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Neural Memory Networks for Seizure Type Classification

David Ahmedt-Aristizabal1,2, Tharindu Fernando2, Simon Denman2, Lars Petersson1, Matthew J. Aburn3, Clinton Fookes 
2

Abstract— Classification of seizure type is a key step in
the clinical process for evaluating an individual who presents
with seizures. It determines the course of clinical diagnosis
and treatment, and its impact stretches beyond the clinical
domain to epilepsy research and the development of novel
therapies. Automated identification of seizure type may facili-
tate understanding of the disease, and seizure detection and
prediction have been the focus of recent research that has
sought to exploit the benefits of machine learning and deep
learning architectures. Nevertheless, there is not yet a definitive
solution for automating the classification of seizure type, a task
that must currently be performed by an expert epileptologist.
Inspired by recent advances in neural memory networks
(NMNs), we introduce a novel approach for the classification
of seizure type using electrophysiological data. We first explore
the performance of traditional deep learning techniques which
use convolutional and recurrent neural networks, and enhance
these architectures by using external memory modules with
trainable neural plasticity. We show that our model achieves
a state-of-the-art weighted F1 score of 0.945 for seizure type
classification on the TUH EEG Seizure Corpus with the IBM
TUSZ preprocessed data. This work highlights the potential
of neural memory networks to support the field of epilepsy
research, along with biomedical research and signal analysis
more broadly.

I. INTRODUCTION

Epilepsy is one of the most prevalent neurological con-
ditions and people with epilepsy have recurrent seizures.
Separating individual seizures into different types helps guide
antiepileptic therapies [1]. Classification of seizures serves
many purposes. It is informative of the potential triggers
for a patient’s seizures, the risks of comorbidities including
intellectual disability, learning difficulties, mortality risk such
as sudden unexpected death from epilepsy, and psychiatric
features such as autism spectrum disorder [1].

Together with observation of clinical signs, electroen-
cephalography (EEG) plays a major role in seizure type
evaluation and automating this process can support clinical
evaluation. Recent advances in artificial intelligence and deep
learning have demonstrated high success in other healthcare
applications using brain signals [2]. However, application
of these architectures within neuroscience and specifically
to the processing of EEG recordings for epilepsy research,
have been limited to date [3], [4]. Current deep learning
approaches have mostly focused on the goals of seizure
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detection [5], [6] and seizure onset prediction [7]; and
deep convolutional neural networks (CNN) and recurrent
neural networks (RNN) have been the most common archi-
tectures proposed to capture patterns during seizures [8]–
[10]. Nevertheless, the automated capability to discriminate
among seizure types (e.g. focal or generalized seizures)
is a challenging and largely underdeveloped field due to
both a lack of datasets and the highly complex nature of
the task. A significant public data resource, the TUH EEG
Corpus [11], has recently become available for epilepsy
research, creating a unique opportunity to evaluate deep
learning techniques. To date, a limited set of methods have
been applied to this challenging corpus in full for the task of
seizure classification [12]–[14], although some researchers
have used a small number of data sample from selected
seizure types as input for their models [15]–[17].

Motivated by the tremendous success of neural memory
networks to precisely store and retrieve relevant informa-
tion [18]–[20], we propose a novel approach based on long-
term memory modules to identify and exploit relationships
across the entire EEG data set for seizure events. We capture
the variability, both intrasubject (seizures of the same patient)
and intersubject (seizures across patients), for each epilepsy
type in this long-term relationship. One of the main limita-
tions of using traditional recurrent neural networks such as
Long Short Term Memory (LSTM) [21] or Gated Recurrent
Unit (GRU) [22] layers with seizure recordings is that they
focus more on the recent history and previous memories are
lost after updates [23], i.e. they consider dependencies only
within a given input sequence. To address this limitation, we
need to extract and store events over time, and this is possible
with an external memory bank. In this scenario, a framework
with an external memory should also learn when to store an
event, as well as when to recall it for use in the future [20].
With the help of the external memory, the network no longer
needs to squeeze all useful past information into the state
variable (the cell state that saves information from the past)
of the LSTM or GRU. We also adopt the concept of synaptic
plasticity, which emulates the biological process of the same
name to enable efficient lifelong learning, and to enhance
the attention based knowledge retrieval mechanisms used in
memory networks [24]. The plastic neural memory exploits
both static and dynamic connection weights in the memory
read, write and output generation procedures (i.e. a connec-
tion between any two neurons has both a fixed component
and a plastic component) [25].

In this research, we perform cross-patient seizure type
classification, with an application of supporting the analysis
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of scalp EEG seizure recordings where epileptologists are not
available. We first explore the feasibility of adapting deep
learning algorithms that have shown promising results for
seizure detection for the specific evaluation of seizure type
classification. Then, we introduce our framework based on
memory networks and trainable neural plasticity [24], which
is a mechanism for knowledge discovery, i.e. a dynamic
strategy to read and write relevant information to capture
temporal relationships. We expand on the work introduced
for anomaly detection [25] to demonstrate the potential of
our architecture for the complex task of multi-class classifi-
cation of seizures, and compare the results with previously
published baseline methods.

Our technical contributions are summarized as follows:
1) This study presents baseline results that compare sev-

eral traditional deep learning algorithms proposed for
seizure detection optimised and evaluated for the task
of classifying seizure types.

2) We propose a robust approach based on neural memory
networks which outperforms state-of-the-art methods
for seizure type classification on the TUH EEG Seizure
corpus [11].

3) We introduce the first application of memory modules,
which are capable of mapping long-term relationships,
to the field of epilepsy research and demonstrate how
they can provide a clear separation between classes
using the extracted memory embeddings.

II. MATERIALS AND METHODS

In this paper, we propose a neural memory network
(NMN), which facilitates trainable neural plasticity for robust
classification of seizure types. We compare and explore
the difference between traditional deep learning techniques
such as recurrent convolutional neural networks (RCNN) and
our proposed framework using an external memory module.
Traditional deep learning techniques exploit short spatio-
temporal relationships to model sequential data. Memory
modules, on the other hand, act as a large knowledge-
store, and instead of making decisions based on the current
observation (input data sample), map long-term relationships
across all seizure recordings. A typical memory module [26]
consists of a memory stack for information storage, a read
controller to query the knowledge stored in the memory, an
update controller to update the memory with new knowledge,
and an output controller which controls what results are
passed out from the memory. An abstract view of these
components and their interaction with the specific application
of seizure classification is given in Fig. 1. We compare
the proposed approach with baseline algorithms for seizure
detection [6], [9], [10], [27]–[31] and classification [12]–
[14], and train all methods using supervised learning for
direct comparison.

A. Seizure Dataset

We use the world’s largest publicly available database
of seizure recordings, the Temple University Hospital EEG
(TUH EEG) [11] database. We focus on the subset, the TUH

EEG Seizure Corpus (TUSZ, v1.4.0), which was developed
to motivate research on seizure detection. Recordings were
sampled at 250Hz and contain the standard channels of a 10-
20 configuration. The seizure corpus contains 2012 seizures
with different lengths and eight types of seizure. Some
seizures of the same patient are categorised with different
seizure types. Seizure recordings were annotated based on
the following manifestations: electrographic, electroclinical,
and clinical. For seizure type classification experiments,
we exclude only myoclonic seizures because of the small
number of seizures recorded (three seizure events). The
seven types of seizure selected for analysis are Focal Non-
Specific Seizure (FNSZ), Generalized Non-Specific Seizure
(GNSZ), Simple Partial Seizure (SPSZ), Complex Partial
Seizure (CPSZ), Absence Seizure (ABSZ), Tonic Seizure
(TNSZ), and Tonic Clonic Seizure (TCSZ). The data for one
seizure event consists of only the interval that contained a
seizure based on the labeling reported in [11]. One class is
defined as the combination of all seizure recordings across
sessions and patients for the same seizure type. Although we
are considering here seven classes of seizure labeled in the
corpus based on neurologists’ reports as described in [11], we
note that these are not clinically disjoint classes. Clinically
SPSZ and CPSZ are more specific subclasses of FNSZ while
ABSZ, TNSZ, and TCSZ are more specific subclasses of
GNSZ. Thus, in cases where there was insufficient evidence
to classify the type of seizure more finely, the corpus
categorises the seizure event as the more general class of
FNSZ or GNSZ depending on how and where it began in
the brain.

For comparison with baselines methods, we adopt the
preprocessed version of TUSZ known as the IBM TUSZ
pre-processed data (v1.0.0, method #1) [12]. This work used
the temporal central parasagittal montage (TCP) [32] of 20
selected pair channels as the input. In this preprocessing
method, the authors applied fast fourier transform (FFT) to
each fixed-length window Wl (Wl = 1 second and fmax = 24
frequency bands) with O seconds overlap (0.75Wl) across
all EEG recording channels, as is illustrated in Fig. 1.
The transformed data of all channels in one time window
constitutes one data sample. Thus the task here is to perform
classification based on 1 second of EEG data. The number
of data sample per seizure type corresponds to the total
number of windows all seizures across all patients. The
input shape representation to train and test the model to
classify seizure types is defined by [#data sample, #channels,
#frequency bands]. We adopt this input data to compare the
performance of our framework with baseline results using
traditional machine learning and deep learning techniques.
Table I summarises the total number of seizures, patients
and data samples available for each seizure type.

B. Traditional deep learning methods and baseline models

Deep learning has revolutionised many medical applica-
tions and with the increasing availability of EEG datasets,
these algorithms have been applied to quantify information
regarding seizures [3], [33]. We aim to adapt well-known
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Fig. 1. Overview of the framework proposed for classifying seizure types using sequential and neural memory networks. 1. We use the TUH EEG Seizure
Corpus which contains scalp EEG data from seizure recordings and a pre-processing strategy based on the fast Fourier transform. 2. We map each data
sample with 2 stacked LSTMs as input to the memory model. 3. External memory model: The state of the memory at time instant t− 1 is Mt−1. The
input controller receives the encoded hidden states xt and determines what facts within the input data to use to query the memory qt . An attention score
vector zt is used to quantify the similarity between the content stored in each slot of Mt−1 and the query vector qt to generate the input to the output
controller. The output controller regulates what results from the memory stack (ct ) are passed out to the memory module for the current state (mt ). The
update controller updates the memory state based on the output of the memory module and propagates it to the next time step. These controllers utilise
a combination of fixed weights and plastic components. 4. The output of the memory model is fed to a dense layer with a soft-max activation to predict
each seizure type.

TABLE I
TOTAL COUNT FOR SEIZURES AND PATIENTS PER SEIZURE TYPE.

Seizure Type Seizures Patients Data sample

1. Focal Non-specific Seizure (FNSZ) 992 108 292,725
2. Generalized Non-Specific Seizure (GNSZ) 415 44 137,033
3. Simple Partial Seizure (SPSZ) 44 2 6,028
4. Complex Partial Seizure (CPSZ) 342 34 132,200
5. Absence Seizure (ABSZ) 99 12 3,087
6. Tonic Seizure (TNSZ) 67 2 4,888
7. Tonic Clonic Seizure (TCSZ) 50 11 22,524

classical deep learning structures from related domains and
evaluate them for the specific task of seizure type classifica-
tion. While the objective of seizure detection is to classify
the input data into two classes (a seizure class and a non-
seizure class), seizure type classification aims to identify
different types of epileptic seizures; i.e. it is a multi-class
classification task. As such, methods initially proposed for
seizure detection can be applied to the task of seizure type
classification.

As it is not possible to consider all existing methods for
seizure detection and classification in our study, we adopt
only the most significant approaches based on their overall
precision; the compatibility of their input data (e.g. pre-
processing, image-based EEG) with the IBM TUSZ pre-
processed data [12], and level of documentation provided by
the original authors to ensure full and correct reproducibility
of each model.

1) Techniques adapted from the seizure detection domain:
The following methods are adapted to the task of seizure
classification and are evaluated in this paper:

• Stacked auto-encoders (SAE): SAE are an unsupervised
learning technique composed of multiple sparse autoen-
coders [34]. They consist of two parts, an encoder and
a decoder. The encoder is used to map the input data
to a hidden representation, and the decoder is used to
reconstruct input data from the hidden representation.
SAE based approaches have been used by [27], [35].

• Convolutional neural networks (CNNs): A CNN con-
sists of multiple stacked layers of different types: con-
volutional layers, nonlinear layers, and pooling layers,
followed by fully connected layers. CNNs exploit spatial
locality by enforcing local connectivity and parameter
sharing [36]. The purpose of pooling is to achieve

invariance to small local distortions and reduce the
dimensionality of the feature space [36]. The differences
in the architecture of various proposed CNNs is due to
the number of layers included in the framework, and
layer parameters. Some methods fine-tune a well-known
architecture such as VGG, ResNet, while other design
their own deep or shallow network. Methods including
[28]–[30], [37]–[40] are examples of this approach.

• Recurrent neural networks (RNNs): RNNs introduce the
notion of time into a deep learning model by including
recurrent edges that span adjacent time steps [41]. RNNs
are termed recurrent as they perform the same task for
every element of a sequence, with the output being
dependant on the previous computations. LSTMs [21]
were proposed to provide more flexibility to RNNs by
employing an external memory, termed the cell state to
deal with the vanishing gradient problem. Three logic
gates are also introduced to adjust this external memory
and internal memory. GRUs [22] are a variant of LSTMs
which combine the forget and input gates making the
model simpler. RNNs are used by [6], [31].

• Hybrid networks: Hybrid or cascaded networks such
as recurrent convolutional neural networks (RCNN)
are used to better exploit variable-length sequential
data [42], to extract spatio-temporal features and clas-
sify through an end-to-end deep learning model [43].
RCNN denotes a number of convolution layers followed
by stacked recurrent units (LSTMs or GRUs). Such
methods have been proposed in [9], [10], [32].

Given the dynamic nature of EEG data, RCNNs appear to
be a reasonable choice for modeling the temporal evolution
of brain activity. Therefore, we have designed a shallow
RCNN based on architectures used for seizure detection
with video recordings as an input [33], [44]. We aim
to demonstrate that shallow architectures are capable of
reaching similar results to more complex traditional deep
learning models. Through extensive experiments, the design
of the network architecture that shows the best performance
consists of a) CNN: two convolutional layers (32 kernels of
size 3× 3) stacked together followed by one max-pooling
layer (size 2× 2) and a fully-connected layer (512 nodes);
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b) LSTM: two LSTM layers each with 128 cells followed by
a densely connected layer with a softmax activation layer.

2) Baseline methods for seizure type classification: The
following methods are compared directly with the proposed
approach:
• Traditional machine learning techniques: K-Nearest

Neighbors, SGD, XGBoost, and AdaBoost classifiers
were proposed in [12].

• Traditional CNNs: a residual network ResNet50 was
retrained to perform classification in [12]. Three pre-
trained models, AlexNet, VGG16 and VGG19, were
used in [14] to solve the classification problem. How-
ever, an additional class of non-seizure events was
included in this publication.

• SeizureNet [13]: the authors proposed two sub-
networks, a deep convolutional network (multiple bot-
tleneck convolutions interconnected through dense con-
nections) and a classification network.

C. Neural memory networks and neural plasticity

The design of the network architecture for the task of
seizure type classification from EEG recordings is displayed
in Fig. 1. This approach aims to update the external mem-
ory model (a memory stack for information storage) with
new information from each data sample, and as such the
memory learns to store distinctive characteristics from each
seizure type across patients. First, for modelling short-term
relationships within the data sample we use LSTMs. To
extract the relevant attributes through long-term dependen-
cies (across seizures and patients), we employ the proposed
neural memory architecture. The seizure classification output
is generated using a dense layer with softmax classification.

The neural memory architecture is composed of a memory
stack M, with l memory slots each with an embedding size
k (M ∈ Rl×k), and its respective input, output and update
controllers. Each of these controllers is composed of an
LSTM cell following [18], [20]. The input controller passes
the encoded hidden state from the stacked LSTMs, xt , at time
instant t and generates a vector, qt , to retrieve the salient
information from the stored knowledge in the memory. We
generate an attention score vector zt to quantify the similarity
between qt and the content of each slot of Mt−1. Then, the
output controller can retrieve the memory output, mt , for the
current state. We pass this resultant embedding through an
update controller to generate an updated vector m

′
t , which

is used to update the memory and propagate it to the next
time step. We update the content of each memory slot based
on the informativeness reflected in the score vector [25]. We
define the input, output and update operations such that,

qt = f LSTM
input (xt), (1)

zt = softmax(qT
t Mt−1), (2)

mt = zT
t Mt−1, (3)

m
′
t = f LSTM

update (mt), (4)

Mt = Mt−1(A− (zt ⊗ ek)
T )+(m

′
t ⊗ ep)(zt ⊗ ek)

T , (5)

where A is a matrix of ones, ep ∈ Rp and ek ∈ Rk are
vectors of ones and ⊗ denotes the outer vector product which
duplicates its left vector p or k times to form a matrix.
Ideally, we expect that the memory output mt should capture
salient information from both the input and stored history
that can be used to estimate each type of seizure.

Inspired by the success of [24] in demonstrating how
neural plasticity can be optimized by gradient descent in
recurrent networks, we adopt neural plasticity to enhance
the memory access mechanisms in the memory model.
To perform the injection of plasticity for memory compo-
nents, we adopt the formulation of the Hebbian rule for its
flexibility and simplicity (“neurons that fire together, wire
together”) [24]. We define a fixed component (a traditional
connection weight w) and a plastic component for each pair
of neurons i and j, where the plastic component is stored in
a Hebbian trace Hebb, which evolves over time based on the
inputs and outputs. The Hebbian trace is simply an average
of the product of pre- and post-synaptic activity. Thus, the
network equation for the output xt of neuron j are:

x j
t = tanh( ∑

i∈inputs
[wi, jxi

t−1 +α
i, jHebbi, j

t xi
t−1]), (6)

Hebbi, j
t+1 = Hebbi, j

t ηx j
t (x

i
t−1− x j

t Hebbi, j
t ), (7)

Here α controls the contribution from fixed and plastic
terms of a particular weight connection, and η is the learning
rate of plastic components. Thus, we replace the component
of the controllers to facilitate plasticity such that,

qt = tanh( ∑
∀i, j∈k

[ẇi, jxi
t−1 + α̇

i, j ˙Hebbi, j
t xi

t−1]), (8)

ct = ztMt−1, (9)

mt = tanh( ∑
∀i, j∈k

[ŵi, jxi
t−1 + α̂

i, j ˆHebb
i, j
t ci

t−1]), (10)

m
′
t = tanh( ∑

∀i, j∈k
[w̃i, jxi

t−1 + α̃
i, j ˜Hebbi, j

t mi
t−1]), (11)

Further technical information on neural memory networks
and plasticity can be found in [18]–[20], [25].

III. EVALUATION

A. Experimental setup

All models were assessed through a 5-fold cross validation
(CV) strategy to ensure that the data for hyperparameter
tuning, and the data to test the algorithm were disjoint. For
each fold, the data sample of each seizure type are randomly
split into 60% for training, 20% for validation and 20% for
test. We used a weighted-F1 score to measure performance
as this is a multiclass classification with highly uneven class
distribution. The weighted F1 score is calculated as follows,

Weighted F1 =
7

∑
i=1

2×precisioni× recalli
precisioni + recalli

×wi, (12)

where wi is the weight of the i− th class depending on the
number of positive examples in that class.
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For each traditional deep learning model adapted for the
task of seizure type classification, we follow the specifica-
tions provided by each author to train the architecture by
optimizing the categorical cross-entropy loss. Our proposed
shallow RCNN model was also trained by optimizing the
categorical cross-entropy loss. We used the Adam opti-
mizer [45] with a learning rate of 10−3, and decay rates for
the first and second moments of 0.9 and 0.999 respectively.
For regularization, we employed dropout with a probability
of 50% in the fully connected layer. Batch-size was set to
32. We trained the model using early stopping with vali-
dation loss as stopping criteria and the default initialization
parameters from Keras [46].

For the proposed plastic NMN model, we also adopt
the Adam optimizer and categorical cross-entropy loss and
train for 50 epochs. Hyper-parameters k = 80 (hidden state
dimension), l = 25 (memory length), and η = 0.5 (learning
rate of plasticity) were evaluated experimentally, and were
chosen as they provide the best accuracy on the validation
set.
B. Classification of seizure type

Table II summarizes the results of seizure type classifica-
tion on the TUH EEG Seizure corpus with the IBM TUSZ
pre-processed data using our proposed framework, along
with the baseline methods and the adapted methodologies
from the seizure detection domain. It is evident that through
the utilization of the proposed external memory model via
augmented read and write mechanisms with plasticity, we
were able to achieve superior classification results. Fig. 2
shows the normalized confusion matrices of the seven types
of seizure for the proposed Plastic NMN method. In this
confusion matrix, we can identify that the most difficult
seizure types to discriminate are those which have a small
number of seizure recordings available for training and
testing (i.e.SPSZ, ABSZ, TNSZ and TCSZ).

To qualitatively illustrate the significance of the salient
information and what the model has learned in terms of the
model activations, we randomly sample 500 inputs from the
test set and apply PCA [47] and plot the top two components
in 2D. The embeddings are extracted from the last LSTM
layer in the RCNN model and from the external memory in
the plastic NMN. Fig. 3 and Fig. 4 depict the resultant plot
where each seizure type is indicated based on the ground
truth class identity. We observe clear separation between
the seven type of seizures using the memory embeddings
compared to the features learnt by our proposed RCNN
model or SeizureNet [13]. This clearly demonstrates that the
resultant sparse vectors are sufficient to discriminate between
classes with simple classifiers.
C. Discussion

Several studies have demonstrated that machine learning
models, specifically deep learning networks, can successfully
detect and/or predict the onset of seizures from scalp and
intracranial EEG. Although such models may be useful in
identifying biomarkers of an existing epileptic condition,
they are rarely of use for discriminating between different

TABLE II
CROSS-VALIDATION PERFORMANCE OF CLASSIFYING SEIZURE TYPE

Baseline methods Weighted-F1 score

Adaboost [12] 0.509
SGD [12] 0.649

CNN (ResNet50) [12] 0.723
XGBoost [12] 0.782

CNN (AlexNet) [14] 0.802
KNN [12] 0.884

SeizureNet [13] 0.900

Baseline from adapted methods Weighted-F1 score

SAE (based on [27]) 0.675
LSTM (based on [6]) 0.692

LSTM (based on [31]) 0.701
CNN (based on [28]) 0.716

CNN-LSTM (based on [9]) 0.795
CNN-LSTM (this work) 0.824

CNN (based on [29]) 0.826
CNN-LSTM (based on [10]) 0.831

CNN (based on [30]) 0.901

Proposed framework Weighted-F1 score

Plastic NMN (this work) 0.945

Fig. 2. Normalized confusion matrices for seizure type classification on
the TUH EEG Seizure Corpus for the proposed Plastic NMN model.

type of seizures. In this paper, we have evaluated traditional
deep learning methods proposed in the epilepsy domain
for cross-patient seizure type classification, and we have
improved on existing reported results by presenting a neural
memory network based framework.

We note that RCNNs have reached better performance
than models based on CNNs or RNNs alone for the task of
seizure type classification, which is similar to their relative
performance reported for the seizure detection task. Given
the inherent temporal structure of EEGs, we expected that
recurrent networks would be more widely employed than
models that do not consider time dependencies. However,
almost half of the models proposed in the epilepsy domain
have used CNNs. This observation supports recent discus-
sions regarding the effectiveness of CNNs for processing
time series data [48]. Another finding of our study of baseline
models is that the shallow RCNN proposed performed as
well as deep CNNs models. This supports other research
that has preferred shallow networks for analysing EEG data.
Schirrmeister et al. [49] focused on this aspect, comparing
the performance of architectures with different depths and
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structures. The authors showed that shallower fully convolu-
tional models outperformed their deeper counterparts. How-
ever, we note that hyperparameter tuning of baseline models
may be key to using deeper architectures with physiological
recordings.

The potential of recurrent neural networks to handle
sequence information was evident in the experimental results.
However, it is essential to consider historic behaviour over
the full length of seizures, and map long-term dependencies
between seizures to generate more precise classification. The
process of capturing seizure behaviour is highly complex
because of the increased heterogeneity of participants and
the temporal evolution during epileptic seizures. Analyzing
dynamic changes during a seizure is a major aspect of
epilepsy patient assessment. Even though an RNN model
has the ability to capture temporal information, it considers
only the relationships within the current sequence due to
the internal memory structure, making accurate long-term
prediction intractable. RNNs such as LSTMS or GRUs
exhibit one common limitation related to their storage ca-
pacity because their internal state is modified, heavily or
slightly, at each computation step. By incorporating a neural
memory network, we are able to increase the model’s storage
capacity without having to increase the size of the model; as
demonstrated by [18], who compared using neural memory
networks to map long-term dependencies among the stored
facts with LSTMs which map dependencies within the input
sequence.

The memory network proposed in this paper is capable of
capturing both short-term (within each data sample) as well
as long-term (across the entire collection of data samples)
relationships to predict a seizure type (i.e. long-term mem-
ory and working memory). Therefore, our proposed system
eliminates the deficiencies of current baseline models in
epilepsy classification which only consider within-sequence
relationships. An additional benefit of the implemented
memory network is that we have introduced the concept
of synaptic plasticity through the read and write operation
of the learnable controllers. We apply local plasticity rules
(Hebbian trace) to update feed-forward synaptic weights
following feedback projection. The plastic nature of the
memory access mechanisms in the neural memory model
allows our system to provide a varying level of attention
to the stored information, i.e. the plastic network acts as a
content-addressable memory.

To allow comparison with baseline methods [12]–[14] we
defined the classification task here similarly: to separate
seven classes of seizure labeled in the Corpus. As noted
above, these classes are not actually clinically disjoint, but
form a hierarchy. This semantic structure is not exploited by
the present method. Where for example in Fig. 4 more spe-
cific seizure classes such as ABSZ are readily separated from
the more general class GNSZ, this may indicate overfitting
due to the small number of distinct patients for some seizure
classes in the Corpus. This shows the value of continuing
to expand the seizure corpus with more patients for future
work.

Fig. 3. 2D illustration of extracted embeddings from the CNN-LSTM
model for randomly selected 500 samples from the test set.

Fig. 4. 2D illustration of extracted memory embeddings from the Plastic
NMN for randomly selected 500 samples from the test set.

IV. CONCLUSIONS
This paper presents a deep learning based framework

which consists of a neural memory network with neural
plasticity for EEG-based seizure type classification. A brief
overview of commonly used deep learning approaches in the
epilepsy domain is also presented. The proposed approach is
capable of modelling long-term relationships which enables
the model to learn rich and highly discriminative features
for seizure type classification. With increasing computational
capabilities and the collection of larger datasets, clinicians
and researchers will increasingly benefit from the significant
progress already made in their application to epilepsy. An
accurate classification of seizures along with neuroimaging
and behavioural analsyis are one step towards more accurate
prognosis. In future, we plan to investigate the introduction
of the memory component to map relationships directly from
raw intracranial EEG recordings without a preprocessing
phase, i.e.. without extracting information contained in the
frequency transform of the time-series EEG.
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