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 21 
Abstract 22 
Advanced manufacturing and 3D printing are transformative technologies currently undergoing rapid adoption 23 
in healthcare, a traditionally non-manufacturing sector. Recent development in this field, largely enabled by 24 
merging different disciplines, has led to important clinical applications from anatomical models to regenerative 25 
bioscaffolding and devices. Although much research to-date has focussed on materials, designs, processes, and 26 
products, little attention has been given to the design and requirements of facilities for enabling clinically 27 
relevant biofabrication solutions. These facilities are critical to overcoming the major hurdles to clinical 28 
translation, including solving important issues such as reproducibility, quality control, regulations, and 29 
commercialization. To improve process uniformity and ensure consistent development and production, large-30 
scale manufacturing of engineered tissues and organs will require standardized facilities, equipment, 31 
qualification processes, automation, and information systems. This review presents current and forward-thinking 32 
guidelines to help design biofabrication laboratories engaged in engineering model and tissue constructs for 33 
therapeutic and non-therapeutic applications. 34 
 35 
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1. Introduction 39 
The adoption of advanced manufacturing (AM) to create patient-specific devices and implants is resulting in 40 
improved life-changing outcomes. A one-size-fits-all approach is no longer desirable in today’s personalised 41 
society, and this remains true within the hospital and healthcare sector with increasing demand for customised 42 
and personalised medicine. As we move towards the reality of customised implants containing the patient’s own 43 
cells, or drug delivery systems personalised to the patient’s genetic make-up, a major role exists within the AM 44 
sector to elevate these therapies for maximum clinical impact. The convergence of AM with medical scanning 45 
and 3D computer modelling enables improved personalisation, with medical implants designed to precisely fit 46 
defected tissue sites and improve identification of areas prone to re-fracture or injury. Furthermore, these digital 47 
technologies can allow computer modelling of tissue growth and mechanical load calculations to improve 48 
implant design, success and rehabilitation planning [1]. Beyond the implants themselves, personalised digital 49 
models can be 3D printed to assist clinicians in communicating procedural details with patients or for practicing 50 
the surgical procedure in advance [2]. These models can also be used to test the quality of fit of tools and 51 
implants prior to the operation, leading to improved economical and clinical outcomes [3]. 52 
 53 
With tissue engineering and bioprinting in its early stages, it is difficult to predict how a biofabrication industry 54 
will materialize. Many organizational models have formed and the growing interest of universities, 55 
pharmaceutical industry, medical technology companies, food industry, governments, private and public health 56 
systems could generate novel hybrid models. The healthcare industry is in a state of centralization along with 57 
many other industries. The economic conditions stemming from market and regulatory forces favor the 58 
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formation of certain types of business and organization models and determines the industry’s expected 59 
innovation rate. Disruption can occur at any point in time making forecasts mostly conjectural. Thus far, 60 
biofabrication laboratories have arisen in the settings of university hospital partnerships (BioFab3D, Herston 61 
Biofabrication Institute, Wake Forest Institute of Regenerative Medicine) [4-6], biotechnology companies 62 
(Organovo, Inc., Aleph Farms), private health systems (Mayo Clinic) [7], and public-private partnerships 63 
(ARMI-BioFabUSA, CSIRO Manufacturing) [8-10]. This paper uses the perspective of 3D printing laboratories 64 
which have been developed in university hospital partnerships, public-private partnerships, and private health 65 
system models. However, the recommendations shared may be applied by all organization models in the 3D 66 
printing biofabrication community. Interested parties will be able to consult this paper for design considerations 67 
then tailor their laboratory spaces according to their budgets or their areas of specialization. This paper aims to 68 
provide a general set of laboratory design instructions within a single document in an attempt to increase the 69 
number of functional biofabrication laboratories which are successfully established. Developing effective tissue 70 
engineering technologies and successfully translating technologies into approved products is the greatest 71 
challenge ahead for biofabrication. However, the bottom-up approach to this challenge is put forward where 72 
everyday practices and interactions fostered by laboratory spaces become the prime movers in the growth of 73 
processes, technologies, and products. This comes in contrast to a top-down approach that starts with a 74 
successful product developed by large research universities, corporations, or government bureaucracies that 75 
prompt new firms to form. The bottom-up approach emphasizes spontaneity by trial and error rather than 76 
orderly top-down knowledge transmission. By increasing the number of laboratories and players we expect the 77 
following likely benefits to emerge from biofabrication development: 78 
 79 

a.) Increase the number of innovators in the form of tinkerers, hobbyists, and entrepreneurs. 80 
b.) Increase the number of hypotheses, experiments and trials that generate greater information and new 81 

knowledge. 82 
c.) Increase the number of applications and their impact by bringing technology closer to the clinic. 83 
d.) Provide greater training, diversification and employment of personnel for a biofabrication-ready work 84 

force. 85 
e.) Diversify the scope of interests ranging from organ, tissue, bioink, and biomaterial development. 86 
f.) Stimulate the organic formation of local supply chains for future industry growth. 87 
g.) Increase competition for funding and commercialization to decrease the funding/survival of 88 

unsuccessful activities. 89 
h.) Increase the number of biofabrication interest groups to advocate regulatory reform at local, regional, 90 

and national levels. 91 
i.) Keeping new IP and commercialization opportunities onshore to improve local economy 92 
j.) Enable clinicians to work closely with engineers to embrace innovation to create faster, cheaper and 93 

more automated healthcare solutions to improve patient quality of life. 94 
     95 
Biofabrication is a field of advanced manufacturing where specialised 3D printers and biocompatible materials 96 
are used to produce personalised tissue constructs. This field has seen enormous growth over the years, and it is 97 
likely that hospitals around the world will eventually house facilities containing both advanced manufacturing 98 
and biological capabilities. These facilities will have the capability to fabricate tissue constructs matching the 99 
patient’s anatomy and the technologies to process and culture the patient’s own cells for tissue healing. Because 100 
of its significant impact on the healthcare sector, AM is projected to be a multi-billion-dollar market before 101 
2024 [11]. Wohlers Report forecasts that the three-dimensional printing (3-DP) industry will have revenues 102 
exceeding $35 billion in 2024 [12], largely due to growth within the healthcare industry [11]. Recent advances 103 
in tissue engineering and printer technology has greatly increased the applications of 3-DP in hospital settings. 104 
As an example, LimaCorporate recently partnered with the Hospital for Special Surgery to create the first AM 105 
3-DP facility for printing patient-specific orthopedic implants in a clinical setting [13]. The Mayo clinic, 106 
BioFab3D, Wake Forest IRM, and the Herston Biofabrication Institute are some of the earliest hospital-based 107 
biofabrication laboratories committed to developing personalized tissue-based therapeutics. The broader 108 
applications of advanced manufacturing in healthcare extend beyond tissue engineered constructs to the 109 
fabrication of personalised protective equipment and components (such as ventilator parts), the production of 110 
tissue-engineered structures for disease modelling and drug discovery, generation of anatomical models for 111 
medical training and surgical planning, and the engineering of implants and custom prosthetics [14]. As 3D 112 
printers utilize a variety of non-biological (e.g. polymers, metals, ceramics) and biological (e.g. decellularized 113 
matrices, cells) materials, their applications in the hospital setting also encompass rapid scalability during 114 
shortages, supply change adaptability, improved cost efficiency, and greater productivity [1-3,15]. With many 115 
healthcare centers seeking to establish 3D-P and biofabrication laboratories, we sought to establish a set of 116 
guidelines to inform the incorporation of a manufacturing center within a traditional healthcare infrastructure. 117 
Critical to the success of such a center is the requirement to facilitate collaboration between the transdisciplinary 118 
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workforce, with the need to enhance communication across the traditional domains of science, engineering, 119 
medicine and regulation. Silos cannot exist, and instead improved collaboration is required with a common goal 120 
of better patient outcomes. Beyond workforce collaboration, the facility needs to consider the different 121 
technological requirements of clinical scanning, computer modeling, 3D printing and tissue engineering and the 122 
need to design smoothly transitioning between the technology areas to maintain efficiency, biological sterility 123 
and good manufacturing practice (GMP) capabilities. In addition to the workforce and the space, the tools and 124 
equipment within the facility are also critical to enable the best possible technologies to be produced in a quality 125 
controlled and regulated manner. 126 
 127 
As biofabrication services become more in demand at the point-of-care, many health delivery systems will 128 
experience numerous challenges associated with the conversion of facilities designed for a non-manufacturing 129 
sector or the construction of entirely new manufacturing facilities. Here, we review the specific building 130 
requirements, biofabrication equipment and supplies that are required to establish a functioning clinical 3-DP 131 
facility. In addition, we will discuss the basic quality management systems that are required to mitigate product 132 
variation and defects as well as improve operational efficiency. Finally, we will examine the systems that 133 
healthcare organizations will need to develop to manage teams of biofabrication experts, data management and 134 
storage, tissue and biologic repositories, regulations, quality control and commercial processes [16]. 135 
 136 
2. Site Choice and Regulations 137 
Ideally a hospital-based 3D-P biofabrication facility should be located as close as possible to the point of care, 138 
with the site being integrated within a hospital campus. This enables critical interaction and rapid 139 
communications between clinical staff, researchers and technical experts in all areas of scanning, imaging 140 
modelling and 3D-P. The spaces within the institute should be connected in such a fashion as to support the 141 
workflow. For example, the scanning area should be adjacent to an area that patients can enter and exit the 142 
building discreetly, 3D modelling should be connected to this space, and the 3D-P area should be quite separate 143 
and encompass post processing areas and workshops. Those designated “dirty areas” such as workshops should 144 
not be located too close to the cell biology and cell culture facilities. It’s also important to consider the implant 145 
journey and the need for quality control, regulation, and GMP including the installation of restricted access to 146 
these spaces ensuring only authorised personnel can enter. New laboratory facilities will need to be in 147 
compliance with one or more municipal, regional, and national jurisdictions. These governing units determine 148 
the appropriate building codes, construction methods, building use classification, connection of utilities, fire 149 
district regulations, permits for laboratory ventilation systems, etc. Approvals by local governing boards should 150 
be obtained before establishing a new laboratory and this is particularly important when these facilities are 151 
established on hospital campuses. Industrial insurance carriers should be involved in building plans to determine 152 
key design criteria. The International Building Code (IBC, 2019) classifies laboratory buildings engaged in 153 
clinical medicine, research, and education at Class A building construction and use Group B. Biosafety Level 1 154 
(BSL-1) laboratory standards has been proposed for bioprinting, however we recommend BSL-2 laboratory for 155 
bioprinting [17]. Laboratories should adhere to the biosafety specifications designated in their respective 156 
countries (HHS, Council Directive 90/679/EEC, CBS, ABSANZ, etc.) [18-20]. 157 
 158 
3. Power Considerations  159 
Albeit not unique to 3-DP labs, electrical requirements for printers do present unusual challenges. Prior to the 160 
installation of the 3-DP, it is necessary to allow for both a safe environment and future compatibility (i.e. “future 161 
proofing”) considering 3-DPs are often upgraded within 24-36 months. The National Electrical Code (NFPA 70, 162 
2011) or International Electrotechnical Commission (IEC 60364) should be consulted to determine wire size and 163 
insulation type needed current loads expected for the printing facility. Requirements for electrical machinery 164 
and control processes can be found in the NFPA 79 for laboratories based in the United States, while European 165 
laboratories should review IEC 60204. Poor power quality can lead to device malfunction, premature failure, or 166 
inability to operate. Common power quality problems include blackouts, noise, and frequency or voltage 167 
variations (21). Unexpected power disturbances can cause damage to equipment, materials, automated testing 168 
devices, which ultimately causes productivity losses. It is strongly advised to install uninterrupted power 169 
supplies (UPS) to all equipment to negate any power interruptions, which will be detailed subsequently. 170 
Periodic inspection of electrical circuits and components is necessary, and annual preventative maintenance 171 
should be completed (NFPA 70B). Inspections should occur more frequently in clean rooms and manufacturing 172 
areas. In Europe, periodic inspections are provided by local regulators. 173 
 174 
3.1 Voltage/Amperage Requirements 175 
The first consideration for 3-DP installation is adequate allotment for the building’s electrical utility. The 176 
standard electrical utilities are often inadequate in their ability to provide appropriate power requirements for 177 
high current loads. Non-industrial outlets are limited to 20 amps, while most industrial (high current) loads 178 
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require at least 30 amps. A powerful heated build plate in 3-DP plays a critical role in printing large 179 
components. To set the plate temperature up to 150°C and avoid thermal contraction of large components, high 180 
current power supply is mandatory. For example, a 3-DP with 12” bed needs at least 1000-Watt power supply to 181 
properly manage the temperature of the plate. Therefore, the current limit should be considered in early design 182 
of a 3-DP lab to accommodate future expansion of the number of printers and decrease the cost of renovations. 183 
It is highly recommended to have a 30-amperage breaker with 10-gauge wire run to the outlets. 184 
 185 
Laboratory designers should consult an electrical engineer to ensure that power is clean and the voltage does not 186 
drop considerably during the operation of 3-DPs. Quality design limits voltage drop across feeders to 2% and 187 
branch circuits to 3%. An electrical engineer should perform a power quality analysis to determine possible 188 
sources of “dirty” power by examining the building’s current electrical bus. For example, a Fluke 123 189 
Industrial ScopeMeter could be used to analyse and monitor any voltage fluctuations caused by other electric 190 
sources. By identifying these sources, the printers could be isolated from unwanted loads via an isolated and 191 
dedicated electrical bus for the lab. In addition, 3-DPs should be isolated from unwanted high magnetic fields 192 
sources such as MRI magnet. These considerations would prevent power loss to 3-DPs and negate irregularities 193 
and printing failures. 194 
 195 
Another consideration is the importance of having both 220V and 110V outlets in the labs.  Higher 196 
voltage/current may be required if powering large printers, multiple printers or devices involved in printing 197 
process [22]. A power consumption monitoring device (WattsUp power meter) can be connected with the 3-DP 198 
and installed into the outlet to measure consumption during printing processes. One study used PronterFace 199 
software to characterize and fine-tune the energy output for motor, heater and fan components [22]. Recording 200 
available power to 3-DPs can also provide liability protection should prints fail. A 25% reduction in energy 201 
utilization by 3-DPs occurred after using PronterFace. In addition to power supply, the location of the outlets is 202 
critical and areas should be designed to ensure that the power can be continually and optimally supplied  (i.e. 203 
from the ceiling, beneath the floor or on the walls).The venting systems should be considered as they dictate that 204 
equipment must be located adjacent to external walls (see section 6). 205 
   206 
3.2 Redundant Power Sources 207 
Another critical feature for the lab is establishing an emergency power supply and uninterruptible power supply 208 
(UPS) rated for the printers, devices critical to the 3-DP’s operation, and critical process systems—HVAC 209 
systems, cold rooms, refrigerators, and freezer equipment containing valuable materials. Emergency power 210 
sources can be storage batteries, diesel engine generators, and natural gas generators. Emergency power should 211 
be available within 10 seconds making diesel engine generators preferable to natural gas engine sets [23]. 212 
Installing UPSs provide an excellent solution since some labs are not part of the building’s emergency power 213 
system and these redundant power sources can take a few seconds to restore power. A general rule when 214 
deploying a central UPS is to calculate the cumulative amperage requirements of the devices and then design a 215 
UPS to handle double this value. This will ensure that there is an adequate surplus for severe overload. In case 216 
the UPS experiences continuous overload conditions, its own circuit protection will command it to shutdown 217 
resulting in an abrupt loss of power. It is important to determine if the emergency power system will be used to 218 
power the 3-DPs for completion of prints already in progress which can be upwards of 20 hours. These few 219 
seconds would not only result in the loss of an ongoing print (which can already be 20+ hours in) but can 220 
additionally harm the sensitive electronics of the 3-DP. Therefore, it is recommended that these systems be 221 
placed on emergency power or UPS. Heated extrusion printers often rely on the onboard fans for adequate 222 
cooling. Improper fan function may cause damage to internal printer components which are not apparent to the 223 
user if exposed to a temperature greater than 230° C. This may give rise to defects, failed prints, and the second 224 
order effects of wasted material, labor, maintenance costs if the manufacturer used fluorinated hydrocarbon-225 
based materials for thermal breaks. Bioprinting laboratories should consider the effect of power interruption on 226 
the completion of batch processes (e.g. cell cultures and bioinks) to avoid jeopardizing intermediate and final 227 
products. Finally, automated testing systems require clean electric power and continuous operation to ensure 228 
quality control measures. Table 1 provides a summary of the electrical codes and standards laboratories should 229 
adhere to for particular countries. 230 
 231 

Codes and Standards AU EU US 

Installation AS/NZS 3000 IEC 60364 NFPA 70 (NEC) 
Industrial Machinery AS/NZS 3000 IEC 60204 NFPA 79 

Table 1: Electrical codes and standards for pharmaceutical plants from Australia (AU), European Union (EU), 232 
and United States (US). 233 
 234 
 235 
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 236 
 237 
4. Procedural Safety 238 
Adequate “policy” of the lab’s power outlets dedicated to the printers, is necessary as non-familiar staff may 239 
plug in non-critical components into the UPS’s circuit. Therefore, battery depletion prior to effective back up 240 
time or circuit overload can occur since the UPSs often have a lower output rating than non-UPS circuits. 241 
Another common pitfall is not “tagging out” these outlets or making them physically inaccessible to avoid 242 
depletion by non-essential equipment. As such, we recommend adequate signage at the entry of the labs 243 
prohibiting external devices or unplugging existing devices without the consent of the lab supervisor. It is also 244 
recommended that individual plugs be labelled with the following details: the plug’s sustained amperage, 245 
service panel location for the plug’s respective breaker, if it is dedicated to a UPS or a 3-DP, and color coded to 246 
indicate whether it is UPS-backed outlet, line filtering only, or can be used as a standard plug.  247 
 248 
The most common cause of problems and outages is the result of improper power system and equipment 249 
grounding. These failures occur from poor design and installation of power systems, rather than failure of power 250 
systems themselves. New 3-DPs require proper electrical grounding to avoid safety incidents, which often stem 251 
from coupling equipment from different manufacturers [24]. Grounding of equipment not only mitigates the risk 252 
of electrical shock to lab staff in the event of an electrical fault but also reduces the risk of stray electrical charge 253 
such as static discharge e.g. “static shock” or electromagnetic interference (EMI) that damages sensitive 254 
electrical components. A ground bus bar should have the shortest distance to the grounded devices to minimize 255 
the length of the ground wire and therefore its resistance. The ground bus bar’s location should be easily visible 256 
by lab staff to enable ease of periodic inspection of connections to guard against loose or damaged ground 257 
straps. Sensitive electrical equipment to EMI often has an attachment point for a grounding strap. Alternatively, 258 
the 3-DP manufacturer can recommend locations to install a proper chassis ground. Some 3-DP labs may be co-259 
located in a medical building that has high voltage devices (e.g. medical imaging devices and defibrillators). 260 
Care should be taken that the building’s earth ground is in good repair as these are often metallic rods installed 261 
during the building’s initial construction and may degrade over time.  262 

 263 
Another consideration is the proper allocation of demarcated physical space and electrical outlets for wet 264 
stations, which are becoming common place in 3-DP post-processing areas. Wet stations ideally should be in a 265 
dedicated portion of the lab demarcated for use of liquids.  Physically spacing non-ingress protected (IP) rated 266 
devices from fluids minimizes corrosion from the evaporation of volatile chemicals as well as decreases the risk 267 
of unintentional splashes or spills. Flooring should not be carpeted but rather a non-slip, non-absorbent surface 268 
which is tolerant to chemicals used in post-print processing (e.g. acetone, ethanol alcohol). The electrical outlets 269 
should be equipped with ground fault circuit interrupter variant (GFCI) which mitigate the likelihood of 270 
electrical shock from liquids.  271 
 272 
5. Vibration Isolation of the Printers  273 
Reducing vibrational effects is often overlooked for fused deposition modelling (FDM) printer installations. 274 
Facilities should identify potential vibrational sources (traffic, trains, turbulent airflow, people walking by, etc.) 275 
and consider taking vibration suppression measures [25]. Laboratory layouts should avoid placing printers near 276 
elevators, mechanical rooms, and heavily used pathways to further reduce vibration. Printers are also prone to 277 
inducing vibrations within the cabinetry they rest upon. If the printers are left undamped, vibrations can cause 278 
artifact in the ongoing print as well as other printers sharing the workspace. These vibrations are often caused by 279 
the jerk from sudden effector plate movements and are exacerbated by increasing printer speeds. These 280 
vibrations can have deleterious effects during the printing process especially if it induces harmonic resonance of 281 
the printer’s chassis. This results in significant amplification of otherwise imperceptible oscillations.  282 
 283 
Vibrations can be mitigated by installing the printers on a “floating surface” or mounting device. This is often 284 
accomplished by placing a vulcanized rubber mat between two solid surfaces prior to machine installation. 285 
Further damping can be accomplished by applying acoustic damping materials (ADMs) such as Dynamat to the 286 
chassis. Care must be taken to ensure that ADMs placement which will not interfere with the printer’s 287 
mechanical operation. ADMs should make contact with the printers manufacture or move the build plate as well 288 
as effector plate to all end limits to avoid mechanical interference. The material effectively converts vibration to 289 
thermal energy thereby providing further damping. Therefore, ADMs should be applied centrally to larger 290 
portions of the printer’s metallic exterior chassis. Another consequence of the aforementioned processes is 291 
reduction in acoustic dB within the lab. This provides a quieter work environment for lab staff especially during 292 
multiple printers operating, simultaneously. Acoustic and structural engineers can be consulted for further 293 
recommendations on laboratory design and vibration control methods. 294 
 295 
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6. Ventilation Requirements/Considerations  296 
Proper design for HVAC systems is essential for environmental control and active monitoring of AM clean 297 
room conditions (e.g. temperature, humidity, pressurization, and filtration). Isolating the 3-DP laboratory’s 298 
heating, ventilation and/or air condition system (HVAC) from the rest of the building is highly preferred as 299 
FDM printers can be significantly affected by ambient room temperature, humidity as well as air currents over 300 
the build space. Having a dedicated HVAC system for the medical 3-DP laboratory would be ideal, and the 301 
location of the controls should be mounted in a location that is accessible to lab staff. A 3-DP laboratory should 302 
be designated as a classified space under the International Organization of Standardization (ISO) 14644-1. 303 
Classified spaces are designed to reduce airborne contaminants below a certain threshold. In addition, classified 304 
spaces are more tightly controlled for temperature and humidity than the ambient environment. HVAC systems 305 
should also have redundancies since failure of adequate cooling/ventilation would often require lab staff to 306 
suspend printing operations. Additionally, by having dedicated HVAC systems for the laboratory the system can 307 
be designed to decrease ingress of dust/foreign materials through the utilization of high efficiency particular 308 
absorbing (HEPA) rated filters. Filter classifications can be found in the HVAC Systems and Equipment 309 
Handbook from ASHRAE. Pre-filters should be installed to decrease the particulates reaching HEPA filters. 310 
Filters should be changed per manufacturer’s recommendations. Most HVAC systems will not have HEPA rated 311 
filters, and therefore, will not adequately decrease aerosolized microparticulates that can cause premature failure 312 
of linear ball bearings. This may result in decreased tolerances and increased resistance. Increases in resistance 313 
can also negatively impact stepper motors, which subsequently increases current requirements and places 314 
greater strain on motor controllers. Decreased tolerance from mechanical wear permits excessive movement 315 
between the guide rods and linear ball bearings thereby decreasing print accuracy and increasing artifact. 316 
Inadequate filtration and airflow control can also cause contamination in bioprinting process. Sterile facilities 317 
should ensure unidirectional airflow and appropriate speed to move particles away from manufacturing or 318 
testing areas. Personnel flows should also be unidirectional to minimize the risk of contamination for 319 
bioprinting operations. Airlocks offer a physical solution to segregate areas, regulate airflow and control 320 
pressurization to further prevent cross contamination and ingress of contaminants in manufacturing areas. The 321 
U.S. FDA cGMP regulations are general for HVAC systems with regard to pharmaceutical products, however, 322 
we recommend ISO 5 (Grade A) standards for biosafety cabinets, ISO 6 (Grade B) for biomanufacturing clean 323 
rooms, and ISO 7 to 8 (Grade C/D) for support areas. Table 2 provides a summary of clean room environmental 324 
standards for different regulatory bodies. 325 
  326 
The air exchange rate or flow of a laboratory’s HVAC system is another consideration especially if working 327 
with materials that contain or release volatile solvents. In the case of metal printers, integral processes are in 328 
place which can decrease the amount of ambient oxygen. Air quality monitors should be considered/installed 329 
that measure harmful volatile organic compounds (VOCs) as well as the oxygen content in areas housing metal 330 
printers. Oxygen alarms at the entrance of the lab should be installed in these applications as many metallic 331 
printers operate in an inert atmosphere and this can lead to an oxygen deficient environment. To decrease 332 
VOCs, ventilation hoods should be appropriately placed and/or filtration systems such as IQ Air Chem filtration 333 
systems should also be considered. HVAC engineers should be consulted to design, optimize, and control 334 
laboratory conditions (temperature, humidity, air exchange, pressure) for new builds or modified spaces. 335 
 336 

EU Grade ISO (Standard) US Federal Standard Air Change per Hour 

A 5 100 600 
B 6 1,000 35 
C 7 10,000 25 
D 8 100,000 15 

Table 2: Clean room environmental standards 337 
 338 
7. Laboratory space and storage 339 
Prior to the construction of the laboratory, careful deliberation should occur when selecting certain types of 340 
printers and their particular space requirements. Space requirements will be influenced by the size and number 341 
of 3-DP, post-print processes, workspace for lab technicians, storage of printing materials and tooling, and 342 
clean/sterile workspaces. At the entrance of the laboratory space, there should also be signage communicating 343 
required safety placards, a diagrammatic layout of the lab space, and areas requiring special garments or 344 
equipment prior to entry (these areas can also be demarcated by high visibility tape/paint on the floor if physical 345 
barriers are not a viable option). Lab spaces will be quite different in a service provision laboratory which is run 346 
by technical staff compared to a university research space for example which may have a higher turnover of 347 
users, some of whom may initially not be adequately trained on equipment or aware of safety considerations. 348 
Swipe access is advised for all spaces and appropriate training should be delivered to ensure safe activity within 349 
the spaces before secure access is granted. 350 
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 351 
Within the lab space there should also be an inventory list documenting printer location and their respective SN 352 
or local network addresses. This information will often be inaccessible once the 3-DP is installed and will make 353 
troubleshooting more straightforward when contacting the manufacturer (many printers have this information 354 
within their settings, but this can become inaccessible if the printer has a failure of its onboard power supply or 355 
display screen). This information might also extend to paperwork covering maintenance dates, contact details 356 
for technical assistance and the owner or “super user” of the equipment who should be the first point of contact 357 
within the lab. Another important placard would contain a diagrammatic representation of the laboratory’s 358 
electrical layout, current power requirements of each of the 3-DP, and ancillary post-processing equipment. It 359 
should indicate the locations of the breaker enclosure and outlets, each outlet’s supplied voltage and maximum 360 
amperage draw, and the 3-DP’s location and its required voltage and amperage. At the breaker enclosure each 361 
breaker should list the 3-DP (if hardwired) and outlet that is supplied by the respective circuit and the circuit’s 362 
amp rating.  363 
 364 
If the lab contains hazardous materials, their quantity and location should be detailed at the entrance of the lab 365 
and in compliance with local safety/fire codes. These local safety/fire codes should be reviewed prior to the 366 
acquisition of the materials and often local fire departments have fire marshals/liaisons that can provide further 367 
guidance regarding local ordinance/registration requirements. In addition to the building’s previously existing 368 
fire suppression system, bespoke halon systems can be considered as their activation/use will not damage 369 
sensitive electronic equipment. Lab staff should also have scheduled/recurrent safety briefings on the 370 
laboratory’s safety equipment and its proper use.  371 
 372 
To ensure minimal unscheduled lab downtime, replacement parts and necessary tools for the 3-DP’s repair 373 
maintenance should be kept on site. There also should be procedures written for proper storage as well as which 374 
staff are allowed to perform the 3-DP repair/maintenance that is in compliance with the 3-DP manufacturer. 375 
These procedures help protect the device’s functionality and avoid violating any warranties/service contracts. 376 
 377 
8. Bioprinting aspects for a medical 3-DP laboratory 378 
8.1 Facility requirements 379 
Apart from the aforementioned requirements for an AM laboratory, there are many more to be satisfied for a 380 
3D-P laboratory dedicated to bioprinting. Bioprinting is defined as “the use of computer-aided transfer 381 
processes for patterning and assembling living and non-living materials with a prescribed 2-D or 3-D 382 
organization in order to produce bio-engineered structures serving in regenerative medicine, pharmacokinetic 383 
and basic cell biology studies” [26] and is considered an upcoming technology in the AM field. In bioprinting, 384 
living materials i.e. cells and other materials with a biological origin are employed.  385 
 386 
The facility requirements for bioprinting overlaps with modern biotechnology facilities in the pharmaceutical 387 
industry. Both should have distinctive areas for manufacturing and manufacturing support. Standard 388 
biomanufacturing areas include designated rooms or operational areas for media preparation, buffer preparation, 389 
cell separation, harvesting, and purification. Support areas in biotechnology facilities typically include a cell 390 
bank, quality control laboratory, weigh and dispense room, freezer room, and cold rooms. Facilities should have 391 
surface finishes that are durable, cleanable, functional, sustainable, maintainable, and cost-effective [27]. Design 392 
teams should create layouts using a process segregation approach to organize areas, their adjacencies, and the 393 
flow of personnel, material, equipment, and waste. This strategy mitigates contamination risk along with 394 
selecting clean space classifications for each operational area. Airlocks should be used to maintain area 395 
classification by allowing transition of people, equipment and materials without altering room pressurization. 396 
Laboratory managers should employ spaghetti diagrams, which visually represent the flow of materials and 397 
people to further eliminate process flows for redundancies and contamination risks. This section will focus on 398 
features unique to bioprinting laboratories compared to generic biotechnology facilities and clinical laboratories. 399 
 400 
It is crucial that any laboratory dedicated to bioprinting has a variety of facilities/equipment besides the 401 
bioprinters (manufacturing), including cell culture facilities (production) and microscopy equipment 402 
(monitoring). The facility should be designed so each of these activities has a dedicated space, and their 403 
cleanliness matches the safety risk outlined in current Good Tissue Practices (cGTP) Code of Federal 404 
Regulations (CFR) Title 21, Part 1271 and CFR 21, Parts 210 & 211. In addition, the FDA’s Guidance for 405 
Industry: Sterile Drug Products Produced by Aseptic Processing-cGMP and EU’s Annex 1 can provide greater 406 
detail on appropriate laboratory control [28,29]. Furthermore, operation of the equipment and the facility as a 407 
whole should be carried out by highly qualified staff with backgrounds in cell biology, materials science and 408 
bioengineering to cover all the unique sections in a bioprinting facility, which are discussed in detail below. 409 
 410 
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8.2 Quality Management Systems 411 
Advanced therapy medicinal products for human use (ATMPs) have different regulatory frameworks in the 412 
European Union and United States. In the EU, tissue-engineered products are governed by Directive 413 
2009/120/EC, whereas, the US is governed by Title 21 CFR 600-680. Table 3 summarizes the review by 414 
Oberweise et al., which provides a worldwide overview of regulatory frameworks for tissue-based products 415 
[30]. Biofabrication laboratories should familiarize themselves with their national standards before pursuing 416 
products intended for humans [24]. The purpose for current Good Manufacturing Practices (cGMP) and 417 
current Good Tissue Practices (cGTP) is to verify the purity, identity, viability, and stability of manufactured 418 
products throughout production. If there is an intention to implant anything biofabricated then establishments 419 
will need to implement a quality system to ensure compliance with cGMP and cGTP requirements as well as 420 
seeking FDA, CE or TGA approval for the final product. Quality Management Systems (QMS) assure product 421 
specification, ensure quality is maintained throughout its process and mitigates potential risk. QMS for product 422 
manufacturing is based upon a set of standards outlined in ISO 9001:2008. The International Conference on 423 
Harmonisation (ICH) adapted QMS standards specifically for the pharmaceutical industry [32]. QMS for cell 424 
therapies generally includes validations, quality control programs, quality assurance programs, and standard 425 
operating procedures (SOPs) that describe the activities in each category. Quality control (QC) monitors and 426 
reviews QMS of the starting materials, process, and product. Additionally, QC ensures testing and validations 427 
are executed and evaluates the associated documentation. For large operations, quality assurance (QA) units 428 
routinely audit records independent of the manufacturer to ensure all SOPs are adhered to and QC meet their 429 
criteria. Smaller facilities may manage QC and QA responsibilities by a single individual. A support laboratory 430 
should be devoted to QC/QA, and furnished with the necessary tests, processing equipment, and environmental 431 
controls. QC and QA provide surveillance for deviations (e.g. process changes, non-conforming specifications, 432 
or GMP non-compliance) and reports them for quality improvement and risk management. Diagnostics 433 
identifies the source of faults, and prognostics (continuous monitoring) is performed to detect early signs of 434 
structure, systems, and component decline. Before the final product can be used as a treatment, it must be 435 
formally cleared by the QA manager. Formal clearance is completed after reviewing batch records, deviation 436 
reports, QC testing, and monitoring records. 437 
 438 
Establishing documented evidence during the manufacturing process is a critical component according to the 439 
FDA’s Guideline on General Principles of Process Validation [33]. Documentation ensures a process will 440 
consistently yield a product meeting predetermined specifications and qualifications [33]. Validation entails 441 
planning specific tests and acceptance requirements in advance, which should be summarized into a protocol. 442 
Once a manufacturing process is validated, the process can be monitored continuously using statistical controls 443 
to achieve specific quality standards [34]. Bioprinter validation should be performed by the supplier or specialist 444 
to certify it is fit for purpose with periodic calibration described by the manufacturer [35]. Equipment should be 445 
stored in locations that do not interfere with airflow. Cleaning and maintenance of bioprinters should be 446 
performed using well-defined procedures and schedules [36]. Validation engineers specialize in documenting 447 
and executing protocols based on approved procedures and standards (ISO, IEC and FDA) and should be 448 
consulted for commercial development. Table 4 provides an overview of QMS and its core components 449 
(QC/QA and Validation). 450 

Tissue-Based Product Regulations 

Country Australia Canada EU Japan South Korea USA 

Regulatory 

Body 

The 
Therapeutic 

Goods 
Administration 

Health 
Canada 

European 
Medicines 

Agency 

Ministry of 
Health, Labour 

and Wealth 

Ministry of 
Food and Drug 

Safety 

The Food and 
Drug 

Administration 

Regulation 
ARTG & TGA 

1989* 

Food and 
Drugs 

Regulations 

EC No. 
1394/2007# 

Pharmaceuticals 
and Medical 
Devices Act 

Pharmaceutical 
Affairs Act 

PHSA section 
351 & 21 CFR 

1271^ 

Table 3: National regulatory bodies and regulations governing tissue-based products. 451 
*Australian Register of Therapeutic Goods and The Australian Government Therapeutics Goods Act 1989 452 
#European Commission Number 1394/2007 453 
^The Public Health Services Act section 351 and 21 Code of Federal Regulations 1271 454 
 455 

Quality Management System 

Quality Control Quality Assurance Validation 
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Facility monitoring 
Facility maintenance 

Equipment monitoring 
Materials management 

Tissue processing 
Packaging, labelling, delivery 

Surveillance, Diagnostics, 
Prognostics 

Document control 
Audits 

Batch release 
Clinical trials management 

Equipment 
Facilities 
Reagents 
Processes 

Table 4: Quality Management System 456 
8.3 Cell Production facilities  457 
Laboratories should maintain and update information data sheets listing specifications for all required 458 
materials to ensure bioprocess and product consistency. Batch records should document the development of 459 
patient material in each stage of manufacturing e.g. biopsy, shipping, and disposal in compliance with (21 CFR 460 
211.188) along with all equipment, reagents, and supplies used during their manufacturing [36]. 461 
 462 
In bioprinting, cells are often the most important/delicate component of any bioink. Therefore, cell culture 463 
facilities should be at the core of any bioprinting facility. Cell culture facilities should be tailored to the specific 464 
cell types used in the inks. For example, facilities that employ the use of cells isolated from primary tissue 465 
should have dedicated equipment for processing the obtained donor tissue and may involve a separate 466 
quarantine incubator and tissue culture hood to maintain isolated primary cells for screening of potential 467 
infection prior to cell expansion. The instrumentation of these facilities can vary as established isolation 468 
protocols can differ between different tissue types. Independent of the tissues processed, the facility requires a 469 
fridge to store cell culture media as well as a -20°C or -80°C freezer where growth factors and other media 470 
supplements can be stored over an extended period of time. Liquid nitrogen storage is essential for aliquots of 471 
expanded cells which may require freezing down to store for a later date. Furthermore, all of the facilities 472 
which are involved in the production of cells will need to comply with ‘good manufacturing practice’ (GMP) 473 
standards which is required for cell-based therapy approaches [37]. GMP is a quality system certifying that 474 
products are manufactured safely and consistently and to specified standards. 475 
 476 
With regard to biosafety, it is generally recommended that human and other primate cells are handled within 477 
biosafety level 2 (BSL2) facilities [38]. This requires the use of class II biosafety cabinets (BSC) throughout the 478 
facility. These BSC contain HEPA filters which filter the exhaust air from the cabinets. This air can be safely 479 
recirculated into the laboratory or directly exhausted to the outside. Such BSC are required to be tested and 480 
certified at least on an annual basis. Any biologically contaminated waste produced from a BSL2 facility needs 481 
to be decontaminated and the facility therefore requires instrumentation to do so. Autoclaving, chemical 482 
disinfection or incineration are common methods for decontamination but any validated method for 483 
decontamination can theoretically be employed [38]. 484 
 485 
While GMP and biosafety requirements are similar in many aspects such as the need for restricted access or 486 
mandatory personal protective equipment (PPE), they differ significantly with respect to ventilation 487 
requirements. While GMP facilities keep any contaminants out of the facility to protect the product (positive 488 
pressure against the surrounding environment), biosafety facilities require that the contaminants are contained 489 
within the facility to prevent the escape of materials to the outside (negative pressure versus the environment). 490 
To solve this problem, biosafety areas contained within a GMP facility can be put under positive pressure 491 
compared to the outside environment but at a negative pressure compared to the rest of the facility i.e. the GMP 492 
facility is at the highest pressure, the biosafety area at the second highest pressure and the outside is at the 493 
same or lower pressure as the BSL2 area [39]. The inward directional airflow needs to be maintained to ensure 494 
containment of the BSL2 facility within a GMP environment, hence redundant ventilation aggregates are 495 
required for backup should the first one fail. 496 
 497 
Depending on the tissue targeted in the bioprinting process, the size of the construct as well as cell density 498 
within the bioprinted construct (#cells/ml) can vary. However, generally a large number of cells are required 499 
for the creation of a bioprinted construct and large-scale culture systems therefore become important. Single-500 
use (disposable) bioreactors are usually employed for cGMP production approximating 2,000 L scale in 501 
clinical manufacturing, which simplifies the maintenance of an axenic environment for staff. Bioreactors 502 
require additional gases (e.g. N2, CO2, O2) to control conditions within the bioreactor. For anchorage 503 
dependent cells, a variety of methods exists, however, the stacked plate system as well as cell carriers in a 504 
spinner flask are considered most viable [40]. The number of cells produced within a certain time period needs 505 
to be considered when choosing the right incubators for the production facilities. 506 
 507 
8.4 Cell Preparation 508 
Cell characterization assessments should be performed on pre-production bulk cells to verify their identity, 509 
purity, viability, and safety [34,35]. In-process testing should be performed on samples during each critical step 510 
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of biomanufacturing. Viability tests are necessary to assess whether growth conditions are resulting in cell 511 
death [43] these tests include: Tryptan blue exclusion method, MTT assay, and live/dead assays. In addition, 512 
sterility assessments are required to prevent culture contamination by bacteria or fungus. Current GMP 513 
guidelines should be followed for all cell therapies. All cell cultures should occur within a clean room protected 514 
by a HEPA filter to eliminate airborne contaminants. Confirmatory sterility tests can be performed periodically 515 
on small amounts of cell batches during expansion [44, 45]. Commercial purposes require additional sterility 516 
tests from regulatory bodies i.e. Food and Drug Administration (FDA) or European Pharmacopoeia (EP) [46]. 517 
Inoculator or filtration methods are two common practices to confirm sterility [47]. Viral contaminants can be 518 
detected using Enzyme-linked immunosorbent assay (ELISA). These processes ensure no impurities are 519 
transmitted to patients. Medium fill simulation should be used to certify aseptic status at each stage of the 520 
manufacturing process [48-50]. 521 
 522 
8.5 Cell Monitoring Systems – environment and microscopy 523 
Commencement of a process operation requires verification from the QA team that a process room has passed 524 
documented sterility testing, which includes sampling room surfaces for microbial organisms and particles. 525 
GMP recommends using both contact and settle plates (e.g. tryptone soya or Sabouraud agar) for monitoring 526 
bacterial and fungal contamination. Settle plates test for the number of microorganisms deposited by air within 527 
cleanrooms, while contact plates test for the number of microorganisms on any surface within the cleanroom 528 
[32]. Requirements for contamination control are summarized in Table 5. Air circulation should also be 529 
monitored using an air sampler at high pressure inlets. Building automation systems (BAS) and their sensors 530 
play an important role in environmental control and should be validated, periodically. BAS should be 531 
supplemented by manual monitoring to detect any faults in the automated system [32].  532 
    533 
To monitor the quality of the cultured cells and the bioprinted constructs, a 3-DP laboratory would require 534 
specialized facilities which can be used to examine and characterize the manufactured cells and tissues. Whilst 535 
these processes may be done manually, there are advantages to using automated systems that can replace the cell 536 
culture media. Some advanced systems may also contain plate readers for biological assays and have the 537 
capability to take brightfield or even fluorescent images. Both methods can be used to track the progress of the 538 
tissue maturation and determine the appropriate time to release the manufactured tissue to be implanted into the 539 
patient. Automated cell culture systems have a relatively large footprint, but their advantage lies in minimizing 540 
the required manual manipulations which, apart from imparting increased reproducibility, also reduces health 541 
and safety risks associated with tissue culture. Several classes of image analysis software have been developed 542 
to keep pace with automated microscopy, specifically, companion packages (e.g. MetaMorph—Molecular 543 
Devices, Elements—Nikon), commercial programs (e.g. Imaris—Bitplane), and open-source packages (e.g. 544 
CellProfiler, Icy, KNIME, ImageJ/Fiji) [51]. Laboratories should consider the advantages and drawbacks when 545 
selecting image processing tools. As one of the goals of bioprinted tissues is to make the tissues patient-specific, 546 
standard protocols might not be suitable with respect to timelines and constant monitoring of the tissue 547 
maturation would require dedicated staff to do so. Furthermore, most automated systems are optimized for 2-D 548 
cell culture and the evaluation of the 3-D bioprinted constructs might still require dedicated and highly skilled 549 
technicians to perform the monitoring.  550 
 551 
Confirming cellular phenotype is an important step to avoid cellular dedifferentiation during cell expansion. 552 
Immunophenotyping and immunohistochemical analysis are two preferred techniques to identify phenotypic 553 
properties and determine if the cells are healthy or abnormal [52]. If the chosen cell type can be clearly 554 
identified through surface markers, fluorescence assisted cell sorting (FACS) is an excellent method to assess 555 
the identity of all the cells within a population. Genomic assessments can also be performed using quantitative 556 
PCR, karyotyping, fluorescent in-situ hybridization (FISH), telomere length assay, or beta-galactosidase 557 
quantification. PCR arrays systematically screen numerous genes to ensure cells retained their desired 558 
phenotypes [53]. Karyotyping can detect chromosomal instability or fragmentation that may accrue in cell 559 
cultures [54, 55]. Telomere length assays and beta-galactosidase identify cell senescence that may limit their 560 
proliferative capacity in bioprinted structures [56, 57].  561 
 562 
Deep learning methods performing cellular image analysis using low-resolution images can now be 563 
implemented via open-source convolutional neural networks (ConvNets), such as CellProfiler and Cell 564 
Cognition Profiler [58,59]. ConvNets have shown proficiency in identifying cells within mixed populations 565 
along with individual phenotypes. Microscopic images with poor resolution or low signal-to-noise ratio can be 566 
restored in real time using a combination of deep learning and content-aware image restoration networks [51]. 567 
Thus, downstream analysis is improved and allows microscopes to operate at higher frame rates, lower light 568 
intensities, and shorter exposures [60]. Some deep learning software packages can adapt to new cell types or 569 
imaging modalities more readily than others, so laboratories should consider these capabilities if their 570 
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laboratory intends to specialize or generalize their biomanufactured outputs [61]. Implementing automated 571 
process monitoring systems can improve phenotypic assessment accuracy and reduce time devoted by staff 572 
towards visual inspection. To effectuate computer vision for phenotypic profiling, laboratories must develop 573 
algorithms or use commercial off-the-shelf software tools for cell segmentation, feature extraction, feature 574 
selection, dimensionality reduction, and cluster or classify resultant profiles [62,63]. Segmentation algorithms 575 
execute edge detection, region growing, thresholding Markov random fields or machine learning to distinguish 576 
cells from their environment [64]. Large-scale datasets examined in biofabrication laboratory settings should 577 
use high-performance algorithms since they take less time to run [65]. Feature extraction algorithms derive 578 
morphological and textural attributes from the microscopic images and the previously mentioned image 579 
analysis packages can perform this function [66]. Next, the feature selection algorithms sort useful features 580 
from uninformative features. After selecting useful features, laboratories can implement supervised learning 581 
(e.g. classification) or unsupervised learning (e.g. clustering) methods to categorize phenotypic profiles. 582 
Intelligent systems are now being used to automate large-scale phenotypic screening procedures by combining 583 
reflection-based autofocusing microscopes with machine learning platforms (Micropilot, Cellprofiler Analyst) 584 
[51,64,67]. A crucial step in computer vision is image pre-processing for improving image quality such as 585 
image denoising, deblurring and image normalization [63]. The normalization matches the fundamental visual 586 
features (e.g. resolution, color distribution, denoising, range of intensity values, and de-blurring) for each image 587 
to improve the cell profiling [68-72]. Image registration enables visual analysis from heterogenous image 588 
sources or different acquisitions of the same image modality. Images also undergo data augmentation which 589 
transforms images via cropping, rotations, mirroring, and flipping to increase the quantity and diversity of 590 
training data for machine learning algorithms. Other reviews are available that concentrate on deep learning and 591 
computer vision techniques for cell image analysis [72].  Finally, cell sorting is an important but time-592 
consuming task during cell culturing and prior to selecting cells for inclusion in bioinks. Intelligent image-593 
activated cell sorting (iIACS is a machine-intelligence technology allowing real-time automated operation for 594 
sorting of specified cells [73]. A guide is available detailing how to design, build, and use an iIACS machine, 595 
which requires a microfluidic chip, a cell focuser, a microscope, a speed meter, specialized optics, an image 596 
processor, neural network and a cell sorter [73]. Constructing a cell sorting system will require expertise in 597 
optical system design, digital system design, image processing, microfluidic chip design, sensor-actuator system 598 
construction, and flow cytometry experimentation. 599 
  600 
Data processing time is a computational bottleneck for implementing automated cell image analysis. Groups are 601 
aiming to address this problem with one group developing a deep learning program (e.g DenseDeconNet) that 602 
achieves a 50- to 160-fold increase in image deconvolution for optical microscopes [74]. Implementing deep 603 
learning methods for cytology analysis can lead to improvements in quality assurance for biospecimen selection, 604 
enhance reproducibility, and improve specimen quantitation [75]. Laboratories should be aware of these process 605 
improvements when designing their image analysis workflows. As previously mentioned, computational 606 
constraints may be encountered with deep learning image analysis such as insufficient dynamic random access 607 
memory (DRAM) [76]. This may require laboratories to use multiple GPUs for processing large batch sizes or 608 
reducing batch sizes while training the algorithms. Advances in GPUs and/or introducing cloud computing can 609 
alleviate this bottleneck. In summary, cellular and tissue biomanufacturing will require extensive online process 610 
monitoring via microscopic and sensor monitoring to achieve consistent and predictable quality standards [77]. 611 
 612 

Grade 
Settle Plates,  

cfu/4 hours 

Contact Plates, 

cfu/plate 

Air Sample, 

cfu/m3 

A <1 <1 <1 
B 5 5 10 
C 25 25 100 
D 50 50 200 

Table 5: Limits for Microbial Contamination (EU cGMP Annex 1)—colony-forming units (cfu) 613 
 614 
8.6 Manufacturing facilities – the bioprinters  615 
Depending on the type and capabilities of the bioprinter employed for the tissue manufacturing, different safety 616 
precautions need to be set in place with regard to the PPE and warning signs. Personnel entering ISO 5/6 (Grade 617 
A/B) areas should remove outdoor shoes and clothes put on sterilized gloves, hood, coveralls, shoe covers, face 618 
mask and safety glasses. Clothing requirements for clean rooms can be found in IEST Recommended Practice 619 
(RP-CC-003.2) and EU Guidelines. Common safety hazards around a bioprinter include moving parts, high 620 
pressure (extrusion bioprinting), lasers (e.g. stereolithography printers and laser induced forward transfer 621 
bioprinters [78] and ultraviolet (UV) radiation. Most of these hazards can be controlled by placing the printers in 622 
a biosafety cabinet which needs to be closed for the printer to operate. Some bioprinters are already designed 623 
and integrated within biosafety cabinets to maintain sterility, many of these bioprinters have been reviewed 624 
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extensively in terms of their capabilities [79-82]. Video cameras independent of the bioprinter cameras should 625 
be installed to monitor the printing process. Independent cameras are akin to flight data recorders, which 626 
provide a performance record should the prints fail, abruptly. 627 
 628 
Bioink development and optimization of printing parameters [83] is an iterative process and does not need to 629 
adhere to the same GMP standards as the final tissue printing process. An ideal bioink should possess scalable 630 
features relating to hydrogel design, printability, and biological outcomes. Hydrogel design should exhibit a cell 631 
friendly gelation behavior, cytocompatibility and a homogenous distribution of components. Printability 632 
generally includes rheological requirements and shape fidelity but is further constrained by the specific printer 633 
platform. For example, extrusion bioprinting assesses bioinks for extrudability and filament formation where 634 
lithographic printing would assess for photo curing and light penetration depths. Finally, a bioink needs to 635 
ensure proper cell viability, proliferation, and differentiation. Rheological requirements (e.g. viscosity, shear 636 
thinning, yield stress, elastic recovery) describe deformation and flow behaviors of materials under applied 637 
forces [84]. These physicochemical parameters have the largest influence on hydrogel printability. While, shape 638 
fidelity refers to shape retention ranging from single filaments to geometric properties in planar and 639 
multilayered constructs. 640 
 641 
As it has been established throughout literature [36][77], there is no such thing as a universal bioink. This makes 642 
bioink requirements dependent on printer technology, application and tissue, which forces ongoing development 643 
of novel bioinks. The bioprinting process complicates bioink development, since these activities often have 644 
different (and opposite) material requirements during the printing process compared to the final printed 645 
construct. Embedding cells into bioinks further complicates bioink properties by disrupting cross-linking 646 
efficiency and changing viscoelasticity [85]. Apart from the difficult bioink development process, the translation 647 
of bioprinted products is currently also limited by poor reproducibility of printing processes as well as limited 648 
bioink availability. Many laboratories are introducing novel quantitative tests, qualitative tests, and predictive 649 
models for mainly extrusion-and lithography-based bioprinting [86]. These issues have been extensively 650 
covered by Schwab et al. and laboratories would benefit from measuring the parameters listed in their review to 651 
evaluate bioink printability and create more consistent protocols. Laboratories should implement standardized 652 
testing protocols to characterize rheological and morphological properties in bioinks both with and without cell 653 
inclusion [87]. Laboratories can also review ASTM/ISO guidelines for tensile measurements for bioinks, which 654 
can help yield more consistent results.  655 
 656 
Laboratories can install an open source platform that automates the manufacturing of bioinks thus improving 657 
their reproducibility and throughput [88]. The open source workstation enables automated pipetting of materials 658 
with validation and verification by absorbance measurements. This platform is modular and can easily be 659 
customized to adapt to laboratory needs or changing research requirements. Laboratories should consider 660 
installing this platform to convert their operation to high-throughput production. It is also highly recommended 661 
to have a second bioprinter installed with the exact same configuration as the printer intended for tissue 662 
manufacturing. The purpose of the secondary printer is to optimize printing parameters via benchmark models 663 
and test novel bioinks for their printability. Although many ink properties related to printability and shape 664 
fidelity can be determined using rheological analysis [45][89], others, such as the extent of die swell or time 665 
dependent changes during the printing process, are best assessed by directly performing the printing procedure. 666 
By using two bioprinters, it is assured that all the optimization and development happens on one printer while 667 
the second printer in the GMP environment is limited to the use of optimized ink and processes. The use of the 668 
second printer is therefore minimized, and with it, the risk of contamination or potential equipment failure. 669 
Machine intelligence has been used to find relationships between rheological data and predict printability 670 
outcomes for extrusion-based printers [90]. Developers used these tools to improve bioink design and these 671 
techniques could be advanced to minimize trial and error testing for bioink development. 672 
 673 
One of the important aspects to consider when installing a bioprinter in a manufacturing line is that the 674 
bioprinter is installed within a BSC so that the printing of the tissue constructs can be performed under sterile 675 
conditions. Ideally, the room containing the bioprinter is within the BSL2 containment but in another location as 676 
to separate cell production from tissue bioprinting. Bioprinter parts which are in contact with the cells and the 677 
bioink need to be sterilizable or come as sterilized one-time use products. Different suppliers of bioprinters 678 
pursue different approaches to the sterilization problem. Some printers are comprised predominantly from 316L 679 
medical grade stainless steel which can be sterilized in an autoclave. Other parts, usually tips or cartridges for 680 
extrusion bioprinting, are inexpensive and commonly intended for single use. If sterilization of the printer is 681 
performed via UV-sterilization within a BSC cabinet, attention needs to be paid to which of the surfaces are 682 
actually exposed to the UV radiation and which ones are not. If a pressure dispensing system is utilized for the 683 
printing, medical grade sterile air filters need to be put in place to ensure that the pressurized air is sterile.  684 
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 685 
Many commercially available printers come with an optional camera. These cameras can be utilized for quality 686 
control purposes to monitor ongoing print processes and document the final product. Such setups can also be 687 
used to ensure reproducibility over extended periods of time. This is specifically relevant for bioprinted 688 
constructs that are not patient-specific, such as devices utilized for in vitro testing. Quality assessment for 689 
patient specific bioprinted constructs on the other hand is more difficult to perform as each printed construct is 690 
unique. This would require constant monitoring of the print using a camera to assess the fidelity of each printed 691 
layer and how it compares to its CAD equivalent. Currently there are no commercial printers offering such 692 
setups, although multiple bioprinting companies are seeking to integrate these features with future printers [91, 693 
92]. In addition to bioprinters whose end goal is to print sterile constructs containing living cells, most 3D-P 694 
laboratories would benefit from the inclusion of other variations of 3D-P which may be used for creating 695 
anatomical models, non-implantable scaffolds for research purposes and drug screening, and have the ability to 696 
print  lab consumables and spare parts for laboratory equipment. These technologies have been extensively 697 
reviewed [93] and are summarised in Figure 1, typically bioprinting would fall under the classification of an 698 
extrusion-based 3D-P approach. 699 

 700 
Figure 1. Illustrations of some common polymer 3D-P techniques which fabricate an object in a layer-by-layer manner. Top 701 
left: Fused deposition modeling (FDM); A molten polymer is extruded through a nozzle and onto a print-bed in order in a 702 
controllable manner to produce a series of stacked 2D patterns which make up the final 3D object. Top center: Selective 703 
laser sintering (SLS); A fine layer of polymer powder is coated onto the print area and a laser is used to sinter or melt the 704 
powder onto the layers below. After sintering/melting each layer, another layer is coated on top and the process repeated to 705 
build up a 3D object. Direct metal laser melting is a similar process that fuses layers of metal powder instead of polymers to 706 
produce 3D printed metallic objects. Top right: Stereolithography (SLA); A laser or projector selectively polymerizes a 707 
layer of liquid resin into the desired pattern. The laser/projector is either located above a vat of liquid resin in which case 708 
the polymerized layer is lowered into the vat or located below the vat where the completed layer is raised, resulting in the 709 
polymerizing of multiple layers to build up an object. Lower left: Extrusion 3D-P; Similar to FDM, a 3D object is produced 710 
layer-by-layer by selectively extruding the material from a nozzle using either pneumatic or mechanical means. The 711 
extruded material can be polymerized in various ways such as two-part polymerization or photopolymerization. Lower 712 
center: Binder Jetting; Similar to SLS, binder jetting binds layers of powdered polymer through selective extrusion of a 713 
liquid binder material (adhesive). After each layer is bound, another fine layer of powder is coated on top and the process 714 
repeats. Color additives can be included into the binder liquid to enable color full-color 3D-P. Lower right: Material 715 
jetting; Liquid resin is selectively extruded onto the top layer of the print area and then photopolymerized. The polymerized 716 
object is lowered and the process repeated layer-by-layer. Advanced implementations of this method involve multi-nozzle 717 
extruders capable of selectively depositing several different polymers prior to photopolymerization to enable differential 718 
control of the final material properties throughout the 3D printed object. “Reproduced with permission” statement need to 719 
go here after permission has been obtained for use of this figure from the publisher – Advanced Materials via the Copyright 720 
Clearance Centre) [94]. 721 

8.7 Bioprinting Monitoring Systems 722 
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Translating bioprinted products to the clinical setting requires careful control of printing parameters and cell 723 
viability. A major focus in bioprinting is establishing the printability of a bioink and the final mechanical 724 
properties of the printed constructs [95]. However, emphasis has shifted towards upscaling, repeatability and 725 
print fidelity, as printed constructs will need to be verified if they are to reach the clinic and be implanted into 726 
the patient. This requires adequate validation in the form of production batches to prove consistency of 727 
manufacturing process for the final product. Multiple batches will also be required to ensure product stability 728 
during specific storage and shipping conditions [96]. Additionally, printing processes will need to be recorded 729 
and optimized, and the results from the prints will need to be monitored. While verification and validation 730 
processes are common in the medical device industry and 3D-P, the growth of 3D bioprinting is making these 731 
processes more challenging as each single printed construct is unique to the patient. Online monitoring and 732 
recording during the printing process of each bioprinted construct would offer a potential solution to this issue. 733 
For example, Kang et al. used quantitative image analysis to determine print accuracy for selected geometries in 734 
3D printed constructs [97]. Apart from the geometrical fidelity between the CAD design and the final printed 735 
construct, monitoring systems also need to be put in place to evaluate the conservation of the cells’ phenotype 736 
and their viability after the printing process to ensure the safety of the printed construct. It has been shown in the 737 
past that these cell parameters can be affected during the printing process [98-101] and long-term monitoring 738 
might be required during the cell and tissue maturation process in the bioreactor to ensure the cells in the printed 739 
construct fulfill their intended role. This could include the analysis of soluble factors within the culture media 740 
produced by the maturing tissues or microscopical and spectroscopical analysis with label free methods such as 741 
second harmonic generation or FT-IR. Non-destructive machine learning approaches have been developed to 742 
automate cell profiling within 3-D scaffold architectures [102]. Moreover, emerging spectroscopy using 743 
artificial intelligence is an acceptable method for automated quality monitoring of stem cells and engineered 744 
tissue products [103,104]. Another non-destructive characterization method is the use of quantitative ultrasound 745 
to monitor cell growth and tissue formation [105]. Implementing these monitoring systems can reduce 746 
processing times and ensure product standardization. 747 
 748 
Machine intelligence has been applied to bioprinters in several studies to optimize process parameters including 749 
gas pressure as it relates to droplet number, size and position [106,107]; nozzle distance, voltage, and stage 750 
moving speed associated with cone modes [108,109]; fine-tune drop on demand printing [110]; and spheroid-751 
based bioprinting [111]. Machine intelligence has yielded enhanced printing resolution by optimizing printing 752 
parameters based on shape fidelity features (e.g. layer adhesion, layer fusion, and pore infill stemming from 753 
construct collapse) [112]. These platforms require high-speed cameras, an LED light source, and computer 754 
processing. Biomanufacturing laboratories should automate process control systems as they become 755 
commercially available. Newer bioprinter models will begin incorporating real-time process monitoring and 756 
parameter adjustment into an all-in-one system for convenience [91,92]. Image analysis should be performed 757 
using images generated from microscopic evaluation. Commercial (e.g. Amira, Imaris, and Volocity) and open-758 
source (ImageJ, Cell Profiler, Icy, V3D) software are commonly utilized for microscopic image processing and 759 
analysis to quantify cellular proliferation or profile cells [113]. Bioprinter accuracy can be calculated from light 760 
microscope images by measuring the dimensions (in pixels) of structures using ImageJ. In the future, these 761 
processes can be automated in real-time using high-resolution optical and laser technologies to capture features 762 
linked to discontinuities or defects [114-117]. Optical coherence tomography (OCT) is a readily available 763 
technology that can accommodate quantitative testing for morphological features such as filament size, surface 764 
area, pore size, porosity, and pore volume. OCT is one of the earliest proposed techniques for real-time 765 
monitoring [118,119]. Algorithms are already in development that adjust the printing process with OCT analysis 766 
[110]. Deep learning OCT image processing is developing in the field of ophthalmology that laboratories can 767 
model their algorithms for bioprinting applications [120,121]. Laboratories should be prepared to update their 768 
hardware and integrate their bioprinters with intelligent systems to minimize operator error, accelerate print 769 
times, and ensure accurate prints [111]. 770 
 771 
8.8 Post processing 772 
Post processing is an important step for biofabrication and varies with fabrication methods and tissues 773 
laboratories develop. Laboratories should be aware of these requirements and procedures. For instance, 774 
lithography-based bioprinting may require more light exposure for curing. The post-bioprinting stage also 775 
includes conditioning constructs with nutrients and metabolites to promote tissue maturation. Failure to do this 776 
is a major reason for construct failure. Many laboratories use bioreactors (spinner flask, hydrostatic, flow 777 
perfusion, strain, compression) to create the proper conditions to support tissue constructs. Bioreactors are tissue 778 
and application specific, however, all bioreactors serve the purpose of providing the immature tissue with the 779 
right mechanical and biochemical cues to develop into the final tissue engineering product. The size and the 780 
complexity of such bioreactors can vary from small benchtop devices to larger instruments used to mature 781 
multiple tissue engineering constructs at the same time. Therefore, the special requirements of the bioreactor 782 
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will highly depend on the type of tissue the bioprinting facility is focused on. Another important factor that all 783 
bioreactors share is that they need to be easily assembled and sterilizable to be considered suitable for a 3D 784 
bioprinting facility. An automated system, which is able to exchange the cell culture media, would limit the 785 
manual manipulations required during tissue maturation and may contribute to a higher reproducibility. 786 
Therefore, such systems should be taken into consideration independent of the type of bioreactor and might be 787 
advantageous during cell production as well. Construct shrinking or swelling can occur in postprinting 788 
processing and laboratories should account for this when designing their bioinks and when performing 789 
postprocessing procedures. Laboratories can consult other articles focusing more on this topic [122]. 790 
 791 
9. Multitechnology Bioprinting 792 
Multi technology bioprinting is able to blend complementary fabrication technologies into a single platform for 793 
delivering high-throughput functional tissue constructs as described by Castilho et al. who have detailed the 794 
latest examples of multitechnology biofabrication [123]. Future bioprinters will combine multiple printing 795 
techniques described in Figure 1 to fabricate constructs with enhanced cell distribution, more accurate 796 
biomimetic microstructures, and improved biomechanical functionality without compromising cell viability 797 
[124-126]. Next generation bioprinter systems will also co-opt complementary fabrication technologies (e.g. 798 
computational modelling, machine intelligence, and smart manufacturing) for real-time process monitoring and 799 
manufacturing tissue structures with enhanced functionality. To actualize previously mentioned semi-800 
autonomous monitoring systems and tissue construct complexity, laboratories should consider the following 801 
section into their laboratory plans. 802 

9.1 Mathematical Modelling in Tissue Engineering and Biomanufacturing 803 
While monitoring is a requirement to verify parameters such as printing fidelity, and printing parameter optimization, 804 
achieving this fidelity is still performed in a reductionist iterative manner. To minimize operational costs, material waste and 805 
experimentation, advanced manufacturing facilities are moving towards design of multiscale, multiphysics modelling. 806 
Computational modelling has been used to predict component interactions, optimal filament dimensions, hydrogel 807 
properties, cell viability, along with printing parameters for AM processes [127-129]. For example, the power law and 808 
Herschel-Bulkley model are reliable tools for predicting bioink printability for initial screenings [89,130]. Such models 809 
could eliminate wasteful and costly trial and error activities that plague bioink development. Digital design is a process that 810 
generates 3D models using computer software and simulates their biomechanical performance. It encompasses numerous 811 
parameters, including multiscale architecture, hydrogel composition, and biomaterial interactions. At the molecular level, 812 
computational modelling plays an important role in understanding positive feedback-based switches determining cell fate. 813 
As an example, engineers have used toggle switch models to control transcription factor expression in mammalian cells 814 
[131]. At the cellular level, cellular automaton models have also been valuable in the computational analysis of stem cell 815 
variations in differentiation for different subpopulations in cell cultures [131]. Tissue-based models (e.g. reaction-diffusion, 816 
proliferative, and activator-inhibitor models) have also been useful in predicting tissue growth rates, cell numbers, and 817 
complex pattern formation [133-135]. Many simulation programs exist (COMSOL, MATLAB, Simul8, ANSYS, Abaqus, 818 
Mathematica etc.) to optimize these parameters, and each facility should select the program based on their preferences, 819 
printing setup, and the intended property to simulate [136]. Facility managers should ensure their computer system 820 
requirements correspond with their intended simulation software. Researchers have used this approach to isolate parameters 821 
impacting printability [137,138]. For example, one study generated viscoelastic rheology and surface tension models using 822 
IPS UBOFlow to simulate bioink deposition and material shape [138]. Another study utilized Abaqus for mechanical 823 
simulations and ANSYS for permeability simulations to optimize scaffold topology [137]. Eventually, biomanufacturing 824 
tissue engineered products will require complex process simulation modelling key inputs (materials, operating parameters, 825 
equipment, labor resources) with expected outputs (material properties, energy balances, cycle times, process scheduling, 826 
throughput analysis etc.) to standardize production. This will allow manufacturing plants to promote lean solutions focused 827 
on computational efficiency, streamlining production, eliminating waste, cycle time optimization, production scheduling, 828 
and reducing potential bottlenecks [139-141].  829 

Another class of mathematical modelling that is trending now is predictive modelling, which forms the basis of machine 830 
learning and deep learning programs. Predictive modelling is the process of forecasting outcomes by uncovering 831 
relationships between data using powerful computers and model building software tools and platforms such as (JMP, 832 
WEKA, R, CRAN, Keras, Scikit-learn, Apache Spark, Google AI (Artificial Intelligence), IBM Watson, AWS, etc.). This 833 
forms the basis for the automated cell monitoring and bioprinting monitoring systems in previous sections. To effectively 834 
execute predictive modelling, data must be collected then undergo quality assessment (curation) to avoid detrimental data 835 
manipulation in later stages. Data quality assessments demand formalized systems of annotation (feature categorization), 836 
deduplication (similarity detection), data imputation methods, and outlier detection [142-145]. Data discretization methods 837 
can further reduce recording errors [146]. Laboratories can select from a range of supervised (regression analysis, Bayesian 838 
models, decision trees, neural networks, SVMs) [147-151] and unsupervised algorithms (e.g. K-means, hierarchical 839 
clustering, spectral clustering, and etc.) [152-154]. After constructing predictive models, they must undergo training and then 840 
performance evaluation to validate their outputs. A variety of cross-validation methods exist including leave-one-out [155], 841 
leave-P-out [156], k-fold [157], stratified k-fold [158], and repeated k-fold [159]. Predictive modelling has been instrumental 842 
in many areas affecting tissue engineering including biomaterial design, gene-editing, predicting cellular responses to 843 
biomaterial surfaces, designing scaffold properties, optimizing process parameters, automating phenotypic screening, and 844 
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predicting bioprinted construct performance [160,161]. Laboratories should look to integrate computational and predictive 845 
modelling to streamline the tissue fabrications bioprocesses. 846 

9.2 Data Ecosystem and Cloud Manufacturing 847 
Advanced manufacturing is beginning to develop big data ecosystems to create new applications related to 848 
product development, production, and business activities [162]. Specifically, the emergence of cloud computing, 849 
data science, and artificial intelligence has made it possible to integrate manufacturing knowledge with big data 850 
for automating quality control processes, decision making systems, predictive modelling, supply chain 851 
management, job scheduling, storage and retrieval systems, and sustainability [163,164]. This marriage between 852 
advanced manufacturing and information technologies is known within industry as smart manufacturing. 853 
Massive data will be generated during biofabrication which may include—patient records, manufacturing 854 
reports, pheno-genomic data, scaffold designs, medical imaging, microscopic imaging, process parameters, 855 
sensors, etc [165,166]. These data can eventually be leveraged as training data to develop deep neural networks 856 
for automating and monitoring manufacturing processes. Biomanufacturing tissue products effectively requires 857 
Internet of Things (IoT) for manufacturing, which integrates sensors, cameras, and machines (“things”) into 858 
cloud data centers. IoT supports bidirectional communication among plant machines resulting in real-time 859 
delivery of high-value information during manufacturing. Monitoring and predicting key performance indicators 860 
(KPIs) can be performed automatically and in real-time using cloud computing for assessing production 861 
processes, identifying opportunities for improvement, and sending alerts. Smart inventory also allows materials 862 
and products to be tagged and tracked for easy localization and inventory management. Previously mentioned 863 
quality monitoring systems can be managed by cloud computing services to minimize labor costs. Nanosensors 864 
and biosensors are emerging for real-time and non-invasive inline monitoring of stem cell-based products [167-865 
169]. Paired with the advances in bioreactors and future bioprinters, this technology can provide feedback 866 
controls for controlling important environmental conditions (e.g. temperature, CO2 and O2, pH, humidity) during 867 
stem cell expansion, printing and tissue maturation phases [170].  As an example, research groups are working 868 
on automated setups that provide label-free and real-time monitoring of metabolic parameters such as pH and 869 
oxygen levels within 3-D bioprinted constructs [171]. Laboratories should look to integrate these sensors into 870 
IoT to create more robust quality systems.  871 

With the advent of sensors and cloud computing, robotic cloud laboratories are beginning to emerge in the 872 
pharmaceutical industry and offer greater experimental control and process execution for smart manufacturing 873 
[172]. This is achieved using robotic workcells, which automate lab instrumentation (pipetting robots, reagent 874 
dispensers, PCR applications, etc.) and lab infrastructure (custom-modified freezers, refrigerators, incubator 875 
units) and integrate them using software and automated storage and retrieval containers for streamlining and 876 
scaling protocols [172]. Robotic cloud labs can be controlled remotely and minimize the variables contributing 877 
to poor reproducibility rates such as mismanaged reagents and materials, contaminations, and poorly defined 878 
protocols [164]. In addition, digitally connected plant units simplify facility management by notifying of device 879 
deviations from prescribed parameters, and plant unit variations (e.g. temperatures, vibrations) [173]. Real time 880 
analysis can be performed on data collected from storage environments, samples, and instruments using sensors 881 
[171]. IoT sensors can also track and categorize bioprinted products awaiting delivery according to duration-of-882 
stay policy [173,174]. Production flow monitoring and inventory management eliminate unnecessary work and 883 
reduce production variability by helping managers oversee the work in progress, available materials, and 884 
estimated time of arrival for incoming materials [175]. Installing a robotic cloud laboratory is recommended for 885 
commercial biofabrication centers looking to make productivity gains. Safety can also be improved using low-886 
cost sensors (e.g. gas, radiation) to measure exposure within the facility, alert workers to hazardous materials 887 
and reinforce safety compliance among personnel [176]. Lastly, asset tracking is crucial in the healthcare 888 
environment, because it ensures the right product gets to the right patient. Many health systems employ Radio-889 
Frequency Identification (RFID) tags to identify, record, and monitor the movement of products through their 890 
manufacturing lifecycle. RFID labelled objects can be localized by deploying battery-powered beacons 891 
systematically throughout the facility for room-level discernment. Active RFID tags and QR codes can be 892 
printed by handheld printers to label incoming shipments and/or packaged therapies for verifying their location 893 
and that they reach the correct destination. Integrating employee smart phones into the cloud servers provides 894 
advanced solutions for localizing objects and broadcasting alerts to users. These capabilities are enhanced by 895 
improving localization algorithms and system accuracy should be tested with LIDAR. Additionally, RFID tags 896 
can also be IoT-enabled and monitored within the cloud server for their positions and environmental conditions 897 
as well. Administrators can search the cloud web interface for asset information, position, and manufacturing 898 
lifecycle. Laboratories can presently install cloud enabled, asset localization packages with the aforementioned 899 
features [177].  900 
 901 
To realize the potential of smart manufacturing, a cyber-physical system (CPS) architecture will need to be 902 
developed that assimilates the physical laboratory components (e.g. bioprinters, robots, sensors, computers, and 903 
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interconnecting devices) with the software components (e.g. machine learning algorithms). This process can be 904 
performed via four enabling technologies: Data, Analytics, Platform, and Operations technologies [178]. Data 905 
Technologies (DT) allows IoT devices and manufacturing devices to interact, resultant data to be transferred 906 
from the factory floor to the cloud, and bilateral communication between cyberspace and the physical-space. 907 
IoT devices require basic internet infrastructure (Wi-Fi, 3G/4G/5G, National Broadband Network) and typically 908 
possess plug-and-play functionality. The devices capture data and communicate via cloud services. Platform 909 
Technologies (PT) consist of the hardware and software architecture that enables big data analytics (collection, 910 
storage, analysis, and visualization) and its delivery for enterprise applications [178]. Biofabrication laboratories 911 
can choose stand-alone, cloud, and/or edge configurations for their platform. Stand-alone databases include 912 
RDBMS [179], No Structured Query Language (NoSQL) [180], and NewSQL [181]. These categories refer to 913 
the programming languages and models utilized to communicate with the database. Cloud computing services 914 
are now hosted by large companies such as Amazon, IBM, Apple, Google, Microsoft, Alibaba, and Facebook 915 
for commercial data storage. Cloud data centers have an advantage over stand-alone configurations since they 916 
provide essentially unlimited computing power without significant investment in computational processing and 917 
storage infrastructure [182]. This greatly reduces expenditures on maintenance and hardware for in-house 918 
information technology infrastructure. Laboratories should consider combining their cloud services with edge 919 
data centers for more efficient data processing and laboratory control. Edge data centers provide increased 920 
processing and storage capacity locally without processing from the centralized cloud data center. This 921 
minimizes communication delays and unnecessary data transfers, while maintaining access to the remote cloud 922 
data center for more complex analysis. Data managers will need to consider their bandwidth and energy 923 
efficiency when uploading to remote cloud data centers. This can be achieved by taking advantage of cloud 924 
services at the edge (smart gateways) and network function virtualization solutions [183].  925 
 926 
Analytic Technologies (AT) implement the techniques described in the previous section to process data using 927 
models that improve operations [184]. Computation and data-driven modeling generate analysis results which 928 
can be visualized and used to produce user-friendly visualizations reports for prognosing and diagnosing minute 929 
variabilities during production. Operations Technology can then recognize the process variabilities and correct 930 
them by enabling machine-to-machine communication and collaboration. Analytics is the process of extracting 931 
information from data. This process employs two separate methods—1) data mining and machine learning 932 
algorithms and 2) On-Line Analytic Processing. Operations Technology recognizes these process variabilities 933 
and corrects them by enabling machine-to-machine communication and collaboration. Selecting the appropriate 934 
computation framework for optimal processing speeds is crucial for analytica technologies. These options can 935 
include Hadoop, Spark, Flink, and Storm on High-Performance Computing systems for batching, micro-936 
batching, and streaming varying volumes of data. Commercial cloud data centers provide these computational 937 
frameworks on their platforms. Operations technology (OT) is the final step for cloud manufacturing and 938 
requires AI algorithms to implement [178]. Enabling technologies (DT, PT, AT, OT) form the architectural 939 
foundation for the Industrial AI System (see GE Predix, Siemens MindSphere, IndustrialAi). Resources are 940 
available for laboratories wanting to scale to an Industrial AI system. The Center for Intelligent Maintenance 941 
Systems (IMS) is a resource for many members developing Industrial AI and Big Data Analytics. IMS has 942 
developed a collection of intelligent software tools (Watchdog Agent®) that can monitor equipment for 943 
performance, diagnose faults, and predict and prevent failures. LabVIEW by National Instruments is a system-944 
design platform and developmental environment that many manufacturers use to automate hardware, testing, 945 
measurement, and control systems. The VI Package Manager by JKI allows developers to download and 946 
manage LabVIEW Add-ons. Building a CPS Platform for smart manufacturing will require programmers and 947 
application designers to generate an architecture for specific manufacturing needs. Simulation is an important 948 
aspect for architecture design because it integrates hardware more effectively for particular applications, models 949 
data and control flow, enables capacity planning, reviews energy requirements, and evaluates performance 950 
metrics. Popular simulation programs have been reviewed in previous studies [185]. Biofabrication technology 951 
is still in its infancy and biological products, bioprinting equipment, robotics, and sensors need to mature before 952 
cloud manufacturing can be considered. That being said, this highlights a need for developments and 953 
laboratories should design their biofabrication spaces with these developments in mind. 954 
 955 
An obvious downside to using cloud data centers is encountering privacy and confidentiality conflicts when 956 
uploading sensitive healthcare data. Administrators will need to maintain compliance with regulations (e.g. 957 
GDPR, HIPAA, etc.) prior to uploading any biomedical data to the cloud. A workaround to this problem is to 958 
make use of unique identifiers to protect patient identities and sensitive information, thus enabling the 959 
laboratory to take full advantage of the advances in data analytic tools. Cloud computing service providers are 960 
also willing to form HIPAA business associated agreements (BAA) to share exposure risk with medical 961 
facilities. As a general rule, the minimum necessary should be uploaded to the cloud (e.g. data minimization 962 
rule), and uploading derivative data is preferred over source data [186]. Another option is for laboratories to 963 
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install their own private server and create their own analysis workflows using platforms that operate 964 
independent to public cloud services [187]. Laboratories would lose the advantages of cloud service capabilities, 965 
but lower liability concerns by uploading biomedical data to private servers. 966 
 967 
9.3 Data Protection, Cloud Security, and IoT Regulations 968 
Biofabrication laboratories in hospital or medical technology company settings will work with large volumes of 969 
personal data. Article 12 of the Universal Declaration of Human Rights [188] and Article 8 of the European 970 
Convention on Human Rights [189] provide the foundation for the regulatory systems found in Europe and 971 
USA. Figure 2 provides an overview of data regulations adopted in other countries. Hospitals and large 972 
healthcare systems should aim to establish a robust data governance framework to effectively process data for 973 
cloud manufacturing. A data governance framework consists of sequential operations that correspond to a 974 
particular phase of data processing. These phases include data protection, risk management, sharing, quality 975 
control, and analytics (Medical Data, Sharing, and Harmonization). At the protection stage—data must be de-976 
identified followed by standardized audit trails. Directive 95/46/EC of the European Parliament and of the 977 
Council requires the assignment of strict roles such as data subject, recipient, controller, processer, and the data 978 
protection officer [190]. The data controller conducts risk management and establishes security levels to protect 979 
sensitive data from breaches. Data processors oversee data controllers and determine the appropriate level of 980 
access for processing personal data. Both data controllers and processors develop codes of conduct governing 981 
data collection, sharing, and processing [190-192]. Lastly, Data protection officers (DPO) are legal personnel 982 
with expertise in data protection laws and policies. DPO are responsible for monitoring compliance according to 983 
government regulations [191]. In the United States, The Health Insurance Portability and Accountability Act 984 
(HIPAA) is the legislative regulation providing national standards for protecting healthcare electronic medical 985 
records and transactions for healthcare providers. Healthcare settings should have internal systems already in 986 
place to be compliant with HIPAA standards. These internal systems and procedures will likely need to adapt 987 
these frameworks to encompass data sharing, QC, and data analysis functions.  988 
 989 
Cloud consumers should be informed and versed in their national cloud security guidelines. This ensures 990 
laboratories remain compliant with government standards when selecting security objectives, security controls 991 
and performing security assessments with providers. Specific to cloud computing regulations, several entities 992 
outline best practices for data security. Figure 2 lists the guidelines for cloud providers to tailor their services for 993 
laboratory operations (e.g. CSA, IEEE-SA, ENISA, NIST, ISM etc.) [193-197]. Cloud Security Alliance (CSA) 994 
outlines cloud provider responsibilities and the relationship between the providers and end users. The CSA has 995 
legal entities in Asia Pacific, Europe, and USA and is seen as a world leader in cloud security regulations. Cloud 996 
computing possesses a layered architecture made up by a hardware/IaaS layer (e.g. CPU, RAM, etc.), back-997 
end/PaaS layer providing the development environment for creating the applications and services, and front-998 
end/SaaS layer – the cloud-based applications and services [198-207]. CSA defines the security measures for 999 
each layer. For example, CSA recommends Software Defined Networking (SDN) within the IaaS layer as 1000 
opposed to Virtual Local Area Networks (VLANs). SDN provides security isolation and supports multiple users 1001 
(or tenants) using the same IP address via physical network segregation [208], whereas VLANs are more widely 1002 
used for single-tenant networks [193]. CSA advises two conventional methods for storage security, specifically, 1003 
Network-Attached Storage and Storage Area Network to encrypt storage units and prevent exposure [209]. 1004 
Vulnerability testing will need to be performed, routinely. Static Application Security Testing (SAST) and 1005 
Dynamic Application Security Testing (DAST) should be used in combination. DAST checks for web 1006 
vulnerabilities for API executions, while SAST scans for API calls and credentials to prevent system damage. 1007 
Cloud Access and Security Blockers, IP filtering, and Data Loss Prevention are all viable options for 1008 
continuously monitoring cloud API connections [210,211]. These cloud-based security brokers monitor user 1009 
activities to enforce security policies, prevent malware, and alarm administrators of dangerous actions. 1010 
Multifactor authentication is the preferred form of user authentication for all layers within the cloud [212]. 1011 
Cloud service providers should perform these security procedures as part of their service. 1012 
 1013 
With regard to IoT standards, there is not a single authoritative regulatory body that laboratories can refer to at 1014 
this time. Industrial IoT generally refer to a variety of regulatory and standards groups contingent on the type of 1015 
industry. Figure 2 provides an overview of the standards and regulations laboratories should consult before 1016 
deploying cloud computing and IoT systems. Laboratories should also be aware of transformative technologies 1017 
(e.g. blockchain, machine learning) on the horizon that may strengthen data protection strategies [213,214]. 1018 
 1019 
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 1020 
Figure 2. Industrial Security Standards: Left panel lists organizations providing cloud security guidelines. Right panel 1021 
provides industrial security standards for IoT systems. 1022 
 1023 
9.4 IoT Security 1024 
IoT platform security for local laboratories must focus on functionality (e.g. secure boots, key storage, 1025 
cryptographic acceleration) and assurance (e.g. validating that functions work as intended). Laboratories will 1026 
need to implement cybersecurity measures to protect IoT devices, intellectual property, networks, and the data 1027 
acquired during manufacturing [215-217]. IoT can be divided into three distinct layers: application, network, 1028 
and perception layers [218]. Security issues (see Figure 3) must be designed within the architecture of these 1029 
layers. Securing IoT architectures must account for a large population of IoT devices, their ability to interact 1030 
(communicate) with one another and with humans, and their relatively shorter life cycles (high turnover). These 1031 
features make IoT systems more vulnerable to cyber-attacks [219,220]. Lab developers setting up IoT platforms 1032 
should review resources that describe common threats encountered at each architectural layer and strategies to 1033 
neutralize them [221-223]. Cryptography is a tool that shields data using a process of authentication, encryption 1034 
and decryption. Cryptography algorithms and their keys (e.g. secret value) convert data into cipher text 1035 
(encryption key) and the key-holder allows data to be converted back into plain text (decryption key). A 1036 
message-authentication code (MAC) with an authentication key can be sent through the internet to prove that 1037 
senders and recipients are legitimate and not impersonators. This allows data to be stored and transferred across 1038 
legitimate senders/recipients (confidentiality), while keeping out intruders (integrity). Commercial laboratories 1039 
should consider the cost of cryptography when deploying IoT systems for cloud manufacturing. Cryptography 1040 
contributes to the overhead in the areas of memory, storage, computation, and network bandwidth. 1041 
Cryptosystems have different trade-offs associated with them including diverging memory size, code size, 1042 
storage size, and the ability to scale (increase the number of interacting nodes) [224]. Cryptosystems also have 1043 
varying financial footprints with symmetric-key (secret-key) being the least, asymmetric key (public-key) 1044 
moderately so, and certificate-based asymmetric cryptography having the most weight. Selecting between 1045 
secret- and public-key cryptosystems narrows preferred cryptographic algorithms laboratories will likely 1046 
implement. Secret-key systems typically employ Caesar cipher, Block cipher, AES (advanced encryption 1047 
standard), and DES (Data Encryption Standard) algorithms [225]. Whereas, public-key systems predominantly 1048 
use elliptic curve cryptography (ECC) [226], Diffie-Hellman, and Rivest-Shamir-Adelman (RSA) algorithms 1049 
[227]. Many IoT standards prefer ECC algorithms over RSA for their smaller key sizes. Quantum computers 1050 
will pose a greater security threat for cryptosystems when they become more common [228]. However, it is too 1051 
early to determine which quantum-safe algorithms will become industry favorites. Laboratories can be confident 1052 
that symmetric cryptography is sufficient for IoT, with doubling key sizes being the most feasible deterrent to 1053 
quantum computers [229]. Novel encryption and signature algorithms are currently being developed to prepare 1054 
for a post-quantum world including: code-based encryption [229], lattice-based encryption [230], lattice-based 1055 
signatures [231], multivariate-quadratic-equation signatures [232], hash-based signatures [233], isogeny-based 1056 
cryptography [234], and Kuperberg’s algorithm [235]. A major component in IoT system security for 1057 
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biofabrication laboratories will be the digital surveillance system (DSS). DSS will likely include the camera 1058 
systems mentioned in cell production (e.g. microscopy), biomanufacturing facilities (e.g. bioprinting cameras), 1059 
and storage unit cameras. These cameras are vulnerable to attacks and IoT security systems need to be 1060 
established [236-238]. Network architectures should separate video data from other traffic using a protected 1061 
VLAN. This does not encrypt the data, rather it creates a separate logical segment within the network for video 1062 
traffic. Tags can be applied to the camera devices so that they share the same cabling with the network 1063 
architecture. This would limit potential attackers to that device without exposing the entire data network.  1064 
 1065 
IoT platforms must anticipate and accommodate IoT device key sizes, key infrastructures and cryptographic 1066 
algorithms. The Open Connectivity Foundation (OCF) (see https://openconnectivity.org) is providing industry 1067 
with IoT interoperability standards and architecture for connecting devices regardless of operating system, 1068 
manufacturer, or chipset. IoTivity (see https://iotivity.org) is an open source reference that laboratories can 1069 
access to design their IoT frameworks according to OCF standards.  1070 
 1071 
System abstractions are logical representations of the set of physical devices comprising the IoT system. IoT 1072 
devices are physical equipment, while IoT nodes are their logical abstractions. The core framework layer 1073 
defines the abstraction model in the OCF architecture and contains built-in resources for security, permissions, 1074 
identity, data transmission, data management, and device management. The OCF security architecture oversees 1075 
three main features: encryption, access, and device lifecycle management. A variety of cryptographic algorithms 1076 
are supported on the OCF architecture including symmetric, asymmetric and certified asymmetric. Effective IoT 1077 
system management will entail device lifecycle management and requires rigorous inspection, configuration, 1078 
updating, and proper decommission. Decommissioning ensures sensitive data (e.g. keys and credentials) are 1079 
erased from the device. IoT system scalability can more easily be achieved by selecting flexible cryptosystems 1080 
and designing adaptable IoT frameworks (e.g. middleware layers supporting IoT applications). IoT architects 1081 
should document the principles, architecture, and connectivity choices when designing the IoT system to 1082 
simplify maintenance and updates. Laboratories can experiment with other IoT frameworks (e.g. Universal Plug 1083 
and Play, AllJoyn, Lightweight Machine 2 Machine, etc.) beyond OCF depending on their preferences. 1084 
Blockchain architecture is being developed and incorporated into Industrial IoT/CPS applications [239]. 1085 
Blockchain provides advanced cryptography, decentralized data sharing, more efficient data storage, and built-1086 
in cryptocurrency support [240]. Laboratories should be aware of these developments and the security issues 1087 
unique to blockchain architectures [241]. 1088 
  1089 
Lastly, computer system validation (CSV) consists of procedural hardware and software tests to confirm 1090 
consistent operation of AM systems. Smart manufacturing also requires regular network testing to verify its 1091 
stability under normal and high load. Printed products are directly related to the processing software of the 1092 
printer and the automated systems governing the manufacturing process [242]. ISPE GAMP 5 offers a set of 1093 
guidelines for meeting cGMP regulations in these areas. In general, electronic records are another concern, and 1094 
the FDA and Europe EudraLex provide rules and recommendations for proper management [243, 244]. The 1095 
electronic records and signatures are considered equivalent to paper records. Computer systems and networks 1096 
should be evaluated to ensure their accuracy, reliability, consistent performance, and their capability to 1097 
recognize invalid or altered records (21 CFR 11.10). Standardized procedures should be used when creating, 1098 
modifying, maintaining, or transmitting electronic records to certify their authenticity, integrity, and 1099 
confidentiality (21 CFR 11.30). Annex 11 requires IT infrastructure to be qualified and data should be protected 1100 
by physical and electronic means. Laboratories should validate these applications no matter they use their own 1101 
server infrastructure or outsourced cloud platforms. 1102 

 1103 
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Figure 3. IoT Architecture of Security: IoT Application layer provides users with specific services along with their 1104 
corresponding support layer for each application. The Network layer connects devices and divides into local, core, and 1105 
access networks. The perception layer is the physical layer with their information sensors. Each layer identifies components 1106 
making up the security architecture. 1107 

9.5 – The Hospital of the Future 1108 
The types of Biofabrication technologies that will exist in the Hospital of the Future will be driven by the 1109 
marriage of such diverse disciplines ranging from advanced medical scanning, virtual and augmented reality, 1110 
machine learning and 3D scanning modelling and printing. This unique multidisciplinarity dictates a special 1111 
workforce skillset encompassing medical physicists, clinicians, materials engineers, big data experts, gamers, 1112 
mechatronics and roboticists, biologists and health economics experts. This workforce must connect and 1113 
communicate to push technology towards commercialisation, a critical gateway for Biofabrication technologies 1114 
to see application in the clinic. The 3D-P Biofabrication laboratory is key to this vision and Universities are key 1115 
players to upskill and train the next generation of Biofabrication technical staff and researchers. Alongside these 1116 
facilities and workforces, the clinical teams should be well integrated to ensure that clinical problems can be 1117 
well defined from the outset and commercialisation opportunities would ideally be supported within nearby 1118 
spaces to take novel inventions from bench to bedside. The concept of having patient consultations with 1119 
biofabrication active clinicians who are embedded within such a facility provides opportunity for rapid solutions 1120 
using advanced imaging, modelling and printing and brings the technology ever closer to point of care 1121 
manufacturing which is the holy grail of 3D printing in healthcare. 1122 
 1123 
A Hospital of the Future vision might incorporate the following spaces for Biofabrication research to deliver 1124 
bench to bedside solutions for patients suffering tissue loss (Figure 4) [245]. The critical space is of course the 1125 
3-D printing and Biofabrication area which could span both floors including bioprinting to be located close to 1126 
the cell biology and cell culture facility and generic 3D printing and associated workshops which are on the 1127 
floor above, connected through a staircase. To ensure connectivity and creativity open and collaborative spaces 1128 
for researchers, clinicians, students, industry partners and spin outs will be located in the central innovation hub. 1129 
Co-lab spaces will house technology spin outs. 3D scanning using advanced medical imaging as well as optical 1130 
scanning will be located closely to the patient interface zone where clinicians will have patient consultations and 1131 
the patients are able to enter and leave the facility with a degree of discretion. The institute space should also be 1132 
educational and support university students and high school students to undertake cutting-edge projects within 1133 
the facility as well as being a hub for industry events and networking to enable partnering opportunities and 1134 
exposure for early stage technology investment. 1135 



22 
 

 1136 
Figure 4. Floorplans of hypothetical biofabrication institute indicating the various zones. 1137 

10. Other Considerations 1138 
Local jurisdictions will not only affect the building requirements the biofabrication facility has to fulfill, it will 1139 
also impact what sort of a regulatory framework the bioprinted product will have to comply with. Depending on 1140 
where the product is sold and utilized, classification of bioprinted products currently vary widely. The 1141 
regulatory bodies historically classify therapeutic products according to their use, which can be a medical device 1142 
(classic example would be a hip implant), a pharmaceutical compound (a drug) or biological medical device 1143 
(cell implant) [246]. Bioprinted constructs do not often fit into a single category and might be a medical device 1144 
(the material scaffold), a pharmaceutical compound (releasing a drug) and a biological medical device 1145 
(containing cells) at the same time. While in Australia the Therapeutic Goods Administration (TGA) would treat 1146 
bioprinted products as a so called “borderline” or a “combination” treatment [247], in the US the FDA would 1147 
classify them as a “combination product” [248]. In the EU on the other hand, bioprinted products might fall into 1148 
one of several categories of so called “Advanced Therapeutic Manufactured Products” [249]. Operators of a 1149 
biofabrication facility and manufacturers of the bioprinted products are well advised to consider the ever-1150 
changing regulatory landscape in the field of bioprinting and consult current guidelines relating to what 1151 
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classification their intended bioprinted products would fall into [250]. For a more in-detail analysis on how the 1152 
regulatory frameworks would apply to the bioprinted products we refer the reader to dedicated reviews on the 1153 
topic (246,251).  1154 
 1155 
Amid all the regulatory, technical and logistical challenges a 3D biofabrication laboratory poses, with every new 1156 
technology, ethical questions are also undoubtedly raised. These questions vary from the source of the cells used 1157 
in the printing approach to what happens with the final printed product. While autologous cells from the 1158 
patients’ own body might not raise ethical questions [252], other cell sources such embryonic stem cells (ESCs) 1159 
already do [253]. With the advent of human induced pluripotent stem cells (hiPSCs) [254,255], the ethical 1160 
issues have seemingly been bypassed, but not without presenting the scientific community with a new set of 1161 
ethical concerns such as abnormal reprogramming, tumorogenicity, human cloning or the production of human 1162 
germ cells [256]. On the other end of the biofabrication production line, we need to have a discussion about how 1163 
we could potentially use these newly bioprinted products. While full organ printing might be a long-term goal, 1164 
an early agreement of what is an acceptable use for these products would be beneficial for acceptance of the 1165 
technology; could they be simply used to replace a diseased organ, or could we use them to enhance humans 1166 
such as athletes or soldiers, effectively creating super-human power? How often can we replace a diseased 1167 
organ i.e. when does it become unethical to prolong a human life beyond its natural lifespan?  While 1168 
biofabrication is an exciting technology which has the potential to save human lives, researchers in the field are 1169 
already faced with these challenging questions [257-259]. It is vital for the creators of a 3D biofabrication 1170 
facility to pay close attention to public perception to ensure transparent and accurate science communication 1171 
creates a safe and innovative space, rather than one shrouded with secrecy or hype. Importantly, it is critical to 1172 
ensure robust data, peer review and ethical work standards are enforced for optimal clinical outcomes. None of 1173 
this is driven by technology advances, it relies heavily on scientific expertise, culture, collaboration and creating 1174 
the right teams who are united in the single vision, in their pursuit of Biofabrication excellence to always strive 1175 
to improve patient quality of life. 1176 
 1177 
Tissue engineering overlaps with many of the prominent ethical conversations today such as privacy concerns 1178 
(big data) and medical ethics as it relates to healthcare access, and the ethics pertaining to electronic repairs. As 1179 
mentioned in previous sections, precision medicine and biofabrication will require obtaining personal data from 1180 
a patient to customize products for their condition. This data will include traditional forms of data collected in 1181 
electronic medical records along with new forms such as genomic data and tissue samples. These data will be 1182 
collected more readily and may be vulnerable to cyberattacks and unethical sharing. Big Tech and genomic 1183 
firms have faced cyberattacks or committed such violations with user statistics collected from their platforms. 1184 
The maturation of blockchain technology may supersede the current cloud-based epoch and reestablish a 1185 
decentralized platform with privacy. Until then, tissue engineering organizations will have to navigate these 1186 
ethical tensions. Data sharing may be an impactful source to innovating the field of tissue engineering. The EU 1187 
BioSHARE Project developed an initiative known as the Framework for Responsible Sharing of Genomic and 1188 
Health-Related Data [260-263]. This initiative provides foundational principles for ethically sharing sensitive 1189 
data. Laboratories can look to this framework for guidance if no other alternative frameworks are available 1190 
locally. 1191 
 1192 
Similar to most new products, the cost of production depreciates over time as the company and industry 1193 
matures. The cost of production affects the market price, and ultimately the consumers who can afford them. For 1194 
example, the first car ever assembled was the steam-powered automobile in 1769 [264]. The first vehicle 1195 
powered by an internal combustion engine was 1803. The first gasoline-powered production vehicle was created 1196 
in 1885. Yet, the automobile did not become mass-produced until 1908 nearly 140 years after the first car. A 1197 
similar pattern is observed with the history of computers [265]. Public health ethics is focused on positive rights 1198 
[266], population health, disparities, inequalities [267], access [268], affordability [269] and has become the 1199 
dominant paradigm amongst most OECD countries [270]. Countries may accept disparities for certain 1200 
technologies, but it will be difficult for countries with public health systems to accept unequally distributed 1201 
technologies that greatly enhance quality of life or increase life expectancy (e.g. nerve regeneration and motor 1202 
function restoration, patient-specific organ transplants etc.). The field of tissue engineering will eventually enter 1203 
the cultural conversation on whether regenerative medicine services are a universal right or privilege (service). 1204 
New economic, business, legal, or ethical systems may have to be improvised until tissue engineered products 1205 
can be mass produced. 1206 
  1207 
Finally, the ethical concerns related to legislation governing the ability to repair and modify consumer electronic 1208 
devices is beginning to influence the 3D-P industry. Electronic manufacturers with large market shares in an 1209 
industry have a vested interest in protecting confidential trade secrets and other intellectual property [271]. 1210 
Many electronic manufacturers accomplish this by creating systems where repairs and repair parts can only be 1211 
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obtained from authorized vendors or the original manufacturers. Companies have been successful in lobbying 1212 
governments to create legislation that prevent consumers from repairing or tinkering with devices [271]. The 1213 
right to repair movement has grown out of these conditions and many large corporations have resisted. 1214 
Companies in several industries have used these tactics to drive up repair services for consumers and or 1215 
throttling the speed of their products to encourage product upgrades. 3D-P and other medical technology 1216 
companies have developed similar institutional practices to regulate software experimentation (experimental 1217 
licensing), mandating company technicians to repair printers, and manufacturing printers to be more modular 1218 
thus requiring entire subsystems to be replaced rather than the single damaged part to be replaced. These 1219 
developments have drastic effects on the cost of 3D-P activities, 3D printer lifespan, industry dynamism, and 1220 
opens 3D-P consumers to similar abuses found in other industries [272]. Laboratories with large investments in 1221 
commercial bioprinters should consider forming an escrow agreement to ensure maintenance of software or 1222 
hardware should the licensor go bankrupt or fail to update its product. Laboratories with smaller budgets can 1223 
avoid these costs up front by building their own 3D bioprinters using the instructions in the following resources: 1224 
McElheny; Kahl et al.; Kharel et al.; Lanaro et al. [273-276]. 1225 
 1226 
11. Conclusions 1227 
Many of the recommendations listed as part of this review are the product of prior pitfalls experienced while 1228 
establishing a medical 3-DP lab. These pitfalls are often known to engineers and professionals working at 1229 
industrial labs which have previously been the home to such technologies. However, given the recent decreases 1230 
in cost of technologies, as well as interest from the medical and educational communities in 3D-P, it is 1231 
important to develop a set of guidelines and best practices for those individuals not familiar with setting up such 1232 
technologies within a new facility. By addressing potential pitfalls in a systematic way as outlined in this 1233 
review, one can implement the appropriate procedures and decrease the risk and cost of preventable equipment 1234 
failure, while “future proofing” biofabrication laboratories for eventual upgrades in 3D-P technology.  Table 6 1235 
summarizes many of these recommendations for professionals engaged in planning and designing biofabrication 1236 
laboratories. Laboratories should consider the cost of implementation, cost of ownership (maintenance and 1237 
operation), ease of implementation, and scale of implementation before investing in any strategy. Firms in 1238 
academic, community, or commercial environments will have different priorities and abilities to invest in a 1239 
given laboratory capacity. For sustainability, laboratories should prioritize their investment in market proven 1240 
technologies with widespread adoption. Many inexperienced laboratories will invest heavily into the latest 1241 
equipment generation (e.g. bioprinter, microscope, bioreactor, etc.) with short product lifecycles without 1242 
considering the appropriateness of the facility needing to support it. Finally, laboratories should consider the 1243 
ease of transition before investing in any given technology. For instance, laboratories with FDM printer 1244 
expertise will find the transition to extrusion-based bioprinters much easier than SLA/SLS printing technology. 1245 
Laboratories can avoid incurring tremendous costs for training and additional equipment by considering these 1246 
issues. 1247 
 1248 
We anticipate the hospital of the future will develop revolutionary technologies that will transform healthcare to 1249 
deliver highly automated, personalized, and customized patient solutions. These advances will provide lower 1250 
health costs, accelerated implementation of optimised clinical treatments, and deliver significantly better health 1251 
outcomes for individuals and society [245]. 3D-P plays a key role in this revolution, among these approaches; 1252 
biofabrication is a growing area of interest which requires specialised spaces, teams, organisation and culture to 1253 
realise the true clinical impact [245]. Advanced technology of 3D-P combined with advanced medical imaging 1254 
and modelling promises to produce patient-specific replacement tissue constructs and restore biological function 1255 
and health in a rapid, tailored manner. As an alternative approach to current bone grafting and permanent 1256 
implants, biofabrication combines the body’s own regenerative capacity with bioactive factors and 1257 
biodegradable biomaterials. These are formed into the complex shapes required to restore tissue form and 1258 
function [240]. Not surprisingly, the promise of biofabrication is driving significant research activity as teams 1259 
progress this new technology toward routine clinical use and the guidelines for establishing world-leading 1260 
facilities to support this promising new era become increasingly important. 1261 
 1262 
 1263 
 1264 
 1265 
 1266 
 1267 
 1268 
 1269 
 1270 
 1271 
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 1272 
Design Consideration Potential Pitfall Mitigation Strategy 

Site Regulations GTP compliance BSL2 Laboratory 

Power Considerations 
Energy inefficiency 

 
Emergency power system 

Power consumption devices 
 

Diesel Generator + UPS 

HVAC System 
Environmental control 

 
Inadequate filtration 

BAS + agar plating 
 

Pre-filter + HEPA filter 

Vibration Print defects Install printers on floating surface 

Microscopy 

Inadequate equipment 
Large-scale: Laser-autofocusing, confocal 
microscopy; small-scale: Phase-contrast 

microscopy 

Automated cell profiling  

Segmentation with CellProfiler, DeepCell, 
CDeep3M, U-Net 

 
Feature Extraction: CellProfiler, PhenoRipper, 

CellCognition  
 
Classification with CellProfiler, Micropilot, Cell 

Cognition Explorer 
 

Image Resolution: DenseDeconNet 

Cell sorting Intelligent image-activated sorting 

Bioprinters 

3D bioprinting system cost Build in-house 3D bioprinter units 

Print parameter optimization Test parameter settings with second printer 

Print contamination 
Perform trial runs on second printer. Final prints 

performed within BSC. 

Maintenance 
Develop bioprinter validation plans; 

Follow recommendations of manufacturer 

Quality Control 

Cell preparation 
SOPs, Cell characterization/sterility tests, and 

Batch records 

Bioink preparation Automated pipetting workstation 

Print validation 

 Shape fidelity: Microscopic & OCT Imaging  
 

Construct maturation: Spectroscopic analysis & 
Quantitative Ultrasound 

Post processing Automated bioreactor system 

Storage, delivery and tracking 

Automated Storage and Retrieval 
 

RFID Tags on products 
 

Cloud enabled asset localization 

Data Management 

Storage and processing Commercial cloud data centers 

Security 
Virtual-LAN Tagging for IoT devices 

 
Unique Identifiers for cloud data 

Table 6. Design considerations, potential pitfalls and mitigation strategies for bioprinting within a medical 3-DP 1273 
laboratory. 1274 
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