ) or Ry ) = R(p;,,) for i # j are referred to as the generalised absolute
spectrum [54,88]. We also note that the absolute spectrum is unaffected by weighting the

space.

In the case N = 1, i.e. scalar 2nd order equations, the asymptotic matrices A4 (\) are
2 x 2 and the definition of the absolute spectrum simplifies immensely. Notably, for scalar
equations, there is no generalised absolute spectrum. Nonetheless, it is worthwhile to
consider the statement of Definition 1.3.5 in the scalar case. That is, ‘For a 2 x 2 system
(such as Example 1) the absolute spectrum is defined as the values of A € C where the
real parts of the spatial eigenvalues, p; 5 of A_()) are equal or the real parts of the spatial

eigenvalues, qu of A4 ()\) are equal.’

Example 1. FKPP example continued

The absolute spectrum consists of A € C such that either p; = py or ,u,f = u;. We have
[y = pg when X is on the real line with A < _TCQ — 1 and pi = pg when X is on the real
line with A < _TCQ + 1. Thus, we have

_ 2
Tabs = {A:Im()\):o and \ < 40+1}. (1.16)
Note that the minimum wave speed ¢ = 2 corresponds to ogps = (—00,0]. For ¢ < 2 the

absolute spectrum enters into the right half plane corresponding to the onset of absolute

instability.
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1.8.5 Point spectrum

The point spectrum consists of isolated eigenvalues with finite multiplicity [88]. For
A € oy the null space of £ — AI (1.8) (equivalently of 7(\) (1.9)) is non-trivial and finite
dimensional and as A is isolated £ — Al is invertible in a d-neighbourhood of X, except at
A

: ' Re(A
-8 -6 2 @

Figure 1.3.3: Weighted essential spectrum for the FKPP model with ¢ = 4 and various
weights. The unweighted essential spectrum (v = 0) is shown with blue solid boundary
curves and a weighted essential spectrum with weight v = 1 is shown with dashed bound-
ary curves. For these parameter values the absolute spectrum (red solid line) is A € R
with A € (=00, —3]. The weighted essential spectrum with v = 2 coincides with the ab-
solute spectrum. The associated travelling wave solution is potentially spectrally stable
in HI(RY) x L2(RN) and H(RY) x L3(RY) but is unstable in H*(RY) x L2(RY) (the
unweighted space). The lack of point spectrum in the right half plane must be established
before spectral stability in the weighted spaces can be concluded for the FKPP travelling
waves. We do not examine the point spectrum of the FKPP in this thesis.

To locate the point spectrum, we look for non-trivial solutions in the kernel of (1.9). That

is, we look for p € H*(RY) x L2(RY), or an appropriately weighted space, such that
P =A(z; \p (1.17)

)T as before.

Wherep = (pla'-'va7q17"'7QN
Definition 1.3.6. A value A € C\oss(L) is a temporal eigenvalue of L if we can find a
non-trivial solution to (1.17) in H*(RY) x L2(RN). The function p will be the temporal

eigenfunction corresponding to A.
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For p to be a solution to (1.17) it will necessarily decay to zero as © — +oo. For non-
trivial solutions this can only happen in a specific way. For example, for x < 0 the system
(1.17) behaves like

and for A ¢ o.ss we have that A_()\) is hyperbolic. Thus, only solutions in the unstable

subspace of A_(\) can decay to zero as x — —o0.

From [35] we have the following proposition.

Proposition 1.3.2. For A € C\o.ss(L), if p is a solution to (1.17) with p € HY(RY) x
L?(RN) then we have

lim p—EY and lim p— E}
Z——00 Z—00
where E* is the unstable subspace of A_(X\) as z — —oo and E7. is the stable subspace of
AL (M) as z — 0.

One important feature of the point spectrum is that it is unaffected by weights, i.e. the
location of a temporal eigenvalue A cannot be changed. If A is an eigenvalue in the point
spectrum with eigenvector p then p = e*p is also an eigenfunction in the sense that
it is a solution to the eigenvalue problem. However, this eigenfunction may not exist
in the weighted space. We consider such values A as temporal eigenvalues regardless of
the weight used to shift the essential spectrum. Furthermore, if the essential spectrum
is shifted so it encompasses A, then A is no longer isolated and so does not meet our
definition of a temporal eigenvalue. We will refer to values A that are encompassed by the
essential spectrum in the unweighted space but isolated in a weighted space as a temporal

eigenvalue of that weighted space.

The value A = 0 is an eigenvalue in the point spectrum with eigenfunction 0, a. If A =0
is not encompassed by the essential spectrum (in a weighted or unweighted space) and
0, exists in the function space then A = 0 is a value in the point spectrum. Taking a
solution @ to (1.5) we consider p = @ in the eigenvalue problem L£p = Ap associated with
(1.6). As £ = Dy, + J¢(1), this gives

D(tig)ge + Jp(@)iy = (Dilgy + f(4)), = 0. (1.18)

So A = 0 is an eigenvalue with eigenfunction d,%. This eigenfunction is associated with

the translation invariance of the problem.
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1.8.6 The Evans function

The Evans function is an analytic tool for locating the point spectrum and it was originally
developed by Evans to study nerve impulses [23-26]. The Evans function was used and
further developed in [50] to study the stability of travelling wave solutions to the Fitzhugh-
Nagumo model. It was further extended in [2] where it was used to study the stability of

travelling wave solutions to a singularly perturbed system of RDEs.

For (1.10) we denote the unstable eigenspace associated with A_(\) as E* and similarly
the stable subspace of A, (\) as E5. We define the largest connected component to the
right of the essential spectrum as 2;. By the well-posedness assumption the region {2;
contains A € C with R(\) > 1, see Figure 1.3.3 for an example. This region €; is the
natural domain of the Evans function. On €; the matrices A4 () are hyperbolic with the
same number of unstable eigenvalues. This means we must have dim(E* )+dim(E3 ) = 2N
on ;. Let dim(E") = j and dim(E3 ) = 2N — j with 0 < j < 2N.

The Evans function is a Wronskian and for our generic second order system (1.6) it is
defined as

E()\) = det (Wl,...Wj,Wj+1,...,W2N> (119)

where W; for i = 1,...,7 are linearly independent solutions to (1.17) that decay to E*
as x — —oo and W, for i = j+1,...,2N are linearly independent solutions to (1.17)
that decay to E5 as 2 — oo. The Evans function is analytic on €2; [88] and for A € €

the Evans function has the following properties

Theorem 1.3.3. ([88] Theorem 4.1):

— E()) is real if X is real,
— E(X) =0 if and only if X is a point eigenvalue,
— The order of A as a root of the Evans function corresponds to the algebraic multi-

plicity of X\ as an eigenvalue.

Thus, we locate the point spectrum in §2; as the zeros of the Evans function. As the
solutions W; for ¢ = 1,...,j are linearly independent they form a basis of E*, similarly
the solutions W; for i = j + 1,...,2N form a basis of E%. This choice of basis is not
unique, however, the Evans function in two different bases will differ only by a non-zero
function. This non-zero function corresponds to the determinant of a change of basis
matrix. So, while the Evans function is dependent on the choice of basis, the zeros of the

Evans function (i.e. the location of the point spectrum) are unaffected.

Remark 1.3.4. The Evans function can be extended into the essential and absolute spec-

trum on an appropriate Riemann surface, see [5/-56]. Zeroes of the Evans function on



19 Chapter 1

this extended domain give additional information about the transition from stable solu-
tions to unstable ones by indicating where/whether new point spectrum will emerge under

perturbations.

1.4 Geometric Singular Perturbation Theory

Many systems, especially those modelling natural processes, evolve according to time or
length scales that differ on many orders of magnitude. A logical first step is to assume
that the processes that evolve relatively slowly are constant or to assume the relatively
fast processes are instantaneous. However, this leading order approach only works for
regularly perturbed problems. In the case of a singularly perturbed problem a leading
order approach results in a reduction of order of the problem and significant information
is lost. Our aim is to construct the stationary solutions or travelling wave solutions to
these singularly perturbed problems. The existence equation associated with singularly

perturbed RDEs can often be written in the form

ek = f(x,y,e), §=g(x,y,e), (1.20)

where = d/dr, x € R", y € R™ and 0 < ¢ < 1. This formulation is referred to as the slow
problem, the variable x is referred to as the fast variable and y is referred to as the slow
variable. Taking the ¢ — 0 limit is equivalent to assuming the change in the fast variable
is instantaneous. However, in taking the ¢ — 0 limit we lose the information pertaining
to the fast transition and flow is restricted to the set f(z,y,0) = 0. The singular (¢ — 0)

limit of (1.20) is referred to as the reduced problem and is given by,

0= f(z,9,0), ¥=g(z,y,0). (1.21)

An alternative method is to rescale the area in which the fast transition occurs by setting

t=2, e

o = f(z,y,¢), ¥ =eg(z,y,e), (1.22)

where ’ = d/dt. This formulation is referred to as the fast problem. Taking the e — 0
limit of the fast problem is equivalent to assuming the slow variable y is constant. The

singular limit of (1.22) is referred to as the layer problem and is given by,

' = f(x,9,0), 3y =0. (1.23)

The singular limits of (1.20) and of (1.22) contain crucial information and each describes a
different aspect of the dynamics. GSPT is a useful tool for singularly perturbed problems,
giving a geometric approach for obtaining an approximation to solutions that capture both

the slow and fast dynamics utilising these singular limits. The fundamental tool used in
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GSPT is the invariant manifold theory developed by Fenichel [29,30] which has been used
extensively for problems with a clear time scale separation, see for instance [39,51, 53]
which provide in depth introductions to GSPT. In this section we will cover Fenichel’s

three main theorems and demonstrate the use of GSPT with an example.

1.4.1 Fenichel Theory and GSPT

We refer to f(x,y,0) = 0 as the critical manifold, which we denote M. The critical
manifold is normally hyperbolic if the Jacobian of f(z,y,0) with respect to the fast variable
x, restricted to My, only has eigenvalues with non-zero real part. We denote the unstable

and stable manifold associated with the manifold Mg as W, s(My) respectively.

We include Fenichel’s three theorems below. The theorems below can be found, with
minor stylistic changes, in, for example, [39,51,53].

Theorem 1.4.1. Fenichel’s First Theorem Suppose the critical manifold My is com-
pact and normally hyperbolic. Further, suppose f and g are smooth. Then, for 0 < e < 1
sufficiently small, there exists a manifold M. diffeomorphic to and given to leading order
in € by, My, that is locally invariant under the flow of the full problem (1.20).
Theorem 1.4.2. Fenichel’s Second Theorem Suppose the critical manifold Mg is
compact, possibly with boundary, and normally hyperbolic, and suppose f and g are
smooth. Then for e sufficiently small, there exist manifolds Ws(Me) and Wy(Me),
that are close and diffeomorphic to Ws(My) and Wy, (M), respectively. The manifolds
Ws(M:) and Wy (M) are locally invariant under the flow of (1.20).

Theorem 1.4.3. Fenichel’s Third Theorem Suppose Mg is compact, possibly with
boundary, and nmormally hyperbolic, and suppose f and g are smooth. Then, for every
ve € M. with € > 0 sufficiently small, there is an n-dimensional manifold Ws(ve) C
Ws(M,), and an m-dimensional manifold Wy, (ve) C Wyu(M,), that are O(e) close to,
and diffeomorphic, to Ws(vo) and Wy (vo), respectively. The families {Wy, s(ve)|ve € M.}

are tnvariant in the sense that
Ws(ve) -t C Wy(ve - 1),

for allt >0, and
Wu(ve) -t C Wy (ve - t)

for all t < 0, where t is an evolution parameter. That is, if v. = v(0) then ve - t = v(t).

Often, the critical manifold Mg under consideration is not necessarily compact, but the
compactification of the manifold is usually straightforward; we consider a compact subset
of My with a boundary well outside of our domain of interest (i.e. a boundary well outside

of the asymptotic limits of our singular solutions).
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Example 2. This example is a special case of the equation studied in [20,99,101]. While
the existence and stability of this system is known, we use it throughout this section to
demonstrate the use of GSPT. Consider

Uy zazum—l—u—ug—l—s(av—i—'y), Vg = Ugg +U — 0, (1.24)

where 0 < ¢ < 1. We seek stationary solutions to (1.24) and so set uy = vy = 0 and

express the equations as a system of first order ODFEs using the substitutions u, =: p and

Vy =:Q:

gul =D, v = q,

ep = u® —u —e(av + ), q =v—u, (1.25)

where ' = d/dx. This is the slow system and x the slow scale. Taking e — 0 gives

p=0, ud —u=0. (1.26)
Making the substitution £ = £ in (1.24) gives
u=p, v = eq,
p=u?—u—elav+7), q=¢e(v—u), (1.27)

where = d/d€. This is the fast system and & the fast scale. Taking e — 0 gives

’a:p’ UZO,
p=ud—u 4 =0. (1.28)

So v = vy and ¢ = qo are constant. The fast and slow systems ((1.27) and (1.25),
respectively) are equivalent for € # 0 and solutions to (1.26) are the fizved points to (1.28)
however, they are not equivalent in the € — 0 limit as (1.25) with € = 0 is not defined
away from these fized points, i.e. the limit € — 0 is singular.

We have three critical manifolds of fixed points for € = 0:
Mgc::{pzo,u:il,v,qeR}, M :={p=0,u=0,v,q €R}. (1.29)

MSE are normally hyperbolic, i.e. if we take any point on either manifold the Jacobian of
(1.28) has one positive and one negative eigenvalue. Points on M(()) are centres and as we
are looking for heteroclinic or homoclinic solutions we do not consider this manifold. If we
assume v and q are bounded we can take MOi to be compact. We can thus use the theory
of Fenichel [29], [30] which states there exists perturbed manifolds MZF with unstable and
stable manifolds that are O(g) close and diffeomorphic to MSE and its unstable and stable
manifolds respectively. MZ is locally invariant under the flow of (1.27) (¢ # 0). We
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ezpand u(z) = ug(z) + cui(z) + O(e?) and similarly for p(x) and match order € terms in
(1.25) to find the perturbed manifolds

(av +7)

MZ = {p20(52),u=:l:1+8 5

+0(e%),v,q € ]R} :

We now look for solutions that are O(g) close to either M except in a localised region.
As one example we look for a solution that approaches the unstable manifold of M as
x — —oo and the stable manifold of M as x — oco. This solution will have a slow-fast-
slow structure. We label these parts I, II and III respectively. To fulfil the asymptotic
conditions w = —1, to leading order, on part I and u = 1, to leading order, on part III.

The equation for v, to leading order, in the slow variable x is then

v+l ife<—y/e
v—1 ifx>. /e

Vg =

We apply the boundary conditions that v is finite as © — +oo and by symmetry v — 0 as
x — 0. The solution for v is then

e! —1 ifx<—\/e
et 4+1 dfx> /e

On part IT we assume v is a constant with respect to the fast variable & (this can be shown

integrating q over all of £ to show Av = O(g)). Thus, the equation for u becomes

3 3
Uge = u° —u and u=tanh | == | .
* (ﬂ)

There is a Hamiltonian associated with (1.25) for e = 0;
1 1
H= §(u2 +p?) — Z(U4 +1).

Thus, the solutions to (1.25) are level sets of the above Hamiltonian. Our problem with
0 < e K 1 1is then a perturbed Hamiltonian problem and we can show a solution exists

by showing the solution on the two manifolds (the Hamiltonian restricted to Mei) on the
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same level set are equal to leading order of €.

AH = H|yy — H|y- = O(%) (1.30)
But we also have
7 dH

@:/fw@ww+m&@
e

and since v = 0 in the fast system, we have
1

AH = m/\/f pdé 4+ 0(e/(€)) = 267y + O(e+/(¢)). (1.31)

Ve

By equating powers of € in (1.30) and (1.31) we have y = 0 as a condition for existence of a
solution of this form to the (1.24). The expressions for AH are Melnikov type calculations
(see [51]) for which v = 0 is a simple zero. Thus, the intersection of the unstable and
stable manifolds of M- and MZ

o, respectively, is transversal. This is sufficient to show

the solution (which is in this intersection) persists under perturbation by €, as long as

v=0.

We must establish the conditions for existence of solutions and perform our stability
analysis under these conditions. Additionally, many of the ideas and procedures from
GSPT are used in the Non-local eigenvalue problem (NLEP) approach [17-19]. The
NLEP approach is covered in §3.6.1 as part of future work.

1.5 Outline and original contributions

This thesis is comprised of a combination of published and unpublished work. The main
goal of this work was to develop the theory and techniques for the existence and stability

analysis of some non—standard RDEs.

The contents of Chapter 2 concern the spectral stability of a Keller-Segel model for
bacterial chemotaxis with no growth or decay of the chemoattractant or the bacterial
population and a logarithmic chemotactic function. The majority of the contents of this

chapter were published across two manuscripts, listed below.

e P.N. Davis, P. van Heijster, and R. Marangell. Absolute instabilities of travelling
wave solutions in a Keller-Segel model. Nonlinearity, 30:4029-4061, 2017 ([10] in
reference list).

e P.N. Davis, P. van Heijster, and R. Marangell. Spectral stability of travelling wave
solutions in a Keller—Segel model. Appl. Numer. Math., 141:54-61, 2018 ([11] in

reference list).
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The first manuscript was primarily concerned with the essential spectrum and the ab-
solute spectrum. In this manuscript, we provide a full analysis and classification of the
essential and absolute spectrum. The main result of the manuscript is that travelling
wave solutions are transiently unstable for a small range of the chemotactic parameter
before a bifurcation to an absolutely unstable regime. In the second manuscript we com-
plete the spectral results by proving that the origin A = 0 is an eigenvalue in the point
spectrum with multiplicity two for all parameter values in the model with sublinear or
constant consumption rate of the chemoattractant. This chapter clarifies the nature of
the instabilities in the Keller-Segel model. Moreover, the spectrum of the linearised oper-
ator about the travelling waves is non—standard in that the leading edge of the absolute
spectrum crosses into the right half plane away from the real axis. In many well studied
problems the absolute spectrum consists of values that are purely real, for example, the
FKPP equations shown in Example 1 above, or purely imaginary, for example, the non-
linear Schrodinger equation. The structure of the absolute spectrum of the Keller-Segel
model is somewhat reminiscent of the example in [85] which was constructed to have such

non—standard absolute spectrum.

Author contributions for [10,11]

e All authors participated in useful discussions pertaining to the set-up of the problem,
the interpretation and presentation of results.

e P.N. Davis (candidate) was primary author for both [10,11], performed the calcu-
lations, interpretations and presentation in [10] and in collaboration performed the
calculations, interpretations and presentation in [11]. The candidate also acted as
corresponding author for [10].

e P. van Heijster guided and supervised the research, checked the analytic calcu-
lations, assisted with interpretation and presentation in [10] and in collaboration
performed the calculations, interpretations and presentation in [11]. He also proof-
read and edited the manuscripts.

e R. Marangell guided and supervised the research, checked the analytic calculations,
assisted with interpretation and presentation in [10,11] and in collaboration per-
formed the calculations, interpretations and presentation in [11]. He also proofread

and edited the manuscripts and acted as corresponding author for [11].

The contents of Chapter 3 concern the proof of the existence of heteroclinic solutions in
the Gatenby-Gawlinski model for tumour invasion with the acid-mediation hypothesis.

The majority of the contents of this chapter was submitted as the following manuscript.

e P.N. Davis, P. van Heijster, R. Marangell, and M.R. Rodrigo. Traveling wave solu-
tions in a model for tumor invasion with the acid-mediation hypothesis. Submitted,
2018 ([12] in reference list).
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Numerical simulations by M.R. Rodrigo had shown the existence of both slow and fast
(in terms of wave speed) travelling waves and, in certain parameter regimes, the existence
of an ‘interstitial gap’-a region mostly devoid of cells ahead of the invading population of
tumour cells. The main goal of this project was to prove the existence of these travelling
wave solutions from a dynamical systems perspective and to explain the existence and
width of the interstitial gap. The differing timescales in the model allowed for a GSPT
approach and we use this approach to prove the existence of the travelling wave solu-
tions, give a leading-order approximation based on the singular limit of the slow and fast
problems and prove the persistence of these approximations in the full system. It was
through the use of GSPT that we were able to give a mathematical explanation of the
interstitial gap: the width of the interstitial gap is determined by the distance between
a layer transition of the tumour and a dynamical transcritical bifurcation of two compo-
nents of the critical manifold. The existence of this dynamical transcritical bifurcation
is non—standard as the loss of normal hyperbolicity means that Fenichel theory does not
apply at the bifurcation. We prove the persistence of solutions as the trajectories cross
the bifurcation and conclude the chapter with some open questions and suggestions for

future work.

Author contributions for [12]

e All authors participated in useful discussions pertaining to the set-up of the problem,
the interpretation and presentation of results.

e P.N. Davis (candidate) was primary author for the main section (and calculations
therein) §3.5 The candidate also co-authored the set-up of the GSPT problem,
§3.3, and participated in discussions of and analysis of all remaining sections. The
candidate acted as corresponding author, checked the analytic calculations and up-
dated the manuscript for consistency with her thesis. The candidate also wrote
§3.1 extended §3.6 for inclusion in her thesis. She also proofread and edited the full
manuscript.

e P. van Heijster was primary author for the sections §3.2 and §3.3 and co-authored
sections §3.4 and §3.6 with the candidate. He participated in discussions of and
analysis of the all sections. He also proofread and edited the manuscript.

e R. Marangell assisted with the set-up of the problem, participated in discussions of
and analysis of the all sections, checked the analytic calculations. He also proofread
and edited the manuscript.

e M.R. Rodrigo wrote the more biologically motivated components of the introduc-
tion §3.2 and conclusion §3.6, participated in discussions of and analysis of the all
sections, performed the numerical simulations and generated the figures of travelling

wave profiles. He also proofread and edited the manuscript.
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Chapter 4 regards the stability of defect solutions, following on from the existence results
of [21] by A. Doelman, P. van Heijster and F. Xie. In this chapter we formulate the Evans
function for the model (1.3). For the trivial defect solution, we calculate the leading order
Evans function as well as the first and second order correction terms for a scalar PDE
example. From this we prove that the roots of the Evans function are given, to leading
order, by the branch points of the absolute spectrum of the associated homogeneous
problem. Furthermore, we show that any point spectrum that emerges as a result of the
inclusion of the defect is within O(e) of the branch points. The candidate (P.N. Davis) is
the primary author for this chapter and this work has been done under the supervision

and guidance of P. van Heijster and R. Marangell.

Author contributions for Chapter 4

e All authors participated in useful discussions pertaining to the set-up of the problem,
the interpretation and presentation of results.

e P.N. Davis (candidate) was primary author for this chapter and performed the
calculations therein.

e P. van Heijster guided and supervised the research, checked the analytic calcula-
tions, proofread and edited the Chapter.

e R. Marangell guided and supervised the research, checked the analytic calculations,
proofread and edited the Chapter.

The thesis concludes with a discussion and summary of the results, open questions and the
future directions of research. Specifically, we are interested in the dynamical implications
of the Keller-Segel model’s spectral instability, the nonlinear stability of solutions to
the Keller-Segel model, extensions and generalisations of both the Keller-Segel model
and the Gatenby-Gawlinski model and the stability of the travelling wave solutions to
the Gatenby-Gawlinski model. Current and future work also includes generalising the
Evans function approach to the stability of the trivial defect solution to encompass the
n—dimensional trivial defect solution, local defect solution and the application to known
problems with the addition of defects; the Fitzhugh-Nagumo model and the extended

Fisher-Kolmogorov model.



CHAPTER 2

The spectral stability of a Keller-Segel model with logarithmic

chemosensitivity

2.1 Preface

The contents of this chapter were published across two manuscripts, [10] and [11]. For the
sake of presentation, the introduction, set-up and conclusion sections have been merged.
Sections §2.4 to §2.6, in combination with parts of the introduction, set-up and conclusion
sections, were published in [10] whilst §2.7, in combination with parts of the introduction,

set-up and conclusion sections, was published in [11].

2.1.1 Abstract

We investigate the spectral stability of travelling wave solutions in a Keller-Segel model
of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sub-
linear, or linear consumption rate. Linearising around the travelling wave solutions, we
first locate the essential and absolute spectrum of the associated linear operators and find
that all travelling wave solutions have essential spectrum in the right half plane. However,
we show that in the case of constant or sublinear consumption there exists a range of pa-
rameters such that the absolute spectrum is contained in the open left half plane and the
essential spectrum can thus be weighted into the open left half plane. For the constant
and sublinear consumption rate models we also determine critical parameter values for
which the absolute spectrum crosses into the right half plane, indicating the onset of an
absolute instability of the travelling wave solution. We observe that this crossing always
occurs off of the real axis. We then investigate the point spectrum associated with the
travelling wave solutions. We show that, for constant or sublinear consumption, there is
an eigenvalue at the origin of order two. This is associated with the translation invari-
ance of the model and the existence of a continuous family of solutions with varying wave
speed. The full spectral analysis implies that the travelling wave solutions are absolutely
unstable if the chemotactic coeflicient is above the critical value, while they are transiently

unstable otherwise.

27
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2.2 Introduction

2.2.1 The Keller-Segel model

A general Keller-Segel model of chemotaxis is

Up = EUgy — qwu” + KU,

(2.1)
Wy = 5wxaz - B ((I)x(u)w)a: ,

with (z,t) € (R,R*"). The model represents the directed movement of a cell species w,
such as a bacterial population, governed by the gradient of a chemical u. The function
®(u) is the so-called chemotactic function. We take (x,t) € RxR™, with a, k > 0,m € R,
and 8, d > 0 and assume that the diffusion of the chemical is taken to be much smaller
than that of the bacteria, i.e. 0 < e < 4.

Originally proposed by Keller and Segel in the 1970’s (see [60,61]) much of the focus in the
literature has been on the so-called minimal Keller-Segel model (see, for example, [45,52]
and references therein, as well as the review paper [44]). This is (2.1) with a chemotactic
function of the form ®,(u) = v and x = 0 (representing no growth of the chemical in the
absence of the bacteria). The minimal Keller-Segel model admits solutions that blow-up
in finite or infinite time [44]. As blow-up solutions are not biologically feasible, efforts
have been made to prevent, or bound, blow-up solutions in the minimal Keller-Segel model
by appending the model; for instance by selecting an appropriate growth term [66], by

bounding the chemotactic function [45], or by incorporating nonlinear diffusivity [103].

Alternatively, by moving away from the minimal Keller-Segel model, one can find travel-
ling wave solutions by the choice of a singular chemotactic function [61,94]. The literature
predominantly discusses the case when the growth term k£ = 0, and when ®(u) = log(u)
[22,28,49,59,61,94]. For instance, it was shown in [61,94] that, in the absence of a growth
term for the bacterial population w, the chemosensitivity function must be singular for

travelling wave solutions to exist. In this chapter, we consider such a Keller-Segel model:

Up = EUgy — WU,

w0y = Sy — (wzxL (2.2)

The condition 3/ +m > 1 is necessary for finite solutions [61]. It has been shown that
for m > 1 and m < 0, (2.2) admits no travelling wave solutions [94,103], thus we take
0 <m < 1. When 0 < m < 1, there are two main cases; first, for 0 < m < 1, the
model supports a travelling front of the chemical attractant coupled with a travelling
pulse for the bacterial population [80,103]. This has been used to model travelling bands
of bacteria [43,82]. When m = 1, (2.2) supports a pair of travelling fronts and has been
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used to model the boundary behaviours of populations of bacteria [81]. See Figure 2.3.1

for plots of travelling wave solutions in these two cases.

While the existence of travelling wave solutions to (2.2) has been studied since the model’s
inception, stability analysis of these travelling wave solutions has been comparatively
limited. A typical first step in the stability analysis of travelling wave solutions is to
linearise around the travelling wave solution and to compute the spectrum of the resulting
linearised operator. For travelling wave solutions in (2.2), with ¢ = m = 0, the essential
spectrum (see Definition 2.3.2) of the associated linear operator, dealing with instabilities
at infinity, was located in [80]. It was shown that the essential spectrum always intersects
the right half plane and so the waves are (spectrally) unstable. It is possible to shift the
essential spectrum using weighted function spaces, see §2.3.3. In [80] a weighted function
space was considered for a range of weights and it was shown that in this range the
spectrum remains unstable. However, the reason for restricting weights to a small range
is unclear. These results were generalised in [103] for 0 < m < 1. In [35], (2.2) was studied
with m = 0 = ¢ and it was shown, via a numerical Evans function computation, that the
point spectrum of £8 contains no eigenvalues with positive real part for complex values
with norm up to O(10%). In addition, it was shown that the origin is a second order root

of the Evans function and hence is an eigenvalue with algebraic multiplicity two.

In this chapter, we locate the essential spectrum associated with travelling wave solutions
n (2.2). By computing the absolute spectrum (see Definition 2.3.3), we show that for all
0 < m < 1 there exists a range of the chemotactic parameter g, independent of the speed
of the travelling wave solution, such that the essential spectrum can be weighted fully
into the left half plane for an appropriate two-sided weight. We also prove that the origin
is an eigenvalue with algebraic multiplicity two, confirming the numerical results of [35].
An early proof offered by [87] shows that there are no positive eigenvalues for 0 < e < 1
under the assumption that eigenvalues are real-valued. However, it is unclear that this
assumption holds, since the linearised operator £ (2.9) is not self-adjoint. The results
of this chapter, that the origin is an eigenvalue of order 2, together with the numerical
results of [35], confirm that there is a parameter range where the travelling wave solutions
are transiently unstable. However, we do emphasize that as the linearised operator is
quasilinear, the spectral stability results do not allow us to immediately conclude the
nonlinear stability of solutions. See §2.3.4 for a more in depth explanation of the main

results and §2.8 for a discussion of nonlinear stability.

In §2.3, we describe the linearised eigenvalue problem associated with a travelling wave
solution to (2.2), outline the relevant spectral theory, and state our main results. In §2.4,
we locate the essential and absolute spectrum and explain the procedure for calculating
the so-called ideal weight (see Definition 2.3.4), in the case of constant consumption and
zero diffusivity of the attractant, i.e. ¢ = m = 0. We also calculate the range of 5 values

for which the essential spectrum can be weighted into the left half plane. Outside this
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Figure 2.3.1: Travelling wave solutions to (2.5) for e = 0, 8 = ¢ = 2. Left panel: For

m = 0 the travelling wave solutions are a front and a pulse. Right panel: For m = 1 the
travelling wave solutions are a pair of travelling fronts.

range the travelling wave solutions are absolutely unstable. In §2.5, we extend the results
of the constant consumption case (m = 0) to the case of sublinear (0 < m < 1) and
linear consumption (m = 1), still in the absence of diffusion of the attractant. While the
procedures of §2.5 are similar to the procedures of §2.4, the computations are algebraically
more involved and therefore we split these two sections. In §2.6, we include a small, non-
zero, diffusivity of the attractant in the model, i.e. 0 < ¢ < 1, and show that (in)stability
conditions are to leading order the same as before. In §2.7.1 we present the results from
[11]. That is, we prove that the origin persists as an element of the point spectrum with
algebraic multiplicity two for travelling wave solutions to (2.2) with 0 < m < 1 and

0 < e <« 1. We conclude the chapter with a summary and discussion of future work.
2.3 Set-up, definitions, and main results

We briefly discuss the existence of travelling wave solutions to (2.2) and define the stability

problem. Following [80], we nondimensionalise (2.2) through the change of variables
i := /S, t:=at. Then, (2.2) becomes

up = Euzz — wu',
wu@) (2'3)

)
u

wzzwm—ﬁ<
T

where we have set £ := £ and 3 := % We drop the tildes for notational convenience
Up = EUgy — WU,

= wns— 5 (M) .

u

and the conditions on our parameters are now 0 < e <1, 8+m>1land 0 <m < 1.
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2.8.1 Travelling wave solutions

We make the change of variables z = x — ct, where ¢ > 0 is a constant, finite wave speed.

In this moving frame, we have

Up = EUyy + cuy — wu'”,
wuz) (2.5)
u z '

wt:wzz+cwz_/8<

Travelling wave solutions exist as stationary solutions to (2.5), i.e. (u(z,t),w(z,t)) =

(u(z),w(z)) and satisfy

0 =cu,, + cu, —wu'™,
wuz> (2.6)
u z '

Ozwzz—l—cwz—,é’(
When 0 < m < 1, travelling wave solutions satisfy (2.6) with

zggloo ’LL(Z) - zEI—noow(Z) =0 ZILIEOU(Z) = U ZILIIQOM(Z) =0,
where u(z) is a wavefront and w(z) is a pulse [80,103] (see the left panel of Figure 2.3.1).
When m = 1 travelling wave solutions satisfy (2.6) with
2 2
i w5 =0 i ()= G e i) = () =,

where both u(z) and w(z) are now wavefronts [103] (see the right panel of Figure 2.3.1).

Though explicit formulas for travelling wave solutions are known only for ¢ = 0 (i.e.
zero-diffusivity of the chemoattractant), the existence of travelling wave solutions in (2.2)
has been shown for 0 < m < 1 and small enough values of the diffusivity of the chemoat-
tractant (i.e. 0 < & < 1), see, for example, [38,80,103] and the references therein. To

leading order in €, the profiles of travelling wave solutions are given by

u(z) = (ur_lm + ae_c(”z*))_v ,
w(z) = e ) (u(2)) (2.7)
B 1 > B+m—1
7= B+m—1’ N c2 ’

where z* is a constant associated with the location of the centre of the travelling wave
solution, and u, is the end state of the chemoattractant [28,80,103]. Because of translation
invariance, we set z, = 0, and because of scaling invariance in the nondimensionalisation
of (2.2) to (2.3), we take u, = 1 [38], in the remainder of this chapter without loss of

generality. Furthermore, from [80,103] we have the following limits for the travelling wave



Chapter 2 32

solutions
.Uy c ) w c ce
1 —_— = 1 = 2.8
o u B+m—1’ ot yl-m ﬁ—i—m—l(ﬂ—i—m—l+c>7 (28)

which will be useful for the stability analysis in the upcoming sections.

2.8.2  The spectral problem

To determine the stability of the travelling wave solutions (u,w) of (2.4), we consider
U(z,t) =u(z)+p(z,t), and W(z,t) = w(z)+q(z,t), where p, q are perturbations in some
appropriately chosen Banach space X'. Substituting U and W into (2.5) and considering

only leading order terms for p and ¢, we obtain the linear operator L* defined by,

0 _ m—1 _ ., m
P\ _ cm P ’ £me 0., + cz; — mwu u (2.9)
a), q La1 Lo

where the entries of L* are

0? 0 1
L1 8822 + cg — muwu™ ",
L12 = —u™,
Loy = WU n Wuzz 2uwu? L3 2wu,  w, 2 B Bﬂi (2.10)
2 u? u? ud u? u ) 0z u 022’

w2 Bu 0 02
Loo i— Uy  Hzz _ z | Y i
2:=p (u2 u ) * (C v ) oz Tz
Though the terms of (2.10) appear singular as u* — 0 in the z — —oo limit, they are in
fact bounded [103].

The associated eigenvalue problem is obtained by taking perturbations of the form

(p(z,w) Y <p<z>>
a(z.1) a(2)

where we now make the choice that p, ¢ € H!(R). Here, H!(R) is the usual Sobolev space
of once (weakly) differentiable functions such that both the function and its first (weak)

derivative (in z) are in L?(R), i.e. square integrable. Equation (2.9) becomes

LM HY(R) x HY(R) — H'(R) x H'(R)

o <p> _, <p) | (2.11)
q q
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2.8.8 Spectral stability: Background and definitions

A travelling wave solution is said to be spectrally stable if the spectrum of the associated
linear operator o(L£) is contained in the closed left half plane except for the origin. The
spectrum o (L) is defined in the following definition.

Definition 2.3.1. ([88] Definition 3.2) We say X\ € C is in the spectrum of a linear
operator L, denoted o(L), if the operator L — NI, where I is the identity operator, is not

invertible, i.e. the inverse does not exist or is not bounded.

The spectrum of a linear operator £ falls naturally into two parts, the essential spectrum,

denoted oess(L), and the point spectrum, denoted ope (L) [91].

The essential spectrum

We define an operator 7 (), equivalent to £— AI, by transforming the eigenvalue problem

into a system of first order order ordinary differential equations (ODEs);

d

TO\)p = (dZ — M(z, /\)> p=0. (2.12)

The essential spectrum of an operator of the form in (2.12) is found by analysing the
asymptotic behaviour of the operator 7 (\). We set My () := lirin M (z,\) and define
Z—r 00

the asymptotic operator associated with 7 (\) as the piecewise constant operator

LMy ifz<o,

Too(A) == ddz (2.13)

The essential spectrum is found by analysing the dimensions of the unstable, stable and
centre subspaces of My (\). We define the Morse index i(A) of a constant matrix A as
the dimension of its unstable subspace, see [54] Definition 3.1.9. So, for an asymptotic
operator of the form of (2.13), we denote the Morse indices i+ := i(Mx(\)) := dim(EY ),
where EY denotes the unstable subspace of My (\) respectively.

Definition 2.3.2. ([54] Definition 3.1.11) We say A € 0ess(Too), the essential spectrum
of Too, if either

1. My (\) and M_(X) are hyperbolic with a different number of unstable matriz eigen-
values, i.e. i1 —i_ # 0; or

2. My (X) or M_(\) has at least one purely imaginary matrixz eigenvalue.

The essential spectrum is conserved under relatively compact perturbations of an opera-

tor. This follows from Weyl’s essential spectrum theorem, see for example [54] Theorem
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2.2.6 and [57] Theorem 5.35. In a variety of operators that arise from linearisation about
travelling wave solutions, including the Keller-Segel model (2.5), the operator 7o, is a
relatively compact perturbation of 7 (see for example [54] Theorem 3.1.11 or [41]) and

so their essential spectra coincide.

Due to the continuous dependence of 7(A) on A we have that the essential spectrum is
bounded by the values of A where My (A) or M_(A) has at least one purely imaginary
matrix eigenvalue. These A values form curves in the complex plane referred to as the

dispersion relations of the respective matrices.

Generally, the region of the complex plane containing R(A) > 1 is not contained in the
essential spectrum, i.e. the region to the right of the essential spectrum has iy = i_.
This condition is related to well-posedness of the eigenvalue problem [54] (see also the left
panel of Figure 2.3.2) and is satisfied for the Keller-Segel model discussed in this chapter.
Remark 2.3.1. Following the terminology of [54, 91], we refer to the matrixz eigenvalues
w of My(X) as the spatial eigenvalues and to A as the temporal spectral parameter. Values
A for which there is a solution to (2.11) are referred to as temporal eigenvalues. We note

that temporal eigenvalues as defined here can be either in oess 0T i Op.

The absolute spectrum

The absolute spectrum, denoted o, is not spectrum in the usual sense as it does not arise
from Definition 2.3.1, see, for instance, [54,88,90]. However, it provides important stability
information as it gives an indication of how far the essential spectrum can be shifted by
allowing for perturbations in weighted spaces (instead of H'), see also Figure 2.3.2. If
the absolute spectrum contains values in the right half plane the solutions are said to be
absolutely unstable [54,90]. The absolute spectrum of 75, (equivalently of 7") is defined
in the following definition

Definition 2.3.3. (/88] Definition 6.1) Take an N dimensional asymptotic operator, Tso,
in the form of (2.13), that is well-posed in the sense that iy = i_ = j for R(\) > 1.
For A € C we rank the N spatial eigenvalues ,uii of the asymptotic matrices My by the

magnitude of their real parts, i.e.
Ry (V) = Rz (N) = . = R (V) = R (V) = - = Ry (V)
We define the sets
ohe={rec ‘%(uj) =R(uf) b and oy, = {rec ‘%(H;) =R(uj) br (214)
and the absolute spectrum of Too (and of T ) is Oaps 1= cr;rbs U0, -

Due to the continuous dependence of 7 on A, the Morse indices will only change upon

crossing one of the dispersion relations and so the absolute spectrum will always be to the
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RN > 1 A € Oess A e a;;)s
S(p) S(ut) (")
[ ] [ ] L]
[ ] [ ] L]
X
R(p) R(ut) R(ph)
X [ ] [ ] [ ]

Figure 2.3.2: A schematic of the spatial eigenvalues of the asymptotic matrices My ()
(dots) and M_(\) (crosses), with My (\) 3 x 3 matrices, for three distinct values A € C.
Left panel: for ®(\) > 1, M4 (\) are hyperbolic and i+ = 2. Middle panel: A\ € 0egs
since My () has a purely imaginary spatial eigenvalue. However, there exists a weight,
represented by the red line, such that iy = 2 in this weighted space. So, A € 0ess in the
weighted space (and A ¢ o} ). Right panel: R(pf) > R(ug) = R(ud), so A € i (since
iy = 2 for R(A\) > 1, see left panel). Observe that the order of the spatial eigenvalues
persists under all weights, i.e. the absolute spectrum does not change under weighting the
space. However, there exists a unique weight, represented by the red line, such that A is
in the boundary of the weighted essential spectrum. This image is adapted from Figure
3.6 of [54].

left of the rightmost boundary of the essential spectrum. That is, moving A from right
to left in the complex plane we will first encounter a dispersion relation of either My (\)

before (potentially) encountering the absolute spectrum, see also Figure 2.3.2.

Remark 2.3.2. For an operator T, with Morse indices i+ = i_ = j in the region to
the right of the essential spectrum, the set of A € C with R(ui (\)) = ?R(u;;l(/\)) or
R(p; (N) = R(piy1 () where i # j is referred to as the generalised absolute spectrum.

Weighted spaces

The presence of essential spectrum of a linear operator in the right half plane implies
instability of the travelling wave solution in H'. However, for many travelling wave so-
lutions that are widely considered ‘stable’, the linearised operator associated with them
has essential spectrum in the right half plane; one such example is the well-known Fisher-
Kolmogorov-Petrovsky-Piscounov (F-KPP) equation. A resolution proposed for this ap-
parent contradiction is to work in an appropriately weighted space [93]. Weighting the
space adjusts the types of perturbations allowed. Following [54], we define the weighted
space HL(R) by the norm

Py = lle”*pllar = 1Dllme, (2.15)

where p := e“*p. So, p € H, if and only if p € H!. We define L2 similarly. The weight
provides information as to whether the travelling wave solutions are more sensitive to
perturbations in front of the wavefront (i.e. as z — o0) or behind the wavefront (i.e. as

z — —00). In other words, if ¥ > 0 then the perturbation p(z,t) must decay at a rate
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v

faster than e™"% as z — oo, while it is allowed to grow exponentially at any rate less than

e Y% as z - —oo. We can also consider a two-sided weight

v_ if z <0,
v= (2.16)
vy if 2 >0,

which forces the perturbation to decay exponentially in both directions. It turns out that

we need to consider a two-sided weight (2.67) in the case of the Keller-Segel model (2.4).

A practical consequence of considering £ on weighted function spaces is that the essential
spectrum is moved. In particular, assume we have an operator 7 of the form of (2.12)
coming from the linearisation around a travelling wave solution and with asymptotic

operator (2.13). The operator 7 (\) in the weighted space is given by
TP =p = (M(z,A) +vI)p =0,

with asymptotic matrices My (\)+vI [54]. Hence, we need to consider the magnitude and
sign of the real part of the spatial eigenvalues compared to the weight, i.e. we consider
w—v, the spatial eigenvalues of My (\)+vI, instead of p, the spatial eigenvalues of M (\)
(see Figure 2.3.2). If the operator 7 has its essential spectrum in the right half plane in
the unweighted space, weights of interest are those that move this essential spectrum into
the open left half plane. If such weights v exist (and if there is no point spectrum in the
right half plane), we say the travelling wave solution is spectrally stable in H!(R) and it

is referred to as being transiently unstable [90,96].

Since the order of the spatial eigenvalues is not changed, the absolute spectrum is un-
affected by weighting the function space and the presence of absolute spectrum in the
right half plane indicates an absolute instability. In particular, in the case of an absolute
instability no weights can be found that move the essential spectrum into the left half
plane since the absolute spectrum is to the left of the rightmost boundary of the essential

spectrum.

2.83.4 Main results

In this section, we state the main results of this chapter related to the location of the

absolute spectrum of travelling wave solutions supported by (2.4).

Theorem 2.3.3. Assume that ¢ > 0,0<m <1 and 8 >1—m. Let Bui; be the unique

real root larger than one of

f(B) = 3108 — 323453° + 171128% — 49101587 + 761803° — 583983

(2.17)
+1005658% 4+ 1504082 — 968052 + 17163 — 4.
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Then, there exists an g > 0 such that for all 0 < & < gg the absolute spectrum of L given
in (2.9) is fully contained in the left half plane for all 1 —m < B < BTt (g), with B (¢)

crit
to leading order given by B, = Bait(1 —m). Crucially, at B = [ (e) the absolute
spectrum crosses the imaginary axis into the right half plane away from the real axis with
increasing 3. For B > B () the absolute spectrum of L (2.9) contains values in the

right half plane and the travelling wave solutions of (2.4) are thus absolutely unstable.

For m =1, the absolute spectrum of L (2.9) includes the origin for all parameter values.

The fact that the polynomial f (2.17) has only one real root larger than one follows
directly from Sturm’s Theorem, see, for instance, Theorem 6.3d in [40]. This result is

summarised in the following lemma, the proof of which is contained in Appendix A.

Lemma 2.3.4. The polynomial

f(B) = 3108 — 323453° + 171126% — 4910187 + 761803° — 583983°

(2.18)
+100563* 4 150403° — 968032 + 1716 — 4.

has only one real root for 5 € [1,00). Moreover, this root is irrational.

In particular, Beiy ~ 1.6195. Moreover, for every 0 < m < 1 and 1 < 8 < B%. (¢)
there exists a range of two-sided weights v (2.67) such that weighted essential spectrum is
contained in the open left half plane, see Remark 2.4.2 and Remark 2.5.2. Also, observe

that the above leading order results are independent of the wave speed ¢, see Remark 2.4.3.

Thus, we fully classify the (in)stabilities coming from the weighted essential spectrum of
travelling wave solutions of (2.4) for the complete parameter range for which travelling
wave solutions exist, i.e. for 0 < m <1 and 1 —m < 8 [94,103]. In essence, we obtain
the complete picture of the essential spectrum, extending the initial results obtained in
[80,103].

As we are primarily concerned with the absolute spectrum, we define the ideal weight as
the weight such that the weighted dispersion relations intersect the rightmost points of

the absolute spectrum.

Definition 2.3.4. The ideal weight for the operator (2.9) is the unique two-sided weight

+
abs

such that the dispersion relations of My (\) + vl intersect the leading edges of the o

respectively.

This definition is motivated by the fact that as 8 increases, the ideally weighted essential

spectrum and the absolute spectrum cross into the right half plane simultaneously.



Chapter 2 38

2.4 Constant consumption and zero diffusivity of the chemoattractant

For clarity of presentation, we first prove Theorem 2.3.3 in the case of constant consump-
tion (m = 0) and zero diffusivity of the chemoattractant (¢ = 0). We show that the
absolute spectrum is contained in the left half plane when 1 < 8 < Beit (with Beig the
root of (2.17)), while it contains values in the right half plane when f > [ui. Con-
sequently, when 1 < 8 < fBqit, there exists a two-sided weight v (2.67) such that the
essential spectrum is contained in the open left half plane in the ideally weighted space,

while all travelling wave solutions are absolutely unstable when 8 > B.pi.

2.4.1 Set-up

In the e = m = 0 case, the eigenvalue problem (2.11) reduces to

d
o
(7)) =x (), with 8= :
q q Loy Lo

where Lo1 and Lgg are given by (2.10), restated here for convenience,

Wyly — Wlys 2wu§> +6<2wuz wz> 0 _57“1572
0z u 022’

521:5( + — -—

u2 u2 u3 u2 U
u?  ug, Bu,\ 0O 0?2
522'B<u2_u>+<6_ u)@z—i_azz'

Here (u,w) are the (explicit) travelling wave solutions given in (2.7). We define the

operator To(\), equivalent to £ — A, by setting s = ¢,. The operator To(\), with
p,q € HY(R) and s € L2(R), is given by

!/

p D P 219
o | q]=la| =Mz g =0, Mzn:=|0 o 1], (220
s s s Ao By Co
with

2wu?  wuu,  wu,, A8 (w, 2wu, A2pw
AO:B(US - p) - >+<_ >

U u? c \u u? 2y’
2
U U w 2w A w
80=B<ZZ—§>+IB<Z— 2Z>+g()+/\;
U U c \ u U c? \u
Cozﬂuz—C-f—ég.
U cu

2.4.2 FEssential spectrum

We first locate the essential spectrum in the unweighted function space. We calculate

the dispersion relations of the asymptotic matrices as these act as the boundaries of the
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essential spectrum. From (2.6), with ¢ = 0, we have u, = w/c and by integrating the
second equation we get w, = —cw + [ (wu,/u) (where the integration constant is zero
[38,61]). Thus, all terms of My can be written in terms of w/u. From (2.8), or directly

from the travelling wave profiles (2.7), we have,

02

. w .
zhﬁrgog_a zgr—noog_ﬂ—l

Using these facts, the limits of Ag, By and Cy as z — +00, denoted AS—L, BSE and Céc, are

straightforward to compute and are, respectively, given by

_BA((B-1)A =)

A =0, Ay e )
T B__(2ﬁ2—3ﬁ+1))\—025
o R
1
Car = —c, Cy = C(gj_l)
We also define the asymptotic matrices,
A 1 0
MEN) = Jim Mo(z\)=| 0 0 1
Ay By Cy

Setting the spatial eigenvalues to be purely imaginary, i.e. 4 = ik, k € R in the charac-
teristic polynomials of M(;—L we obtain their dispersion relations. The dispersion relations
of MOJr are

A= —k®+ick, and \=ick. (2.21)

Note that the imaginary axis is one of the dispersion relations, while the other is a parabola

opening to the left half plan with vertex at the origin, see Figure 2.4.2.

The dispersion relations of M are given by

2 o (B —2)ck (B+1)k* . Be? 2\ _

Equation (2.22) is quadratic in the temporal parameter A and cubic in the parameter k

(and thus in the spatial eigenvalue).

The boundary of the essential spectrum is traced out by the solutions A € C, parametrised
by k, from (2.21) and (2.22). We label the connected set containing R(A) > 1 as ,
see Figure 2.4.1. For A € 4, we have that the dimensions of the unstable subspaces of
Mgﬁ are both two, i.e. i = 2. There are two other regions in the complex plane where

ir. = i—. We denote these regions {)o and (23, see Figure 2.4.1. The remaining part
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Figure 2.4.1: The essential spectrum e of the operator £ about the travelling wave
solutions (u,w) (2.7) for e = m = 0 and § = ¢ = 2. The solid curves are the dispersion
relations of M, while the dashed curves are the dispersion relations of Mgr . The shaded
region is A € C such that i; # i_ and the essential spectrum is the union of the shaded
region and the dispersion relations. Observe that the entire imaginary axis is included
in the essential spectrum. The general shape of the unweighted essential spectrum is
qualitatively similar for all values § > 1, while changing the wave speed c only affects the
scaling of the image, see Remark 2.4.3. Note this figure is a slight correction to Figure 6
from [35].

of the complex plane is the essential spectrum. It is clear from Figure 2.4.1 that part
of the essential spectrum is in the right half plane. This agrees with previous results;
by considering (2.22) for small |k| values it was shown all travelling wave solutions for

e =m = 0 are unstable in the unweighted space [80].

2.4.83 The weighted essential spectrum and the absolute spectrum

To further investigate the stability properties of the travelling wave solutions, we consider
the spectrum in various two-sided weighted spaces, locate the absolute spectrum and
identify the ideal weight. We substitute p = ¢“*p, where p = (p,q,s)’, into (2.20) and
consider the weighted space H. (2.66) with v a two-sided weight (2.67). This substitution

transforms (2.20) into
To(Np =P’ — (Mo(2,A) +vI)p =0,

with My(z, A) as given in (2.20). The essential spectrum in the weighted space is bounded
by the dispersion relations of the asymptotic matrices MSE + vl
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The weighted dispersion relations and absolute spectrum from MJ
First, we consider the dispersion relations of My () + v
A= —cvy +ick, and A= —k*—vi(c—vy)+i(ck — 2kvy). (2.23)

For v; € (0,c¢) the real part of the dispersion relations (2.23) have strictly negative real
parts and the furthest left these relations can be shifted is for the ideal weight v¥ = ¢/2.
Under this weight, the dispersion relations (2.23) reduce to

62 62
A= -5 +ick, and )\:—Z—kz. (2.24)

Next, we calculate O-;bs’ the subset of the absolute spectrum arising from the spatial
eigenvalues for z — co. Since iy = 2 = i_ for ®(A) > 1, we search for A € C such that
the spatial eigenvalues with the second and third largest real part have the same real part

(see Definition 2.3.3). The spatial eigenvalues of MJ are

A —c+ Ve + 4N —c—Ve2+ 4\
T T e s (2.25)
For R(\) > —%, we have that R(uy) > R(ug) > R(ug). Consequently, the abso-

lute spectrum in this region is given by A € C such that R(ug3) = R(ugd). That is,

{)\ eR ‘—% <A< 7762 } For R(\) < —%, we have that 3 has the largest real part and

the absolute spectrum in this region is thus given by A € C such that R(u1) = R(us).
That is, {)\ — A 4idg, AL A ER (Al <= Ay =4\ (1 + %) } So, o _ is given by

4 02 —02
o= Prer| Lozl
2 2\
)\1<—%; Ao = £\ <1+C21)}

Obviously, o;%s is fully contained in the left half plane for all ¢ > 0. Consequently, no

(2.26)
{)\ = A +iAg, A, €R

absolute instabilities arise from 2z — co. See Figure 2.4.2 for a plot of o}, | (2.26) and the
ideally weighted dispersion relations (2.24) and the unweighted dispersion relations (2.21)
(or (2.23) with vy = 0).

The weighted dispersion relations and absolute spectrum from My

The characteristic equation of M is given by

c — c2 2
o (G (B i)
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—c*/2 —c*/4 0 —c*/4 0

Figure 2.4.2: The subset of the absolute spectrum U;bs (red) and the dispersion relations
of My" +v4 1 (black). Left panel: the dispersion relations (2.23) in the unweighted space,
i.e. v4 = 0. The imaginary axis is one of the dispersion relations. Right panel: the ideally
weighted dispersion relations (2.24), i.e. v = ¢/2. Note that the parabola from the left
panel collapses to the real line under the ideal weight.

and the dispersion relations of M + v_I are implicitly given by

c(2—-8)(tk —v_ ik —v_
/\2+< (2 g)(_kl )—(ikz—u_)2>)\+ﬁ <é]il>2 )
2.28
- (64_1);2(_“1_1/)2 + c(ik —v_)* =0. 2

For a fixed 8 and ¢ and for various weights v_, we can plot the weighted dispersion
relations (2.28), see, for example, Figure 2.4.3. Observe that the weighted dispersion
relations (2.28) have self-intersections for some A € C over a large range of weights v_,
including v_ = 0 (related to the unweighted space). This self-intersection corresponds to
two complex roots of the characteristic polynomial (2.27) of the form pj, = —v_ + k12
with k12 € R. Thus, we have (7 ) = R(u5 ), while the third spatial eigenvalue ;5 has a
larger real part. Consequently, the X\ value at the self-intersection is part of the absolute

spectrum.

There exists some weight v* < 0 such that the self-intersection vanishes for v_ < v* | see,
for instance, the right panel of Figure 2.4.3. For v_ = v* | the self-intersection forms a cusp
of the weighted dispersion relations (2.28) and is thus the ideal weight, see Figure 2.4.4.
For v_ > v*, the self-intersections trace out the subset of the absolute spectrum o ..
This allows us to directly locate o, using a root-finding algorithm on the dispersion
relations of M + v_I. Values A € o, such that there is a second order root (in u) of
the characteristic polynomial (2.27) are referred to as branch points Ay, see Remark 2.4.1
and Figure 2.4.4. For the Keller-Segel model, the cusp of the ideally weighted dispersion
relations correspond to the second order root and so the branch points are the rightmost

points of o , see Figure 2.4.4.

abs’

To locate the branch points Ay, we treat the characteristic polynomial (2.27) as a cubic

polynomial in p and determine the second order roots. This requires finding A € C such
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Figure 2.4.3: The subset of the absolute spectrum o, . (red) and the dispersion relations
of My + v_I (black) for f = ¢ = 2 and various weights v_. The dispersion relations
(2.28) in the unweighted space (left panel), a weighted space with v = —1/4 (middle
panel), and a weighted space with v_ = —3/2 (right panel). As v_ is further decreased,
the dispersion relations move further into the right half plane. For v_ > 0, the leading
edge of the weighted dispersion relation also moves further into the right half plane.

that the discriminant of (2.27) is zero. That is, we solve

o (2812 (1867 — 378+ 20)c!N | B(56° — 2867 + 508 — 26)cON?
Ty 2 -1y 1F 1)
BB =68+ G0
77w s Ty (2.29)

We look for roots of (2.29) that correspond to the two smallest spatial eigenvalues having
the same real part, i.e. the values A € o_; _ that solve (2.29). For given parameters, we find
a pair of complex conjugate solutions to (2.29) that are in the absolute spectrum; these
solutions are the branch points )\i that form the leading edge of o, .. Note that the other

three roots of (2.29) are part of the generalised absolute spectrum, see Remark 2.3.2.

Locating the branch points )\bir also allows us to compute the ideal weight v* ;| since v*
corresponds to the negative of the real part of the second order root u evaluated at the
branch point )\f;. That is,

v: = —min{R(u;(M\prr)), i =1,2,3}. (2.30)
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Figure 2.4.4: The subset of the absolute spectrum o, . (red) and the ideally weighted
dispersion relations of My +v* I (black) for § = ¢ = 2, where the ideal weight v* ~ —0.73.
The weighted dispersion relations form cusps whose tips coincide with the leading edge of
the absolute spectrum, i.e. the branch points )\lj; (see Remark 2.4.1). Since the absolute
spectrum, and thus the essential spectrum, enter into the right half plane, the travelling
wave solution is absolutely unstable for this parameter set.

We have outlined how to locate the full essential and absolute spectrum, as well as how
to compute the ideal weights, for a given parameter set. See, for example, Figures 2.4.5
and 2.4.6. For the parameter values used in Figure 2.4.5, the ideally weighted essential
spectrum and absolute spectrum contain values in the right half plane and the travelling
wave solution is thus absolutely unstable. In contrast, for the parameter values used
in Figure 2.4.6, there exists a range of weights such that the essential spectrum (in the
weighted space) is in the open left half plane and the travelling wave solution is potentially
only transiently unstable. Observe that MO+ requires positive weights v; to shift its
dispersion relations into the open left half plane, while M requires negative weights v_,

necessitating the two-sided weight (2.67).
Remark 2.4.1. We refer to the value A\ such that u(X) is a second order root of (2.27)

and A € o, aS a branch point because it is a branch point of the Evans function, an
analytic tool used to locate the point spectrum. In general, not all spatial eigenvalues with
algebraic multiplicity greater than one are contained in the absolute spectrum, they also
occur in the generalised absolute spectrum. It is also not always the case that the leading
edge of the absolute spectrum is a branch point, see for example [90]. However, for the

Keller-Segel model the leading edge of the sets ajtbs do coincide with branch points.
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Figure 2.4.5: The essential and absolute spectrum in the unweighted space (left panel)
and in the ideally weighted space (right panel) for 8 = ¢ =2, e = 0 and m = 0, where the
ideal weight is v* ~ —0.73 and v} = ¢/2 = 1. The dispersion relations of M +v,I (2.23)
are shown as black dashed lines, while those of M +v_I (2.28) are shown as black solid
lines, a;ﬁos is shown as red dashed lines and o, & as red solid lines. The shaded regions
are the interior of the (weighted) essential spectrum. Note the ideally weighted essential
spectrum still contains values in the right half plane and the travelling wave solutions are
thus absolutely unstable.

2.4.4 Proof of Theorem 2.3.83 fore =m =10

From Figures 2.4.5 and 2.4.6 it is clear that there is a transition from absolute spectrum
fully contained in the left half plane to absolute spectrum entering into the right half
plane. Consequently, there must be a critical set of parameters such that the branch
point Ay solving (2.29) is purely imaginary. Thus, we set Ay := i\, A € R, and equate

the real and imaginary parts of (2.29) to zero. This gives

B (58 — 2862 + 508 — 26) ¢*)\? . 528 )
(B—1)2(28 —1)? (B—12(28-1)2

A (/\4 _ B(188* =378 +20) '\ B (8% - 68 +2) Cs) L

A - 0, (2.31)

2.32
2317 2311 232
Since A = 0 is not a solution of (2.31), the transition occurs away from the real axis, i.e.

the branch points form a complex conjugate pair. Moreover, we can divide out A from
(2.32) and the roots of (2.32) are given by A = 4/A; » with

A (5 (1882 — 378 + 20) + \/Z)
12 = L , (2.33)
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Oess

Figure 2.4.6: The essential and absolute spectrum in the unweighted space (left panel)
and in the ideally weighted space (right panel) for 8 = 1.3 < Buit (2.17), ¢ =2, =0 and
m = 0, where the ideal weight is v* ~ —2.445 and v} = ¢/2 = 1. The dispersion relations
of My + v41 (2.23) are shown as black dashed lines, while those of My +v_1I (2.28) are
shown as black solid lines, a;rbs is shown as red dashed lines and o, & as red solid lines.
The shaded regions are the interior of the (weighted) essential spectrum. Note the ideally
weighted essential spectrum is fully contained in the left half plane.

where
A= B(3248° — 13248 + 20258° — 136052 + 3208 + 16) .

It follows from Sturm’s Theorem, see, for instance, Theorem 6.3d in [40], that A > 0 for

all 8> 1, i.e. Ay are real-valued for 5 > 1. Substituting these roots into (2.31) gives
_Be
8(8—1)*
+21048% — 7045 + 8 £ (628* — 1545° + 9082 + 353 — 32) x/Z) =0.

(1116ﬁ7 — 50505 + 842235 — 54408 — 4553°

Since 8 > 1 and ¢ > 0, this is equivalent to

(111687 — 50508° + 84223° — 54408* — 4554° + 21045% — 70483 + 8)

2.34
= + (628" + 1545% — 908% — 354 + 32) VA, (239
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which is independent of ¢, see Remark 2.4.3. Squaring (2.34) gives

16(8 — 1)%£(8) = 16(8 — 1)* (31080 — 32345 + 171123% — 4910137 + 761803°
—583983° + 100563* + 150408° — 9680532 + 17163 — 4)
=0,

where f(3) is the same polynomial as the polynomial (2.17) of Theorem 2.3.3. The
purely imaginary branch points indicating the transition to absolute instability are de-
termined by the root Seit. In particular, St ~ 1.6195 solves (2.31) and (2.32) with

AE = Fin/A 1 (Berit) ~ £1.0883 ¢2 1.

As there is only one root of (2.17) satisfying the condition 5 > 1, the absolute spectrum
is fully contained in the open left half plane for 1 < 8 < Beit, i.e. the transition into the
right half plane only happens for § = B.t. Since the absolute spectrum always contains
values in the right half plane for 5 > B¢, all travelling wave solutions with 8 > (. are

absolutely unstable. This concludes the proof of Theorem 2.3.3 for ¢ = m = 0.

Remark 2.4.2. It is possible for the absolute spectrum of an operator to be contained
in the open left half plane, yet the weighted essential spectrum contains values in the
right half plane for all weights. This is referred to as an essential instability, see [90] for
examples of essential instabilities. We now show that for a range of weights, the weighted
dispersion relations, and thus the weighted essential spectrum, do not cross into the right
half plane for 1 < B < Beit, i-e. travelling wave solutions in the Keller-Segel model do
not exhibit essential instabilities. The ideally weighted dispersion relations (2.24) and
absolute spectrum J;bs (2.26) associated with Mgr are contained in the open left half plane
for 1 < 8 < Beit. What remains to prove is that there exists a range of weights such that
the weighted dispersion relations of My (2.28) are fully contained in the open left half
plane for 1 < B < Bei-

The characteristic polynomial of My + v_1I (2.28) is quadratic in A € C. So, we can

explicitly solve for A1 o and extract the real parts of the solutions. It follows that

|k1|1i>noo §R()\1) = —C <6C_ﬁ 1 —+ V_> N |k1|1i>noo %()\2) = —OQ. (235)

That is, the dispersion relations of My + v_I approach vertical lines in the complex

plane. Requiring that R(\1) < 0 as |k| — oo gives a lower bound on admissible weights

v_ > _60_61 (note that it turns out that this lower bound is not sharp, see Figure 2.4.7).

Next, we compute the values A where the dispersion relations of M +v_1I (2.28) cross the
imaginary axis. Therefore, we assume that A is purely imaginary and solve (2.28). This
way, we eliminate the parameter k& and obtain a cubic polynomial equation in A := &(\)?
(with unknowns 3, ¢ and v_). Non-negative real roots of this polynomial in A correspond

to the intersections of the dispersion relations of M +v_1I with the imaginary axis. In the
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F1.7
TR Bcrit

F1.5

Figure 2.4.7: The area in between the curves vy, and vyax indicates the range of weights
v_ such that the absolute spectrum and weighted essential spectrum are contained in the
open left half plane for ¢ = 1, m =0, e = 0 (and v} = ¢/2 = 1/2). For = fui; the
values Vmin, Vmax and the ideal weight v* coincide and so the essential spectrum cannot
be weighted into the open left half plane for 8 > B.t. The dot-dashed curve represents

the asymptotic condition v_ > —% coming from (2.35).

unweighted case v_ = 0 it has one positive root and a root at the origin, see also the left
panels of Figure 2.4.5 and 2.4.6. For decreasing v_, these two roots approach each other
and collide at Viax = Vmax(B,¢) (while the third root stays negative). The polynomial
has no non-negative real roots if we further decrease v_. These weights correspond to
the case where the weighted dispersion relations do not intersect the imaginary axis and
are thus fully contained in the open left half plane. At vmin = Vmin(5,c¢) two positive
roots reappear (while the third root is still negative) and these positive roots persist
upon further decreasing v_. In other words, for weights v_ € (Vpin, Vmax) the dispersion
relations of M, + v_I (2.28) never intersect the imaginary axis and are fully contained
in the open left half plane. The values vpin and vpmax are given as the roots of an 11t
order polynomial in v_ and the range of admissible weights shrinks to a point as 8 1 Berit,
see Figure 2.4.7. In particular, one rediscovers f(f) (2.17) by equating the derivative of
this 11" order polynomial to zero. This is equivalent to finding 8 such that vy = Vimax-
Obtaining the range of admissible weights is straightforward for given values of 8 and ¢,
but complicated to determine for general 1 < 8 < By and c. See Figure 2.4.7 for a plot
of Vmax and vpin (and the ideal weight v* obtained from (2.30)) versus /3.

Remark 2.4.3. The results on the existence of a range of weights to move the essential
spectrum into the open left half plane and the (in)stability of the absolute spectrum are
independent of the wave speed c. This is not a coincidence as the dispersion relations can
be rescaled to be independent of c. In particular, the substitutions A = 2\, v = civ, k = ck

transform the dispersion relations of M(T + vyl (2.23) into

AN = (—f/+ + Z]%) , and A\ = (—122 — v (1 =0)+i(k - 2l~§ﬁ+) ,
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which is equivalent to the dispersion relations of MO+ + v I (2.23) for ¢ = 1. Similarly,
the dispersion relations of My + v_1 (2.28) become

y (x? . <<2 Bk =) 5)2) 5., Bk —7.)

g—1

— -1 + (ik — )3

(B+1)(ik—0_)% - )

which is equivalent to the dispersion relations of My + v_1I (2.28) for ¢ = 1. In other
words, the magnitude of ¢ does not affect the (in)stability results and only affects the
multiplicative scaling of the spectrum. As a consequence, all the figures presented in this

chapter are generic in c up to the above scaling of A\,v and k.

2.5 Sublinear and linear consumption and zero diffusivity of the

chemoattractant

In this section, we examine the effect of the parameter m on the location of the weighted
essential spectrum and absolute spectrum associated with a travelling wave solution.
Since travelling wave solutions only exist for 0 < m < 1, e.g. [103], we take 0 < m < 1.
We prove Theorem 2.3.3 for 0 < m < 1 and € = 0. It turns out that the analysis for
0 < m < 1 is similar, at least qualitatively, to the analysis of the previous section for
m = 0. The analysis simplifies significantly for m = 1 and we note that the results of
this case can be in part deduced from [77] where a version of the Keller-Segel model with

nonzero growth rate is studied.

In particular, we show that for sublinear consumption, i.e. 0 < m < 1, there exists a
critical value B, = Berit(1 —m) (with B¢ the root of (2.17)) such that for 1 —m < 8 <

B, the absolute spectrum is fully contained in the open left half plane. The absolute

m
Cr1

spectrum enters the right half plane for 5 > . and all travelling wave solutions are

thus absolutely unstable for g > gI,. For linear consumption, i.e. m = 1, we show that
the absolute spectrum always contains the origin. Consequently, the essential spectrum

cannot be weighted into the open left half plane.

2.5.1 Set-up

For 0 < m <1 and ¢ = 0, the eigenvalue problem is given by (2.11), which we restate for

o0 m—1 _,m
m(Py=a(P),  gp= T2 T ! (2.36)
q q L1 Lo

convenience
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with

u? u? ud u? w ) 0z w 922
ug Uyy Bu,\ 0 0?2
522'—5(u2‘ u)+<0‘ " >a+a2

where v and w are the travelling wave solutions given in (2.7). Observe that the first row

Lor = 8 (wzuz N Wuzy 2wy§> L5 <2wuz B wz> 2 _ Pw 02
(2.37)

of L simplifies significantly in the cases m = 0 and m = 1. We take a slightly different
approach as in §2.4 and first write (2.36) as a third order equation in p, see Remark 2.5.1.
From the first row of (2.36) we have

q=cu"p, — (mwu=t + A u"")p, (2.38)

and we differentiate this to obtain

q. =cu "'p,. + ((Cuim)z - (mwuil + )‘uim))pz
—1 —-m
— (mwu™" + Au D,
( ! )f L (2.39)
Qzz = cCU” "Pazz + (2(CU m)z - (mwu + Au m)) Dzz

+ ((cmu_m)zz — 2(mwu_1 + )\u_m)z) p. — (mwu™ + Au™™)..p.

We substitute (2.38) and (2.39) into the second row of (2.36), that is into L,p+L,q = Aqg,
and we eliminate w using w = cu,u™™ ((2.6) with ¢ = 0). The resulting third order

operator is

DPzzz — Cmpzz - Bmpz - -Amp =0 (240)
where
Am = (A(m+1)(B+m) — ’m) U +2(m+1)(8 + m)“é —oam
"o cu? u3 U
Usy A2

Uz Uzz
— (28 +3m) 5 A(B+m) o 2.41)

2
Buu = (2%m — N8 +2m)) 7 = 3(m + 1)(8 +m) 5 + (26 + 3m) == +2),

G = 2 — o+ (28 +3m)".
C u
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Next, we define p; := p, and ps := p,, to obtain the operator 7T, ()

!/

p p p
TN | o1 | = |p1| —Mun(2,A) | p1 | =0,
p2 b2 D2
(2.42)
0 1 0
Mu(z,A) =1 0 0 1
An Bn Cn

While we have used a slightly different approach compared to §2.4, the spectrum of 7p(\)
in (2.20) and the spectrum of 7,,(\) (2.42) agree in the limit m — 0.

Remark 2.5.1. The substitutions (2.38) and (2.39) are necessary due to the appearance
of the term w/u appearing in L, (2.37). While the term w/u is bounded for m = 0,
the term is unbounded as z — —oo for 0 < m < 1. However, by making the substi-
tutions (2.38) and (2.39) in (2.36), we obtain (2.40), which is asymptotically constant
and equivalent to L (2.36). The equivalence of (2.40) and L (2.36) becomes clearer when
we see that (2.40) is actually the linearised eigenvalue problem obtained from eliminating
w(z,t) = u""(z,t) (cuy(z,t) —w(z,t)) from (2.5) first.

2.5.2 FEssential spectrum

We use the limits given in (2.8) (with € = 0) and the fact that u,, = (wu™),/c (2.6), to
obtain

A TE o1 Ty T am o ket = (L00)

Using these limits, the asymptotic values of A, By, and C,, as z — 00, denoted A, BE

and CE respectively, are

A= -2 Bl =2\ Cf= %—c, (2.43)

and

)\72 em(B+m —2) Am(B+m)

An = T w0 T Eam— e

~_ (-2 ¢ (B+m(B+m+2)
Bm_ﬁ+m—1A_ B+m-12 (244)
C,:i+c(ﬁ+2m+1)‘

moe B+m—1
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Figure 2.5.1: The essential and absolute spectrum for m = 0.1 (upper panels) and m = 0.7
(lower panels) with 8 = ¢ =2 and € = 0. The dispersion relations of M} + v I (dashed
black) and ol (dashed red) are the same in all four panels and the ideal weight for
z — 00 is still given by v} = ¢/2 = 1. The dispersion relations of M, +v_1I are shown as
solid black lines and cr;z’sf as solid red. Upper left panel: the spectrum in the unweighted
space for m = 0.1. Upper right panel: the ideally weighted space for m = 0.1, where
the ideal weight is v* =~ —0.778. Lower left panel: the spectrum in the unweighted
space for m = 0.7. Lower right panel: the ideally weighted space for m = 0.7, where
v* =~ —0.959. As m increases to one, the real and imaginary components of the branch
points )\i decrease and approach the origin, see §2.5.5.

We define the asymptotic matrices

0o 1 0
MZE(N) = lim Mpn(z\)=|0 0 1], (2.45)
Ay By Co

related to the asymptotic operator associated with 7, (2.42). The dispersion relations
of M} are independent of m and 3, and the same as for m = 0 (2.21). The dispersion
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relations of M, depend on m and are implicitly given by

9 9 CQm(B+m—2)_ick(B—2) Ak2(B+2m +1)

)\+<k+ (B+m—1)2 B%—m—l)AjL B+m—1 (2.46)
AmB+m) ik (B+m(m+ B +2)) kB — 0 '

_(5+m—1)3+ Brm—1)2 —ck” = 0.

In the limit m — 0, (2.46) coincides with the dispersion relations of M (2.22). The
dispersion relations M} (2.21) and M,, (2.46) form the boundaries of the essential spec-
trum and A € C such that i.e. iy # i_ (see Definition 2.3.2) forms the interior of the
(unweighted) essential spectrum. See the two left panels of Figure 2.5.1 for the unweighted

essential spectrum for two different values of m.

2.5.8 The weighted essential spectrum and the absolute spectrum

As for m = 0, we consider a two-sided weight of the form (2.67). Since the dispersion
relations of M,! and MO+ are the same, the ideal weight for z — oo are unchanged for
™ — g% (2.26). See also Figure 2.4.2.

abs — “abs

0 <m < 1. That is, v} = ¢/2. Consequently, o

The dispersion relations of M, + v_I are implicitly given by

, AEm(B+m—2)  c(ik—v_)(B—2)
)\2+)\<(zk‘y)2+ B+m—-12  B+m-—1 )
Ak —v_)2(B+2m+1)  ctm(B+m)
- B+m—1 C(B+m—1)3 (247)

A(ik —v_)(B+m(B +m+2))
(B+m—1)?

- +c(ik —v_)} =0,

The shift in the essential spectrum due to weighting in the 0 < m < 1 case is qualitatively
similar to the behaviour shown in Figure 2.4.3. That is, under a large range of weights
the dispersion relations have self-intersections and these self-intersections form part of
the absolute spectrum JZ{)’S_. Thus, we can once again use a find root procedure on the
weighted dispersion relations (2.47) to locate o). See Figure 2.5.1 for the unweighted
essential spectrum, the ideally weighted essential spectrum, and the absolute spectrum

for two different values of m.

2.5.4 Proof of Theorem 2.3.8 for0 <m <1 ande =0

For 0 < m < 1 and € = 0, a polynomial f,,(8), similar to the polynomial f(5) (2.17) for

m = 0, can be derived. Its root 0%, = Berit(l —m) > 1 — m predicts the transition of

m
crit?

the absolute spectrum into the right half plane (for increasing ). For 1 —m < <
the absolute spectrum is fully contained in the open left half plane. For 3 > g7}, the
absolute spectrum enters the right half plane and the travelling wave solutions are thus

absolutely unstable.
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To determine the transition of the absolute spectrum into the right half plane we follow
the same procedure as in §2.4.4 and we treat the characteristic polynomial of M, as a

cubic polynomial in p and equate the discriminant to zero. This gives

A2B+m—1)%2 , Bt (18824 378(m — 1) + 20(m — 1)?)

PRE A3
4B+ m —1)2 2(6+m—1)3
B (5% + 288%(m — 1) + 508(m — 1)% 4 26(m — 1)3)
+ 4(B+m—1)4 X (2.48)
B (m —1) (B> +6B8(m — 1) + 2(m — 1)?) \ B2 0(m —1)% 0
2(8 +m — 1)1 AB+m -1t

This discriminant has a purely imaginary root under the condition

0— BQCQO(m_ 1)
C64(B+m—1)

5 /m(6) (2.49)

where
fm(B) == (31080 + 323458%(m — 1) + 171128%(m — 1)® + 491018" (m — 1)?
+ 761808%(m — 1)* + 5839835 (m — 1)® 4 100563* (m — 1)° (2.50)
—150408%(m — 1) — 96805%(m — 1)® — 17168(m — 1) — 4(m — 1)) .

For m = 1, (2.49) is trivially satisfied. Therefore, we treat the m = 1 case separately,
see §2.5.5. Upon introducing the variable B = ﬁ (and setting 0 < m < 1), (2.49)

becomes,
—B2620
0= G- (310B" — 3234B° + 17112B° — 49101B" 4 76180 B°
—58398B° + 10056 8" + 15040B° — 968087 + 17168 — 4) (2.51)
_B2CQO

= i1l )

where f is given by (2.17). The roots of f,, and f are related by B, = Berit(1 — m),
and (%, is the only root of (2.49) that satisfies the condition 5+ m > 1. In conclusion,
we have that the absolute spectrum is fully contained in the open left half plane for
0<m<1l,e=0and 1-m < < 3%, while the absolute spectrum enters into the right
half plane for 0 < m < 1, =0 and 8 > 7, . This concludes the proof of Theorem 2.3.3

crit*
for 0 <m<1ande=0.

Remark 2.5.2. Similar to the m = 0 case, there also exist a range of weights v\ <

v <yl for0<m <1 ande =0, such that the weighted essential spectrum is contained

max
in the open left half plane for 1 —m < 8 < Bl%.. In other words, there are no essential

instabilities in this case. See also Remark 2.4.2.



55 Chapter 2

2.5.5 Linear consumption

In the case of linear consumption, i.e. m = 1, the travelling wave solutions (u,w) (2.7)
are a pair of wavefronts, rather than a pulse and a wavefront, see, for example, the right
panel of Figure 2.3.1. In this case, the absolute spectrum and the ideally weighted essential
spectrum contain the origin for all § and as a result the essential spectrum cannot be

weighted into the open left half plane.

The dispersion relations of Mfr are independent of m and 3, see §2.5.2, and therefore

;{;SL = a;}js (2.26) is fully contained in the open left half plane. Consequently, we only
need to examine 0;};. The characteristic polynomial of M, is

g

+

2 _ CQ
Ma_uz<ﬁ(ﬂ+3)c A>+H<<2—5>A B(82+ (5~ 1) +48) )
(2.52)

Bz ¢ 5 g
B+1)cd  (B—1)ex N
NGRSV N

To locate O';I’D;, we follow the same process as for 0 < m < 1. In particular, we locate
A€ U;fog such that the characteristic polynomial (2.52) has a second order root in u.
That is, we locate the branch points )\bir. We equate the discriminant of (2.52) to zero to

obtain
A (4N 4+ 42 N% + 36¢* A + 5°) =0, (2.53)

which has a second order root A = 0. For A =0, (2.52) becomes

G —cl@+ D)= =0 = = CEUE L (2.54)

Since R(p1) > R(p2) = R(ps), 0 € U;{D; and the ideal weight is v* = —R(u23) = —5
(2.30). Furthermore, the ideally weighted essential spectrum and the absolute spectrum
contain the origin for all 5. That is, there are no parameter values such that the essential
spectrum can be weighted fully into the open left half plane, see, for example, Figure 2.5.2.
Note that the other three roots of (2.53) are part of the generalised absolute spectrum.

This concludes the proof of Theorem 2.3.3 for m = 1 and ¢ = 0.
Remark 2.5.3. For 0 < m < 1l,e = 0 and 8 > B, the absolute spectrum contains

crit’
values in the right half plane. However, for a large chemotactic parameter, i.e. 8> 1, the
end points of the absolute spectrum )\l:)tT approach zero, see Figure 2.5.3. Actually, in the
limit B — oo, the discriminant of the characteristic polynomial of M, (2.48) reduces to
the discriminant of the characteristic polynomial of M| (2.53). That is, the branch points
)\bir of the absolute spectrum approach the origin from the right. Furthermore, the ideally

weighted essential spectrum for 0 < m < 1,e = 0 and B large is qualitatively similar to
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15

Figure 2.5.2: The essential and absolute spectrum in the unweighted space (left panel)
and in the ideally weighted space (right panel) for 8 = ¢ = 2, ¢ = 0 and m = 1, where
the ideal weight is v* = —¢/f = —1 and v} = ¢/2 = 1. The dispersion relations of
M;" + vy I (2.23) are shown as black dashed lines, while those of M; + v_1I (2.47) are
shown as black solid lines, a;{;sr is shown as red dashed lines and ai{og as red solid lines.
The shaded regions are the interior of the (weighted) essential spectrum. The absolute
spectrum contains the origin (for all parameter values 8 and ¢) and the essential spectrum
thus cannot be weighted into the open left half plane.

the ideally weighted essential spectrum shown in the right panel of Figure 2.5.2 form =1

and € = 0.

2.6 Small diffusion

In this section, we finish the proof of Theorem 2.3.3 and show that the results obtained
for € = 0 persist to leading order when we allow for small diffusion of the attractant u
in (2.4) (i.e. for 0 < ¢ < 1). In particular, we show that for |A\| = O(1) the weighted
essential spectrum and absolute spectrum correspond, in leading order, to the spectra in
the ¢ = 0 case. For |A| large, the spectra differ significantly, however, the differences do

not alter the explicit stability results since they occur in the open left half plane.

2.6.1 Set-up

We treat the various consumption rates 0 < m < 1 simultaneously. First, we eliminate

the perturbation ¢, and its derivatives, from (2.9). From the first row of (2.9) we have

q=eu ™p,, +cu™p, — (mwut + Mum™)p. (2.55)
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Figure 2.5.3: Plot of the real component of the branch points versus the magnitude of
the imaginary component of the branch points parametrised by 8 > 1 for m = 0, = 0
and ¢ = 1 (dashed line) and ¢ = 2 (solid line). For both curves the intersections with the
imaginary axis away from the origin correspond to 8 = fSuit and limg_, [Apr| = 0. Note
that the figure is qualitatively similar for 0 < m < 1.

Differentiating (2.55) gives

¢ = eu” ") + ((eu™): + cu™™) pe.
+ ((cu™), — (mwu™ + Xu"™))p.q + (mwu! 4+ Mu™™).p,
Qe = cu”"pW + (2(eu™™): + cu™) p® (2.56)
+ ((eu*m)zz +2(cu™™), — (mwu~! + )\u*m)) s
+ ((cmu_m)zz —2(mwu~t + )\u_m)z) D, + (mwu_l + Au"™).p.

We substitute (2.55) and (2.56) into the second row of (2.9) £,p+L,q = Ag. The resulting
singular fourth ODE is

EPzzzz — Dm,spzzz - Cm,spzz - Bm,spz - Am,sp = O (257)
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where

2
o 9 us U Uyl 9
Ame =8+ m) (¢ + X+ Im) i 2c)\m—u —c(B+m) 2 A

3
“MBAm)TE (B 2)(B+m) 5

2 2
* 8(46 ) (B 2B m) (B m) Am“;z),

2
Bune i=26A — (B¢ + MB+2m)) == + (8 — m = 3)(8 -+ m) == + c(8 +m) =

e (B2 +m) =5 — e+ m) =),

2
Cone 1= — 2+ c(2(8 +m) —l—m)% +)\+5()\— (m + 1)(ﬁ+m)% —i—cm%
+2(6+m)“‘”>,
u
D :

—c+6((6+2m)%—c>,

with (u,w) the travelling wave solutions given, to leading order, by (2.7). We set py := p.,
D2 := P2, and p3 := p,,, and define the operator 7: by

/

D b p
ToeO) | P = [P = M) [P ] =0,
b2 b2 D2
D3 ps3 D3
where

0 1 0 0

0 0 1 0

Moy e(z,N) = . 2.58

Ame/e Bme/e Cme/e Dme/e

All terms in 7y, - can be expressed in terms of either u, /u or w/u, since u,, = (cu, — w) /e

and w, = —cw + (%) (2.6). Using (2.8), the limits of Ay, o, B, Cme and Dy, . as
z — Fo00 are
.Aj;m = —\2, B . = 2c),

Coe = —Z 4+ A1 +e), D} .= —c(l+e),

58
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and
_ Im(B+m) 2 AAm(B +m —2) B < Ae2m B Am(B +m) )
" (Btm— 1) (B+m—1)? (B+m—1)2  (B+m—1)!
AB=2) _SBrmBm+2)  Hm+ (5 +m)
" (Bm =) (B+m—1)7 (B+m—1)%
_ (B +2m+1) Bc?
fme = ( B+m—1 “) +6((ﬁ+m—1)2 “) ’
— c(m+1)
Dm8 = —c+ 5m .
(2.59)
We define the asymptotic matrices Mﬁg()\) = Zgrinoo M (z,\). That is,
0 1 0 0
Lo | oo 0 1 0
Mg .(\) = 0 0 0 . . (2.60)

Anele Brele Crele Dicle

2.6.2 Proof of Theorem 2.3.83 for 0 < m <1 and 0 <e K1

The matrices Mnjiyg have four spatial eigenvalues, while M have only three. We show
that the fourth spatial eigenvalue is far into the left half plane for both asymptotic matrices
Mffl,g (and for |A| = O(1)), while the other three spatial eigenvalues are, to leading order,

given by the spatial eigenvalues of M.

The characteristic polynomial of M} _ is
e (uh + cp® — A?) + (P + epp — A)(ep — A) = 0, (2.61)

which is regular in A, but singularly perturbed in p. In the limit € — 0, we recover the

characteristic polynomial of M,!. The dispersion relations of M} . + v I are
AN=—k2—v(c—vy)+ilck—2kvy), X=—ek?—vi(c—vye)+i(ck—2ekry). (2.62)

For vy € (0,¢), (2.62) is fully contained in the open left half plane and the ideal weight
is still v = ¢/2. Observe that, unlike the & = 0 case, both dispersion relations of
MM 4 v I are parabolas in k and consequently they no longer approach a vertical line

in the limit |k| — oo.
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Figure 2.6.1: The essential and absolute spectrum in the unweighted space (left panel)
and in the ideally weighted space (right panel) for 8 = 1.3 < Berit (2.17), ¢ = 2, € = 0.02
and m = 0, where the ideal weight is v* ~ —2.447 and v} = ¢/2 = 1. The dispersion
relations of Mﬁe +v41 (2.62) are shown as black dashed lines, while those of M, . +v_1
are shown as black solid lines, a:bs is shown as red dashed lines and o, _ as red solid lines.
The shaded regions are the interior of the (weighted) essential spectrum. Observe that the
(weighted) essential spectra and absolute spectra agree, to leading order, for |A| = O(1),
but not for || large, to the spectra for the same parameter set but with e = 0, see Figure
2.4.6. Also note that the ideal weights are similar.

The spatial eigenvalues of (2.61) are

L e+ VA +H4ed X A% 9

p = 5 =——— +0(),
€ c c

n —c+ 2+ 4\

Ko 3 = 9 )

—c— V2 +4e A A%

pi= = s = T 1 0@),

2e e c c

where the asymptotic expansions only hold for |A\| = O(1). The spatial eigenvalues '“IL,273
are, to leading order, the same as those in the ¢ = 0 case (2.25). The singular spatial

eigenvalue juf approaches —oo as e — 0 (for [A| = O(1)).
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The characteristic polynomial of M,, . is

: <c2(6+2m+1) )\) Jr,u(03(64—171(6—|—m—i—2))—(6—2)0)\(ﬂ—i-m—1))
B+m—1 (B+m—1)?
Axm(B+m—2)  Am(B+m) Au(m+1)(B+m)
(B+m—1)2 _(6+m—1)3+w3+)\2+8< (B+m—1)3

b2 <_(,Bc2)2_/\> N Am ()\(B-f—m—l)Q—cQ(ﬁ—f—m))

+m—1 (B+m—1)4
cpblm+1)
T Brm-1 )

(2.63)

which is still regular in A, but singularly perturbed in g. In the limit € — 0, we recover

the characteristic polynomial of M,

5 o (F(B+2m+1) AB+mr+2) (B-2)e)
* ”( Grm—1 H)”( (B+m—1) (6+m—1)>
Am(B+m)  AEdm(B+m —2)

2 _
T Grm— 3T Brmong A0

and three of the spatial eigenvalues of M, . are, to leading order, thus given by the
spatial eigenvalues of M, for |A| = O(1). We use the expansion p = n_1/e + ng + O(e)
to determine the leading order contribution of the singular spatial eigenvalue of My, ..
Substituting this expansion into (2.63) gives, to leading order, n®,(n_1 + ¢) = 0. The
singular spatial eigenvalue of M, _ is uy = —c/e + O(1) (for [A\| = O(1)). In particular,
both singular spatial eigenvalues are to leading order the same and approach —oo as
e — 0.

For |[A\| = O(1), the (weighted) dispersion relations of M,%’E are O(e) perturbations of
those from M2, since 'uli,Q,S are, to leading order, the same as those in the € = 0 case.
Furthermore, the singular spatial eigenvalues ujf have asymptotically large negative real
parts (for |[A\| = O(1)) and thus do not affect the dispersion relations or Morse indices.
Moreover, the characteristic polynomials of Mﬁg are regularly perturbed in A. Conse-
quently, the Morse indices 74+ and the interior of the essential spectrum are unaffected by
the singular spatial eigenvalues uff. Similarly, since ,uff also does not affect the ranking
of /‘f2,3’ the absolute spectrum is, to leading order, the same as for the ¢ = 0 case. In
particular, the branch points )\1:5 are, to leading order, the same as those for the ¢ = 0
case and there is some parameter 37} (¢), given to leading order by B[, such that the
branch points, and therefore the absolute spectrum, are contained in the open left half
plane for 1 —m < g < B2, (¢).

crit

The above asymptotic analysis is only valid for |A] = O(1), since the singular spatial

eigenvalues pF become O(1) for |A| large. However, we show, using asymptotic analysis
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that, to leading order, there are no additional intersections between the dispersion rela-

tions of Mﬁs + v4 I and the imaginary axis for |A| large as long as v_ > —%. This

condition arises from the asymptotic limits of the weighted dispersion relations M, +v_1I

(see (2.35) for the analogous condition for m = 0).

c(B+m)
B+m—1

tions between the dispersion relations of M, +v_1I and the imaginary axis.

and |\| = ©(e7¢) with! ¢ > 0. There are no intersec-
2

Lemma 2.6.1. Let v_ > —

Proof. We show that there are no intersections between M, + v_I and the imaginary
axis by considering all possible rescalings of A and k larger than ©(1). That is, we take
the dispersion relations of M, + v_I and set A = e~¢X and k = e~k where |\| = O(1),
k= O(1), k # 0 and ¢,0 > 0. This results in the rescaled weighted dispersion relations,

c(—v+ike ) (P (B+m>+ (B+2)m) — (B—2)Ae *(B+m —1))

(B+m—1)2

(—v+ ik&?*a)z (PB+2m+1)+ A S(B+m—1))
a B+m—1

—cm(B+m)+Aadme ¢ (B2 =38+m? + (28— 3)m +2) + X2e X (B+m —1)3
+

(B+m—1)°
- <c3(m +1)(B+m) (—v +ike™?) (v ik5_9)2 (B +Ae™¢(B+m —1)?)
(B+m—1)3 (B+m—1)2
AExmeC(B+m—12=c*m(B+m) c(m+1) vt ike )’ N4
: (6+mz1)4 : - BJEm—l ) +<_V+Zk€ 9))

+c (—V + iks_9)3 =0
(2.64)

We now consider the leading order terms of the rescaled weighted dispersion relations.
To determine viable values of ( and 6 we use the method of dominant balance, see for
example [6]. We find that there are three different cases, (i) 0 < § < 1, (ii) = 1 and (iii)
f > 1, that lead to three different dominant balances. Depending on the values of {, 8 the
leading order term is O(e'=%%), O(¢73%), and/or O(¢7¢~2?). We consider the dominant
balance between the leading order terms in each of the three cases and show that for
these balances that the leading order terms of the rescaled weighted dispersion relations

are never purely imaginary.

(i) For 0 < 6 < 1 the leading order terms of (2.64) are O(e~3%) and O(¢~<~%) with
the dominant balance —360 = —( — 26. This balance implies ( = 6 and that this
dominant balance is valid for 0 < ¢,0 < 1. The leading order term of (2.64) gives A

as purely imaginary and thus to find the leading order term of the real component

!The expression [A| = ©(e7¢) is also often written as [A| = O4(¢7%) and denotes ‘strict order’, i.e.
A = O(™°) and ¢ = O(|A]).
2The technical details of the proof of this lemma were omitted from [10].
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of A we must consider the next order term. This in turn leads us to three subcases,
0<0<3,0=31<6<1.

When 0 < 6 < 1/2 (and ¢ = 6), the next order term is O(¢~2%). The weighted
dispersion relations (2.64), with 6 = ¢, to O(¢~2%), are then

~2 ~ ~
I k) 4 e AkT(B+2m+1) + ck(Bkv(B+m — 1)
B+m—1

i(8 = 2)A) + A8+ m — 1) (X + 2ikv) Logy
— Brm—1 )—I—O(e 20y =0,

which, after solving explicitly for A gives, to 0%,

ik(c(m+1)+2v(f+m —1))

A= —k2 -0 6
€ Brm_1 +O(e”),
-1
)\:ZC]C— C(C(B_'_m)_'_y(ﬁ—i_m ))€6+O(520),
B+m—1
which, have negative real part, to leading order, when v_ > —%.

When 6 = ¢ = 3, the leading order terms O(¢~%’) and O(~¢~??) are of O(e3/2) and
the next order terms are those of order O(e'=49), O(¢=2%), O(¢=¢=2%) and O(¢=%¢),
which are all of O(¢~1). The dispersion relations (2.64) to O(c~!) are

ey

IOR i) 4 (CRABA2m A ) — ick(B — 2)A
B+m—1

+3ck?v + Qij\kv) e+ 0 =0

which, after solving explicitly for A gives, to 0%,

N 2 ik(ctm + 1)+ 2v(B+m —1)) n (9(5%),
B+m—1
~ 2 ~
A\ =ick — /¢ <m + (cu+ k2)> +O(e)
which, have negative real part, to leading order, when v_ > —%.

When % < 6 < 1, the next order terms are those of O(e'~%?), however, to this order
the dispersion relations (2.64) gives 6_39(5\];‘2 - icl?:g) +e!=1E* = 0 which implies
the second dispersion relation is k = 0. Thus, we take (2.64) to O(s~%9),

02152(5 +2m+1) — (B8 — 2)ckA
B+m—1

5_39(5\1232 - icl%g) 0ty 20 <

+3ck’y + 2k + 5\2) +0@E) =0,
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which, after solving explicitly for A gives, to O(e'9),

ik(c(m+1)+2v(B+m—1))
B+m—1
A= ick — k&% + 019,

A= ket - + O,

_c(B+m)
B+m—1"

(ii) For # = 1 the leading order terms are of O(£'~%%) and O(¢~3%) with the dominant
balance 1 — 46 = —36. This dominant balance holds for { < 1. However, if { < 1
the leading order term of (2.64) is ok’ = 0 implying k& = 0 to leading order,
independent of A. Therefore, if § = 1 we must also have ¢ = 1. For § = ¢ = 1, the
leading order term of (2.64) is —ick” + £ + M’ = 0 which implies \ = —k? + ick
which is always in the left half plane, independent of the weight.

(iii) For 6 > 1 the leading order terms are of O(¢!'=%%) and O(¢~¢~%) with the dominant
balance —(—26. This implies { = 260 —1 and the dominant balance holds for (, 0 > 1.
The leading order term of (2.64) is then i (12:2 + 5\) =0and A = —12'2, to leading

order, and is thus contained in the open left half plane independent of v_.

which, have negative real part, to leading order, when v_ >

O]

As the dispersion relations do not intersect the imaginary axis for large |\|, the essential
spectrum, and therefore the absolute spectrum, does not enter into the right half plane,
except in the region |[A\| = O(1). See Figure 2.6.1 for an example of the spectral picture
in the case € # 0. This concludes the complete proof of Theorem 2.3.3.

2.7 Point Spectrum

In this section we prove that the origin persists as an element of the point spectrum with
algebraic multiplicity two for travelling wave solutions to (2.2) with 0 < m < 1 and 0 <
e < 1. This is done by explicitly solving the associated (generalised) eigenvalue problem
and analysing the asymptotic behaviour of the (generalised) eigenfunctions. In §2.7.1, we
study the eigenvalue problem by first computing the eigenfunction of the origin associated
with the translation invariance of (2.2). Next, we compute a generalised eigenfunction,
which is due to the existence of a family of travelling wave solutions under varying the
wave speed c. By analysing the asymptotic behaviour of the (generalised) eigenfunctions
we prove that they are contained in the range of exponentially weighted function spaces for
which the essential spectrum is stable. This concludes the spectral stability of travelling
wave solutions to (2.2) in these weighted function spaces. In §2.7.4 we extend the analysis
to the m = 1 case. In this case, we cannot conclude spectral stability as there is no spectral
gap in any exponentially weighted function space. However, nonlinear (in)stability results

have been obtained in certain cases for Keller-Segel models with linear consumption rate
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[70,71,77]. We include the m = 1 case for completeness and to highlight how and why
the spectral gap vanishes in the m — 1 limit. We begin this section with a brief summary

of the relevant results regarding the essential and absolute spectrum.

Throughout this section we refer to the travelling wave solutions (u(z),w(z)) to (2.6) as

m

m wl™) with subscripts and superscripts explicitly denoting the dependence on € and

(ug", w;

m respectively. Furthermore, observe that the relationship between w(j* and u(" shown in
(2.7) also holds for & # 0. That is, w(z) = e~ (u”(2))" [28].

We again consider the linear operator £™ : H!(R) x H(R) — H(R) x H*(R) and the

associated eigenvalue problem (2.11), restated here for convenience

L L
cm p -\ p 7 Lm .= 11 12 )
q q Lo L.

The entries of L" are

2

— -1
L1 := E@ + ca — mwu™ ",
Lyg = —u™,
Wy Wy, — 2wu? 2wu, wy\ O Bw 02
Lo = — z A R e
2 5( 2 @ u? >+/8< u? u)@z u 922’

u? g, Bu,\ 0 9?2
£22'/8<u2_ u>+<0_ u)@z—i_azg’

where we have dropped the e subscripts and m superscripts from (u”*, wl") for convenience.

The spectrum of an operator consists of values of A € C such that the inverse of the

eigenvalue operator £ — Al does not exist or is unbounded. Recall Definition 2.7.1,

Definition 2.7.1. (/54] Definition 2.2.3) For a closed linear operator L : D(L) C X — X,
where X is a Banach space and D(L) is dense in X, the spectrum is decomposed into two

sets:

(a) The essential spectrum oess of the operator L is the set of all X € C such that
e L — M\ is not Fredholm or,
e L — M\ is Fredholm with a non zero Fredholm index,
where the Fredholm index of L is

ind(L) = dim(ker(L)) — codim(range(L)).

(b) The point spectrum of the operator L is the set of all A\ € C such that the operator

L — M is Fredholm with index zero, but the operator is not invertible. That is,

opt = {A € C:ind(L — XI) =0, but (L — AI)~" does not exist} .
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As in [54], we use the term eigenvalue to refer to all values X in the spectrum of the opera-
tor whereas point spectrum refers to isolated eigenvalues of finite multiplicity. Eigenvalues
which have eigenfunctions that decay to zero as z — +o0o may be embedded in the essen-

tial spectrum and are thus not considered point spectra.

Throughout this section we will also consider the fourth order ODE associated with the

eigenvalue problem, (2.57),

EPzzzz — Dm,spzzz - Cm,spzz - Bm,z—:pz - Am,ep = 0

The essential spectrum of the operator £ in (2.36) depends on the asymptotic behaviour
of the operator. In particular, it depends on the magnitude and signs of the spatial
eigenvalues of the asymptotic states as z — +oo. These spatial eigenvalues are found as

the roots of the following equations

5(#—’—)4 - ,D;;,a(:u—’—)g - C;’r—L,a(:qu)Q - B’:—’L,S(M-i_) - 'Ajr_z,a =0,

. B .3 B o _ 3 - (2.65)
E(N ) _,Dm,a(:u ) _Cm,a(,“ ) _Bm,e(u )_Am,a:0>

where .A;—Lm, Bi’e, Cfri,s and Di?e respectively denote the limits of Ay, ¢, By e, Cm,e and
Dpe as z — £oo. Observe that the expressions (2.65) are exactly the characteristic
equations of (2.57) in the limit z — +oo. The essential spectrum consists of values A € C
such that any of the spatial eigenvalues u* are purely imaginary or the number of unstable

spatial eigenvalues at +oo differ. This is equivalent to Definition 2.7.1 [54].

All travelling wave solutions to (2.5) have essential spectra in the right half plane for
perturbations in H!(R) [10,80]. Thus, we follow the usual procedure outlined in [54] and
introduce the weighted function space H!(R) defined by the norm

Pl = lle”*pllm = 1Pl (2.66)

where p := e?*p. So, p € H. if and only if p € H!. We define L2 similarly. It was shown

in previous sections that a two-sided weight is required for the current problem. That is,

v_ if z <0,
v= (2.67)
vy if 2>0,

which forces the perturbation to decay exponentially in both directions. Using a weighted
function space has the effect of shifting the essential spectrum. In particular, in the
weighted function space we consider the spatial eigenvalues are u™ + vy and u= +v_ as
z — too respectively. In other words, the weighted essential spectrum consists of values
X € C such that any of the spatial eigenvalues u* +v4 are purely imaginary or the number

of weighted unstable spatial eigenvalues at oo differ.
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L—m << () B> Bin(e)
() () () ()
R(A) R(A) R(A) R(A)
Unweighted Weighted Unweighted Weighted

Figure 2.7.1: A schematic of the typical weighted and unweighted essential spectra (blue
regions) associated with travelling wave solutions (u]*, wl") of (2.2). The red curves indi-
cate the subset of the absolute spectrum that determines how far the essential spectrum
can be shifted by weighting the function space. For 1 —m < 8 < 8%, (¢) the absolute
spectrum is contained in the left half plant and a two-sided weight exists such that the
weighted essential spectrum is contained in the open left half plane.

Recall the result from Theorem 2.3.3; all travelling wave solutions (ul'(z),w ' (z)) are

absolutely unstable for 5 > B, (¢), precluding the possibility of spectral stability. Thus,
we focus on the parameter regime that is potentially transiently unstable, i.e. 1—m < 8 <
B () in the remainder of this chapter. To be able to conclude transient instability, i.e.
spectral stability in an exponentially weighted function space [88], we must show that for
the weights that shift the essential spectrum into the left half plane, there are no values
A in the point spectrum with R(A) > 0 other than for A = 0. The location of the point
spectrum does not change upon moving to a weighted space [54], however, it is necessary
to show that the eigenfunctions associated with the point spectrum are contained in these

weighted function spaces. See Figure 2.7.1.

2.7.1 Locating the point spectrum

Locating the point spectrum amounts to finding nontrivial solutions (p, q)T to (2.36)
that decay to zero as z — +oo for some A € C\oegs. While A = 0 is in the essential
spectrum in the unweighted space for all m it is not in the weighted function space for
a range of weights when 0 < m < 1 [10,35], see also Figure 2.7.1. It was shown in [35]
that A = 0 is a root of order two of the Evans function for travelling solutions to (2.2)
with ¢ = m = 0. Thus, in these appropriately weighted function spaces A\ = 0 is an
isolated eigenvalue associated to the invariances of the problem. Hence, A = 0 is part of
the point spectrum. We show that the eigenvalue A = 0 persists with multiplicity two
for 0 < m < 1 by determining two linearly independent eigenfunctions that form the

generalised eigenspace. In the singular limit ¢ — 0, these functions and their norms are
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explicitly computed. We also show these eigenfunctions persist for sufficiently small € > 0

and are contained in the weighted function spaces that have stable essential spectrum.?

2.7.2 The generalised eigenspace at A =0

In order to obtain the eigenfunction, we first differentiate (2.6) with respect to z and

obtain

0= EUssy + Clsy — wytt™ — mwu™ Yu, = L11us + L12ws,
2

WU wu
s )z + (/BT;)Z = *CQluz + ‘522wz:

WUy

Ozwzzz'i_cwzz_ﬁ( )Z_/B(

u u

0="C (“Z(z) >
w;(2),

where we have omitted the e subscripts and m superscripts. Hence ((ul"),, (w*),) solves

which is equivalent to

the linearised eigenvalue problem (2.36) for A = 0, and A = 0 is thus an eigenvalue with
associated eigenfunction ((u"),, (wl*).). This is typical for travelling wave solutions and

arises from the translation invariance of solutions in the moving frame z.

If we instead differentiate (2.6) with respect to the wave speed ¢, we obtain

0 = ElUsse + Uy + Clze — W™ — mwu™ Lu,

= L11ue + Liowe + Uz,

w,U wu wu
O:wzzc+wz+cwzc_/8< ZZ) _6< ZZ) +5< QZ)
c u c u c

u

= Lo1uc + Logw, + w;,

)2
we(2) w,(2)

Hence ((ul)c, (wl")c) is a generalised eigenfunction of (2.36) for A = 0 and A = 0 has

which is equivalent to

algebraic multiplicity at least two and a geometric multiplicity of at least two. It was
shown in [35] that A = 0 is a second order root of the Evans function and thus the

algebraic and geometric multiplicity are each precisely two.

3The formulation of the (generalised) eigenfunctions, eigenspace and analysis of the asymptotic be-
haviour of these functions remains valid when 8 > B85 (¢).
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Figure 2.7.2: The Lo norm squared of the generalised eigenfunction for ¢ = 0, i.e.
1((ud,)e, (W,)e|[2,, is shown for B = 1.1 over varying values of m and two different wave

speeds c. The solid curves represent m values such that 1 —m < 8 < 80%,(0) and the

dashed line represent values such that 5 > £ (0). Observe that both squared norms

have an asymptote at m = 1.

For £ small we can explicitly compute the leading order (generalised) eigenfunctions from

(2.7). In particular,

()=(2) = e ()P,

(w§)=(2) = —ce™ (ug")” + Be ™ (ug)* ™" (ug)-, (2.68)
m B (cz + 2)ug :
(ug")e(2) = c(c?e + B+ 7(;1 —1)’
(wi)e(z) = —ze~ (ug")” + Be™ (ug")" ! (ug’)..
We have ((u!)., (w@),) € L? x L2 and ((ul'), (wd').) € L? x L? with
c e
(2.69)

H((ugl)m(wgl)zm]]%? = 4128+m—1) + B2—20B+m—1)2%

The exact expression for ||(ue, we)||L2 is not informative; instead see Figure 2.7.2 for

computations of ||(ue, we)||p2 specific values of 8, m, c.

2.7.3 Behaviour of eigenfunctions as z — +00

As we have shown the existence and boundedness of the (generalised) eigenfunctions,
what remains is to show that the functions are contained in the weighted spaces HL(R)
where the essential spectrum is weighted into the left half plane. We do this through
examining the asymptotic behaviour of the eigenfunctions. The exponential decay rate
of the eigenfunctions as z — +oo are greater than the weighted spatial eigenvalues at

z — Fo0. Hence, we conclude that A = 0 is in fact point spectrum for all 0 < m < 1 in
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the space HL(R). Since the eigenvalue problem can be expressed as an equivalent ODE
(2.57) in p, u and their derivatives, it is sufficient to show w, and u. are contained in
HL(R). It was shown in [103] that solutions to (2.6) can be related to solutions of a Fisher
equation by first eliminating w(z) using wl*(z) = e~ (u?(z))ﬁ . Then, by introducing

the change of variable u*(z) = v(z) exp (Tfn_lz the following ODE in v(z) is obtained

e + sv' + o — Pt =0 (2.70)

)

where s = ¢ (1 + ﬁ) and n = % We have the following result for v(z)

adapted from Lemma 3.1 ii a of [103]

Lemma 2.7.1. ([103]) There exists a nonnegative travelling wave solution v(z) of (2.70)
if and only if 5 >1—m. For B >1—m the travelling wave solution v(z) is a wavefront
with v'(z) < 0 and satisfies the asymptotic conditions

lim v(z) = nﬂﬂil*l, lim v(z) = 0.
Z——00 Z—00

The wavefront v(z) has the following asymptotic behaviours:

v(z) ~ nﬁ“}@—l — C1e"%, as z — —oo and v(z) ~ Cee™*| as z — 0 (2.71)
where
c ¢ de(B+m)(e+F+m—1) c
K1 = K2 28+2€ (ﬁ+m—1)2 and Ko Frm—1

From (2.65) the unweighted spatial eigenvalues u~ for A = 0 are given by

_ C _ _
M= g 2 T
_ c c de(B+m)(B+m+e—1)
= F 1 .
e A B+m—1)

Using (2.71) and ul*(z) = v(z)e/”fcnflz we have the following asymptotic behaviour as

zZ — —00
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1
m 0775+m71 mz B C # (n1+7ﬁ+;71)z
(ul")2(2) 7ﬁ+m—1e 1 /{1+B+m_1 e
cq’]ﬁ+m71 Hl_z c _
.y - et
ﬁ +m— 16 1| K1+ 6 Tm—1 € )
1 2-B-—m
nh+m=1 4 n.nb+m-1 —C 2 1 (HH—;)Z
m ~ B+m—17 __ C - B+m—1
(u)e(2) ( o ) (g ) e
ﬁﬁ + Ucnzfﬁ ny 2 C 1 + ( ) Iy 2
~ e — —_— K ze .
B+m—1 "\Brm—1 " Ve

The asymptotic decay rates of u,, u. as z — —oo are precisely the two largest unstable
unweighted spatial eigenvalues. In the weighted space H.(R) the spatial eigenvalues are
ut 4+ v_ for i =1,2,3,4. It was shown in §2.4.3 that the range of weights for z — —oco
are negative. Thus, the eigenfunctions decay faster than the weighted spatial eigenvalues

as z — —0oQ.

From (2.65) we have the unweighted spatial eigenvalues as z — oo for A = 0,

1 _ 2 _ ¢ 34 _
wy = —¢ M+—_ga py =0.

From (2.71) we have u"(z) ~ Ca, as z — oo and so we cannot compare the exact asymp-
totic exponential decay rates of the derivatives of u]*(z) to the spatial eigenvalues. It
was shown in §2.4.3 that positive weights v € (0, ¢) can be used to weight the essential
spectrum into the open left half plane. Thus, as (u"), and (ul"). are solutions to the
eigenvalue problem both (generalised) eigenfunctions will decay to zero exponentially in
the stable subspace spanned by the eigenvectors associated with ui’Q. Thus as v4 > 0 we
can conclude that there is some weighted space such that the (generalised) eigenfunctions

decay faster than the weighted spatial eigenvalues as z — oo.

Hence, as the (generalised) eigenfunctions decay faster than the weighted spatial eigenval-
ues as z — +oo we can conclude that (u.,w.), (u,, w,) € HL(R) for the range of weights
that shift the essential spectrum into the open left half plane. Thus, the eigenvalue A = 0

is isolated and in the point spectrum in these weighted spaces.

The inclusion of a small diffusion parameter amounts to a perturbation of the operator
and there are only a few possible ways new point eigenvalues can appear. These point
eigenvalues emerge as perturbations of the eigenvalues in the € = 0 case or as new eigen-
values emerging from, and to leading order given by, the branch points of the absolute
spectrum. From [54] it follows that eigenvalues in the point spectrum are, to leading
order, given by those in the ¢ = 0 case. It has been shown via a numerical Evans function

computation that there are no point eigenvalues in the open right half plane (excluding
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A = 0) when ¢ = 0 up to |\ ~ O(10) [35]. As a result, there can be no point spectra
in this region for 0 < ¢ < 1. The ODE (2.57) varies smoothly in A as m — 0 and so the
results of [35] hold for 0 < m < 1. Thus, the only eigenvalues that can potentially desta-
bilise the € = 0 spectrum are those that emerge from the branch points of the absolute
spectrum. As the operator £ — AI (2.36) varies smoothly in A near € = 0 any eigenvalues

that emerge from the branch points will be of the form
A=\ + Ce? + 0(83),
for some C € C [54]. Therefore, choosing 8 < 8™, (¢) such that |R(\p;)| is not O(g?) will

crit

prevent any emerging point spectrum from destabilising the spectrum.

2.7.4 The limit m — 1

In the case of linear consumption, the travelling wave solutions are a pair of travelling
wavefronts given, to leading order, by (2.7) with m = 1. These wavefronts satisfy (2.6)

and asymptote to

2 2
: 1 1 _ ¢ < . 1 1 _
i (k) = (0.5 465 ) m et ) = .0, @7
with u, scaled to one without loss of generality. Furthermore, the essential spectrum of
L} (2.36) includes the origin for all parameter values and all possible weights (2.67), see
Theorem 2.3.3. Therefore, this case is markedly different from 0 < m < 1 and must be

treated separately.

Similar to the previous analysis in §2.7.1, we compute the functions ((u!).,(w!).) and
((u})e, (wh)e). These functions are given, to leading order, by (2.68) with m = 1. While
the function ((ul)., (w?),) persists as a solution to the eigenvalue problem (2.36) with a
finite norm ||((u})., (w!).)||12 given, to leading order, by (2.69), the leading order function
(ud)es (wg)e) is unbounded and hence ((ul)e, (wl).) is not a solution to the generalised
eigenvalue problem, see Figure 2.7.2. The eigenvalue A = 0 is order one, in the sense
that one of the eigenfunctions associated with A = 0 persists when m — 1. As there is
no exponentially weighted function space such that A = 0 is isolated, it is not considered

point spectrum.

The intuitive reason for the reduction of order as m — 1 is that there is no longer a
family of solutions in ¢, since, when m = 1, the end state of w! as z — —oo depends on
¢, see (2.72). Thus, for fixed end states a travelling wave solution exists with a unique
wave speed ¢, whereas for 0 < m < 1 travelling wave solutions exist for any wave speed
c. Alternatively, the reduction of order can be seen by examining the deformation of

the absolute spectrum as m — 1. The absolute spectrum does not contain A = 0 for
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0 < m < 1 but, as m — 1 the branches of absolute spectrum approach A = 0. Thus the

order is reduced as m — 1 due to an eigenvalue disappearing into the absolute spectrum.

2.8 Summary and outlook

In this chapter, we located the weighted essential spectrum and absolute spectrum as-
sociated with travelling wave solutions to the Keller-Segel model (2.4) for 0 < m < 1,
B8 >1—m and 0 < e < 1. By locating the branch points, that form the leading edge of

the absolute spectrum, we proved that the absolute spectrum and ideally weighted essen-

m.
crit

tial spectrum are contained in the open left half plane for 1 —m < g < g7 (¢) and we
derived leading order expressions determining 8, (¢). We also developed a procedure for
locating the range of weighted spaces for which the weighted essential spectrum is in the
open left half plane. For g > B (¢), all travelling wave solutions have absolute spectrum
in the right half plane and the travelling wave solutions are thus absolutely unstable.
These results provide a complete picture of the absolute spectrum and weighted essential
spectrum associated with all possible travelling wave solutions to the Keller-Segel model
(2.4) and they expand on the previous results for the essential spectrum known in the
literature [80,103]. Furthermore, it is now clear how the absolute spectrum and weighted
essential spectrum deform between the limit cases m = 0 and m = 1. Moreover, we
showed that the transition to the absolutely unstable parameter regime is characterised
by the absolute spectrum crossing into the right half plane away from the real axis (similar

to the example in [85]).

In [35], the Evans function associated with travelling wave solutions to (2.4) with m =0
and € = 0 was calculated numerically using a Riccati transformation. It was shown that
there is a second order temporal eigenvalue at the origin and that there are no other
eigenvalues in the right half plane with |A\| < 107. Due to the translation invariance,
A = 0 was expected to persist as an eigenvalue (with order at least one) for 0 < ¢ < 1.
We have now proved, barring the existence of extremely large values of || in the right half
plane, that the travelling wave solutions to (2.2) are spectrally stable in an appropriately
weighted function space for 1 —m < f < g (¢) for 0 < m < 1 and 0 < e < 1, i.e.
transiently unstable. In particular, the point eigenvalue A = 0, proven to be of order two
when € = m = 0 in [35], does not perturb in the € # 0 case. This is because the existence
of a continuous family of solutions in ¢ and the existence of a family of solutions due to

translation invariance is preserved when ¢ # 0.

2.8.1 Nonlinear (in)stability

Ideally, one would like to use the spectral stability results presented in this chapter to
conclude nonlinear (in)stability of the travelling wave solutions. For a sectorial semilinear

operator with a spectral gap (i.e. the spectrum is contained in the open left half plane
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except for the translation invariance eigenvalue at the origin), spectral stability implies
nonlinear (orbital) stability of the associated travelling wave solution [41,91]. However,
while the operator £ (2.9) appears to be sectorial for 0 < ¢ < 1, see, for instance,
Figure 2.6.1, it is quasilinear rather than semilinear. In [78], it was shown that for a large
class of quasilinear parabolic reaction-diffusion systems one can still deduce nonlinear
stability results from the spectral stability results, as long as the linearised operator fulfils
certain conditions. Unfortunately, the Keller-Segel model studied in this chapter does not
fall into the class of quasilinear parabolic reaction-diffusion systems considered in [78],
though potentially the analysis of [78] could be extended to encompass this model. For the
Keller-Segel model (2.1) with nonlinear diffusion and with logarithmic chemosensitivity
(i.e. ®(u) = log(u)), linear consumption (i.e. m = 1) and nonzero growth (i.e. £ > 0), the
general theory for semilinear operators was extended in [77] to prove nonlinear instability

results in certain cases of the model.

In the case that m = 1 one can use a Hopf-Cole transformation in conjunction with
energy estimates in order to prove the nonlinear (orbital) stability of travelling waves for
0 <e <« 1[49,70,71,77,103]. These energy estimates have the potential to provide a bound
on large A\. However, these energy estimates are notoriously difficult for specific linearised
operators and the computation is further complicated by both the non-self-adjointness
of the operator £ given in (2.36) and the fact that the Hopf-Cole transformation is
not applicable when 0 < m < 1. Alternatively, in order to apply the general theory
for semilinear systems, [41] proposes to transform a quasilinear system to a semilinear
system. Observe that this approach is akin to the method used in §2.5. It is a challenge
to see if any of these methods can be used to obtain nonlinear stability results for the

travelling wave solutions of (2.4) studied in this chapter.

2.8.2  Dynamical implications of the spectral structure

The dynamical implications of the absolute spectrum in the right half plane for travelling
wave solutions of the Keller-Segel model (2.4) are not known. In typical examples, such
as the F-KPP equation, the transition to an absolutely unstable regime is associated
with the so-called linear spreading speed, ¢.e. the speed ‘generic’ initial conditions will
eventually travel at. Note that in the F-KPP equation this is known as the minimal wave
speed. In other words, the linear spreading speed is the speed of a travelling wave solution
‘selected” by the model. However, in the Keller-Segel model (2.4) the transition to the
absolutely unstable regime is, to leading order, independent of the wave speed and it thus
does not seem to have an influence on the asymptotic speed of a generic initial condition
(that evolves to a travelling wave solution). Rather, the initial condition of the bacteria
population w determines the wave speed [80]. Note that in the case of a Keller-Segel
model (2.1) with a growth term, the absolute spectrum does appear to have an influence

on the wave speed selection [8,77]. Moreover, as the transition of the absolute spectrum
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into the right half plane is complex valued, one expects oscillatory instabilities to manifest
themselves near this critical parameter. These type of bifurcations have been studied in
[89,92]. As there are no instabilities arising from the point spectrum (barring extremely
large values of |\|) it is of interest to examine the dynamical implications and nature of
this bifurcation as it is atypical for the absolute spectrum to cross into the right half plane
away from the real line. Future work will examine this bifurcation, both analytically and
numerically, to determine the impact, if any, on the wave speed, wavefront selection and

whether oscillatory behaviour is observed.



CHAPTER 3

Travelling wave solutions in a model for tumour invasion with the

acid-mediation hypothesis

3.1 Preface

The contents of this chapter were submitted for publication under the title “Traveling
wave solutions in a model for tumor invasion with the acid-mediation hypothesis” [12].
The manuscript is presented here with minor stylistic changes, expanded discussion and

outlook given in §3.6.

Abstract

In this chapter, we prove the existence of slow and fast travelling wave solutions in the
original Gatenby—Gawlinski model. We prove the existence of a slow travelling wave
solution with an interstitial gap. This interstitial gap has previously been observed ex-
perimentally, and here we derive its origin from a mathematical perspective. We give
a geometric interpretation of the formal asymptotic analysis of the interstitial gap and
show that it is determined by the distance between a layer transition of the tumour and
a dynamical transcritical bifurcation of two components of the critical manifold. This
distance depends, in a nonlinear fashion, on the destructive influence of the acid and the

rate at which the acid is being pumped.

3.2 Introduction

Altered energy metabolism is a characteristic feature of many solid cancer tumours and it
has been recognised as a possible phenotypic hallmark [34]. The discovery of this altered
metabolism feature dates back to the seminal work of Warburg [104], who observed that
certain carcinomas undergo glucose metabolism by glycolysis and not by mitochondrial
oxidative phosphorylation (MOP), as normal cells do. MOP produces lactic acid as a
toxic by-product and is usually reserved for conditions of hypoxia. Paradoxically, cancer
cells maintain the glycolytic phenotype even in the presence of sufficient oxygen to un-
dergo MOP. This phenomenon is known as aerobic glycolysis or the Warburg effect. The
underlying causes of the Warburg effect still remain largely unknown. One explanation for
this phenomenon is the so-called acid-mediation hypothesis, that is, the hypothesis that
tumour progression is facilitated by the acidification of the region around the tumour-host

interface. This leads to a comparative advantage for tumour cells since they are more
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adapted to low pH environmental conditions than healthy cells. The resulting tissue

degradation facilitates tumour invasion of the tissue microenvironment [33].

Gatenby and Gawlinski [32] formulated the acid-mediation hypothesis in a reaction-
diffusion framework. They proposed a reaction-diffusion system in which tumour cells
produce an excess of H ions due to aerobic glycolysis, which results in local acidification
and thus destruction of the surrounding healthy tissue. After a suitable nondimension-
alisation [32], the Gatenby—Gawlinski model can be written as the following system of
singularly perturbed partial differential equations (PDEs) with nonlinear diffusion (in the

V-component):

oUu

oo =UQ—U—aw),

19)% 0 oV

Y -sva-vy+erla-0d], (3.1)
ow o*wW

Here, x € R and 7 > 0 are the spatial and temporal variables, respectively. The quanti-
ties U(z, 1), V(x,7), and W (z, T) represent nondimensionalised versions of the normal cell
density, tumour cell density, and excess acid concentration, respectively. As in the quan-
titative discussions presented in [32], € is assumed to be a small nonnegative parameter,
ie. 0<e < 1. In addition, the constants «, 3, and ~y are all positive and strictly O(1)
with respect to €. The parameter o measures the destructive influence of H* ions on the
normal tissue and therefore its value can be taken as an indicator of tumour aggressivity.
For a > 1, solutions of (3.1) model the situation in which total destruction of normal
tissue occurs after the invasion of tumour tissue. On the other hand, for 0 < a < 1,
solutions of (3.1) correspond to the case where a residual concentration with value 1 — «

of healthy tissue remains behind the spreading benign wave.

Gatenby and Gawlinski [32] investigated the travelling wave (TW) solutions that are
compatible with (3.1) and a number of interesting results were obtained. For instance,
numerical simulations hinted at the existence of an interstitial gap (i.e. a region practically
devoid of cells and located ahead of the invading tumour front) for large values of the pa-
rameter . Subsequently, the existence of such a gap was verified experimentally [32, Fig.
4]. In addition, arguments pointing toward comparatively faster invasive processes when
a > 1 were provided in [32]. Fasano, Herrero, and Rodrigo [27] further investigated the
TW solutions that are compatible with (3.1). Using a nonstandard matched asymptotic
analysis they showed that (3.1) supports TW solutions that travel with speed O(1) and
TW solutions that travel with speed O(eP) for 0 < p < 1/2. They called the former TWs
fast TW solutions and the latter TWs slow T'W solutions, and the authors also obtained

bounds for the wave speed in terms of the model parameters. Most notably, the authors
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Figure 3.2.1: Left panel: an interstitial gap present in a human squamous cell carcinoma.
Reprinted from R. A. Gatenby and E. T. Gawlinski. A reaction-diffusion model for cancer
invasion. Cancer Res., 56:5745-5753, 1996 with permission from AACR. Right panel: a
slow TW solution with an interstitial gap supported by (3.1).

identified slow TWs with an interstitial gap when « > 2 and the leading order width of

this gap was estimated as
1
Zy = — logg > 0. (3.2)

VoRAE
This interstitial gap ceases to exist when 0 < o < 2. Finally, the authors of [27] showed
that TW solutions cannot be found when p > 1/2. See Fig. 3.2.1 for a slow TW solution

with an interstitial gap obtained by a numerical simulation of (3.1).

Different generalizations of the original Gatenby—Gawlinski model have also been proposed
in the literature. For instance, Holder, Rodrigo, and Herrero [42] included a cellular
competition term in the U-equation and replaced the acid production term in the W-
equation by a logistic-type reaction term. After nondimensionalisation, this generalised

Gatenby—Gawlinski model becomes

( oU

E—U( —U—OZ(V+W)),

ov 0 ov

S=ova-vyreg la-ng). (5.3
ow *w

This generalization was motivated by the fact that tumours tend to present with very
heterogeneous acid profiles and there is some experimental evidence of higher acid con-
centrations near the region of the interstitial gap. As a consequence of the addition of the
nonlinear acid production term to the model, the profile of the excess acid concentration
became pulse-like (instead of front-like in the original Gatenby—Gawlinski model; see, for
instance, Fig. 3.2.1). The authors obtained results with regards to fast and slow TW
solutions via matched asymptotic analysis similar to those in [27] and they also obtained

estimates for the interstitial gap.
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A different generalization of the Gatenby—Gawlinski model (3.1) was given by McGillen
et al. [75]. Here, the authors added cellular competition terms for both the U- and V-
equations, as well as a term in the V-equation that incorporates acid-mediated tumour cell

death. After nondimensionalisation, this generalised Gatenby—Gawlinski model becomes

ou

E:U( —U—a1V—a2W),
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ow 0*wW

and results analogous to those in [27,42] were derived.

3.2.1 Results and outline

In this chapter, we study the original nondimensionalised Gatenby—Gawlinski model (3.1)
and prove the formal results of [27] regarding the existence of fast and slow TW solutions!.
Moreover, we explain — from a mathematical perspective — the origin of the interstitial
gap. We focus on the two critical cases p = 0 (fast TW solutions) and p = 1/2 (slow TW
solutions). To prove the asymptotic results from [27], we rewrite the PDE model (3.1)
in its travelling wave framework upon introducing (z,t) := (x — ePer,7) with p = 0 or
p =1/2 and with O(1) wave speed ¢. TW solutions to (3.1) now correspond to stationary
solutions in this new framework and the problem reduces to studying heteroclinic orbits
in an ordinary differential equation (ODE). Next, we use the multi-scale structure of
(3.1) to write this resulting ODE problem in a five-dimensional slow-fast system of first
order ODEs [68]2. For the fast TW solutions there will be one fast component and four
slow components, while the slow-fast splitting for the slow TW solutions is three fast
components and two slow components. The details regarding the formulation of the

slow-fast systems are given in §3.3.

We study these slow-fast systems for the fast TW solutions (see §3.4) and the slow TW
solutions (see §3.5) using geometric singular perturbation theory (GSPT) [39,51,53]. In
particular, we study the dynamics of the associated lower dimensional fast layer problems
and slow reduced problems in the singular limits as € — 0. Next, we appropriately con-
catenate the dynamics of these lower dimensional systems to obtain information regarding
the heteroclinic orbit — and thus fast and slow TW solutions to (3.1) — in the singular
limit as ¢ — 0. Finally, we use Fenichel theory [30] to show that these solutions persist for

positive but small €. It turns out that for the fast TW solutions, independent of the value

1See the discussion in §3.6 regarding using the techniques of this chapter to analyse TW solutions
found in (3.3) and (3.4).

2Note that the slow and fast in slow-fast system is not related to the slow and fast in slow TW solution
and fast TW solution. This terminology is standard in the GSPT literature and we decided not to change
it.
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of «, all the dynamics take place on the attracting critical manifold of the slow reduced
problem and the application of GSPT and Fenichel theory is straightforward. In essence,
the model is a regularly perturbed problem for the fast TW solutions, and we will show
that the asymptotic results of [27] are correct and persist for 0 < ¢ < 1. See §3.4 for the
details.

In §3.5 we study the slow TW solutions and now the tumour aggressivity parameter «
becomes important. In particular, we have to distinguish between three cases: 0 < a < 1,
1 < a< 2, and a > 2. In the first case, a slow TW solution in the singular limit € — 0
starts on one branch of the critical manifold (at z = —o0) and transitions through the
fast layer problem (which we assume, without loss of generality, to happen at z = 0) to
a second branch of the critical manifold, and the layer dynamics will have a Fisher-KPP
imprint [69,79,102, e.g]. Again, we will show that such a slow TW solution persists for
0 < e < 1 by applying GSPT and Fenichel Theory. In the latter two cases (1 < a < 2 and
a > 2) there is an additional complication related to a dynamical transcritical bifurcation
of the two connected components on each branch of the critical manifold [67,68, e.g]. For
1 < a < 2, the transcritical bifurcation happens before the fast transition through the
layer problem (at z = 0), while the bifurcation happens after the transition for a > 2, see

Fig. 3.5.2. For 1 < ar < 2 the transcritical bifurcation happens (to leading order in €) at

1 —
z_ = —log 72(0[ D
Vit a

while the transcritical bifurcation happens (to leading order in ¢) at z; (3.2) for a > 2,

<0, (3.5)

see also [27]. In other words, for o > 2 the length of the interstitial gap is to leading
order determined by the distance between the fast transition through the layer problem
and the dynamical transcritical bifurcation. We conclude the chapter with a summary

and outlook regarding future projects.

3.3 Setup of the slow-fast systems

Since we are looking for TW solutions supported by (3.1), we introduce the travelling
frame coordinates (z,t) := (x —ePer, 7) for 0 < p. Here, the speed ¢ of the TW solution is
assumed to be strictly O(1) with respect to €. Moreover, as we are interested in waves of
invasion, we assume, without loss of generality, that ¢ > 0. A TW solution is stationary

in this co-moving frame and will therefore satisfy the following system of ODEs:

d
—spcd—z =u(l —u— aw),
dv d dv
P 1— — (1= u)—
e po(l —v) teqs [( ) dz] , (3.6)
dw d?w
—ePe—— — — _—
(e, (v w)+d22'
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The fixed points of (3.6) are (u,v,w) = (0,0,0),(1,0,0),(0,1,1) and (1 — «,1,1). We
examine TW solutions with asymptotic boundary conditions (u,v,w) — ((1 — a)4,1,1)
as z — —oo and (u,v,w) — (1,0,0) as z — oo as these solutions represent tumour

invasion into healthy tissue. Here,
(1 - a); = max{1l — «,0},

which represents the residual concentration of healthy tissue that remains behind the
TW solution. Upon introducing the two new variables r := e'~P(1 — u)v, + cv (see
Remark 3.3.1) and s := w,, we can rewrite (3.6) as an equivalent slow-fast system of five
first order ODEs

Spj—z = —Eu(l —u— aw),

1—pdv _r—c
dz 1—u’

sp% = —pv(l —v), (3.7)
e _,
dz 7
ds

\ &:—spcs—y(v—w).

TW solutions of (3.1) now correspond to heteroclinic orbits of (3.7) connecting its two

equilibrium points. That is,

lim (u,v,r,w,s)=((1—-a)y,1,¢,1,0) =2,
lim (u,v,r,w,s) = (1,0,0,0,0) =: Z+.

Z—00

There are three critical p-values that balance the asymptotic scalings of (3.7), namely,
p=20,p=1/2, and p = 1. In [27] it was shown that the case p = 1 does not lead to
TW solutions and we therefore do not consider this case in this chapter (actually it was
shown in [27] that there are no TWs for p > 1/2). In addition, (3.7) has three asymptotic
scalings for 0 < p < 1/2. In this chapter we consider only the cases p = 0 — corresponding
to fast TW solutions — and p = 1/2 — corresponding to slow TW solutions. We refer the
reader to [27] for the procedure to apply when 0 < p < 1/2.
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Equation (3.7) is in its slow formulation® [51,53,68]. Upon introducing the fast variable

y :=eP~ 12, the ODEs can be written in their fast formulation

( 1-2p
jZ = ° . u(l —u — aw),
dv _r—cv
dy 1—u’
d
d—; = —!172PBp(1 —v), (3.9)
d
e el Ps,
dy
d
\ d—; = —ecs — e Py (v — w).

The slow problem (3.7) and fast problem (3.9) are equivalent for ¢ # 0. However, they
differ in the singular limit ¢ — 0. In particular, for the fast TW solutions, i.e. when
p = 0, the (u,r,w, s)-variables are slow variables and the v-variable is a fast variable.
That is, for p = 0 the slow problem (3.7) in the singular limit € — 0 is a four-dimensional
system of ODEs (in the slow variables) with one algebraic constraint (determined by the
original equation for the fast variable). In contrast, the fast problem (3.9) for p = 0 in
the singular limit ¢ — 0 is a one-dimensional ODE (in the fast variable) with (up to) four
additional parameters (coming from the slow equations). For the slow TW solutions, i.e.
when p = 1/2, only the (w, s)-variables are slow variables and the (u,v,r)-variables are
fast variables.

Remark 3.3.1. The scaling of the new variable v as v := ' "P(1 — u)v, + cv is chosen
such that —ePr, is equal to the reaction term of the v-component in the original ODE
model (3.6). That is, —ePr, = fv(1—v) (3.7). This particular scaling of r is inspired by a
series of manuscripts [3,36,37,84] on TW solutions for chemotaxis-driven and haptotaxis-
driven cell migration problems and it arises naturally when writing an extended version

of (3.6) as a singularly perturbed system of coupled balance laws.

3.4 The existence of fast travelling wave solutions

We start with studying the fast TW solutions supported by (3.1) and prove that the
asymptotic results of [27] persist for 0 < ¢ < 1. In particular, we show that, for sufficiently
small €, (3.1) supports fast TW solutions (Up, Vi, Wg)(z, 7) (see Fig. 3.4.1 for a fast TW

3Recall that the slow in slow formulation is not related to the slow in slow TW solution, that is, (3.7)
is the slow formulation of the ODEs associated to both the slow TW solutions with p = 1/2 and the fast
TW solutions with p = 0.
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0
=30

30

Figure 3.4.1: A fast TW solution obtained from numerically simulating the Gatenby—
Gawlinsky model (3.1) on a domain of size 60 with (c, 3,7,¢) = (3,4,2,4 x 107°). The
observed wave speed is ¢ &~ 0.985, which is, as expected, O(1).

solution obtained by directly simulating (3.1)). These fast TW solution are, to leading
order in g, given by (U, Vr, Wr)(x,7) = (ug, vo, wp)(2), with

1
vo(2) = 11 eBele
wo(z) = 0 /ep+(z£)v0(§) dé + / P~ =yo(e) de |,
P+ =P\ S (3.10)
—(1/c zl—oewo§ d¢
UO(Z):M’ Po(z) =€ o @ ;
J ®o(§)dg

where py = (—c £ /2 + 47v)/2.

Taking p = 0 in the fast system of ODEs (3.9) and considering the singular limit € — 0
leads to the fast layer problem for the fast TW solutions?

dl_r—cv

dy 1—u’

du _

dy

dr

— =0 3.11
=0, (3.11)
dw

=0

dy ’

d

= o

\dy

All of the variables except v are constant in (3.11) and it can thus be seen as a single first
order ODE with four additional parameters. It follows directly from (3.11) that v =r/c

is an equilibrium point. Therefore, we define the four-dimensional critical manifold

r

SQ = {(u,v,r,w,s) ’ v= E} . (3.12)

4We rearranged the order of the equations in (3.11) to emphasise the slow-fast structure of the problem.
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Since ¢ > 0 by assumption, we have that the critical manifold Sg is an attracting, nor-
mally hyperbolic manifold [51,53, e.g] for u < 1. The critical manifold S2 loses normal
hyperbolicity for v = 1 and is repelling for v > 1. As we will show, the u-component
is always between 0 and 1 and only approaches 1 as z — oo; see (3.8), (3.10) and, in
particular, Remark 3.4.1. Moreover, both asymptotic boundary conditions Z+ (3.8) lie

on the critical manifold Sg.

Taking p = 0 in the slow system of ODEs (3.7) and considering the singular limit ¢ — 0
leads to the slow reduced problem for the fast TW solutions

( r — Cv
0= 1—u’

du 1
g——gu(l—u—aw),
dr
dz
dw
dz
ds

\ dz

= —BU(]_ —’U), (313)

Hence, the reduced problem is a system of four first order ODEs restricted to the critical
manifold S2 (3.12). Upon imposing the algebraic constraint v = r/c, the system of four
first order ODEs of (3.13) can be written as

du 1
a——gu(l—u—aw),
dv I5]
&——Zv(l—’v),
dziw+cd—w— w = —yv
dz? e

It was shown in [27] that this system, with boundary conditions as in (3.8), is solved by
(3.10). Hence, the u-component is strictly increasing and approaching one in the limit

z — oo [27].

In the singular limit e — 0, the critical manifold S2 (3.12) is normally hyperbolic and
attracting in the fast direction for v < 1, the asymptotic boundary conditions (3.8) lie
on SP, and the reduced problem (3.13) restricted to the critical manifold supports the
appropriate heteroclinic orbit (for which u(z) < 1 for all z € R). Therefore, by applying
standard GSPT and Fenichel theory [30,39,51,53,68] (see Remark 3.4.1), we can conclude
that this heteroclinic orbit persists in (3.7)-(3.9), with p = 0, for 0 < ¢ < 1. Moreover,
the persisting heteroclinic orbit is to leading order in € given by its singular limit. This
heteroclinic orbit corresponds to the fast TWs of (3.1) and the fast TWs are thus to
leading order given by (3.10).
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Figure 3.5.1: Three typical profiles of slow TW solutions obtained from numerically sim-
ulating the Gatenby—Gawlinsky model (3.1) on a domain of size 60 for three different «
values and with (3,v,¢) = (1,0.5,4 x 107°). In the left panel, & = 0.5 and the observed
wave speed is ¢ &~ 0.0188 = 2.97 x /e. In the middle panel, a = 1.5 and the observed
wave speed is ¢ & 0.0375 = 5.93 x /. In the right panel, « = 15 and the observed wave
speed is ¢ & 0.0375 = 5.93 x /e. The interstitial gap is only observed in the right panel
where a =15 > 2.

Remark 3.4.1. The slow problem (3.7) and fast problem (3.9) are — both for p =0 and
p = 1/2 — singular along {u = 1}. However, u is always smaller than one, and it only
approaches one in the limit z — oo, see, for instance, (3.8) and (3.10). A similar type of
singularity is encountered in, for instance, a version of the generalised Gierer—Meinhardt
model [18] and the Keller—Segel model [38]. We refer to [18] for details on how GSPT
and Fenichel theory can be extended to deal with this type of singularity at an asymptotic

boundary condition.

3.5 The existence of slow travelling wave solutions

Next, we study the slow TW solutions (Ug, Vs, Wg) supported by the Gatenby—Gawlinsky
model (3.1) and prove the formal asymptotic results of [27] and show their persistence for
sufficiently small . Depending on the magnitude of «, there are three different types of
slow TW solutions [27], see Fig. 3.5.1.

Taking p = 1/2 in the fast system of ODEs (3.9) and considering the singular limit ¢ — 0
leads to the fast layer problem for the slow T'W solutions

(d 1

d—Z:—Eu(l—u—aw),

dv _r—cv

dy 1—u’

& Bu(1 ) (3.14)
Q= v v), )
d

dw_ o

dy

d

£ _o.
( dy
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The fast layer problem (3.14) is again singular for v = 1. However, as in the fast TW case,
we will show that the u-components associated to the heteroclinic orbits of interest stay
smaller than one and only approach one in the limit z — co. Therefore, this singularity
does not lead to any significant complications, see Remark 3.4.1. Analysis of the equilib-
rium points of the layer problem (3.14) yields a two-dimensional critical manifold S in
R®. This critical manifold consists of two disjoint branches Sé4 B In turn, each of these
branches consists of two connected components. In other words, the critical manifold
Sg is the union of the four two-dimensional manifolds S§’2’3’4. These four manifolds are

parameterised by the slow variables (w, s) and are given by

SA Sé :{(U7U7T7was)’UZO,'U:O’T‘_O}’

S Sg = {(U,U,T,w,s) ’ uzl—aw,v—o,r_()} , 5.15)
gB S3 Z{(u,vmw,s)!u:o,vzuzc}’

S Sé = {(u,v,r,w,s)’uzl—aw,v_l,r:c}

The manifolds S& and S2 intersect on Sé4 along the line aw = 1. Similarly, S2 and S§
intersect on S (which is disjoint from S&') along the line aw = 1. These intersections

are nondegenerate in nature since o # 0, see Fig. 3.5.2.

The three different types of slow TW solutions, see Fig. 3.5.1, can now be understood
from the different pathways these TW solutions take through phase space along the four
manifolds S§’2’3’4 in the singular limit:

e For 0 < a < 1, the right asymptotic boundary condition ZT (3.8) is located on S2
(as is the case for a > 1), while the left® asymptotic boundary condition Z~ (3.8)
is located on S§. Since both o and w are positive but less than 1, aw # 1. As a
result, the heteroclinic orbit associated to a slow TW solution starts at Z~ on S§
and transitions, via the layer dynamics, to Sg. Subsequently, it asymptotes to Z7.

e For 1 < a < 2, the right asymptotic boundary condition Z* (3.8) is located on
S2, while the left asymptotic boundary condition Z~ (3.8) is located on S3. The
heteroclinic orbit associated to a slow T'W solution thus starts at Z~ on Sg’, switches
~ via a dynamical transcritical bifurcation [67] — to S§ at z = 2~ (3.5) (i.e. when
w(z7) = 1/a), before transitioning, via the layer dynamics, to S3. Subsequently, it
asymptotes to ZT.

e For a > 2, the right asymptotic boundary condition ZT (3.8) is located on Sg,
while the left asymptotic boundary condition Z~ (3.8) is again located on S3. The
heteroclinic orbit associated to a slow TW solution now starts at Z~ on Sg, tran-
sitions, via the layer dynamics, to Sé and switches — via a dynamical transcritical

bifurcation — to S3 at z = z; (3.2) (ie. when w(z4) = 1/a). Subsequently, it

SThroughout this chapter ‘left’ and ‘right’ refer to position relative to the layer transition for a solution
plotted against z. Thus, z < 0 is ‘left’ and z > 0 is ‘right’
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Figure 3.5.2: Schematic depiction of the four manifolds Sé’2’3’4 (3.15) and the three dif-
ferent heteroclinic orbits associated to the three different types of slow TW solutions, see
also Fig. 3.5.1 and Fig. 3.5.3. The dots indicate the equilibrium points Z* that determine
the asymptotic boundary conditions (3.8). (Recall that Z~ depends on « for o < 1 and
note that the horizontal axis represents aw. Consequently, the location of Z~ changes
for different o values). The black dotted line at aw = 1 indicates the location where the
manifolds coincide and where the critical manifold Sg loses normal hyperbolicity. The
interstitial gap is related to the part of the heteroclinic orbit on S¢ (i.e. the red curve
labelled Z) since here both u (normal cell density) and v (tumour cell density) are zero.
This only happens for o > 2.

asymptotes to ZT. In this case we expect to see an interstitial gap since both u and

v are (to leading order) zero on Si.

See also Fig. 3.5.2 for a schematic depiction of the four manifolds Sé’2’3’4 (3.15) and
the three different heteroclinic orbits associated to the three different types of slow TW
solutions. Finally, note that Z~ lies on the intersection of Sg’ and S’é for the boundary
case a = 1. Similarly, for & = 2 the transition through the fast field occurs, in the singular

limit, at the intersection of Sg’ and Sé.
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3.5.1 The properties of the critical manifold

To understand the hyperbolic properties of the critical manifold S2, we compute Jacobian

J of the fast equations of (3.14)

—1(1—2u—aw) 0 0

J = “ r-w . c 1
(1 —u)? l—u 1-u

0 B2v—1) 0

The eigenvalues of the Jacobian J are given by

A1 :—%(I—QU—OM}), A2 3 = <—Cj: \/02—1-4/3(2’1)—1)(1—10) ) (3.16)

1
2(1 — u)

with the associated eigenvectors

<

1= (f(u,r,v;a, c,w), AL (r — cv), B(2v — 1)(r — )T,

. (3.17)
U3 = (0,A23,8(2v —1))",
where
flu,ryv;a,c,w) = (1 —u) (A (M (1 —u)+¢)—B(2v—1)).
The eigenvalues (3.16) on the four manifolds Sé’2’3’4 (3.15) reduce to
1 1 1 1 1 2
Sg : Alz—g(l—aw), )\273:5(_Ci\/0 —4ﬂ> ,
1 1
S3: AN =-(1-aw), )\%73 =— (—c:l: V2 — 4a6w> ,
‘. 2oy (3.18)
3. \3_ _ 1o 3. _ 1 (_ 2
Sg: Ay C(l aw), Ajj 2( ct/c +4B) ,
1 1
4. N4 _ Lo 4 _ _ 2
Sg: A= C(l aw), A3 o ( ct/c +4aﬁw) .

So, since the system parameters and the speed c are assumed to be positive, 8?()\;)’2’3’4) <0
on the associated manifolds. In addition, §R()\;’2) < 0, while /\2”4 > 0 (since 8 and afw
are positive). The signs of the eigenvalues indicate that the fast transition, which is either
from S§ to Sg or from Sg to Sé, is always from a component of the manifold with two
unstable eigenvalues to a component with only one unstable eigenvalue (since, as will
follow from the upcoming analysis, )\}’2’3’4 > 0 during the fast transition). Crucially,
this latter unstable eigenvalue remains unchanged by the fast transition, i.e. Al = A\$ and
A? = A\l Furthermore, )\}’2’3’4 have real part zero if, and only if, aw = 1. Consequently,
the critical manifold S9 loses normal hyperbolicity at w = 1/« (i.e. where S{ coincides
with Sg and Sg’ coincides with Sé) and this loss happens through the first eigenvalue. This
loss of normal hyperbolicity is nondegenerate and transcritical in nature since o # 0, see

Fig. 3.5.2. In other words, we have an exchange of stability between the two components
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on each of the two branches Sg‘ Batw =1 /a and the critical manifold S$ undergoes a
dynamical transcritical bifurcation [67]. For o > 2, this point (w = 1/a) determines the

rightmost point of the interstitial gap.

We next study the slow reduced dynamics on the critical manifold Sg. Taking p = 1/2 in
the slow system of ODEs (3.7) and considering the singular limit € — 0 leads to the slow

reduced problem for the slow TW solutions

1
0=—u(l —u—aw),
c
r—cv
0= 1—u’
0=—pv(l —v),
dw
R
jzz—v(v—w)

1,2,3,4

So, the slow reduced dynamics on the four manifolds Sgq is given by the linear equa-

tions

Les, L= —w)
K P A

where v* = 0 on S§’2 and v* =1 on SSA. These are solved by

w(z) = C%’Qe\ﬁz + C%’Qe*\ﬁz, s(z) = Cll’gﬁe\ﬁz — C%’Qﬁe*ﬁz (3.19)

1,2
on Sy, and

w(z) =1+ Cf”%‘ﬁz + C§’4e_ﬁz, s(z) = Cf’4ﬁeﬁz — CSAﬁe_\ﬁZ (3.20)
on S:S)’A, for arbitrary constants Cll”22’3’4 € R. These constants are determined by the
asymptotic boundary conditions (3.8) and by the dynamics of the layer problem (3.14).
Consequently, the constants are dependent on the specific a-value, see Fig. 3.5.3. We now
must distinguish between the three different a-cases, 0 < a <1, 1 < a < 2, a > 2, in

order to analyse the specific dynamics in each case.

3.0.2 0<axl

To further study the slow TW solutions for 0 < a < 1, we divide our spatial domain (in
the slow variable z) into two slow fields IF — away from the layer dynamics — and one
fast field Iy — near the layer dynamics. In particular,

I = (_OO, —53/8)a Iy = [_63/8763/8]3 Is+ = (83/8700)7 (321)

S
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Figure 3.5.3: Schematic depiction of the slow flow on the different components of the
critical manifold for the three different heteroclinic orbits associated to the three different
types of slow TW solutions, see also Fig. 3.5.1 and Fig. 3.5.2. The jump between the
branches of the slow manifold, i.e. the fast transition, occurs at w = 1/2 in each of the
three cases. The black dashed lines at aw = 1 indicate the locations where the manifolds
coincide on the respective branches and where the heteroclinic orbits change manifolds.
We only observe an interstitial gap in the latter case where a > 2 (i.e. red curve labelled
7 on S in the bottom right frame).

where we, without loss of generality, assumed that the layer dynamics is centred around

3/8

zero. The asymptotic scaling €°/° of the boundaries of these fast and slow fields is chosen

such that it is asymptotically small with respect to the slow variable z and asymptoti-

1/2

cally large with respect to the fast variable y := ¢~1/2z. In particular, €3/ < 1, while

g3/8-1/2 1.

As z — —oo the heteroclinic orbit associated to the slow TW solution should approach
Z~ (3.8) and, hence, the critical manifold of interest is S& for z € I (see the top left
frame of Fig. 3.5.3). Consequently, the slow w and s components are given by (3.20). To
ensure that the solution has the correct asymptotic behaviour as z — —oo we must set
C3 = 0. Similarly, for z € IS the critical manifold of interest is S3 (see the bottom left

frame of Fig. 3.5.3) and the slow w and s components are given by (3.19) with C7 = 0.

During the transition through the fast field It, the e-dependent slow equations (w, s) are

given by

dw ds

a = \/es, 3 = —ecs — Vey(v —w). (3.22)



91 Chapter 3

Therefore, and by the asymptotic scale of the fast field, the change of both w and s are,
to leading order, constant during this transition. In other words, both w and s should
match to leading order at zero. This determines the two remaining integration constants

C{ and C% and gives

1 1
1—§e\ﬁz, zel,, —iﬁeﬁz, zel,
w(z) = 1 s(z) = ) (3.23)
ie*\ﬁz, zelf, —§ﬁe*\ﬁz, zelI.

Hence, the fast transition always occurs at w = 1/2 and the leading order profiles in
the slow fields are now known (by combining (3.15) and (3.23)) for the five different

components. In particular,

(1—a)+geﬁz, zelg,
u(z) = (3.24)
1—%6_\ﬁz, ze I},

What remains is understanding the layer dynamics in the fast field It. In this fast field the
dynamics of the heteroclinic orbit is, to leading order, determined by (3.14), and the orbit
has to transition from S§ (where R(Af,) > 0 and R(A3) < 0) to Sg (where R(A}) > 0
and R(A53) < 0). Since w is to leading order constant in the fast field, the u-equation
of (3.14) is of logistic-type and, by (3.15), u = 1 — aw on both 55’4. Consequently, and
since the logistic equation does not support pulse-type solutions, u is also constant during
the fast transition. In particular, v =1 —aw =1 — «/2 in Iy, see (3.24). The resulting
(v, r)-equations (3.14), with w = 1 — a//2, can be written as

a d?v dv

5@+c@+ﬁv(1_v) =0, (3.25)
which is exactly the TW ODE associated to TWs in the classical Fisher- KPP equation®.
Hence, there exists a heteroclinic connection between (v,7) = (1,0) and (v,r) = (0,0) in
the fast field. In addition, the (v,r)-components are nonnegative during this transition
if, and only if, ¢ > ¢pin := /2087 — the so-called minimum wave speed of the associated
Fisher-KPP equation — see, for instance, [79] and references therein. The last observation
also follows directly from the fact that )\%73 (3.18) — with w = 1/2 — are complex-valued
for ¢ < ¢pmin. Moreover, observe that the first components of the eigenvectors vz 3 (3.17)
associated to Ao 3 are zero, that is, the u-component indeed does not change during the
fast transition. This completes the analysis of the layer problem, and hence the analysis

of the heteroclinic orbits for 0 < o < 1, in the singular limit € — 0.

5This does not come as a surprise since the V-component of the original PDE (3.1), in the fast variable
y and for U = 1 — 1a, is the Fisher- KPP equation V; = BV (1 — V) + £V,,.
"The expression for ¢min also arose from the formal analysis of [27].
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Persistence for 0 < e < 1

For 0 < a < 1, we show the persistence of the singular heteroclinic orbits for sufficiently
small € in (3.7)-(3.9) (with p = 1/2) and thus the existence of slow TW solutions in
(3.1). By (3.24), a singular orbit only approaches v = 1 in the limit z — oo (see also
Remark 3.4.1). Furthermore, as 0 < a < 1 and as w is given by (3.23), we have that
aw # 1 along the singular orbit. Therefore, the critical manifold Sg does not lose normal
hyperbolicity along the singulars orbit and each singular orbit is a heteroclinic connection
between two normally hyperbolic components of the critical manifold. Fenichel’s First
Persistence Theorem [30] states that, for ¢ small enough (and after appropriately com-
pactifying Sg and Sg), there exist locally invariant slow manifolds S§78 and Sé,g in the
full e-dependent system (i.e. (3.7)-(3.9) with p = 1/2) that are O(y/e)-close to S3 and
Sél, respectively. Observe that Z* (3.8) are independent of ¢ and, hence, S;:g coincide
with 55’4 in the asymptotic limits z — +oo. Fenichel’s Second Persistence Theorem [30]
states that the full e-dependent system also possesses locally invariant stable and unsta-
ble manifolds W“(Séyg) and W?* (ngs) which are O(y/¢)-close to the stable and unstable
manifolds W¥(S) and W?(S2), respectively. We also have the necessary property of the
singular problem that the heteroclinic connections (singular orbits) are contained in the
intersection W¥(S2) N W#(S2) and it follows that the orbit persists (in the intersection of
W“(Sél’s) NW?(S83,)) for 0 < e < 1 if the intersection WH(SE) N W4 (S3) is transversal,
see [39,51,53, e.g.].

The slow TW problem has three fast variables (u, v, ) and two slow variables (w, s). More-
over, for 0 < & < 1, R(A}) > 0 and R(A3 3) < 0, see (3.18). Therefore, dim(Ws(Sgys)) =
dim(W*(S2)) = 2 +2 = 4.8 Similarly, R(A{,) > 0 and R()\}) < 0 and, consequently,
dim(W“(Sg"E)) = dim(W"(53)) = 2 + 2 = 4. Generically, two four-dimensional objects
in a five-dimensional phase space intersect transversally. The transversality of the inter-
sections is typically shown through a Melnikov integral [68,86,97, e.g.]. However, for this
specific system, we take advantage of the additional structures of the problem. We define
the so-called take-off curve as the unstable direction from which the singular orbit leaves
Z~ on SéB, the jump point as the point on the take-off curve where a solution leaves the
critical manifold to make the fast transition, and the touchdown curve as the union of
points on Sé4 a solution could land on after the fast transition. Due to the fact that u, w, s
are, to leading order, constant across the fast transition, the touchdown curve is the pro-
jection of the take-off curve onto SSA. The existence of an orbit relies on the fact that the
touchdown curve intersects the stable direction of ZT and it is clear this intersection is
transversal, see Fig. 3.5.3. The fact that this stable direction intersects the touchdown
curve transversally is an indicator that the intersection W*(S§) N\W#(S3) is also transver-
sal. Furthermore, during the fast transition, i.e. in the intersection W*(S54) N W¥(S3), u

is constant and the dynamics during this transition are controlled by a Fisher-KPP-type

8The first “2” originates from the number of eigenvalues (3.18) on S§ with negative real part (i.e the
number of fast stable eigenvalues), while the second “2” comes from the number of slow variables.
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equation (3.25) whose end state (in the two-dimensional state space (v,7)) has no un-
stable directions and supports a continuous family of TWs in ¢, implying the persistence
of solutions under an e perturbation. We exploit these structures in order to prove the
transversality of the intersection W¥(S$) N W*(S2).

We first analyse the behaviour of the 4—dimensional stable subspace W?(S2) and ob-
serve that the tangent space TW? (Sg) at points in Sg is spanned by the four vectors
(0, )\373,—B,0,0)T, (1 —a)y,0,0,1,0)7, (0,0,0,0,1)7. The first three elements of the
vectors (0, )\%73, —B,0,0)T are the stable eigenvectors 7 3 respectively, see (3.17), of the
Jacobian evaluated on Sg appended with two 0 components representing w,s — com-
ponents which remain constant across the fast transition. The latter vectors ((1 —
@)+,0,0,1,0)7, (0,0,0,0,1)7 span the manifold S3. Of the vectors that span TW?*(S53)
only (0, )\%73, —3,0,0)" will change under the evolution along the layer fibre. This is be-
cause the layer transition is governed by a Fisher-KPP-type equation in v, r, and the other
components are to leading order constant. Additionally, as the end state of the Fisher-
KPP equation has no unstable directions the space spanned by these two vectors will al-
ways contain the space spanned by (0, 1,0,0,0)” and (0,0, 1,0,0)7, i.e. the basis vectors of
the (v,r) phase space. Furthermore, #7 € W*(S§) and @ — (f(1 —a,1,¢,a,¢,1/2),0,0)
as the orbit approaches Sél in backwards z. Thus, v1, appended with zeros for w, s, is in
the tangent space TW"(S4) and is proportional to (1,0,0,0,0)”. This vector is linearly
independent to the four vectors that span TWS(Sg). At any point along the layer fibre,
the combined tangent spaces of W*(SZ%) and W"(S&) contain the full tangent space to
R5. From this, it follows directly that the intersection is transversal and the heteroclinic
connection persists for 0 < ¢ < 1 [39,51,53,97, e.g.]. Consequently, (3.1) supports slow
TW solutions for 0 < o < 1 and for sufficiently small €.

3.5.83 a>1

For o > 1 the situation is more involved since a dynamical transcritical bifurcation of
critical manifolds is involved (when aw = 1), see Fig. 3.5.2. This critical bifurcation
occurs to the left (with respect to z) of the layer transition (at z = 0) for 1 < a < 2,
while it occurs to the right of the layer transition for o > 2. The latter case results
in an interstitial gap only because part of the heteroclinic orbit is on Sé where both wu,
representing the normal cell density, and v, representing the tumour cell density, are zero
to leading order. However, in both cases we can still use the same slow-fast splitting of
the spatial domain (3.21) in the singular limit ¢ — 0. Furthermore, the layer problem
still exhibits Fisher—-KPP type behaviour.

In more detail, since o > 1 the heteroclinic orbit associated to the slow TW solution
should approach Z~ € S, see (3.8) and (3.15), as z — —oo. Hence, the critical manifold

of interest is S3 (3.15) for —z > 1. Consequently, the slow w and s components are
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given by (3.20) and — to ensure that the solution has the correct asymptotic behaviour —
C3 = 0. That is,

w(z) =1+ CieV7?, s(z) = C}/qeVT*, for —z> 1. (3.26)

Similarly, for z € I the critical manifold of interest is S3 (since Z* € S2%) and the slow
w and s components are given by (3.19) with C? = 0:

w(z) = C2e™V7* | 5(2) = —C3\/7e V7*, for z € I}, (3.27)

The two critical manifolds Sé’g both undergo a (different) dynamical transcritical bifurca-
tion at cw = 1. If this bifurcation occurs at z = 2 < 0 (to the left of the layer transition
at z = 0) then the heteroclinic orbit passes from S3 onto S§. In contrast, if this bifurca-
tion occurs at z = 2 > 0 (to the right of the layer transition) then the heteroclinic orbit

transitions from Sé onto Sg.

In the former case where the transition occurs at z = 2 < 0, we get that the slow w and

s components after the transition are given by

w(z) =1+ CleV?* + Cie V77| s(z) = Cf\/yeVT* — C3\/[ve V7,

(3.28)
for z € I and z > Z,

see (3.20). However, by construction, the slow components should match as z approaches

Z. So, from combining (3.26) and (3.28), we get
w(z) =1+ Cfeﬁza s(z) = C%ﬁe\ﬁz, for z € I, (3.29)

see Fig. 3.5.3. Since the change of both w and s are, to leading order, constant during
the transition through the fast field If, see (3.22), if follows that (3.27) and (3.29) should
match as z approaches zero. Furthermore, for o < 1, the slow components are given by
(3.23). Hence, 2 € I, such that aw(%) = 1 is given by 2 = v~ /2 log(2(ar — 1)/a) =: z_
(3.5), and % is negative only for 1 < a < 2. That is, the dynamical transcritical bifurcation
occurs only to the left of the layer transition, and the heteroclinic orbit transitions from
Sg to Sél, if 1 < a < 2. See also Fig. 3.5.2 and Fig. 3.5.3. As before, the leading order

profiles in the slow fields are now known for all the components, and, in particular,

0, z<z_,
U(Z) _ (]_—O[)—F%GWZ, z > z_ and ZGIS_, (330)
1 Lem = ze I,

2

We proceed in a similarly fashion in the case where the bifurcation occurs to the right

of the layer transition at z = 2 > 0. Again, we obtain that the slow components in the
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slow fields are given by (3.23). Consequently, 2 € I such that cw(2) = 1 is given by
3 =" Y2log(a/2) =: z; (3.2), and % is positive only for a > 2. That is, the dynamical
transcritical bifurcation only occurs to the right of the layer transition and the heteroclinic
orbit transitions from Sé to Sg, if @ > 2, see Fig. 3.5.2 and Fig. 3.5.3. The leading order

profiles in the slow fields are now known and the u-component is given by

0, zely,
u(z) = 0, z<zyandzel, (3.31)
1—ge_\ﬁz, z> 2.

For both 1 < a < 2 and a > 2, the layer dynamics in the fast field It is the same as for
0 < a<1in §3.5.2. That is, due to the logistic nature of the u-component in (3.14) and
the particulars of the critical manifolds involved, the fast u-component actually does not
change during the transition through the fast field Iy. Consequently, the layer transition
is associated to a Fisher-KPP equation. In particular, for 1 < a < 2 the associated TW
ODE is still given by (3.25) (since u is still 1 — /2 during the transition, see (3.30)). For
a > 2 the associated TW ODE is

2
gyz—l-cj;%—ﬂv(l—v)—o,
since u = 0 during the transition, see (3.31). Hence, in both cases there exists a het-
eroclinic connection between (v,r7) = (1,0) and (v,r7) = (0,0) in the fast field. The
(v,7)-components are nonnegative for 1 < a < 2 if, and only if, ¢ > cpin := V28 (i.e.
/\5’3 (3.18) are real-valued). In contrast, the (v,r)-components are nonnegative for a > 2
if, and only if, ¢ > Emin = 2/ (i-e. )\%73 (3.18) are real-valued). This completes the
analysis of the layer problem, and hence the analysis of the heteroclinic orbits in the

singular limit € — 0, for a > 1.

Persistence for 0 < e < 1

For o > 1, we show the persistence of the singular heteroclinic orbits for sufficiently small
e in (3.7)-(3.9) (with p = 1/2) and thus the existence of slow TW solutions in (3.1).
The added complexity — compared to the 0 < o < 1 case discussed in §3.5.2 — is related
to showing the persistence of the transcritical dynamical bifurcation structure around
aw = 1 since the critical manifold S loses normal hyperbolicity here. In addition, as in

the 0 < o < 1 case, the persistence of solutions across the fast transition will be shown.

The transcritical singularity results from the self-intersection of the critical manifold along
the line aw = 1. The persistence of the transcritical dynamical bifurcation structure
around aw = 1 follows from the observation that v = 0 is invariant for the full e-

dependent system ((3.7) with p = 1/2). Hence, we have u = 0 on the perturbed manifolds
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Ség’ Furthermore, away from aw = 1 the perturbed manifolds Sg’j are, to leading order,
given by 53’4. Therefore, the intersection between S§ and Sg’ and the intersection between

Sg and Sé must persist in the full e-dependent system.

The persistence of singular orbits across the fast transition for 0 < ¢ < 1 is shown by
proving the transversality of the intersection W¥(S&) N W#(S3) for 1 < a < 2, and the
transversality of the intersection W¥(S3) N W#(S3) for a > 2. The argument follows
similarly to the 0 < a < 1 case. The fast transition is governed by a Fisher-KPP-type
equation (3.25) in each case and one can explicitly calculate the spanning vectors of the
relevant tangent spaces in order to prove that the combined tangent spaces (of W*(S3)
and W#(S2) for 1 < a < 2 and of W¥(S3) and W*(S4) for o > 2) contain the full tangent
space to R®. Hence, the intersection is transversal in each case and the heteroclinic
connections persists for 1 < a < 2 and a > 2 [39,51, 53,97, e.g.]. Consequently, (3.1)
supports slow TW solutions for 1 < a < 2 and a > 2 for sufficiently small €.

3.6 Summary and outlook

In this chapter, we analysed TW solutions supported by the nondimensionalised Gatenby—
Gawlinski model (3.1). This model was originally proposed by Gatenby and Gawlinski
in [32] to investigate the acid-mediation hypothesis of the Warburg effect, also known as
aerobic glycolysis [104]. This hypothesis postulates that this Warburg effect is caused
by the fact that the progression of certain tumours is facilitated by the acidification of
the region around the tumour-host TW interface and this leads to an advantage of the
tumour cells [33]. In the model, the acid-mediation hypothesis is characterised by an
interstitial gap, a region in front of the invading TW interface devoid of cells, see also
Fig. 3.2.1. The TW solutions of (3.1) have been analysed numerically in [32] and by
using formal matched asymptotics in [27]. In particular, in [27] it was shown that the
Gatenby—Gawlinski model (3.1) supports slow and fast TW solutions. Here, “slow” and
“fast” refer to the asymptotic scaling of the speed ¢ of a TW solution with respect to the

small parameter ¢ (that measures the strength of the nonlinear diffusion of the tumour).

In this chapter, we embedded the TW problem associated to (3.1) into a slow-fast? struc-
ture and use geometric singular perturbation techniques to prove the formal results of
[27] in the critical cases (¢ ~ O(1) and ¢ ~ O(y/2)). In particular, we showed that the
interstitial gap is present only if the destructive influence of the acid, modelled by the
parameter « in (3.1), is strong enough. That is, the interstitial gap exists only for o > 2,
see also [27]. We showed that, from a geometric perspective, the interstitial gap can be
understood as the distance between the TW interface — which has the characteristics of
a Fisher—- KPP wave — and a dynamical transcritical bifurcation of two parts of the crit-

ical manifold. For moderate strengths of the destructive influence of the acid, i.e. for

9Here, slow-fast refers to the difference in asymptotic scaling of the (nonlinear) diffusion coefficient of
(3.1)



97 Chapter 3

1 < a < 2, parts of the critical manifold involved still undergo a dynamical transcritical
bifurcation, however, this now occurs behind the TW interface and no region devoid of

cells is thus created, see, for instance, the middle panel of Fig. 3.5.1.

3.6.1 Spectral stability of the Gatenby-Galenski model

The results of this chapter show that the Gatenby—Gawlinski model (3.1) supports, even
for a fixed parameter set, a myriad of TW solutions with different speeds. A logical next
question to answer is related to wave speed selection. That is, given a specific parameter
set and initial condition, what is — if any — the speed of the TW solution the initial
condition converge to? Because of the Fisher-KPP imprint of the V-component of the
model, it can be expected that a dispersion relation relating the asymptotic behaviour of
an initial condition around plus infinity and the linear spreading speed of the T'W solution
can be derived, see, for instance, [69,76,79]. However, a TW solution will not always travel
with this linear spreading speed, see, for instance, [36]. It is also interesting to see if the
observed wave speeds for the slow TW solutions equal the minimum wave speeds of the
associated Fisher-KPP equations (¢pi, = v2a8 for 0 < a < 2 and &y = 24/ for
a > 2, see §3.5). That is, are the observed slow TW solutions pushed or pulled fronts
[102]?

A first natural step to start tackling these questions is to study the stability properties
of the slow and fast TW solutions, and a potential approach is to combine the analytic
approach used in Chapter 2 with the Riccati Evans function approach developed in [35]

to numerically compute eigenvalues.

3.6.2 Extensions and generalisations of the Gatenby-Galenski model

The Gatenby—Gawlinski model (3.1) is amendable for analysis because the nonlinear dif-
fusion term in the equation for the tumour cells acts as a regular perturbation to the
normal diffusion term (as U is constant to leading order during the fast transition), and
the underlying equation has a Fisher-KPP imprint. A simplified model, obtained via a
quasi-steady state reduction [62] of the full model, is given by

ou
ow 0*wW
O = (H(=) = W)+ Ty

where H(-) is the Heaviside step-function replacing the V-component of (3.1). This
simplified model has similar characteristics to the full model (3.1), and, crucially, still

supports TW solutions with an interstitial gap of length z; for o > 2.
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Finally, while we only establish the existence of slow and fast TW solutions to the original
Gatenby—Gawlinski model (3.1), the methodology of embedding the problem into a slow-
fast structure and subsequently studying the dynamics of the reduced and layer problems
can also be used to prove the existence of TW solutions in generalizations of the Gatenby—
Gawlinski model (such as models (3.3) and (3.4) studied in [42], respectively [75]). The
argument for the persistence of solutions across the dynamical transcritical bifurcation
for 0 < ¢ < 1 follows from the invariance of u = 0 in the full e-dependent system (3.7).
A mathematically interesting question is whether this dynamical transcritical bifurcation

also persists for similar systems where this invariance is broken, see [67,72].
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Stability of defect solutions

Abstract

In this chapter we analyse the stability of trivial defect solutions. These solutions are,
to leading order, constant solutions to a general n—dimensional system of RDEs with a
small, spatially dependent, jump-type defect included. This work can be seen as a natural
extension of [21] where the existence conditions for trivial and local defect solutions were
established for a general system of ODEs with a small, spatially dependent, jump-type
defect. We utilise these existence results as we analyse the stability of defect solutions to
the RDE studied in this chapter. The analysis of trivial defect solutions in this chapter
primarily concerns tracking potential point spectra that, upon the inclusion of the jump-
type defect, emerge from the branch points of the absolute spectrum associated with the
spatially homogeneous problem (see §1.3.4 for an introduction to the absolute spectrum).
These potential point spectra are tracked as roots of an expansion of the Evans function
(see §1.3.6 for an introduction to the Evans function) and emerge as O(¢g) corrections to
the temporal eigenvalue. The stability analysis of the trivial defect solutions can be seen

as first step towards the stability analysis of local defect solutions.

4.1 Introduction

RDEs are relatively simple partial differential equations which exhibit a wide range of
complex behaviours and patterns. The analysis of spatially localized stationary solutions
and travelling waves, solutions that move with a constant speed and maintain their shape,
are integral in the study of pattern formation. Much of the existing analysis on the
existence and stability of stationary and travelling wave solutions has assumed spatially
homogeneous background states. However, spatially dependent inhomogeneities can have
a profound impact on the type of solutions, patterns formed and stability conditions. For
example, travelling waves may be pinned, reflected, annihilated or split upon meeting an
inhomogeneity [98,100]. The analysis in this chapter focuses on step-function defects.
Various approaches have been used for both the existence and stability analysis of RDEs
with a step-function defect, such as [100] where pinned solutions are shown to exist for
a three component FitzHugh-Nagumo type system using geometric singular perturbation
theory. In [14] the stability of pinned solutions to the sine-Gordon equation with a
step-function inhomogeneity are analysed using the underlying Hamiltonian structure.
In [55] perturbations of near integrable problems are analysed utilising the structure of

the leading order problem and in [13,64] the stability of inhomogeneous waves with an
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underlying Hamiltonian structure were studied. In [13] a finite length inhomogeneity was
considered. A finite length inhomogeneity can be treated as two jump-type defects. As
long as the inhomogeneity is sufficiently small it can be treated as weak defects and dealt
with through the same methods outlined in this chapter. In [105] the authors analyse
the front selection, existence and stability of travelling wave solutions to scalar equations
in periodic media, slowly varying media and randomly varying media. The stability of
stationary solutions to a perturbed RDE was considered in [54]. An expansion of the Evans
function was formulated and a stability condition derived under the assumption that
the perturbation is smooth, whilst the analysis of this chapter violates this smoothness

assumption.

Here, we consider a generic RDE and add a step-function type perturbation. That is, we

take the following n—dimensional RDE,

with (z,t) € RxRT, f(U) : R® — R" is a sufficiently smooth function and D is a diagonal
matrix of diffusion coefficients which are assumed to be strictly positive, see Remark 4.1.1.

We add a spatially dependent jump-type perturbation to obtain,

0 <0
U= DUy + f(U) + (4.2)
eg(U) = >0,

where ¢ is a small parameter and g(U) : R” — R" is a sufficiently smooth function that
is O(1) with respect to . We will refer to (4.1) as the unperturbed PDE and (4.2) as
the perturbed PDE. The techniques outlined in [105] cannot be directly applied to (4.2)
as the analysis of scalar solutions relies quite heavily on considering sub-solutions and

super-solutions.

We analyse the impact of the jump-type defect on the stability of stable, stationary
solutions to (4.1). However, we must first establish the existence of these stationary
solutions as any assumptions, or conditions, that arise must be taken into account in the
stability analysis. The existence equation associated with the unperturbed PDE (4.1),

expressed as a system of first order ODEs, is the following 2n-dimensional system,

(o) (o) 0
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Similarly, the existence equation associated with the perturbed PDE (4.2), expressed as

a system of first order ODEs, is the following 2n-dimensional system,

(

x <0,

U / v 0 B
-,

x>0,
—eD~g(u)

with ' = d/dz, v := u, and u,v € R™. We will refer to (4.3) as the unperturbed exis-
tence equation and to (4.4) as the perturbed existence equation. For the sake of clarity,
throughout this chapter we will refer to the Jacobian matrices of the right-hand sides of
(4.4) and (4.3) as the Jacobian matrices whereas we will refer to the Jacobian matrices
associated with f(u) and g(u), denoted J¢(u) and Jy(u) respectively, as the sub-Jacobian
matrices. Furthermore, we will refer to the eigenvalues of the Jacobian and sub-Jacobian

matrices as matrix eigenvalues.

Following the definition of [21], a defect solution I'.(x) of (4.4) is defined as a solution to
the perturbed existence equation (4.4) that approaches (in a graph sense) a solution I'(x)
to the unperturbed existence equation (4.3) in the £ — 0 limit, i.e. lim._,o I'c(x) = T'(z).
There are three types of defect solutions identified in [21]; trivial defect solutions, local
defect solutions and global defect solutions, see Figure 4.2.1 and Definition 4.2.1. This

chapter will focus primarily on the analysis of the stability of trivial defect solutions.

In §4.2 we begin with a recap of the relevant existence analysis of [21] outlining how the
hypotheses, assumptions and existence conditions of that paper apply to (4.4) in order
to proceed with our stability analysis. We then set-up the perturbed stability problem.
In §4.3 we formulate the Evans function for a trivial defect solution to a scalar bistable
PDE as an illustrative example. We end the chapter by outlining how this method will
be generalised for the stability analysis of the trivial defect solution to the n-dimensional
problem.

Remark 4.1.1. The assumption that the matriz of diffusion coefficients contains strictly
positive entries is necessary as we frequently utilise the inverse of the diffusion matriz. If
there is a zero entry in the diffusion matriz the existence problem associated with the per-
turbed problem (4.2) is a diffeo-algebraic problem which must be restricted to the manifold

defined by the algebraic constraints before proceeding in a similar fashion.

4.2 Set-up, definitions, and main results

We first outline the relevant existence results of the defect solutions as derived in [21]
and set-up the stability problem. We begin with the formal definition of the different
types of defect solutions, then we establish the existence and stability hypotheses of the
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Figure 4.2.1: A depiction of three types of defect solutions. The defect occurs at the
point x = 0. Left: a trivial defect solution. Centre: a local defect solution. The defect
has occurred near P. Right: a global defect solution. Image is from A. Doelman, P. van
Heijster, and F. Xie. A geometric approach to stationary defect solutions in one space
dimension. SIAM Journal on Applied Dynamical Systems, 15:655-712, 2016 copyright
(©2016 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.

equilibrium solutions to the unperturbed PDE. We summarise the existence conditions for
trivial defect solutions that were established in [21] and formulate the stability problem
by linearising about these defect solutions. We follow the definitions and notation of [21]

where possible and adapt the analysis and results therein to the format of (4.2).

4.2.1 Types of defect solution

There are two key differences between our formulation of the unperturbed and perturbed

existence equations compared to that of [21]. In [21] a general ODE of the form

h(u) t <0,
h(u) +ej(u) t>0,

U=

is considered, where ¢ € R and h(u),j(u) : R¥ — R¥ are sufficiently smooth functions. In
contrast, our existence equation arises from an n-dimensional PDE. Thus, we have defined
the first n entries of our 2n-dimensional function by u, =: v in both the perturbed and
unperturbed existence equations. As a result, our functions (compared to h) and our
perturbations (compared to j) are special cases from the ones studied in [21]. Secondly,
as our primary focus is on the analysis of the trivial defect solutions our assumptions on
the unperturbed and perturbed existence equations are less restrictive and will be stated

in terms of f(u) and g(u) rather than the full right hand side of the existence equations.

We label the roots of f(u) for which the Jacobian of (4.3) is hyperbolic as p; for i =
1,2,..., N where N is a positive (possibly infinite) integer. These roots correspond to
equilibrium solutions of the unperturbed existence equation (4.3) when v = 0, i.e. when
(u,v) = (p;,0) for i = 1,2,..., N which we denote by P; := (p;,0) for i = 1,2,..., N. For
the existence and stability analysis we require that the function f(u) has at least one such
isolated root that is hyperbolic, i.e. we require N > 1. However, we utilise the following

lemma to simplify this requirement.
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Lemma 4.2.1. Fori=1,2,....,N the equilibrium solution P; are hyperbolic in the sense
that the Jacobian of (4.3) has no purely imaginary matriz eigenvalues if and only if all

of the matriz eigenvalues of DilJf(pi) have negative real part.

Proof. The Jacobian associated with the unperturbed existence equation (4.3) at the

equilibrium solution u = p; is given by,

0 I,
—D M Jp(pi) 0)°

for i = 1,2,..., N, where I, is the n-dimensional identity matrix. The characteristic

polynomial of this Jacobian matrix is given by
det(p*I, + D1 (p;)) = 0.

It is clear that the eigenvalues of the Jacobian are given by the square root of the eigenval-
ues of —D~1J¢(p;). Therefore, the equilibrium solutions P; are hyperbolic (in the sense
that the Jacobian matrix has no purely imaginary matrix eigenvalues) if and only if the

matrix D~1J;(p;) has only matrix eigenvalues with strictly negative real part. O

In other words, we only need to make the following assumption on f(u).
Hypothesis 4.1. The function f(u) has at least one isolated root, denoted uy. The
matric D~ #(uo) associated with this solution has eigenvalues with strictly negative real

part and these matrix eigenvalues are simple.

Cases with purely imaginary eigenvalues are of interest in applications such as edge bi-
furcations [55]. However, these cases are marginally spectrally stable. We only consider
equilibria with negative-definite sub-Jacobians as we focus on the impact of the inclusion

of a jump-type defect on an otherwise spectrally stable solution.

A consequence of Hypothesis 4.1 is that the unperturbed existence equation (4.3) has at
least one equilibrium solution (u,v) = (ug,0) and the Jacobian matrix associated with
(4.3) is also hyperbolic at this equilibrium solution with 2n simple eigenvalues. For &

sufficiently small, the implicit function theorem implies that the fully perturbed existence

() B (—D—1<f<u>+ag<u>>>’ 45

also has an isolated, hyperbolic equilibrium, see, for instance, [51]. More precisely, if
(4.3) has N isolated hyperbolic equilibria then (4.5) has IV isolated hyperbolic equilibria,
P?, such that lim. o Pf = P,. The eigenvalues of the Jacobian associated with (4.5)

(2

equation,

evaluated at these equilibria P are also O(1) with respect to €. Furthermore, Hypothesis

4.1, together with the implicit function theorem, implies that there exists at least one
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root of f(u) + eg(u), denoted u®, which is isolated such that lim._,ou® = wg. Thus,
The Jacobian matrix associated with (4.5) is hyperbolic with simple matrix eigenvalues
when (u,v) = (uf,0). Defect solutions I'c(z) are solutions to (4.2) that approach (in a
graph sense) a solution I'(z) to (4.1) in the limit ¢ — 0 and we only consider I'(x) that
connect hyperbolic equilibria. From Hypothesis 4.1 we know that there exists at least
one such equilibria (ug,0). We denote the end points of T'(z) as P* := lim,; 4o ['()
and Pf := lim, 400 [ (2) respectively, with the observation that P~ can be equal to
P*. Furthermore, one end point of I'.(z) will be equal to the corresponding end point of

['(z), i.e. either P = P~ or P.X = PT, see Figure 4.2.1.

As in [21], (4.2) has been parametrised in such a way that the defect occurs at x = 0. We
refer to x = 0 as the defect point in the remainder of this thesis. We may now distinguish
between three types of defect solutions by the location of the defect point in the phase

portrait of the solution.

Definition 4.2.1. ([21] Definition 1.4) A defect solution I'z(x) is called

o a trivial defect solution if P~ = PT and

lim (Sup ||IT:(z) — P+||> =0;
R

e=0 \ ze

e a local defect solution if either

lim (sup [T () — P+\> =0 or lim (sup [|Te(z) — P_H> =0

e—=0 \ 2>0 e—=0 \ z<0

e a global defect solution if

lim (sup [|IT:(x) — P+H) >0 and lim (sup ||IT:(x) — PH) > 0.
=0 \ 250 =0 \ z<0

As we are primarily interested in the trivial defect solution, we choose that the defect
solution occurs near a single hyperbolic equilibrium u = wug described in Hypothesis
4.1, that is P~ = Pt = (ug,0). Hence, the trivial defect solution I'c(z) asymptotes to
lim, oo Fe(z) = P and lim, 0 e(x) = P = (uf,0). Moreover, I'(z) = PT.

4.2.2  The stability of equilibrium solutions to the unperturbed PDE

As we are motivated by the analysis of local defect solutions, we focus on the effect of
the introduced defect on equilibrium solutions P* = (ug,0) that are spectrally stable,
see §5.4.1 for further discussion of local defect solutions. In this section we establish the
spectral stability of the equilibrium solution P*. We approach this problem in two ways in
this chapter; in this section we locate the essential and absolute spectrum associated with
the equilibrium solution and in §4.2.5 we formulate the Evans function associated with the

equilibrium solution. Note, there is no point spectrum associated with constant solutions.
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This can be seen through the calculation of the Evans function or by observing that for
any given value A € C, to the right of the essential and absolute spectrum, the Jacobian
matrix associated with (4.3) is constant and invertible. Thus, locating the essential and
absolute spectrum is sufficient to establish the spectral stability of an equilibrium solution
to the unperturbed PDE. We formulate the Evans function in §4.2.5 as it is the basis for

our analysis of the trivial defect solution and is thus necessary in this case.

We perturb about the equilibrium solution via the substitution u(x,t) = ug + e1p(z,t)
where 0 < 1 < 1 and p(z,t) is the perturbation. We take the perturbation to be of the
form p(z,t) = eMp(x). The linearised equation associated with (4.1) (i.e. to leading order

in £1), referred to as the unperturbed eigenvalue problem, is,
>\P =Dpys + Jf(UO)P = £0p~ (46)

The natural domain for the linear operator Lo is H2(R™) as it is derived from a second
order reaction diffusion equation. We seek the spectrum of Ly for which we have the
following definition stated in Chapter 1 as Definition 1.3.1 and restated here for conve-
nience;

Definition 4.2.2. ([88] Definition 3.2) We say A € C is in the spectrum of an operator
L, denoted o(L), if the operator L — X, where I is the identity matriz, is not invertible,

i.e. the inverse does not exist or is not bounded.

The spectrum of an operator falls naturally into two parts; the essential spectrum, denoted
Oess(L) and the point spectrum, denoted o, (L) [41]. It is more straightforward to use a
system of first order system of ODEs. Therefore, we transform (4.6) into such a system

via the introduction of the variable ¢ := p,. This results in the equivalent eigenvalue

Py 0 I, P\
ol <q> B (D_l (Al = Jg(uo)) 0) <q> o (4.7)

Ao(N)

problem,

As in Definition 1.3.3, we define the asymptotic operator associated with Ty,

o) i= A_(N) = LEli)IElOOAO(A) x <0, (45)
PV AL ) = dim AN @ >0, '

Tr—00
We have the following definition for the essential spectrum stated in Chapter 1 as Defini-
tion 1.3.4 and restated here for convenience;
Definition 4.2.3. ([54] Definition 3.1.11) . We say A € 0ess(Too), the essential spectrum
of To,c0, if either
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i. Ay(X) and A_(X) are hyperbolic with a different number of unstable matriz eigenval-
ues, equivalently the Morse indices iy (A) as discussed in §1.8.2 differ, i.e. i1 —i_ # 0;
or

it. AL (X) or A_(X\) has at least one purely imaginary matriz eigenvalue.

In our case, the operator 7y(A) is spatially invariant and the associated asymptotic op-
erator is thus simply given by 75 .c(A) = To(A) and the so-called asymptotic matrices
are equal, i.e. A_(\) = Ay (\) = Ap(A). This simplifies the computation of the essential
spectrum significantly. As the asymptotic matrices are equal, they always have the same
number of unstable matrix eigenvalues for all A € C. Thus, the essential spectrum consists
only of values A € C such that Ag(\) has at least one purely imaginary matrix eigenvalue

i.e. they are determined by the roots of the dispersion relations.

Another important concept in stability analysis is that of the absolute spectrum. This
is not spectrum in the sense that is does not arise from Definition 4.2.2. However, the
absolute spectrum is contained to the left (in the complex plane) of the borders of the
essential spectrum. The essential spectrum can be shifted by weighting the function space,
i.e. by only allowing perturbations with exponential decay (the rate of which is referred
to as the weight) as + — —oo and/or as * — oo [54, 93], see also §1.3.3. However, the
absolute spectrum is not shifted by weighting the space. Thus, the absolute spectrum
marks the potential maximum for how far the essential spectrum can be shifted into the
left half plane. The presence of absolute spectrum in the right half plane causes the
solution to be spectrally unstable in all weighted spaces as it indicates the presence of
essential spectrum in the right half plane. The absolute spectrum will also come into play
in the use of the Evans function, see §4.2.5.

Definition 4.2.4. (/88] Definition 6.1) Take an N dimensional asymptotic operator,
T, in the form of (4.8), that is well-posed in the sense that iy =i = j for R(A) > 1.
For A € C we rank the N spatial eigenvalues ,ul-i of the asymptotic matrices My by the

magnitude of their real parts, i.e.
R(:E () = RO > > ReEO) = RO, (V) > . > Rk (V).
We define the sets
ofe = (A e CIRU) =Rt | and o = {NeClRGy) = RO o (@49)
and the absolute spectrum of Too (and of T ) is Oaps = U:bs U0, -

In the case of trivial defect solutions we have, to leading order, J;rbs = 0, thus we will

drop the superscript.

As the equation (4.6) is spatially independent, the essential spectrum can be calculated

directly from the dispersion relations of Ag(\). The characteristic polynomial of Ag(\)
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is det(Ap(\) — pl,) = 0 where p are the spatial eigenvalues. As Ay(A) consists of block

matrices which commute this expression is given by

det (I, — D™ ( AL, — J¢(up))) = 0.

This brings us to our most restrictive assumption. In order to make explicit calculations of
the Evans function tractable we must assume that D~! and D~!.J;(ug) are simultaneously
diagonalisable. This requires either that J¢(ug) is diagonal or that the diagonal entries
of D are equal. The assumption that is less restrictive and more relevant to our interests
is the latter.

Hypothesis 4.2. The diffusion coefficient of every population is given by the constant J,
that is D = 01,,.

The matrix eigenvalues of the Jacobian of (4.3) are i\/—i% for i = 1,2,...,n. Though
Hypothesis 4.2 is restrictive, it is necessary as the stability analysis for general func-
tions f(u), g(u) is computationally prohibitive without explicit knowledge of the form of
f(u), g(u) and of the entries of the matrix D. However, if the explicit form of the model
is known one may invert the matrix D and continue the calculation as presented here.
In other words, systems that do not satisfy Hypothesis 4.2 will follow the methodology
presented within this chapter. Moreover, Hypothesis 4.2 is always true for scalar equa-
tions. We denote the matrix eigenvalues of J¢(ug) as v; for i = 1,2,...,n. In this case
Hypotheses 4.1 and 4.2 imply R(v;) < 0 and v; # v; for 4,5 =1,2,...,n, i # j.

As we assumed that D~1J¢(up) has simple eigenvalues with non-zero real part we know
+J¢(uo) is diagonalisable and thus we set $.J7(ug) = 3 PAP~! where P is an invertible
matrix and A = diag(vi, 2, ..., V) is the diagonal matrix of eigenvalues of J¢(ug). Then,
from the characteristic polynomial of Ag(\),

A

1
0 = det (P,ﬂfnpl — PgInP*1 — 6PAP1>

o))

— |Pldet (m Lo - A>> P

= det (uQIn - %()\In - A)>

So, the 2n spatial eigenvalues associated with Ag(\) are puf = £4/3(A\ —1;) for i =

1,2,...,n. Recall that, as the Ag(\) is spatially independent, the asymptotic matrices at
the two end states x — Fo00 are both given by Ag()\). Setting u = ik gives the n dispersion
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relations associated with Ag()\) at each end state x — 00 as A = —6k? + v;. We denote
the spatial eigenvalue with the largest real part as v*. We can see from the spatial
eigenvalues p; that the Morse indices iy (\) and i_(\) are equal when R(\) > R(v*).
That is, if R(A\) > R(v*) then A is in the resolvent of the essential spectrum. Thus, in an
unweighted space, we can see that the essential spectrum consists of horizontal lines in the
complex plane consisting of values of A with R(\) < R(v;), recalling that, by assumption,
R(v;) < 0 for all i. Furthermore, we can conclude that all values A such that A = v; are
branch points of the absolute spectrum as at these points the pair of spatial eigenvalues
uli ==+ %()\ v;) for a given i have %(uf) = 0 and thus, by Definition 4.2.4, A = 1;
for i = 1,2,...,n are contained in the absolute spectrum. We denote the leading branch
point, that is A = v*, as A .

Remark 4.2.2. The assumption in Hypothesis 4.1 that the sub-Jacobian associated with
f(u) at uw = ug has only simple eigenvalues can be relaxed. Under the assumption the
n matriz eigenvalues of Jg(ug) each have algebraic and geometric multiplicity of 1. As
a result, the 2n spatial eigenvalues of the unperturbed eigenvalue problem are simple for
R(N) > R(ALL). If we relax this assumption, i.e. we allow the algebraic and/or geometric
multiplicity of the matrix eigenvalues of Jr(ug) to be greater than 1 we can use the Jordan
normal form rather than the diagonal matriz A to calculate the spatial eigenvalues. This is
algebraically more intensive but the stability analysis follows similarly. The main issue is
the branch point of the absolute spectrum. If the leading matriz eigenvalue, v}, of Jy(uo)
has multiplicity greater than 1 then the leading branch point X\; . will be of higher order.
This will increase the complexity of calculations greatly. If any matriz eigenvalue other
than the leading matriz eigenvalue has algebraic or geometric multiplicity greater than 1
then the spatial eigenvalues will have corresponding increased multiplicity but will only
contribute to the generalised absolute spectrum and furthermore, will be to the left of the

branch point, which we do not consider as part of the domain of the Fvans function.

4.2.8 The existence trivial defect solutions to the perturbed PDE

In order to establish the groundwork for the analysis of local defect solutions, we re-
quire the following assumption regarding the 2n-length perturbation with n zero entries,
(0,eD~'g(u))”. This assumption is adapted from Hypothesis 3 of [21].

Hypothesis 4.3. The term D~ 'g(u) is asymptotically strictly order 1. In other words,
limy 400 D7 1g(u) is ©(1) with respect to e.

This assumption is decidedly weaker than Hypothesis 3 of [21] though strong enough for

our analysis of the trivial defect solution.

We now state the primary result of [21] utilised in this chapter.
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Lemma 4.2.3. ([21] Lemma 1.7) Assume that Hypotheses 4.1 and 4.3 hold. Then, for
e > 0 small enough, system (4.4) has a unique trivial defect solution T'z(x) connecting P*
and PX, where Pt = lim._,o P.".

Remark 4.2.4. There are several assumptions made on the perturbed and unperturbed
equations by [21] that we have not included here. These assumptions were omitted as
they are not necessary for the existence or stability analysis of the trivial defect solution.

These assumptions are, however, necessary for the analysis of the local defect solutions,
see §5.4.1.

4.2.4 The perturbed spectral problem

To determine the spectral stability of I'-(z) we must linearise the perturbed PDE (4.2)
about the trivial defect solution. Let U(x,t) = I'e(z) + eop(x,t) with 0 < 9 < 1 where
p(z,t) is a perturbation in an appropriately chosen Banach space. As in the unperturbed
case we take p(x,t) = e*p(x). The linearised eigenvalue problem associated with the

perturbed PDE (4.2), referred to as the perturbed eigenvalue problem is thus,

0 <0
Ap =Dpys + Jf(re)p +
eJyTe)p = >0, (4.10)

=:Lcp,
where we have omitted the argument of the trivial defect solution. The natural domain
for a second order reaction diffusion equation is H2(R"). However, due to the loss of

continuity, caused by the defect, the domain of L. is reduced to H!(R™). As for the

unperturbed problem we set ¢ := p, to obtain the equivalent operator,

A 0 I, P\ 0 >
Te(N) <q> = <D1 (A, — J(T2)) o) (q> . (4.11)

. z >0
D= eJy(Te)p

4.2.5 The Evans function

The primary tool we will be using for our analysis in this chapter is the Evans function
which was introduced in §1.3.6. The Evans function is an analytic tool for locating the
point spectrum associated with an operator. Though our solution to the unperturbed
existence equation (and leading order solution to the perturbed existence equation) is
an equilibrium solution, and thus, has no associated point spectrum, the Evans function
proves useful for tracking any potential spectra that emerge from the branch points of

the absolute spectrum upon the introduction of the jump-type defect.
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Recalling that, for (4.7) the asymptotic matrices are equal, i.e. A_(X) = AL (\) = Ag(N),
we denote the unstable eigenspace associated with Ag(\) as E* and similarly the stable
subspace of Ag(A) as E . The natural domain of the Evans function is the region denoted
Q1 which consists of the values A\ € C to the right of the rightmost boundary of the
essential spectrum, i.e. the region containing A with R(\) > 1. On this domain Ag(\) is
hyperbolic as it is outside of the essential spectrum as established in §4.2.2. Furthermore,
as our solution is hyperbolic (in the sense that the Jacobian of (4.4) is hyperbolic) and by
our explicit calculation of the spatial eigenvalues in §4.2.2 we have dim(E* ) = dim(E?.) =

n.

The natural domain €7 of the Evans function does not include the essential spectrum nor
the absolute spectrum, [54]. However, the Evans function can be extended analytically
into the essential spectrum and the absolute spectrum acts as a branch cut for the Evans
function. The branch points of the absolute spectrum are also roots of the Evans function

though they are not in €.

The Evans function E()) is independent of the choice of x and is analytic on §; [88].
For A € ©; the Evans function has the following properties. This theorem was stated

previously as 1.3.3 and is restated here for convenience.

Theorem 4.2.5. (/88] Theorem 4.1):

— E(X) s real if X is real.
- E(X\) =0 if and only if X is a point eigenvalue of the associated linear operator.
— The order of A as a oot of the Evans function corresponds to the algebraic multi-

plicity of \ as an eigenvalue.

We consider a regular expansion of A\ € Qq, i.e. A = Ao + A1 + 2y + O(e?), and, as the

Evans function is analytic in A\, we obtain the expansion of the Evans function,

E(\(e),e,x2) = E(X\,0,2) + ¢ <%

ok
(R0, 0,2) + Ar+(X0, 0, l‘))
O*E OFE 0’E  ,0? (4.12)
+ 25 (8 5 (A0, 0,7) + 2X0—+ Y (X0,0,2) + 2\ =— e + A\] 8)\2>
+O(3).

By Abel’s formula the Evans function E(A(g), e, x) is independent of the spatial variable x
since Tr(Ao(A) = 0 and the coefficient matrix of T.(\) has trace of 0. We have deliberately
included x above for clarity as we later equate at x = 0. The Evans function for the defect

solution is defined as

E(\(e),e,x) := det (plL(a;), D (), pR(2),. .. ,p%”(x)) (4.13)
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where p? for i = 1,...,n are linearly independent solutions to (4.10) that decay to E“ as
x — —oc and pl, for i = 1,...,n are linearly independent solutions to (4.10) that decay to
E% as x — oo. In order to simplify calculations, we will be evaluating the Evans function

at £ = 0.

The roots of the Evans function of a trivial defect solution are, to leading order, given by
those of the constant solution to the homogeneous case. The spectrum of the constant
solution consists only of the essential spectrum (which coincides with the absolute spec-
trum). The inclusion of a small, spatially dependent, jump-type defect causes the branch
point of the absolute spectrum associated with an equilibrium solution of the unperturbed
PDE (4.1) to split into two branch points of the absolute spectrum associated with the
trivial defect solution to the perturbed PDE (4.2). These two perturbed branch points
are O(e) perturbations of the unperturbed branch point. Any point spectra that emerge
as a result of the inclusion of the jump-type defect will be given, to leading order, by the
two branch points of the perturbed system. Note that, in order to obtain the O(sk) term

k+1)

of the eigenvalue expansion one must calculate the O(e term of the Evans function

expansion.

4.3 A scalar example: The bistable equation with a generic defect

In this section, we will derive the profile of a trivial defect solution for a perturbed scalar
example and perform the stability analysis of this trivial defect solution as an illustrative

example with explicit functions.

Consider the scalar bistable equation,
Up = Upy +u — U, (4.14)

with (z,t) € R x RY, u € R. The bistable equation has three equilibrium solutions;
u = %1, which are spectrally stable solutions, and u = 0 which is spectrally unstable.
We analyse the stability of the trivial defect solution about the homogeneous steady state
u = —1 for the scalar bistable equation with an added linear jump defect. That is, (4.2)

with n =1, f(u) = u — u? and g(u) = u, i.e.

3 0 <0,
eu x> 0.
The choice g(u) = u is a generic perturbation for the steady state u = —1 as outlined

above, however this function is not a generic defect for the steady state u = 0.

We consider the trivial defect solution 4 near the equilibrium v = —1 with lim, @ =
—1 =: P~ and limy 4100t = —V/14+e = -1 — % + % + O (53) =: P*. The Jacobian

associated with f(u) in this example is Jf(u) = 1—3u®. The isolated equilibrium solution
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u® Ui, U2
-1.00 0.1} P
O 3 i s
-1.05 | o1l
-0.2 +
-1.10 -
-0.3
-1.15 + -0.4
xT
' ; : 0.5t
-4 0 4

Figure 4.3.1: Trivial defect solution profile to the scalar bistable equation. In both images
blue represents solutions to (4.3) for x < 0 and red represents solutions to (4.3) for z > 0.
Left panel: The trivial defect solution to the scalar bistable equation. Solution profile is
calculated to ©(?). Right panel: The ©(e) solution profile u1(x) (dashed) and the ©(¢?)
solution profile us(x) (solid).

u = —1 thus has J¢(—1) = —2, satisfying Hypothesis 4.1 and as g(u) = u is generic for
u = —1 Hypothesis 4.3 is also satisfied. Thus Lemma 4.2.3 guarantees the existence of a

unique trivial defect solution.

4.8.1 The essential and absolute spectrum of the unperturbed bistable equation

We now compute the essential and absolute spectrum of the unperturbed bistable equa-
tion. The results of this section are well-known, see for example [54], but are included
here for completeness. As in Example 1 of Chapter 1, we make the substitution u(z,t) =
ug+p(x,t) = —1+eMp(x) into (4.15) where p(z) is a small perturbation. By considering

only leading order perturbation terms, we obtain the linearised operator
AP = Pyg + (1 - 3“(%)1) = Pza — 2p =: Lop,

with Lo : HY(R) — H'(R). We set ¢ := p, and define the operator T()\) : H'(R) x
L2(R) — H'(R) x L(R) by

p\ _(d P\ "o wi _ (0 1
T\ <q> = (dw A(A)) <q>_o, th A(X) : <A+2 0).

As A()) is spatially homogeneous, the asymptotic operators are simply AL () = A(M).
Thus, to calculate the dispersion relation we take p = ik as the matrix eigenvalue of A(\)
where k € R is a parameter and evaluate the characteristic polynomial of A(\). The

boundary of the essential spectrum (Part ii of Definition 2.4.) is

A= k-2



118 Chapter 4

The essential spectrum consists only of this dispersion relation as for A # —k2 =2, k € R

the number of unstable eigenvalues of A_(\) and A4 (\) are equal.

The matrix eigenvalues of A(\) are given by
p12 = EVA+2,

where, as A4 (A) = A_(\), we have dropped the superscript. The absolute spectrum of
the operator Ly consists of the values of A for which the real part of these two matrix

eigenvalues are equal, i.e.
Oabs = {A: Im()\) =0 and A < —2}.

As the solution is constant, the essential spectrum and the absolute spectrum coincide in

this case.

4.8.2  The solution profile of the trivial defect solution

We now derive the solution profile for the trivial defect solution to (4.15) about u = —1
to ©(g2). We use a regular expansion, u = ug + cuj + £2uz + O(e?), with ug = —1 and
find u; and uz. Solutions to the unperturbed PDE (4.15) can be taken as u € C? but
the introduction of the discontinuous spatial defect implies v € C!. The leading order

existence equation is 0 = (ug)zz + up — ug, Vo € R. The O(¢) existence equation is

9 0 =<0,
0= (Ul):m: + (1 — 3“0)“1 +
ug x> 0.
As ug = —1 this ODE is linear and homogeneous for x < 0 and is linear and non-

homogeneous for z > 0. We use variation of parameters to obtain the solution,

V2z
—64 =lu,rL xSO,

Ul =
—% + ie“/ﬁw =!U]R T > 0.

Where the subscripts L and R to denote solutions defined on the ‘left’ domain (z < 0)

and ‘right’ domain (x > 0) respectively. The ©(£?) existence equation is

9 9 0 z<0,
up x> 0.

For all  this ODE is non-homogeneous and the associated homogeneous ODE is

0= (u2)zs + (1 — 3uf) ua.
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We again use variation of constant to obtain the solution,

%eﬁx — 3%62\/51 =ugp, x <0,

1
§ =16 (14 2v20) eV — e V2 = up > 0.

Calculating the solution profile to ©(e?) is sufficient to track the ©(g) corrections of the
temporal eigenvalues and thus we move on to the stability analysis of the trivial defect

solution.

4.8.8 The eigenvalue problem and the Evans function

To determine the stability of the trivial defect solution u = wug + euy + 2uy + O(e3)
of (4.15), we consider U(z,t) = u(x) + e1p(x,t) with 0 < £; < 1 and where p is a
perturbation in some appropriately chosen Banach space with p(z,t) = e*p(z). In this
case we take p(z) € H'(R). Substituting U into (4.15) and by considering only leading

order terms of p(z) we obtain the eigenvalue problem for the linearised system, i.e.

9 0 x<0,
)\p = Pxx + (1 —3u )p + (416)
ep x> 0.

In order to obtain and explicit expression for the ©(g?) correction term of the Evans
function, which provides the O(g) correction term of A\, we must calculate the explicit
solutions to (4.16) up to ©(g2). Specifically, we seek solutions (4.16), calculated on x < 0,
with lim,_, o p(z) = 0, which we denote with the subscript L and solutions calculated
on z > 0 with lim, ,, p(xz) = 0, which we denote with a subscript R. We take A =
Ao + e + 22X + O(e3) with R()\g) > —2 (i.e. to the right of ous) and p(z,\) =
po(z,\) +ep1(x, A) + 2p2(z, A) + O(e3) and solve each order of the eigenvalue problem.

The leading order eigenvalue problem is,

Aopo = (po)ea + (1 — 3ug)po,
which is linear in pg leading to the solution,

po.L(x) = AgeV 02T, po,r(7) = Boe V20r2T,
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where Ag, By are arbitrary integration constants. The ©(g) term of the eigenvalue problem

is given by,

0 z<0,

Xop1 + A1po = (P1)ae + (1 — 3ud)p1 — 6(uour)po +
po x> 0.

which, by variation of parameters, has the solution,

p1o(x) = eVt <A1 + Ap <
. 3Age(VZHVA0F2)z
414 vV2v X0 +2)’
pLR(z) = e VT2 <Bl — Bo(M +2) (
B 3306*(\/§+\//\0+2)x
42X +2+4

where Ay, By are arbitrary integration constants. The ©(¢2) term of the eigenvalue prob-

2\/;0? B 4(Aol+ 2)>)

T 1
+
2v/ A0 + 2 8+4)\0>>

lem is given by,

Aop2 + Mip1 + Aapo = (p2) e + (1 — 3ud)pa — 6(uour)p1

0 z<0,
— (3uf + 6uouz)po +
p1 x> 0.
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which, by variation of parameters, has the solution,

Ao (14 VA0 + 2z (VAo + 2z — 2))
— Vot2z [ 4 2770 0 0
p27L($) € ( 2 + AT 8()\0+2)2

1 2x 1
—(Aprg + A1 —
Ak A ”(m )\o+2>>

+€(\/§+m)x _3 (ﬂ\/Ao + 2 — 1) (A(] - 4141)
32X + 48

A ( ~7(V2V 0 F24+2) — X (3V2v/ A0 + 2+ 7)
8(ho +2)%2 (VAo + 2+ v2) (VA0 + 2+ v2)°
(VI +3 (VAo T2+ V2)) « >>
420 T2 (VA F2+v2) (2vA0 + 2+ v2)

L (VRFRe2va) 340 (V20 +2(Xo — 3) + Ao + 6)
32X0(2X0 + 3)

s By (1420 + 2z (VAo + 22 + 2))
— Ao+2x B )\2 0 0
p2.r(z) =€ ( 2 T A 8(ho +2)2

B < 1 +a:2(/\1+1)+ x >
"N2h0+2)2 " 20 +2) | (N +2)32

1 B()Al 1 x
— | B1 + = (B1A1 + BoAe2) — +
( vy (Bt Bodo) >\0+2> <2(>\0+2) vAo+2>>

L AT ( 3B, 3 (Ao (20 — 9) — 24)
4(V2Vxo+2+1)  16(Ao+2)(2X0 +3)2
3 (Ao (2X0 + 15) + 24) < 3o+l 3 > }
8v2v/ o + 2 (2X\g + 3) 2 4/ +22X0+3)  V2(8\ +12)
. 3\ By ( 2o +3)r V2, 3>>
W2V +2 2V +2+v2)2 \ (VA +2+v2)  2VAg+2

L -2V g <3\/m (M —3) 3N +6) >
167200 (200 +3) 32X (2h0 +3)

where As, By are arbitrary constants.

We are now equipped to calculate the Evans function to ©(g?). We formulate the Evans

function for the trivial defect solution

pL(x) pr(z)

BOOSD =10 @) eta)

i

where pr, = po,r. +¢ep1,L +52p2,L + O(e?) and similar for pr. As we calculated pr, on z < 0
and pr on x > 0 it is natural to evaluate the Evans function at x = 0. Thus, we have the

expansion of the Evans function,
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E(Me),e,0) = Eg + eEy 4 2By + O(£%)

_ |P0..(0) po.r(0) . <p0,L(0) p1,r(0) n p1,..(0) po,R(0)>
20..(0) py r(0) Po.(0) P r(0)  |p1L(0) pyR(0)
g2 (po,L(O) p2,r(0)| | |p1,L(0) p1,r(0) N p2,.(0)  po,r(0) ) + O
Po..(0) Py R(0)| [Py L(0) P r(O)| [Py L(0) phR(O)

The O(1) term of this expansion gives,

Eo = —2A0Bov/ Ao + 2,

which has no roots in the natural domain of the Evans function, (\) > —2. Obviously,
restricting A to the real line and in the limit limy,_,_o Ey = 0, 4.e. the function has a root
on the boundary of the natural domain €2;. This root is the branch point of the absolute

spectrum.

The O(¢e) term of the Evans function expansion is

Ei = —2(AOB1 + AlBo)\/ Ao + 2.

Again, this term has no roots other than in the limit \y — —2 (with g restricted to the
real line) and this root is the branch point of the absolute spectrum. The O(g?) term of
the Evans function expansion is

A()Bo)\% AOBO)\I
Es(\) = —2(AoBy + A1B1 + AsB A 2
(V) = ~2(doBy + A1 B1 + AeB)V o+ 2+ g M o 1

3AyByAo B 3A0By (/\0 + 1) (2)\0 + 9)
40 + 2 (200 + 3) 2 4220 +3)2

which is quadratic in A;. The limit limy,_,_9 E2 does not exist. However, in equating each
term in the expansion of the Evans function to zero we obtain the following expression

for )\1

e (Ao +2) [3v242B2 (Mo +1) (200 +9)
Ay By VAo +2(2) +3) 2

NI

AoBy (9 — 2X)
(Ao+2)2(2X0 + 3)2

+Ap By < +16(A2By + A1 B + A032)>>
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which is the O(g) correction to the temporal eigenvalue resulting from the inclusion of

the jump-type defect. In the limit Ay — —2 we have

/\011_132)\? =0 and thfifl_ = -2,
Hence, the ‘roots’ of the Evans function about the trivial defect solution are A = —2 —
2e + O(g?) and A = —2 4 O(e?). These values are both outside of the natural domain of
the Evans function to ©(¢) and could potentially emerge into the natural domain of the
Evans function at higher order correction terms through complex terms. However, they

will not destabilise the trivial defect solution.

4.4 Summary and outlook

In this chapter we demonstrated the expansion of the Evans function for the trivial defect
solution to a 2nd order scalar PDE, the bistable equation. Here we outline the proce-
dure for the full problem; the stability of the trivial defect solution to the n-dimensional
problem (4.2). As per Hypothesis 4.1 we assume there exists an isolated, hyperbolic equi-
librium point u = wug to (4.1), by Hypothesis 4.2 we assume all diffusion coefficients are
given by 0. Therefore, by Lemma (4.2.3), a trivial defect solution exists. Furthermore, we
take the equilibrium point to be a spectrally stable solution to (4.1) as we are interested
in the effect the defect has on a spectrally stable solution. We must first derive the trivial
defect solution profile to ©(¢?), then we formulate the Evans function to ©(¢?) in order

to track the potential point spectra that emerge from the branch points to O(g).

As in the scalar case we use a regular expansion, u = ug + u; + e2ug + 0(53), and
take v € C! and solve each order of the existence equation to obtain ug, u; and us.
We will derive explicit expression for the ©(g2) correction term of the Evans function,
which provides the ©(g) correction term of A\. We take A = A\g + eA1 + 2o + O(e?)
with R(Xg) > R(v*), i.e. to the right of the leading edge of the absolute spectrum, and
(@, A) = po(z, A) + epi(x, A) + e%pa(z, A) + O(?).

As the roots of the Evans function are, to leading order, in the left half plane the solution
will remain spectrally stable. We can obtain an explicit expression for the O(g) correction
term to A for the trivial defect solution. This calculation will inform our analysis of local
defect solutions which can be interpreted as a concatenation of a trivial defect solution

and a stationary solution, see Figure 4.2.1.
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Summary and outlook

5.1 Summary

Throughout this thesis we have analysed the existence and/or spectral stability of three
dynamical systems that are each non—standard in different ways. First, a Keller-Segel
model for bacterial chemotaxis for which we have proved the previously unknown re-
sult that there exists a range of parameters such that the travelling wave solutions are
transiently unstable, i.e. spectrally stable in an appropriately weighted function space.
The motion of travelling wave solutions is driven by the chemotactic function with the
wave speed determined by the size of the bacterial population rather than an inherent
wave speed that arises from changing to a moving frame of reference as is the case in
most well known travelling wave problems (such as the Fisher-Kolmogorov-Petrovsky-
Piscounov equation). This structure resulted in an atypical spectral structure with the
leading edge of the absolute spectrum crossing into the right half plane away from the
real axis as the chemotactic parameter 8 increases. Furthermore, we showed a connection
from the sublinear and constant consumption cases (0 < m < 1) to the more well studied
linear consumption case (m = 1) which has been shown to be nonlinearly stable under
certain conditions [77]. The relationship is seen through the absolute spectrum which
deforms with increasing m until we have the marginal case m = 1, where the absolute
spectrum does not enter into the right half plane but tangentially contains the origin. We
also showed that the eigenvalue A = 0 is of multiplicity two in the sublinear and constant
consumption cases and is embedded in the absolute spectrum in the linear consumption

case.

This work has opened several new questions and provided a foundation for future work
to address these open questions. Though there exists results pertaining to the nonlinear
stability of the linear consumption case, the nonlinear stability of the sublinear and con-
stant consumption cases remains open. The quasilinear nature of the linearised operator
associated with the travelling waves prevents us from immediately concluding nonlinear
stability in the parameter regimes that are transiently unstable and more analysis is re-
quired. There is also the question of the dynamical implications of the onset of absolute
instability with the increase of the chemotactic parameter 8. Specifically one expects
oscillatory behaviour due to the complex valued leading edge of the absolute spectrum.

There is potential for more numerical and theoretical analysis of this bifurcation.

In Chapter 3 we examined the existence of travelling wave solutions in the Gatenby-

Galenski model for tumour invasion with the acid-mediation hypothesis. We rigorously

119
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proved the existence of these travelling wave solutions and we provide a mathematical
explanation for the existence of an interstitial gap. This interstitial gap has previously
been observed both numerically and experimentally [27,32]. The width of the gap is
determined by the distance between a layer transition of the tumour and a dynamical
transcritical bifurcation of two components of the critical manifold. This transcritical
bifurcation prevented us from using GSPT directly as Fenichel theory does not apply at
the transcritical bifurcation where normal hyperbolicity is lost. We proved the persistence
of the singular solutions across the fast transition (which is standard in the application
of GSPT) and across this dynamical transcritical bifurcation. The logical next step for
the analysis of the Gatenby-Gawlenski model is to analyse the spectral stability of the
travelling wave solutions. The complication arises in that the fast-slow structure of the

problem results in a non-local eigenvalue problem, see §3.6.1.

In Chapter 4 we studied the spectral stability of a trivial defect solution for a second order
scalar PDE. The existence of both trivial and local defect solutions was established in [21]
for general n-dimensional reaction diffusion models with a jump-type defect. Through
the use of an Evans function expansion we show that for a sufficiently small defect a
stable constant solution in the associated homogeneous problem remains stable with the
inclusion of a jump-type defect. Moreover, we show that the correction term for the roots
of the Evans function are, to leading order, given by the branch point of the absolute
spectrum associated with the constant solution. These roots may be either perturbed
branch points or point spectra that emerge from the absolute spectrum under the inclusion
of the defect. There are many open questions in the area of stability of defect solutions,
with the overall goal of a unified and general theory for spectral analysis of defect solutions.
Local defect solutions are, in general, not explicitly solvable in terms of their profiles and,
in turn, the eigenvalue problem is not explicitly solvable. The suggested path forward is
the analysis of specific models for which the existence of local defect solutions has been
proved such as the Fitzhugh-Nagumo (FHN) model or the Extended Fisher-Kolmogorov
(EFK) equation.

5.2 Future work for the Keller-Segel model with logarithmic

chemosensitivity

The future work for the Keller-Segel model with logarithmic chemosensitivity was dis-
cussed in detail in §2.8. We refer to §2.8 for a discussion of the nonlinear (in)stability of
the Keller-Segel model, the quasilinear nature of the linearised operator, and the dynam-
ical implications of the spectral structure and the bifurcation from a transiently unstable

state to an absolutely unstable state as the chemotactic parameter increases.
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5.3 Future work for the Gatenby-Gawlinski model with the
acid-mediation hypothesis

The future work for the Gatenby-Gawlinski model with the acid-mediation hypothesis
was discussed in detail in §3.6. We refer to §3.6 for a discussion of the generalisations
of the model as well as a discussion of numerical stability analysis. Here we discuss a

potential approach for the theoretical stability analysis.

5.8.1 Stability of solutions to the Gatenby-Gawlinski model

As stated in Chapter 1, it is often difficult to calculate the Evans function explicitly.
The Non Local Eigenvalue Problem (NLEP) approach offers an alternative method for
calculating the Evans function explicitly by utilising the additional structure in singularly

perturbed equations [17-19]. Consider the fast system

1:[/ - f(u,’l),f—:,p),
0 =¢eg(u,v,e,p), (5.1)

where "= d/dx, 0 < ¢ < 1 and p represents the system parameters. We can make the

change of variable z = ex to obtain the slow system

e = f(u,v,e,p),
/

v =g(u,v,e,p), (5.2)
where ' = d/dz. We describe u as the fast variable and v as the slow variable as in (5.1)
v is approximately constant while u varies. The two systems are equivalent as long as
€ # 0 but no longer agree in the € — 0 limit. This is what makes the problem singularly
perturbed and gives it a fast-slow structure. If 7(\) (1.9) is a singularly perturbed system
we can decompose the Evans function to the product of the analytic Evans function for
the fast system and the meromorphic Evans function for the slow system for € — 0. That

is, the Evans function F()\) is, to leading order, given by
E()‘) = Efast()\)Eslow()\)'

The fast and slow systems are lower dimensional than the full problem. If they are
explicitly solvable we may obtain the explicit Evans function (to leading order in ¢) using
this decomposition. The NLEP approach was developed in [17] to analyse the stability
of the 1D Gray-Scott model. This model has one fast variable and one slow variable
resulting in a four dimensional eigenvalue problem. Using the NLEP approach the Evans
function is decomposed to a 2D eigenvalue problem in the fast dynamics and a 2D non-
local eigenvalue problem in the slow dynamics. In [99] the authors extend the NLEP

method for N-dimensional eigenvalue problems with one fast variable and N — 1 slow



Chapter 5 122

variables. The NLEP approach requires careful analysis as it introduces extraneous poles
and zeroes to the Evans function which cancel with each other. This is referred to as the
NLEP paradox [17]. Part of future work is the utilisation of the NLEP approach for the

stability analysis of the travelling wave solutions to the Gatenby-Gawlenski model.

5.4 Future work on the stability of defect solutions

The future work for trivial defect solutions to n—dimensional RDEs is discussed in §4.4.
Here we discuss the setup and a potential approach for the analysis of local defect solutions

to n—dimensional RDEs.

5.4.1 Local defect solutions to n—dimensional RDEs

In ongoing and future work, we return to (4.2) and consider a local defect solution as
defined in Definition 4.2.1. A local defect solution is, to leading order, a non-constant,
solution to the homogeneous problem. The leading order solution is translation invariant
in the homogeneous system. We assume there exists such a stationary solution that
persists in (4.2). Furthermore, we assume that the solution to the homogeneous problem
is spectrally stable; the eigenvalue A = 0 is simple and the essential spectrum and all

non-zero point spectrum are contained in the open left half plane.

The added complexity for the analysis of local defect solutions is the leading order profile
ug is nonlinear and thus the linearised eigenvalue problem is not, in general, explicitly
solvable. There is some added information in the case of a local defect solution in that the
leading order eigenfunction associated with A = 0 is known to be the spatial derivative
of the solution to the homogeneous problem, see (1.18). In general, the Evans function
cannot be computed explicitly, however we aim to use the structure and approach used
for the Evans function of the trivial defect solution to analogously approach local defect

solutions for specific models.

5.4.2 The Fitzhugh-Nagumo model with a jump-type spatial defect

The Fitzhugh-Nagumo (FHN) model is an example of a relaxation oscillator and is often
used to model excitable media. Due to the oscillatory and/or spiking behaviour of this
model it is receptive to GSPT analysis. The FHN model is a higher dimensional model
in terms of populations. The model has the potential to support local defect structures.

In particular, we consider the modified FHN equation with a jump-type defect;

? —e(av + fw +~(x))

ut:62um+u—u
TUf = Vgg + U —V (5.3)

Ow; = D*wyp + u — w.
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where

e, <0,
v(z) =
Y2, z > 0.

The equation (5.3) has been studied in terms of both existence and stability in [21,98,100]
where it was shown that the model supports stationary solution in the form of pinned
fronts and pulses. The existence conditions, stability conditions and the relationship
between the stability condition and the pinning distance were shown in [21,98,100]. Thus,
(5.3) acts as a testbed for the extension of the theory developed in Chapter 4 to higher
dimensional systems. We aim to compare our Evans function approach to the stability

conditions derived in the literature to confirm the accuracy of our method.

There are added complexities to the modified FHN defect model that will also help us
expand and generalise our Evans function approach. The equation (5.3) has a clear slow
fast structure and thus GSPT will be necessary for the existence analysis. The slow-fast
structure also adds an extra level of complexity to the stability analysis. It is not yet
clear if the Evans function for defect solutions outlined in Chapter 4 will capture the
eigenvalues of the system correctly and it is possible a modified version of the NLEP

approach, discussed in §5.3.1, may be needed.

5.4.8 The extended Fisher-Kolmogorov equation with a jump-type spatial defect

As part of the ongoing and future work we will also consider the Extended Fisher-

Kolmogorov (EFK) equation.

3 0, z <0,
Up = —NUggre + Uge +u — u” +
59(“5 Ugy Upz, uxzx)u x> 0.

The associated homogeneous problem (i.e. when € = 0) has been studied in terms of ex-
istence and stability, see [83,102] and references therein. Furthermore, the EFK equation
with a defect was shown in [21] to support countably many local defect kink solutions (un-
der a condition on h). The existence analysis for the EFK model and EFK defect model
facilitate our use of this example to test our Evans function approach for the stability
of defect solutions. The EFK also provides a contrasting example to the FHN model.
Whilst the FHN has pinned solutions with stability dependent on the pinning distance,
the EFK has countably many local defect solutions [21]. There is no explicit expression
known for the solution profiles and we would have to rely on numerical methods. This
provides a good opportunity to explore how the Evans function for defect models can be

implemented numerically.
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APPENDIX A

Proof of Lemma 2.3.4

Lemma. 2.3.4 The polynomial

f(B) = 31080 — 323453 + 171126% — 4910187 + 761805° — 583983°
+100568* + 1504032 — 968082 + 17168 — 4.

has only one real root for B € [1,00). Moreover, this root is irrational.

Proof. The second part of the lemma is straightforward to prove and follows immediately from
the rational root theorem.

To prove the first part of the lemma, we use Sturm’s theorem, see, for example [48]. Therefore,
we form the Sturm chain or Sturm sequence of f(3). The Sturm chain or Sturm sequence S(5) =
{fo(B), f1,--+, fm} is defined as follows

B) = fB),
B) = f(B)
(B) = —rem(fo, f1) = f1r(B)a1(B) — fo(B),
(B) = —rem(fi, f2) = f2(B)q2(B) — f1(B),

rr o
S— N N

0 = —Tem(fmflafm> )

with rem(f;, fi+1) and ¢; are the remainder and the quotient of the polynomial long division of f;
by fi+1, and where m is the minimal number of polynomial divisions (never greater than deg(f))
needed to obtain a zero remainder. Next, define o(z) as the number of sign changes in the sequence
S(z). Then, Sturm’s theorem says that the number of zeros of f(8) in (a,b] is determined by
o(a) — o(b).
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In our case we have

fo(B) = f(B)

f1(B) = 1716 — 193608 + 4512052 + 4022433 — 2919908* + 4570808° — 3437075° + 1368967
—291063° + 31004?

f2(B8) = —(678193/3875) + (3683463)/775 + (235364852) /775 — (570565523%) /3875

+(378627033%) /1550 — (143256935°) /775 + (834582194°%) /15500
+(11223967) /250 — (29913998%) /7750
f3(B) = —(813202524226091000,/994274219689) + (1556001288910660004) /2982822659067
+(15083166176623000052) /994274219689
—(30943075483712240003%) /2982822659067
+(60373965626666825005%) /2982822659067
—(18637317800292330003°) /994274219689
+(8430310628214527503%) /994274219689 — (44885435181589750037) /2982822659067
f1(B) = 147664044068346108125812836215849,/6499039649808693140507539693750
+(2890740167979735892655020930746063) /3249519824904346570253769846875
—(7560022765114366913823776351712013%) /649903964980869314050753969375
+ (104483262753150502309265916379808063%) /3249519824904346570253 769846875
—(4028188719819268309895020456707813%) /103984634396939090248120635100
+(70762388380933297341824453389660565°) /3249519824904346570253769846875
—(121601415888230597775383572704489893°%) /25996158599234772562030158775000
f5(8) = 910380870870605372791056705511093436245713011845912326500000/
148720584856837895782576386225683871616736400724421088289 —
(1083852012858004098698693398866410954208222107810469248980000043) /
148720584856837895782576386225683871616736400724421088289 +
(36190383628040042980417879995753984274979401140531887144600000 5%)/
148720584856837895782576386225683871616736400724421088289 —
(5200482404034942427968079437288649507030742456677404604840000053°%) /
148720584856837895782576386225683871616736400724421088289 +
(34292164307308671014701162854870465140219078147059489624200000 5*)/
148720584856837895782576386225683871616736400724421088289 —
(8580698314603391647111856748076868179029710291689536639500000 5°)/
148720584856837895782576386225683871616736400724421088289
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fs(B)

f7(B)

—(98108027422508408083023217604345852503705114055693172543204724650896 - - -
1042915390122319460073/
177017460303742780328656529787727302193457160179853775040055246930 - - -
97905570347626186937500) +
(619563023803823243811857208813244103721010429950791043830027191308423 - - -
743928278935490194147313)/
17701746030374278032865652978772730219345716017985377504005524693097 - - -
9055703476261869375000 —
(585441803838940638681131033195409616298924066478481618119761419343361 - - -
10705278000665334671915%) /
804624819562467183312075135398760464515714364453880795636614 75877717 - - -
75259248920994062500 +
(553713717514326562346968543531239584025630628584967740247621971794488 - - -
585381966801361043336895°)/
88508730151871390164328264893863651096728580089926887520027623465489 - - -
527851738130934687500 —
(170790832841801459698209804427557507587467962277379871592871002085977 - - -
64088867929139865667747%)/
88508730151871390164328264893863651096728580089926887520027623465489 - - -
527851738130934687500
1251283856820957258191318829739316639308756723880152636374607691728303 - - -
7942891563169843757272776908779474315395278673493466555000000/
19613632242554355674354701676793503233404936046372052590275919918344 - - -
74334095827109929019024409454132898634532919716476058701481 —
(444028913557567116589689512970848889708577149020019170325236438590676 - - -
1095416274800775899128514975533923953547380984938814443875000053) /
19613632242554355674354701676793503233404936046372052590275919918344 - - -
743340958271099290190244094541328986345329197164 76058701481 +
(498606374738963810406233650144849202383287593387769359462270580704127 - - -
5765912185854124264998013639376898858076647820413866752625000032) /
19613632242554355674354701676793503233404936046372052590275919 - - -
91834474334095827109929019024409454132898634532919716476058701481 —
(176148691099545269678983956558766862299335203258634679948642980254673 - - -
641053521132831781486046607026982204698113713232988489700000003%)/
19613632242554355674354701676793503233404936046372052590275919 - - -
91834474334095827109929019024409454132898634532919716476058701481
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fs(B)

fo(B)

f10(B)

—(17846112922078425485045612709308038793270467820684368730326071705764 - - -
0465887353397713924784351000148285563603149170841310284463980781099083 - - -

01270241561373454298319074182909/
182587693390773153404389550525547068416557854745041275633586263104 - - -

8036441887569734586555167168909327953264911979335388134178259567209744 - - -

5936082868263696252741792665000000) —

(280151629817665084131074850110916186948426182502189400646410963395582 - - -
2381826041116809829756419182109190709053063304276842671659405986326115 - - -

60450327947180799498673493387119313) /
21910523206892778408526746063065648209986942569404953076030351572576 - - -

4373026508368150386620060269119354391789437520246576101391148065169351 - - -

232994419164355032901511980000000 +

(360124371840328494499475719671847497051007054870344794211764348035556 - - -
5065289480733863382673918320015176471541612300465997966601867521644010 - - -

3749811475615469346598107313112274%)/
21910523206892778408526746063065648209986942569404953076030351572576 - - -

4373026508368150386620060269119354391789437520246576101391148065169351 - - -

232994419164355032901511980000000

—(49432407126386176344097831763209942578480422043519856589011831246073 - - -
5537656088579235594820660595058308883185226949745131701727056554970726 - - -
7225458758148461284239827907569131499955412180458936903721706944669568 - - -

9377360000000/
661221550346052743899274602671590371863363151355691757588365447750 - - -

9433177057509755202155983217101333142197102463413757595705302596236395 - - -
5589553922384 779427300483534253384756913109423134870856935932743496323 - - -

20308756209) +

(583977905288760792634591263057998969411946078726057982120972555937081 - - -
1510855968502071296707367743199087566622400955280424115363220003366431 - - -
0006518392292062409054219202564293734988040539306244806300616508864493 - - -

11476000000033)/
66122155034605274389927460267159037186336315135569175758836544775094 - - -

3317705750975520215598321710133314219710246341375759570530259623639555 - - -
8955392238477942730048353425338475691310942313487085693593274349632320 - - -

308756209

1538028730561098315444895328322471196628762708801194031957392738908315 - - -
2631062736893663178108237486011649940344893052470429790995148866370295 - - -
2293290271434573986960745221739570698788632233605152245886767297898720 - - -

83258302282525017558495099901619129980010947051355960270559/

6485281650686556253652090111327837661629865631503998869442518790865676 - - -
7005685613468341269527821251642555791481950157098280570475032095739859 - - -
0019849690795408802134275960191501047350025378042655852850300690206681 - - -

291556209142368412429096344436502195892712362520624130000000 .



138 References

Since f10(8) # 0 our polynomial is square free [48]. So,
sgn( ( ))_{ ]- 7 a a_]-v_la_]-v]-vla]-»]-}

and we get o(1) = 3. Similarly, by looking at the signs of the leading terms of the polynomials we

have
sgn(S(o0)) ={1,1,-1,-1,-1,—-1,-1,-1,1,1,1},

so o(o0) = 3. Hence, f(8) has only root in (1,00). Moreover, f(1) # 0, so f() has only root in
[1,00). Finally, f(1) < 0 while f(2) > 0 which shows that the root is inside (1,2).
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