Publish-pay-subscribe protocol for payment-driven edge computing

, Contreras, Sharon L.G., & Krishnamachari, Bhaskar (2019) Publish-pay-subscribe protocol for payment-driven edge computing. In Proceedings of the 2nd USENIX Workshop on Hot Topics in Edge Computing, HotEdge 2019, co-located with USENIX ATC 20192019. USENIX Association, United States of America.

Free-to-read version at publisher website

Description

IoT applications are starting to rely heavily on edge computing due to the advent of low-power and high data-rate wireless communication technologies such as 5G and the processing capability of GPU-driven edge platforms. However, the computation and the data communication model for the edge computing applications are quite diverse, which limits their interoperability. An interoperable edge computing architecture with a versatile communication model would lead to the development of innovative and incentive-driven edge computing applications by combining various data sources from a wide array of devices. In this paper, we present an edge computing architecture by extending the publish-subscribe protocol with support for incentives. Our novel publish-pay-subscribe protocol enables the data producers (publishers) to sell their data with data consumers and service providers (subscribers). The proposed architecture not only allows the device owners to gain incentive but also enable the service providers to sell the processed data with one or more data consumers. Our proof-of-concept implementation using AEDES publish-subscribe broker and Ethereum cryptocurrency shows the feasibility of publish-pay-subscribe broker and its support for data-driven and incentive-based edge computing applications.

Impact and interest:

4 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 209257
Item Type: Chapter in Book, Report or Conference volume (Conference contribution)
ORCID iD:
Ramachandran, Gowri Sankarorcid.org/0000-0001-5944-1335
Additional Information: Funding Information: This material is based in part upon work supported by Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001117C0053. Any views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
Measurements or Duration: 6 pages
Pure ID: 76766938
Funding Information: This material is based in part upon work supported by Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001117C0053. Any views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
Copyright Owner: 2019 USENIX Association. All rights reserved.
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 29 Mar 2021 00:19
Last Modified: 05 Apr 2024 20:20