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REVIEW ARTICLE Open Access

Advances in genetics of migraine
Heidi G. Sutherland, Cassie L. Albury and Lyn R. Griffiths*

Abstract

Background: Migraine is a complex neurovascular disorder with a strong genetic component. There are rare
monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both
types has provided insights into the many contributing genetic factors. This review summarises advances that have
been made in the knowledge and understanding of the genes and genetic variations implicated in migraine
etiology.

Findings: Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA).
Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2
and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show
that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make
the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms.
Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at
neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related
disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal
variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in
prioritising, confirming and understanding the mechanisms of disease-causing variants.
With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our
knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the
genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes
and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify
causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will
help bridge the genetics with migraine pathophysiology.

Conclusions: The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge
of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and
pathogenesis, to enable better diagnosis and treatments for migraine sufferers.

Keywords: Migraine, Genetics, Migraine without aura, Migraine with aura, Hemiplegic migraine, Mutation, Variant, Single
nucleotide polymorphism, Genome-wide association study

Background
Migraine types and classification
Migraine is a common type of primary headache dis-
order, distinguished by recurrent attacks of moderate to
severe unilateral throbbing pain, often accompanied by
nausea and/or photophobia and phonophobia. It is clas-
sified into two major types: migraine without aura (MO)
and migraine with aura (MA), with visual, sensory or

other central nervous system (CNS) symptoms preced-
ing the headache and associated migraine symptoms, in
the latter [1]. Other subtypes or forms have been classi-
fied, including chronic migraine and episodic syndromes
associated with migraine. Hemiplegic migraine (HM) is
a rare, severe subtype of MA, in which migraine symp-
toms are accompanied by motor symptoms such as tem-
porary numbness or weakness, affecting one side of the
body (hemiparesis). Familial hemiplegic migraine (FHM)
is a familial form of HM where it is usually inherited in
an autosomal dominant manner. Investigating the gen-
etic basis of FHM, as well as the common types of MO
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and MA, has greatly helped in our understanding of mi-
graine pathophysiology through the discovery of the
genes that contribute to the disorder.

Migraine phases and pathophysiology
Activation of the trigeminovascular system
Migraine is thought to be a complex brain network dis-
order that occurs when the brain loses control of its
homeostasis, leading to the activation of the trigeminovas-
cular system and a cascade of events [2]. Signals from acti-
vated nociceptors innervating the cranial blood vessels are
transmitted to the trigeminal bipolar neurons, and further
relayed to thalamic and cortical areas [3, 4]. The signal from
the perivascular neurons is transmitted by endogenous me-
diators, including the vasoactive neuropeptides calcitonin
gene-related peptide (CGRP), substance P, neurokinin A,
and pituitary adenylate cyclase-activating peptide (PACAP),
as well as release of vasoactive inflammatory mediators
such as nitric oxide, coincident with inflammation in the
meninges [2, 5]. Sensitization of pain relevant brainstem re-
gions, including peripheral trigeminovascular neurons to
dural stimuli, is thought to produce the characteristic sen-
sation of throbbing pain in migraine [6, 7].

Migraine progression and mechanisms
During migraine, distinct areas of the brain are activated,
each contributing to aspects of migraine pathophysiology,
whether this is triggering the attack, generating the pain,
or playing roles in some of the associated neurological
symptoms that occur during an attack [2]. Migraine is
characterised by multiple phases; trigeminal activation oc-
curs in the headache phase, but these may be preceded by
a premonitory phase, in which symptoms including fa-
tigue, mood changes, food cravings, yawning, muscle ten-
derness, and photophobia may be experienced up to 3
days before the headache [8]. Some individuals also ex-
perience an aura phase, which may feature visual, sensory,
speech/language, and motor disturbances, as well as dis-
ruption of higher cortical function, immediately preceding
or concurrent with the headache [8]. Cortical spreading
depression (CSD) is a slowly propagating wave of
depolarization in neuronal and glial cell membranes ac-
companied by massive ion fluxes, which spreads across
the brain cortex, followed by a suppression of activity [9].
It coincides with the initiation and progression of aura
symptoms, but whether CSD is causally linked to the initi-
ation of headache is still debated [10]. Evidence from ex-
perimental animals supports a pivotal role of CSD in aura,
headache initiation and activation of trigeminal nocicep-
tion [11–13]; CSD-associated opening of neuronal Panx1
mega-channels releases molecules that trigger an inflam-
matory cascade, which activates neighboring astrocytes
and leads to sustained release of inflammatory mediators
[13]. Most migraineurs, however, do not experience aura,

and it is unlikely that CSD is involved in initiating the
complete syndrome of migraine. Alternative triggers for
trigeminovascular activation, such as cortical hyperexcit-
ability and brain stem or hypothalamic dysfunction, may
also be important [14].

Brain alterations in migraine
A variety of imaging techniques have revealed both struc-
tural and functional brain alterations in individuals that
suffer migraine [14]. Furthermore, clinical and neuro-
physiological studies have found chronic hypersensitivity
to sensory stimuli and or abnormal processing of sensory
information in migraineurs [15–17], as well as cortical ex-
citability which may make them more susceptible to CSD
[17, 18]. While some of these changes may be the result of
repetitive exposure to pain or stress, the brain biology of
migraine sufferers appears to differ from healthy controls
[2]. Migraine may be triggered by a range of external fac-
tors, including chemicals, lack of sleep, stress, and skip-
ping meals. However, these triggers only lead to migraine
in migraineurs. Some aspects of the altered brain biology
are likely to be genetically predetermined.

A genetic basis for migraine
Family and twin studies have demonstrated that there
are genetic factors that contribute to the susceptibility of
an individual to migraine. This is clear for individuals
with monogenic migraine disorders, such as FHM, in
which a pathogenic variant in a single gene can lead to
the disorder, with nearly complete penetrance. Family
and twin studies also suggest that common migraine is
also a heritable trait, with heritability estimated between
30 and 60% [19–21]. Common migraine forms, includ-
ing MO and MA, are most likely due to the contribution
of variants with small effect at many genetic loci, i.e.
these are considered to be polygenic disorders. Different
approaches have been used to identify and understand
the function of the genes involved in monogenic and
polygenic migraine. For the former, this has been
achieved by linkage mapping of genetic markers and se-
quencing of candidate genes in family pedigrees featur-
ing the disorder, followed with functional studies in
cellular and animal models. In recent years Next-
generation sequencing (NGS) techniques have acceler-
ated the discovery of genes and variants linked to mono-
genic migraine-related disorders. With regards to
polygenic forms, genome-wide association studies
(GWAS) in large migraine case-control cohorts has
greatly helped our understanding of the many genetic
factors and pathways that contribute to common mi-
graine, with subsequent transcriptomics and functional
experiments required for further understanding of the
causal mechanisms.
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Main text
Genetics of monogenic migraine disorders
Valuable insights into how some of the underlying gen-
etic factors contribute to the pathophysiology of mi-
graine have been provided by a number of rare inherited
migraine disorders, which can be caused by mutations in
a single gene (Table 1). These include hemiplegic mi-
graine (HM) and familial migraine (where migraine is
inherited in a Mendelian manner), as well as a range of
monogenic neurological and vascular disorders which
can show symptomatic crossover. The latter include
some types of episodic ataxias, paroxysmal movement
disorders, and the stroke syndrome cerebral autosomal
dominant arteriopathy with subcortical infarcts and leu-
coencephalopathy (CADASIL; Mendelian Inheritance in
Man catalogue, MIM #125310), and commonly feature
migraine and/or episodic attacks of associated symptoms
such as motor weakness, vertigo and nausea, along with
their other characteristic symptoms.

Hemiplegic migraine
Hemiplegic Migraine (HM) is a rare subtype of MA
characterised by episodes of severe migraine and aura
symptoms involving motor weakness or numbness, usu-
ally affecting one side of the body (hemiparesis), as well
as visual, sensory, or speech disturbances [1, 22]. In
some cases, patients experience additional neurological
symptoms such as confusion, seizures, memory loss, and
coma. Individuals usually fully recover between episodes,
although some symptoms may persist for weeks or lon-
ger, and some patients can develop permanent ataxia
(difficulty coordinating movements), which may worsen
with time [23]. In rare cases HM can be fatal after a
minor head trauma [24].

Familial hemiplegic migraine (FHM)
The prevalence of HM has been found to be up to 0.01%
in European populations, with both familial and sporadic
forms [23, 25, 26]. FHM is diagnosed when there is at
least one 1st or 2nd degree relative in the family who
also suffers HM attacks. FHM usually shows an auto-
somal dominant pattern of inheritance (with 70–90%
penetrance) and is considered to be monogenic, but gen-
etically heterogeneous. To date three main causative
genes – CACNA1A, ATP1A2 and SCN1A – have been
identified through linkage studies and mutational
screening in FHM family pedigrees. FHM can be classi-
fied as FHM1 (MIM #141500), FHM2 (MIM #602481) and
FHM3 (MIM #609634) according to whether patients have
mutations in CACNA1A, ATP1A2 or SCN1A, respectively.
Clinically these FHM sub-types are indistinguishable, as
symptoms overlap, but there is wide variation in pheno-
types, including between individuals with mutations in the
same gene, or even family members with the same

mutation [27–29]. This suggests that other genes or envir-
onmental factors can modify phenotype. It should be noted
that the majority of cases (< 25%) do not appear to have
mutations in the CACNA1A, ATP1A2 or SCN1A genes
[30] and our results (under review). Nevertheless, identify-
ing and studying the known FHM genes and mutations
has greatly improved diagnostics as well as understanding
of the underlying biology of HM. The three main HM
genes encode ion channel or ion transport proteins, leading
to the supposition that HM is a channelopathy [31].

FHM1 due to mutations in CACNA1A CACNA1A on
chromosome 19p13 was the first gene implicated in
FHM (FHM1), identified via positional cloning and mu-
tation analysis of candidate genes in multiple FHM fam-
ily pedigrees [32]. The gene encodes the pore-forming
α1 subunit of the neuronal voltage-gated Cav2.1 (P/Q-
type) channels, which are predominantly localized at the
presynaptic terminals of brain and cerebellar neurons,
and play an important role in controlling neurotransmit-
ter release [33]. > 25 pathogenic variants in CACNA1A
have been reported for FHM1, which are inherited in an
autosomal dominant pattern. CACNA1A deletions have
been reported in FHM1 patients [34, 35], however the
majority are missense variants, lying in significant func-
tional domains of the calcium channel, i.e. the voltage
sensor, pore, and pore-lining loops [36]. They usually
have gain-of-function effects, leading to increased Ca2+

influx, which results in enhanced glutamatergic neuro-
transmission and neuronal hyperexcitability [32, 37, 38].
While a strict genotype-phenotype correlation does not
exist [29, 39], symptoms and clinical severity may vary
depending on the variant [40, 41]. Transgenic FHM1
knock-in (KI) mouse models have been generated: one,
which expresses the milder R192Q CACNA1A mutation,
shows no overt phenotype [42], while another with the
severe S218 L mutation exhibits cerebellar ataxia and
spontaneous seizures in accordance with severity of the
clinical symptoms observed in patients (28). In both
these mouse models the FHM1 mutations cause gain-of-
function effects, leading to altered cortical excitatory-
inhibitory balance, increased neurotransmission, and
increased susceptibility to CSD action [42–45]. Add-
itionally, increased trigeminal sensory firing [44, 46, 47],
tissue anoxia attributing to prolonged aura [48], head
pain when triggered [49], and altered CGRP-mediated
trigeminal pain signalling and synaptic plasticity [4, 50],
have been observed in FHM KI models.
What controls trigeminal sensory excitability in between

FHM attacks remains unknown [44]; this, in conjunction
with extreme clinical diversity and variability, suggests
that a number of environmental factors and/or modifier
genes may act independently on the function of neuronal
P/Q calcium channels as compensatory mechanisms until
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Table 1 Migraine-related monogenic neurological and vascular disorders and their causal genes and mechanism of mutations

Disorder Symptoms/Key Clinical Findings Causal gene/s Mutations and mechanisms

With mostly neurological symptoms and signs:

Familial Hemiplegic
Migraine (FHM)

• Migraine
• Visual disturbances
• Motor weakness (e.g. hemiplegia,
ataxia, nystagmus)

• Sensory Loss (e.g. numbness)
• Difficulty with speech
(e.g. dysphasia, aphasia)

• Additional neurological symptoms
(e.g. confusion, seizures, memory
loss, coma)

CACNA1A Missense, gain-of-function ↑ Ca2+ influx into the
presynaptic terminal resulting in excessive
neurotransmission.

ATP1A2 Missense, partial-to-complete loss-of- function
↑synaptic K+ and glutamate triggering neuronal
hyperexcitability.

SCN1A Spectrum of FHM3 mutations is highly complex,
biological mechanisms remain unclear – however
mutations result in a ↓ in inhibitory transmission
which triggers a ↑ in excitatory transmission.

Mendelian Migraine with Aura • Typical Migraine with Aura KCNK18 Frameshift mutation in TRESK potassium channnel,
but has dominant negative effect due to
alternatively translated TRESK fragment which
downregulates TREK1 and TREK2 potassium
channels.

Episodic Ataxia type 2 (EA2) • Migraine
• Nystagmus
• Muscle weakness
• Paraesthesia
• Progressive cerebellar ataxia
(e.g. imbalance and incoordination)

• Vertigo

CACNA1A Loss-of-function mutations result in decreased
channel function and thereby a ↓ in intracellular
Ca2+; how this triggers EA2 disease mechanisms
remains unclear.

Spinocerebellar Ataxia type
6 (SCA6)

• Migraine
• Cerebellar atrophy
• Dysarthria
• Nystagmus
• Progressive cerebellar ataxia
• Sensory neuropathy (e.g. pins and
needles, tingling and burning)

CACNA1A Expansion of ‘CAG’ polyglutamine repeats in COOH
tail of CACNA1A protein, toxic gain-of-function
affecting channel regulation s → selective
degeneration of cerebellar Purkinje cells

Familial Advanced Sleep-Phase
Syndrome (FASPS) 2

• Disrupted circadian rhythms (e.g. early
onset and offset sleep-wake cycles)

• Migraine with Aura

CSNK1D Loss-of-function (partial). Casein kinase Iδ
phosphorylates mammalian clock protein PER2.
CKIδ also phosphorylates and regulates GJA1/
Connexin43, an astrocytic gap junction protein and
a migraine GWAS loci.

ROSAH syndrome • Ocular (e.g. retinal dystrophy, optic
nerve edema, low-grade inflammation),

• Splenomegaly
• Anhidrosis
• Migraine headache

ALPK1 Possible gain-of-function. May affect ciliary
formation, regulation of apical transport.
Etiology of migraine unclear, but kinase
function may affect CGRP activity.

Paroxysmal dyskinesia disorders • Recurrent and brief attacks of
involuntary movement (can be
induced by voluntary movements,
[PKD], coffee, alcohol, strong
emotion [PNKD] or exercise [PED]

• Can present with, or have,
accompanying hemiplegic migraine

PRRT2 Missense or most frequently loss of function
truncating mutations in PRRT2, result in ↑
presynaptic vesicle release and excitatory
transmission, possibly a modifier gene for
hemiplegic migraine.

PNKD Missense mutations affect protein cleavage and
stability. PNKD interacts with synaptic active zone
proteins and mutant protein is less effective at
inhibiting exocytosis, resulting in ↑ neurotransmitter
release.

SLC1A3 Spectrum of FHM3 mutations is highly complex,
biological mechanisms remain unclear – however
mutations result in a ↓ in inhibitory transmission
which triggers a ↑ in excitatory transmission.

With mostly vascular symptoms and signs:

Cerebral Autosomal Dominant
Arteriopathy Subcortical Infarcts
with Leukoencephalopathy
(CADASIL)

• Premature stroke
• Cognitive disturbances (e.g. dementia,
• psychiatric issues varying from personality
changes to severe depression, coma,
confusion)

• Difficulty with speech (e.g. aphasia)

NOTCH3 Usually gain-of-function cysteine residue mutations,
which produces toxic NOTCH3 protein accumulation
and progressive damage in neuronal blood vessels.
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a threshold is reached [29]. Screens for genetic modifiers
in animal models are consistent with this. For example,
genetic knockdown of Drosophila phospholipase C beta
(PLCβ, which is involved in cardiovascular and neuronal
signalling), or genetic variants affecting the receptors that
gate intracellular calcium stores (e.g. inositol triphosphate
[IP3] and Ryanodine receptors), partially alleviated some
of the electrophysiological phenotypes of FHM1 muta-
tions [51]. In another example, a large-scale functional
RNAi screen in Caenorhabditis elegans for modifiers of
unc-2, the worm orthologue of CACNA1A, identified
genes in the TGF-β and Notch signalling pathways [52].
Interestingly, those pathways are relevant to both com-
mon migraine, as revealed by association studies [53], as
well as other monogenic disorders such as CADASIL
which has overlapping symptoms with FHM [54]. Studies
in FHM1 transgenic mice have also demonstrated the role
of female sex hormones in increased susceptibility to CSD
(37), suggesting that hormones are also modifying factors,
and may explain some of the variable expressivity and
penetrance of FHM pathogenic variants and the female
preponderance of migraine disorders (49).

Episodic Ataxia 2 and spinocerebellar Ataxia type 6
due to mutations in CACNA1A In addition to FHM1,
heterozygous mutations within CACNA1A can cause
two other neurological disorders, episodic ataxia type 2
(EA2; MIM #108500) and spinocerebellar ataxia type 6
(SCA6; #MIM 183086) [32, 55]. EA2 is characterized by
paroxysmal attacks of ataxia, vertigo, and nausea, while
SCA6 is typified by adult-onset, slowly progressive cere-
bellar ataxia, dysarthria, and nystagmus. There can be
overlapping clinical features between the three allelic
disorders [56], e.g. ~ 50% EA2 patients also suffer

migraine [57], and episodic headaches and nausea are
also common in SCA6 [58]. EA2 mutations can be mis-
sense, truncating or cause aberrant splicing of CAC-
NA1A [59]. However, unlike FHM mutations, they are
usually loss-of-function and result in decreased Ca2+ in-
flux [4]. SCA6 mutations are usually small expansions of
a polyglutamine repeat in the COOH tail of CACNA1A
[55] which leads to accumulation of mutant Cav2.1
channels and selective degeneration of cerebellar Pur-
kinje cells due to a toxic gain-of-function effect [60].

FHM2 due to mutations in ATP1A2 In 2003, ATP1A2
at 1q23.2 was identified as second major FHM gene
[61]. ATP1A2 encodes the α2 isoform of the catalytic
subunit of the Na+/K+-ATPase ion transport pump,
which is responsible for regulating electrochemical gra-
dients across the cell membranes of the CNS, heart,
skeletal and smooth muscle tissue [62]. The pump is
mainly expressed on astrocytes at tripartite synapses in
the CNS, and its function in the clearance of extracellu-
lar K+ and production of a Na+ gradient used in the re-
uptake of glutamate, is important to its role in HM [63].
ATP1A2 mutations (FHM2) are usually inherited in an
autosomal dominant pattern, and patients have a wide
clinical spectrum [62, 64], which includes neurological
disorders such as alternating hemiplegia of childhood
[65], epilepsy [66], seizures [67], and permanent mental
retardation [68, 69], as well as neuromuscular periodic
paralysis disorders [70] and recurrent coma and fever
[71], secondary to recurrent FHM-like attacks. > 80
causal variants have been linked to FHM2, with ~ 25 di-
agnosed in sporadic cases, suggesting that de novo mu-
tations are common at the ATP1A2 locus [62]. While
CACNA1A mutations are reported as the most common

Table 1 Migraine-related monogenic neurological and vascular disorders and their causal genes and mechanism of mutations
(Continued)

Disorder Symptoms/Key Clinical Findings Causal gene/s Mutations and mechanisms

• Motor weakness (e.g. hemiplegia)
• Migraine with aura
• Seizures

COL4A1/A2 disorders • Stroke and small vessel disease
(e.g. porencephaly, leukodystrophy

• Eye defects (e.g.retinal arterial tortuosity,
Axenfeld-Rieger anomaly, cataract)

• Systemic effects (e.g. kidney, muscle cramps,
Raynaud phenomenon, cardiac arrhythmia,
and hemolytic anemia

• Migraine with and without Aura

COL4A1
COL4A2

Usually missense mutations of highly conserved
glycine residues in the Gly-X-Y repeat of the
collagen triple-helical domain, which impair
collagen IV heterotrimer assembly. Some
truncating mutations resulting in haploinsufficiency.

Retinal vasculopathy with
cerebral leukodystophy (RVCL)

• Vascular retinopathy, visual loss
• Mini-strokes, cerebral leukodystrophy
• Cognitive disturbances (e.g. depression,
seizures, mental impairment)

• Migraine (mainly without aura)
• Mild renal and liver dysfunction
• Raynaud’s phenomenon and gastro-
• intestinal bleeding in some individuals

TREX1 C-terminal truncations of TREX1 3′-5′ exonuclease
which result in its mislocalisation in the cell,
which causes dysregulation of the ER
oligosaccharyltransferase (OST), release of free
glycans and potentially glycosylation defects.
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in some HM cohorts [36, 72], using an NGS panel to
screen the three main HM genes in an Australian patient
cohort we found that ~two-thirds of the HM mutations
identified were in ATP1A2 (under review).
The majority of FHM2 mutations are missense and

cluster in the catalytic P domain, the transmembrane
domain, or in the central region between these; small
deletions, a mutation causing protein extension through
stop codon alterations, and exonic duplication have also
been reported [62, 73–75]. In vitro functional models
have been used to determine the functional conse-
quences of a number of ATP1A2 FHM2 mutations, with
studies demonstrating significant protein dysfunction
ranging from partial to complete loss [62]. ATP1A2 mu-
tations have been found to: i) alter (increase or decrease)
pump sensitivity to potassium [76, 77]; ii) reduce the
sodium/potassium turnover rate [40]; or iii) generate
non-functional proteins [78–80]. Homozygous Atp1a2
knock-out (KO) mice die immediately after birth [81],
and recently biallelic loss of function variants in ATP1A2
have been reported in humans, resulting in death neo-
natally, with features of hydrops fetalis, microcephaly,
arthrogryposis and extensive cortical malformations [82].
Heterozygote KO mice have altered behaviour and
neurological defects [81], but also exhibit a low thresh-
old for induction of CSD, faster propagation rate, and
delayed recovery from mass depolarization compared to
wild-type mice [83]. FHM2 KI mice carrying either the
human W887R or G301R mutations, show altered CSD,
with the former more susceptible to CSD due to a re-
duced rate of glutamate and K+ clearance by cortical as-
trocytes [84, 85], and the latter displaying a prolonged
recovery phase following CSD [86]. Therefore, ATP1A2
mutations have been hypothesised to contribute to FHM
pathophysiology by increasing the propensity for CSD
action due to increased levels of synaptic K+ and glutam-
ate as a result of dysfunctional Na+/K+ ATPase pump ac-
tion [87, 88]. While many FHM2 ATP1A2 mutations
abolish or greatly reduce pump activity, others cause
more subtle effects, including shifts in voltage depend-
ence, kinetics, or apparent cation affinities [62]. Never-
theless, they affect glutamatergic neurotransmission,
causing the defective regulation of the balance of excita-
tion and inhibition in the brain seen in migraine [89].

FHM3 due to mutations in SCN1A SCN1A (chr
2q24.3) was identified as a third causative gene for FHM in
2005 [90]. FHM3 is rarer than FHM1 and 2 (up to ~ 10%
of patients with a molecular diagnosis). SCN1A encodes the
α1 subunit of the neuronal voltage-gated sodium channel
Nav1.1, which mediates the voltage-dependent sodium ion
permeability of excitable membranes (primarily the inhibi-
tory gamma-Aminobutyric acid [GABA]-ergic interneu-
rons) of the CNS [91]. SCN1A is commonly mutated in

epilepsy syndromes with hundreds of heterozygous truncat-
ing and missense mutations reported [92]. Eleven FHM3
SCN1A mutations have been described to date, and are
usually inherited in an autosomal dominant manner [93–
95]. Mutations have been identified in both pure FHM fam-
ilies, and also in those with FHM and additional neuro-
logical disorders, including generalised tonic-clonic
epilepsy, elicited repetitive transient daily blindness and
childhood epilepsy [96–98].
Epileptic mutations mainly cause loss-of-function,

resulting in reduced sodium currents and action poten-
tial firing in GABAergic inhibitory interneurons [99–
101]; SCN1A KO mice suffer from ataxia and epileptic
seizures [102, 103]. In FHM3, mutations in SCN1A are
usually missense and cause gain-of-function effects on
the channel, displaying increased threshold-near persist-
ent current, delayed entry into inactivation, and a faster
recovery and higher channel availability during repetitive
stimulation [104–107]. This predicts increased firing of
inhibitory GABAergic neurons, leading to higher extra-
cellular potassium concentrations, enhanced glutamate
release, and triggering of CSD [106, 108]. However, the
mechanisms of SCN1A mutations in FHM3 can be com-
plicated: some exhibit loss-of-function effects in heterol-
ogous cell systems [109]; a SCN1A T1174S mutation
reported in a family with both epileptic and FHM phe-
notypes can act in both a gain- and loss-of-function
manner [105]; and furthermore, the SCN1A L1670W
and L1649Q mutations induce folding and trafficking
defects which, when rescued by incubation at lower tem-
peratures, or when expressed in GABAergic cortical
neurons, modifies the gating properties leading to an
overall gain-of-function [110, 111]. KI mouse models of
FHM3 mutations have not been reported to date, but
would help further understanding of their mechanisms
of pathogenesis.

Sporadic hemiplegic migraine (SHM)
Sporadic Hemiplegic Migraine (SHM) is diagnosed when
there is no family history of HM, and estimates suggest
in the general population approximately one-third of
cases are sporadic [25]. SHM can be caused by patho-
genic variants in the known FHM genes, including those
that have arisen de novo, which may then become famil-
ial cases [41, 74, 112] Variants in ATP1A2 have been the
most commonly found in SHM cases, possibly reflecting
greater genetic heterogeneity, or more variable pene-
trance, in this gene [62]. SHM may result from less
penetrant variants in the known FHM genes, mosaicism
in the transmitting parent, pathogenic variants in other
genes, and/or other modes of inheritance, e.g. com-
pound recessive mutations and gene/environment inter-
actions [23, 93]. Some SHM cases may also represent a
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phenotypic extreme of common migraine due to a com-
bination of lower-risk genetic variants. For example, Pel-
zer et al. (2018) found that individuals with HM, but
without mutations in CACNA1A, ATP1A2 or SCN1A,
generally have a milder phenotype than those with mu-
tations in those genes [41].

Hemiplegic migraine and disorders with overlapping
symptoms caused by mutations in other genes
Although rare, pathogenic variants in other genes, includ-
ing PRRT2, PNKD, SLC2A1, SLC1A3, SLC4A4, have been
reported in HM. Mutations in PRRT2 and PNKD are more
commonly associated with paroxysmal conditions, in par-
ticular movement disorders [113]. PNKD is the main causal
gene for paroxysmal non-kinesigenic dyskinesia (PNKD;
MIM #118800) [114, 115], while PRRT2 mutations can
cause paroxysmal kinesigenic dyskinesia (PKD; MIM
#128200) [116, 117], paroxysmal non-kinesigenic dyskinesia
(PNKD) [118], paroxysmal exercise-induced dyskinesia
(PED), and childhood epilepsy/seizure disorders [119, 120].
Some patients presenting with HM have been found to
have mutations in PRRT2 [118, 121–124], leading to the
suggestion that it is a fourth HM gene [121]. However, the
relationship is complicated due to the clinical heterogeneity
and pleiotropy of phenotypes, and it may mainly act in a
modifying role [125]. PRRT2 encodes Proline Rich Trans-
membrane Protein 2 (PRRT2), a presynaptic transmem-
brane protein which interacts with members of the SNAP
Receptor (SNARE) complex [126]. It is involved in synaptic
vesicle fusion and regulation of voltage-gated calcium chan-
nels in glutamatergic neurons, and is important in the final
steps of neurotransmitter release [127–129]. Heterozygous
PRRT2 c.649dupC (p.Arg217Profs*8) or c.649delC
(p.Arg217Glufs*12) loss-of-function truncating mutations
are the most common in PRRT2-related conditions, includ-
ing HM, and are likely to result in impaired interaction with
the SNAP25/SNARE complex and increased presynaptic
vesicle release, leading to a state of hyperexcitability [118].
Mutations in both PNKD, the main causal gene for

PNKD, and SLC2A1, the glucose transporter protein type 1
(GLUT1 or EAAT2) gene implicated in PED and GLUT1
deficiency syndrome (MIM #606777), have also been found
in HM patients [118, 130, 131]. They likely act via disrup-
tion of neurotransmitter regulation and impaired synaptic
vesicle release [118]. Mutations in SLC1A3, the gene for the
glial glutamate transporter EAAT1, can cause episodic
ataxia, type 6, (EA6; MIM #612656), but have also been as-
sociated with HM [132, 133]. Similarly, mutations in
SLC4A4, the gene for the sodium bicarbonate cotransporter
NBCe1, which is usually involved in renal tubular acidosis
syndromes (MIM #604278) are also found in some HM
cases [134]. Analysis of whole exome sequencing (WES)
data of HM patients without CACNA1A, ATP1A2 and
SCN1A mutations suggests that mutations in all these

genes are rare [41] and our results (under review), but
should be considered in the molecular diagnosis of patients
without mutations in the main HM genes.

Familial migraine with Aura and associated disorders
The majority of studies of migraine in family pedigrees
with Mendelian inheritance have focussed on those with
the HM phenotype. However, a few cases of familial MA
have been reported, which have revealed other genes
and molecular mechanisms involved in migraine biology.

Familial migraine with Aura caused by mutations in
KCNK18 encoding the TRESK channel
A monogenic form of typical MA in a large multigener-
ational pedigree identified a frameshift mutation
(F139Wfsx24) in the TWIK-related spinal cord potassium
channel (TRESK, encoded by KCNK18), segregating with
migraine [135]. TRESK is a member of the two pore do-
main potassium channel (K2P) family, which regulate the
excitability of a variety of neurons involved in transducing
pain stimuli, including the somatosensory neurons of the
dorsal root ganglia (DRG) and trigeminal ganglia [136,
137]. KO mouse models suggest TRESK functions to mod-
ify certain forms of nociceptive afferentation [138, 139].
Functional analysis suggested a dominant negative effect of
the TRESK F139Wfsx24 mutation on whole-cell TRESK
currents resulting in hyperexcitability of trigeminal ganglion
neurons [140]. However, another dominant negative
TRESK mutation, C110R, which is not associated with mi-
graine [141], does not trigger sensory neuron hyperexcit-
ability, even though it reduces TRESK currents in sensory
neurons [142]. A recent study by Royal et al. (2019) sheds
light on this apparent contradiction and has revealed a
novel mechanism by which frameshift mutations can alter
the function of a gene [143]. Firstly, they found that TRESK
can heterodimerise with two other K2P channels, TREK1
and TREK2, which when knocked out together in mice re-
sults in a migraine-like allodynia phenotype. The TRESK-
C110R protein inhibits TRESK activity on dimerization, but
does not affect TREK1 and TREK2, while TRESK-
F139Wfsx24 inhibits activity of all three channels. Interest-
ingly, the 2 bp frameshift puts an alternative start codon in
frame, which results in translation of a second TRESK frag-
ment. It is this that specifically downregulates TREK1 and
TREK2 function, which appears to contribute to migraine
induction. Furthermore, Royal et al. (2019) identified an-
other TRESK frameshift mutation (Y121LfsX44) in a hu-
man exome sequence database, and which is associated
with migraine in ClinVar, that appears to work via the same
mechanism which they have termed frameshift mutation-
induced alternative translation initiation [143]. Finally, this
work suggests that TREK-related genes may also be in-
volved in migraine.
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Familial advanced sleep-phase syndrome (FASPS) and
migraine caused mutations in CSNK1D
Casein kinase 1 delta (CKIδ) is a central component of
the circadian clock. Mutations in the CKIδ gene,
CSNK1D, were found to cause familial advanced sleep
phase syndrome (FASPS) in two large independent pedi-
grees [144, 145]. FASPS patients show severe disruption
of the sleep-wake-cycle and other circadian rhythms, but
interestingly, the phenotype also co-segregated with MA
in these pedigrees. Mice carrying a transgene with the
human CKIδ-T44A mutation displayed sensitization to
pain after triggering migraine with nitroglycerin, and a
reduced threshold for CSD; cultured astrocytes showed
increased spontaneous and induced calcium signalling
[144, 145]. Further details of its role in migraine are to
be elucidated, but CKIδ is a ubiquitous serine-threonine
kinase that phosphorylates the circadian clock protein
PER2, as well as other proteins involved in brain signal-
ling [146]. CSNK1D is a notable exception to the ion
channel and glutamatergic-related genes implicated in
the majority of monogenic migraine, and the connection
between migraine and FASPs is consistent with a likely
role of the hypothalamus in regulating physiological
stresses and migraine susceptibility [147–149].

ROSAH syndrome – retinal dystrophy, optic nerve edema,
splenomegaly, anhidrosis and migraine headache – caused
by mutations in ALPK1
ROSAH is a recently described distinct autosomal domin-
ant ocular systemic disorder, which features migraine
headache as one of the key clinical features. Exome and
genome sequencing identified a heterozygous missense
pathogenic variant in the ALPK1 gene (c.710C > T,
p.[Thr237Met]) in five independent families [150]. ALPK1
encodes Alpha Kinase 1, which may play roles in inflam-
mation and intracellular trafficking, although its function
is poorly defined, and it is not yet understood the how
mutations in the protein would contribute to migraine.

Monogenic vascular disorders which feature migraine
Cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL)
There are a number of primarily vascular disorders
caused by mutations in single genes, in which migraine
is a common symptom. Cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencepha-
lopathy (CADASIL), is a cerebral small-vessel disease
(SVD) characterised by vascular degeneration, recurrent
subcortical ischaemic strokes, cognitive decline, demen-
tia, and premature death [54]. It is the most common
heritable cause of stroke and vascular dementia in
adults, caused by toxic gain-mutations in NOTCH3,
which are usually autosomal dominant. Migraine, in

particular the MA subtype, is a common symptom ac-
companying CADASIL (in up to 75% cases) [151–154],
often presenting decades before the onset of other symp-
toms [54, 155]. For example, a study of 300 symptomatic
CADASIL patients found that three quarters had mi-
graine (90% of which was MA), and in two-thirds of the
patients it was the presenting symptom [153].

Retinal vasculopathy with cerebral leukodystrophy (RVCL)
and COL4A1-related SVDs
Other SVDs that commonly feature migraine include syn-
dromes such as retinal vasculopathy with cerebral leuko-
dystrophy (RVCL; MIM #192315) caused by mutations in
TREX1 [156, 157], and COL4A1 and COL4A2-related dis-
orders [158–160]. The exact mechanism through which
vascular disorders lead to an increased prevalence of mi-
graine is unknown [154], but they indicate that some
genes with roles in vascular function are also implicated in
migraine, something which has also become apparent in
polygenic migraine from both epidemiological studies and
GWAS [161, 162].

Methods and applications for identifying disease-causing
variants in monogenic migraine and related disorders
Next-generation sequencing for molecular testing of
hemiplegic migraine
Until relatively recently HM genetic testing involved
Sanger sequencing of selected exons in one, two or all
three main HM causative genes (CACNA1A, ATP1A2 and
SCN1A). This form of iterative testing was limited and
could be costly and time consuming. The development of
next-generation sequencing (NGS) technologies, in which
millions of small fragments of DNA are sequenced in par-
allel, have revolutionised genomic research, allowing spe-
cific regions of interest to the entire genome to be
sequenced concurrently. NGS applications include tar-
geted gene panels, WES (in which all the coding regions
of the genome are sequenced), and Whole Genome Se-
quencing (WGS), which also captures introns, regulatory
regions and all other non-coding DNA. NGS has been ap-
plied clinically in genetic diagnostics, including for HM
and overlapping disorders, facilitating the discovery of
novel HM mutations [163–165]. Using a five gene panel
designed for HM and overlapping disorders (EA2 and
CADASIL), our laboratory has found that diagnostic suc-
cess rates have increased considerably (~ 21%) when com-
pared to that of previous Sanger sequencing testing
methods (~ 9%), and have identified a number of novel
causative variants for HM and related disorders [166,
167]. Clinicians also appreciate the option to test for over-
lapping neurological disorders when presented with com-
plex cases with HM-related symptoms.
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Discovering new genes in migraine-related disorders
Importantly, recent application of NGS sequencing tech-
niques to screen HM patients have shown that the ma-
jority do not have exonic mutations in the main HM
genes [30]. We find that > 75% patients sent for testing
do not have likely pathogenic exonic variants in CAC-
NA1A, ATP1A2 or SCN1A (under review). Furthermore,
analysis of data from NGS panels or WES has revealed
that likely pathogenic variants in other known familial
migraine and migraine-related genes are also rare [41],
[our results (under review)]. This low level of diagnostic
success may largely be due to other causative genes or
genetic factors, although no other major HM loci have
been found so far [41]. In addition to the three main
genes, HM may be highly genetically heterogeneous.
From what is already known of the biology, other genes
likely to be involved in HM may include ion channel
and solute transporter genes, as well as genes involved
in aspects of glutamatergic neurotransmission and vas-
cular biology. Assigning causality for variants that are
less dominant or penetrant than those in the known HM
genes will be challenging. This is exemplified in a study
by Klassen et al. (2011) comparing ion channel variant
profiles of unaffected individuals to those with sporadic
idiopathic epilepsy from targeted exome sequencing; rare
missense variants were prevalent in both groups at simi-
lar complexity, demonstrating that even deleterious ion
channel variants confer uncertain risk to an individual
depending on the other variants with which they are
combined [168]. In fact Hiekkala et al. have hypothe-
sized that HM may not be a true monogenetic disease,
but that it may reflect an extreme phenotype in the MA
spectrum where rare and/or multiple common variants
contribute to the disease outcome [30].

Assigning function to potential HM and migraine-causing
variants
Determining the biological effect of variants on protein
function is a major limitation in medical genetics. As NGS
techniques reveal many more variants, particularly if HM
is highly genetically heterogeneous, it will be necessary to
improve functional testing pipelines to filter those likely to
be pathogenic. Public databases which provide variant fre-
quency (e.g. dbSNP, Genome Aggregation Database [169])
and previously reported pathogenicity information (e.g.
ClinVar [170], Leiden Open Variation Databases), and in
silico bioinformatics tools which predict functional conse-
quences (e.g. SIFT [171], Polyphen2 [172], and Mutation-
Taster) are useful in prioritising lists of candidate variants
by providing first assessments of pathogenicity [173, 174,
175]. In silico methods to predict the impact of regulatory
variants are also being developed [176, 177]. In addition to
in silico analysis, functional assays are necessary to pro-
vide further evidence for pathogenicity, or otherwise, for

prioritised variants, and to explore molecular mechanisms.
Testing exogenous DNA constructs with engineered vari-
ants in cell and animal models can be complimented with
genome-editing technologies, particularly the clustered
regularly interspaced short palindromic repeats (CRISPR)-
Cas9 system, which allows more refined and faster gener-
ation of knock-out or knock-in lines [178]. Coupled with
induced pluripotent stem cells (iPSCs), which are able to
be differentiated into various neuronal cell types [179,
180], as well as brain organoids [181], variants can be
functionally tested in more relevant cell models, or gener-
ated from patients so they can be studied in the context of
their genomic background. A range of approaches to scale
up such assays are being developed [182], e.g. deep muta-
tional scanning, which combines large scale generation of
variants with deep sequencing, is a technique allowing the
effect of a combination of variants to be tested at once
[183], and high throughput electrophysiology platforms
are available for testing ion channel variants [184].

Targeting treatment to genetic diagnosis in HM-related
disorders
A molecular diagnosis is likely to improve management
and treatment efficiencies for neurological disorders,
even if symptoms may overlap, as the specific pathway
or mechanism can be targeted. E.g. Glut1 deficiency
caused by SLC2A1 mutations can be treated using a ke-
togenic diet and HM symptoms, if present, have been
found to improve on a modified Atkins diet [131]. In
HM cases with PRRT2 mutations, some benefit has been
observed with carbamazepine, the most frequently used
drug in treating PKD and PKD/IC patients [185]. A
range of acute and prophylactic drugs are used for HM,
and some may be more effective than others depending
on the nature of the causative genetic mutation [22].

Genetics of common migraine
Monogenic migraine disorders have a large impact on the
individuals and families involved, but they are rare. The
majority of migraine is polygenic, i.e. it is a complex dis-
order in which multiple variants in genes contribute to
the underlying risk, with each one usually having a rela-
tively small effect. Disease susceptibility is further a result
of interaction of these genetic variations with each other,
and with environmental and lifestyle factors. Discovering
loci and genes that contribute to common migraine re-
quires different approaches to the Mendelian disorders,
mainly based on finding differences in allele frequencies of
genetic variants linked to genes, between cohorts of mi-
graine cases and non-migraine controls, composed of un-
related individuals. Common genetic variation largely
comprises of SNPs, small insertions or deletions, short
tandem repeats, and copy number variants. Most effort in
identifying variants that influence traits and disorders,
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including migraine, has been focussed on the SNPs that
confer an increased or decreased risk of migraine. These
studies are demanding as, although each variant may con-
tribute to migraine susceptibility, it is neither necessary,
nor sufficient, to cause it. Effect sizes for most loci are
generally small (allelic odds ratio of 1.03–1.28), requiring
genotyping of large numbers of individuals to robustly ob-
tain results that pass significance thresholds [162]. Signifi-
cant differences in allele frequencies of a SNP does not
necessarily mean that the SNP is itself a susceptibility fac-
tor, but that a causal variant may be in linkage disequilib-
rium (LD) with it. Linking the associated polymorphism
to the variant that elicits the effect, or even to the gene af-
fected, is often challenging.

Association studies of polymorphisms in migraine
candidate genes
For many years, association studies of SNPs in and
around hypothesis-driven candidate genes was the main
approach used to investigate genes thought to be in-
volved in migraine. Studies generally genotyped either
known functional variants, or tagging SNPs across gene
loci selected from biological pathways thought to be
relevant, e.g. neurological, vascular, hormonal, and in-
flammatory pathways [186]. Association studies of close
to 200 polymorphisms in ~ 100 genes have been pub-
lished for migraine [187], although subsequent and repli-
cation studies often reported conflicting results. The
occurrence of false positive results in case-control study
designs may be due to small sample sizes, lack of consid-
eration for LD blocks, inadequate correction for multiple
testing and phenotyping issues [40]. The C667T variant
(rs1801133) in the 5,10-methylenetetrahydrofolate re-
ductase gene (MTHFR), encoding a key enzyme in the
folate pathway, results in an alanine to valine substitu-
tion in the catalytic domain, which reduces its activity
by ~ 50% [188]. MTHFR C667T has been one of the
most extensively studied polymorphisms in migraine;
some meta-analyses report association of the T-allele
with MA, but not MO [189–192], however, this has not
been supported by other meta-analyses [193, 194].
Furthermore, a systematic re-evaluation of the most
promising candidate gene SNPs, including MTHFR
C667T, and others previously found to be positively as-
sociated with migraine, showed no clear evidence for in-
volvement in migraine using International Headache
Genetics Consortium (IGHC) GWAS data for 5175
clinic-based migraineurs and 13,972 controls [195].
Population stratification, where a significant association
may be due to the underlying structure of the population
irrespective of disease status, can contribute to biased or
conflicting results in case-control studies [196]. Genetic
background and population-specific risk factors may also
lead to divergent findings. One MTHFR C667T meta-

analysis reported association with migraine and MA of
the T-allele, particularly in populations belonging to
Asian ancestry [192].

Genome-wide association studies (GWAS) for migraine
Hypothesis-free GWAS present a more unbiased method
to identify SNPs, and potentially genes, robustly involved
in migraine to gain insights into its pathways and patho-
physiology. SNP arrays have enabled the simultaneous
genotyping of hundreds of thousands to millions of SNPs
in a sample, essentially allowing the entire genome to be
scanned. Genotyped SNPs serve as a proxy for any SNPs
that are in strong LD, which are tested for association with
the trait in question. A number of migraine GWAS have
been performed, including five major studies [53, 197–
200], with the most recent meta-analysis bringing the
number of associated SNPs to 44 that mapped to 38 inde-
pendent genomic loci [53]. Earlier GWAS identified mi-
graine susceptibility SNPs nearby genes with mainly
putative or known neuronal functions, including MTDH,
PRDM16, TPRM8 and LRP1 [197, 198]. LRP1 has been
shown to exert regulatory effects on a number of corre-
lated cellular events including amyloid precursor protein
metabolism, kinase dependent intracellular signalling,
neuronal calcium signalling and modulation of synaptic
transmission through the N-methyl-D-aspartate glutamate
receptors via regulating the cellular distribution of GluA1
receptors on neurons [201–203]. TPRM8 encodes for a
receptor-activated non-selective cation channel activated
by cold environmental temperatures and is related to pain
sensor channels [204]. PRDM16 plays roles in leukaemo-
genesis, palatogenesis, and brown fat cell differentiation
from skeletal muscle [205], but also promotes stem cell
maintenance in fetal hematopoietic and nervous systems
and adult neural stem cell maintenance, neurogenesis, and
ependymal cell differentiation, partly via modulating oxi-
dative stress [206, 207].
A GWAS by Freilinger et al. (2012) had revealed that, in

addition to genes involved in synapse and neuronal func-
tion and differentiation (MEF2D and ASTN2), genes with
vascular functions (TGFBR2, PHACTR1) were also likely to
be important in migraine susceptibility [199]. For example,
TGFBR2 encodes part of the receptor complex which
transduces TGF-β signalling and regulates both synaptic
and endothelial functions [208, 209]. The GWAS meta-
analyses of Antilla et al. (2013) and Gormley et al. (2016),
with expanded sample sizes, reiterated this fact with the
discovery of further loci near genes with neuronal func-
tions, but also many more gene loci related to functions in
vascular and smooth muscle tissues, underlining their con-
tribution to migraine pathophysiology [53, 161]. The most
recent meta-analysis by Gormley et al. (2016) combined
22 GWA studies from the International Headache Genet-
ics Consortium (IGHC), comprised 59,674 migraine cases
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from clinic- and population-based collections, as well as
samples obtained by partnerships with the commercial en-
tities 23andMe and deCODE, and 316,078 controls [53].
This study brought the number of SNPs significantly asso-
ciated with migraine to 44 independent SNPs at 38 dis-
tinct genomic loci, and included the majority of GWAS
loci previously reported, as well as an additional 28 novel
loci, including the first on the X chromosome (Near
MED14-USP9X). Database annotations and relevant lit-
erature for the genes in LD with the SNPs have been
reviewed by Gormley et al. (supplementary tables) [53]
and Sutherland et al. (table) [93].
The meta-analysis by Gormley et al. confirmed the single

most significant SNP as rs11172113 in the LRP1 gene locus,
and that the genes prioritised as likely candidates at many
of the loci have known or putative roles in vascular func-
tion (e.g. LRP1, PRDM16, ECM1, MEF2D, TGFBR2, ARH-
GEF26, REST, PHACTR1, NOTCH4, FHL5, GJA1, HEY2,
NRP1, PLCE1, HTRA1, YAP1, FGF6, ZCCHC14, JAG1, and
CCM2L) and the expression of many of these is highly
enriched in vascular tissues [53, 162]. Furthermore, consist-
ent with the mechanisms that have been elucidated from
FHM, two of the loci are near ion channels genes, TPRM8
and KCNK5, the latter a member of the same family as
KCNK18. Three additional loci are linked to the SLC24A3,
ITPK1 and GJA1 genes, which all have a function in cellular
ion homeostasis. More unexpectedly, many genes that con-
tribute to migraine susceptibility are involved in metal ion
homeostasis according to Gene Ontology (GO) terms
(PRDM16, TGFBR2, REST, FHL5, NRP1, MMPED2, LRP1,
ZCCHC14, RNF213, JAG1, SLC24A3) suggesting the im-
portance of these pathways in migraine pathophysiology
[162]. Metal ions (including Fe2+, Cu2+, Co2+, Mn2+, Ca2+,
Na+, and Zn2+) are essential in many metabolic processes
and their transport and storage into cellular compartments
is highly regulated [210]. How these processes might be
contribute to migraine remains to be fully elucidated, how-
ever, it is known for example, that synaptic zinc is a potent
modulator of neurotransmission [211].
It should be noted that many of the loci have both neur-

onal and vascular functions, and/or roles in multiple path-
ways [53, 93, 162]. For example, NRP1 encodes neuropilin
1, a cell surface glycoprotein which mediates axon guidance
and adhesion during GABAergic synapse formation in de-
veloping nervous system [212], but is also involved in vas-
cular patterning and cardiovascular system development as
a receptor for the vascular guidance molecule semaphoring
3d [213]. Furthermore, there is some overlap in pathways
between monogenic migraine genes and GWAS loci. In
common with the monogenic FHM and MA forms caused
by ion channel gene mutations, some ion channel gene loci
are implicated in polygenic migraine. Similarly, genes of the
Notch signalling pathway are involved in both the mono-
genic migraine-related cerebrovascular disorder CADASIL

(caused by pathogenic NOTCH3 variants) and common
migraine, with GWAS loci identified near both the
NOTCH4 receptor gene, and JAG1, which encodes Jagged1,
a ligand of multiple Notch receptors.

Fine mapping and functional analysis of migraine
associated SNPs
Analyses of the genes in the vicinity of GWAS loci has
suggested the types of gene function and pathways that
may be involved in migraine, however, it is important to
remember that for the majority of loci, the gene that is ac-
tually influenced by the SNP remains unknown. SNPs
affect the diversity of human traits/diseases via various
mechanisms: changing encoded amino acids of a protein
(non-synonymous) may affect its function or localisation;
and SNPs that are either silent (synonymous), or more
commonly, in noncoding regions, may affect gene expres-
sion levels via messenger RNA (mRNA) conformation and
stability, subcellular localization, or its promoter/enhancer
activity. Making the leap from associated SNPs to causal
genes, and then to functional mechanisms, still presents a
formidable task in the interpretation of GWAS.
Methods have been developed to fine-map GWAS loci,

combining statistical and functional evidence [214, 215].
Firstly, association-test statistics can be combined with LD
information to prioritise a credible set of SNPs likely to
contain the causal disease-associated SNP. As susceptibility
SNPs often lie in introns or intergenic regions, the next
hurdle is to identify which gene is affected (not necessarily
the nearest), by connecting the variants with genes by a
range of methods and resources, complementing functional
annotation with information from projects such as
ENCyclopedia of DNA Elements (ENCODE), NIH Road-
map Epigenomics, and FANTOM5, which have character-
ized regulatory regions and expression quantitative trait loci
(eQTL) [162, 214]. Once putative variants and genes have
been pinpointed via in silico analysis, further functional
experiments are required to confirm and understand mo-
lecular mechanisms. This process is illustrated by investiga-
tions into rs9349379 in intron 3 of the PHACTR1 gene,
which has been identified as a causal susceptibility SNP in a
range of vascular disorders including migraine [216]. From
epigenomic data from human tissues, Gupta et al. (2017)
identified an enhancer signature over rs9349379 in aorta
suggesting a vascular regulatory function; then using
CRISPR-edited stem cell-derived endothelial cells they
demonstrated that the SNP actually regulates expression of
the endothelin 1 gene (EDN1), located 600 kb upstream of
PHACTR1 [216]. EDN1 encodes a 21 amino acid peptide
that, along with its receptor, promotes vasoconstriction,
vascular smooth muscle cell proliferation, extracellular
matrix production, and fibrosis; these factors would con-
tribute to the increased risk of coronary artery disease and
decreased risk of cervical artery dissection, fibromuscular
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dysplasia and migraine, conferred by the SNP [216]. This
work underlines the importance of functional assays in cel-
lular and animal models in further characterisation of mi-
graine GWAS signals.
In another effort to refine GWAS loci, Hannon et al.

applied summary-data-based Mendelian randomization
(SMR) to large DNA methylation quantitative trait locus
(mQTL) datasets generated from blood and fetal brain
to prioritize genes for > 40 complex traits with well-
powered GWAS data, including migraine [217]. Using
this approach they showed that, with respect to the
HEY2-NOCA7 GWAS signal identified by Gormley et al.
[53], whole blood and fetal brain have a mQTL profile
highly comparable to that of the migraine GWAS, which
implicated HEY2 in migraine. These results are consist-
ent with genetic signals influencing DNA methylation in
both tissues and migraine, and shows utility of this ap-
proach in prioritizing specific genes within genomic re-
gions identified by GWAS [217]. The expansion of
resources with gene expression and epigenetic data in
tissues relevant to migraine-related pathophysiology will
be critical to advancing these types of studies. Recent
studies have used gene expression datasets (including
single cell analysis) to begin to link genetic loci to their
expression in migraine-relevant brain tissues and cell
types [218–220].

Migraine susceptibility loci in migraine sub-types
There has been some discussion about whether MO and
MA are different entities or part of a disease spectrum
[221–223]. Subtype analysis in high-powered GWAS with
large samples sizes may reveal whether particular genes
may contribute to phenotypic consequences. Most of the
migraine loci identified by Gormley et al., (2016) were im-
plicated in both MO and MA, although seven genomic loci
(near TSPAN2, TRPM8, PHACTR1, FHL5, ASTN2, near
FGF6 and LRP1) were significantly associated with the MO
subtype [53]. None were significant for MA, likely reflecting
the smaller sample size. Some genetic loci may be select-
ively associated with particular features (e.g. pain character,
duration, frequency, nausea, photophobia and triggers) of
the migraine attack [224, 225]. Menstrual migraine affects a
subset of female MO sufferers; replication of migraine
GWAS loci in a menstrual migraine case-control cohort
suggested a particular role for NRP1 in this subgroup [226].
However, the small sample sizes often make it difficult to
obtain robust associations for such specific phenotypes.
Nevertheless, it will be interesting to identify genes that
might be involved in specific aspects of migraine.

Shared genetic factors with other disorders
A wider view is also informative and can be used to ex-
plore the etiology of related and comorbid traits. A
GWAS of broadly defined headache using the UK

Biobank data found significant associations at 28 loci, of
which 14 overlapped with migraine, including the
rs11172113 in the LRP1 as the top SNP [227]. Some
migraine-associated genes and SNPs have more systemic
effects and are involved in a wide range of disorders. A
large analysis of shared heritability between common
brain disorders found that while most psychiatric and
neurologic disorders share relatively little common gen-
etic risk, suggesting largely independent etiological path-
ways, migraine appears to share some genetic
architecture with psychiatric disorders, including atten-
tion deficit hyperactivity disorder (ADHD), Tourette’s
syndrome, and major depressive disorder [228]. This, to-
gether with genetic correlations with other neurological
(epilepsy) and vascular disorders (stroke, coronary artery
disease), is consistent with comorbidities that have been
documented for migraine and suggests they are under-
pinned by shared genetic factors [228–233]. Similarly,
the monogenic migraine disorders show comorbidity
with epilepsy, depression, vascular and sleep disorders
[54, 145, 234, 235]. Understanding these relationships
can impact the management and treatment of conditions
with overlapping etiologies [235, 236].

Migraine susceptibility loci in migraine in specific
populations
As the large migraine GWAS have been performed in
predominantly Caucasian populations of European heri-
tage, questions remain as to whether the genes and SNPs
identified are relevant to other ethnicities, and if there
are population-specific genes and polymorphisms. One
way to address the former is to test whether there is rep-
lication of association of the GWAS SNPs in a particular
population. A number of studies have taken this ap-
proach, both in specific European cohorts, as well as
North Indian and Han Chinese. For example, association
of the minor C allele for the PRDM16 polymorphism
rs2651899 was replicated in Swedish [237], Spanish
[238] and Han Chinese cohorts [239, 240], while
rs2651899 and LRP1 rs11172113 showed a protective ef-
fect on migraine susceptibility in a North Indian popula-
tion [241]. Polymorphisms rs4379368 (Succinyl-CoA:
Glutarate-CoA Transferase gene locus, C7orf10) and
rs13208321 (FHL5) showed some replication in a cohort
of the Chinese She people [242]. However, GWAS con-
ducted in specific ethnic populations will determine
whether the genetic contributions to migraine vary, and
identify migraine susceptibility loci which may be par-
ticular to different groups. While still limited, and with
relatively small sample sizes, GWAS have been per-
formed in Norfolk Islander, Taiwanese Han Chinese and
African American pediatric cohorts [243–245]. The Nor-
folk Island genetic isolate is a unique admixed
Polynesian-Caucasian population with a high prevalence
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of migraine (25%). A GWAS for migraine revealed a
number of loci of suggestive significance near
neurotransmitter-related genes [245]. A GWAS in Tai-
wanese Han Chinese identified two novel migraine sus-
ceptibility SNPs: rs655484 in DLG2, a gene involved in
glutamatergic neurotransmission; and rs3781545 in
GFRA1, which encodes a receptor for glial cell line-
derived neurotrophic factor (GDNF) in trigeminal neu-
rons [243]. The GWAS in American African children
found association of migraine with SNPs, including
rs72793414, which were strongly correlated with the
mRNA expression levels of NMUR2, encoding the G
protein-coupled receptor of the CNS neuropeptide
neuromedin-U [244].

Genetic risk scores (GRS) and applications for migraine
Due to low effect sizes that the majority of variants have
on associated traits, the genotype at an individual SNP
does not have particular diagnostic or prognostic value
in common migraine. However, calculating a genetic risk
score (GRS) or polygenic risk score (PRS), which as-
sesses the additive effect of many associated SNPs from
sufficiently powered studies, may have utility in disease
prediction [246]. With the availability of increasingly
large GWAS data sets for migraine, GRS may be applied
to: investigating migraine subtypes and endophenotypes,
understanding migraine pleiotropy and co-morbidites,
disease and phenotype prediction, and for assessing

pharmocogenetic effects for personalised medicine [247].
Higher GRS have been correlated with migraine diagno-
sis in specific cohorts [226, 248], as well as migraine se-
verity, and in cases where migraine is aggregated in
families suggesting this results from a higher common
variant burden [225, 249]. One particular use of GRS
may be in understanding drug reactions and efficacy of
therapies. Studies to predict response and efficacy of
treatment with triptans in migraineurs have used this
approach [250, 251]. While sensitivity and specificity are
still relatively low, the diagnostic value of GRS will im-
prove with the discovery of more SNPs. With respect to
drug and treatment responses, this would include vari-
ants that affect the genes targeted by drugs, but also
those involved in drug transport and metabolism [252,
253].

Powering up GWAS and genomic sequencing
It is likely that common variants will not completely ex-
plain common migraine, but that rare private variants
(with small to medium effects) will contribute as well.
This has been demonstrated by the well-studied trait of
adult human height, which has a strong genetic compo-
nent (estimated heritability up to 80%). Meta-analysis of
multiple GWAS with a combined sample size of > 250,
000 individuals has yielded ~ 700 common SNPs clus-
tered in 423 independent loci that contribute to height
[254]. These, however, still only capture ~ 20% of the

Fig. 1 Approaches to identifying the genes involved in migraine and their functions and putative pathways
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heritability. Compound heterozygote-like SNP interac-
tions may further contribute to phenotypic variance
[255]. Furthermore, using ExomeChips, Marouli et al.
identified a further 83 coding variants with lower minor-
allele frequencies (in the range of 0.1–4.8%) associated
with height [256]. However, in addition to further scaling
up of sample sizes, ultimately WGS will be required to
truly discover all of the DNA sequence contribution to
the trait. For migraine, sample sizes are still relatively
small compared to the studies that have been done for
traits like height and obesity, i.e. > 500,000 individuals
including 170,000 Japanese [257, 258]. It is likely that
more migraine-related loci will be discovered as sample
numbers increase in migraine GWAS using SNP-chips
(including from various ethnicities), and the effect of
rare variants identified from exonic and genomic se-
quencing becomes clearer. Integrating genetic and
other genomic information, such as transcriptional and
epigenetic data, will deepen understanding of the im-
portant tissues and pathways in migraine [218, 259].

Conclusions
Migraine is a multifactorial disorder with genetics play-
ing an important role in the susceptibility, and sympto-
mology, as well as comorbidity with other traits and
conditions. Investigation of the genetic factors involved
in migraine have used family studies for the rare, Men-
delian forms of migraine, as well as GWAS in case-
control cohorts for the common polygenic form of mi-
graine, for gene discovery and further understanding of
the pathways and basic biology of the disorder (Fig. 1).
For monogenic migraine, mapping of loci in family pedi-
grees, coupled with genomic sequencing to find variants,
led to the discovery of the main FHM genes, CACNA1A,
ATP1A2 and SCN1A. Knowledge of their roles as ion
channels and in ion transport, along with functional ex-
periments in cellular and animal models, has contrib-
uted to uncovering how their dysfunction may lead to
cortical hyperexcitability and migraine. Mutations in
other genes can also cause HM, and it is likely that
pathogenic variants in more genes will be discovered,
with NGS technologies (WES and WGS) accelerating
this research. With respect to the common polygenic
forms of migraine, GWAS analyses using high-
throughput SNP genotyping arrays has revealed many
variants around genes with roles in neurological and vas-
cular pathways in migraine. With increasing sample sizes
more susceptibility loci are likely to be found, some of
which may contribute to specific migraine subtypes or
symptoms. Moving from finding a risk SNP, to the gene,
to the molecular mechanism, still remains challenging,
but developments around methods for functional stud-
ies, including iPSC models and genome-editing, will
facilitate such research.

Genetics has further emphasized the complexity of mi-
graine disorders, but it is an exciting time to be working
in the field of migraine biology, with the end game – to
better diagnose, manage and treat migraine sufferers.
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