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Abstract: This manuscript details the application of a profluorescent nitroxide (PFN) for the online
quantification of radical concentrations on particulate matter (PM) using an improved Particle
Into Nitroxide Quencher (PINQ). A miniature flow-through fluorimeter developed specifically for
use with the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe was integrated into the
PINQ, along with automated gas phase corrections through periodic high efficiency particle arrestor
(HEPA) filtering. The resulting instrument is capable of unattended sampling and was operated
with a minimum time resolution of 2.5 min. Details of the fluorimeter design and examples of
data processing are provided, and results from a chamber study of side-stream cigarette smoke and
ambient monitoring campaign in Guangzhou, China are presented. Primary cigarette smoke was
shown to have both short-lived (t1/2 = 27 min) and long-lived (t1/2 = indefinite) PM-bound reactive
oxygen species (ROS) components which had previously only been observed in secondary organic
aerosol (SOA).

Keywords: oxidative stress; reactive oxygen species; profluorescent nitroxide; particulate matter;
aerosol; BPEAnit

1. Introduction

Exposure to atmospheric particulate matter (PM) is strongly linked to increases in morbidity
and mortality throughout the world [1]. Analysis of long-term exposure studies has shown a
dose-dependent relationship between PM2.5 mass and both cardiovascular and respiratory mortality [2].
This relationship also holds for neurological disorders, with a wide scale meta-analysis also showing a
link between PM2.5 mass exposure and a significantly increased risk of Alzheimer’s disease as well
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as increased risk for stroke, dementia, Parkinson’s disease and autism spectrum disorder [3]. An
underlying mechanism thought to be responsible for PM to generate such a diverse range of health
impacts is known as oxidative stress.

Oxidative stress is drawn from microbiology [4], and is defined as an excess of oxidants within a
cell leading to disruptions in normal redox processes and cellular function. The oxidants in question
are a group of oxygen-centred chemical species known as reactive oxygen species (ROS), which
include: O2

−., HO., RO., ROO., 1O2, ONOO−, H2O2 and ROOH. In the context of air pollution, it states
that inhalation and deposition of PM in the lungs can introduce ROS to cells. Their high reactivity
allows them to interfere cellular function, resulting in one of three tiers of oxidative stress depending
on severity of exposure [5]. Tier 1 response results in the activation of a cells internal antioxidant
defense to deplete excess ROS. If this defense is overwhelmed the cell moves into Tier 2, in which
cellular signalling pathways are activated, and the affected cells become inflamed. In cases of extreme
oxidative stress, Tier 3 results in the death of exposed cells through apoptosis or necrosis. These cellular
responses, coupled with the ability for portions of ultrafine PM to penetrate into the bloodstream and
cells [6], and the important role oxidative stress plays in cellular signalling pathways [7], forms the
basis of the science implicating PM exposure to a diverse range of health outcomes.

An important parameter in the investigation of oxidative stress is the oxidative potential (OP)
of PM, which is defined as the total degree to which a PM sample can oxidize components in its
environment [5]. This is directly tied to how much ROS a PM sample can introduce to the body, and
thus is related to the degree to which it can induce oxidative stress in exposed cells [8]. Cellular
measurements of OP involve the exposure and examination of animals or lab cultivated cells for
markers of oxidative stress; or direct measurement of radicals within cells using chemical probes [9].
By necessity these methods are complex and difficult to adapt to field measurements for atmospheric
pollution exposure; limiting time resolution and making large-scale atmospheric studies challenging.
To resolve this, several methodologies have been developed which measure the ROS activity of PM
outside of cells.

Acellular methodologies vary considerably in both sensitivity and application. Notable amongst
them is electron paramagnetic resonance (EPR) spectroscopy, which is uniquely capable of identifying
individual ROS species using a variety of spin traps [10–12]. While this is a powerful capability, EPR is
an offline methodology that cannot quantify all ROS using a single setup, requires extensive training,
and is large, expensive and difficult to deploy in field campaigns. Alternative acellular approaches
instead aim to provide a single value representing the cumulative total of ROS present independent of
the species present. Systems based on these approaches [13–16] are able to collect significantly more
data with a higher resolution in the field when compared to EPR. A key challenge in this approach is
that ROS introduced through inhalation of PM can be divided into two major categories: 1) PM-bound
ROS, defined as ROS present on particles whilst in the atmosphere [17,18]; and 2) endogenous ROS,
which are ROS generated through chemical interactions between PM and exposed cells [13,19]. Both of
these sources are distinct and require different methodologies for measurement. Consequently, no
single acellular methodology is capable of measuring the total OP of a PM sample; instead different
acellular methodologies measure contributions to total OP. This work is concerned with the most
common acellular measurements of PM-bound ROS, with in-depth investigations on methodologies
for both PM-bound and endogenous ROS found elsewhere [5,20].

The most commonly applied probe for PM-bound ROS is 2,7-dichlorofluorescein diacetate
(DCFH-DA), a probe which reacts with certain ROS to form a fluorescent product [21]. In recent years it
has been integrated into several online instruments [15–17,22–25]. Whilst these systems are a significant
improvement over offline techniques, further advancement of the systems is made limited by the
DCFH-DA probe in a few key ways, namely: a minimum reaction time of 11 min [15]; the required use of
horseradish peroxidase to catalyse the reaction, which can lead to a non-linear response [21]; a high rate
of autoxidation in probe stock solutions; and the requirement for the PM to be water soluble. To address
these points a profluorescent nitroxide (PFN) probe 9,10-bis(phenylethynyl)anthracene-nitroxide
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(BPEAnit) [26] was developed and integrated into a system known as the Particle Into Nitroxide
Quencher (PINQ) [27].

The PINQ is PM-bound ROS instrument which collects PM regardless of composition directly
into a solution of DMSO and the BPEAnit probe. The reaction with the probe is diffusion limited,
lowering the instrument time resolution to as low as one min while achieving a limit of detection
of 0.08 nmol.m−3. This manuscript details the continued development of the Particle Into Nitroxide
Quencher (PINQ) into a fully online PM-bound-ROS monitor. In particular, the development, testing
and integration of a dedicated flow-through fluorimeter for rapid quantification of the BPEAnit probe is
covered. Details on the design, calibration and operation methodology of the instrument are provided;
and preliminary high time resolution PM-bound-ROS measurements are presented for both a chamber
study and ambient monitoring campaign.

2. Materials and Methods

2.1. Online PINQ System

This manuscript details the continuation of the development of the PINQ into a continuous online
system. The original offline variant has been discussed elsewhere in literature [27]. Briefly, the PINQ
system collects PM directly into a solution of DMSO and the BPEAnit probe using a purpose-built
steam collection device called the insoluble aerosol collector (IAC). This liquid is then de-bubbled and
input into a custom flow-through fluorimeter where the BPEAnit fluorescence intensity is measured
and converted into equivalent ROS concentrations. Liquid flow rates throughout the instrument are
regulated using a peristaltic pump.

2.1.1. Flow Switching Assembly

Previous work with the PINQ as an offline system has shown that the BPEAnit probe has a
high sensitivity to gas phase ROS [28]. In order to correct for this in real time measurements of
PM-bound ROS it is necessary to either account for or eliminate this contribution to the signal. Other
instruments have used charcoal denuders or wetted annular denuders to remove or collect this gas
phase contribution. This approach was not adopted for the PINQ due to concerns over the gas phase
removal efficiency and high ultrafine particle losses [29]; additionally future characterization of this gas
phase signal may further the understanding of the relationship between gas and particle phase ROS
interactions [28]. In place of a denuder, the PINQ alternates between collecting filtered and unfiltered
aerosol using two ball valves and a HEPA filter. A similar strategy was applied to another online
PM-bound ROS instrument using the DCFH-DA probe [24]. Wide orifice ball valves were selected over
a three-way valve in order to minimize particle losses inside the system. The valves, along with the
spectrometer and peristaltic pump are controlled using a dedicated LabVIEW-based application, which
is also responsible for logging and analysing raw data to provide preliminary real time PM-bound
ROS concentrations.

2.1.2. Flow-Through Fluorimeter

Initial PINQ samples were manually collected into a quartz cuvette and measured using an
offline fluorimeter [30]. These measurements were time and labour intensive, highlighting the need
for a flow-through setup to continuously measure the fluorescence of the sample exiting the PINQs
vortex collector. Whilst commercial desktop solutions do exist, they were too large and fragile for easy
integration in the instrument and limited portability. For this reason, a combination of commercially
available and custom-made components were used to create a robust and significantly lower cost
miniature flow-through fluorimeter.

The original offline fluorimeter combined a pulsed xenon lamp excitation source (PX-2, Ocean
Optics Inc., Largo, FL, USA) with a miniature universal serial bus (USB) spectrometer (USB2000+,
Ocean Optics Inc., Largo, FL, USA). Whilst effective for offline measurements [31], the xenon lamp had



Sensors 2019, 19, 4564 4 of 16

relatively low excitation power in the absorbance spectrum of the BPEAnit probe. This resulted in
integration times of ~1 min for accurate measurements, which limited the time resolution of online
measurements. To resolve this a 5 mW 450 nm laser (CPS450 Laser Module, Thorlabs Inc., Newton, NJ,
USA) was selected for the flow-through fluorimeter. This provided very high probe excitation and
allowed for accurate measurements with integration times in the order of milliseconds.

Two commercial flow-through cells were unsuccessfully tested before the decision was made to
develop a custom solution. The first cell (583.4-F, Starna Scientific Ltd., Essex, UK) had a relatively large
dead volume which led to a very slow sample response. The second cell (Fluorescence SMA Flow Cell,
FIAlab Instruments Inc., Seattle, WA, USA) had a complex internal flow path which made it prone to
the entrapment of bubbles, causing a scattering effect which biased results. As detailed in Section 2.1.3,
the complete prevention of bubbles entering into the cell was not possible. To address these issues
a custom cell was constructed in which the internal flow-path was a narrow, straight cylinder. This
removed any dead volume, unnecessary surface area and flow constraints, maximizing time resolution
whilst limiting the potential for bubble entrapment. The components were held together with solid
mounts and internal nitrile rubber light seals. This made the final flow-through fluorimeter a small,
solid unit with no fragile connections. The lack of light collimation and optics does in theory limit
the lower detection limit of the system. However, this setup was capable of quantifying the smallest
quantities of reacted BPEAnit relevant to the PINQ instrument, making these additional complications
unnecessary for this application. A simplified cross-section showing the major components of the
fluorescence cell is shown in Figure 1a.
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Figure 1. (a) Simplified cross-section of the microfluidic cell showing the assembly of key components.
The cells outer dimensions are 30 × 30 × 48 mm. Notably, the liquid flow-path is a continuous cylinder
throughout the entire illuminated path, significantly reducing the entrapment of bubbles inside the
cell. (b) The assembly of the full fluorimeter illustrating the connections between the fluorescence cell,
CPS450 laser and USB2000+ spectrometer.

The cell housing is a rectangular 304 grade stainless steel block with outer dimensions of 30 × 30
× 48 mm with two end caps containing threaded flat-bottom M6 microfluidic ports for sample tubing
connections. The cell itself is a 20 mm long, 1 mm internal diameter, 4 mm outer diameter quartz tube.
The cell endcaps are pressed into either end of the cell housing, crushing against two Teflon seals to
create a liquid tight seal between the microfluidic port and the quartz cell. The laser and spectrometer
are mounted perpendicular to the direction of flow, connecting to two ports bored into the centre of
two perpendicular faces in the housing. Fabricated sheet metal mounts bolt these components directly
to the cell, creating a single rigid unit. The internal light paths themselves are 4 mm in diameter,
with their length minimized to maximize the measured response. There is a cavity opposite the laser
which acts as an excess light trap, and the entire interior of the cell is optically blacked to prevent
any scattering of light influencing measurements. The resulting flow-through fluorimeter shown
in Figure 1b weights approximately 590 g with dimensions of 95 × 90 × 65 mm. This setup can be
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modified for a variety of excitation sources and spectrometers or photodiodes. For further advice on
creating a similar fluorimeter, readers are encouraged to contact the corresponding author.

2.1.3. Debubbler

During the collection stage the aerosol sample is collected directly into a solution of the BPEAnit
probe in DMSO. The condensational growth process used to ensure a high collection efficiency for
particulate matter results in the introduction of some water into this sample, typically corresponding to
~10% of the total liquid volume of the sample. This dilution can be easily corrected for in fluorescence
measurements through the use of a steam dilution factor [27]. However, this dilution effect presents
another problem which complicates the measurement process. When using the DMSO-based BPEAnit
solution a fine mist of bubbles is created in the sample solution when the condensational growth stage
is active. These bubbles create significant noise in the fluorimeter, significantly increasing the relative
error in measurements in comparison to those taken from stock solutions (i.e., during fluorimeter
calibrations and background measurements). This effect is not observed when the condensational
growth stage is inactive, or when the collection liquid is water-based. Hence, the bubble generation has
been attributed to the exothermic mixing of DMSO and water, which could lead to both the potential
outgassing of gases in the collected liquids and changes in viscosity and density of the solution during
the vortex collection stage leading to entrainment of some gases in the liquid flow. As both the DMSO
solution and condensational growth stages cannot be excluded from the system, a debubbler was
developed to remove any bubbles prior to measurement.

Initially a gravity debubbler system was employed in which the liquid was pumped through
a small reservoir in which the bubbles would rise to the surface through gravity and be removed
from the flow. However, the bubbles generated in this process are too small for efficient gravitational
separation causing a significant portion to remain entrained in the liquid flow. Instead, a small reservoir
containing a coiled stainless-steel mesh was used, with an effective internal volume of <0.2 mL. As the
liquid passes through the reservoir the high surface area of the mesh traps bubbles, removing them
from the liquid stream and preventing unnecessary noise in subsequent fluorescence measurements.
Over time the trapped bubbles inside the reservoir will slowly coagulate into several large bubbles
which will eventually escape and enter into the fluorimeter. However, the design of the flow-through
cell prevents these large bubbles from becoming trapped inside the cell. Instead, the bubbles cause
brief but intense scattering events which can be easily identified and removed during post analysis,
which is discussed further in Section 3.2.

2.2. Fluorimeter Calibration

Three flow-through fluorimeters were constructed for testing, with the third using a
temperature-stabilized FLAME spectrometer (Ocean Optics Inc., USA) which has the same mounting
points as the original USB2000+ the cell was designed for. These three fluorimeters were calibrated
using prepared concentrations of BPEAnit-Me which are continuously cycled through the fluorimeter
through the use of a peristaltic pump over a 2 min period. BPEAnit-Me is a methyl trapped product of
BPEAnit, wherein it has been fully reacted with methyl radicals to form a highly stable and fluorescent
molecule which is similar to the various fluorescent products BPEAnit forms when reacting with
radicals in a sample.

2.3. PINQ Data Analysis

The dedicated PINQ software continuously logs the spectrum measured by the spectrometer
inside the fluorimeter. For analysis purposes the first fluorescence peak of the BPEA-nit probe at
486 nm was used. The second peak at 512 nm was also logged as the ratio of the two peaks can be
used to identify faults in the setup. Herein these are referred to as the primary and secondary peaks,
respectively. The height of these peaks was directly proportional to the concentration of reacted probe
in the sample liquid, and hence the amount of ROS collected. Rather than logging the height of a single
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pixel in the centre of the fluorescence peak response, the average of several pixels centred on the peak
was used. This negligibly influences the absolute value of the measurement and significantly reduces
the sample noise generated through random fluctuations in individual pixels. It is also computationally
simpler than fitting curves and solving the corresponding integrals to find the area under the curve.
An example of the fluorescence spectrum and the averaging windows used to calculate the primary
and secondary peaks is shown in Figure 2.Sensors 2019, 19, x FOR PEER REVIEW 7 of 19 
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Figure 2. The typical fluorescence response measured for the
9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe with the flow-through fluorimeter for a
total phase and gas phase sample. The response wavelengths averaged for the measurement of the
primary and secondary peaks are indicated by the blue and red shaded regions, respectively. The large
third peak centred on 450 nm is the laser used as the excitation source.

In order to correct for the contributions of gas phase ROS collected during measurements, the
PINQ sample continuously alternates between total and gas phase measurements through the use
of the flow-switching assembly. An example of the spectrums obtained for total and gas phase
samples is given in Figure 2. This results in a time series which oscillates periodically as the sample is
switched between gas phase and total phase measurements. The magnitude of this signal oscillation is
directly proportional to the PM-bound ROS concentration in the sample aerosol. To calculate final
concentrations, the first 60 s of data after each valve switch is removed as this data represents the
mixing of the two phases during the PINQ response time. The remaining data is then split into total
and gas phase signals, and the mean values are calculated. The gas phase signal is then interpolated to
the same time base as the total phase using the spline interpolation function in Matlab; it was also
corrected for background fluorescence and converted to equivalent moles of BPEAnit-Me per cubic
meter of air as detailed in a previous work [27]. Finally, the PM-bound ROS concentrations are found
by subtracting the gas phase from the total phase.

2.4. Side-Stream Cigarette Smoke Chamber Study

In order to demonstrate the response of the PINQ in a controlled environment, a cigarette was left
to smoulder for 2 min before being extinguished inside a sealed 1.2 m3 solid chamber with internal
fans to improve mixing. After a period of 10 min the PINQ was connected to the chamber outlet where
it was sampled for a period of 100 min with a valve switching rate of 75 s. An inlet on the chamber
was opened to allow HEPA-filtered and charcoal-denuded lab air in to replace any air removed by the
sample, resulting in a continuous sample dilution with clean air.
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2.5. Field Measurements of Background PM in Gaungzhou, China

The real-time PINQ system was first tested for ambient monitoring applications at a rooftop
sampling site at the Guangzhou Institute of Geochemistry (GIG) in Guangzhou, the capital city of
Guangdong Province, China. The PINQ instrument was operated over a period of two weeks from
mid-October 2017 with a valve switching rate of 150 s and a PM2.5 impactor on its inlet to ensure
comparability with supporting instrumentation. In total, 250 nM solutions of BPEAnit in DMSO
were prepared every 12 h for use in the PINQ system. At these input times aerosol and liquid
flow rate calibrations were also performed. The measurements were supported by a time-of-flight
Aerosol Chemical Speciation Monitor (TOF-ACSM, Aerodyne Research Inc, Billerica, MA, USA), which
provides information on PM2.5 chemical composition in real time [32]; and a BAM-1020 Continuous
Particulate Monitor (Met One Instruments Inc., Grants Pass, OR, USA), which provides PM2.5 mass.

3. Results

3.1. Calibration Plots of the Flow-Through Fluorimeters

The calibration plots of three flow-through fluorimeters constructed using the design discussed in
Section 2.1.1 are shown in Figure 3.
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Figure 3. (a–c) The calibration plots for the three flow-through fluorimeters constructed and tested.
(a) and (b) use USB2000+ series spectrometers, whilst (c) uses a newer FLAME spectrometer with
temperature stabilization. The flame spectrometer is more adept at measuring very low concentrations,
although these are far below those measured when integrated into the Particle Into Nitroxide Quencher
(PINQ).

The two USB2000+ based spectrometers performed remarkably similar, with similar slopes
and good linearity of response through all tested concentrations of BPEAnit aside from a slight
overestimation at 0.5 nM measurement. The FLAME-based instrument has a lower response intensity
and corresponding fitted slope, which is attributable to the different sensor the spectrometer is based on.
Despite this, the fluorimeter provided a more linear response at very low concentrations, particularly
for the 0.5 nM measurement.

3.2. Data Analysis Methodology

Analysis of the raw data collected by the PINQ Labview application was processed using a
dedicated function written in Matlab for this purpose. The results of the side-stream cigarette smoke
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chamber measurement and key stages in the data analysis process to calculate final values are shown
in Figure 4.
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Figure 4. (a) The raw fluorescence response of the PINQ sample over time for side-stream cigarette
smoke in a chamber. The alternating signal is caused by switching between filtered and unfiltered
air. Sharp spikes in the signal are caused by bubbles in the sample line. The total and gas phase
data points coloured indicate the data points averaged to generate the next plot in the figure. (b)
The de-bubbled, trimmed and averaged plateaus and corresponding standard error of the alternating
signal which correspond to the total and gas phase. (c) The final particle phase reactive oxygen species
(ROS) concentration with standard error calculated by subtracting the interpolated gas phase from
the total phase after correcting for background fluorescence and converting the signal to equivalent
concentrations of BPEAnit-Me per cubic meter of air.

Figure 3a shows the raw fluorescence response along with the final data points used to calculate
the average total and gas phase values in Figure 3b once data classification, filtering and trimming
have been performed. The valve position data for the flow switching assembly were used to classify
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the data into total and gas phase samples. The data during the mixing period after the valves alternate
were removed using a setup dependent time window which was determined as detailed in a previous
work [27]. The other data which were removed were those points which were influenced by bubbles
passing through the cell as discussed in Section 2.1.3. These were identified as the sharp peaks shown
in Figure 3a which were automatically filtered from analysis through a function based on the average
rate of change of fluorescence, while the cell was developed in order to prevent bubbles from becoming
trapped; very occasionally they temporarily adhere to the wall of the cell. This created short periods of
skewed data which were identified and removed from analysis through distortions in the measured
spectrum. In the case of this study, the total sample at 5400 s and the gas phase sample at 1725 s were
lost due to prolonged bubble scattering.

The averaged total and gas phase samples (n = 60) along with their corresponding standard error
are shown in Figure 3b. The high concentration coupled with the controlled chamber environment
led to very low noise and hence small error bars for each data point. The gas and total phase
were interpolated to the same time base using the spline interpolation tool in Matlab, corrected for
background fluorescence and converted to equivalent concentrations of BPEAnit-Me per cubic meter
of air. Finally, the particle phase was calculated by subtracting the two measured phases as shown in
Figure 3c.

In this example, the major source of uncertainty in the final particle phase signal was the
uncertainties in the various flow rates and calibration constants. The spectrometer noise was on the
order of 0.5% of the signal and contributed negligibly to the final error. Therefore, averaging over
longer time periods to minimize noise does not significantly minimize the final sample accuracy. On
the contrary, the longer the averaging time, the more likely it is that the measurement will be influenced
by dynamically changing ROS signals and hence will become less accurate. This indicates that the
best measurement strategy for the PINQ should be to minimize the averaging time of the signal and
instead maximize the sample time resolution.

3.3. PM-Bound ROS Half-Lives

Once generated, the high reactivity of ROS causes the concentration of PM-bound ROS to decay
over time through interactions with their environment. Analysis of measured decay rates in other
studies indicates the presence of subsets of ROS with different half-lives, some of which can be as low
as a few minutes [22]. Whilst a dedicated campaign with supporting instrumentation for chemical
composition measurements is essential to fully understand the half-lives of primary ROS, some
preliminary investigation can be made from the cigarette study presented in Section 3.1.

In order to investigate the half-life of ROS in the cigarette study, the data were expressed as the
fraction of ROS remaining from the initial sample and corrected for known mass loss rates in the
chamber. Two different models of ROS decay were investigated using the curve fitting toolbox in
Matlab, as shown in Figure 5. In Figure 5a the fitted curve assumes that all ROS contained in the
PM phase decay at the same rate, with the best fit corresponding to a half-life of 120 min with a 95%
confidence interval CI(110,140). Whilst this model fits most of the available data points, several early
and later data points are outside the 95% confidence interval. Constraining the curve to fit certain data
points leads to a poorer fit elsewhere, indicating a simple exponential decay is not sufficient to explain
the observed decay of PM-bound ROS. In Figure 5b a method based on several aforementioned studies
is used, in which the fitted curve divides the PM-bound ROS into subsets with different half-lives, in
this case two. Originally it was attempted to fit two summed exponential decay functions to model
these subsets. However, it was found that the half-life of the second exponent tended towards infinity.
This indicates that the lifetime of the second ROS subset is significantly longer than the experiment
length and hence is not measurable with this dataset. Therefore, the model was simplified so that the
second subset was simply a constant term. This resulted in a fitted curve in which the 95% CI contained
all data points and resulted in a calculated short-lived ROS half-life of 27 min with a 95% CI(23,31).
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Figure 5. The ROS data, normalized by its initial value and corrected for mass losses, along with two
different fitted curves to the ROS data using different assumptions of ROS decay. (a) shows a fit which
assumes that all ROS present have a single half-life, with a value calculated from the fit of 120 min with
a 95% confidence interval (CI)(110,140). This model does not fit well at low or high elapsed times. (b)
shows a fit which assumes there are two subsets of ROS, in which the second set has a lifetime which is
effectively infinite over the measurement period. The half-life of the short-lived ROS using this model
is 27 min with a 95% CI(23,31).

In order to investigate the half-life of ROS in the cigarette study, the data were expressed as the
fraction of ROS remaining from the initial sample and corrected for known mass loss rates in the
chamber. Two different models of ROS decay were investigated using the curve fitting toolbox in
Matlab, as shown in Figure 4. In Figure 5a the fitted curve assumes that all ROS contained in the
PM phase decay at the same rate, with the best fit corresponding to a half-life of 120 min with a 95%
confidence interval (CI) (110,140). Whilst this model fits most of the available data points, several early
and later data points are outside the 95% confidence interval. Constraining the curve to fit certain data
points leads to a poorer fit elsewhere, indicating a simple exponential decay is not sufficient to explain
the observed decay of PM-bound ROS. In Figure 5b a method based on several aforementioned studies
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is used, in which the fitted curve divides the PM-bound ROS into subsets with different half-lives, in
this case two. Originally it was attempted to fit two summed exponential decay functions to model
these subsets. However, it was found that the half-life of the second exponent tended towards infinity.
This indicates that the lifetime of the second ROS subset is significantly longer than the experiment
length and hence is not measurable with this dataset. Therefore, the model was simplified so that the
second subset was simply a constant term. This resulted in a fitted curve in which the 95% CI contained
all data points and resulted in a calculated short-lived ROS half-life of 27 min with a 95% CI (23,31).

3.4. Application to Ambient Measurements

The online PINQ system was field tested at a sampling campaign in Guangzhou, China in 2017.
Whilst the instrument was onsite for two weeks, some outages in both the PINQ and supporting
instruments resulted in only periodic overlapping data for comparisons. The most significant of these
was a continuous 27 h segment of data in which both the PM chemical composition and PM2.5 mass
were also available, as shown in Figure 6. This provides a good example of the PINQs application to
online ambient measurements and will be considered for analysis in this section.
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Figure 6. (a) shows a day period of analysed PINQ data collected at a rooftop site measuring ambient
background aerosol in Guangzhou, China. (b) shows the hourly average organic mass concentration
measured by the time-of-flight Aerosol Chemical Speciation Monitor (TOF-ACSM). (c) gives the
NO3 mass measured by the TOF-ACSM. (d) shows the hourly total particulate matter (PM)2.5 mass
concentration measured by the BAM-1020.

Figure 6a shows a time series of both the high time resolution and hourly averages from the PINQ.
The variability in the signal is considerably higher than that measured during the previously discussed
chamber study. This can be partially attributed to the lower concentrations measured leading to a lower
signal-to-noise ratio in the instrument. This was expected, which is why the valve switching rate of 150
s was used here as opposed to the 75 s rate used in the previous chamber study. This increases the time
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the sample was averaged over, improving the sensitivity of the instrument at lower concentrations.
To investigate potential relationships with specific chemical components, the PM-bound ROS signal
was averaged to the same 10 min time base as the TOF-ACSM data resulting in 141 data points. The
Pearson’s correlation coefficients and corresponding p-values were calculated for this dataset and are
shown in Table 1.

Table 1. Pearson’s correlation coefficients and corresponding p-values between PM-bound ROS and
major TOF-ACSM fragments over the shown measurement period (n = 141), being chloride (Cl−),
nitrate (NO3

−), sulphate (SO4
2−), ammonium (NH4

+) and total organics (Org). PM-bound ROS was
found to correlate best with nitrate.

Cl− NO3− SO42− NH4
+ Org

Corr. Fac. 0.39 0.65 0.28 0.50 0.54
p-Value 8 × 10–7 2 × 10–19 6 × 10–4 7 × 10–11 5 × 10–13

4. Discussion

4.1. The Online PINQ

The development of a low-cost, portable and accurate fluorimeter for the PINQ was the largest
challenge in bringing the instrument online. The resulting fluorimeter is simple, robust and very
cost-effective, with the single largest expense being the USB spectrometer. This could be potentially
replaced with a suitable bandpass filter and photodiode detector to further lower the cost. However,
the spectrometer is both sensitive and a useful tool in troubleshooting the PINQ system and identifying
bubble interference; thus, this should be considered in future applications. Both the USB2000+

and FLAME-based systems performed very well, with good linear response from 0.5 to 200 nM
concentrations of BPEAnit as shown in Figure 3. In future field campaigns the FLAME-based setup
will be used, as the additional temperature stabilization module prevents baseline and sensitivity
shifts in the spectrometer at different ambient conditions. This simplifies data analysis and improves
instrument sensitivity.

The periodic filtering of the PINQ sample to correct for gas phase contributions has been used in
several previous offline studies using the BPEAnit probe, and one online system utilizing DCFH-DA [24].
The use of a denuder to scrub the gas phase would result in a considerably higher time resolution (<30 s
with optimized settings) and require less complex data processing. However, given the complex nature
of ROS in general, the authors are not confident that there is any system which could be confidently
said to suitably scrub gas-phase ROS whilst not impacting the sensitive PM-bound ROS measurements
through ultrafine particle losses. An additional benefit of gas phase ROS measurements is that they
provide an opportunity to investigate the total oxidative capacity of aerosols [28]. However, there
measurements are currently only semi-quantitative, with an in-depth characterization of the gas phase
collection efficiency needed to fully quantify gas phase ROS measurements.

The time resolution of the originally published PINQ system was reported as one minute, which
combined a 40 s mixing time with a 20 s sample averaging time [27]. This mixing time was determined
by a combination of the internal volume of the flow-path and the liquid flow rate of the sample. The
setup for the newer debubbler detailed in Section 2.1.3 marginally increased this internal liquid volume.
This resulted in a valve switching rate of 75 s for the chamber study, incorporating a 60 s mixing time
and 15 s averaging time. The necessity for measurements of both total and gas phase measurements
to measure PM-bound ROS doubled the final time resolution to 2.5 min. This short averaging time
is possible in chamber studies as the high concentrations cause the signal-to-noise ratio to become
sufficiently high such that minimizing the averaging time will have a negligible impact on the final
result. This is evident by the almost imperceptibly small error bars shown in the averaged signal in
Figure 4b. The majority of the error in Figure 4c is instead the result of the collective uncertainties in
the calibrations of the fluorimeter, aerosol and liquid flow rates. The switching rate was increased
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further to 150 s in ambient measurements, extending the averaging time to 90 s in an effort to reduce
uncertainty from noise at lower concentrations.

4.2. Implications of the Initial Ambient Study

The 27 h of ambient air measurements presented here were not of a sufficient time length to make
any conclusive comments about the chemistry of PM-bound ROS. Instead, these data are presented as
an example of real-time ambient applications in comparison to that of the cigarette chamber study.
As mentioned in the previous section, the averaging time in ambient measurements was significantly
extended in order to reduce noise in measurements. Despite this, Figure 6a shows a high variability
between individual data points. While this is certainly in part attributed to the lower signal-to-noise
ratio, it is not ruled out that there is a real high short-term variability in PM-bound ROS concentrations.
Potential causes of this variability could be nearby sources of highly short-lived ROS species, or
unmixed plumes from nearby traffic. In order to explore this further, a better understanding of the
underlying chemistry of atmospheric PM-bound ROS and its sources is needed.

The correlations presented in Table 1 indicate the PINQ measurements correlate to varying degrees
with all the major ion masses measured by the TOF-ACSM. This is not an expected result and is
likely due to the pollution event observed at approximately 06:00 on December 12 (see Figure 6).
This resulted in increases in the PM-bound ROS, total PM2.5 mass and to varying degrees all mass
components measured by the ACSM. PM-bound ROS and total PM2.5 mass both experienced a two-fold
increase over this period, resulting in relatively constant ROS per PM2.5 mass. As such, no significant
observations regarding the influence on chemical compositional on PM-bound ROS can be made over
a short period. Instead, the correlations shown in Table 1 are likely due to their shared relationship
with total PM2.5 mass. This highlights the need for significantly longer periods of data collection with
systems like the PINQ if the sources of PM-bound ROS in the atmosphere are to be understood.

4.3. Half-Lives of PM-Bound ROS

The PM emitted during cigarette combustion has previously been shown to contain high
concentrations of ROS using the BPEAnit probe [31,33]. It has also been observed that inside a
sealed chamber the concentration of ROS per mass decayed over time [31]. Similar observations have
been made using the DCFH probe with differing methodologies and PM sources [15,22]. This has led
to the concept of ROS half-lives; wherein the high reactivity of the radicals present causes them to
dissipate over time though chemical interactions with their surroundings. The measurement of these
half-lives has resulted in two broad categories of ROS: short-lived ROS, with half-lives as low as a few
minutes [22]; and long-lived ROS, which can exist from several hours to effectively indefinitely [15].
The analysis of the cigarette smoke chamber study presented in Section 3.2 further reinforces these
findings, with two distinct half-lives present.

The first fit, which assumed all ROS exponentially decay at the same rate, was relatively poor, with
fitting attempts failing to intercept all data points. In contrast to this, the assumption of two distinct
subsets provides a good fit with all observed data. The long-lived term is represented as a constant, as
fitting the half-life for this value generated a confidence interval several orders of magnitude higher
than the fitted value. This does not indicate that this subset survives indefinitely, only that the half-life is
significantly longer than the experiment length of 100 min and hence cannot be accurately determined.

The shorter-lived ROS in this study have a measured half-life of 27 min with a 95% confidence
interval of four min. Whilst the use of “short-lived’ is correct in the context of this study, the half-life of
these ROS is an order of magnitude longer than the estimated few minutes measured for oxidized oleic
acid aerosol using a DCFH-based online system [22]. This is attributable to the large difference in PM
investigated. The ozonolysis of oleic acid leads to relatively homogenous liquid droplets containing
large concentrations of peroxide groups [34], which will be the dominant ROS present. In contrast,
PM from cigarette smoke is a complex heterogeneous mixture of solid and liquid phase chemical
species in which the majority of ROS are likely to be alkoxy radicals [12]. As ROS decay occurs through
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reactions with surrounding molecules, a difference in chemistry will inevitably lead to differences in
ROS half-lives. However, this finding does not offer insight into the specific factors determining them.
This would require an in-depth investigation using the PINQ in conjunction with multiple sources and
a wide suite of supporting instrumentation providing the chemical composition of both the gas and
particle phase.

4.4. What Time Resolution is Necessary for the Measurement of PM-Bound ROS?

An often-asked question is: what time resolution of PM-bound ROS measurements is truly
necessary? As can be seen in the ambient measurements shown in Figure 6a, the high time resolution
data is significantly variable and thus little can be drawn about exposure and potential health outcomes
at this level. Instead, the hourly averages are more suited to this purpose. However, higher time
resolutions are invaluable in examining the chemistry which drives the concentrations of PM-bound
ROS. In the case of chamber studies, the PINQ provides significantly more data points, resulting
in more accurate half-life calculations and the ability to directly observe the decay of short-lived
species. In atmospheric measurements it provides more statistical power for correlations with other
instrumentation and faster responses to pollution events. High time resolution data is not by definition
a necessary requirement for atmospheric studies, but it is a valuable tool to further understanding
PM-bound ROS in the atmosphere.
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