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ABSTRACT This paper aims to show that control of exposure time during video capture will improve
the accuracy of remote photoplethysmography (rPPG). We propose a purpose specific exposure control
algorithm for use in heart rate estimation via rPPG applicable for any controllable camera. Our novel algo-
rithm works by selecting exposure that acheives maximum Signal-to-Noise Ratio (SNR) before distortion
will occur. We performed experiments to test the accuracy of non-contact PPG extracted simultaneously from
two identical cameras positioned together but with different exposure time controls. Our purpose specific
algorithm in camera A controlled exposure time to maximise rPPG SNR ratio while camera B remained set
at one of a range of values. Exposure time set by our novel algorithm out-performed camera B with a lower
mean absolute error relative to a standard pulse oximeter. A significant improvement to heart rate estimation
performance using a research camera can be made with specific control of exposure time. The improvements
in performance demonstrated here are an important step in taking rPPG out of a lab environment and into

less controlled circumstances such clinical settings and emergency rescue scenarios.

INDEX TERMS Biomedical engineering, biomedical monitoring, computer vision.

I. INTRODUCTION
Vital signs assessment using cameras, known as remote pho-
toplethysmography (rPPG), has shown significant promise
in recent years [6], [8], [11]. One of the current practical
limitations is the ability to perform under everyday work-
ing conditions. Performance is very strong under desirable
circumstances. There has been little reporting on how per-
formance changes or degrades as conditions become less
desirable. This difficulty in less controlled environments is a
key limitation in the clinical usage of rPPG. Possible clinical
applications range from situations where non-contact vital
signs assessment would be more conducive to patient care in a
mental health facility where low stimulus is desired, through
to emergency response for a fallen victim in difficult terrain
where these observations could be obtained using a robot or
drone fitted camera and then relayed to the rescue team for
triage.

Photoplethysmography (PPG) uses reflected light to quan-
tify cutaneous blood volume [13], [19], [22]. Light emitted
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Two Cameras

T

FIGURE 1. Controlling exposure will improve performance when
encountering uncontrolled lighting and distances as shown in this clinical
setting.

from a contact PPG device is constant and relatively homo-
geneous but the variability in natural lighting can be unpre-
dictable in both intensity and duration. The challenge that
rPPG methods face is to minimize noise at different levels
of available light.

Little attention has been paid to camera parameters at the
time of image capture. The camera parameters most relevant
to rPPG extraction are those that control exposure: aperture
size, gain and exposure time (also called shutter speed).
Appropriate control of the duration of exposure time may
improve the Signal-to-Noise Ratio (SNR) without causing
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saturation distortion and produce video more suited to rPPG
extraction. This will lead to reduced error in heart rate (HR)
estimation. This is particularly true in challenging settings
such as those involving poor lighting or greater distances.

Here we propose a system for direct purpose specific expo-
sure control for the function of HR assessment via rPPG. We
will review of the current state of the art for HR assessment
that use standard RGB cameras. We will then direct our
attention to direct control of the camera and its potential
for performance improvement. We propose a method for
exposure control that is purpose specific to HR assessment
through rPPG. This system was then implemented together
with a state of the art rPPG estimation algorithm. Experimen-
tal validation of our proposed method was conducted with
two cameras: Camera A running both the aforementioned
state of the art rPPG and our novel direct exposure control,
and Camera B running the same rPPG algorithm only. The
performance of both of these cameras for HR estimation
was assessed relative to a standard pulse oximeter. Potential
future improvements of our algorithm are discussed, includ-
ing enabling our algorithm to make larger individual changes
in exposure time and removing frame rate limitations.

Il. BACKGROUND

A. HEART-RATE ESTIMATION WITH A CAMERA

There have been several studies into camera-based HR extrac-
tion with all methods following a similar core procedure:
(i) capture video of exposed skin; (ii) select a Region-of-
Interest (ROI) and use the mean pixel intensity from each
frame to create a time series; (iii) extract a PPG from these
time series; and finally (iv) estimate the fundamental fre-
quency of the PPG - which is assumed to be HR.

1) CAPTURE VIDEO

The first step in estimating rPPG is to capture a video. There
are two main methods for doing this. The most accepted
method for rPPG extraction employs normal room lighting
and standard RGB cameras [26]. This approach of using
ambient lighting conditions continues to be used, in part due
to it being readily accessible [6], [8], [11].

2) SELECT ROI TO CREATE TIME SERIES

Recent developments have automated ROI selection so that
this function is integrated with the rest of the HR extraction
procedure [1], [6], [8], [11]. These studies initially employed
the Voila-Jones (VJ) face identification algorithm. The VJ
algorithm creates a best-fit rectangle of the region [27].
While some studies have used the V] algorithm to detect the
face before every frame, this approach is not appropriate for
real-time estimation due to the slow nature of this process.
A more efficient approach has been to apply the Kanade-
Lucas-Tomasi (KLT) feature tracker to subsequent frames
once the face is identified [24].

3) EXTRACT PPG
When a set of complete time series have been obtained from
the ROI means, an rPPG estimate is made. The intention is to
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initially estimate an rPPG with the highest possible signal-to-
noise ratio (SNR). Most calculations are based upon the time
series obtained from each of the RGB colour channels and
appear to produce more accurate rPPG estimates than single
channel methods [5]-[7], [10].

There are two main approaches to extracting the PPG
from the colour channel time series. In Blind Source Sepa-
ration (BSS) based approaches the three colour channels are
unmixed into three signals, one of which is presumed to be
the PPG, using techniques such as Independent Component
Analysis, Principle Component Analysis and Canonical Cor-
relation Analysis [1], [10]. In chrominance based methods
each colour channel is normalized (in small, overlapping time
windows) and bandpass filtered. This process has achieved
results comparable to BSS based methods [3]-[5], [8], [28].
De Haan et al extended this work by integrating the product
of the sensitivity curves of all three colour channels with
reflectance curves obtained from early studies on illumination
of subcutaneous blood vessels to create a “‘signature” that
was then used to mathematically weight the colour channels
before combining them [4]. In addition to his approach to ROI
selection, Feng refined the chrominance technique to produce
an estimate of rPPG based upon the raw and filtered (HR
range) colour channels [6]. Feng’s method has been chosen
for rPPG extraction used in this paper.

4) ESTIMATE HEART RATE

Once the rPPG is produced, the HR itself can be estimated.
The rate at which blood pumping cycles are completed by the
heart is the fundamental frequency of the rPPG.

The most commonly used method of estimating the funda-
mental frequency of a uniform time-series is to identify the
dominant peaks from a Fast Fourier Transform (FFT) within
an identified window of time [4], [5], [25], [26]. The ben-
efits of FFT are well understood but the main disadvantage
with using this approach for rPPG is its lack of frequency
resolution.

Current methods of rPPG extraction from video have
demonstrated the ability to produce HR estimates from a
standard RGB camera. Results are encouraging and point
to potential future clinical usage. In the current litera-
ture, improvements in accuracy are achieved through video
processing methods. There has been no investigation into
improvement from dedicated capture of video for this pur-
pose. Control of exposure is a potential source of improve-
ment in rPPG SNR, and by extension a reduction in error in
HR estimation.

B. EXPOSURE CONTROL

The most prominent aim in exposure control literature is to
produce aesthetic frames for consumer electronics. Exposure
of a video frame is the duration and amount of light that
the image sensor receives and is measured in lux seconds.
Overall exposure is controlled by three specific parameters:
aperture size, gain and exposure time. Aperture size describes
the diameter of the opening in the lens through which light
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enters the camera. A larger aperture allows more light to
hit the image sensor, increasing the exposure of a given
frame. Changing the aperture size also changes the focus
of the frame. However, aperture size is often not a control-
lable parameter as this is determined during the manufacture
of the camera hardware. Gain is an analogue amplification
applied to the image sensor output in the hardware of the
camera, often referred to as “ISO”. The fact that gain is
applied before quantization means that it is not equivalent to
increasing brightness through digital processing. Increasing
gain increases the exposure of the frame but does not increase
the SNR.

Exposure time is the amount of time the open shutter of the
camera exposes the image sensor to light. Exposure time is
often software controllable. Since the image sensor is in effect
integrating over this period, larger exposure times make each
frame a less instantaneous sample and may lead to effects
such as motion blur. The maximum exposure time is also
constrained by the frame rate of the recording.

The problem of achieving a desired exposure automatically
has been studied, partially driven by the need for commercial
cameras to have an automatic exposure control mode whilst
simultaneously achieving an aesthetically pleasing image.
Measurement of exposure must be tied to some measure in
the frame in the absence of an external metering device;
these measures are routinely based on the distribution of
pixel intensities and statistics of the distribution [9], [20].
Algorithms are then employed to attempt to adjust overall
exposure in order to have this measure reach its desired value.
We describe here only those uses of exposure control that do
not use external metering devices.

The literature contains several approaches to choosing a
measure of correctness for exposure of a frame. Popular
modern methods use a histogram of pixel intensities to select
a desired brightness level [20]. These methods may use the
image as a whole, or concentrate on specific regions of the
frame [12]. Once a target for exposure is chosen, the cam-
era must then attempt to respond accordingly. What these
methods have in common is an emphasis on exposure in the
context of producing frames desirable to a human viewer and
not the purpose of obtaining a better PPG.

Early work did examine the overall exposure in context
of all parameters [15] and within the photography related
literature changing exposure time is most popular choice from
the three specific exposure parameters. A simple model of
automatic exposure control (AEC) as the time the sensor inte-
grates some constant light striking it implies linear scaling,
for example:

aTy
/ Ldt = aToL (D
0

where L is the rate at which light is striking the image sensor,
T is the exposure time, a is a constant and ¢ is time.
However, the slight non-linearity of the relationship in
practice is often the primary obstacle to be overcome in trying
to achieve a desired brightness level in the frame. If the
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exact relationship between exposure time and pixel intensi-
ties is unknown, the problem of achieving a desired inten-
sity becomes one of root finding on an unknown function.
This problem is well studied mathematically and numeric
approaches have shown success in reaching a desired expo-
sure quickly and accurately [21], [23].

Studies aimed at achieving an exposure time for a spe-
cific purpose other than producing aesthetic images are lack-
ing [16]. One example of purpose specific exposure control
was described by Nuske. He intentionally applied different
levels of exposure to subsequent image frames to achieve
desired exposure in all parts of a frame. A selection was
then made from a set of frames based on a specific object
within the image to assist with guiding an autonomous vehi-
cle [17], [18]. This idea of purpose specific control of expo-
sure focused on a region is of particular interest in the case of
rPPG as we are only interested in the exposure for one very
specific part of the frame.

lil. METHOD

It is necessary to understand the effect of noise on the ROI to
understand our specific approach to exposure control. We will
first examine the role of gain and the effect of quantization
noise on the ROI mean. Then we will assess shutter speed and
how long the image sensor is exposed to the light entering the
camera. We will first examine the effect that exposure time
has on random noise and on the ROI. Changing the aperture
size also changes the frames depth of field. However, we will
ignore techniques that control aperture size as this is not often
controlled by software and is therefore less generally appli-
cable to HR assessment using cheap, off the shelf cameras.

A. ENSEMBLE QUANTIZATION NOISE

Gain, describes the amplification that is applied to the image
sensor’s analog output. It is important that this amplification
is applied before quantization so it has the effect of maximiz-
ing signal-to-quantization-noise ratio (SQNR). Amplifying
the frame digitally will not have this effect. The quantization
noise affecting an ROI mean is more complicated than the
quantization noise affecting a single sensor - as the ROI could
be thought of as an ensemble of individual measurements
affected by quantization. There will be a different level of
noise reduction if gain is applied to the whole ROI. We
assume each pixel in the ROI is affected by noise indepen-
dently. not every possible source of noise acts independently,
random electronic noise dominates in recording such as ours
and can be reduced by increasing exposure time. We will
explicitly consider how this changes the SNR when gain is
increased. We assume all pixels in the ROI observe some true
value u, that falls between quantization intervals o and o + A,
although it is closer to «. With zero noise all pixels would
quantize to o for a mean of «. If instead each pixel observes
u-+n, where n «~ N(0, o), those pixels with higher noise will
now be quantized to o« + A. The ensemble mean will now be
closer to u.
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If the noise is powerful enough it may cause pixels to
quantize to intervals further from u, such as ¢ — A or o +2A.
Let X be an interval, the probability that a pixel will quantize
to interval X is:

p(X)=P(u+n<x+%>—P<u+n<x—%> 2)

A A
pX) =P<n<x—u+5) —P(n <x—u+3) 3)
We assume that measurements will be uniformly dis-
tributed over any given quantization interval. Shifting that
interval to (0, A), we can find the expected distribution of
pre-quantized values x after noise is added:

P utn = pX)u * p(X)n
1 x—A

= s (5 ) —er(5)) @

The mass function of quantized values for a single pixel
will be:

X+4 x-4
pX) = / PX)yndx — / P(X)utndx Q)

—00 —00
The ROI mean distribution function will be the sum of an
ensemble of many individual pixels distributed according to

pX):
1
EIROI = Xi:Pi (6)

where P; « p(X).

Although we have assumed pixel noise is independently
distributed, the total intensity of each pixel in the ROI
(signal + noise) will not be independently distributed. Given
pixel intensities are not independently distributed, finding
this sum analytically will be very difficult as the central limit
theorem cannot be applied. Figure 2 shows the numerical
solution of Equation (6) where total noise power as a function
of white noise power constructively dithers the mean. Once
the curve minimum is reached, total noise power increases
linearly with random noise power. Figure 3 shows the effect
of increasing gain, at each of the arbitrarily chosen five ran-
dom noise levels. The reduction in total noise tends towards
zero as gain increases until a critical point is reached where
noise begins to increase again.

B. RANDOM NOISE

We expect to find random noise with power far outside
of the range where increasing gain can effectively reduce
total noise. Gain is applied after the exposure of the image
sensor has finished, meaning that noise is amplified along
with signal when increasing gain. We are then left with the
parameter of exposure time and it’s relation to the overall
SNR. Increasing exposure time will increase the power of
the signal relative to the noise as signal power is increasing
over the entire duration of the exposure time. This provides an
opportunity for SNR improvement after random noise level
becomes higher than the maximum level for gain to improve
total noise.

VOLUME 8, 2020
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FIGURE 2. Total noise power (quantization + random) as a function of
random noise power.
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FIGURE 3. Total noise power over random noise power at different gain
levels).
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FIGURE 4. Total noise power over random noise power at increasing
relative exposure times showing the continuing improvements provided
by exposure time past the minimum.

Figure 4 shows that, unlike with gain, higher levels of
exposure time continue to provide a net SNR improvement
even as random noise increases past the noise minimum.
Exposure time is expressed as a ratio relative to the initial
exposure time, or Relative Exposure Time (RET). Figure 5
answers the question of combining gain and exposure time to
achieve a total exposure (gain exposure time product). We see
that as total noise increases past its minimum exposure time
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FIGURE 5. Total noise power over random noise power at the same total
exposure (product of exposure time and gain) showing that maximizing
exposure time is the most effective way to set exposure at realistic noise
levels.

out-performs high gain significantly. As this higher noise
level is closer to what we expect with real-world recordings,
controlling exposure time will be the focus of our technique
for overall exposure control.

C. EXPOSURE CONTROL

Our approach to extracting an rPPG is based on the distribu-
tion of pixel intensities in the ROL. If an infinite range of out-
put pixel values were possible, then theoretically maximum
SNR would be achieved from the maximum exposure time.
However, in a real device, output values cannot continue to
increase beyond the highest possible output and exposure is
limited by pixel saturation. The ROl is also not expected to be
perfectly homogeneous and therefore not all pixels will have
the same intensity and some will saturate while others may
not.

A predictable problem is distortion in the rPPG that is
caused by pixel saturation in frames that sample close to the
rPPG peak. To preempt this, we initially identify the frame
that is closest to the peak of the rPPG by choosing the one
with the highest ROI mean. A window of frames that is ‘—3‘
seconds long guarantees at least one rPPG peak. This is based
on a desired HR estimation between 45-200 beats per minute
(BPM) corresponding to frequencies between 0.75-3.33Hz.
This then forms the basis for subsequent exposure time
calculations.

Once a frame has been selected, mean and variance of the
pixel values are then obtained from the ROI. As exposure
increases, saturation of the higher valued pixels in the ROI
will appear as soft-clipping distortion in the rPPG (Figure 6).
The goal is to estimate exposure at the balancing point
between preventing saturation of the pixels with highest
intensities and causing an overall increase in the ROI pixel
intensities. To achieve this we model the contribution of
saturated and unsaturated pixels to the ROI mean.

The model assumes that pixel intensities in the ROI are
normally distributed, this is equivilant to assuming the skin
in the ROI is homogeneous with each pixel independently
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FIGURE 6. The full model ROl mean as exposure increases (blue) with the
simplified model (orange).

affected by white noise. This implies that before any increase
in exposure time is applied the distribution of pixel intensities
in the ROI, p(I), will be - p(I) ~ N(u, o). The model
further assumes that pixel intensity increases can be linearly
approximated over small changes in exposure time, exposing
the frame, including the ROI for some greater time 7'. This
assumption will be correct over sufficiently small steps in
exposure time, as it is mathematically correct if brightness
level is differentiable. This will produce a new distribution
Tlop(l ) v N (TLOM, Tlocr) where T is the current exposure
time. Increasing exposure time has the effect of increasing
variance of pixel intensities, and moving all pixels closer to
the upper saturation point.

The ROI mean can then be modelled from the combination
of unsaturated pixels and saturated pixels. Let M be the ROI
mean, estimated as:

M = (1 = Pyar) + SPyas (7

where S is the saturation value, u’ is the truncated mean:

R ()
R CAR 1)

Here ¢ and @ represent the normal probability density and
cumulative density respectively, and Py, is the probability of

one given pixel in the ROI saturating:

Py = (2 > q) 9

®)

Sf%u
where ¢ = —
TU

represents the probability of a pixel

exceeding the saturation point. This is achieved by standar-
dising the normal distribution after the exposure time has
increased linearly by a factor of TLO Truncation accounts for
the removal of saturated pixels. The term SP;,; contributes to
rPPG distortion, while the term Tlop,(l — Pg4) contributes to
rPPG accuracy.

The model helps predict how exposure will produce dis-
tortion in the rPPG. The value of M as a function of Tlo nw
has a clear linear region and non-linear region (Figure 6).
Overall non-linear amplification of a signal is a source of
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FIGURE 7. Sinuisodal ROl mean output over time at different exposure
times.
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FIGURE 8. Derivative of the ROl mean with respect to exposure (both
models).

distortion. rPPG distortion will occur when the product Tlou
for a frame reaches the point where M begins to enter the non-
linear region. Figure 7 shows that as exposure time increases,
the effective amplification will become non-linear. Maximum
exposure time without distortion occurs when the rPPG peak
reaches the end of the linear region. This can be shown once
M is approximated as a piecewise function with a cutoff C
(Figure 8). Let Tlo =A:

A Au<C
Mz{u s

10
S Au>C (19)

Suppose there is some signal a with minimum ag and
maximum a; then amplitude A = a; — agp. If a is amplified
according to the approximation of M the new amplitude, f4
will be:

Aay —Aag Aa; < C,Aaqyg <C
S — Aag Aa; > C,Aay < C (11
0 Aay > C,Aag > C

S will differ from Aa; by some quantity §. Substituting S =

Aay + § and Af = A(a; — ap) gives:

A Aa; < C,Aay < C

A+4+$8 Aa; > C,Aaqy <C (12)
0 Aa; > C,Aaqy > C

fa=

fa=
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Therefore the condition for distortion free amplification is
Aa; < C, or in general Aupyax < C. This procedure for
calculating maximum distortion-free exposure from an ROI
can be summarised as follows:

1) Calculate Pgy, 7 and o from the ROI

2) Estimate y and o from P, 17, T and known current
exposure time T

3) Calculate M over a range of possible exposures ¢

4) Find the cutoff of the linear region in M and its corre-
sponding exposure time T¢

5) Set the current exposure time Ty to T¢

1) CALCULATE Pgy, '“,/4 AND (r//‘ FROM THE ROI
Pixel intensity statistics of non-saturated pixels within the
ROI are calculated as follows:

wy = E[ROI,xs] (13)

o4 = Var[ROI,4s] (14)
|ROIp=s|

Py = ———— 15

sat ROT| (15)

2) ESTIMATE 1« AND o FROM Psgy, i/, 'T AND KNOWN
CURRENT GAIN T,
To calculate the estimates of y and o from Pgg,, ,u’T and

oy the upper-tail truncation formulas are rearranged alge-
braically [24]:

1 0}2 (16)
O = —
Toy 1 - a5 — (5
O 0)

n= TO(MT +U¢(q)) (17)

Values for ¢(q) and ®(gq) are obtained from:
¢(q) = $(® ! (Psar) (18)
@(q) = Psar (19)

The above will only hold true if Py, < 0.5, otherwise the
truncation will no longer be exclusively in the upper tail and
exposure time must be decreased until Py,; < 0.5 again.

3) CALCULATE M OVER A RANGE OF POSSIBLE

EXPOSURES x

In our model, M contains sums and products of Gaussian
and error functions. Due to the associated level of algebraic
difficulty, it is better to numerically analyze M.

4) FIND THE CUTOFF OF THE LINEAR REGION IN M AND ITS
CORRESPONDING EXPOSURE T¢
There are several methods available that may be used to select
the end of a linear region. One simple approach is to base
selection on a threshold in %. The derivative for the piece-
wise approximation of M is then:

(20)

8M_ u Aar <C,Au<C
A |0 Aa; > C,Ap<C
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The cutoff is identified in the approximation as a dis-
continuity. Figure 6 demonstrates how %—’A” will not have a
discontinuity for M in equation (20). There will instead be a
smooth transition from w to O over the elbow of M as shown
in Figure 8. Cutoff is then estimated to be at the level where
%—AX crosses below a threshold relative to .

5) SET THE CURRENT EXPOSURE TIME T, TO T¢

The resulting exposure time T¢ will deliver the best rPPG
estimation. The final step is to set the current camera exposure
time, T, to T¢.

The initial assumption of linearity implies that an exposure
time increase from 7o to 7 will increase the ROI mean by
a factor of F = Tlo In actuality, exposure for time 7 will
produce an increase below F'. Finding the true exposure time
required to achieve an increase of F can be done with the
algorithms discussed in the literature review. Taking this into
account we then adjust the estimation of our desired expo-
sure [23] time as:

_ S —wToTy 21
F-—wTo+ S —F)Ty
where:
S
Ty = —To (22)
"

This calculation must be made iteratively, but only on
frames that contain peaks within a 1.5 second window as
saturation distortion will occur in peak frames first. The
process of calculating a desired ROI mean and then esti-
mating the exposure time that will achieve it is incremented
every 1.5 seconds until the desired result is achieved.

A final consideration is the potential effect that saturation
could have on artifacts created by movement. Current rPPG
methods assume that all artifacts created by movement are
of equal size. However, if saturation is reached movement
artifacts will become unequal between the channels. Uncor-
rected rPPG artifacts will then be significantly greater than
the quantization noise we are trying to minimize. To mitigate
this, as we calculate exposure time for all channels, then the
lowest value is selected.

IV. IMPLEMENTATION

To test our approach for rPPG extraction we chose Feng’s
method [6]. On the first frame a face was detected with the
VI algorithm. The region spanning facial proportions (0.15,
0.35) to (0.25, 0.6) was chosen as the ROI. This area is in
the centre of the forehead for convenience of homogeneity
and size. Calculations to determine the rPPG were based
on controlling the exposure of the ROI only. The face and
ROI were tracked through subsequent frames using the KLT
algorithm. For each colour channel in every frame an ROI
mean of pixel intensities was calculated and formed three
time series: R(¢), G(¢) and B(t). These were subsequently
combined using the technique described by Feng to create a
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single estimate of PPG:
Re(®)  Gp(n)
L) Ig(r)

where Ry (t) and Gy (¢) are R(7) and G(¢) that have been band
pass filtered, while:

PPG(t) = (23)

R(t)

I(t) = 24

® VR2(t) + G2(t) + BX(1) 9
G(1)

1,(t) = 25

) VRA(t) + G2(t) + BX(1) )

The bandpass filter applied to Ry(¢) and Gy (¢) passes only
the band of reasonably expected Hearts Rates, often chosen
as 0.75Hz to 4Hz (45BPM to 240BPM). This is the passband
we used. A sliding 3 second window was taken from the
exposed ROI to estimate HR from PPG(t). At the centre of
this window (1.5 seconds) frequencies as low as 0.75 Hz were
able to be detected. Our approach to fundamental frequency
estimation was to use autocorrelation [14] - the integral of the
product of a signal with a delayed version of itself, Ry (1) =
ffooo fx)f (x — A)dx. Although, all signals will have a high
correlation at delay 0, periodic signals will have compara-
bly high correlation at delays of all integer multiples of the
fundamental frequency. Therefore, if signal S has period T
it follows that Rs(0) = Rs(T) = Rs(2T),Rs(3T)... The
frequency of S can be estimated from consecutive peaks
Py, P1 in it’s autocorrelation with fr = ﬁ. More sophis-
ticated approaches for processing the unstable instantaneous
HR into a more stable output HR can be obtained by applying
a moving average of window length six seconds but were not
applied to the current algorithm [2], [25].

The iterative process of setting exposure time is performed
at intervals of 45 frames. The calculations described above
are performed to predict desired exposure time, the calculated
exposure time is then compared with current exposure time.
The cameras exposure time is iteratively increased until the
calculated exposure time matches the current exposure time.
This procedure will take much longer than the cameras in-
built AEC, with each iteration requiring 1.5 seconds of data.
However, the longer total time of execution for our novel
algorithm is not significant compared the minutes or hours
of superior performance it may provide.

V. EXPERIMENTAL VALIDATION
We designed two experiments to answer the following ques-
tions: (i) How does the novel algorithm change the perfor-
mance of HR estimation compared to a set of exposure times
sampling the available range?; (ii) How does the novel algo-
rithm change the performance of HR estimation compared to
automatic exposure time that is inbuilt on a research camera?
Participants in both experiments were seated 3 metres from
a two camera configuration. This testing distance will mean
the ROI will occupy a very small area of the frame, less than
1%. The small relative size of the ROI is key to needing the
camera to be placed close to the subject. Ths is similiar to
the distance that would be seen in real world deployments.
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FIGURE 9. An overview of the full HR estimation system. Periodic increments are made to exposure time to the image sensor of
Camera A based on ROI statistics until current exposure time is closest to the predicted best exposure time. Exposure time of the

image sensor in Camera B is not adjusted.

FIGURE 10. Experimental set-up in an office with standard fluorescent
lighting, with the ROI for rPPG shown.

A research camera with inbuilt AEC bases its calculations
on the whole frame and implies information obtained from
the ROI will be less effective at a distance. Two identical
Point Grey Flea3 cameras were used to obtain the mean
absolute error, standard deviation of absolute error and time
spent within 6 BPM relative to ground truth provided from
a Compumedics® Sompté clinical monitor routinely used
for ambulatory sleep studies to record contact PPG and HR.
Gain for both cameras was set to 1 (0 dB) as this gave max-
imum room for exposure increase without distortion. Ethical
approval was granted by the QUT Human Research Ethics
Committee (HREC)

A. EXPERIMENT 1
Consent was obtained from five participants enrolled in this
experiment. Exposure time on Camera A was iteratively
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increased by 1ms. Both cameras recorded with a frame rate of
30fps. A factory set resolution of 480 x 620 was also chosen
and although not a standard resolution it had no effect on
calculations because of the size and location of the ROI in the
camera frame. One minute of synchronised data was gathered
on both cameras for each of the predetermined exposure times
tested on Camera B. This was repeated for each of the five
participants.

B. EXPERIMENT 2

Consent was obtained from ten participants enrolled in this
experiment. This experiment was smaller, designed specif-
ically to test our novel algorithm against the camera’s in-
built AEC only. Exposure time on Camera A was iteratively
increased by 2ms, Camera B had exposure time set by the
cameras in-built AEC. Both cameras recorded with a frame
rate of 30fps. Again, a resolution of 480 x 620 was also
chosen. One minute of synchronised data was gathered on
both cameras for each of participant.

VI. RESULTS

A. EXPERIMENT 1

Results from the static exposure time and our algorithmic
exposure time comparison recordings are shown below in
Table 1. Trends in MAE and 6BPM time over all participants
are shown in Figures 11 and 12. The x-axis in these figures
corresponds to static exposure time in each recording.

Table 1 shows the per recording performance of HR esti-
mation with our novel algorithm against a set of static expo-
sure times. The cameras inbuilt AEC was briefly tested before
recording for each participant, it selected an exposure of
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FIGURE 11. Comparison of camera performance based upon mean
absolute error from the chosen ground truth. Camera A data point labels
indicate the corresponding exposure times for each of the 5 participants
in milliseconds for each of the arbitrarily chosen exposure times for
Camera B.
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FIGURE 12. Comparison of camera performance based upon percentage
of estimated HR within 6 BPM of the chosen ground truth. Camera A data
point labels indicate the corresponding exposure times for each of the 5
participants in milliseconds for each of the arbitrarily chosen exposure
times for Camera B.

12ms for all 5 participants. Superior performance for each
recording is highlighted in green, with inferior performance
highlighted in red. Results demonstrate that Camera A with
the novel algorithm out performed Camera B for 4 out
of 5 participants. Camera A demonstrated a mean improve-
ment of 1.62 BPM, 2.62 BPM and 3.46 BPM over Camera
B at each of the pre-set conditions of over exposed, under
exposed and well exposed recordings respectively.

B. EXPERIMENT 2

The results presented in Table 2 demonstrate that the novel
algorithm set the exposure time to be longer for all of the
participants studied. On average the novel algorithms chosen
exposure time was 11.32ms longer. The results also show
that Camera B with the inbuilt automatic exposure varied
less across participants, with standard deviation of 3.48ms
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TABLE 1. Comparison of heart rate estimation error and percentage
agreement within 6 BPM of ground truth at each Camera B exposure
time. Superior and inferior performance are highlighted in green and red
respectively. MAE = Mean Absolute Error, 6BPM Time = Proportion of
time withing 6BPM, ET = Exposure Time.

Camera A Camera B
(Novel Algorithm) (Pre Set)
ET MAE 6 BPM ET MAE 6 BPM
(ms)  (BPM) (%) (ms)  (BPM) (%)
Subject 1

TABLE 2. Comparison of heart rate estimation error and percentage
agreement within 6 BPM of ground truth using Camera B factory
algorithm for automatic exposure. Superior and inferior performance are
highlighted in green and red respectively. MAE = Mean Absolute Error,
6BPM Time = Proportion of time withing 6BPM, ET = Exposure Time.

Camera A Camera B
(Novel Algorithm) (Aut ic)
Subject  ET MAE  6BPM Time ET MAE  6BPM Time

(ms) (BPM) (%) (ms) (BPM) (%)

1

2
3

4

5

6

7

8

9
10

compared with the more variable novel algorithm with stan-
dard deviation 4.38ms. The novel algorithm performed better
across all participants with a mean improvement in 3.625
BPM mean absolute error and an overall improvement of
21.44% in heart rate estimations that were within 6 BPM
of the chosen ground truth. The decrease in mean MAE
is statistically significant under t-test with null hypothesis
Hp: our novel algorithm’s mean MAE is not less than the
AEC mean MAE, with p = 0.0045. The increase in mean
6BPM time is statistically significant under t-test with null
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hypothesis Hyp: our novel algorithms mean 6BPM time is not
greater than the AEC mean 6BPM time, p = 0.0118.

C. EXECUTION TIME

The novel algorithm required an average of 15.15 seconds of
execution time in the first experiment and 21.015 seconds of
execution time in experiment two. The execution time of our
novel algorithm was very slow as compared to the cameras
factory AEC, which completes on the order of milliseconds.
The vast majority of the execution time required by our algo-
rithm was for gathering data, the time of actual computation
between the two algorithms is very similar.

VII. DISCUSSION

The results from both experiments clearly demonstrated that
our novel algorithm outperformed a set of sample exposure
times across the range of exposure times available on a
research camera including the factory algorithm for automatic
exposure when used for the purpose of estimating heart rate.
In the first experiment our novel algorithm produced superior
performance in HR estimation over a range of exposure times
and subjects. In the second experiment our novel algorithm
outperformed the cameras in-built exposure algorithm on all
ten subjects. These two experiments provide strong evidence
that our novel exposure time algorithm chooses exposure
times that are both overall effective and superior than a cam-
eras default algorithm for the purpose of heart rate estimation
from rPPG.

It was observed that performance in the final recording
of each participant in experiment 1 was lower even with
the algorithmic exposure. This may be because of increased
movement from the subjects becoming more restless after
they have been sitting for about 10 minutes by the end of the
fourth recordings. It is also notable that the default AEC chose
a much more consistent exposure time across all participants,
with only 3.48ms of standard deviation compared to our
algorithms 4.38ms: this is explained by the cameras default
AEC basing calculations off the entire frame.

An interesting observation was the variation of algorithm
selected exposure time for different subjects. Camera B
inbuilt AEC in experiment 1 selected the same exposure
time across all participants at 12ms. In the second experi-
ment, where Camera B used the factory algorithm for auto-
matic exposure, more variation was observed in that camera’s
determined exposure time compared to the constant 12ms
observed in experiment 1. This was due to the different envi-
ronmental conditions where natural light was introduced with
the fluorescent lighting as experiment 2 was conducted in a
room with a large window. The purpose specific algorithm
determines its exposure time based only upon the chosen
ROI. This demonstrates how purpose specific exposure con-
trol could be applied to a range of circumstances: when the
subject is far away, when the scene is unevenly lit or when
skin colour is highly contrasted from the background but
occupies only a small proportion of the frame.
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For any given subject, there was minor variability of output
exposure time from our algorithm across different record-
ings for each participant, with a variance of around 1.5ms.
Considering the combination of very slight environmental
changes between recordings and iteration interval being 1ms,
this inter-recording variation may be due to the true exposure
time for highest SNR may lie near the middle of an interval,
where a slight change in value will change the iteration output
by 1.

Limitations of our novel algorithm currently are execu-
tion time and subject movement. It was stated earlier that
the algorithm had the ability to estimate the highest SNR,
distortion free exposure time, despite the fact that it would
be iteratively set in our specific experiment. Operating as is,
our novel algorithm is much slower than the cameras inbuilt
AEC. This cannot be avoided as setting exposure time specif-
ically requires collecting a full period of HR data, which will
always take on the order of seconds. However, we believe an
adjustment period of seconds is acceptable when compared
to the performance increase our algorithm provides. These
improvements would continue of the over the duration of
usage, which in a clinical setting could extend over minutes
or hours. Although subject movement was not an issue in
our experiment it is unclear how excessive movement may
effect our novel algorithm if it was present. Our algorithm
will place the upper portion of the colour channels closer to
saturation than they would otherwise be, this leads to superior
performance without excessive movement present, but may
actually lead to worse performance when there is a large
amount of subject movement.

VIil. CONCLUSION

This paper attempted to address the lack of investigation
of techniques for potential improvement of existing meth-
ods of HR extraction from standard video. We proposed
a method for automatically controlling exposure in RGB
cameras specifically for the purpose of rPPG. We proposed
a method to control exposure time specifically for rPPG
by estimating the highest exposure time possible without
saturation occurring in the ROIL. Our experiments tested the
difference in error between two standard research cameras
relative to a standard pulse oximeter, one camera with a static
exposure times and the other operating our novel algorithm.
This experiment was conducted across five people, for each
the algorithm was compared to four different static exposure
times sampling the range of possible exposure times. Our
algorithm produced a lower error across in the best case for 4
out of 5 participants. The agreement between the exposure
time that was arrived at iteratively and predictions by the
algorithm also provides evidence that the iterative component
could be replaced by prediction in future work. Future work
may also include experiments with lower frame-rates as a
method to provide the opportunity for much greater exposure
times for very dark environments. Finally, future work may
also focus on testing this system in challenging out of lab
environments.
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