Mechanical suppression of osteolytic bone metastases in advanced breast cancer patients: A randomised controlled study protocol evaluating safety, feasibility and preliminary efficacy of exercise as a targeted medicine

, Galvão, Daniel A., Saunders, Christobel, Taaffe, Dennis R., Feeney, Kynan T., Spry, Nigel A., Tsoi, Daphne, Martin, Hilary, Chee, Raphael, Clay, Tim, Redfern, Andrew D., & Newton, Robert U. (2018) Mechanical suppression of osteolytic bone metastases in advanced breast cancer patients: A randomised controlled study protocol evaluating safety, feasibility and preliminary efficacy of exercise as a targeted medicine. Trials, 19, Article number: 695.

[img]
Preview
Published Version (PDF 1MB)
68253363.
Available under License Creative Commons Attribution 4.0.

Open access copy at publisher website

Description

Background: Skeletal metastases present a major challenge for clinicians, representing an advanced and typically incurable stage of cancer. Bone is also the most common location for metastatic breast carcinoma, with skeletal lesions identified in over 80% of patients with advanced breast cancer. Preclinical models have demonstrated the ability of mechanical stimulation to suppress tumour formation and promote skeletal preservation at bone sites with osteolytic lesions, generating modulatory interference of tumour-driven bone remodelling. Preclinical studies have also demonstrated anti-cancer effects through exercise by minimising tumour hypoxia, normalising tumour vasculature and increasing tumoural blood perfusion. This study proposes to explore the promising role of targeted exercise to suppress tumour growth while concomitantly delivering broader health benefits in patients with advanced breast cancer with osteolytic bone metastases.

Methods: This single-blinded, two-armed, randomised and controlled pilot study aims to establish the safety, feasibility and efficacy of an individually tailored, modular multi-modal exercise programme incorporating spinal isometric training (targeted muscle contraction) in 40 women with advanced breast cancer and stable osteolytic spinal metastases. Participants will be randomly assigned to exercise or usual medical care. The intervention arm will receive a 3-month clinically supervised exercise programme, which if proven to be safe and efficacious will be offered to the control-arm patients following study completion. Primary endpoints (programme feasibility, safety, tolerance and adherence) and secondary endpoints (tumour morphology, serum tumour biomarkers, bone metabolism, inflammation, anthropometry, body composition, bone pain, physical function and patient-reported outcomes) will be measured at baseline and following the intervention.

Discussion: Exercise medicine may positively alter tumour biology through numerous mechanical and non-mechanical mechanisms. This randomised controlled pilot trial will explore the preliminary effects of targeted exercise on tumour morphology and circulating metastatic tumour biomarkers using an osteolytic skeletal metastases model in patients with breast cancer. The study is principally aimed at establishing feasibility and safety. If proven to be safe and feasible, results from this study could have important implications for the delivery of this exercise programme to patients with advanced cancer and sclerotic skeletal metastases or with skeletal lesions present in haematological cancers (such as osteolytic lesions in multiple myeloma), for which future research is recommended.

Trial registration: anzctr.org.au, ACTRN-12616001368426. Registered on 4 October 2016.

Impact and interest:

12 citations in Scopus
13 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

91 since deposited on 17 Sep 2020
9 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 204598
Item Type: Contribution to Journal (Review article)
Refereed: Yes
ORCID iD:
Hart, Nicolas H.orcid.org/0000-0003-2794-0193
Measurements or Duration: 15 pages
Keywords: Advanced cancer, Aerobic training, Bone metastases, Exercise medicine, Isometric training, Muscle activity, Resistance training, Tumour growth, Tumour suppression
DOI: 10.1186/s13063-018-3091-8
ISSN: 1745-6215
Pure ID: 68253363
Funding Information: The authors would like to thank the National Breast Cancer Foundation and their generous donors for support of our research programme, as it is through these philanthropic donations that our research trial has been launched. The authors would also like to thank Dr Kirk Feindel (Centre for Microscopy, Characterisation and Analysis; University of Western Australia), Mr Joey Chau (InSight Clinical Imaging), Mr Kyle Smith and Ms Audrey Cox (Vario Health Clinic; Edith Cowan University), Miss Thea Richardson (Australian Prostate Cancer Research Centre), Mrs Claire Mason, Miss Olivia Pisconeri and Miss Cailyn Rogers (Exercise Medicine Research Institute; Edith Cowan University) for their contribution. Most importantly, the authors would like to thank Mrs Annie McKinnon (Breast Cancer Consumer Representative) for her dedicated and passionate contribution to breast cancer research and this study protocol, and Mrs Margaret Wilson for her excellent demonstration of selected floor-based isometric exercises in Additional file 3. This project is funded by the National Breast Cancer Foundation of Australia. The National Breast Cancer Foundation is national charity organisation committed to improving health outcomes for women and men living with breast cancer. NHH is supported by a Cancer Council of Western Australia Postdoctoral Research Fellowship. SKC is supported by an Australian Research Council Professorial Future Fellowship. DRT is supported by a Professorial Research Fellowship at Edith Cowan University. ADR is supported by a Cancer Council of Western Australia Clinician Research Fellowship.
Copyright Owner: The Author(s) 2018
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 17 Sep 2020 23:37
Last Modified: 30 Mar 2024 20:03