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Abstract— Minimally invasive surgery (MIS) offers many 

advantages to patients but it also imposes limitations on surgeons 

ability as no tactile or haptic feedback is available. From medical 

robotics perspective, visualizations issues specific to MIS such as 

limited field of view and the lack of automatic exposure control of 

the surgical area make it challenging when it comes to tracking 

tissue, tools and camera pose as well as in perceiving depth. 

Lighting plays an important role in 3D reconstruction and 

variations due to internal illumination conditions are known to 

degrade vital visual information. In this work, we describe a 

supervised adaptive light control system to solve some of the image 

visualization problems of MIS. Our proposed method is able to 

classify underexposed and over-exposed frames and adjust 

lighting condition automatically to enrich image quality. Our 

proposed method uses support vector machines to classify 

different illumination conditions. Visual feedback is provided by 

gradient information to assess image quality and justify classifier 

decision. The output of this system has been tested against two 

cadaver knee experiment data with an overall accuracy of 97.75% 

for under-exposed and 89.11% for over-exposed classes. 

Hardware implementation of this classifier is expected to result in 

adaptive lighting for robot assisted surgery as well as in providing 

support to surgeons by freeing them from manual adjustments to 

lighting controls. 

 

Index Terms— Intelligent Light Intensity Control, Support Vector 

Machine, Knee Arthroscopy, MIS, 3D Reconstruction, Robotic-

Assisted Surgery. 

 

I. INTRODUCTION 

Contrary to open surgery, minimally invasive surgery (MIS) 

scenes are observed through a miniaturized endoscopic camera 

inserted into the body through a small incision and only a small 
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region of the surgery scene becomes visible. Moreover, this 

procedure provides no haptic and tactile sensing hence, vision 

is the only source of information available to surgeons. In other 

words, surgeons have to operate on 3D surface based on 2D 

images projected on screen. This combined with a limited field 

of view adds further complexity to MIS as a surgical procedure. 

In recent years, many studies have aimed at increasing the 

accuracy for MIS [1-5]. It is usually well established that vision 

system plays an important role and robust vision is essential to 

avoid unintentional injury during MIS. Some recent studies 

suggest that simply extending the visualization of surgical area 

is able to significantly increase surgery accuracy and reducing 

operating time and 3D reconstruction of the surgical scene is 

desired to further improve surgical outcomes [1,6,7]. 

Furthermore, 3D reconstruction is expected to have a great 

impact on the robotic-assisted surgery, such as tissue - tool 

tracking, and pose estimation.  

Stereoscopic vision, simultaneous localization and mapping 

(SLAM) and photometric stereo are widely used to reconstruct 

3D surfaces along with the alternative methods such scanning 

technology [42,43,44,45,48]. All these methodologies often 

encounter difficulties primarily due to the complex optical 

nature of anatomic constructs and also due to the lack over the 

lighting control [1,48,49]. It is also true for other computer 

vision algorithms such as segmentation [50]. Additionally, 

different MIS process encounters different level of constraints. 

As an example, arthroscopy is limited to dimension constraints 

due to the lack of bone-joint space where laparoscopic MIS 

process can have a bit larger dimension. A small change to light 

intensity can lead to an image becoming over- or under-exposed 

and it is widely encountered problem in arthroscopy. Saturated 

image parts contain almost zero information, no features, and 

in situations like this stereo correspondence search converges 
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to an ambiguous result that lead to fail the whole reconstruction 

process. Partial reconstruction can be a possible solution when 

light intensity is changed to a lower value. Similar problem also 

arises when a scene contains low light intensity that is often 

marked as an underexposed or dark image. Apart from the 3D 

reconstruction process, other vision related approach such as 

segmentation and registration, localization and pose estimation 

also encounter same problems that causes the whole system to 

fail [1]. 

In conclusion, the light source or lighting condition has a great 

influence on the MIS vision enhancement procedures thus on 

the accuracy of the MIS procedure as a whole. Surgeons or 

robotic platforms require to have a stable vision of the internal 

surgery scene. Considering knee arthroscopy, the presence of 

the diffuser (water), the anatomical structure, and camera 

motion are the most common factors that restrict to have a 

constant light intensity. Moreover, the control system must 

respond as fast as possible due to the camera motion. To have a 

robust surgical vision this fundamental problem has to be 

solved. 

II. PROBLEM FORMULATION  

During a MIS procedure, often the vision system and tissues 

has to remain in a close proximity. Considering anatomical 

structure, in some MIS procedures such as in knee arthroscopy, 

tissues further away from the arthroscope often receive less 

light that causes formation of dark pixels (under exposed) 

whilst near objects encounter pixel saturation (over exposed). 

This situation is depicted in Fig.1. Although the overexposed 

and the underexposed events frequently occur in all MIS 

procedures, in current work this problem is analyzed in the 

context of the knee arthroscopy. The anatomical 

structures present inside the knee cavity are generally 

characterized to be consist of either bone or soft tissues.  

Considering curved bone structure and narrow spaces, 

different areas of a surgical scene could receive different levels 

of illumination; which result in over and under exposures. 

Example of this scenario is shown in Fig.2. Moreover, some 

tissues reflect more light than others. A representative example 

is the Anterior Cruciate Ligament (ACL) that often causes pixel 

saturation. In addition, the distal parts of the anatomy, e.g. bony 

joint structure, create a more complex situation as depicted in 

Fig. 1-(a) where some parts are shown to become over exposed 

and under exposed in the same frame. Generally, parts that are 

closer to the camera or arthroscope tip reflects more light. This 

leads to an interesting scene visualization problem. While the 

total scene intensity may remain the same, increasing the light 

intensity saturates the closer pixels and decreasing light 

increases underexposed problem for the distant parts. 

Automatic methods to balance both over exposed and under 

exposed fractions with minimum frame loss are therefore much 

desired. These types of scene or anatomical regions of the knee 

model requires balanced lighting condition that minimizes total 

amount of underexposed and overexposed region or requires an 

adjusted lighting condition based on the priority of that region 

according to the clinical needs. Hence, it is essential to ignore 

the parts having less priority. Additionally, for 3D 

reconstruction using stereo cameras, we have noticed that 

changing light intensity above what is generally considered a 

normally exposed scene can further improve the depth 

estimated by stereo arthroscope. 

Lighting control plays a critical role in MIS visualization. 
Light intensity is controlled manually and surgeons have to 

adjust light intensity multiple times that interrupts with the 

surgery process flow. Conventional endoscopic camera systems 

mostly provide monocular vision. Monocular image saturation 

is a relatively simple problem than those encountered in stereo 

image pairs and stringent controls are needed for correct depth 

estimation. Clearly, manual approach to lighting control is not 

feasible for robotic-assisted surgery. Robotic imaging systems 

would require robust lighting control for depth estimation. 

In this work, we present a supervised light control system that 

imitates like an endoscopic camera illumination system and 

provides real time feedback to improve stereo system accuracy 

and robustness by recommendations to adjust scene 

illumination condition to enhance scene features and image 

contrast even if the scene is considered at normal exposure. We 

have trained and validate our system with two distinct cadaver 

experiments. 

 

  
Fig. 1: Stereo arthroscope frames showing (a) tissue interfaces between femur 

and meniscus. (b) mostly soft tissue such as ACL. Saturated and dark pixel 

contain little to no color and texture information. Images are taken from the 
video sequences of cadaver knee experiment. Point A represents saturated 

pixels caused by the soft tissue (near object). Point B represents underexposed 

part caused by the bone cavity or due to occlusion caused by tissue arrangement 
(far object) and point C represents shadow parts (underexposed). 

 

III. RELATED WORK 

At present, no work has been found so far that resolves the 

illumination problem automatically in arthroscopic or even 

endoscopic imaging systems. A big volume of articles has been 
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Fig. 2: Representation of different anatomical scenes of the knee cavity viewed through the stereo arthroscope and corresponding normalized histogram for 

each stereo pair. (a) depicts images where the bone surfaces are close to the imaging system and became overexposed where the internal anatomy inside the cavity 

remains invisible. The corresponding histogram has high distributions in both overexposed and underexposed end while less so on the middle tone. In the clinical 

perspective priority is given to the bone surfaces. The bone cavity scene (b) represents the similar phenomena but in this situation the anatomy inside the cavity is 

slightly visible (point A) whereas bone surface (point B) is about to be saturated. The corresponding histogram has high distribution on the underexposed region 

and little to no distribution on the saturated region where middle tone shows apparently few distributions. A little increase in light intensity will turn the bone 

surface overexposed which is not recommended for safe navigation of the tool. In this type of the scene, the optimal decision is not to change the light intensity but 

to navigate the tool inside the cavity in order to make the obscure surgical scene visible. Scene (c) also depicts the similar situation. According to the histogram, it 

has high distribution on the underexposed regions but in order to navigate the tool inside the cavity, the priority is given to the bone surface in order to steer the 

endoscope inside the bone space. In this proposed method, the classifier learns these characteristics of the knee model indirectly through the statistical distributions 

during the training phase to decide expected illumination condition. 

 

found to control camera exposure time by controlling the 

amount of light that falls on an image sensor. It has some 

similarities related to MIS visualization problems stated above. 

However, it is worth noting that most of these approaches are 

based on static images. In this context, camera response versus 

scene light intensity is evaluated through the equation described 

below. 

∑ =  𝐾 ∗ 𝐿 ∗  𝐺 ∗  𝑆                (1) 

Where, ∑ is the sum value of imaging signal, K is a constant, 

L is the brightness of the object, G is the gain of the automatic 

gain control (AGC) circuit, S represents shutter speed of the 

camera. The automatic exposure bracketing based method is 

widely used to adjust exposure time [10,12,13,14]. Pourreza 

et.al presented an automatic exposure selection method based 

on exposure bracketing [10]. It requires n number of image 

frames with different exposure values. In their method, they 

used two building blocks namely scene analysis and exposure 

time. The clustering method was used to divide the image frame 

into three parts and exposure time was calculated through the 

camera response function. Radiometric based exposure control 

has been proposed by Kim and et.al. for outdoor scene analysis 

[11]. The radiometric camera response function is individual to 

the camera sensor [15,16] that often generates camera specific 

solution. However, this method also requires a set of still 

images. A statistical measure such as mean, mean sample value, 

etc. are used to intercept scene intensity distribution for normal 

exposure images. Impact of lighting on image formulation is 

significant, some literatures address light noise conditions with 

the recommendation to the use of filters, artificial intelligence 

algorithms and different level of optoelectronics devices 

[46,47]. 

Alternatively, neural networks have been studied to estimate 

chromaticity of image intensity [20]. Geoffroy et.al. proposed a 

method that uses convolutional neural network (CNN) to 

estimate illumination intensity for High Dynamic Range 

images. In their work CNN was used to predict illumination for 

low dynamic range images. Usually a CNN network requires a 

large number of data sets for training. Additionally, deep 

learning requires a dedicated number of processing units to 

achieve real time performance [21]. 

Some other methods assess image quality at different 

exposure values [22]. Images having different exposure values 

can be achieved by transforming an image using gamma 

correction or tone mapping curve [22,23]. In MIS context these 

approaches are not always valid. Camera motion, tissue fiber 

movement, non-uniform illumination, surface curvature and 

distance between camera and surface limits the utility of almost 

all static image-based approaches. In endoscopic imaging 

process we need to minimize the frame loss, whereas exposure 

bracketing methods always have a number of redundant frames 

and camera navigation process has to remain in a fix position 

for multiple times for image stabilization. Moreover, most of 

the literature does not consider underwater or turbid 

environment encountered in MIS. In this context, scattering is 

a one of the most considerable problem where light falls back 

to the image sensor even without any interaction with the object 

of interest [17]. Same illumination level respect to in air, in 

underwater environment can cause blur or saturation due to 

scattering. Considering the above context, the rapid movement 

of the camera through the surgery process could lead 

visualization system deficiencies. 

In short, structure of internal anatomy plays a crucial role and 

it takes the whole problem to different scale from the 

visualization approaches that are basically focused on usual 

indoor or outdoor environments. However, scene intensity 

conveys a pivotal information regarding overexposed and 

underexposed situation, whereas in MIS domain we have 

noticed that at same intensity we can have both situations 

present in a frame. These circumstances limit the utility of scene 

intensity-based approaches. However, we have considered 

these approaches as background literature to validate our 
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concept.  

IV. METHODOLOGY 

We defined the illumination control problem as a 

classification problem here. Therefore, the aim of this work is 

to identify whether the classification and regression methods 

can infer requirements specific to the level of illumination 

desired in visualizing the surgical scene in terms of light 

distribution. The whole scene light conditions are grouped into 

three classes as follows; I) overexposed, II) underexposed, and 

iii) normal. In many surgery scenes, these first two scene 

categories are overlapped. 

This method provides a solution that establishes robust 

illumination condition for the stereo and the monocular 

endoscope. We define ‘area of interest’ as an overlapped region 

between the stereo image pair captured by the stereo endoscope 

developed in our lab. Area of interest plays a significant role on 

stereo matching process which is the leading mechanism of 

stereo vision. It is more reasonable that the area of interest 

preserves sufficient image context. 

PSNR 6.3

PSNR 3.4

Overexposed stereo pair 

Well-exposed stereo pair Depth Map

Depth Map

W

O

 

A B

(b) Depth Map Monocular

(c) Segmentation

Overexposed image Corrected image

SSIM index 0.29 SSIM index 0.58

C

IoU 0.583 IoU 0.946

Overexposed image Corrected image

D

(a) Depth Map binocular

 

Fig. 3: Representative images that express the effect of saturated pixels on the 
corresponding depth map in binocular and monocular vision. (a,b). Area 

marked with point A,O are overexposed region as a consequence’s depth 

discontinuity is observed. Hence, Structural Similarity index (SSIM) and Peak 
noise to ration (PSNR) shows poor result where the right image (b) does not 

experience overexposed pixels and its SSIM is 0.58. (c) Similarly, segmentation 

process shows poor outcomes with overexposed area described by point C 

where with well exposed image denoted by point D on right image shows better 
accuracy. Accuracy metric intersection over union (IoU) for overexposed image 

is 0.58 where well exposed achieved 0.94. 

Image pixel values are grouped into three groups and 

different threshold values were defined to serve this purpose. 

Usually threshold values are set by experiments [38-40]. In this 

work, eight-bit gray scale threshold values are defined 

empirically through the observations of intensity responses of 

internal anatomy using vision processing algorithm such as 

rank transformation and stereo matching followed by the 

human visibility limits. Three thresholds are defined as follows; 

𝐼(𝑥, 𝑦) = {

𝑂𝑣𝑒𝑟𝑒𝑥𝑝𝑜𝑠𝑒𝑑, 𝑖𝑓 255 ≥ 𝐼(𝑥, 𝑦) > 226       

𝑈𝑛𝑑𝑒𝑟𝑒𝑥𝑝𝑜𝑠𝑒𝑑, 𝑖𝑓  101 ≥ 𝐼(𝑥, 𝑦) ≥ 0          

𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑦𝐸𝑥𝑝𝑜𝑠𝑒𝑑, 𝑖𝑓 226 ≥ 𝐼(𝑥, 𝑦) > 101

          (2)                   

 

Here, I(x,y) represents pixel intensity of the image coordinate 

x, y. The maximum intensity of a saturated pixel in eight-bit 

gray scale level is 255. However, when a pixel is about to be 

saturated it has the same effect on the human visual system or 

on the vision processing methods as it is depicted by Fig. 3. The 

underexposed pixels also have the same effect. Research found 

that in middle gray tone pixels receive optimal exposure value 

which is 128 in eight-bit gray scale level [41]. In order to 

identify optimal value of these two extremes, arthroscopy video 

sequences are segmented in to two slices where applicable. 

Slices are marked as an overexposed and underexposed. A 

range of gray level value then applied on the whole video 

sequences in order to find the optimal gray level intensity 

values for these two extremes. When a certain gray level 

intensity achieved a maximum segmentation accuracy, then that 

gray level value is selected as a threshold value. 

In this work, intersection over union (IoU) is used to evaluate 

segmentation accuracy at different threshold values. 

Underexposed, overexposed and normal indices describe the 

overall image statistical information. Underexposed index 

expresses relative underexposed pixel amount over the whole 

image. 

Similarly, overexposed and normal exposed indices express 

relative amount of over and normally exposed values over the 

whole image. These three indices define the whole dataset in 

2D space. 

Support Vector Machine (SVM) is used with radial basis 

function (gaussian kernel). SVM was originally proposed by V. 

N. Vapnik [8]. SVM is widely used to address classification as 

well as regression problem as it is described in literature [51]. 

It is a binary classifier but in conjunction with other SVM it can 

perform multi classification problem. It classifies data with 

possible highest inter-class distance. Unlike multi-layers 

perception such as deep learning networks, SVM can be trained 

with limited dataset. It consumes fewer hardware resources 

compared to deep network, yet it provides efficient 

classification result in our problem domain. Instead of 

implementing multi-layer perception and conditional 

probability computation, SVM provides support vectors that are 

used to compute class distance from the hyperplane in run time. 

Moreover, Light control system has to operate in real time with 

minimal frame lost. Trained SVM has these strong points. 

The most complex problem is to identify overexposed and 

underexposed scenes. To classify these total three lighting 



Sensors-35718-2020.R1  5 

condition (underexposed, normal, overexposed), SVM with 

radial basis function (RBF) is applied that is stated in equation 

(3). 

𝐾(𝑥, 𝑦) = 𝑒−𝛾|𝑥−𝑦|2
            (3)     

The advantage of the radial basis function is that for given 

sufficient data, it is able to define an efficient hyperplane 

discriminant among the nonlinear data set. It does not have 

saturation problem. The nature of lighting distributions is non-

linear as depicted in Figure 6, we chose nonlinear kernel 

function for the proposed classifier. Comparative study shows 

radial basis function outperforms with nonlinear data among 

others such as polynomial kernel [52,53]. Random subset from 

shuffled sample dataset is compared against different non-linear 

kernel before RBF kernel is selected for this approach. Mean 

accuracies of cross validation dataset are 0.9559448, 

0.82038217, and 0.98152866 for the SVM kernel Sigmoid, 

Polynomial and Radial basis function respectively. 

Optimization takes places to establish classification and 

marginal error tolerance depicted in Figure 6.  

Feedback system can justify classifier outcomes in real 

environment. In a sufficient light conditions image contains 

more context features, such as edges. Based on this, feedback 

system evaluates present image context and past image context. 

That can be achieved by evaluating image features such as 

edges, corner. In underwater environment, it has been observed 

that two consequent image frames show a subtle gradient 

change. Therefore, an empirical threshold is required that 

calibrates the system. Figure 4 presents our approach to define 

individual threshold values across all image conditions. For 

each frame different level of gray scale intensity values are used 

to achieve binary segmentation. The outcomes of each 

threshold value are then compared to the ground truth mask and 

 
        (I)                                (II) 

Fig. 4: Set (I) represents overexposed threshold selection process. Left most images (a) represents the original images captured by the stereo endoscope, the next 

column (b) represents the segmented images and the column (c) represents corresponding mask for each stereo image pair. Over exposed pixels are marked with 

green color on the segmented images and those pixels are manually selected for each video frames. (d) represents average IoU curve and the optimal value is 

obtained at intensity level ~226 value is selected. Likewise, Set (II) represents underexposed threshold selection process. Left most images (a) represent the original 
images captured by the stereo endoscope, the next column (b) represents the segmented images and the column (c) represents corresponding mask for each stereo 

image pair. Underexposed pixels are marked with blue color on the segmented images and those pixels are manually nominated for each video frames. (d) represents 

average IoU curve and the optimal value is obtained when intensity level ~101 is selected. 

Fig.5: System overview of light control system. Stereo pair is cropped into areas of interest. In the next step, overexposed index, underexposed index and normally 

exposed index are calculated that are used by the SVM classifiers. 

 

then IoU (Jaccard index) metrices are calculated. In the next 

step, overexposed index, underexposed index and normally  

exposed index is calculated that are used by the SVM 

classifiers, as detailed below in Figure 5. 1st SVM classifier 

determines whether scene need more illumination or less. If 

scene requires more illumination second SVM classifier 

determines whether it actually needs more illumination or 

maintain the current illumination condition. Figure 6. shows 

hyperplane and optimized SVM (RBF) margin for over and 

under exposed conditions and output to identify light intensity 

changes between two classes. 
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Fig. 6: Hyperplane and optimized SVM (RBF) margin with subset of our sample data to identify light intensity change. (a) left image represents classifier 

margin of two events; intensity increase and intensity decrease. (b) middle represents classifier margin of two events; intensity increase and intensity no change 

classes.(c.) right image expresses the example optimization process of SVM parameter, Gamma and C. Different values of gamma and c are used to select optimal 

values of them in order to make the class separable while avoiding marginal error. 

In this work, any scene context changes are referred as a 

motion. Pixel wise comparison is futile due to illumination 

variation, displacement and rotations. Additionally, frame 

similarity index such as structural similarity index (SSIM) may 

not provide a good result in this situation. Moreover, most of 

these approaches are based on gray level image statistics such 

as mean and variance. To compare two pixels under different 

illuminations, in this article census transformation in grayscale 

is used. 

 

V. TRAINING  

For training purpose, two cadaver knee experiment video 

data are used. Each frame is manually labeled. Scene is marked 

as an overexposed image if it contains lack of image features 

due to pixel saturation otherwise it is label as an underexposed 

image. If the scene is classified as an overexposed image, it is 

then further marked as a normally exposed image if it contains 

enough features and contains minimum image saturation 

otherwise overexposed image due to dark pixel amount. 

Additionally, if image does not contain saturated pixels and 

increasing light intensity enhances image quality than it is 

labeled as an underexposed image even though it may not 

contain enough dark pixels. This training data set is used to train 

the second SVM. 

Further SVM regularization is recommended to increase 

classifier accuracy. Initially approx. 2950 frames are used to 

create training dataset. Optimization process is performed over 

RBF gamma and C parameter to fit optimal classification 

boundary curvature and the penalty value for misclassification. 

The optimal gamma value is 0.01 and optimal C value is 1 for 

the classifier up (light intensity increase) and no change (light 

intensity no change) classes. Similarly, for the classifier of the 

intensity change up (increase) and down (decrease), the method 

shows optimal performance on gamma equal to 0.001 and C 

equal to 100. The training accuracy are approx. 97.75% and 

89.11%. Higher gamma value is discarded to avoid data 

overfitting problem. During the optimization process 

minimization of classification error is more considered rather 

than the marginal error. 

A. Data Collection 

During our cadaver experiment, stereo video sequences of 

knee Arthroscopy are collected. Stereo endoscope has manual 

light control unit. During this arthroscopy surgeon changes light 

intensity several times in different part of the knee cavities. 

Those video sequences are used to validate model. Moreover, 

one set of dedicated video sequences has been recorded that 

contains a linear light intensity changes from low to high in 

some position during the camera trajectory. 

Light Intensity Level low 
to high

Total Knee surface 
scanning at all possible 
level of light intensity. 

Light intensity distribution in 2D 
space over the Knee model. 
Decision margin placed in order to 
identify required level illumination 
intensity  according to the 
structure of the anatomy that full-
fill robotic navigation  

Bone Joint 

Light intensity 
distribution in 2D space

 
Fig. 7. Stereo endoscope along with its illumination sources are used to scan 

the whole knee anatomy. The surface light distributions and the ratio of it to the 

different classes at all possible intensity levels are extracted to construct a 2D 

data set. This data set is used to train our classifier. 

VI. DESIGN OF THE ENDOSCOPIC STEREO CAMERA 

Figure 7 presents the clinical context and a representative 

location of arthroscope within the knee cavity during MIS. 

Details of this stereo camera prototype developed in our lab is 

shown in Figure 8. A commercially available traditional 

arthroscope currently used by surgeons is also shown in this 
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figure. Our stereo camera prototype is comprised of following 

elements; 

● a pair of muC103A cameras together with their 

C8262 UVC interface modules, 

● two white LED (T0402W) for illumination,  

● 3D printed camera head for mounting cameras and 

the LED, 

● 3D printed box for containing the wires and the 

circuits, and  

● insertion tube. 

 

 

 

Fig.8. The stereo endoscope prototype (a) together with the close-up view at 

the tip (b) and the 3D design (c) and the muC103A camera (d). The 

potentiometer shown by the red arrow is used to adjust the LED intensity. The 
endoscope circuits and extra wiring are contained inside the black box and 

connected to the computer using two USB cables. 

muC103A is a CMOS technology camera sensor from 

OmniVision which can stream video at 30 fps with 400*400-

pixel resolution and the field of view in 120 deg. The tip 

diameter of 1.52 mm makes this camera ideal for the 

endoscopic applications. The two cameras were mounted on the 

3D printed head manually, hence some degree of misalignment 

between the two cameras was unavoidable. The T0402W LED 

consumes less than 20 mA at 3.3 V and is 1 mm wide. The 

baseline for the cameras was set 1.52 mm (distance between the 

optical center of two cameras is 1.52 mm). By considering the 

87.5-degree field of view of the muC103A, the amount of 

overlap between the stereo pair is approximately 79% on 10 

mm away from the stereo cameras. 

 

VII. RESULT 

Total 3,350 video frames are selected from our cadaver knee 

experiments. Distorted and contaminated frames are discarded. 

During this training phase we select ⅓ of frames from each 

video file that contains different levels of difficulties such as 

shadow, bone joint and cavity, close contact between the 

camera and tissue etc. We use those frames for cross validation 

purposes. Table I shows the all outcomes during our training 

phase. During the test phase, fully trained classifier is tested 

against different arthroscopy video data along with cross 

validation data set. In some video frames different stereo 

camera is used. All the SVM graphs are created using scikit 

[30]. 

This methodology is compared against the camera exposure 

control methods in order find a benchmark. Camera exposure 

control system limits the amount of light that falls on digital 

camera sensor in order to achieve good quality of images. In 

this evaluation, increase of exposure time simulated as an 

increase of light intensity, decrease of exposure time as a 

decrease of light intensity, and no effect of exposure time 

interpreted as a no change of light intensity. Compared methods 

are mainly based on histogram analysis and scene quality 

analysis. However, compared to natural images MIS images has 

a number of limitations such as camera locomotion, distance 

between the camera surface, and no uniform light distribution 

etc. 

Algorithm 1 is based on Gradient Information [22,35]. 

Gradient information is computed as follows; 

�̅� = {

1

𝑛
log(𝜆(𝑚𝑖 −  𝛿) + 1) 𝑓𝑜𝑟 𝑚𝑖 ≥ 𝛿

0              𝑓𝑜𝑟     𝑚𝑖 < 𝛿                  

𝑠. 𝑡.           𝑁 = log(𝜆(1 −  𝛿) + 1)

                     (4) 

In order to calculated gradient information of images having 

different exposure values, gamma function is used as proposed 

by the article. The exposure value is selected based on the 

following criteria; 
argmax𝛾 𝑀(𝐼𝑖𝑛

𝛾
)                                                        (5) 

Where M is the sum of gradient information and 𝛾 mimic 

exposure time value. The aim is of this method is to maximize 

gradient information. 

Algorithm 2 is based on third moment of image intensity 

histogram [36]. Third moment is calculated as follows proposed 

by the authors as follows; 
 μ = ∑ (𝑧𝑘 − 𝐶)3255

𝑘=0 𝑝(𝑧𝑘)                                 (6) 

   p(zk) =
q(zk)

M∗N
                                                        (7) 

where M*N represent the image size and 𝑞(𝑧𝑘) is the total 

number of frequencies. 

Algorithm 3 is based on middle tone distribution of image 

intensity histogram [37]. The histogram is divided in to five part 

and mean sample value (MSV) is used that described as 

follows; 

TABLE I 
CLASSIFIER TRAINING AND VALIDATION  

Number of Training 
Frames and Dataset 

*Cad.  

Training 

Accuracy 
Number of validations 

 Frames  

         

Frames: 250 

File id: 2019-02-26-
12-04-54 

98.5 60 frames  

Above 98 % accuracy 

         

Frames: 300 

File id: 2019-02-26-
12-03-38 

99.62 100 frames          

Frames: 600 

File id: 2018-09-14-
11-33-23 

99.78 200 frames          

Frames: 900 

File id: 2018-09-14-
11-19-47 

98.24 300 frames          

Frames: 1500 

File id: 2018-09-14-
11-43-57 

98.87 500 frames          

Total 3,350 frames are used for training and 1,160 frames are used    

for validation. 
*Internal Dataset, Knee Arthroscopy Experiment (Cadaver) 
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 μ = ∑ (𝑖 + 1) ∗ 𝑥𝑖/4
𝑖=0 ∑ 𝑥𝑖

4
𝑖=0                                    (8) 

Where, 𝑥𝑖 is the sum of the values in region i and i denotes 

the region of the histogram. According their paper, the image is 

correctly exposed when µ ≈ 2.5 [37]. 
Confusion matrices for lighting control in stereo frames and 

monocular frames is shown in Figure 9. Model occurrences are 

our manually class label and predicted occurrences are 

endoscopic illumination controller outcomes. For class 

intensity increase, according to the normalized confusion 

matrix it shows 97% accuracy. Most significant error in that 

case is 0.009% that is decrease light intensity. Similarly, 

decrease intensity event achieved 97.8% classification accuracy 

and no change in light intensity event achieved 55.6% 

classification accuracy. No change light intensity is hard in 

stereo situation. In our test stereo pair image encountered 

different illumination in most of situation caused by shadow, 

surface curvature of internal anatomy etc. Lighting control 

outcomes for over-exposed, under-exposed and normal 

exposed classes are presented in Figure 11. Upward arrow, 

downward arrow and dotted line annotations to stereo images 

indicate controller output for each case. 

 

 

 

   

 (a)                          (b)    
  Fig. 9. (a) Normalized Confusion Matrix for Stereo camera light control system. Model occurrences are our manually class labels and predicted occurrences 

are endoscopic illumination controller outcomes for each scene. All the diagonals are true positive. (b) Mono camera light control Confusion Matrix. All the 

diagonals are true positive. Increase light intensity classified by our system with approx. 95% accuracy during the test. Similarly, in approx. 97% situations decrease 
light intensity events are classified with true positive. Intensity no change events accuracy is about 82%. 

(a) (b) (c) (d) (e) (f)

SSIM 0.29 SSIM 0.58 SSIM 0.30 SSIM 0.29 SSIM 0.32 SSIM 0.38

(a) (b) (c) (d) (e) (f)

PSNR 5.37PSNR 2.73 PSNR 2.77 PSNR 2.1 PSNR 2.63 PSNR 3.56

 
Fig. 10. It compares the performance of our method over pure image post processing-based approach. Column (a) represents the accuracy of the depth map 

when image is degraded by overexposed pixels. The achieved PSNR and SSIM are 2.73 and 0.29 respectively where well exposed image achieved (b) achieved 

5.37 and 0.58. Overexposed image then corrected using correction of brightness (c), decreased contrast (d), increased contrast (e) and through the correction of 
histogram equalizer(f). The achieved PSNR and SSIM are shows image corrected through the control of illumination provides better solution. 
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Fig. 11: Light control outcomes for binocular stereo camera on knee arthroscopy video sequences. Each image block contains one stereo image pair, basically 

left image from left camera and right image from right camera. Image annotations with upward arrow indicates scene requires more light intensity, similarly 

downward arrows indicate scene contain overexposed portion and need low light intensity and double dashed sign indicates scene meets sufficient illumination 

condition.

Figure 12. compares the outcome of methods evaluated. Our 

proposed method received average error of 7.37% and 4.56 % 

for stereo endoscope and monocular endoscope respectively. 

All the methods fail to identify no change event for monocular 

endoscope and except Algorithm 1. It receives 32.7 % error to 

identify no change error. Where the proposed method is able to 

detect no change event with 71.27% average accuracy (16.36% 

in error in stereo and 41.1% error in monocular). Considering 

overall accuracy to control illumination event the proposed 

method outperforms state-of-the-art exposure control methods.

EVALUATION OF STEREO IMAGE PAIR 

EVALUATION OF MONOCULAR IMAGE 

ALGO.1

ALGO.2

ALGO.3

PROPOSED
METHOD

METHOD
INCREASE

LIGHT ERROR (%) 
DECREASE

LIGHT ERROR (%) 
NO CHANGE

LIGHT ERROR (%) 
AVG.

ERROR (%) 

32.7 94.2 32.7 53.2

0.341 14.25 *N/A 38.19

25.2 66.34 *N/A 63.84

3.4 2.37 16.36 7.37

ALGO.1

ALGO.2

ALGO.3

PROPOSED
METHOD

METHOD
INCREASE

LIGHT ERROR (%) 
DECREASE

LIGHT ERROR (%) 
NO CHANGE

LIGHT ERROR (%) 
AVG.

ERROR (%) 

35.15 88.6 *N/A 74.58

8 6.4 *N/A 38.13

22.5 38.5 *N/A 53.66

3 1.5 41.1% 4.56

*N/A= Not applicable is considered when error in detecting an event is about 100% approx.  
Fig.12: Evaluation of the illumination control methods.  

VIII. CONCLUSION 

We have explored the feasibility of support vector machine 

classifier against the endoscopic camera light intensity control 

problem in real time. Our results offer good prospects in 

inferring challenges imposed in surgical scene visualization for 

MIS into a scene classification problem. Confusion matrices 

represents the overall performance of our implemented 

illumination controller. However, accuracy decreases for the 

‘no change’ class category. In knee arthroscopy this event 

occurs rarely hence very few training data was available for 

train this category. Additionally, in stereo vision system, two 

viewpoints receive different level of illumination distribution 

mostly due to the anatomical structure hence, this specific class 

category encounters more error. A set of training video 

sequences under slowly varying light intensity at every possible 

intensity value is recommended for this approach for further 

improvement. 

Image patch-based similarity index under radiometric, 

rotation and illumination changes are expected to further 

enhance feedback in real time. It might be useful to combine 

patch similarity or dissimilarity index along with the degree of 

changes provided by content indexing methods. Maximum 

similarity regions with positive improvement of those reason 

can infer an intensity event as a true decision, as investigated in 

this work. 
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