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Automatic Coverage Selection for Surface-Based Visual Localization

James Mount, Les Dawes, and Michael J. Milford

Abstract—Localization is a critical capability for robots, drones,
and autonomous vehicles operating in a wide range of environ-
ments. One of the critical considerations for designing, training, or
calibrating visual localization systems is the coverage of the visual
sensors equipped on the platforms. In an aerial context for example,
the altitude of the platform and camera field of view plays a critical
role in how much of the environment a downward facing camera
can perceive at any one time. Furthermore, in other applications,
such as on roads or in indoor environments, additional factors, such
as camera resolution and sensor placement altitude can also affect
this coverage. The sensor coverage and the subsequent processing
of its data also have significant computational implications. In this
letter, we present for the first time a set of methods for auto-
matically determining the tradeoff between coverage and visual
localization performance, enabling the identification of the mini-
mum visual sensor coverage required to obtain optimal localization
performance with minimal compute. We develop a localization
performance indicator based on the overlapping coefficient, and
demonstrate its predictive power for localization performance with
a certain sensor coverage. We evaluate our method on several chal-
lenging real-world datasets from aerial and ground-based domains,
and demonstrate that our method is able to automatically optimize
for coverage using a small amount of calibration data. We hope
these results will assist in the design of localization systems for
future autonomous robot, vehicle, and flying systems.

Index Terms—Localization, visual-based navigation.

I. INTRODUCTION

VER the past two decades, robotics and autonomous
O vehicle systems have increasingly utilized vision sensors,
using them to provide critical capabilities including localization.
This usage is due in part to the rapid increase in both camera
capabilities and computational processing power. Cameras have
benefits over other sensors such as radar, providing far more
information about the environment including texture and colour.
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Furthermore, cameras have other advantages including being
passive sensing modalities, and the potential to be relatively
inexpensive, have small form factors and relatively low power
consumption [1].

One of the critical system design considerations for camera-
equipped autonomous platforms is the coverage of the cam-
eras, which is affected by a range of factors including the
altitude of the platform (for aerial contexts), mounting point
(for ground-based vehicles), the camera field of view and the
sensor resolution. The choices made with regards to these system
properties can also affect other critical system considerations
like compute — if a subset of the entire field of view of a camera
can be used for effective localization, significant reductions in
compute can be achieved.

We address this challenge by presenting a novel technique
that automatically identifies the trade-off between visual sensor
coverage and the performance of a visual localization algorithm.
The technique enables automatic selection of the minimum
visual sensor coverage required to obtain optimal performance —
specifically, optimal localization recall without expending un-
necessary compute on processing a larger sensor coverage field
than required. We focus our research within the area of vision
based surface localization, such as that demonstrated by Kelly et
al. [2], [3] for warehouse localization, Conte and Doherty [4] in
aerial environments and Hover et al. [5] in ship hull inspection.
We evaluate the proposed method using two surface-based visual
localization techniques, on several challenging real-world aerial
and ground-based surface datasets, showing that the technique
can automatically select the optimal coverage by using cali-
bration data from environments analogous to the deployment
environment.

The letter proceeds as follows. Section II summarizes related
works, such as surface-based visual localization and procedures
for parameter tuning. Sections III and IV provide an overview
of the calibration procedure and the experimental setup respec-
tively. The performance of our algorithm and a discussion is
presented in Sections V and VI respectively.

II. RELATED WORK

In this section we present research related to surface-based
visual localization and calibration procedures for parameter
tuning. The coverage here is of localization techniques them-
selves rather than coverage calibration approaches; to the best
of our knowledge we do not believe there is a system that is
directly comparable to the technique outlined in this letter.
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A. Surface-Based Visual Localization

In several mobile robotics applications the system moves rela-
tive to a surface, such as a drone over the ground, an autonomous
vehicle over the road or a submarine relative to a ship’s hull. As
a result, several approaches have proposed using the surface
that the robot moves relative to as a visual reference map for
localization. For example, Kelly et al. thoroughly demonstrated
that surface-based visual localization using pixel-based tech-
niques for mobile ground platforms is feasible within warehouse
environments with controlled lighting using a monocular camera
[2], [3]. Mount et al. also demonstrated this technique can be
applied to autonomous vehicles and aroad surface, even with day
to night image data [6]. Additionally, [7], [8] demonstrate the
use of local features for road surface-based visual localization.

Unmanned aerial vehicles (UAVs) regularly use geo-
referenced aerial imagery to help alleviate errors caused by GPS
outages [4], [9]-[11]. For example, Conte et al. demonstrated
that they could incorporate feature-based image registration to
develop a drift-free state estimation technique for UAVs [4].

The research presented on underwater visual ship hull in-
spection and navigation further demonstrates that vision based
surface localization is feasible even in challenging conditions
[51, [12], [13]. There has also been a variety of research into uti-
lizing the surface as the input image stream for visual odometry
[14]-[16].

All these systems either have a hard-coded empirically tuned
parameter defining the portion of the image to use, or simply
use the entire field of view. Therefore, they could be performing
unnecessary computations without any performance benefits.
In contrast, our system automatically selects the optimal visual
sensor coverage for maximizing performance while minimizing
unnecessary computation.

B. Calibration Procedures for Visual Localization

The altering of configuration parameters in both deep learning
and traditional computer vision algorithms can have a drastic
effect on performance [17], such as the the size of images
used within appearance-based techniques [18]. This can cause
difficulties in successfully making the transition between re-
search and application, as well as between domains [19]-[21].
Due to these difficulties, there have been several research areas
investigating the development of automatic calibration routines
to improve the performance of visual localization alogrithms.
Lowry et al. demonstrated online training-free procedures that
could determine the probabilistic model for evaluating whether
a query image came from the same location as a reference
image, even under significant appearance variation [22], [23].
In [24]-[26] Jacobson et al. explored novel calibration meth-
ods to automatically optimize sensor threshold parameters for
place recognition. Several bodies of work have also used the
system’s state estimate to reduce the search space in subsequent
iterations, such as that in [15], [16]. In all bodies of work the
authors demonstrated that parameter calibration outperformed
their state-of-the-art counterparts. However, these techniques
typically focused on optimizing a single metric, mainly re-
call/accuracy, and did not explicitly consider calibrating for

Algorithm 1: Calibration Procedure.

for all patch radii in Py do
for x calibration samples do
run localization on sample;

store ground truth and all other localization

scores;
end

fit distribution to ground truth scores;
fit distribution to all other scores;
calculate OVL between distributions;
store patch radius and OVL in matrix;

end

if any OVL value < required OVL value then

| interpolate to find optimal patch radius;
else

| set optimal patch radius to argmaz (Py);
end

both localization performance and computation load in parallel,
which is the focus of the research described in this letter.

There has been considerable research into calibration rou-
tines to identify spatial and temporal transforms between pre-
determined sensor configurations [27]-[32]. Another key re-
search area is how visual sensors can be employed to overcome
kinematic and control model errors used in robotics platforms
[33]-[35]. These approaches in general have addressed a differ-
ent set of challenges to those addressed here, instead focusing
on the relationship between sensors and robotic platforms or
between sensors and other non-localization-based competen-
cies. The automatic selection of hyper-parameters is also related,
especially in the deep learning field [17], [36]-[39].

III. APPROACH

This section provides an overview of the approach for auto-
matic selection of the sensor coverage required for an optimal
combination of visual surface based localization performance
and computational requirements. The primary aim and scope
of the techniques presented here is to identify the amount of
coverage with respect to the sensor field of view and the altitude
of a downward-facing camera above the ground plane. The tech-
nique requires a small number of aligned training image pairs
from an environment analogous to the deployment environment;
although we do not attack that particular problem here, there
are a multitude of techniques that could potentially be used to
bootstrap this data online such as SeqSLAM [18]. We outline
the complete calibration procedure in Algorithm 1.

A. Optimal Coverage Calibration Procedure

The calibration procedure Figure 1 works under the assump-
tion that the similarity of the normal distributions between
the ground truth only scores and all scores diverges as sensor
coverage, resolution and placement changes. This divergence in
distribution similarity is indicative of better single frame match-
ing performance (see Figure 2 for an example). In this letter we
use the Overlapping Coefficient (OVL), which is an appropriate
measure of distribution similarity [40], [41]. There are various
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Fig. 1. Given a reference map and a number of query samples, our over-
lap coefficient-based calibration process automatically determines the optimal
sensor coverage for maximizing localization performance while minimizing
computational overhead. The blue and red lines in the plots are the overlapping
coefficient for various patch radii for the two datasets shown and the overlapping
coefficient threshold respectively.
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Fig.2. Theeffectof patchradius on the overlapping coefficient (OVL) between
the normal distributions of all the correlation scores (solid red line) and the
ground truth only scores (dashed green line). The red dotted line and solid black
circle in the bottom plot represent the required OVL value O, and the selected
interpolated patch radius respectively. This example used NCC as the underlying
localization technique.

measures for OVL, including Morisita’s [42], Matusita’s [43]
and Weitzman’s [44]. We use Weitzman’s measure which is
given by

k1

0= : min(p(x), q(z))dx (1)

0
where p(x) and ¢(x) are two normal distributions and O is the
resulting OVL value. The bounds of the integral, ky and k1,
are the numerical limits of the technique being utilised. For
example, kg and k1 would be —1 and 1 respectively for NCC. The
Overlapping Coefficient was used as the measure of distribution
similarity over other methods, such as the Kullback-Leibler
divergence, as it decays to zero as two distributions become
more dissimilar and because it is symmetric.

Once the OVL value goes below a given threshold there is
limited to no performance gains in localization performance.
It is at this point we consider the visual sensor coverage to
be optimal. As the OVL threshold is most likely between two
of the tested calibration OVL values, as in Figure 2, we use
linear interpolation to select the point of intersection. If no tested
calibration points achieve less than the required OVL we simply

Local Feature Patch with Sub-Patch Comparison

Reference Map

Fig.3. Anexample of the local feature with sub-patch comparison. This tech-
nique compares a patch (entire red rectangle) by comparing the corresponding
smaller sub-patches. The final metric for a large patch-to-patch comparison is
the average percentage of key point inliers across sub-patches. In this work the
sub-patch diameter is set to 40 pixels, and we move the patch in increments of
20 pixels. We have used BRISK key points with SURF descriptors, and we only
test patch sizes that are integer multiples of the sub-patch size.

take the largest coverage tested. The selection of the optimal
operating value Pp hence is given by the following,

0,-0,
Py — P, + (Pb — Pa> OO0, any(PJ\'/ < Or) )
argmaz (Py) otherwise

where Pp, P, and P, are the optimal operating value, and
the value above and below the required OVL threshold, O,.,
respectively. O, and O, are the corresponding OVL values for
the tested calibration values P, and P,. Py are all the values
tested during calibration.

Within this research our calibration procedure attempts to au-
tomatically select the optimal patch radius. We demonstrate the
calibration algorithm using two surface-based visual localiza-
tion techniques, Normalized Cross Correlation (NCC) and local
features with sub-patch comparisons. NCC was selected as it has
been shown to have relatively good performance within surface-
based visual systems, [3], [6], [15], [16]. The local features tech-
nique (LFT) is used to demonstrate that the calibration procedure
is agnostic to the front-end employed. Figure 3 shows an exam-
ple of the local feature with sub-patch comparisons technique.
This makes the local feature matching more sensitive to transla-
tional shifts and is similar to the regional-MAC descriptor out-
lined in [45] or the patch verification technique described in [46].

IV. EXPERIMENTAL SETUP

This section describes the experimental setup, including the
dataset acquisition and key parameter values. All experiments
were performed either on a standard desktop running 64-bit
Ubuntu 16.04 and MATLAB-2018b or utilized Queensland’s
University of Technology’s High Performance Computing sys-
tem running MATLAB-2018b.

A. Image Datasets

Datasets were either acquired from aerial photography pro-
vided by Nearmap, or from road surface imagery collected using
a full-frame Sony A7s DSLR. The datasets are summarised in
Table 1.

1) Aerial Datasets: The aerial datasets were acquired by
downloading high-resolution aerial photography provided by
Nearmap [47]. To ensure suitable dataset variation, for validation
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Fig. 4. The 12 Nearmap reference and query map pairs and 8 image pairs from the Road Surface datasets used in this research. The Nearmap environments vary
significantly from grassy fields to urban environments, observed from a range of altitudes and under different appearance changes. The two road surface datasets
showing the corresponding reference-query map pairs, with day-day and day-night transitions. The size difference in the images is caused by the manual pixel

alignment and cropping procedure.

TABLE I
DATASETS

Dataset Name

Dataset Name

Dataset Name

Nearmap 1 Nearmap 2 Nearmap 3
Nearmap 4 Nearmap 5 Nearmap 6
Nearmap 7a Nearmap 7b Nearmap 7c
Nearmap 8a Nearmap 8b Nearmap 8c

Road Surface la

Road Surface 1b

Road Surface Ic

Road Surface 2a

Road Surface 2b

Road Surface 2¢

of our algorithm, the authors collected imagery from forest,
field, rural and suburban areas at various simulated altitudes
as well as at different qualitative levels of appearance variation.
Each Nearmap dataset consists of two pixel aligned images, a
reference and a query map. Patches from the query map are
compared to the reference map. Figure 4 shows the reference
and query maps for each Nearmap dataset.

The Nearmap Datasets 7a to 7c are from the same location
with differing altitudes. Similarly, the Nearmap Datasets 8a to
8c are from the same location with the same reference image, but
with different query images with various levels of appearance
variation (missing buildings and hue variations).

Each Nearmap image was down-sampled to a fixed width
while maintaining its aspect ratio. This down-sampling was to
increase ease of comparison between different datasets.

2) Road Surface Datasets: The road surface imagery
datasets were acquired using a consumer grade Sony A7s, with a
standard lens, capturing video while mounted to the bonnet of a
Hyundai iLoad van. Three traversals of the same stretch of road
were made, two during the day and one at night. Corresponding
day-day (Road Surface 1) and day-night (Road Surface 2) frames
with significant overlap were then selected, and the correspond-
ing frames manually aligned. This resulted in two datasets, Road
Surface 1 and 2. Both datasets have four aligned images, with
day-day and day-night images in datasets 1 and 2 respectively.
Similarly to the Nearmap datasets, the first image in each image
pair is used as the reference map, while the second is used to

TABLE I
KEY PARAMETER LIST FOR NEARMAP AND ROAD SURFACE DATASETS

Parameter Nearmap Road Surface | Description
NCC LFT NCC

Ix 200 400 100 Image Width

Nx N/A 2 Patch Normaliza-
tion Radius

O 0.005 | 0.0225 0.005 Required ~ OVL
Threshold

tar 0 5 True Match Dis-
tance Threshold

N 200 100 200 Number of Cali-
bration Samples

M 1000 100 1000 Number of Valida-
tion Samples

generate query patches. Figure 4 shows the four reference and
query maps for each Road Surface dataset.

The road surface images were pre-processed, including down-
sampling and local patch normalization, to remove the effects
of lighting variation and motion blur. This has been shown to
improve visual localization performance [18].

B. Parameter Values

The key parameter values are given in Table II. All parameters
were empirically determined over a range of test datasets, and
then applied to all experimental datasets. As shown by the re-
sults, the system was generally able to select a near optimal patch
radius across a range of environment appearances and domains
(aerial versus ground-based), even with an almost identical set
of parameter values.

The selection of the required Overlapping Coefficient (O,)
is a trade off between reducing computational overhead at the
risk of reduced localization performance and is dependent on the
localization front-end. An initial OVL value can be computed by
finding the patch radius that achieves high recall on several test
datasets. The remaining parameters, which are mostly dependent
on the environment domain and sensor parameters, could also
be tuned using exemplary data.



V. EXPERIMENTS AND RESULTS

This section presents the results from the various experiments
we conducted. To evaluate performance we calculate the recall,
as well as a new performance metric which takes into account
both recall and computational efficiency. We defined recall as
the number of true single frame matches divided by the total
number of samples. The second new performance metric is used
to test how well the calibration procedure chooses the optimal
operating point. Optimal performance is defined as maximizing
recall with as little computational overhead necessary. This new
metric, which we call the max recall to computation efficiency,
is given by

(Pi — Pg)2
(Py — Fy)?)

where M, is the max recall to computation efficiency for patch
radius P;. P, and Py are the optimal ground truth patch radius
for the dataset and all patch radii used during validation respec-
tively. The arg maz y(/(Pn — P,)? is used to normalize the
distances to be in the range from O to 1, while the 1— is used to
negate the normalized distances so that a higher value means a
higher recall to computation efficiency. The optimal ground truth
patch radius, P,, is defined as the patch radius which achieves
95% of the maximum recall for that dataset. This distance metric
naturally encodes the recall and computational efficiency into a
single value, and it will punish either unnecessary computational
overhead or points that achieve poor relative recall. Patch radius
isindicative of computational load, as demonstrated in Figure 7a,
which shows that computation time is proportional to patch
radius.

M;=1- 3)

argmaz y(

A. Automatic Coverage Selection Evaluation

The first experiment was to investigate the performance of
the calibration procedure and test whether it indeed selects
the optimal coverage required to maximize localization perfor-
mance. To evaluate this we ran the calibration routine on the
Nearmap calibration image pair, which are the same size as and
representative of, each Nearmap validation image pair. We then
verified the calibration procedure by testing several patch radii,
including the selected patch radius from the calibration routine,
on each Nearmap dataset. It should be noted that no image pairs
used for calibration are used during validation; and there is no
physical overlap between the calibration and validation image
pairs in any experiment (see Figure 4).

To validate the calibration procedure we compute the per-
centage recall and performance metric for several patch radii on
the validation image pairs. The results are shown in Figures 5
and 6. Figure 5 shows the results for Nearmap datasets 1-6.
Figure 6 shows the results for 7a-c and 8a-c which represent
various altitudes and appearance variation.

The Overlap Coefficient for Nearmap 6 does not decay to 0
because the calibration image has an extremely limited amount
of unique data (i.e. almost impossible to successfully perform
patch localization). Additionally, the validation image does have
some unique information which is why 100% percent recall can
be achieved.
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Fig. 5. Results of the calibration procedure on several Nearmap datasets,
optimizing for NCC patch radius. The top plot shows the OVL using Weitz-
man’s measure for the calibration patch radii tested, which was performed on
the calibration image pairs. The second and third plot show the percentage
recall and max recall to computational efficiency curves for several patch radii,
including the selected patch radius, Pp, indicated by a black circle, which were
performed on the Nearmap validation image pairs. As can be seen, the calibration
procedure consistently selects the patch radius near the top of the max recall to
computational efficiency curves, demonstrating its success.
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Fig. 8. A visual indication of the performance of the calibration procedure
on a traversal across the Nearmap 8b dataset. As can be seen the optimal patch
radius selected by the calibration procedure, 30 pixels, results in almost perfect
recall with a much lower computation time per iteration compared to that of the
traverse using a 60px patch radius. Each green and red dot indicates the center of
query patch and whether it successfully or unsuccessfully localized itself within
the reference map respectively.
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Fig. 9. The results of the calibration procedure on the Road Surface 1 dataset
(day-day images), which demonstrates that the calibration procedure consis-
tently selects the optimal patch radius within a different data domain.

Figure 7a shows the average computation time is proportional
to the patch radius. Additionally, it should be noted that the
optimal coverage varies between datasets, as shown in Figure 7b.
In Figure 8 we provide a visual example of a traversal through the
Nearmap 8b dataset using the optimal patch radius of 30 pixels,
as well as traversals with 15 and 60 pixel patch radii. As can be
seen, the optimal patch radius results in near perfect recall with
minimal computational overhead.

B. Automatic Coverage Selection on a Different Domain

The second experiment investigated how well the automatic
selection of the optimal visual coverage worked on a different
data domain. For this experiment we used the two road surface
datasets. For each dataset, image pair 1 was used for calibration
while all four image pairs were used for validation. The results
for Road Surface datasets 1 and 2 can be found in Figures 9 and
10 respectively. Please note we validated on all four images, even
though image pair 1 is used for training, to allow us to compare
results in the following experiment. We will only discuss the
results of image pairs 2 to 4 here.

As can be seen, the calibration procedure successfully selects
the near optimal patch radius in both Road Surface datasets.
The slightly lower max recall to computational efficiency per-
formance of the selected patch radius on the Road Surface 2
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Fig. 10.  The results of the calibration procedure on the Road Surface 2 dataset
(day-night images). The selected patch radius from the calibration procedure,
which was determined using the first image pair, results in the near optimal
performance on the three remaining image pairs within the dataset.

dataset is due to the fact that the training data in this case was less
representative of the deployment data than the other cases. The
higher performance on validation image pairs 2 and 3 compared
to validation image pair 4 is probably caused by the fact that the
unique features in image pairs 2 and 3 (i.e. cracks, identifiable
rocks/patterns) are more evenly distributed throughout the entire
image. This means that smaller patches have a higher chance of
successful localization in validation image pairs 2 and 3, despite
any visual variations (i.e. hue) to the calibration image pair.
However, these results still show that the calibration procedure
can select an optimal coverage that generalizes to other data
(assuming the calibration data is representative of the rest of the
dataset).

C. Automatic Coverage Selection Using Multiple
Training Images

The previous experiments on Road Surface 2 demonstrate
what happens when the training data is not representative of the
deployment environment. To mitigate this issue multiple training
image pairs can be used. For this experiment we calibrate on
image pairs 1 and 2 of the Road Surface 2 dataset and averaged
the two optimal patch radii, which were 15 and 8 respectively.
This average optimal patch radius, 12, was then validated on all
four images. The results are shown in Figure 11.

The results show that training on multiple images both posi-
tively and negatively affects performance. In the case of images
2 and 3 we can see that the selected patch radius is closer to
the peak of the max recall to computational efficiency curve.
However, for image pairs 1 and 4 we can see that the selected
patch radius has resulted in a decrease on the max recall to
computational efficiency curve. For image pairs 1 and 4 this shift
on the max recall to computational efficiency curve means the
overall recall is decreased (i.e. worse localization performance).
In contrast, for image pairs 2 and 3, recall is still maximized
but computation efficiency has been increased. This suggests
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Fig. 11. The results of the multiple training image experiment performed
on Road Surface dataset 2. When comparing to the results from the previous
experiment we can see the use of multiple training images improves the overall
performance in regards to the max recall to efficiency metric.

the averaging of multiple training image pairs does lead to a
better overall performance, since there is only a slight decrease
in recall performance for image pairs 1 and 4. However, a more
sophisticated approach to selecting the optimal patch radius
when using multiple image pairs for training may lead to further
improvements; this is an avenue for future investigation.

D. Automatic Coverage Selection Evaluation Using a
Feature-Based Localization Approach

To evaluate the generality of the automatic coverage selection
process, we performed a second set of experiments with the local
feature-based technique previously described as the localization
front-end. Due to the extremely challenging appearance change
present in much of the Nearmaps datasets, the feature-based
approach only produced competitive performance on datasets 4,
7a and 7b, a result mirroring what has been observed in a range
of other feature-based localization systems [46]. However, for
these environments where the underlying front-end was func-
tional, the calibration routine successfully selected the optimal
patchradiusin all cases, as can be seen in Figure 12. These results
indicate that the coverage selection process can generalize across
different localization front-ends.

VI. DISCUSSION AND FUTURE WORK

The presented automatic calibration procedure takes a set
of aligned imagery from an environment analogous to the de-
ployment domain, and selects the minimum sensor coverage
required to achieve optimal localization performance with min-
imal compute requirements. Experiments run across both aerial
and ground-based surface imagery demonstrated that the ap-
proach is able to consistently find this optimal coverage amount,
even when it varies hugely across application domains and
environments.

Optimal Patch Size on Local Feature Technique
Overlap Coefficient, Recall and Performance vs. Patch Radius
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Fig.12.  Theresults of using the calibration system with the local feature-based
technique. The optimal patch radius is correctly selected, showing the proposed
system generalizes to other localization front-ends.

There are a range of enhancements and extensions that can be
pursued in future work. The first is to investigate the potential
use of appearance-invariant visual localization algorithms to
generate the aligned training data “on the fly” at deployment
time, removing the need to have training data beforehand and
allowing for continuous online calibration. The second is to
investigate other criteria for finding the optimal operating point
beyond the implementation used in this research — such as
defining a “plateau” threshold in the overlap coefficient curve at
which point performance gains diminish with increased sensor
coverage.

Thirdly, we have investigated sensor coverage of the environ-
ment here but not other properties like sensor resolution. Such
properties could likely be optimized through a similar process to
the one used here for coverage. Fourthly, the technique has been
demonstrated to be agnostic to surface-based visual localization
techniques — it will be interesting to investigate how it performs
on other visual localization systems, for example forward-facing
cameras. Additionally, there may be absolute criteria that can
be used to determine the optimal coverage for a given envi-
ronment, again removing the requirement to have training data
with aligned imagery. Finally, while the required OVL value
is dependent on the localization technique, the heuristically
determined OVL thresholds selected appear to be robust across
arange of very different datasets and domains, including various
image sizes and pre-processing steps. However, a sensitivity
analysis would provide valuable insight. Additionally, further
work into the automatic selection of parameter values as well
as a probabilistic interpretation of how to select the OVL value
could draw on existing methods, such as [23], [24].

Choosing the right camera configuration with respect to
mounting and field of view, as well as the operating altitude
of an unmanned aerial vehicle, is a critical process both during
system design and during deployment operations. We hope that
the research presented here will provide an additional tool with
which to address these challenges.
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