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Abstract— Traditional bi-level origin-destination (OD) matrix 

estimation process adjusts the matrix (at the upper level) based on 
the deviation between the observed and simulated traffic counts. 
The problem is mathematically under-determined, and the quality 
of the solution can be enhanced by restricting the upper level 
search space with information from other sources. This paper 
presents a methodology that assimilates sub-path flows in the 
upper level objective function. The contributions of the study are 
two-fold: first, it proposes the idea of “structural comparison of 
sub-path flows” to relax the requirement of “known” penetration 
rate of vehicles’ trajectories; second, it proposes an innovative 
upper level formulation where the structural difference between 
the observed and assigned sub-path flows is integrated with the 
traditional deviations between the observed and assigned link 
flows. The sub-path flows can be estimated from advanced data 
sources such as Bluetooth MAC scanner. The proposed 
methodology is tested using simulation on a realistic network from 
Brisbane, Australia and results indicate its practical relevance for 
situations when the penetration rate of Bluetooth trajectories is 
generally unknown. The proposed method has a better ability to 
maintain structural consistency and showed considerable 
improvements in the quality of OD estimates as compared to the 
traditional traffic counts-based approach.  

 
Index Terms: OD matrix estimation; bi-level optimization, 

Bluetooth; sub-path flows; gradient descent; OD structure; 
Brisbane 

I.INTRODUCTION 
rigin - destination (OD) matrix is a tabular 
representation of travel demand (flows) from each 
origin to every other destination on the transport 

network. It is a vital input for different levels of transport 
modelling- ranging from traditional strategic planning of 
transport infrastructure to advanced real-time operations and 
control of the network. 

Ground truth of OD flows for large scale road network can’t 
be directly measured and is generally unknown. Traditionally, 
road network is equipped with loop detectors and OD 
estimation process is modelled as a bi-level optimization 
problem [1, 2] where (see Fig.1): a) at upper level, the OD 
matrix (𝐱𝐱) is adjusted by minimising the gap between the 
observed (𝐲𝐲�) and estimated (𝐲𝐲) traffic counts; and b) at lower 
level, traffic counts are estimated (simulated) by assigning 
traffic on the network using the adjusted OD matrix.  
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In Fig.1, the upper level formulation, is generally expressed in 
terms of observed (𝐲𝐲�) and estimated (𝐲𝐲) link flows and assumes 
one of the following forms: Information minimization/entropy 
maximization [3]; maximum likelihood approach [4]; Bayesian 
inference methods [5], and generalized least squares (GLS) [1]. 
Equation 1 is the popular Spiess [6]’s upper-level formulation 
using matrix algebra. 

 

 
The lower level of the bi-level framework runs traffic 

assignment (𝐏𝐏) that is either analytically derived [7] or 
simulation-based (say, from Aimsun [8], DYNASMART-P [9], 
TRANSIMS [10] etc.) or a combination of simulation and 
analytical formulation [11] or directly based on observations of 
travel speed/time [12] or turning proportions[13]. Alternatively, 
machine learning techniques have been explored to learn 
dynamic mapping (between OD and link flows) from 
observations of traffic data, thus independent of  traditional 
assignment [14, 15]. They seem to be computational efficient 
for demand estimation and prediction especially in real time. 
However, they cannot provide physical meanings of the 
assignment process as done by the existing analytical and 
simulation-based models [14]. 

Various techniques have been proposed to solve the upper-
level formulation of the bi-level problem. They include 
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Fig. 1: Traffic counts-based bi-level OD estimation 
  

min
𝐱𝐱

Z(𝐱𝐱) =  min
𝐱𝐱

1
2
��(𝐲𝐲 − 𝐲𝐲�)�T(𝐲𝐲 − 𝐲𝐲�)� (1) 

subject to: 𝐲𝐲 = 𝐏𝐏𝐱𝐱 (1a) 
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gradient-based [6], gradient approximations [16]; and 
evolutionary algorithms (such as genetic algorithms, see [17]). 
Among these, gradient-based techniques are quite popular and 
different forms of the gradient-based techniques are applied in 
literature. This includes but not limited to coordinate descent 
method [18],  projected gradient method [19], and the stochastic 
gradient method [20]. 

While most studies focused on different solution algorithms, 
OD estimation using traffic counts is still an under-determined 
problem. This is because a number of combinations of OD 
flows (or OD matrices of different structures) could exist to 
reproduce the same set of link flows, and thus the quality OD 
estimates cannot not be guaranteed if the objective function 
focusses only on the deviation of traffic counts [21]. This 
demands the need to maintain consistency in the structure of 
OD matrix (as per [22, 23] the trip distribution pattern between 
different OD pairs within an OD matrix defines the OD 
structure) during every iteration of bi-level estimation process 
[24]. To preserve the OD structure, most studies [1, 19, 25, 26] 
proposed to use target trip matrix (𝐱𝐱�) in the objective function 
in order to confine the feasible region of OD estimates (refer 
Equation 2). The weight factors for objectives based on traffic 
counts and target OD matrix in Equation 2 are denoted by βy 
and βx, respectively. 

 
Researchers have also proposed constraints outside the 

objective function to maintain structural consistency. For 
instance, [24] proposed constraints on the columns of OD 
matrix using additional information from parking surveys, and 
[17] proposed constraints on the rows of OD matrix using the 
ratio of OD flows to origin flows. However, the prior 
knowledge (either in the form of target OD or trip 
production/attraction constraints) is based on outdated travel 
surveys and can lead to biased estimates [1].  

With the availability of big traffic data, several researchers 
proposed to use travel speeds [27], travel times [28], turning 
proportions [29] and trajectory/partial path flow data [30, 31] 
into OD estimation problem. While some tried to infer OD 
matrices directly from the trajectory data such as taxi 
trajectories [15, 32, 33] or cellular probe [34];others tried to 
address the OD under-determinacy problem by introducing this 
information directly into the formulation where the deviations 
of observed and  estimated path flows were minimized. Here, 
the penetration rate of observed path flows was either assumed 
to be known [30, 31, 35] or estimated [36, 37]. For instance, 
[31] assumed that penetration rates of Bluetooth counts is same 
as that of Bluetooth trajectories and used it to scale-up the 
vehicle trajectories in the objective function; [37] used 
simulator-based approach to estimate the scaling factor of 
trajectories that are inferred from call detail records. Thus, no 
technique has been proposed until now to use flows inferred 
from vehicle trajectories (we refer them as sub-path flows and 
are defined in the next paragraph) into the OD estimation 
formulation without prior knowledge of their penetration rates. 

The following definitions regarding the sub-paths and sub-
path flows are made in this study: 

1. Sub-path (b): is defined as the portion of a complete 
traversed path. For instance, sub-path inferred by 
Bluetooth sensors is represented as a sequence of 
Bluetooth MAC scanner (BMS) detections. 

2. Sub-path flows (𝑠𝑠𝑏𝑏): are the flows passing through the 
sub-path (b). The vector representing sub-path flows 
from different sub-paths is represented using 𝐬𝐬�. For 
instance, the Bluetooth trajectories count over the sub-
path can be used as the sub-path flows (refer [38] about 
method to estimate Bluetooth trajectories over the 
network). 

3. Structure of sub-path flows: is defined as the 
arrangement of the sub-path flow values within the 
vector 𝐬𝐬�. More details about it are presented in Section 
III (Method of comparison). 

A sub-path can also be considered as a sequence of links. If 
it constitutes only two detections at the extreme ends of a road 
segment, then sub-path flows refer to link flows. If the vehicle’s 
trip is continuously monitored (as in GPS) from its origin until 
its destination, then sub-path represents a complete path. 
However, misdetections at a few sensor locations (as in case 
with Bluetooth scanners) could result in many such sub-paths 
for the same trip. Using flows from those sub-paths can lead to 
redundancy in the information as they relate to the same original 
trip. Thus, right selection of un-correlated sub-path flows is 
crucial in the OD estimation problem. However, sub-path flows 
capture trip distribution better than the point-based link flows, 
and any additional trip distribution information in the objective 
function tends to improve the quality of OD estimate.  

The contributions of this study are two-fold. First, it proposes 
the idea of “structural comparison of sub-path flows” to relax 
the requirement of “known” penetration rate of vehicles’ 
trajectories. To our knowledge, no study in the past has 
proposed such a method to deal with unknown penetration 
rates. Second, it develops a new upper level formulation by 
using the structure of sub-path flows as a penalty/scaling factor 
for the traditional traffic counts-based OD estimation. The 
formulation is novel and has not been considered in the 
literature. 

The proposed approach is generic and as the proof of the 
concept, a synthetic network of Bluetooth-based sub-path flow 
information, and a gradient descent algorithm for OD 
estimation are considered in this paper. The methodology is 
thoroughly tested on a simulation model from Brisbane, 
Australia.  

The remainder of the paper is structured as follows: Section 
II describes the notations of terms used in this study; Section III 
discusses the proposed methodology; Section IV focusses on 
the experiments and results; Section V discusses the results of 
experiments; and finally the study concludes in Section VI with 
future study recommendations. 

II.NOTATIONS OF THE TERMS 
In order to describe the formulations relevant to this paper, the 
following mathematical notations are used. 
• The cardinality of a set is represented using |.| 

 
min
𝐱𝐱

Z(𝐱𝐱) = 

min
𝐱𝐱

1
2�

�βy(𝐲𝐲 − 𝐲𝐲�)�
T

(𝐲𝐲 − 𝐲𝐲�) + βx�(𝐱𝐱 − 𝐱𝐱�)�T(𝐱𝐱 − 𝐱𝐱�)� 

 
 

(2) 

subject to: 𝐲𝐲 = 𝐏𝐏𝐱𝐱 (2a) 
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• 𝒜𝒜 denotes set of selected links of the study network; 𝑦𝑦�𝑎𝑎 
and 𝑦𝑦𝑎𝑎 represent observed (say, from loop detectors) and 
simulated traffic counts/link flows on link a ∈ 𝒜𝒜. 𝐲𝐲�  ∈
𝑅𝑅≥0

|𝒜𝒜| and 𝐲𝐲 ∈ 𝑅𝑅≥0
|𝒜𝒜| denote vectors of observed and 

simulated link flows, respectively 
• ℋ represents set of complete vehicle trajectories in a 

study network. ℬ denotes set of sub-paths and ℒ represent 
the total set of actual sub-trajectories (say, as sequence of 
BMS IDs) along |ℬ| sub-paths. If the study performs 
analysis on only a random sample of sub-trajectories (ℒ̃), 
then we define ƞ = �ℒ̃� |ℒ|⁄ . Here, ƞb is used to represent 
the penetration rate of observed vehicle trajectories on 
sub-path b. 𝜼𝜼 ∈ 𝑅𝑅≥0

|ℬ| is vector representing market 
penetration rates of observed trips on |ℬ| sub-paths 

• D denotes days of similar travel patterns. 𝑠𝑠𝑏𝑏∗, �̃�𝑠𝑏𝑏,𝑑𝑑, �̃�𝑠𝑏𝑏 and 
𝑠𝑠𝑏𝑏 represent actual, observed (say, from Bluetooth) on dth 
day (𝑑𝑑 ∈ ℕ|𝐷𝐷|), consolidated observations over |𝐷𝐷| days, 
and simulated sub-path flows on a sub-path b ∈ ℬ, 
respectively. 𝐬𝐬∗  ∈ 𝑅𝑅≥0

|ℬ| , 𝐬𝐬�𝐝𝐝 ∈ 𝑅𝑅≥0
|ℬ|, 𝐬𝐬�  ∈ 𝑅𝑅≥0

|ℬ| and 𝐬𝐬 ∈ 𝑅𝑅≥0
|ℬ| 

denote vectors of actual, observed (on dth day), observed 
(consolidated over |𝐷𝐷| days), and simulated sub-path 
flows, respectively. 𝛍𝛍𝐬𝐬∗  ∈ 𝑅𝑅≥0

|ℬ| is a vector with each cell 
value equal to mean of flow values in 𝐬𝐬∗, and similarly 𝛍𝛍𝐬𝐬� 
∈ 𝑅𝑅≥0

|ℬ| , 𝛍𝛍𝐬𝐬 ∈ 𝑅𝑅≥0
|ℬ| correspond to 𝐬𝐬� and 𝐬𝐬, respectively 

• 𝑊𝑊 denotes set of OD pairs in the study network. 𝑥𝑥𝑤𝑤 
represents the number of estimated non-negative trips (by 
car) for OD pair w ∈ 𝑊𝑊, and similarly 𝑥𝑥�𝑤𝑤 and 𝑥𝑥∗𝑤𝑤 are for 
prior and true OD flows.  𝐱𝐱 ∈ 𝑅𝑅≥0

|𝑊𝑊| , 𝐱𝐱� ∈ 𝑅𝑅≥0
|𝑊𝑊| , and  𝐱𝐱∗ ∈ 

𝑅𝑅≥0
|𝑊𝑊|  denote estimated, prior, and true OD vectors, 

respectively.  𝛍𝛍𝐱𝐱  ∈ 𝑅𝑅≥0
|𝑊𝑊| is a vector with each cell value 

equal to mean of x. Similarly, 𝛍𝛍𝐱𝐱� ∈ 𝑅𝑅≥0
|𝑊𝑊| and 𝛍𝛍𝐱𝐱∗ ∈

𝑅𝑅≥0
|𝑊𝑊|correspond to 𝐱𝐱� and 𝐱𝐱∗, respectively. 

• 𝑝𝑝𝑤𝑤𝑎𝑎  is proportion of trips between wth OD pair passing 
through link a. 𝐏𝐏 ∈ 𝑅𝑅≥0

|𝒜𝒜|×|𝑊𝑊| represents the link proportion 
matrix with 𝑝𝑝𝑤𝑤𝑎𝑎  being the cell values. 

• 𝑞𝑞𝑤𝑤𝑏𝑏  is proportion of trips between wth OD pair passing 
through sub-path b. 𝐐𝐐 ∈ 𝑅𝑅≥0

|ℬ|×|𝑊𝑊| represents the sub-path 
proportion matrix with 𝑞𝑞𝑤𝑤𝑏𝑏  being the cell values. 

III. PROPOSED METHODOLOGY 
The original objective function of OD estimation is based on 
the deviations of traffic counts (link flows). We know that link 
counts are only point-based measurements and are not meant to 
represent trip distribution very well. Matching both link flows 
and trip distribution (as two different objectives) could mitigate 
the OD under-determinacy problem to some extent. Direct 
observations of path flows help to account for the trip 
distribution. However, in situations where complete path flows 
cannot be observed, partial observations of path flows (we term 
them as sub-path flows in this paper) could possibly serve the 
purpose better than using only link flows. Thus, matching sub-
path flows in addition to the link flows in the upper-level 
formulation should take care of both the objectives. However, 
in most cases, the market penetration rates of sub-path flows are 
generally unknown, and in such situations, we need an 

alternative measure of comparing sub-path flows. This is where 
the paper contributes by suggesting 

a) A method of comparison: between observed (sample) 
and simulated sub-path flows. 

b) A way to integrate: the above method of comparison 
into the existing upper level formulation of OD 
estimation problem. 

Method of comparison: The method proposed to compare 
sub-path flows is through the concept of “structure”. We 
assume that the structure of observed sample sub-path flows (𝐬𝐬�) 
can be used as a proxy for the structure of actual sub-path flows 
(𝐬𝐬∗). Thus, expressing in terms of structural comparison 
between 𝐬𝐬� (i.e. sample) and 𝐬𝐬 should be equivalent to the 
structural comparison between “actual” sub-path flows and 𝐬𝐬. 
We have used Pearson correlation coefficient (𝜌𝜌) for the 
structural comparison of sub-path flows in our study. A higher 
correlation implies that both vectors (i. e. 𝐬𝐬� and 𝐬𝐬) are 
structurally closer to each other. This concept is borrowed from 
bio-medical analytics discipline where models with high 
dimensional data points are updated using similarity measures 
such as correlation coefficient [39]. 

Way to integrate: The structural comparison of sub-paths 
flows needs to be integrated into the upper-level formulation. 
One way is to consider as a weighted sum of two different 
objectives. However, we have noticed in our experiments that 
the deviation of traffic counts is dominating the objective 
function and there is no improvement in the OD structure 
despite giving high weightage to the structural comparison of 
sub-path flows. Therefore, we propose to model the sub path 
deviations (second objective) as a penalty/scaling factor to the 
traffic counts deviation (first objective). To achieve this, the 
formulation should be designed as a product of the two 
objectives. 

The proposed methodology is illustrated in Fig.2. The new 
upper level formulation (Z(x)) includes two objectives: one 
based on traffic counts (𝐲𝐲� and 𝐲𝐲) and other based on sub-path 
flows (𝐬𝐬� and 𝐬𝐬).  

 

 

 
Fig. 2: Generic OD estimation algorithm based on the proposed approach 
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Details into the development of the objective function 
formulation, method of gradient-based OD estimation, 
procedure to implement the proposed approach, and 
development of Bluetooth-based sub-path flows are presented 
in Section III.A, Section III.B, Section III.C, and Section III.D, 
respectively. 

A. Proposed objective function formulation 
The new upper-level formulation can be expressed in terms of 
the deviation between the observed (𝐲𝐲�) and estimated (𝐲𝐲) link 
flows and the structural comparison between observed (𝐬𝐬�) and 
simulated (𝐬𝐬) sub-path flows as shown in Equation 3. 

 

 
The first objective is  c1 + (𝐲𝐲 − 𝐲𝐲�)T(𝐲𝐲 − 𝐲𝐲�) and the second 

objective is c2 + 1−ρ(𝐬𝐬,𝐬𝐬�)
2

.  Here, c1 and c2 are the stability 
constants. With non-zero c1 (<<1) if the deviation of traffic 
counts is equal to zero then the objective function should focus 
on minimising the second objective. The second objective 
considers any structural differences between the 
estimated/simulated and observed trip distribution from the 
perspective of sub-path flows. This acts as a scaling factor to 
the original traffic counts-based objective. The similarity 
measure (ρ(𝐬𝐬, 𝐬𝐬�)) is converted to a dissimilarity measure 
(1−ρ(𝐬𝐬,𝐬𝐬�)

2
) with the addition of a constant “c2”. This implies, 

when ρ(𝐬𝐬, 𝐬𝐬�) = 1, Z(𝐱𝐱) is multiplied by a factor of c22 and for 
ρ(𝐬𝐬, 𝐬𝐬�) = -1, Z(𝐱𝐱) is scaled up (c2+1)2 times.  
What should be the value of c2? Ideally, c2 + �1−ρ(𝐬𝐬,𝐬𝐬�)

2
� ≠ 0 

a) When structures of 𝐬𝐬 and 𝐬𝐬� are same then 𝜌𝜌(𝐬𝐬, 𝐬𝐬�) is equal to 
1 and �c2 + 1−ρ(𝐬𝐬,𝐬𝐬�)

2
� ⇒ c2. Here, the objective function, 

𝑍𝑍(𝐱𝐱), is multiplied by a factor of c22. Therefore, c2=0 should 
not be considered as it will make the objective function zero. 

b) When structures of 𝐬𝐬 and 𝐬𝐬� are extremely opposite then 𝜌𝜌(𝐬𝐬,
𝐬𝐬�) is equal to -1 and �c2 + 1−ρ(𝐬𝐬,𝐬𝐬�)

2
� ⇒ (c2 + 1). Here, the 

objective function, 𝑍𝑍(𝐱𝐱) is multiplied by a factor of (c2+1)2. 
Therefore, c2=-1 should not be considered as it will make 
the objective function zero. 

For the current study we consider c2=1. In this case,  
a) When the structures of 𝐬𝐬 and 𝐬𝐬� are same then 𝑍𝑍(𝐱𝐱) reduces 

 
1 The OD estimation presented in this paper is only for an hour OD that is 

assigned in the simulator using stochastic route choice. Traffic is assigned in 
Aimsun through a dynamic scenario and due to which the mapping relationships 
change dynamically during the hour simulation. However, the matrices P/Q are 

to a traditional link counts deviation; that is, 1
2
�c1 +

(𝐲𝐲 − 𝐲𝐲�)T(𝐲𝐲 − 𝐲𝐲�)�. This implies that simulated trip 
distribution matches the actual trip distribution, and simply 
minimizing traffic counts deviations should be sufficient to 
estimate OD. 

b) When the structures of 𝐬𝐬 and  𝐬𝐬� are extremely opposite, the 
objective function multiplies (2)2 times and becomes 
2�c1 + (𝐲𝐲 − 𝐲𝐲�)T(𝐲𝐲 − 𝐲𝐲�)�. This implies that deviation 
between traffic counts are amplified considering the 
extreme variations in the sub-path flows.  

B. Gradient-based method for optimization of the objective 
function 

The gradient descent optimization method is used to iteratively 
update 𝐱𝐱. The updating step is based on two major factors: 
search direction and step-size (λ): 
a) The search direction is determined by the gradient of 𝑍𝑍(𝐱𝐱). 

The step-size (λ) parameter determines the number of 
iterations required for the convergence. Lower values of λ 
ensure that the path of the gradient is smooth but 
computationally expensive. Higher values of λ can lead to 
higher values of the objective function, and the 
convergence could be affected.  

Assuming P and Q are locally constant1, the functions 
involved in Equation 3 are differentiable with respect to 𝐱𝐱 and 
its gradient is expressed as shown in Equation 4 and 4a. 

 
𝜕𝜕𝑍𝑍(𝐱𝐱)
𝜕𝜕𝐱𝐱

=
𝜕𝜕 �1

2 �c1 + (𝐲𝐲 − 𝐲𝐲�)T(𝐲𝐲 − 𝐲𝐲�)��c2 + 𝑓𝑓(𝐬𝐬, �̃�𝐬)�T�c2 + 𝑓𝑓(𝐬𝐬, �̃�𝐬)��

𝜕𝜕𝐱𝐱  

(4) 

 

= �c1 + (𝐲𝐲 − 𝐲𝐲�)T(𝐲𝐲 − 𝐲𝐲�)� �c2 + 𝑓𝑓(𝐬𝐬, 𝐬𝐬�)�
𝜕𝜕�𝑓𝑓(𝐬𝐬, 𝐬𝐬�)�

𝜕𝜕𝐱𝐱
+ �c2 + 𝑓𝑓(𝐬𝐬, 𝐬𝐬�)�T�c2 + 𝑓𝑓(𝐬𝐬, 𝐬𝐬�)�(𝐲𝐲
− 𝐲𝐲�)𝐏𝐏T 

(4a) 

using 𝐲𝐲 = 𝐏𝐏𝐱𝐱 
 
where 

𝜕𝜕�𝑓𝑓(𝐬𝐬, 𝐬𝐬�)�
𝜕𝜕𝐱𝐱 = −

1
2
𝜕𝜕�ρ(𝐬𝐬, 𝐬𝐬�)�

𝜕𝜕𝐱𝐱   
(4b) 

 
Using the mapping relationship (𝐐𝐐) between 𝐬𝐬 and x, 

Equation 3c can be simplified as shown in Equation 5.  

 

estimated using a back-calculation procedure based on one hour of aggregated 
link/sub-path flows that are resulted from Aimsun in every iteration. Thus, P 
and Q are only locally constant and change every time OD is updated. 

 
min
𝐱𝐱
𝑍𝑍(𝐱𝐱) = 

min
𝐱𝐱

1
2 �
�c1 + (𝐲𝐲 − 𝐲𝐲�)T(𝐲𝐲 − 𝐲𝐲�)�� 

��c2 + 𝑓𝑓(𝐬𝐬, 𝐬𝐬�)�T�c2 + 𝑓𝑓(𝐬𝐬, 𝐬𝐬�)�� 

(3) 

𝑓𝑓(𝐬𝐬, 𝐬𝐬�) =
1 − ρ(𝐬𝐬, 𝐬𝐬�)

2
 

(3a) 

such that 𝐲𝐲 = 𝐏𝐏𝐱𝐱 ;  𝐬𝐬 = 𝐐𝐐𝐱𝐱 (3b) 
  

  ρ(𝐬𝐬, 𝐬𝐬�) = (𝐬𝐬�−𝛍𝛍𝐬𝐬�)T(𝐬𝐬−𝛍𝛍𝐬𝐬)
�(𝐬𝐬�−𝛍𝛍𝐬𝐬�)T(𝐬𝐬�−𝛍𝛍𝐬𝐬�)�(𝐬𝐬−𝛍𝛍𝐬𝐬)T(𝐬𝐬−𝛍𝛍𝐬𝐬)

 

 

 
(3c) 

 
 

 

 
ρ(𝐐𝐐𝐱𝐱, 𝐬𝐬� )

=
( 𝐬𝐬� − 𝛍𝛍𝐬𝐬�)T�𝐐𝐐𝐱𝐱 − 𝛍𝛍𝐐𝐐𝐱𝐱�

�(𝐬𝐬� − 𝛍𝛍𝐬𝐬�)T(𝐬𝐬� − 𝛍𝛍𝐬𝐬�)��𝐐𝐐𝐱𝐱 − 𝛍𝛍𝐐𝐐𝐱𝐱�
T�𝐐𝐐𝐱𝐱 − 𝛍𝛍𝐐𝐐𝐱𝐱�

=  
Γ1

�Γ2�Γ3
 

 
 
 
 

  
(5) 
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where

  
Now, 𝜕𝜕𝜕𝜕(𝐐𝐐𝐱𝐱,𝐬𝐬� )

𝜕𝜕𝐱𝐱
 can be expressed as shown in Equation 6. 

 

 
                                               

Thus, the differential objective function provides 
opportunities to consider standard gradient-based method to 
update the OD vector; that is, during any kth iteration 𝐱𝐱𝐤𝐤 is 
updated to 𝐱𝐱𝐤𝐤+𝟏𝟏 using the search direction and optimal step-size 
as expressed in the Equation 7. Here, 𝑍𝑍(𝐱𝐱) and 𝐱𝐱 in ∂𝑍𝑍(𝐱𝐱)

∂𝐱𝐱
 refer 

to the values corresponding to kth iteration. e is vector of 1s and 
of dimension same as x and Hadamard product “∘” is used for 
element wise multiplication between 𝜆𝜆𝑘𝑘 and the gradient, and 
𝐱𝐱k and �𝑒𝑒 − 𝜆𝜆𝑘𝑘 ∘

𝜕𝜕𝑍𝑍(𝐱𝐱)
𝜕𝜕𝐱𝐱

�. Every iteration, the optimum 𝜆𝜆𝑘𝑘 is 
calculated as the solution to the objective function i.e. Equation 
3. 

 
C. Procedure to implement the proposed methodology 
To execute the framework illustrated in Fig. 2 under controlled 
environment, we need to run upper-level and lower 
optimizations one after another in an integrated manner. The 
step by step procedure for which is outlined below: 

• Step-0: Obtain the observed sub-path flows (𝐬𝐬�) and 
observed link flows (𝐲𝐲�). 

• Step-1: Set k=1; 𝐱𝐱𝐤𝐤 = 𝐱𝐱�. 
• Step-2: Load the study network in Aimsun next [40] with 

demand, 𝐱𝐱𝐤𝐤,  and run traffic assignment (either stochastic 
route choice (SRC) assignment or dynamic user 
equilibrium). The outputs of the simulation are link 
flows(𝐲𝐲𝐤𝐤), sub-path flows (𝐬𝐬𝐤𝐤), link-proportion 
matrix (𝐏𝐏𝐤𝐤) and sub-path proportion-matrix (𝐐𝐐𝐤𝐤).  

• Step-3: Minimise the objective function, Z(x) with respect 
to 𝐱𝐱𝐤𝐤 (refer Equation 3). 

• Step-4: Check for termination criterion, and if it is not met, 
set k := k+1; update the demand (𝐱𝐱𝐤𝐤) for the next iteration 
(refer Equation 7), and go to Step 2. Else terminate the 
optimisation, and value of 𝐱𝐱𝐤𝐤 is the final estimated OD 
vector. 

The termination criterion can be either based on maximum 
relative change in the elements of estimated OD flows at 
successive iterations [7] or observed convergence for a fixed 
number of iterations [8].  

For the current analysis, the codes for the optimisation are 
written in Matlab, and lower level traffic assignment is 
optimised using Aimsun next [40]. We have used the default 
parameter values for both demand scenarios and experiments in 
Aimsun. A Python script is written to integrate the optimisation 
model (in Matlab) with the traffic assignment (in Aimsun). 
However, Matlab is the primary platform that writes OD data 
into Aimsun OD format, runs the simulation, executes the 
Python script, and reads the simulation outputs for further 
optimisation process. This integration of Aimsun with Matlab 
is similar to the one presented in Antoniou et al., [21]. 

The aforementioned sections demonstrate that an additional 
objective based on sub-path flows can be incorporated into bi-
level formulation. The next section discusses the development 
of sub-path flows from the network of BMS. 

D. Bluetooth sub-path flows 
We assume that the road network is equipped with BMS [41].  
For instance, in Brisbane, Australia we have over 1200 BMSs 
monitoring traffic on the Brisbane City Council (BCC) 
region[42]. The data from these network of BMSs can be 
integrated to define the trajectories of the Bluetooth vehicles 
[38]. The paths inferred from BMS detections are only sub-
paths of actual paths traversed by vehicles. This is because, a) 
not all Bluetooth equipped vehicles are detected at the scanning 
zone; and b) the entire network is not fully equipped with the 
BMS, and the origin/destination BMS for the Bluetooth vehicle 
trajectory might not truly correspond to the true 
origin/destination zone for the network for which the OD is 
estimated. 

For ease of understanding, refer to Fig. 3 that illustrates the 
difference between complete paths and a sub-path. Let’s say the 
vehicle is detected from BMS1 to BMS5. The complete paths 
between the OD pairs A-C, A-D, B-C, and B-D share a common 
sub-path that can be represented as a sequence i.e. BMS1-
BMS2-BMS3-BMS4-BMS5. Thus, it can be seen that it is not 
possible to infer the true trip ends (i.e. A/B and C/D) from the 
above sub-path. 

 
Sometimes, a set of sub-paths can belong to the same trip due 

to missed detections. For instance, a missed detection at BMS3 
in Fig. 3 could result in two sets of sub-paths, namely BMS1-
BMS2, and BMS4-BMS5. In such cases the trips along those 
sub-paths can lead to redundancy in the information as they 
relate to the same original trip. Thus, right selection of un-
correlated sub-paths is crucial in the OD estimation problem. 

The penetration rate of Bluetooth-based counts at a specific 
level can range from 10%-30% [31]. However, the penetration 
rate for the observed path flows from BMS can be much lower 
say, around 5% ([43] reported 4.4% average detection rate for 
12 OD pairs at an interchange level) and can vary over different 

 
Γ1 = (𝐬𝐬� − 𝛍𝛍𝐬𝐬�)T�𝐐𝐐𝐱𝐱 − 𝛍𝛍𝐐𝐐𝐱𝐱�;   (5a) 
Γ2 = (𝐬𝐬� − 𝛍𝛍𝐬𝐬�)T(𝐬𝐬� − 𝛍𝛍𝐬𝐬�);  (5b) 

Γ3 = �𝐐𝐐𝐱𝐱 − 𝛍𝛍𝐐𝐐𝐱𝐱�
T�𝐐𝐐𝐱𝐱 − 𝛍𝛍𝐐𝐐𝐱𝐱�. (5c) 

 
 

  

𝜕𝜕𝜌𝜌(𝐐𝐐𝐱𝐱, 𝐬𝐬� )
𝜕𝜕𝐱𝐱 =

𝐐𝐐𝐓𝐓 �(𝐬𝐬� − 𝛍𝛍𝐬𝐬�) −
Γ1
Γ3
�𝐐𝐐𝐱𝐱 − 𝛍𝛍𝐐𝐐𝐱𝐱��

�Γ2�Γ3
 

 
(6) 

 
 

 

 
𝐱𝐱k+1=  𝐱𝐱k ∘ �𝑒𝑒 − 𝜆𝜆𝑘𝑘 ∘

𝜕𝜕𝑍𝑍(𝐱𝐱)
𝜕𝜕𝐱𝐱

�   (7) 

𝜆𝜆𝑘𝑘 ∘
𝜕𝜕𝑍𝑍(𝐱𝐱)
𝜕𝜕𝐱𝐱 < 1 

(7a) 

 

 

 
Fig. 3: Example to demonstrate Bluetooth sub-path 
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paths. We address this issue of low sample rates as follows: We 
propose to generate a sub-path flow vector by combining sub-
path flows observed from several days of similar travel patterns. 
For instance, the observed sub-path flows from |𝐷𝐷| regular 
working Mondays can be used to develop a consolidated vector 
of observed sub-path flows for a typical working Monday. 
Thus, �̃�𝑠𝑏𝑏 can be considered as a consolidation of several 
observations of Bluetooth flows on sub-path b as shown in 
Equation 8. 

 
The consolidated vector 𝐬𝐬� can then be expressed as shown in 
Equation 9. 

 

IV.EXPERIMENTS AND RESULTS 

A. Study network  
To test the proposed methodology, the study network should 
have the following properties: 

1. It should be realistic and representative of the existing 
infrastructure; 

2. It should have enough route choice options; 
3. It should have a combination of at least two different 

types of road hierarchy i.e. motorway and arterial; 
4. OD pairs should have enough overlap between the 

paths; 
5. It should have enough Bluetooth connectivity; that is, 

the sub paths should be along the major routes; and 
6. Loop detectors to be located on important corridors. 

The study network meeting the above-mentioned criteria is 
presented in Fig. 4. It represents the core of the Brisbane city 
network imported into Aimsun next from open street map [44]. 
The network comprises of 15 centroids (zones), 24 loop 
detectors (red squares in Fig. 4), and 20 Bluetooth scanners 
(blue circles in Fig. 4) and 5 external zones. The loop detectors 
and BMS are placed on the major roadways such as Pacific 
Motorway, Clem Jones Tunnel, Coronation Drive, Inner City 
Bypass, and Kelvin Grove Road.  

The OD matrix is designed at a zonal level equivalent to 
Statistical Area 2 (SA2) [45] and is 15 x 15 in size. Internal trips 
are excluded in the analysis. Since, the number of OD pairs is 
greater than 200 it is a high dimensional OD matrix [46]. The 
15 zonal centroids shown are:  

• West End;  
• Gabba;  
• Brisbane (BNE) Inner East;  
• New Farm;  
• Fortitude Valley;  
• Spring Hill;  
• Central Business District (CBD);  
• Newstead;  
• Kelvin Grove(KG)–Herston;  

• Red Hill–Milton; and 
• Five external zonal centroids; that is, Ext-1, Ext-2, 

Ext-3, Ext-4, and Ext-5, respectively.  

The traffic from each zone is loaded into to the network 
through several connectors. The zones, namely Ext-1, Ext-2, 
Ext-3, Ext-5 and New Farm have 2 connectors each; Ext-4, 
Kelvin Grove, Newstead and BNE Inner East have 3 each; West 
End, Red Hill-Milton, Valley, and Gabba have 4 each; and 
Brisbane CBD has 5 connectors, respectively. The number of 
paths per OD pair are chosen to be greater than one, and the 
paths connecting different OD pairs have enough overlap. 

Each zone/centroid is connected by at least one BMS so that 
complete path can be identified as a sequence of BMS IDs 
between any OD pair. Although complete trajectories are 
available in the simulation, the analysis in this study is 
performed using Bluetooth sub-paths only. Refer Section IV.B 
for more details.  

 
B. Design of Experiments  
For the current analysis we aim to estimate typical OD for the 
network, given data from several days. For instance, we are 
interested in typical OD during morning peak hours of regular 
Monday using loop detector and BMS data from several regular 
Mondays. To generate synthetic data for such application we do 
the following: 

a) Define number of similar OD matrices representing 
normal day-to-day travel demand variability. The 
average of these OD represents the typical OD and is the 
ground truth for the study. The details are presented in 
Section IV.B.1. 

b) Simulate the traffic with an OD and export the loop and 
Bluetooth data. Repeat this process over all the defined 
ODs. This provides database for individual day loop 
counts and Bluetooth-based sub-path flows (refer 
Section IV.B.3). 

 Defining similar OD matrices 
For the study network, we develop a database of OD matrices 
that are structurally similar. Here, we define a typical OD 
matrix 𝐱𝐱∗ (one-hour demand equal to 6736 trips) and generate 
additional four similar OD matrices by randomly perturbing 𝐱𝐱∗ 
with a standard deviation of 5%. The OD matrices are denoted 

 

�̃�𝑠𝑏𝑏 =  � �̃�𝑠𝑏𝑏,𝑑𝑑

𝑑𝑑=|𝐷𝐷|

𝑑𝑑=1

 
 

(8) 

 
 

  

𝐬𝐬� =  � 𝐬𝐬�𝐝𝐝
𝑑𝑑=|𝐷𝐷|

𝑑𝑑=1
 

 
(9) 

 
 

 

 
Fig. 4: Study site with Bluetooth scanners (solid blue circles), Loop 
detectors (red rectangles) and zonal centroids (solid green circles) 
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by 𝐱𝐱𝒊𝒊∗ where 𝐱𝐱𝟏𝟏∗ = 𝐱𝐱∗ and 𝐱𝐱𝒊𝒊∗ = rand(𝐱𝐱∗, 5%) ∀ 2 ≤ 𝑖𝑖 ≤ 5 

such that 𝑥𝑥𝑤𝑤,𝑖𝑖
∗ >0. 

 

 Traffic Simulation 
For the current analysis, an hour (7:30 AM- 8:30 AM) of 
simulation is performed using Aimsun micro- which is a 
stochastic simulation at the microscopic level. The assignment 
model considered is stochastic route choice. The demand for 
each simulation is defined as per Section IV.B.1 resulting in 
five different scenarios for a typical OD. For each scenario five 
replications are simulated. Each replication has its own random 
seed, resulting in a simulation with different random selection 
of the stochastic parameters. 

 Synthetic traffic database (Loops and BMS) 
The traffic database consists of loops and Bluetooth records 
from a total of 25 simulation runs (5 similar demand patterns 
and 5 replications for each demand). Refer Fig. 5 that explains 
the process of generating 𝐬𝐬� and 𝐲𝐲�.  

The network has 24 loop detectors (see Fig. 4). Total vehicle 
counts at each detector location during each simulation run is 
obtained. Finally, traffic count at each detector location is 
defined by first considering average of the counts at the location 
from 25 simulations. 

The network has 20 BMSs (see Fig. 4) that detects Bluetooth 
equipped vehicles. Interested readers can refer to the traffic and 
communication simulation model for simulating BMS dataset 
using Aimsun [41]. In this study, the sub-paths are pre-selected 
before conducting the analysis. The number of common sub-
paths in all 25 simulation runs is identified to be |ℬ|=113. For 
the analysis we have considered four different cases with 
Bluetooth penetration rates (see Section IV.B.4). Bluetooth 
sub-path trajectories are estimated independently for each case. 

The process of generating 𝐲𝐲� and 𝐬𝐬� illustrated in Fig. 5 is 
briefly explained as follows:  
• First, initiate 𝐲𝐲�𝒊𝒊,𝒓𝒓 and 𝐬𝐬�𝒊𝒊,𝒓𝒓 of dimensions |𝒜𝒜| x 1 = 24 x 1 

and |ℬ| x 1=113 x 1, respectively for ith OD matrix (𝐱𝐱𝒊𝒊∗) 
and rth replication with zero flow values.  

• Second, simulated traffic counts from |𝒜𝒜|=24 loops are 
denoted by 𝐲𝐲�𝒊𝒊,𝒓𝒓. The database of vehicle trajectories are 
stored as a complete sequence of BMS in ℋ𝑖𝑖,𝑟𝑟. The first 
and last BMSs of each complete trajectory sequence are 
directly linked to the actual origin and destination zones 
of the simulated trip.  

• Third, convert ℋ𝑖𝑖 ,𝑟𝑟 to sub-trajectories (ℒ𝑖𝑖,𝑟𝑟) by de-
selecting a few scanner IDs from the beginning and ending 
of the complete trajectory sequence (this is done because 
the actual Bluetooth trajectories do not always represent 
true trip ends) and due to the deselection process |ℒ𝑖𝑖,𝑟𝑟| is 
less than |ℋ𝑖𝑖,𝑟𝑟|. For instance, |ℋ1,1|=5,273 and 
|ℒ1,1|=3,875 in our study. 

• Fourth, identify η percent of sub-trajectories (ℒ̃𝑖𝑖,𝑟𝑟) from 
the set ℒ𝑖𝑖,𝑟𝑟. For instance, |ℒ̃1,1|=97 for 𝜂𝜂% = 2.5% of 
3,875 of total sub-trajectories. 

• Fifth, count the number of sub-trajectories (from ℒ� 𝑖𝑖,𝑟𝑟) 
passing through each sub-path in ℬ and add it to 𝐬𝐬�𝒊𝒊,𝒓𝒓. Note 
that η% random selection in the previous step might not 

account all sub-paths, and in such cases, some of the sub-
paths can contain zero flow values in 𝐬𝐬�𝒊𝒊,𝒓𝒓. For 
instance, |ℒ̃1,1|=97 sub-trajectories (for 𝜂𝜂% = 2.5%) 
resulted in only 43 out of |ℬ| = 113 sub-paths, which 
means the flows for the rest are zeros. Similarly, 61 for 
5%, 76 for 7.5%, and 82 for 10%, respectively. 

• Repeat steps from first to fifth for all 25 simulations (i.e. 
i=1 to 5 and r=1 to 5). The average traffic counts 

observations are obtained as 𝐲𝐲� = ∑ ∑ 𝐲𝐲�𝒊𝒊,𝒓𝒓5
𝑟𝑟=1

5
𝑖𝑖=1

𝟐𝟐𝟐𝟐
 and the final 

consolidated vector of sub-path flows is obtained as 𝐬𝐬� =
∑ ∑ 𝐬𝐬�𝒊𝒊,𝒓𝒓5

𝑟𝑟=1
5
𝑖𝑖=1 . 

 

 
The structural skewness of consolidated sub-path flows (𝐬𝐬�) 

in comparison with average skewness for different 𝜂𝜂% is shown 
in Table I.  

 
It can be seen in Table I that ρ(𝐬𝐬� , 𝐬𝐬∗ ) (i.e. 3rd column) is better 
than the average skewness (i.e. 2nd column). This implies that 
consolidation of sample sub-path flows (𝐬𝐬�𝒊𝒊,𝒓𝒓) over several 
similar days improves the quality of 𝐬𝐬�. 

 Experiment cases 
To evaluate the impact of the Bluetooth penetration rate we 
consider different scenarios as follows:  
a) Traditional case: Z(x) is expressed only in terms of traffic 

counts deviations (Equation 1). No Bluetooth-based sub-
path trajectories are considered.  

b) Case-1: Here, 𝐬𝐬� is generated using η% = 2.5% and Z(x) is 
expressed using Equation 3. 

 
Fig. 5: Method to generate synthetic data (𝒚𝒚� and 𝒔𝒔�) 

𝐱𝐱∗

𝐱𝐱𝟐𝟐∗ 𝐱𝐱𝟑𝟑∗ 𝐱𝐱𝟒∗ 𝐱𝐱𝟐𝟐∗

Aimsun model run for 
5 replications for each 

demand

Sub-trajectories database from 
25 simulationsSelected 

sub-paths

Sub-path flows database from 
25 simulations

Consolidated 
sub-path flow 

vector (𝐬𝐬�)

Random perturbation of 𝐱𝐱∗

Average link 

flows vector (𝐲𝐲�)

Loop counts database 
from 25 simulations

TABLE I 
STRUCTURAL SKEWNESS COMPARISON 

𝜂𝜂% �∑ ∑ ρ�𝐬𝐬�𝒊𝒊,𝒓𝒓, 𝐬𝐬∗ �5
𝑟𝑟=1

5
𝑖𝑖=1 �

25
�  

ρ(𝐬𝐬� , 𝐬𝐬∗ ) 

2.5% 0.8033 0.9866 
5.0% 0.8904 0.9961 
7.5% 0.9212 0.9951 

10.0% 0.9413 0.9973 
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c) Case -2: Here, 𝐬𝐬� is generated using η% = 5% and Z(x) is 
expressed using Equation 3. 

d) Case -3: Here, 𝐬𝐬� is generated using η% = 7.5% and Z(x) is 
expressed using Equation 3. 

e) Case -4: Here, 𝐬𝐬� is generated using η% = 10% and Z(x) is 
expressed using Equation 3. 

C. Performance evaluation 
To check the efficiency of the proposed methodology, the final 
estimated OD (x), individually for different cases, is compared 
with ground truth OD (𝐱𝐱∗) using following two indicators:  
a) RMSN(𝐱𝐱, 𝐱𝐱∗) (Equation 10): It is a standard measure to 

compare estimated OD flows (𝑥𝑥𝑤𝑤) with that of ground 
truth (𝑥𝑥∗w). In the Equation 10, |𝑊𝑊| is the size of the OD 
vector. 

b) ρ(𝐱𝐱,𝐱𝐱∗) (Equation 11): This measure is more robust [22, 
47] and is used to compare only the structural deviation 
between the estimated OD matrix (𝐱𝐱 ) and ground truth 
OD vector (𝐱𝐱∗). Notations of terms used in Equation 11 
are explained in Section II. 

 
                             

 

D. A Priori OD matrix for optimization 
To test the proposed methodology with respect to the 
consideration of a priori OD matrix for optimization, we 
perform the analysis independently on three different a priori 
OD matrices (𝐱𝐱�𝟏𝟏, 𝐱𝐱�𝟐𝟐, and 𝐱𝐱�𝟑𝟑 in the descending order of OD 
quality). Table II presents the quality of a priori OD matrix 
(𝐱𝐱�𝑐𝑐)  with respect to the ground-truth (𝐱𝐱∗). 
 

 
E. Results 
In this section, we discuss the quality of the OD estimates (x) 
resulted from different cases and consideration of different a 
priori OD matrices. 

 Quality assessment of OD estimates using RMSN 
The Fig. 6 summarizes the results using RMSN as the 
performance indicator. Here, different link graph corresponds 
to different a priori-OD matrix. The x-axis represents different 
cases. 

The results indicate a gradual improvement in the quality of 
𝐱𝐱 as measured through RMSN. For instance, the set of 
experiments initiated with 𝐱𝐱�𝟏𝟏 improved from RMSN (𝐱𝐱�1, 𝐱𝐱∗) 
=0.47 to RMSN(𝐱𝐱, 𝐱𝐱∗) =0.38 (for η%=10%). Similarly, the 

results for the experiments initiated with 𝐱𝐱�𝟐𝟐, and 𝐱𝐱�𝟑𝟑 have also 
demonstrated significant improvements. 

The percent improvements in RMSN(𝐱𝐱, 𝐱𝐱∗) are illustrated in 
Fig. 7. The percent improvement is calculated with respect 
to 𝐱𝐱�𝑐𝑐, and we can observe greater improvements in all 
Bluetooth-based cases as against the traditional case. For 
example, at η%=2.5%, there is 16.71% improvement (from 
RMSN (𝐱𝐱�1, 𝐱𝐱∗) =0.47 to RMSN(𝐱𝐱, 𝐱𝐱∗) =0.39. Within the 
Bluetooth based cases, there is only a slight improvement in the 
RMSN. 
 

 

 
 Quality assessment of OD estimates using 𝜌𝜌 

The 𝜌𝜌(𝐱𝐱, 𝐱𝐱∗) results as shown in Fig. 8 demonstrate that there is 
structural improvement in the OD estimates as η% increases 
from 2.5% to 10%. Fig. 8 also highlights that the traditional 
traffic counts-based approach could not bring any significant 
structural improvements in the OD estimates unless additional 
information from Bluetooth sub-path flows is introduced. 

The percentage structural improvement in 𝜌𝜌(𝐱𝐱, 𝐱𝐱∗) for the 
traditional method is negative for 𝐱𝐱�1 based experiment (Fig. 9). 
This implies a structural degradation. The simulation runs based 
on 𝐱𝐱�2 has also showed only little improvement while there is 
some improvement for 𝐱𝐱�3. This shows that traffic counts-based 
OD estimation does not necessarily improve the structure of OD 
because the deviations of traffic counts used in the objective 
function do not capture any sort of OD structural information. 

Another factor that could possibly control the results may be 
attributed to the selection of gradient descent algorithm. The 
current study focuses on the development of a new upper-level 
formulation, improving upon the solution algorithm is beyond 
the scope of this paper. Nonetheless, it can be seen that rates of 
improvement for sub-path flows-based cases are better than that 
of traditional method because they provide additional 
information related to trip distribution. While, the percent 
improvement in 𝜌𝜌(𝐱𝐱, 𝐱𝐱∗) is higher for sub-path flows-based 

 

RMSN(𝐱𝐱, 𝐱𝐱∗) =
�|𝑊𝑊|∑ (𝑥𝑥𝑤𝑤 −  𝑥𝑥∗𝑤𝑤)2w∈W

∑ 𝑥𝑥∗𝑤𝑤w∈W
 

 
 (10) 
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TABLE II 
COMPARISON OF �̃�𝐱𝑐𝑐WITH  𝐱𝐱∗ 

Prior ODs (𝐱𝐱�𝑐𝑐) RMSN(𝐱𝐱�𝑐𝑐 , 𝐱𝐱∗ )  𝜌𝜌(𝐱𝐱�𝑐𝑐 , 𝐱𝐱∗ ) 

𝐱𝐱�𝟏𝟏 0.47 0.8142 

𝐱𝐱�𝟐𝟐 0.57 0.6704 

𝐱𝐱�𝟑𝟑 0.61 0.5727 
 
 

 

  
Fig 6: RMSN (𝒙𝒙�𝑐𝑐,𝒙𝒙∗) vs 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙,𝒙𝒙∗) for all experiments 

 

Prior Trad ɳ%=2.5% ɳ%=5% ɳ%=7.5% ɳ%=10%
PriorOD1 0.47 0.41 0.39 0.39 0.39 0.38
PriorOD2 0.57 0.53 0.50 0.49 0.48 0.48
PriorOD3 0.61 0.58 0.56 0.55 0.54 0.54
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Fig 7: % improvements in 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙,𝒙𝒙∗) with respect to RMSN (𝒙𝒙�𝑐𝑐,𝒙𝒙∗) 

 

 

Trad ɳ%=2.5% ɳ%=5% ɳ%=7.5% ɳ%=10%
PriorOD1 11.98 16.71 16.97 17.09 17.79
PriorOD2 7.48 13.13 15.22 15.49 15.49
PriorOD3 4.59 7.69 10.08 10.22 10.38
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cases (i.e. case-1 to case-4), there is no significant difference in 
the improvements among them. This, is because the 
consolidated (for 25 simulations) penetration rates of 
𝜂𝜂% =2.5%, 5%, 7.5% and 10% are 2.5%*25 = 62.5%, 5%*25 
= 125%, 7.5%*187.5, and 10%*2.5=250%, respectively, and 
are rather sufficient to bring the necessary improvement in the 
OD quality. 

 

 
 Statistical assessment of the results 

The difference between the results obtained from traditional 
method and those from the cases with Bluetooth penetration 
rates are statistically compared at α=10% level of significance 
using paired t-test and are shown in the Table III.  

 
Although, the improvements in the absolute values of both 

RMSN (Fig. 6 and Fig. 7) and 𝜌𝜌 (Fig. 8 and Fig. 9) seem to be 
marginal, Table II demonstrates that that the absolute t-values 
are greater than the critical value (i.e. +/-2.353 for 3 degrees of 
freedom) at 90% confidence level in all cases for RMSN and in 
all but case-1 for 𝜌𝜌. Except for 𝜌𝜌 comparison in case-1, the 
results from traditional and proposed method are statistically 
different. 

V.DISCUSSION  
The goodness of fit measurements namely, RMSN(𝐱𝐱, 𝐱𝐱∗) and 
𝜌𝜌(𝐱𝐱, 𝐱𝐱∗) showed significant improvement with respect to both 

a priori OD and traditional method using Bluetooth sub-path 
flows. We can see that the results for η% > 2.5% (i.e. case-2 to 
case-4) are slightly better than η%=2.5% (case-1). 

The traditional method did not show any significant 
structural enhancements (Fig. 8 and Fig. 9) although the 
RMSN(𝐱𝐱, 𝐱𝐱∗) measure is improved (refer to 𝐱𝐱�1 and 𝐱𝐱�2 cases in 
Fig. 6 and Fig. 7). In fact, RMSN(𝐱𝐱𝟏𝟏,𝐱𝐱∗) is improved but 
𝜌𝜌(𝐱𝐱𝟏𝟏,𝐱𝐱∗) degraded due to the problem of under-determinacy 
for the traditional case. This showed that preserving the OD 
structure using additional path-based information from 
Bluetooth short trips (which we referred as sub-path flows in 
this paper) helped to direct OD convergence towards a better 
solution estimate instead of ‘getting stuck’ in the local optima. 

There is hardly any difference in the computational cost 
required to evaluate traditional and proposed objective 
functions. For 𝐱𝐱�1 scenario, the computational time (tested on a 
Dell computer with Intel(R) Core(TM) i5-3230 CPU, 4GB 
RAM, 2.60GHz) required for the traditional method is nearly 
3.86 minutes and for the sub-path flows-based experiments it is 
around 3.78 minutes (average of all 4 cases).   

The experiments are tested in a controlled environment due 
to the unavailability of the ground truth (i.e. true OD). 
Nevertheless, the study demonstrated the performance of 
proposed methodology for different prior OD matrices and 
lower sample of random Bluetooth observations. The Brisbane 
City Council (BCC) and the Department of Transport Main 
Roads (TMR) have been recording the Bluetooth observations 
on a continuous basis, and it is possible to have the database of 
traffic observations from several days representing similar 
travel patterns [48]. Thus, the proposed methodology is ready 
for practical implementation on real world networks with 
trajectories and loop counts database. 

VI. CONCLUSION  
One of the major limitations of traffic counts-based OD 
estimation is the problem of under-determinacy, and due to 
which the quality of OD estimates cannot always be guaranteed. 
With the advancements in technology, many emerging data 
sources such as Bluetooth provides additional travel related 
information including vehicle trajectories. However, they are 
only partial observations of complete trips with random and 
unknown penetration rates. Studies in the past have developed 
objective functions based on partial path (referred as sub-path 
in this study) information but with an assumption that their 
penetration rate is known. 

To this end, the study contributes in two ways: first, it 
proposes the idea of “structural comparison of sub-path flows” 
to relax the requirement of “known” penetration rate of 
vehicles’ trajectories; second, it proposes an innovative way to 
incorporate the sub-path flow information in the upper level 
objective function of the traditional bi-level optimization 
problem of OD estimation. Here, the structural difference 
between the observed and estimated sub-path flows is modelled 
as the correlation coefficient and integrated with the traditional 
objective to minimize the deviation between the observed and 
estimated link flows. The proposed objective function is the 
product of two functions, one measuring the fit in the link flows, 
the other one measuring correlation in sub-path flows. In this 

  
Fig 8: 𝜌𝜌 (𝒙𝒙�𝑐𝑐,𝒙𝒙∗) vs 𝜌𝜌(𝒙𝒙, 𝒙𝒙∗) for all experiments 

 

Prior Trad ɳ%=2.5% ɳ%=5% ɳ%=7.5% ɳ%=10%
PriorOD1 0.8142 0.8105 0.8320 0.8322 0.8326 0.8332
PriorOD2 0.6704 0.6810 0.7280 0.7450 0.7456 0.7472
PriorOD3 0.5727 0.6323 0.6391 0.6594 0.6700 0.6719
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Fig 9: % improvements in 𝜌𝜌(𝒙𝒙,𝒙𝒙∗) with respect to 𝜌𝜌(𝒙𝒙�𝑐𝑐,𝒙𝒙∗) 

 

 

Trad ɳ%=2.5% ɳ%=5% ɳ%=7.5% ɳ%=10%
PriorOD1 -0.45 2.19 2.21 2.26 2.33
PriorOD2 1.59 8.59 11.14 11.22 11.46
PriorOD3 10.39 11.59 15.13 16.98 17.31

-2.00

2.00

6.00

10.00

14.00

18.00

Pe
rc

en
t s

tru
ct

ur
al 

im
pr

ov
em

en
t

Experiments

TABLE III 
STATISTICAL DIFFERENCE BETWEEN TRADITIONAL AND REST OF THE CASES 

 
 

RMSN(𝐱𝐱, 𝐱𝐱∗) 𝜌𝜌(𝐱𝐱, 𝐱𝐱∗) 
t-value p-value t-value p-value 

Trad. vs Case-1 7.000 0.020 -2.137 0.166 
Trad. vs Case-2 5.196 0.035 -2.829 0.106 
Trad. vs Case-3 4.158 0.053 -3.341 0.079 
Trad. vs Case-4 6.928 0.020 -3.383 0.077 
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formulation when the structure of the observed and estimated 
sub-path flows has: a) perfect positive correlation (=+1), then 
the formulation reduces to the traditional minimization of the 
link flows; and b) imperfect negative correlation (=-1), then the 
formulation amplifies the deviations of the link flows.  

The proposed sub-paths flows-based approach maintains 
structural consistency in the OD matrix estimates and is better 
than traditional traffic counts-based technique. This is because 
the structure of Bluetooth sub-path flows, which is independent 
of the penetration rates, provides an additional higher-
dimensional information about trip distribution as against point-
based observations of link flows. The proposed methodology, 
tested through several experiments, has demonstrated its 
practical relevance for situations when the penetration rate of 
Bluetooth trajectories is low.  

While the present study demonstrated results better than the 
traditional approach, the study can be extended in the following 
research directions. First, this study is a proof of concept where 
we focus on the formulation of the upper level objective 
function and have applied traditional gradient descent approach 
for optimization. This provides conservative results. Also, the 
step size is crucial in gradient descent algorithm and needs to 
be adjusted for different OD flow values. The consideration of 
advanced stochastic algorithms such as stochastic perturbation 
and simultaneous approximation (SPSA) and Genetic 
Algorithms should further improve the results. Second, more 
experiments shall be conducted in future to investigate right 
selection of sub-paths, the percentage of OD demand they are 
able to intercept (similar to [49, 50] where the results showed 
improvement for both intercepted and non-intercepted OD), 
and the sensitivity of the selected sub-path flows on OD 
estimation. Third, the study uses average traffic counts for D 
days. Averaging counts may be acceptable for demand 
realizations that are relatively close to each other. However, in 
the real world, since the underlying demand is unknown, there 
is little chance to verify this assumption. This is particularly so 
if major incidents were active during the data collection. As a 
part of the future study, we would like to test our approach for 
such situations. Finally, the current study is based on a synthetic 
network, but the real network is challenged by errors, 
unobserved stochasticity, unknown true demand etc. Thus, we 
would like to test our methodology on a real case study network 
for the future study as well.  

Although, the study demonstrated using Bluetooth sub-path 
flows, the proposed approach is generic in nature and the 
formulation holds good for path (partial/complete) flows 
observed from any other emerging data sources such as WiFi, 
GPS, mobile phone etc.    
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