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Abstract Air pollution, particularly PM2.5 particulate matter, is a significant
issue in Santiago, the capital of Chile. Santiago’s pollution problem is exacerbated
by its unique geographic location nestled against the Andes mountain range in
the central valley of Chile. This paper uses network models that were developed
primarily to analyze systemic risk in the financial system to identify those locations
in the city that are most important for explaining PM2.5 levels. High average
concentrations are associated with both systemically important locations and those
that are most sensitive to pollution arriving from other areas. A detailed picture
of the links across the city can help direct official efforts to combat pollution.
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1 Introduction

Air pollution is a major environmental problem that has both health and economic
implications. The component of pollution of most concern is particulate matter
with a diameter less than 2.5 microns, known as PM2.5. Given the negative and
potentially dangerous consequences of PM2.5 pollution, it is not surprising that the
issue of modelling its concentration levels has attracted a great deal of attention.

Chile is an extreme case in point. It is estimated that at least 60% of Chile’s
inhabitants are exposed to PM2.5 concentrations over recommended levels. The
annual U.S. norm is 15 µg/m3, while the WHO suggests an annual limit of only
10 µg/m3 (Cifuentes 2010). It is estimated that there are 4,000 premature deaths
due to chronic exposure to this component of pollution in Chile (MMA 2011) and
the net economic benefit to Chile of effectively regulating PM2.5 is estimated to
be USD 7.1 billion (SINIA 2010). The Chilean capital, Santiago, where 41% of the
country’s total population resides, is of particular concern because of its location
in a low mountainous valley near the Andes, and the simultaneous presence of
the Pacific Anticyclone and the phenomenon of thermal inversion which inhibits
the dispersion of pollution. Consequently exposure to PM2.5 pollution in Santiago
has significant impacts on mortality and morbidity (Pino-Cortés, Dı́az-Robles,
Campos, Vallejo, Gómez, Cereceda-Balic, Fu, and Figueroa 2020), particularly
during the winter months when air pollution increases significantly relative to the
summer months.1

There are a number of studies aimed at forecasting air pollution and par-
ticularly PM2.5 levels in Chile and this body of research employs a number of
different methods. These techniques include forecasting based on artificial neural
networks (Perez and Reyes 2006; Dı́az-Robles, Ortega, Fu, Reed, Chow, Watson,
and Moncada 2008; Perez and Gramsch 2016); weather and chemical based mod-
els (Saide, Carmichael, Spak, Gallardo, Osses, Mena, and Pagowski 2011; Saide,
Mena, Tolvett, Hernandez, and Carmichael 2016); and a systems approach based
on a hierarchical set of linear regression equations where forecasts at a location are
related to observations at other locations (Moisan, Herrera, and Clements 2018).
While predictive models are clearly important, a growing area of research consid-
ers the interaction between concentration levels observed at different geographical
locations within small-scale geographical areas. Spatio-temporal models (Sahu,
Gelfand, and Holland, 2006) account for the full spatial distribution of monitoring
stations. In the case of Santiago, Nicolis, Dı́az, Sahu, and Maŕın (2019) develop
a Bayesian scheme for forecasting from a spatio-temporal model at a 1-km high
resolution grid, using PM2.5 measurements from the coarser network of measur-
ing stations. It is also possible to use the spatial correlations between monitoring
stations to develop information-based indices to determine the quality of the mon-
itoring network. This work has been undertaken in Santiago by Osses, Gallardo,
and Faundez (2013) and Henriquez, Osses, Gallardo, and Diaz Resquin (2015).
The core idea in this analysis is to determine the amount of information generated
by PM2.5 observations at each station, in relation to concentrations across the
entire Santiago area.

The spatial-temporal behaviour of pollution across the entire Santiago region
is also the central focus of this paper. The primary objective is to identify the

1 For the adverse impacts of PM2.5 in in European cities see Maciejewska (2020).
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locations, or hotspots, which have the greatest impact on PM2.5 levels. To achieve
this aim, the methodology developed by Diebold and Yilmaz (2014) for measur-
ing systemic risk in the financial system is adapted to deal with the problem of
modelling air pollution. The temporal dynamics of particulate matter is captured
using a vector autoregressive (VAR) model. While there are clearly complex phys-
ical, chemical and meteorological processes underlying the dynamic behaviour of
PM2.5 measurements, VAR modeling is an efficient reduced form statistical ap-
proach that is particularly adept at capturing the interactions between observable
data.2 Publicly available weather data is easily incorporated in the methodology
and can be safely assumed to be exogenous to the system.3 In addition, one of the
well-known strengths of VAR models is that the interactions between the observ-
able data mitigate the effects of any omitted variables. For example, local emissions
due to traffic flows are known to influence air pollution but are not included in
the analysis because no data is available.

The network framework is perfectly suited to the task of modeling pollution
as it provides estimates of directional links between each time series of PM2.5

measured at individual monitoring stations throughout greater Santiago. Based
on these directional links, two important summary measures of linkages can be
constructed. Fragility, captures how sensitive concentrations at an individual sta-
tion are in response to changes in concentrations at all other locations. Centrality,
measures how strongly shocks to PM2.5 levels at one station are propagated to
other locations and hence how important that station is in terms of explaining
the overall level of pollution across the city. The equivalent concept in the con-
text of the banking system is what effect the loss made by one bank has on the
performance of all other banks, which reflects its systemic importance.

Note that the analysis in this paper is quite different to that of Osses et al.
(2013) and Henriquez et al. (2015). These papers use contemporaneous correlations
between monitoring stations to determine the quality of the monitoring network
in Santiago. By contrast, the analysis in this paper reveals the effect of shocks or
perturbations to the pollution levels at each monitoring station on concentrations
at other locations, taking the monitoring network as given. This work is similar
in spirit to Liang, Zhou, Yang, Che, Wang, and Sun (2019) who consider large-
scale spatial correlations in annual PM2.5 levels across different parts of China,
but the network approach used here is very different to the traditional spatial
econometric models they employ. The biggest difference is that there is no need
to impose a spatial weighting matrix, defined in terms of either adjacency or
inverse distance. Instead, the VAR underlying the network captures the strength
of the relationship between measurements at different locations directly from the
observed data without the need for assigning arbitrary spatial weights.

The rest of the paper is structured as follows. Section 2 discusses the monitor-
ing stations spread across Santiago along with some important properties of the
observed PM2.5 data. Section 3 outlines the network methodology used to estimate
the systemic importance of locations relative to pollution across the entire city.
Section 4 discusses the empirical results identifying the areas from which pollution
has the biggest impact. Section 5 provides some concluding comments.

2 For a general introduction to time-series modeling using VARs see Martin, Hurn, and
Harris (2013), Chapters 13 and 14.

3 See Acharya, Blackwell, and Sen (2016) for the potential to introduce bias by using po-
tentially endogenous variables in this setting.
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2 Data

The data used in this study are hourly historical observations of weather variables
and environmental concentrations from 11 monitoring stations located in Santiago,
Chile. The data were collected from the National Air Quality Information System
(SINCA) for the period January 1, 2011 to August 31, 2015.

Fig. 1 shows the geographic distribution of the monitoring stations in the
Santiago region. The values in parentheses report the annual average of PM2.5

concentrations for the 2011 – 2015 period at each station. It is immediately appar-
ent that the stations are not uniformly spaced. There are some stations such as
Talagante and Las Condes that are separated by more than 50km and where there
is likely to be a weak relationship between their concentration levels. In contrast,
there is likely to be greater interaction between stations like Pudahuel and Cerro
Navia, given their proximity.

Las Condes (21.18 µg/m3)

Quilicura (25.79 µg/m3)

Independencia (25.11 µg/m3)

Cerro Navia (29.45 µg/m3)

Pudahuel (26.63 µg/m3)

Parque O’Higgins (26.20 µg/m3)

Cerrillos (27.81 µg/m3)

El Bosque (29.44 µg/m3)

La Florida (26.54 µg/m3)

Puente Alto (28.07 µg/m3)

Talagante (20.70 µg/m3)

Fig. 1 Map of 11 monitoring stations in Santiago, Chile. Values in parentheses indicate hourly
average PM2.5 levels across period (2011 – 2014) for each commune corresponding to each
monitoring station.

Table 1 reports average hourly PM2.5 concentrations, together with firewood
consumption and a number of poverty and population statistics for each commune
surrounding each monitoring station. A number of interesting observations may
be made by comparing the characteristics of each commune to its average PM2.5

concentration. The communes with the greatest average PM2.5 levels, namely El
Bosque and Cerro Navia, are not the areas with the largest population. The two
communes with the largest populations, Puente Alto and La Florida, experience
relatively high pollution levels but not the highest. The most polluted communes,
El Bosque and Cerro Navia, have both the highest population densities and the
worst poverty. Although it is reasonable to expect that greater concentrations of
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Station Hourly Mean
PM2.5(µg/m

3)
Consumption

of firewood
(ton/year)

Poverty due to
income

(%)

Multidimensional
Poverty Index

(%)

Population Density
(hab/km2)

Cerrillos 27.81 169 8.1 19.7 71.906 3424
Independencia 25.11 227 9.8 21.3 65.479 8849
Las Condes 21.18 6044 0.6 4.8 249.893 2514
El Bosque 29.44 1712 14.5 27.0 175.594 12453

Parque O’Higgins 26.20 1996 5.9 11.6 200.792 8964
Talagante 20.70 11892 12.0 29.9 59.805 477
Quilicura 25.79 962 7.8 18.5 126.518 2200
Pudahuel 26.63 2172 7.8 20.5 195.653 991

Cerro Navia 29.45 1568 12.1 35.6 148.312 13361
La Florida 26.54 3006 3.1 17.0 365.674 5165
Puente Alto 28.07 6848 8.0 27.1 492.915 5589

Table 1 Average PM2.5 concentrations for each monitoring station. Firewood consumption,
poverty and population statistics for each commune based around each station are also re-
ported, see (Gajardo 2016), (Gramsch 2014) and (INE 2015) respectively.

relatively poor households will be associated with increased burning of firewood,
which is one of the most important contributory factors leading to higher PM2.5

levels (Molina, Toro, Morales, Manzano, and Leiva-Guzman 2017), this is in fact
not the case. Apart from Puente Alto, where both firewood consumption and
PM2.5 levels are high, there is little association between firewood consumption
and PM2.5 levels.

In summary, there appear to be no obvious patterns between the characteristics
of the local commune areas and the pollution levels they experience. The network
analysis undertaken here will provide a formal analysis of the links between concen-
tration levels at all 11 stations. The results will reveal whether locations with the
highest average concentrations have the biggest impact on pollution levels across
the entire city, or whether these areas merely suffer from pollution generated in
other areas.

3 Measuring network connectedness

The methodology used to estimate the connectedness between PM2.5 concentra-
tions at the 11 stations is based on Diebold and Yilmaz (2014), who demonstrate
how a traditional VAR model and associated variance decomposition is useful for
measuring network connectedness. This framework provides estimates of the total
directional connectedness from one individual region to all others, and the con-
nectedness from all other regions to an individual region, and permits an analysis
of how shocks in PM2.5 concentrations originate and are transmitted across the
greater Santiago metropolitan region. An important feature of the VAR framework
used in this paper, known as a generalized variance decomposition, is that the or-
dering of the time series in the model is not important for establishing the impact
of a shock to PM2.5 concentration in one location on the concentrations in other
locations over the chosen time horizon.4 Note that this methodology introduces
an explicit time dimension to the analysis and is not, therefore, simply account-
ing for contemporaneous correlations between concentrations at each monitoring
location.

4 For ease of interpretation, the monitoring stations are ordered in the VAR in south-west
to north-east order according to their geographic location given that this is the direction of
the prevailing wind across Santiago.
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The network analysis is based on a VAR model given by

Yt = β0 +

6∑

j=1

βjYt−j +

24∑

l=2

γjI
HR
j +

12∑

k=2

θkI
MTH
k

+ δTt + λWDtWVt + εt, εt ∼ iid(0,Σ), (1)

where Yt is an (11×1) vector containing the hourly observations of PM2.5 concen-
tration for each of the stations and εt is a disturbance vector which is assumed to
be independently and identically distributed. The coefficient matrices, βj , will cap-
ture the strength of the links between the different locations through time without
the need for a spatial weighting matrix as required by traditional spatial models.
The estimates in βj also capture the temporal dependence between locations and
not merely the contemporaneous effects.

There are a number of additional features in this specification that need expla-
nation. The diurnal pattern in PM2.5 is dealt with by an indictor variable, IHR

l

which is a vector of ones when t falls within the lth hour of the day, l = 2, . . . , 24
and zeros otherwise. Similarly, the annual seasonal pattern is accounted for by the
indicator IMTH

k which is a vector of ones when t falls in month k, k = 2, . . . , 12.
Therefore, the period, 0 : 00 to 1 : 00 in January is the base case.

Previous studies have shown that temperature, which influences heating de-
mand, and wind speed and wind direction play an important role in the predic-
tion of PM2.5 concentrations given their impact on the atmospheric and ventilation
conditions in the Santiago river basin (Kurt and Oktay 2010; Feng, Li, Zhu, Hou,
Jin, and Wang 2015; Saide et al. 2016; Moisan et al. 2018). Consequently, Tt,
the hourly temperature recorded at each station enters as an exogenous variable.
In addition, the prevailing wind direction in Santiago is south-westerly. Given the
importance of this direction for ventilation purposes, a dummy variable is included
for when the wind is from the south-west as measured at each station, WDt, and
this variable is interacted with wind velocity at each station, WVt. Temperature
and the wind interaction terms are chosen because they are found to give the
most effective forecasts, taking into account spatial effects between the measuring
stations, (Moisan et al. 2018). If there are any relevant meteorological variables
which are omitted, their effects will be accounted for by the sets of dummy vari-
ables incorporated in the regressions and the lagged PM2.5 terms.

The estimates of connectedness between the PM2.5 concentrations at different
stations are generated from the shares of forecast error variation in the concen-
trations at one station that are due to shocks arising in concentrations at other
stations. This approach to connectedness is related to the familiar econometric
notion of variance decomposition in which the forecast error variance of variable
i is decomposed into parts attributable to other variables in the system. Let the
fraction of variable i′s H-step forecast error variance due to shocks in variable j
be denoted dHij . The quantity dHij takes the form

dHij =
σ−1

jj

∑H−1

h=0
(e

′

iAhΣej)
2

∑H−1

h=0
(e

′

iAhΣAh

′

ei)
, (2)

where ej is a selection vector with jth element unity and zeros elsewhere at time
t, Ah is the coefficient matrix of the h-lagged shock vector in the infinite moving-
average representation of the VAR model, Σ is the covariance matrix of the shock
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vector in the VAR, and σjj is the jth diagonal element of Σ. As shocks are corre-
lated here, sums of forecast error variance contributions are not necessarily unity

and therefore dHij is normalized to d̃Hij by dividing by
∑N

j=1
dHij . Note that in general

dHij 6= dHji , meaning there are 112 − 11 separate pairwise directional connectedness
measures.

First define total directional connectedness from other stations to station i as

Ci←• =

N∑

j=1,j 6=i

d̃Hij . (3)

Ci←• reflects how PM2.5 shocks occurring at other stations influences the concen-
trations observed at the ith station, identifying the degree of fragility (sensitivity)
of concentrations at station i from levels across the region. Next, define total di-
rectional connectedness to other stations from station j as:

C•←j =

N∑

i=1,i 6=j

d̃Hij . (4)

C•←j reflects how shocks in the concentration at the jth station will influence the
concentration at all other stations, identifying the degree of centrality (systemic
contribution) of one location to pollution levels across the whole greater Santiago
area. A 6-hour ahead forecast error variance decomposition is used to construct
these measures.

4 Results

Fig. 2 plots the relative degree of fragility, or sensitivity to shocks from all other
locations, for each location (left axis – solid line) and the average level of PM2.5

observed at each station (right axis – small dots) as a point of reference. While
there is some degree of association between the level of fragility and average PM2.5

concentrations, there are also a number of important differences to note. Las Con-
des and Talagante have the lowest sensitivity to changes in pollution levels from all
other locations leading to the lowest average concentrations. This is not surprising
as both locations are some distance from the city centre and Las Condes is located
at a higher altitude than most of the city. Puente Alto is an interesting case in
that it experiences relatively high average PM2.5 concentrations but exhibits very
low sensitivity to the rest of the city. Most importantly, Parque O’Higgins (the
highest), Cerrillos and Quilicura exhibit the greatest fragility of all the other com-
munes. Recall from Table 1 that these locations consume relatively small amounts
of firewood, implying that their relatively high concentrations are due to pollution
produced in other areas around the city, a result which is consistent with their
relatively high degrees of fragility.

Similarly, Fig. 3 shows the estimates of centrality (left axis – solid line) and
average concentration levels of PM2.5 (right axis – small dots) at each station. This
figure reveals the systemic importance of each location in explaining movements
in PM2.5 across the whole city. It may be deduced from Fig. 3 that El Bosque
and Cerro Navia are the two most systemically important locations having the
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Fig. 2 Measures of fragility (left axis – solid line) for each monitoring station and uncondi-
tional average PM2.5 concentrations (right axis – small dots) measured in standard units of

µg/m3.

greatest impact on PM2.5 across Santiago. These locations experience the highest
average concentrations while at the same time do not exhibit relatively high degrees
of fragility, leading to the conclusion that it is locally produced PM2.5 that is
responsible for the high concentrations at these locations. Consideration of the
summary statistics in Table 1 reveals that these high levels of pollution are not
due to the burning of firewood, but perhaps are related to high rates of traffic flow
in these communes, a function of their very high population densities. Similarly,
Puente Alto exhibits a relatively high degree of centrality and hence a significant
impact on the rest of the city, but its high concentration levels are solely the
result of locally generated PM2.5 given that its degree of fragility is very low.
This observation is consistent with its location to the south of central Santiago as
pollution will move in a northerly direction on the prevailing wind. At the opposite
end of the spectrum are Las Condes and Talagante which are the least centrally
important and have the smallest impact on the rest of the city.

These results allow the following conclusions to be drawn about the spatial
behaviour of particulate matter in Santiago. The two locations with the highest
average PM2.5 concentrations, namely El Bosque and Cerro Navia, exhibit the
highest centrality. Changes in concentration levels at these locations have the
largest, and widest impact on pollution levels across the city. Importantly however,
from a public policy perspective, is that Parque O’Higgins and Cerrillos (and to
lesser degree, Independencia and Quilicura) have quite low degrees of centrality.
Also recall the earlier result that the degrees of fragility at these stations are
the highest across the city. The combination of low centrality, high fragility and
low local firewood consumption means that the high average concentration levels
experienced at these locations are not locally produced and are the result of PM2.5

generated at other locations.

To give an easily interpretable summary of the differences in centrality, Fig. 4
shows generalized impulse response functions (GIRFs) which illustrate the effect of
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Fig. 3 Measures of centrality (solid line left axis) for each monitoring station and uncon-
ditional average PM2.5 concentrations (dots from right axis) measured in standard units of

µg/m3.

shocks at four selected stations on all the other locations. The GIRFs are based on
the VAR coefficients from Eq. (1) and are computed for shocks to PM2.5 at Parque
O’ Higgins and Independencia, representing communes with low centrality, and El
Bosque and Cerro Navia, representing communes with high centrality. The impact
of differences in centrality are immediately evident in Fig. 4. In comparison to
Parque O’ Higgins and Independencia, shocks to concentrations at El Bosque and
Cerro Navia have much larger impacts across most locations for up to 6-9 hours
ahead. Well beyond just experiencing higher average concentrations, changes in
concentrations at El Bosque and Cerro Navia have proportionally a much bigger
impact on all other locations in greater Santiago for many hours into the future.

These results provide new insights in the spatial importance of the different
locations across Santiago. Osses et al. (2013) show that from a measurement per-
spective, the information gain is greatest from downtown locations such as Parque
O’Higgins, Independencia and El Bosque meaning that they provide the most ac-
curate information regarding pollution levels across the entire city. However from
a public policy perspective, the current results show that there are significant dif-
ferences between the importance of these locations. Changes in pollution levels
at the most centrally important locations, El Bosque and Cerro Navia have the
greatest impact on the spatio-temporal evolution of pollution across many parts
of the city. It is at these locations where official efforts should be focused to help
reduce PM2.5 pollution.

5 Conclusion

In the Chilean capital of Santiago air pollution is a major issue. This paper ex-
amines how pollution levels, measured in terms of the concentration of PM2.5, at
different locations across the city interact and seeks to identify the spatio-temporal
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Fig. 4 Generalized impulse response functions given shocks to PM2.5 at the four named sta-
tions 24 hours ahead. Each subplot represents the change in PM2.5 concentrations (measured

in µg/m3) at all other stations resulting from a shock to PM2.5 concentration at the station
named in each subplot.

links between pollution levels at the various monitoring locations. These links are
then used to construct the sensitivity of each location to pollution generated else-
where, and also the systemic importance of each location to the pollution levels of
other locations.

While many of the monitoring stations in central Santiago experience rela-
tively high average concentration levels, the driving forces behind these readings
differ. A number of important stations in the centre of the city experience high
concentration levels that are generated primarily by heavy traffic (and not burning
firewood) and these locations turn out to be crucial in transmitting pollution to
other parts of the city. On the other hand, there are a number of other heavily
polluted areas (with lower populations and firewood consumption) where pollution
levels are mainly driven by their sensitivity to neighbouring locations.

Identifying locations of systemic importance provides a powerful tool for pol-
icymakers. Pinpointing the most systemically important areas of the city may
open up further options for a more targeted approach to controlling PM2.5 levels.
These options should involve a closer examination of the factors leading to the
production of PM2.5 at these locations. The results reported here indicate that it
is not only the consumption of firewood which is responsible for the high levels of
particulate matter pollution in areas with high centrality but also possibly traffic
and industrial activity.
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