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Abstract 
Stormwater runoff pollution has become a key environmental issue in urban areas. Reliable 
estimation of stormwater pollutant discharge is important for implementing robust water 
quality management strategies. Even though significant attempts have been undertaken to 
develop water quality models, deterministic approaches have proven inappropriate as they do 
not address the variability in stormwater quality. Due to the random nature of rainfall 
characteristics and the differences in catchment characteristics, it is difficult to generate the 
runoff pollutographs to a desired level of certainty. Bayesian hierarchical modelling is an 
effective tool for developing complex models with a large number of sources of variability. A 
Bayesian model does not look for a single value of the model parameters, but rather determines 
a distribution of the model parameters from which all inference is drawn. This study introduces 
a Bayesian hierarchical linear regression model to describe a catchment specific runoff 
pollutograph incorporating the associated uncertainties in the model parameters. The model 
incorporates catchment and rainfall characteristics including the effective impervious area, 
time of concentration, rain duration, average rainfall intensity and the antecedent dry period as 
the contributors to random effects.  

Keywords: stormwater runoff; Bayesian hierarchical modelling; uncertainty analysis; 
stormwater quality; stormwater pollutant processes 

 

1. Introduction 

Stormwater runoff is perceived as a major contributor to water quality degradation in the 
receiving water bodies in urban areas (Göbel et al., 2007; Goonetilleke et al., 2005; Sheng et 
al., 2006). Increased extent of impervious surfaces such as pavements and roofs in the urban 
environment accumulate significant loads of pollutants such as solids, nutrients, organic matter, 
metals and hydrocarbons during the dry weather period prior to a storm event (Goonetilleke et 
al., 2009; Gunawardana et al., 2011; Helmreich et al., 2010; Jayarathne et al., 2019; Liu et al., 
2016). The reduction in stormwater infiltration and the increase in surface runoff subsequently 
wash-off high loads of accumulated pollutants during rain events and discharges into receiving 
water. These processes impose adverse water quality and quantity consequences in urban areas. 

 

It is commonly accepted that suspended solids (SS) are an extremely important indicator of 
water quality deterioration (Bilotta and Brazier, 2008). Also, most importantly, SS also provide 
a medium for the accumulation, transport and storage of other pollutants. These include toxic 
compounds such as heavy metals and hydrocarbons. Therefore, SS can be considered as a 
surrogate indicator of stormwater quality (Allenby et al., 2005; Gunawardana et al., 2011; 
Hsieh and Davis, 2005; Liu et al., 2010; Miguntanna et al., 2013; Sheng et al., 2006; 
Williamson and Crawford, 2011). Therefore, the understanding of SS behaviour during a 
rainfall-runoff event and subsequently being able to predict such behaviour meets an important 
need in urban water quality management. 

 

A range of water quality models have been developed during the past decades using 
deterministic approaches.  However, these have constraints due to limitations in data and not 
being able to account for the variability associated with pollutant discharge pattern during a 
runoff event. Further, such models are based on data collected from a limited number of rainfall 



events (Fu et al., 2019; Haris et al., 2016; Obropta and Kardos, 2007; Tiefenthaler et al., 2000). 
Researchers have observed that large variability and uncertainty in stormwater quality during 
stormwater runoff discharge is largely dependent on rainfall, runoff and catchment 
characteristics (Memon et al., 2017).  

 

It is important to have an in-depth understanding of the relationships which describe the 
pollutant concentration at different time periods during the resulting stormwater runoff event 
in order to formulate effective stormwater management strategies. Most commonly, 
stormwater runoff concentration has been modelled as an exponential decay function of the 
runoff volume or the available surface pollutant load (Bach et al., 2010; Qin et al., 2016; Qin 
et al., 2010). However, with the demand for large datasets and long-term records needed by 
deterministic models for model calibration and validation, probabilistic methods have proven 
efficient when compared to deterministic approaches (Wan et al., 2014; Daly et al., 2014).  

 

Conventional statistical techniques such as multiple linear regression and ordinary least squares 
regression, estimates an interval for the likely value of a parameter and selects one of the point 
estimate (mean, median) for each in a model describing the relationship between stormwater 
quality and the influential variables. However, stormwater quality can, on average, vary 
depending on the nature of a rainfall event and catchment characteristics. Therefore, it is 
important to capture this variability when modelling. However, spatial and temporal variability 
of the parameters have not been discussed in-depth in past studies (Amiri and Nakane, 2009; 
Cristiano et al., 2017; Kang et al., 2010). Vogel et al. (2005) introduced a bivariate linear 
relationship between the log transformed pollutant concentrations and flow. Allenby et al. 
(2005) derived a stochastic model for estimating SS loads and its variability during rainfall 
events which allows for acoounting for the uncertainity in the model variables. Even though, 
these models have used advanced statistical tools, they still demand extensive field 
investigations. Wan et al. (2014) extended an existing water quality model by adopting a 
Bayesian hierarchical approach for the modelling. The researchers examined the relationship 
between land use and land cover in relation to water quality and found that Bayesian regression 
approach is more reliable compared to simple regression for inferring the relative contribution 
of land use to water quality.  

 

Bayesian hierarchical modelling approach has proven to be a powerful tool for providing 
probabilistic predictions with associated uncertainty. Most importantly, with limited number 
of field investigations, this approach facilitates the derivation of complex models that 
incorporate a large number of sources of variability by decomposing interactions of observed 
data into a set of simple conditional models (Wan et al., 2014). Guo et al. (2019) used a 
Bayesian hierarchical model structure to identify the key predictors of temporal variability and 
showed that streamflow is the most important determinant of temporal variability. However, 
they have not considered variability of site-specific conditions and their influence on water 
quality. This paper has considered both, the variability in site-specific conditions and 
hydrological conditions and their subsequent impact on the variability in stormwater 
concentration during a runoff event.  

 



This study adopted the Bayesian hierarchical modelling approach to model the runoff 
pollutographs. The objectives of the study were: 1) to analyse the within event variability and 
between event variability of SS concentration; 2) to relate variability in SS concentration to 
selected catchment characteristics and rainfall characteristics and finally, 3) to derive 
catchment specific runoff pollutographs by assessing the associated uncertainty due to the 
variability in rainfall-runoff characteristics.  

2. Materials and Methods  
2.1 Data Collection  

Three urban catchments, namely, Coomera, Highland park, and the Brisbane domestic airport 
apron in Queensland State, Australia were selected for the data collection. Both, Coomera and 
Highland park are residential catchments and have three sub-catchments each. The airport 
apron is a completely impervious surface. Accordingly, the collected data was spread over 
seven different catchments having different physical characteristics. For the baseline catchment 
data, a desktop study was conducted to collate the required information such as total area and 
land cover including pervious and impervious surface fractions. Accordingly, catchment 
characteristics including the effective impervious area fraction, fractions of different types of 
impervious surfaces including roofs, roads and driveways and time of concentration of the 
catchment were selected for the analysis. Table S1 in Supplementary Information provides a 
summary of the key characteristics of each catchment. 

 

Tipping bucket rain gauges were used to collect the rainfall data and data were recorded using 
a data logger. The data generated by the rain gauges were collated using a Campbell Scientific 
CR1000 data logger and transmitted via telemetry. A V-notch weir installed at the catchment 
outlet was used to measure the runoff volume. Accordingly, baseline rainfall and runoff 
variables widely cited in research literature in relation to stormwater quality studies, namely, 
rainfall depth, average and maximum intensity, runoff depth, runoff volume and antecedent 
dry period for the monitored events were determined. Altogether, 39 storm events having a 
complete collection of required rainfall-runoff data were used for the analysis. Table S2 in the 
Supplementary Information provides a summary of the collected rainfall data conveying the 
inter-site variability in the data. 

 

SS concentration was considered as the indicator water quality parameter. To obtain 
stormwater quality data, automatic water quality samplers were installed at the catchment 
outlets. The samplers were triggered by rainfall depth and enabled discrete stormwater samples 
to be collected into 1 L plastic bottles during the rising limb and falling limb of the hydrographs 
resulting from rainfall events. The sampling could be extended up to 24 bottles depending on 
the rainfall duration. However, the frequency of sample collection varied depending on the 
rainfall duration and the runoff volume. Stormwater samples were then transported to the 
laboratory following stipulated standards (AS/NZS 5667.1:1998) and analysed for the SS 
concentration. SS was tested according to Test Method No. 2540C (APHA 2005). 

 

2.2 Data Analysis 

2.2.1 Preliminary analysis 



As the collected data were in different scales, all the data were standardised such that each 
variable has a mean of 0 and a standard deviation of 1 using the formula given below.  

𝑧𝑧 = 𝑥𝑥−𝜇𝜇
𝜎𝜎

          Equation 1 

 Where, 𝑧𝑧 is the standardised variable, and 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation of 
the unstandardised variable. 

 

Exploratory data analysis was initially used to identify any collinearity between variables, and 
thereby facilitating the elimination of data redundancy.  The resulting correlation matrices of 
catchment specific variables and event specific variables are given in Table S3 and Table S4, 
respectively, in the Supplementary Information. By considering the correlation coefficients 
between variables and the associated scatterplots, the effective impervious area (EIA), time of 
concentration (TC), antecedent dry period (ADP), rain duration (D) and the average intensity 
(AvgI) were selected for use in the model. Accordingly, the variables such as runoff depth 
(RoD), rainfall depth (RD) and maximum 5 min intensity (MaxI) were removed to avoid data 
redundancy. The data matrix used for the analysis is given in Table S5 in the Supplementary 
Information. 

 

One of the primary objectives of this study was to analyse the variability in pollutant 
concentration during a runoff event. However, the discrete nature of the collected stormwater 
quality (SS concentration) data makes it difficult to analyse such variability. Water quality 
samples were not collected at equally spaced time intervals for individual rainfall events. 
Further, the frequency and the number of samples collected for each event varied due to 
variations in the duration of the runoff events. Therefore, it was important to reproduce the 
entire pollutograph using a common criterion eliminating limitations in the available data and 
the limited knowledge in the underlying processes.  

 

2.3 Modelling methods 
2.3.1 Modelling the runoff pollutograph 

Runoff concentration has generally been described via an exponential decay model. Based on 
the observed SS concentrations and work by past researchers, we described the concentration 
of SS via an exponential decay of the form given in Equation 2 (Borris et al., 2014; Brodie and 
Dunn, 2010; Charbeneau and Barrett, 1998; Sartor and Boyd, 1972).  

𝐶𝐶𝑡𝑡 = 𝐶𝐶0𝑒𝑒−𝑘𝑘𝑉𝑉𝑡𝑡 ,         Equation 2 
where, 𝐶𝐶𝑡𝑡 is the concentration of SS in the runoff with respect to an accumulated runoff volume 
𝑉𝑉𝑡𝑡 of a rainfall event and 𝐶𝐶𝑜𝑜 is a proportionality constant which is related to the pollutant 
concentration at the beginning of runoff. Here, 𝑘𝑘  is the rate of decay of the pollutant 
concentration. 

Even though, it has been hypothesized that 𝑘𝑘 is a catchment specific parameter, 𝑘𝑘 can fluctuate 
due to factors such as rainfall-runoff conditions (Al Ali et al., 2018; Kim et al., 2005). The 
validity of the selection of exponential decay form in the modelling was checked with the 
available data and the corresponding results are given in Table S6 in the Supplementary 
Information. 



 

By taking the logarithmic transformation of Equation 2, Equation 3 can be obtained. 
ln𝐶𝐶𝑡𝑡 = −𝑘𝑘𝑉𝑉𝑡𝑡 + ln𝐶𝐶0        Equation 3 
 

Equation 3 yields a linear relationship between the runoff volume and natural logarithmic 
transformation of concentration. The natural log transformation can ensure minimizing 
measurement error associated with measuring the SS concentration during the runoff event and 
can be appropriately described via a normal distribution (Liu, 2011; Sharifi et al., 2011; Wan 
et al., 2014).  

 

In the preliminary analysis, SS concentration data of each event was plotted, and linear models 
were fitted following Equation 3. Model fit for selected events at different catchments are 
illustrated in Figure 1. Generally, a model in the form of Equation 3 is a fixed form which 
assumes that the observations are independent of each other given the predictor variables. 
However, it can be noted that such independence does not hold for our data (Figure 1) as the 
intercept and the slope of the model vary within and between the event and within and between 
the catchments they belong. This kind of dependence or clustering cannot be captured through 
a standard general linear model. What is needed is a model that allows each catchment to have 
its own intercept and slope (see Equation 3), but still contribute to the associated variability 
between rainfall events. This can be accommodated by including random effects into the model 
(say) for each catchment, and thus extending the model given in Equation 3 to a linear mixed 
effects model (Nakagawa and Schielzeth, 2013). 

 

2.3.2 Linear mixed modelling (LMM)  

LMM is an extension of linear modelling which takes into account the variations explained by 
the independent variables under consideration (fixed effects) and the variation not explained 
by the independent variables called the random effects (Winter, 2013). Random effects 
typically represent some grouping variable and allows the estimation of variance in the 
response variable within and among these groups (Harrison et al., 2018).  

 

In terms of Equation 3, the deviation of the predictions from the measured values can be 
incorporated by adding an error term 𝑒𝑒 which is a random variable representing random 
fluctuations in data as shown in Equation 4. 

ln𝐶𝐶𝑡𝑡 = −𝑘𝑘𝑉𝑉𝑡𝑡 + ln𝐶𝐶0 + 𝑒𝑒         Equation 4 
 

However, there are multiple measurements for each catchment obtained from different runoff 
events. As mentioned above, these multiple measurements lead to a violation of the assumption 
of the independence of errors (Sorensen and Vasishth, 2015). Therefore, regression parameters 
(ln𝐶𝐶0 ,𝑘𝑘 ) vary between catchments and between events as demonstrated in Figure 1. Different 
regression models can be fitted to the data from multiple events in the same catchment. 

 



 

 

Figure 1: Distribution of SS concentration and the fitted linear models for each catchment. 

Note:  runoff volume fractions were used instead the runoff volume for the visualization 

 

LMM can account for such variability by catchment and by event. Instead of fitting regression 
models separately, it can be assumed that the parameters follow a pre-determined statistical 
distribution (such as normal, lognormal, uniform) (Gelman and Hill, 2007; Pinheiro and Bates, 
2000). A Bayesian structure facilitates the determination of the parameters in terms of 
distributions where a regression model fails to perform and thereby to assess the uncertainty in 
predictions arising from the inter-event and inter-site variability in the data. This avoids the 
requirement of fitting separate models for different events and different catchments (Sandoval 
et al., 2018). 

 

Accordingly, Equation 4 can be modified by adding terms which represent catchment specific 
and event specific terms to the intercept and the slope, and this is referred to as a random effect 
model as given in Equation 5.    

ln𝐶𝐶𝑡𝑡 = (ln𝐶𝐶0 + 𝑢𝑢0 + 𝑤𝑤0) − (𝑘𝑘 + 𝑢𝑢1 + 𝑤𝑤1)𝑉𝑉𝑡𝑡     Equation 5 

where 𝑢𝑢0 and 𝑤𝑤0 are the catchment and event specific random effects to the overall intercept 
and ln𝐶𝐶0, and 𝑢𝑢1 and 𝑤𝑤1 are the catchment and event specific random slopes.  

Further, these random variables (𝑢𝑢0 ,𝑤𝑤0,𝑢𝑢1,𝑤𝑤1) can be assumed to follow a known distribution 
(For example, normal distribution with mean zero and variances 𝜎𝜎𝑢𝑢02 ,𝜎𝜎𝑤𝑤02 ,𝜎𝜎𝑢𝑢12  and 𝜎𝜎𝑤𝑤12 , 

Cumulative runoff volume fractions 
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respectively). Accordingly, it is possible to incorporate the most appropriate combination of 
the fixed effects and random effects into the model based on the observed data by adopting 
formal model selection procedures. 

. 

2.3.3 Bayesian Modelling  

Bayesian analysis derives the posterior distribution of the parameters given some data and prior 
beliefs about the distributions of those parameters, and it is this distribution from which all 
inferences are based. Thus, to fit Bayesian models, a prior distribution needs to be defined. The 
prior distributions are usually defined based on expert knowledge or previously collected data. 
In cases where this is not available (as in this study), vague/flat priors are considered (Goddard, 
2003). The resulting posterior distribution allows for calculating credible intervals of true 
parameter values for assessing the uncertainty in the predictions.  
 

However, often there is no closed form solution to the posterior distribution. Therefore, 
approximating it or sampling from it directly can be difficult. This has led to the development 
of methods such as Markov chain Monte Carlo (MCMC) which provide approaches to sample 
from posterior distributions from a wide variety of Bayesian models. MCMC involves 
iteratively proposing values for the parameters, and accepting/rejecting these with a certain 
probability (Goddard, 2003). Accordingly, multiple chains were used to check whether each 
converge to the same stationary distribution. The subsequent chain of accepted parameter 
values was then used as a sample from the posterior distribution, once the chain had converged 
to a stationary distribution (which is assumed to be the posterior distribution). When 
performing an MCMC simulation, it is necessary to define the MCMC simulation parameters 
such as the number of samples to be derived, number of chains, thinning and burn-in. Thinning 
is the process of using only every kth step of the chain for analysis, while all other steps are 
discarded with the goal of reducing autocorrelation and obtaining relatively independent 
samples. Thinning avoids bias in the standard error estimate of posterior mean (Harms and 
Roebroeck, 2018). Burn-in is the practice of ignoring samples at the initial stages of the MCMC 
algorithm as these are unlikely to be from the posterior distribution.  
 
2.4 Linear mixed modelling with Bayesian Hierarchical model 
The Bayesian model structure developed including random intercepts and random slopes used 
in the analysis is given below 

    
𝑙𝑙𝑙𝑙 𝐶𝐶𝑗𝑗𝑗𝑗𝑡𝑡 ~𝑁𝑁(𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡,𝜎𝜎2) 
𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 = log𝐶𝐶0𝑗𝑗𝑗𝑗 − 𝑘𝑘𝑗𝑗𝑗𝑗 .𝑉𝑉𝑡𝑡 

log𝐶𝐶0𝑗𝑗𝑗𝑗 = log𝐶𝐶0 + 𝑢𝑢0𝑗𝑗 + 𝑤𝑤0𝑗𝑗 
log𝑘𝑘𝑗𝑗𝑗𝑗 = log𝑘𝑘 + 𝑢𝑢1𝑗𝑗 + 𝑤𝑤1𝑗𝑗 

 
𝑖𝑖 = 1 …𝑙𝑙𝑢𝑢𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 

                 𝑗𝑗 = 1 …𝑙𝑙𝑢𝑢𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐ℎ𝑛𝑛𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 
𝑒𝑒 = 1 …𝑙𝑙𝑢𝑢𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑐𝑐𝑛𝑛𝑠𝑠𝑙𝑙𝑒𝑒𝑒𝑒 𝑠𝑠𝑒𝑒𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒 

 
Priors: 

𝜎𝜎2~𝐼𝐼𝐼𝐼(0.001,1) 



log𝐶𝐶0~𝑁𝑁(0,10) 

𝑤𝑤𝑜𝑜𝑗𝑗~𝑁𝑁(log𝐶𝐶0,𝜎𝜎𝑤𝑤02 ),𝜎𝜎𝑤𝑤02 ~ 𝐼𝐼𝐼𝐼(0.001,1) 

𝑢𝑢𝑜𝑜𝑗𝑗~𝑁𝑁�log𝐶𝐶0 + 𝑤𝑤𝑜𝑜𝑗𝑗,𝜎𝜎𝑢𝑢02 �,𝜎𝜎𝑢𝑢02 ~ 𝐼𝐼𝐼𝐼(0.001,1) 

𝑤𝑤1𝑗𝑗~𝑁𝑁(𝑘𝑘,𝜎𝜎𝑤𝑤12 ),𝜎𝜎𝑤𝑤12 ~ 𝐼𝐼𝐼𝐼(0.001,1) 

𝑢𝑢1𝑗𝑗~𝑁𝑁�log𝑘𝑘 + 𝑤𝑤1𝑗𝑗,𝜎𝜎𝑢𝑢12 �,𝜎𝜎𝑢𝑢12 ~ 𝐼𝐼𝐼𝐼(0.001,1) 

It was assumed that the logarithmic transformed concentration at time 𝑒𝑒 of the event 𝑖𝑖 at 𝑗𝑗th 
catchment, ln𝐶𝐶𝑗𝑗𝑗𝑗𝑡𝑡, is normally distributed with mean 𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 and variance 𝜎𝜎2. Figure 2 illustrates 
how the distributions have been defined for a typical rainfall event. Accordingly, the mean 
natural logarithmic concentration 𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 was defined as a linear mixed model with fixed effects 
𝐶𝐶0,𝑘𝑘 and random effects 𝑢𝑢0𝑗𝑗, 𝑢𝑢1𝑗𝑗,𝑤𝑤0𝑗𝑗 and 𝑤𝑤1𝑗𝑗 that accounts for the variability in rainfall 
characteristics and catchment characteristics. The relationship between 𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 and 𝑉𝑉𝑡𝑡 is given by 
𝑘𝑘𝑗𝑗𝑗𝑗, which is the catchment and rainfall dependent slope parameter. 𝑘𝑘𝑗𝑗𝑗𝑗 is given as the overall 
parameter 𝑘𝑘, plus the variability associated with catchment and event accounted for via the 
random effect parameters 𝑤𝑤1𝑗𝑗 and 𝑢𝑢1𝑗𝑗 . Instead of using 𝐶𝐶0 and 𝑘𝑘 directly, the logarithmic 
transformations of 𝐶𝐶0 and 𝑘𝑘 were modelled to ensure these parameters remain positive. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: An illustration of Bayesian definition of the variability in concentration for a typical 
event 



 

Vague priors were defined for the parameters as given in the model structure. These vague 
priors were defined due to the lack of past information. Importantly, it was assumed that the 
rainfall events are nested within catchments as the same rainfall event cannot occur in two 
different catchments.  

 

The model was defined using the general structure of a Bayesian mixed model which was used 
in the subsequent analysis. Once the model was developed it was necessary to select the most 
appropriate random effects and variables to include into the model for the data. Therefore, 
several models were developed with the inclusion of more random effects and exclusion of the 
random effects and compared using the deviance information criterion (DIC). DIC is a metric 
used to compare Bayesian models and is an estimate of expected predictive error (lower 
deviance is better) (Pooley and Marion, 2018). 

 

For the MCMC convergence diagnostics, initially, summary statistics of the MCMC sampling 
were obtained for each of the model parameters including the mean, standard deviations and 
95% upper and lower credible limits. Further, 𝑅𝑅� (Rhat) was obtained for each parameter, 
another diagnostic which is a measure of how well the Markov chains have mixed and should 
ideally have a value very close to 1 for the parameters of interest. 𝑅𝑅� refers to the potential scale 
reduction statistic, also known as the Gelman-Rubin statistic (Sorensen and Vasishth, 2015). 

 

3. Results 

3.1 Model convergence and model selection 

The model structure given in Section 2.4 describes the approach which was used to derive the 
relationship between the parameters. Accordingly, different models were defined, and posterior 
predictive checking was performed to check how well the models fit the data. For each MCMC 
simulation, 3 chains were used each with 12000 iterations and the first 2000 were discarded 
(burn in) because these first values depend strongly on the chosen initial values. Each 10th 
iteration was saved (thinning) to reduce the correlation between consecutive values in the chain 
and the rest discarded. Therefore, 3000 iterations (3 * (12000 - 2000) / 10) were saved in 
MCMC sampling. Further, the convergence of the chains was checked using trace plots. 

Different types of models were defined and model checking was performed starting with the 
basic model with minimum number of random effects. Table 1 presents six of them including 
the model shown to be the best to fit the data (Only the definition of the mean value of the 
distribution is given). In Table 1, parameters have the same meaning as described in Section 
2.4.  

 

The models were compiled using “Rjags” package in R statistical software. Accordingly, the 
fifth model which the equation for the average concentration at time 𝑒𝑒 of an event 𝑖𝑖 at 𝑗𝑗𝑡𝑡ℎ 
catchment is given in Equation 6 was selected as the best among the others. The summary 
statistics of MCMC simulation for the fifth model is given in Table 2.  

𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 = 𝑙𝑙𝑜𝑜𝑙𝑙𝐶𝐶0 + 𝑢𝑢𝑜𝑜𝑗𝑗 + 𝑤𝑤𝑜𝑜𝑗𝑗 + 𝑛𝑛1𝐴𝐴𝑒𝑒𝑙𝑙𝐼𝐼 + 𝑛𝑛2𝐷𝐷 + 𝑛𝑛3𝐴𝐴𝐷𝐷𝐴𝐴 + 𝑐𝑐1𝑇𝑇𝐶𝐶 + 𝑐𝑐2𝐸𝐸𝐼𝐼𝐴𝐴 − 𝑘𝑘𝑗𝑗 .𝑉𝑉𝑗𝑗       Equation 6 



All the six models showed convergence, but with different DIC. It can be identified that some 
models tend to increase the DIC by adding new parameters, but some others have increased the 
DIC whenever some parameters are excluded. Therefore, the model that gave the minimum 
deviance was selected. Accordingly, the model defined by the fifth equation was selected as 
the best among the others. The summary statistics of MCMC simulation for the fifth model is 
given in Table 2.  

 

Table 2 shows that 𝑅𝑅� values for each parameter are close to 1 suggesting that the model has 
converged. Table 2 further gives the posterior predictive intervals for each parameter including 
their lower and upper 95% credible limits. Figure 3 demonstrates the trace plots and the density 
plots for the estimated model parameters, the fixed intercept 𝐶𝐶0 and the random intercept 
parameters 𝑐𝑐1, 𝑐𝑐2, 𝑛𝑛1, 𝑛𝑛2 and 𝑛𝑛3. For the rest of the parameters which are the catchment specific 
slope parameters 𝑛𝑛𝑗𝑗, 𝑗𝑗 = 1 … 7 and the catchment specific random intercept 𝑛𝑛𝑗𝑗 , 𝑗𝑗 = 1 … 7, the 
trace plots are shown in Figure S1 in the Supplementary Information.  

 

In a Bayesian model, the expectation is to obtain stationary distributions for the parameter 
posterior distributions. Therefore, Markov chain estimations should converge to stationary 
distributions. In Figure 3, it can be noted that the three chains have most likely converged and 
mixed well. The trace plots are not showing any long-term pattern and the average value of the 
chains are roughly horizontal. Figure S1 provides similar observations suggesting the chains 
contain samples from the appropriate distribution. Therefore, it can be concluded that the 
selected model shows good convergence with minimum DIC. 

 



Table 1. Bayesian model checking results for different models defined. 

 Model Expected 
predictive error 

Special Notes 

1. 𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 = 𝑙𝑙𝑜𝑜𝑙𝑙𝐶𝐶0 − 𝑘𝑘𝑗𝑗 .𝑉𝑉𝑡𝑡 

 

pD = 67857.7 and 
DIC = 68429.5 
 

Each catchment has its own random slope 𝑘𝑘𝑗𝑗which is distributed 
around the overall slope parameter 𝑘𝑘 and 𝑛𝑛𝑗𝑗  and captures the 
variability associated with each catchment.  

2.  𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 = 𝑙𝑙𝑜𝑜𝑙𝑙𝐶𝐶0 + 𝑢𝑢𝑜𝑜𝑗𝑗 − 𝑘𝑘𝑗𝑗 .𝑉𝑉𝑡𝑡 

 

pD = 14805.9 and 
DIC = 15577.1 

Event specific random intercept parameter, 𝑢𝑢𝑜𝑜𝑗𝑗 has been 
included 

3.  𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 = 𝑙𝑙𝑜𝑜𝑙𝑙𝐶𝐶0 + 𝑢𝑢𝑜𝑜𝑗𝑗+𝑤𝑤𝑜𝑜𝑗𝑗 − 𝑘𝑘𝑗𝑗 .𝑉𝑉𝑡𝑡 

 

pD = 18876.5 and 
DIC = 19070.9 

Catchment specific random intercept parameter, 𝑤𝑤𝑜𝑜𝑗𝑗 has been 
included 

4.  𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 = 𝑙𝑙𝑜𝑜𝑙𝑙𝐶𝐶0 + 𝑢𝑢𝑜𝑜𝑗𝑗 + 𝑤𝑤𝑜𝑜𝑗𝑗 + 𝑛𝑛1𝐴𝐴𝑒𝑒𝑙𝑙𝐼𝐼

+ 𝑛𝑛2𝐷𝐷 + 𝑛𝑛3𝐴𝐴𝐷𝐷𝐴𝐴 − 𝑘𝑘𝑗𝑗 .𝑉𝑉𝑗𝑗 

 

pD = 14369.2 and 
DIC = 14574.8 
 

Three rainfall parameters (AvgI, D, ADP) have been included. 
These variables were found to be influenced by the variability 
in the intercept.  

5.  𝝁𝝁𝒋𝒋𝒋𝒋𝒋𝒋 = 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝟎𝟎 + 𝒖𝒖𝒍𝒍𝒋𝒋 + 𝒘𝒘𝒍𝒍𝒋𝒋 + 𝒓𝒓𝟏𝟏𝑨𝑨𝑨𝑨𝒍𝒍𝑨𝑨

+ 𝒓𝒓𝟐𝟐𝑫𝑫 + 𝒓𝒓𝟑𝟑𝑨𝑨𝑫𝑫𝑨𝑨

+ 𝒄𝒄𝟏𝟏𝑻𝑻𝒍𝒍 + 𝒄𝒄𝟐𝟐𝑬𝑬𝑨𝑨𝑨𝑨

− 𝒌𝒌𝒋𝒋.𝑽𝑽𝒋𝒋 

 

pD = 12946.2 and 
DIC = 13309.6 

Two catchment specific parameters have been included. 

6. 𝜇𝜇𝑗𝑗𝑗𝑗𝑡𝑡 = 𝑙𝑙𝑜𝑜𝑙𝑙𝐶𝐶0 + 𝑢𝑢𝑜𝑜𝑗𝑗 + 𝑤𝑤𝑜𝑜𝑗𝑗 + 𝑛𝑛1𝐴𝐴𝑒𝑒𝑙𝑙𝐼𝐼

+ 𝑛𝑛2𝐷𝐷 + 𝑛𝑛3𝐴𝐴𝐷𝐷𝐴𝐴 + 𝑐𝑐1𝑇𝑇𝐶𝐶

+ 𝑐𝑐2𝐸𝐸𝐼𝐼𝐴𝐴 − 𝑘𝑘𝑗𝑗 .𝑉𝑉𝑗𝑗 + 𝑢𝑢1𝑗𝑗

+ 𝑤𝑤1𝑗𝑗 

pD = 22442.4 and 
DIC = 22634.2 
 
 

Two random slope parameters 𝑢𝑢1𝑗𝑗  and 𝑤𝑤1𝑗𝑗 

Note: DIC info (using the rule, pD = var(deviance)/2) 
           DIC is an estimate of expected predictive error (lower deviance is better) 



Paramet

er 

mu.vect  

sd.vect 

2.5% 25% 50% 75% 

 

97.5% Rhat 𝑙𝑙_𝑒𝑒𝑜𝑜𝑜𝑜 

b[1] 4.145 1.472 1.775 3.099 3.985 5.022 7.413 1.002 1400 

b[2] 2.797 0.787 1.416 2.247 2.729 3.290 4.514 1.003 930 

b[3] 4.204 

 

1.712 1.408 2.967 4.023 5.257 8.011 1.005 1200 

b[4] 5.413 2.142 1.900 3.921 5.152 

 

6.658 10.325 1.001 2400 

b[5] 3.560 2.736 -0.753 1.534 3.191 5.257 9.776 1.001 2700 

b[6] 4.359 1.743 1.433 3.127 4.195 5.464 8.147 1.001 3000 

b[7] 2.399 2.569 -3.565 0.880 2.749 4.166 6.565 1.001 3000 

b 0 0.146 0.325 -0.493 -0.084 0.145 0.371 0.771 1.001 3000 

C1 0.718 2.237 -2.829 -0.828 0.416 2.027 5.837 1.001 2600 

C2 0.162 0.295 -0.418 -0.043 0.156 0.359 0.742 1.002 1900 

K -0.015 0.727 -1.344 -0.537 -0.031 0.478 1.476 1.012 400 

r[1] 0.156 0.729 -1.352 -0.337 0.158 0.671 1.475 1.012 520 

r[2] 0.191 0.741 -1.331 -0.297 0.197 0.716 1.536 1.010 570 

r[3] 

 

0.064 0.757 -1.526 -0.440 0.078 0.600 1.419 1.009 470 

r[4] 

 

0.093 0.726 -1.375 -0.405 0.113 0.610 1.434 1.012 420 

r[5] 

 

-0.025 0.746 -1.578 -0.522 -0.005 0.497 1.325 1.011 410 

r[6] 

 

0.067 0.728 -1.409 -0.426 0.082 0.591 1.385 1.012 430 

r[7] 0.020 

 

0.728 -1.478 -0.472 0.037 0.545 1.357 1.012 380 

r1 -0.054 0.233 -0.519 -0.208 -0. 057 0.105 

 

0.399 1.001 3000 

r2 -0.111 0.132 -0.375 -0.200 -0.111 -0.022 0.149 1.001 3000 

Table 2. Summary statistics of MCMC sampling for the selected model 
(model 5 in Table 1) 



pD = 12946.2 and DIC = 13309.6 

 

 

r3 0.144 0.120 -0.093 0.063 0.144 

 

0.227 0.381 1.002 1100 

devianc

e 

287.058 81.971 

 

 

57.648 256.809 318.294 343.384 361.995 1.045 57 



  

Figure 3: Trace plots and the corresponding density plots for the estimated posterior distributions of parameters. 

 

𝒍𝒍𝟎𝟎 𝒍𝒍𝟎𝟎 



After the initial diagnostic checking for convergence, it was important to check for model 
suitability. Accordingly, posterior predictive checking (ppc) was performed. The reason for 
ppc is to check whether the observed data look reasonable under the posterior predictive 
distribution. Accordingly, ppc p-value was estimated by calculating the fraction of predicted 
values that are more extreme for the test statistic than the observed value for that statistic. This 
implies that a p-value greater than, say, 0.50 indicates that the model fits the 
data.(Derpanopoulos, 2016). Figure 4 shows the ppc plot with a p-value of 0.51. This indicates 
a good fit of the model to the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The plot of posterior predictive check. 

 

4. Discussion 

4.1 Results on variable scale 

The 95% posterior credible intervals of the model parameters, the fixed intercept parameter 𝐶𝐶0 
and the random intercept parameters 𝑐𝑐1, 𝑐𝑐2, 𝑛𝑛1, 𝑛𝑛2 and 𝑛𝑛3, corresponding to the variables TC, 
EIA, AvgI, D and ADP are shown in Figure 5(a). The dot corresponds to the median, while the 
red line represents the 80% interval, and the thin black line is the 95% interval. The parameters 
𝑐𝑐1, 𝑐𝑐2, 𝑛𝑛1, 𝑛𝑛2 and 𝑛𝑛3 can be interpreted as the contribution coefficients of the corresponding 
variable to the random intercept. It is clear that 𝐶𝐶0, 𝑐𝑐2, 𝑛𝑛1, 𝑛𝑛2 and 𝑛𝑛3 do not vary in a wide range 
means that those variables do not account for much variability in pollutant concentration at a 
given runoff volume. However, 𝑐𝑐1varies in a wide range. Therefore, the TC of the catchment 
contributes to a large variability in the resulting pollutant concentration (Here the intercept of 
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the model can change largely depending on the TC) and it suggests that the effect of TC is 
uncertain. 

The model output also shows that ADP provides a positive contribution to the intercept. This 
is not surprising as a long ADP results in high loads of pollutants on the catchment surfaces at 
the beginning of a runoff event, which then increases the initial concentration. Similarly, the 
AvgI and D shows a negative contribution. This implies that high intensity rainfall can quickly 
wash-off the initial build-up pollutant load and longer duration also makes the initial 
concentration lower. 

 

Figure 5(b) shows the credible intervals for catchment specific decay parameters 𝑛𝑛𝑗𝑗 , 𝑗𝑗 = 1. .7 
and the overall population parameter 𝑘𝑘. It is evident that based on the catchment, the rate of 
decay in the concentration varies significantly. Therefore, adding the catchment specific decay 
parameter can improve the accuracy of prediction of pollutant concentration by accounting for 
the uncertainty created by the catchment characteristics. Similarly, Figure 5(c) demonstrates 
the distribution of the catchment specific random intercept parameter 𝑤𝑤0𝑗𝑗. It is evident that 
𝑤𝑤0𝑗𝑗, 𝑗𝑗 = 1 … 7 vary in a wide positive range, which means that there is high variability in the 
intercept by catchment related characteristics which cannot be explained by including those 
variables into the model.  
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Figure 5(a): credible intervals for rainfall and catchment specific random intercept parameters 

Figure 5(b): credible intervals for catchment specific parameters 

Figure 5(c): credible intervals for rainfall and catchment specific random intercept parameters 

 

The illustrations provided in Figure 5 highlight that adding random effects to the basic model 
for deriving pollutographs can account for much of the variability incurred by the random 
variability in data. Adding catchment specific parameters further improves the model and 
thereby result in catchment specific pollutographs. Accordingly, the selected model provides 
relatively good estimations of model parameters and thereby can be used for modelling the 
pollutographs with associated uncertainties. It is clear that, if there is a single catchment with 
known EIA and TC, the resultant pollutograph is catchment specific, but varies depending on 
the rainfall characteristics. Therefore, this method can be used to generate catchment specific 
runoff pollutographs with associated uncertainties in rainfall characteristics. 

 

4.2 Practical implications of the study 

This study modified the existing linear relationship between the natural logarithmic 
transformed pollutant concentration in the runoff and the runoff volume given in Equation 2 
by incorporating a set of catchment and rainfall variables. Therefore, the outcomes of this 
approach can be used to reproduce the catchment-based runoff pollutographs rather than 
deriving separate pollutographs based on runoff events. This model also helps to account for 
the variability associated with the variability in rainfall characteristics. Therefore, a single 
catchment specific model can be used to model the variability in runoff concentration with the 
associated uncertainty incurred by the uncertainty in the rainfall characteristics. 

 

In terms of stormwater quality treatment systems, it is important to design treatment facilities 
separately for different catchments by considering the specific characteristics of the 
catchments. In this regard, a catchment specific pollutograph is important to analyse the 
variability in water quality at different times during the runoff event. Such analysis would then 
help to identify the most polluted critical runoff volume in the overall runoff hydrograph. The 
identification of highly concentrated runoff can then be treated to reduce the cost and space 
required for larger stormwater treatment systems. Therefore, this study provides a robust 
methodology for producing runoff pollutographs separately for individual catchments by 
considering their topographical characteristics and thereby assist in formulating urban 
stormwater quality treatment strategies. 

 

5. Conclusions 

This study provides a new contribution to the field of stormwater quality modelling. A new 
and innovative approach (Bayesian hierarchical linear regression) was tested with measured 
data incorporating the uncertainty in the variables influencing stormwater quality 
characteristics. This approach overcomes significant limitations where several other model 
structures such as linear regression models have failed to provide satisfactory results.  



 

Accordingly, Bayesian hierarchical linear regression models were constructed for examining 
the relationship between catchment and rainfall characteristics with stormwater SS 
concentration. The data collected over seven urban catchments were used to derive the 
posterior distributions. Accordingly, catchment specific models were developed incorporating 
the random effects of variables under consideration.  

 

Catchment characteristics such as the effective impervious area and the time of concentration 
was shown to impact SS concentration in the runoff. The hierarchical model revealed that the 
variability in the rainfall characteristics significantly influence the SS concentrations within the 
same catchment. Furthermore, the antecedent dry period, rainfall duration and the average 
intensity were found to have relatively high contribution to the variability in runoff pollutant 
concentration.  

 

The model structure presented in this study was shown to be efficient compared to the 
traditional regression models as it provides with a level of confidence, a credible interval which 
a parameter can vary. Therefore, predictions can be more reliable and variations in the 
prediction can also be determined. Further, this provides a new insight for reproducing 
pollutographs. The catchment specific model can be used to construct catchment-based water 
quality treatment measures through the analysis of variability in pollutant concentration during 
the occurrence of a runoff event. 
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Table S1: Summary of the catchment characteristics 

 

Table S2. Summary of the collected rainfall data for each catchment 

 
 
Catchment 

RD (mm) AvgI 
(mm/h) 

MaxI 
(mm/h) 

D 
(minutes) 

ADP 
(hrs) 

RoD 
(mm) 

 
Coomera  

A 1.4-5.8 4-21 12-30 4-48 3-396 0.27-2.25 

B 0.8-3.2 4-13 12-30 6-48 23.6-396 0.23-2.6 
C 2.2-3.2 3-4 12-24 44-48 24-164 1.26-1.54 

Highland Park 
 

Alextown 33.1-50.6 6.6-12.6 22.7-56.5 240-300 216-360 23.6-24.1 
Birdlife 
park 

7.6-50.6 5.3-21.3 23.1-102 84-474 10-900 2.4-26.9 

Gumbeel 5-50.6 3.1-16.8 10.3-136 94.8-355 7-402 0.7-2 
Airport  Apron 6.6-492 5.9-95.3 16.8-556 42-784 12-205 5.5-490.9 

mailto:a.goonetilleke@qut.edua.au


Note: 

RD – rainfall depth 

AvgI – average intensity 

MaxI – max. 5 min intensity 

D – rain duration 

ADP – antecedent dry period 

RoD – runoff depth 

 

Table S3: Correlation matrix of catchment variables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:  

EIA - 
Effective impervious area 

TC – time of concentration 
 
 

Table S4: Correlation matrix of hydrologic variables 

 
Catchment 

Area 
(m2) 

Impervious 
area (%) 

Roof 
surfaces(%) 

Street 
surfaces(%) 

Driveways 
(%) 

 
Coomera 
(Residential)  

A 44470 48 33.6 10.9 3.2 
B 10500 47 43.6 0.42 2.9 
C 6530 52 36.1 12 3.9 

Highland 
Park 
(Residential) 

Alextown 19000 57.2 10.5 38.1 8.6 
Birdlife 
park 

86000 47 12.4 23.4 11.2 

Gumbeel 21000 40.7 10.3 19.2 11.2 
Domestic 53400 100    

 EIA Roads Roofs Driveways TC 

EIA 1.0000000 -0.6830639 0.98122923 -0.8806638 -0.2789524 

Roads -0.6830639 1.0000000 -0.69255214 0.5271131 0.3520484 

Roofs 0.9812292 -0.6925521 1.0000000 -0.8776147 -0.4009121 

Driveways -0.8806638 0.5271131 -0.87761471 1.0000000 0.5367902 

TC -0.2789524 0.3520484 -0.40091212 0.5367902 1.0000000 

 
Rain depth 
(mm) 

Average 
intensity 
(mm/h) 

Maximum 
intensity 
(mm/h) 

Rain 
duration 
(minutes) 

Antecedent 
dry period 
(hrs) 

Runoff 
depth 
(mm) 

Rain depth 1.0000000 0.1457937 0.66393417 0.30323349 0.055125814 0.992522156 



 

 

 

 

 

 

Table S5: Data matrix used for the analysis. 

Note: Catchment ID: 1-Coomera A, 2-Coomera B, 3-Coomera C, 4-Birdlife, 5-Gumbeel, 6-
Alextown, 7-Apron 

Catchment 
ID 

Runoff 
depth 

lnC 
(Concnetration) 

Shape 
factor 

Effective 
impervious 
area  

Time of 
cocentration 

Average 
intensity 

Duration Antecedent 
dry period 

1 0.030157 4.29 -1.23558 -0.623 -0.097 -0.46276 -0.40723 -0.78548 
1 0.34839 3.611 -1.23558 -0.623 -0.097 -0.46276 -0.40723 -0.78548 
1 0.473779 4.407 -1.23558 -0.623 -0.097 -0.46276 -0.40723 -0.78548 
1 0.545203 2.398 -1.23558 -0.623 -0.097 -0.46276 -0.40723 -0.78548 
1 0.014466 5.03 -1.23558 -0.623 -0.097 -0.17084 -0.63793 0.439303 
1 0.115175 4.263 -1.23558 -0.623 -0.097 -0.17084 -0.63793 0.439303 
1 0.17304 3.829 -1.23558 -0.623 -0.097 -0.17084 -0.63793 0.439303 
1 0.220613 3.466 -1.23558 -0.623 -0.097 -0.17084 -0.63793 0.439303 
1 0.224786 3.434 -1.23558 -0.623 -0.097 -0.17084 -0.63793 0.439303 
1 0.014943 4.143 -1.23558 -0.623 -0.097 -0.13435 -0.59599 0.349996 
1 0.110575 5.182 -1.23558 -0.623 -0.097 -0.13435 -0.59599 0.349996 
1 0.368183 3.784 -1.23558 -0.623 -0.097 -0.13435 -0.59599 0.349996 
1 0.49908 2.708 -1.23558 -0.623 -0.097 -0.13435 -0.59599 0.349996 
1 0.106192 3.584 -1.23558 -0.623 -0.097 0.048104 -0.5855 -0.88117 
1 0.205605 3.258 -1.23558 -0.623 -0.097 0.048104 -0.5855 -0.88117 
1 1.202001 2.89 -1.23558 -0.623 -0.097 0.048104 -0.5855 -0.88117 
1 1.7307 2.303 -1.23558 -0.623 -0.097 0.048104 -0.5855 -0.88117 

(mm) 
Average 
intensity 
(mm/h) 

.           
0.14579372 1.0000000 0.7100399 -0.17417073 -0.116960657 0.154183198 

Maximum 
intensity 
(mm/h) 0.66393417 0.7100399 1.0000000 0.06264356 -0.093249735 0.672433285 
Rain 
duration 
(minutes) 0.30323349 -0.1741707 0.06264356 1.0000000 0.135025324 0.274879090 
Antecedent 
dry period 
(hrs) 0.05512581 -0.1169607 -0.09324974 0.13502532 1.0000000 0.016595220 
Runoff 
depth 
(mm) 

.               
0.992522156 0.1414737 0.67243329 0.27487909 0.016595220 1.0000000 



1 1.766851 1.792 -1.23558 -0.623 -0.097 0.048104 -0.5855 -0.88117 
1 2.085426 2.303 -1.23558 -0.623 -0.097 0.048104 -0.5855 -0.88117 
1 2.178062 2.197 -1.23558 -0.623 -0.097 0.048104 -0.5855 -0.88117 
1 0.001836 5.263 -1.23558 -0.623 -0.097 -0.33942 -0.52258 1.58754 
1 0.099122 4.673 -1.23558 -0.623 -0.097 -0.33942 -0.52258 1.58754 
1 0.209258 4.205 -1.23558 -0.623 -0.097 -0.33942 -0.52258 1.58754 
1 0.795733 3.296 -1.23558 -0.623 -0.097 -0.33942 -0.52258 1.58754 
1 0.873746 3.045 -1.23558 -0.623 -0.097 -0.33942 -0.52258 1.58754 
1 0.217511 4.19 -1.23558 -0.623 -0.097 -0.32044 -0.4282 -0.91944 
1 0.478524 4.094 -1.23558 -0.623 -0.097 -0.32044 -0.4282 -0.91944 
1 1.833307 4.094 -1.23558 -0.623 -0.097 -0.32044 -0.4282 -0.91944 
1 2.035282 4.454 -1.23558 -0.623 -0.097 -0.32044 -0.4282 -0.91944 
1 2.488947 4.407 -1.23558 -0.623 -0.097 -0.32044 -0.4282 -0.91944 
1 2.793463 4.025 -1.23558 -0.623 -0.097 -0.32044 -0.4282 -0.91944 
1 2.948828 3.912 -1.23558 -0.623 -0.097 -0.32044 -0.4282 -0.91944 
1 0.120575 3.807 -1.23558 -0.623 -0.097 -0.49925 -0.4282 0.107591 
1 0.190853 3.219 -1.23558 -0.623 -0.097 -0.49925 -0.4282 0.107591 
1 0.298337 2.89 -1.23558 -0.623 -0.097 -0.49925 -0.4282 0.107591 
1 0.57876 2.197 -1.23558 -0.623 -0.097 -0.49925 -0.4282 0.107591 
1 0.034344 4.852 -1.23558 -0.623 -0.097 0.157574 -0.63793 -0.87964 
1 0.248119 4.277 -1.23558 -0.623 -0.097 0.157574 -0.63793 -0.87964 
1 0.344142 3.951 -1.23558 -0.623 -0.097 0.157574 -0.63793 -0.87964 
1 0.41283 4.234 -1.23558 -0.623 -0.097 0.157574 -0.63793 -0.87964 
1 0.019916 5.298 -1.23558 -0.623 -0.097 -0.38978 -0.5855 -0.78772 
1 0.125784 4.691 -1.23558 -0.623 -0.097 -0.38978 -0.5855 -0.78772 
1 0.145001 4.331 -1.23558 -0.623 -0.097 -0.38978 -0.5855 -0.78772 
1 0.184134 3.807 -1.23558 -0.623 -0.097 -0.38978 -0.5855 -0.78772 
2 0.065615 2.89 1.002985 -0.294 0.117 -0.13435 -0.59599 0.349996 
2 0.208997 2.398 1.002985 -0.294 0.117 -0.13435 -0.59599 0.349996 
2 0.60755 2.996 1.002985 -0.294 0.117 -0.13435 -0.59599 0.349996 
2 0.678026 3.401 1.002985 -0.294 0.117 -0.13435 -0.59599 0.349996 
2 1.832371 2.303 1.002985 -0.294 0.117 -0.13435 -0.59599 0.349996 
2 2.053519 1.609 1.002985 -0.294 0.117 -0.13435 -0.59599 0.349996 
2 2.332992 1.099 1.002985 -0.294 0.117 -0.13435 -0.59599 0.349996 
2 0.271306 4.248 1.002985 -0.294 0.117 -0.33942 -0.52258 1.58754 
2 0.633943 3.871 1.002985 -0.294 0.117 -0.33942 -0.52258 1.58754 
2 0.993894 3.045 1.002985 -0.294 0.117 -0.33942 -0.52258 1.58754 
2 0.148661 3.258 1.002985 -0.294 0.117 -0.46276 -0.40723 -0.78548 
2 0.219452 3.584 1.002985 -0.294 0.117 -0.46276 -0.40723 -0.78548 
2 0.306761 3.638 1.002985 -0.294 0.117 -0.46276 -0.40723 -0.78548 
2 0.370473 3.367 1.002985 -0.294 0.117 -0.46276 -0.40723 -0.78548 
2 1.215246 2.639 1.002985 -0.294 0.117 -0.46276 -0.40723 -0.78548 
2 1.411101 2.197 1.002985 -0.294 0.117 -0.46276 -0.40723 -0.78548 
2 0.05805 4.443 1.002985 -0.294 0.117 -0.49925 -0.4282 0.107591 



2 0.25331 3.689 1.002985 -0.294 0.117 -0.49925 -0.4282 0.107591 
2 0.934082 3.091 1.002985 -0.294 0.117 -0.49925 -0.4282 0.107591 
2 1.628927 2.485 1.002985 -0.294 0.117 -0.49925 -0.4282 0.107591 
2 0.115279 2.079 1.002985 -0.294 0.117 -0.3168 -0.62745 0.148417 
2 0.180035 2.398 1.002985 -0.294 0.117 -0.3168 -0.62745 0.148417 
2 0.229372 0.693 1.002985 -0.294 0.117 -0.3168 -0.62745 0.148417 
2 0.26415 3.135 1.002985 -0.294 0.117 -0.38978 -0.5855 -0.78772 
2 0.456317 2.197 1.002985 -0.294 0.117 -0.38978 -0.5855 -0.78772 
2 0.481382 1.386 1.002985 -0.294 0.117 -0.38978 -0.5855 -0.78772 
2 0.535369 1.609 1.002985 -0.294 0.117 -0.38978 -0.5855 -0.78772 
2 0.612493 2.197 1.002985 -0.294 0.117 -0.38978 -0.5855 -0.78772 
3 0.122166 3.784 -0.3338 -0.689 -0.88 -0.46276 -0.40723 -0.78548 
3 0.252063 3.258 -0.3338 -0.689 -0.88 -0.46276 -0.40723 -0.78548 
3 0.383507 3.367 -0.3338 -0.689 -0.88 -0.46276 -0.40723 -0.78548 
3 1.008253 2.708 -0.3338 -0.689 -0.88 -0.46276 -0.40723 -0.78548 
3 0.30595 4.127 -0.3338 -0.689 -0.88 -0.49925 -0.4282 0.107591 
3 1.030834 4.331 -0.3338 -0.689 -0.88 -0.49925 -0.4282 0.107591 
3 1.096848 4.477 -0.3338 -0.689 -0.88 -0.49925 -0.4282 0.107591 
4 0.89544 5.375 0.908163 -0.689 -0.88 -0.35365 3.556699 -0.70064 
4 4.28532 3.466 0.908163 -0.95 2.05 -0.35365 3.556699 -0.70064 
4 6.0229 4.585 0.908163 -0.95 2.05 -0.35365 3.556699 -0.70064 
4 8.60262 3.258 0.908163 -0.95 2.05 -0.35365 3.556699 -0.70064 
4 0.93808 5.481 0.908163 -0.95 2.05 -0.35365 3.556699 -0.70064 
4 7.66454 3.584 0.908163 -0.95 2.05 -0.35365 3.556699 -0.70064 
4 0.733298 4.304 0.908163 -0.95 2.05 2.238416 -0.40723 -0.86203 
4 1.692987 5.384 0.908163 -0.95 2.05 2.238416 -0.40723 -0.86203 
4 0.129676 6.439 0.908163 -0.95 2.05 2.238416 -0.40723 -0.86203 
4 0.56673 3.738 0.908163 -0.95 2.05 2.238416 -0.40723 -0.86203 
4 24.98589 3.526 0.908163 -0.95 2.05 4.864784 -0.60857 -0.85514 
4 12.71883 4.06 0.908163 -0.95 2.05 0.563343 -0.55509 0.369133 
4 0.972466 5.793 0.908163 -0.95 2.05 0.563343 -0.55509 0.369133 
4 3.941045 5.182 0.908163 -0.95 2.05 0.563343 -0.55509 0.369133 
4 7.952904 3.584 0.908163 -0.95 2.05 1.37634 -0.42296 -0.70574 
5 1.761197 4.625 0.9244 -0.95 2.05 1.37634 -0.42296 -0.70574 
5 0.829649 2.079 0.9244 -1.21 -0.097 -0.39342 3.456027 -0.811 
5 1.176625 4.736 0.9244 -1.21 -0.097 -0.39342 3.456027 -0.811 
5 1.386184 3.912 0.9244 -1.21 -0.097 -0.39342 3.456027 -0.811 
5 1.604332 0.693 0.9244 -1.21 -0.097 -0.39342 3.456027 -0.811 
5 1.686781 1.792 0.9244 -1.21 -0.097 -0.39342 3.456027 -0.811 
5 0.398506 1.792 0.9244 -1.21 -0.097 -0.39342 3.456027 -0.811 
5 0.346683 0.693 0.9244 -1.21 -0.097 0.378704 -0.40723 -0.5367 
5 0.080991 2.89 0.9244 -1.21 -0.097 0.378704 -0.40723 -0.5367 
5 0.963995 2.079 0.9244 -1.21 -0.097 0.378704 -0.40723 -0.5367 
5 0.095466 2.773 0.9244 -1.21 -0.097 -0.14711 0.599483 1.357893 



5 0.275575 2.89 0.9244 -1.21 -0.097 -0.14711 0.599483 1.357893 
5 0.120035 2.485 0.9244 -1.21 -0.097 -0.36658 0.91408 0.439303 
5 0.793103 2.303 0.9244 -1.21 -0.097 -0.41365 1.165758 1.357893 
5 1.10806 2.079 0.9244 -1.21 -0.097 -0.41365 1.165758 1.357893 
5 0.82411 3.584 0.9244 -1.21 -0.097 -0.41365 1.165758 1.357893 
5 1.338288 4.382 0.9244 -1.21 -0.097 -0.1926 -0.16184 0.247931 
5 4.488272 3.584 0.9244 -1.21 -0.097 -0.1926 -0.16184 0.247931 
5 0.345952 3.526 0.9244 -1.21 -0.097 -0.1926 -0.16184 0.247931 
5 0.728166 4.22 0.9244 -1.21 -0.097 -0.33982 0.127587 2.888876 
5 0.749037 2.079 0.9244 -1.21 -0.097 -0.33982 0.127587 2.888876 
6 14.76787 3.784 0.584986 -0.638 -0.52 0.169001 -0.21847 1.893737 
6 19.94025 3.912 0.584986 -0.638 -0.52 0.169001 -0.21847 1.893737 
6 22.69563 2.773 0.584986 -0.638 -0.52 0.169001 -0.21847 1.893737 
6 0.26048 4.357 0.584986 -0.638 -0.52 -0.41753 1.202461 1.357893 
6 14.53952 2.485 0.584986 -0.638 -0.52 -0.41753 1.202461 1.357893 
7 26.58048 3.295837 -0.53043 1.171 -0.957 -0.42942 0.599483 -0.58135 
7 25.39761 4.394449 -0.53043 1.171 -0.957 -0.49457 -0.15555 -0.89393 
7 25.56145 4.43 -0.53043 1.171 -0.957 -0.49137 -0.02971 -0.70893 
7 5.209715 3.932 -0.53043 1.171 -0.957 -0.33982 0.127587 -0.55584 
7 22.74893 0.693 -0.53043 1.171 -0.957 -0.33982 0.127587 -0.55584 
7 2.919448 2.3 -0.53043 1.171 -0.957 0.004441 0.048937 -0.87479 
7 8.718953 2.19 -0.53043 1.171 -0.957 0.004441 0.048937 -0.87479 
7 32.48776 2.63 -0.53043 1.171 -0.957 0.004441 0.048937 -0.87479 
7 0.54711 3.66 -0.53043 1.171 -0.957 0.004441 0.048937 -0.87479 

 

 

 

 

 

 

 

 

 

  



Table S6: Calculated model parameters and statistics of exponential model fitting 

 

Event 𝑘𝑘 𝐶𝐶0 Standard error of 𝑘𝑘 Standard error of 𝐶𝐶0 𝑅𝑅2 

CB1 2.06936 24.85077 0.697  
 

0.412 
 

0.745 
CA2 3.02539 303.101 0.499   

0.213 0.901 
CA3 1.85012 158.5276 0.478883   

0.181237 0.832 
CB4 2.08612 37.35222 0.652304   

0.448411 0.718 
CA5 2.1553 176.232 0.381804   

0.195842 0.864 
CA7 3.01209 85.35052 0.504805   

0.206092 0.407 
CB8 2.10992 75.70852 0.32339   

0.155778 0.898 
CA9 2.37232 189.6726 0.44734   

0.239642 0.934 
CB10 4.02793 103.6625 0.731566   

0.134398 0.875 
CA11 1.36298 74.88843 0.890823   

0.383363 0.883 
CB12 2.28026 36.38434 0.567748   

0.290343 0.369 
CA13 2.22694 58.45502 0.473528   

0.28552 0.697 
CC14 2.20787 56.56143 0.34669   

0.137004 0.759 
CA15 3.42339 224.269 1.315964   

0.543356 0.890 
CB16 3.70401 43.03616 1.05318   

0.393662 0.628 
AD3 0.66786 24.80824 4.722365   

1.377679 
  

0.20 
AD4 3.93144 366.7468 4.669372 3.581665 

 

0.708 
AD6 5.2056 361.054 2.150078   

1.517139 0.854 
AD9 2.37532 12.83246 5.098338   

1.498286 0.71 
AD11 4.34975 250.6534 1.1269923 0.740957 0.93 
AD12 1.423121 14.01715 3.997349   

3.437609 0.48 
AD13 1.37547 2392.077 5.955745 

 

4.220869 
 

0.533 
AI1 7.97769 637.6544 0.711604   

0.377427 
 

0.992 
AI2 7.40657 2545.837 5.34172   

3.9749848 0.657 
AI3 2.53111 85.47294 0.800493   

0.435136 0.909 
AI4 4.62699 379.4781 2.984418 

 

2.21316 
 

0.706 
AI5 1.70275 117.6487 2.633133 

 

1.997814 
 

0.29 
AI6 3.52787 67.78488 1.612287   

0.474711 0.827 
AI8 3.56566 63.18167 0.528501   

0.321615 0.528 
AI9 4.59375 218.0368 0.519077 

 

0.339002 
 

0.987 
B1 2.48141 205.0864 1.505074   

0.803131 0.576 
B2 2.85634 279.726 1.339883   

0.726355 0.602 
B3 1.633347 2.180618 0.159913 

 

0.702102 
 

0.190 
B5 2.80319 412.2489 0.051521   

0.027469 0.99 
B8 1.16245 137.1488 0.593193 

 

0.465868   
 

0.793 
G1 3.44972 210.1816 1.5152443   

1.028744 0.508 
G2 12.1582 125.3177 1.189181   

0.290405862 0.990 
G4 0.06963 24.86725 1.216002   

0.822952 0.327 
G7 3.90718 78.766 2.07537 

 

0.897658 
 

0.639 
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Figure S1: Trace plots and density plots for the model parameters. 2 
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