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A Probabilistic based UAV Mission Planning and Navigation for
Planetary Exploration

Julian Galvez Serna, Felipe Gonzalez, Fernando Vanegas and David Flannery

Abstract— The use of Unmanned Aerial Vehicles (UAVs) for
Search And Rescue (SAR), powerlines, air quality and other
applications is increasing. Their use has also been considered
for planetary exploration (e.g. Mars, Titan). One exciting de-
velopment in UAVs is a test planned by NASA of an unmanned
helicopter in the atmosphere of Mars; this aims to establish
a new dimension and direction for the planetary exploration
field. Future missions will require advanced navigation tools
supporting mission planning. The autonomy of UAVs systems
will continue to grow for Earth applications supported by
mathematical tools, models and formulations that help the
UAV to deal with critical aspects of the mission. Planetary
exploration is challenging and is influenced by different levels
of uncertainty in UAV localization and the environment itself.
Probabilistic navigation allows planning with uncertainty. This
paper presents a high-level mission planning and navigation
architecture for planetary exploration based on Partially Ob-
servable Markov Decision Process (POMDP). We focus on
planetary exploration missions for biosignature detection. The
paper presents a mission planning architecture and describes
the results of a POMDP-based navigation and target finding
module emulating biosignatures with ArUco markers in a Mars
simulated environment.

I. INTRODUCTION

UAVs for Earth exploration and monitoring is an active
field of research; some examples include the monitoring
of wildlife, reefs, air quality and weeds [1], [2], [3], [4].
Missions to inspect and collect data using UAVs on other
planets and moons (e.g. Mars and Titan) have also been
proposed [5], [6]. The helicopter experiment that will fly
on the Mars 2020 rover is intended to verify some of the
challenges and limitations of UAVs as platforms for plane-
tary exploration [5]. UAV platforms can provide additional
capabilities in terms of resolution and range. Once UAVs
demonstrate a capacity to fly, navigate and follow essential
commands in other planetary environments, development is
likely to focus on autonomous mission planning and new
capabilities enabled by increases in the computational power
and sensors available. Literature on UAV mission planning
on Earth is rapidly growing [7], [8], [9], [10]. UAV missions
in remote and isolated areas on Earth, such as deserts in
the USA, Africa, Western Australia, and Antarctica [11]
allows testing of autonomous capabilities before missions are
sent to deep-space locations [12], [13]. In general, the main
objectives of a planetary exploration mission with UAVs
on Mars are different to those that take place on Earth.
On Earth, missions often focus on resource exploration and
monitoring applications [1], [4], [2]. One of the objectives for
Mars is to use UAVs to assist scientists in the detection of
astrobiologically-significant features, such as biosignatures

and habitable palaeoenvironments, as well as resources that
may be available for future crewed missions [14].

Detecting biosignatures on Mars using UAVs requires
a sensor and a model to classify the surface from aerial
images. Chan et al, [15] prosed probability maps created
by observing exposed biosignatures as heat map builds with
morphology data, polygonal contours and mineralogy. The
morphology is taken from satellite images, using instruments
such as the High-Resolution Imaging Science Experiment
(HiRISE) on the Mars Reconnaissance Orbiter (MRO).
Polygonal contours are derived from image processing and
mineralogy from the MRO Compact Reconnaissance Imag-
ing Spectrometer for Mars (CRISM). Once probable places
to find exposed biosignatures are found, one possible next
step is to conduct a close inspection with a rover or a UAV
in order to capture detailed images.

Planetary exploration is regulated by different levels of
uncertainty in UAV localization and the environment itself.
Probabilistic navigation allows planning with uncertainty.
This paper introduces a probabilistic UAV mission planning
and execution architecture for biosignature detection that
applies to both missions on Earth and Mars. The design of
a UAV for planetary exploration needs to include several
constraints and careful mission planning, which may also
benefit applications on Earth.

This paper is organized as follows: Section II presents
the mission formulation, goals, steps and assumptions taken.
Section III exposes the software and hardware architecture
proposed. Section IV formally describes the POMDP formu-
lation to deal with the proposed mission. Section V presents
the simulation environment under development. Section VI
describes a POMDP formulation for a navigation and target
finding problem in the framework implemented, followed by
Section VII that shows the results of the navigation module in
a Mars simulated environment. Finally, Section VIII presents
conclusions and future work.

II. MISSION FORMULATION

Figure 1 illustrates a possible UAV mission including 1)
Landed, 2) Take-off and hovering, 3) Exploring, which con-
sists of collecting data in the horizontal plane, 4) Inspecting,
which consists of flight and collecting data in the vertical
plane 5) Landing procedure and 6) The possible undesirable
crashed status. On Earth, the decision of what state is the
next is determined by the pilot’s skills or the software used
to plan the mission. In most cases, the pilot or software
makes a decision based on battery levels and environmental
conditions. In the exploration of remote places, there is no



option to let the pilot decide what action is better to pursue.
Rapid decisions are fundamental and must take into account
the current and projected UAV state based on the sensors; to
avoid an undesirable crashed status.

Fig. 1. UAV mission statuses are: 1) Landed, 2) Hovering, 3) Exploration
in the horizontal plane, 4) Inspection in the vertical plane, 5) Landing, 6)
Crashed. This diagram represents the UAV as a circle (body of the UAV)
connected to a double T (the coaxial rotor). ∆ = downward-facing camera.
Green inside the UAV’s body indicates a safe status and red an undesirable
status.

This paper focuses on an autonomous mission planning
formulation to maximise the exploration and inspection tasks.
The software for target detection will be treated as a module
to be developed in future work. The number of flights and
flight time are essential aspects of mission planning. It is
also crucial to consider the risk associated with take-off and
landing, the battery available, the wind conditions, temper-
ature and the power consumption of the different modules.
In order to obtain valuable information, it is desirable to
collect the right amount of data, analyse it and return it to
the scientific team, without a human in the loop. Valuable
data collection is a trade-off between the limitations of the
UAV in terms of time spent collecting data, the number of
detailed inspections and selecting places with a high chance
of featuring a target of interest.

This work is not focused on the challenges in aerody-
namic effects on the platform. The mission planning assumes
parameters such as pressure, gravity and hardware related
to the flight dynamics. Nevertheless, a Partially Observable
Markov Decision Process (POMDP) is used as it allows us
to model and incorporate different variables on the problem
formulation. These include power consumption of the UAV
and environmental conditions such as temperature, wind and
sunlight available for charging.

III. SOFTWARE ARCHITECTURE

Figure 2 presents the software and hardware architecture.
There are eight modules grouped into three main blocks;
the Integrity, Consistency and Mission planning blocks. The
Integrity block contains modules that represent the health
of the system and the UAV hardware constraints presented
in Figure 3. The Consistency block includes the navigation
status and an estimation of the proximity of the UAV to
safe landing places. Finally, the Mission Planning block

covers the modules for POMDP mission planning, mission
execution, data processing (e.g. biosignature detection), and
reporting. The eight modules are:

A. Mission Planning Module

This module is the main focus of this paper; its primary
goal is to define the policy or set of actions to be executed
in order to maximise the mission goals. In this paper, we use
a POMDP approach as will be described in section IV.

B. Mission Context and Report Module (MCR)

In a real mission, it is very important to send and receive
information to the scientific team via ground station. The
primary function of the MCR module is to collect the outputs
from modules A, C and D, format the data and send it to
a ground station. In an implemented scenario, this module
can change the definition of the other modules, adjusting
parameters and initial conditions. However, in this paper, this
module is represented only by initial conditions of states.

C. Mission Execution Module (MiEx)

Once a set of actions are defined, the actions need a
module to activate them. The MiEx module takes areas and
coordinates to explore, inspect or land as input from the
biosignature detection module; these instructions are used
to order the navigation module where to go. Furthermore,
it keeps track of the cost of each action, estimating time,
battery and risk for each action, and reports it to the MCR
module. The mission planning module sees the MiEx module
output as a metric that measures navigation uncertainty for
the Consistency block.

D. Biosignature Detection Module (BiDe)

The primary purpose of this module is to detect a possible
target (e.g. biosignature) and provide information ragarding
possible places to explore or inspect. In this paper, we illus-
trate the concept by taking the images from a payload sensor
(RGB camera) and the (x,y,z) coordinates of the UAV as in-
put. BiDe gives two-dimensional heatmaps arrays as outputs.
The array considers values for a) Dangerous areas to avoid
(for landing and flying over), b) Places already explored, c)
New places to explore and d) Unknown/undefined places.
The BiDe also outputs, a list of inspections instructions,
including coordinates and angles at which the images need
to be taken.

E. Health Monitor Module (HeMo)

This module mainly focuses on the monitoring of hard-
ware health, checking battery voltage, and the response by
the sensors after an action is taken. For illustration purposes,
this module uses a single discrete variable H = [0-10]. This
value can be determined based on sensor measurements (e.g.
battery voltage) and models [16].



Fig. 2. Proposed software and hardware arquitecture

F. Hardware Restrictions Module (HaRMo)

The restrictions for the hardware include the UAV pa-
rameters and environmental variables. The most influential
environment variables for the UAV include temperature, solar
radiation and wind conditions as presented in Figure 3.

Figure 3 illustrates the mission planning constraints and
the dependence connection with the environment and the
hardware of the UAV.

Fig. 3. Hardware restrictions identified, to be included in the mission
planning module

Extreme environment temperatures require the UAV to
spend its energy to keep the system inside operational
conditions. The input energy or solar radiation constrains
the amount of energy the UAV can collect. However, solar
is used in this paper, given that it will be the method used by
the Mars Helicopter [5]. Wind strength and direction have a
direct effect of the actions that the UAV has to execute in
order to keep the navigation module working. These variables
have an impact on battery energy. A way to deal with these
variables consists of generating a model that estimates a
curve over time interpolated with sensor measurements that
forecast future temperature, irradiance and wind values. With

these forecast curves, the module can estimate the amount of
time and energy required to conduct charge, keep the system
warm and operational for the current or next flight. A value
between 0 and 10 is used in this paper as an example. If the
hardware is restricted to flight we use 0, and we use 10 if
there are no restrictions.

G. Landing Detection module (LaDe)

One of the most critical parts of the mission is the landing.
Detailed conditions must be satisfied by the landing surface
to reduce the risk of a crash. This module, which is part
of the consistency block, uses a downward-facing camera
to detect the percentage of suitable landing surface below
the UAV. Several possible landing approaches have been
proposed [17]. One possible approach is to use segmentation
methods [18], allowing the UAV to estimate how safe it is
to fly or land over a particular area. For illustrative purposes
in this paper, a percentage of surface suitable for landing is
mapped to a value between 0 and 10 to be used and averaged
with the other modules in the Consistency block.

H. Navigation Module (NavMo)

The Navigation module contains all the tools and functions
to navigate, locate and execute the actions generated by
the mission planning module as instructed by the mission
execution module. This module takes as input the target coor-
dinates and the UAV initial location in (x,y,z) and generates
actions to the flight controller to control the movement of
the UAV. In this paper the module generates an output value
between 0 and 10 associated with the uncertainty in the
navigation, in which 0 is high uncertainty in the position and
actions and 10 means the navigation is working optimally,
locating and taking the actions as expected.



IV. POMDP PROBLEM FORMULATION

In this paper, we use a probabilistic based POMDP mission
and navigation planner [19]. The main goal of the POMDP
formulation is to reduce the risk of the mission, whilst in-
creasing the area being explored and inspected and the value
of the data collected. Additionally, the UAV must be aware
and monitor the environmental and hardware constraints,
keeping safe operational ranges and allowing enough power
to keep all systems working. Formally a POMDP is defined
by a tuple (S,A,O,T,Z,R,γ). S represents the set of states
in the environment; A is the set of actions, O is the set of
observations; T is the transition function, Z is the distribution
function describing the probability of observing o from state
s after taking action a; R stands for the set of rewards for
every state, and γ is a discount factor.

A. State Variables (S)

We consider each state of the UAV as the tuple (St, I,C),
the St variable refer to the status of the mission (Figure
1), we use a discrete number between 1 and 6 as follows:
(St = 1) Landed status, (St = 2) Hovering, (St = 3) Exploring
or move horizontal, (St = 4) Inspecting or move vertical,
(St = 5) Landing and (St = 6) the undesirable status crashed.
Moreover, Integrity (I) and Consistency (C) variables express
the average of the outputs of the modules within the Integrity
and Consistency block, respectively. On landed status (St =
1), the risk associated is low. However, spending a long time
on this status without executing a mission is not desirable
from the point of view that the UAV is not exploring or
inspecting. Nevertheless, it may be have to remain in this
status while changing batteries, process the data collected
or during part of the data uploading to the ground control
station.

B. Actions (A)

The following actions are proposed; however, the frame-
work allows new variables to be included. The actions of the
problem proposed include:

1) Stay On the Ground (A1): This can be executed just
from the landed status, there is no risk associated with this
action. This action emulates the charging, processing and an
idle task.

2) Take-off (A2): This action involves moving the UAV to
a safe altitude before the exploration or inspection.

3) Hover (A3): This action works as a transition between
statuses, including exploring, inspecting, Hovering and be-
fore the UAV landing.

4) Horizontal search / Exploration (A4): This action
changes the status to exploring (St = 3), in which the UAV
is moving between waypoints above the surface, collecting
images.

5) Vertical descend / Inspection (A5): This action sets the
status to inspecting (St = 4), in which the UAV descends to
the surface to collects data with high resolution.

6) Land (A6): This action finishes a flight, changing from
one of the previous flight statuses (St = 2,3,4) to the landed
status (St = 1).

C. Observations (O)
The observations for the POMDP formulation is composed

of: (1) the status probability; (2) the integrity value obtained
from the Integrity block; and (3) the consistency value
calculated by the Consistency block.

D. Transition Function (Tr)
The transition function (Tr) between the states and the ac-

tions are showed in Figure 4. The actions and the transitions
they trigger contain a probability for each related state and
action. The landed and crashed status are presented in green
and red, respectively. The probability of transfer to other
states, especially to states with crashed status is conditioned
by the I and C values of States. A formula P(S6|A,S) will
depend on the I and C value as 1− (I/10 ∗C/10), this
indicates that as soon as the Integrity (Health and Hardware
Restrictions) or Consistency (Landing options and navigation
certainty) go down, the probability of end in crashed status
is higher.

Fig. 4. Transition function representation, in which the circles represent
the states, composed by the St, I and C variables. The representation is
grouped by the discrete variable status St. The arrows indicate a possible
transition after taking an action A. for simplicity and readability, not all
possible actions or transitions are present. The green and red color are
related to the status landed St=1 and crashed St=6 respectively.

E. Reward Function (R)
Table I lists two possible options for the reward function.

Option 1 uses smaller positive and negative rewards where
the trade-off between a crashed and inspecting is small.
Option 2 uses a two-order of magnitude penalty for crashed.
The reward function is strongly related to the states status
in this formulation. It is also important to note the intention
to maximise the mission time spent inspecting or exploring,
and address the negative reward of executing a mission in
terms of take-off, hovering and landing, thus avoiding short
and risky missions.

F. Uncertainty
The primary source of uncertainty comes from the en-

vironment, through the hardware restriction module, in the
form of the sun, temperature and wind. The other source is
within the navigation module for the UAV localization given
the dynamic response of the controllers. The uncertainty is
updated in the ”observation” and the ”transition” functions.



TABLE I
REWARD FUNCTIONS PROPOSED

State status Reward Option 1 Reward Option 2
Landed 1 -1

Hovering -1 -5
Exploring 5 5
Inspecting 10 10
Landing -5 -10
Crashed -10 -1000

V. SIMULATION ENVIRONMENT

The framework uses tools such as ROS, Gazebo, Octomap,
Rviz and PX4, a Software In The Loop (SITL) for UAV
control. This framework is based on the framework for
UAV navigation and exploration in GPS-denied environments
proposed by Vanegas et al [20].

A simulation of the Mars environment surface is consid-
ered for the initial framework. This simulated environment
contains a Digital Elevation Model (DEM) of MARS around
the landing place of the Curiosity rover in Gale Crater as
presented in Figure 5.

Fig. 5. Current simulation environment, in RViz and Gazebo, in red a
point cloud of an inspection target is present, in white, a point cloud of the
position of the UAV obtained from the navigation module. A Mars Curiosity
rover is used as a surface reference and future ground control.

The Digital Elevation Models were obtained from The
Mars Trek Website [21]. This website offers different types
of data for Mars, including surface images and elevation
models. The elevation models can be downloaded as STL
files for 3D printing purposes. It is also possible to generate
a Mars surface compatible with Gazebo simulation. The

transformation of the STL files into an Octomap and Gazebo
simulator files was achieved using Binvox [22], Viewvox,
Binvox2bt and Blender.

Fig. 6. Images of the Curiosity rover path over Mars over about 2000
SOLs or Martian days (around 37 minutes longer than Earth day). Mars
Trek website from NASA [21].

VI. POMDP MODEL FOR NAVIGATION
The current POMDP implementation starts with a POMDP

formulation for the UAV navigation module. A Mars DEM
is included. Gravity and flight dynamics are out of this
paper scope, given the intention to develop a framework
independent of the environment and the platform.

The Framework includes the following POMDP formula-
tion for navigation and target finding, based on Vanegas et
al [19], [20] :

1) State variables (S): The states for the lower-level
aspects of the UAV navigation module, used when the UAV
is in status 2, 3 and 4 are composed of the UAV position and
heading angle (xu,yu,zu,Ψu), the forward and lateral velocity
(ẋu, ẏu) and the target’s position (xt ,yt ,zt ).

2) Actions (A): There are six actions: hover, move for-
ward, turn left, turn right, move up and move down. These
actions describe set-points (forward velocity, lateral velocity
and altitude) for the UAV motion controller.

3) Observations (O): The observation contains two
sources of position estimation one from internal sensors
including IMU, compass and barometric pressure. The other
source consists of a landmark detection system for the target
location if the downward-looking camera detects it.

4) Transition function (T): This function relates the
UAV dynamic and kinematic response to motion commands
adding uncertainty using a normal distribution representing
the deviation and drift in the position between the actions
executed.

5) Reward function (R): The reward function is chosen to
motivate the exploration of new spaces (+15), avoid collision
with obstacles (-70), avoid flight outside the operating air-
space (-70) and penalise the energy cost per time step (-10).
The reward for finding the target is 500, and the discount
factor γ has a value of 0.97. These values were selected based
on experimental results on a large number of simulations (≈
500)

6) Uncertanty: The uncertainty in the motion of the
UAV comes from the dynamics of the system, and the
controller response to the setpoint requested. This uncertainty
is modeled as a Gaussian deviation.



VII. SIMULATION RESULTS UAV NAVIGATION

Two tests were conducted for two different targets; each
test contains twenty runs of the POMDP model in the
simulation environment with the DEM of Mars, as presented
in Figure 5. A simple ArUco marker is used for illustrative
purposes in replacement of the biosignature target. On this
simulation, the Navigation module controls the UAV from its
initial position to find the biosignature target over the surface.
The averaged results are presented in table II. Is notable the
decrease in the success rate to detect the target when it is
located behind the UAV; this target location requires a longer
rotation which increases the drift.

TABLE II
RESULTS OF NAVIGATION TESTS IN MARS SIMULATED ENVIRONMENT

Value Test 1 Test 2
Target Location (xt ,yt ,zt ) (5, 5, 0) (-5, -5, 0)
Flight time to target (s) 28.1 28.3

Total reward 348.05 355.08
Success rate (Target detection) 95% 70%

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents a high-level probabilistic mission
planning model, and a low-level UAV navigation module
using a POMDP formulation. A number of assumptions in
the environment, hardware models and the mission planning
modules were necessary to focus and consolidate a high-level
mission planning. Initial results show that the POMDP mod-
ule for navigation can accomplish a short survey mission,
detecting the target effectively, but adjustments are required
to cover target findings in all surroundings of the UAV.
Ongoing work focuses on introducing more complete models
of the mission constraints to make more robust estimation
and execution of the Consistency and Integrity blocks and the
modules on them. Crucial elements to deal with during the
mission are the computation load of gathered data analysis,
and environmental restrictions which constrain the UAV
mission and navigation. The POMDP problem formulation
proposed needs a full integration. The current framework
covers navigation and exploration. Once the implementation
reaches a functional level, parameters such as the reward,
transition and observation function, and the models used to
estimate the integrity and consistency of each state of the
UAV cen be enhanced based on statistical comparisons.
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