
THREE EXPERIMENTAL STUDIES ON THE DESIGN
OF CONTESTS AND AUCTIONS

Submitted in fulfilment

of the requirement for the degree of

Doctor of Philosophy

Yang Liu
Bachelor of Economics

Master or Economics

SCHOOL OF ECONOMICS AND FINANCE

FACULTY OF BUSINESS AND LAW

QUEENSLAND UNIVERSITY OF TECHNOLOGY

2021



To my family

i



Abstract

Contests and auctions are two commonly used tools for principals to regulate agents

towards desired objectives. Due to their successful application inmany fields, extensive

empirical and theoretical research examines how the design of such environments affect

agents’ decisions and principals’ welfare. However, some of the major variables cannot

be obtained from the observed field data. In contests, principals can only glean the

agents’ performance but not their investment (effort, time,etc.); in auctions, the auction-

eer only observes bidders’ bids but not their valuation of the asset under auction. This

missing information is crucial in evaluating the theory andproviding guidance for prac-

tice. This experimental study serves as an additional instrument in this case by using

controlled laboratory experiments to examine how the design of contests and auctions

affects individual decisions from a policymaker perspective. This thesis shows that: (1)

in Tullock contests, when the entry is endogenous, disclosing (concealing) the number

of contestants can elicit higher total effort when the cost of the effort function is con-

cave(convex); (2) increasing the competition in a rank-order tournament will not only

increase the dispersion but many also increase the skewness of contestants’ strategy;

and (3) simple indicative bidding can improve auctioneers’ revenue by encouraging

more entry when bidders face a relatively high entry cost. This thesis contributes to the

literature on the design of contests and auctions and provides experimental evidence

to inform policymaking and market design.
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Chapter 1

Introduction

”One of the most important contributions of economics has been to the understanding how

incentive works.”

– Hugo F. Sonnenschein

In many economic, political, and even biological situations, competitive environ-

ments are used to incentivize agents to behave in such a way that certain outcomes pre-

vail (Menezes andMonteiro, 2000). For example, promotion within company can elicit

higher effort from employees (Kini andWilliams, 2012), R& D competition encourages

technology innovation (Erat and Gneezy, 2016), auctions are used to allocate resources

to the most suitable bidder (Bulow and Klemperer, 2009), and competing for a mate is

part of the natural selection process (Dekel and Scotchmer, 1999). These activities are

usually held by different parties and serve different purposes. However, one question

of common interest remains: howdoes the design of institutional arrangements in these

activities affect agents’ behavior and towhat degree can the organizer utilise this design

to achieve a certain goal?

There is a well-established literature on mechanism design and game theory that

predicts how the structural factors shape individual decisions (Klemperer, 1999; Kon-

rad, 2009). These studies provide valuable guidance for institutional design in practice.

Examples of how theory inspires the design of economic activities includes but is not

limited to the spectrum license auction in the U.S., the 3G auction in Europe, and the

electricity auction in Australia (Milgrom, 2004).

1



2 CHAPTER 1. INTRODUCTION

The process of mechanism design is based on ubiquitous awareness and thoroughly

rational calculations. Sophisticated strategic thinking and complicated computation

make it questionable that the economic agents, even those experienced participants,

behave in practice exactly as the model predicted. How to evaluate the effect of insti-

tutional design, and whether individual behavior deviates from theoretical prediction

are questions worth examining prudently.

One way of testing these theories is via an empirical study using field data. Such a

study serve as an excellent tool to estimate parameters in the model and test whether

observed data follows predictions. However, as Dechenaux et al. (2015) note in their

survey paper of the contest literature, measuring individual behavior (such as their

effort or risk-strategy) using observed field data is nontrivial, let alone the capture

of unobserved individual characteristics such as risk preferences and their valuations.

Besides, in terms of assessing a newmechanism, examining field data can either be too

expensive or too time-consuming. Therefore, a controlled experimental study emerges

as a suitable alternative approach.

The primary purpose of this thesis is to use the experimental method as a wind tun-

nel to examine how the institutional design in a competitive environment incentivizes

individuals’ decisions and consequently affects the organizers’ welfare. I explore the

two most extensively used competitive environments, namely contests and auctions.

The first part of this thesis contains two studies that focus on the design of contests. In

the second part of the thesis (the last study), I investigate the design of auctions. To lay

out the theoretical foundation, I set forth the basic model of contests and auctions in

Section 1.1 and Section 1.2, respectively. Section 1.3 provides an overview of the thesis.

1.1 Contest models

Contests can be defined as interactions among a group of players who expend costly

and irreversible efforts or resources to affect their probabilities ofwinning aprize (Dechenaux

et al., 2015). Conventionally, according to the contest success function (CSF) that maps

the effort to the probability of winning, contest models are categorized into Tullock
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contests (Tullock, 1980), rank-order tournaments (Lazear and Rosen, 1981), and all-

pay auctions (Hirshleifer et al., 1978).

The major differences between the rank-order tournament and Tullock contest are

in the assumption of performance and the winner selection.1 In a Tullock contest,

contestants’ performance is deterministic and equal to the effort. The randomness is

in the selection process wherein each contestant has a probability of winning the prize.

However, in a rank-order tournament, contestants’ performance is a distribution deter-

mined by both the effort and a random factor. Wining is deterministic given a realized

performance. The consequence of this difference is that when considering how the de-

sign affects contestants, the organizers’ major concern is contestants’ effort level under

the Tullock contest model, but both the effort and the riskiness of the effort (random

factors in the performance)2 in the rank-order tournament model.

Despite the differences in assumptions, both models are often applied but not lim-

ited to sports competitions, political campaigns, promotions, and R&D races to elicit

higher performance from the contestant(s).3 I leave the discussion of which type of

contest model best mimics the practical situations to further empirical study. In this

thesis, I only consider the perspective of policymakers (or contest organizers) regarding

how the design of the contest affects contestants’ behavior (effort and/or risk-taking)

in the Tullock contest and rank-order tournament model, respectively.

1.1.1 Tullock contest with endogenous entry

In Tullock contest literature, it has been long proved that contestants’ incentive to exert

effort can be affected by environmental factors including but not limited to contest suc-

cessful function, prize, cost structure, and the number of participants (Moldovanu and

Sela, 2001; Sheremeta, 2010; Chowdhury et al., 2014). The majority of these studies are

under the “fixed-N” paradigm in which the number of players are exogenously given

1For brevity, I do not discuss all-pay auctions, interested readers can refer to Konrad (2009) and
Dechenaux et al. (2015).

2In the rank-order tournament literature, some studies assume the random factors are exogenous
(out of the control of both contest organizer and the contestants)(Lazear and Rosen, 1981). Other studies
assume the random factors is the riskiness of the effort, which can be controlled by the contestants(Hvide,
2002). This thesis takes the second approach in the discussion of the rank-order tournament.

3In some cases, the organizer’s goal is to elicit a higher total level of effort in the contest; while in other
cases, the organizer only cares about the highest performance in the contest.



4 CHAPTER 1. INTRODUCTION

and known to all the contestants. The recent emerging literature on contest models

are built with population uncertainty or endogenous entry (Warneryd, 2006; Münster,

2006; Li and Zheng, 2009; Fu et al., 2015; Boosey et al., 2017). When the population

is uncertain, contestants are not aware of the actual number of entrants in the contest,

while contest organizers typically obtain this information after participants enter. This

ex post information asymmetry is another instrument that contest organizers can use

to improve the contest design (Fu et al., 2011). In real-life constest scenarios (such as

company promotions, collage applications and R&D races), when should the contest

organizer reveal the number of contestants? What is the factor that determines whether

this information should be revealed or not? Chapter 2 explores these questions using

both a theoretical and experimental approach.

1.1.2 Risk taking in rank-order tournaments

The second study (Chapter 3) in this thesis is based on the rank-order tournament

model. There are two main streams of literature on the rank-order tournament. The

first, led by Lazear and Rosen (1981), considers the random factor in the performance

to be exogenous; followingHvide (2002), the second stream assumes the random factor

in the performance is the riskiness of the strategy (which can be chosen by contestants).

There is growing empirical evidence that participants in the rank-order reward system

compet by taking risks (Diamond and Rajan, 2009; Grund et al., 2013; Faravelli et al.,

2015). Despite extensive research on how the design of the rank-order tournament

affects contestants’ effort, there is a lack of research on contestants’ risk-taking behav-

ior, particularly the experimental evidence on risk-taking. Out of the limited studies

which examine the risk-taking behavior in tournaments, the majority assumes that

performances are restricted to symmetric distributions, reducing the choice of risk to

the choice of variance. In contrast, Fang and Noe’s 2016 theoretical model shows that

in the equilibrium, performance distributions freely chosen by the participants need

not be symmetric. Chapter 3 presents an experiment which examines how contestants

shift their performance distribution with the change in tournament design when they

can choose any shape of performance distribution within the budget constraint.
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1.2 Second price auction with costly entry

The second part of this thesis (Chapter 4) discusses auction design. Auctions are a

transaction that the seller uses to allocate resources to buyers through competitive bid-

ding (Vickrey, 1961). Distinct from contests, the goal of auctions is to select the bidder

who values the asset under auction the most, so that the auctioneer can achieve the

highest possible revenue.4 There are four basic auction mechanisms: first price and

second-price sealed auctions, English auctions and Dutch auctions.5

The mechanism of interest in this thesis is the single-unit sealed second-price auc-

tion. In this type of auction, several bidders make competitive bids to obtain one single

indivisible object. All the bidders bid simultaneously and the bidder with the highest

price wins the prize and pays the second highest bid. One of the critical features is

that the weakly dominant strategy for each bidder is to bid their value. Hence, the

crucial problem for the auctioneer becomes how to attract and include those bidders

with higher values to participate in the auction.

In many of the auctions where the underlying asset is complex and of great value,

the bidders need to forgo a significant amount of time and resources to assess their

valuation towards the asset once they decide to enter the auction. This high cost will

decrease bidders’ willingness to participate, which potentially causes auctions to fail

and leads to lower expected revenue. To deal with this issue, theoretical studies have

offered several ways to encourage participation in auctions. Bhattacharya et al. (2014)

and Sweeting and Bhattacharya (2015) study the entry right auction (ERA) which can

ensure the bidder with the highest value enters the auction. However, the ERA requires

bidders to pay a significant amount in the pre-auction bid stage, which stops some of the

bidders from participating (Quint and Hendricks, 2018). Ye (2007) studies indicative

bidding mechanism which only require non-binding pre-auction bids, but finds that

it cannot guarantee the highest bidders to be selected theoretically. This is supported

by the experimental study by Kagel et al. (2008). Based on the latest theoretical pa-

per of Quint and Hendricks (2018), Chapter 4 of this thesis provides an experiment

4For procurement, the object is the opposite; auctioneers’ best interest is to find the bidder with the
lowest bid (cost).

5See books by Menezes and Monteiro (2000) and Milgrom (2004) which introduce different types of
auctions.
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which investigates a simple indicative bidding mechanism, which theoretically should

encourage more entry and improve the efficiency of selecting suitable bidders.

1.3 Research outline

This thesis comprises three studies that build upon previous theoretical and experi-

mental studies.

Chapter 2 investigates whether a contest organizer who seeks to maximize the ex-

pected total effort of participants should disclose the actual number of contestantswhen

entry in a contest is endogenous.6 A Tullock contest with an entry-stage model is

developed in this chapter. The theoretical model suggests that whether to disclose the

number of participants depends on the convexity of the cost of effort function. Even

though the equilibrium entry rate and rent dissipation are invariant to the disclosure

policy, disclosing (concealing) the actual number of entrants can lead to a higher total

effort when the cost function is concave (convex). To test these theoretical predictions,

I conduct a 2 × 3 between-subjects laboratory experiment with lottery contests.7 The

experiment changes the disclosure policy (fully disclosed vs. fully concealed) in one

dimension and the curvature of the cost of effort function (concave, linear, or convex) in

the other dimension. The results are largely consistent with the theoretical predictions

regarding the optimal disclosure policy, despite the presence of moderate over-entry

and over-exertion behavior that is commonly observed in the literature on experimental

contests.

Chapter 3 addresses how contestants’ risk-taking behavior in a rank-order tourna-

ment is affected by the tournament design.8 Building upon the theoretical model of

Fang andNoe (2016), I design an experiment in which participants can use a visualized

interactive distribution builder to choose any performance distribution. This unique

design allows us to study how changes in the prize schedule, the number of contestants

and the size of the contests affect participants’ risk-taking behavior. Participants in the

experiment react to changes in the tournament design in the direction predicted by
6Co-authored with Changxia Ke and Qian Jiao.
7A lottery contest is a special form of Tullock contest when r1 in the CSF equals 1. Although this

parameter is chosen for the experiment, the results from the model apply to all Tullock contests.
8Co-authored with Changxia Ke, Gregory kubitz and Lionel Page.
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comparative statics of the equilibrium play: (1) decreasing the proportion of winning

prizes in a simple contest leads tomore risk-taking behavior (reflected by choosing per-

formance distributions that are both more dispersed andmore negatively skewed); (2)

convexifying the prize schedule encourages choices of performance distributions that

are both more dispersed and more positively skewed (i.e. selecting riskier strategies);

(3) adding more contestants into the contest induces participants to choose riskier

performance distributions that are more dispersed. The results in this study have im-

portant implications for real-world tournaments that resemble the characteristics of

rank-order tournaments in which the primary choice variable is the level of risks to

be taken. The design of these tournaments may incentivize contestants to take too

much risk, potentially at the cost of the principals. Principals could underestimate the

probability of having low outcomes if they assume that the performance distributions

are always symmetric.

Chapter 4 discuss a simple indicative bidding model that theoretically can improve

the selection efficiency comparedwith the conventional indicative biddingmechanism.9

Using a laboratory experiment, this study compares the simple indicative bidding with

the unrestricted auction, and the restricted auction. The experiment provides com-

pelling evidence that auctioneerswho aim to optimize revenuemight choose the simple

indicative bidding model over the other two mechanisms. In addition, by observing

the bidders’ entry choice and their valuation (which are usually not observable in the

empirical study), I disentangle the two channels that cause the differences in expected

revenue under the three different mechanisms, namely the participation effect and the

selection effect. The findings indicate that the revenue advantage in the simple indica-

tive bidding model is primarily attributable to the participation effect, i.e., encouraging

more potential bidders to enter the auction.

The three studies examine some of the most recently developed theoretical models

in contests or auction theory. The findings enhance our understanding of how agents’

entry choice, effort invested, and risk-taking decisions react to the design factors in

contests and auctions. Although most real-life contests and auctions are more complex

than the laboratory experiment environment, this thesis offers insightful results useful

to policymakerswhendesigning such activities. Finally, Chapter 5 discusses the general

9Co-authored with Changxia Ke and Gregory Kubitz.
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conclusions of this thesis.



Chapter 2

When should we disclose the number of

contestants?

2.1 Introduction

Contests, in which, a number of players exerting costly and irreversible efforts to com-

pete for a limited number of prizes, are ubiquitous in real-world activities. In the

literature on contest theories and experiments, the number of contestants is mostly

fixed and common knowledge, assuming that contestants enter by default and that

entry is free.1 However, this assumption can be violated in real-life contests because

entry is often costly and endogenous. For example, R&D firms must decide which

patent race(s) to join from many possibilities, and job applicants must consider which

position(s) to apply for from all job posts. Entry can be costly due to either the initial

fixed investment required to start projects (or to prepare job-application materials) or

the various opportunity costs associated with these decisions. Similar arguments can

also be applied to sports or promotional contests. While there is ex-ante population

uncertainty for both contest organizers and contestants, the organizers usually observe

the actual number of contestants after entry decisions have been made. Therefore,

there is ex-post information asymmetry between the organizers and the contestants,

which naturally raises the question about whether a contest organizer should disclose

or conceal the actual number of contestants before costly efforts have been exerted.

1See Konrad (2009) and Fu andWu (2019) for reviews on contest theories andDechenaux et al. (2015)
for a survey of contest experiments.

9
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In this paper, we aim to address this question both theoretically and empirically

using a laboratory experiment. We examine contests in which efforts made by con-

testants are considered to be beneficial; therefore the objective of the organizers is to

elicit the maximum aggregate effort from all participants.2 In particular, we focus on

the relationship between the optimal disclosure policy and the curvature of the cost of

effort function. Based on the existing contest literature on information disclosure (Lim

and Matros, 2009; Fu et al., 2016; Feng and Lu, 2016; Boosey et al., 2017), which mostly

study contests with exogenous stochastic entry under linear cost of effort, our paper is

the first to explore whether organizers should disclose the actual number of entrants in

contests with endogenous entry and non-linear cost of efforts.

Following Fu et al. (2015), we model the contest as a two-stage game in which

the participants first decide whether to incur a fixed cost to enter the contest in Stage

1, and then make their effort choices to compete for a prize in Stage 2. In addition,

we add a preliminary stage (Stage 0), during which the contest organizer must pre-

commit to either fully disclosing or fully concealing the actual number of contestants

after entry decisions have been made in Stage 1. Adopting the well-studied Tullock

(1980) contest, we predict that even though the equilibrium entry probabilities and

rent-dissipation rates are invariant to the disclosure policy in all cost structures, fully

disclosing (concealing) the number of entrants will lead to a higher (expected) total

effort when the cost of effort function is concave (convex). Similar to Lim and Matros

(2009), which predicts when entry is exogenous and stochastic, the expected total effort

is invariant to the disclosure policy under the linear cost of effort function, we show that

their finding can also be extended to endogenous entry.

The type of contests we examine in the model has wide applications. In contests

like R&D races or sports contests, the marginal cost of investment/effort is usually

increasing due to the difficulty of pushing the limit. Conversely, when learning and

practice play amajor role in contests (e.g., college admissions, professional qualification

exams, and sales contests), themarginal cost of effort could be decreasing (thus the cost

functions tend to be concave). Our analysis suggests that the contest organizer should

carefully examine the nature (i.e., concavity/convexity) of the cost of effort in a contest

2Examples as such include promotion or sports contests that motivate better performance from all
employees or athletes, or R&D races that encourage more firms to engage in R&D activities.
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before committing to a disclosure policy.

Fully disclosing or concealing the actual number of entrants in contests (i.e., a Dis-

closure policy or a Concealment policy) involves different equilibrium concepts from

the perspective of game theory. For a given entry probability, the disclosure policy

only affects the expected total effort through the equilibrium effort choices. When the

actual number of entrants is disclosed, the equilibrium individual effort decreases on

this realized number. When the cost function is concave, the contestants behave as if

they were risk loving: a small number of contestants (i.e., a more favorable contest)

motivates contestants more than a large number of contestants (i.e., a less favorable

contest) demotivates them. In contrast, the equilibrium effort of their counterparts under

a Concealment policy is uniform. As a result, the expected total effort is higher when the

actual number of entrants is disclosed than when it is concealed. Conversely, when

the cost function is convex, the contestants behave as if they were risk averse, and

the expected total effort is higher when the actual number of entrants is concealed.

Regardless of the disclosure policy, the ex ante expected payoff (before each participant

makes an entry decision) should be the same, because it should offset the cost of entry.

Therefore, the (expected) total cost of effort and the equilibrium entry rate should be

the same under different disclosure policies.

To test these theoretical predictions, we conducted a 2 × 3 between-subjects exper-

iment at Wuhan University (China) at the end of 2017. We manipulate the disclosure

policy (fully disclosed or fully concealed) or the curvature of the cost function (concave,

linear, or convex), one at a time. Our experimental results provide reasonably good

support for our model predictions. First, given a certain cost structure the partici-

pants enter the contests with similar probabilities, irrespective of whether the actual

number of entrants is disclosed. Second, in line with theory, the total cost of effort

(rent dissipation) is not significantly different across disclosure policies for a given cost

structure, especially when the data from the second half of the experimental sessions

are considered. Third, as predicted, the average total effort is insensitive to the dis-

closure policy when the cost function is linear, while it is significantly higher in the

disclosed treatment when the cost function is concave. The only deviation from our

theoretical predictions is when the cost function is convex: in this scenario, although

the average total effort is higher in the concealed treatment (following the prediction),
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the difference is not statistically significant. Finally, the data at the individual level show

moderate levels of over-entry (particularly when the cost function is concave) and over-

exertion (particularlywhen the cost function is convex), which are commonly observed

in previous contest experiments.

Our paper is broadly related to the theoretical and experimental literature on con-

tests with ex ante population uncertainty. In the growing theoretical literature, popu-

lation uncertainty is either modeled as exogenous stochastic entry, in which potential

contestants enterwith a given probability (Higgins et al., 1985;Myerson andWärneryd,

2006; Münster, 2006; Lim andMatros, 2009; Fu et al., 2011; Kahana and Klunover, 2015,

2016; Ryvkin and Drugov, 2020), or driven by endogenous entry decisions made before

a contest (Higgins et al., 1985; Fu and Lu, 2010; Kaplan and Sela, 2010; Fu et al., 2015).

While Higgins et al. (1985), Münster (2006), and Myerson and Wärneryd (2006)

pioneered the theoretical models of contests under stochastic entry, Lim and Matros

(2009) and Fu et al. (2011) are the first papers to examine whether contest organizers

should reveal the actual number of entrants. Extending on Lim and Matros (2009)

which finds that the expected total effort does not depend on the disclosure policy

when the cost of effort is linear, Fu et al. (2011) adopt a more general ratio-form contest

success function, with the standard Tullock success function as a special case. Similarly,

they find that the optimal disclosure policy depends on the property of the character-

istic function: fully disclosing (concealing) the actual number of entrants generates a

higher expected total effort when the characteristic function is strictly concave (con-

vex).3 While our model with a non-linear cost of effort is isomorphic to a contest with

linear cost and appropriately adjusted discriminatory power using the general ratio-

form contest success function adopted in Fu et al. (2011), we study optimal disclosure

policy under endogenous rather than exogenous stochastic entry.4

For a contest setting with endogenous entry, our theoretical model is closely related

to Fu et al. (2015). They establish a symmetric entry-bidding equilibrium under a wide

3The ratio-form contest success function is pi = f(xi)/
∑N

j=1 f(xj) andH(·) = f(·)/f ′(·) is defined as
the characteristic function.

4Feng and Lu (2016) study a wider range of disclosure policies that allow for partial disclosure
(concealment) using a Bayesian persuasion approach and find that partial disclosure is always sub-
optimal, drawing similar conclusions to Fu et al. (2011). Ryvkin and Drugov (2020) further generalize
the results of Fu et al. (2011) to arbitrary tournaments and arbitrary distributions of the number of
players. They also show that the optimal disclosure policy depends on the shape of players’ cost function
in winner-take-all rank-order tournaments.
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class of contest technologies, and investigate howbidding efficiency and optimal design

are affected by relevant institutional elements (e.g., the discriminatory power of the suc-

cess function and prize allocation scheme), in a nested Tullock contest. However, they

assume the actual number of participants is always concealed to all participants.5 To the

best of our knowledge, our paper is the first to study the optimal disclosure policy with

respect to the actual number of contestants in Tullock contests with endogenous entry.

Taking a linear-cost function as a baseline, we examine how the concavity/convexity of

players’ cost of effort affects the optimal disclosure policy.

Compared with the theoretical literature on contests with ex ante population un-

certainty, the experimental literature is sparse. Only a handful of studies examine

contests with endogenous entry. Anderson and Stafford (2003) investigate how entry

in rent-seeking contests and contest expenditure are affected by the available number of

participants, cost heterogeneity, and the entry fee. Cason et al. (2010) compare entry in

winner-take-all and proportional-prize contests. Morgan et al. (2012) andMorgan et al.

(2016) allow participants to choose to enter sequentially in continuous time, and the

number of entrants at each time-point is observable to all participants. Hammond et al.

(2019) study all-pay contests inwhich bidders have private valuations to explore how to

set a prize-augmenting entry fee to elicit more effort, when bids must be made without

knowing the number of entrants.6 None of the aforementioned studies investigate the

optimal disclosure policy and the actual number of entrants is either fully disclosed or

fully concealed throughout the contests.

The experimental studies closest to ours are those of Boosey et al. (2017, 2019).7

Boosey et al. (2017) test the theoretical predictions of Lim and Matros (2009) in lottery

contests with stochastic entry and linear cost of effort. Boosey et al. (2019) further study

the optimal disclosure policy in lottery contests under endogenous entry and linear cost

of effort. Our paper shares one dimension of the experimental variationwith this paper,

5In contrast, both Fu and Lu (2010) and Kaplan and Sela (2010) assume endogenous entry, but the
number of entrants is always known to all participants.

6In addition, Liu et al. (2014) use field experimental data collected from the online crowd-sourcing
platform Taskcn to study how contest participation and submission quality depend on the size of the
reward and the presence of a soft reserve or early high-quality submission.

7Aycinena and Rentschler (2018) also study information disclosure, but in first-price sealed-bid
auctions and English auctions. They find that concealing the number of entrants generates higher
revenue in first-price sealed-bid auctions, while disclosing the number of entrants is better for English
auctions.
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namely whether the actual number of entrants is fully disclosed or concealed. Regard-

ing the other dimension, while Boosey et al. (2019) vary the outside option (low or

high) so that the endogenous entry probability is high or low, we change the curvature

of the cost function (keeping the entry cost constant across all treatments). The two

treatments of our experiment with a linear cost (under the Disclosure or Concealment

policy) are similar to the two treatments with the low outside option in Boosey et al.

(2019). It is reassuring to note that all four treatments confirm that the expected total

effort is independent of the prevailing disclosure policy when the cost of effort is linear.

Our main contribution to the literature lies in the optimal disclosure policy when the

cost of effort is non-linear. Both the theory and the experimental evidence suggest that

disclosing the actual number of entrants or not is indeed a contest-design issue that the

organizers should carefully consider if the cost of effort function might be non-linear.8

2.2 The Model and Predictions

We consider a Tullock contest in a three-stage framework. A fixed pool of M(≥ 2) po-

tential risk-neutral participants show their interest in joining the contest with a winner

purse V > 0. In the preliminary stage, the contest organizer chooses and commits to her

information-disclosure policy denoted by d ∈ {D,C},D andC denoting the fullDisclo-

sure policy and the full Concealment policy, respectively. In Stage 1, after observing the

rules of the contest, the participants simultaneously decide whether or not to enter the

contest. Each participant pays a fixed cost Δ > 0 for entry.9 In Stage 2, N (1 ≤ N ≤ M)

participating contestants choose their level of effort xN = (x1, x2, . . . , xN) to compete for

V . A winner is selected and receives V according to the Tullock (1980) contest success

function. Therefore, the winning probability of a participating contestant i is given by

pi,N(xi,x−i) =
xr
i∑N

j=1 x
r
j

, if N ≥ 2 and
N∑
j=1

xr
j > 0. (2.1)

By exerting an effort of xi, contestant i incurs a cost of c (xi) = xα
i , with α > 0. The

8Note that our review is limited to participation in a stand-alone contest with a ratio-form contest
success function. Studies have also been performed on theoretical and experimental auctions with entry
or participation in multiple contests. For a recent summary, see Boosey et al. (2019).

9We make the regular assumption V
M < Δ < V following Fu et al. (2015) to guarantee that potential

participants enter the contest randomly.
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parameter r ∈ (0, r] ∈ (0, α M
M−1

] conventionally represents the discriminatory power of

the selection mechanism. We simplify our analysis by imposing an upper limit, which

guarantees the existence of a pure-strategy equilibrium effort. A higher r indicates that

one’s win depends more on his level of effort than on other noisy factors. If there is

only one participant, he automatically receives the prize V regardless of his level of

effort. If more than one contestant enters, but all of them make zero effort, the winner

is randomly chosen from the pool of participating contestants. If nobody enters the

contest, the organizer withdraws the prize.

Our model with a non-linear cost of effort is isomorphic to a contest with linear cost

and appropriately adjusted discriminatory power in Fu et al. (2011). Let yi = xα
i be

the expenditure of participant i and let f (yi) = y
r
α
i . Then the (N -player) contest can be

framed in terms of expenditure, with contest success function

pi,N(yi,y−i) =
y

r
α
i∑N

j=1 y
r
α
j

, if N ≥ 2 and
N∑
j=1

y
r
α
j > 0.

The log-concavity of function f (yi) , together with the discriminatory power r
α

∈
(0, M

M−1
] guarantee the existence and uniqueness of symmetric pure strategy equilib-

rium in the contest.

When policy D is implemented, all contestants know N before deciding on their

level of effort. The two-stage subgame boils down to a standard symmetric N -player

contest (in Stage 2) with endogenous entry (in Stage 1). Whenever N ≥ 2, each partic-

ipant i chooses his level of effort xi to maximize his payoff

πi = pi,N(xi,x−i)V − xα
i , (2.2)

which is equivalent to chooses expenditure yi to maximize

πi = pi,N(yi,y−i)V − yi.

As shown by Fu et al. (2011), with characteristic function H (y) ≡ f(y)

f
′
(y)

, the corre-

sponding symmetric pure-strategy equilibrium expenditure is y∗N = N−1
N2

rV
α
. Therefore,

the symmetric pure-strategy Nash equilibrium effort can be written as x∗
N =

(
N−1
N2

rV
α

) 1
α ,
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which leads to an expected equilibrium payoff of π∗
N = V

N

(
1− N−1

N
r
α

)
.10

Following the standard argument for games with endogenous entry (Levin and

Smith, 1994), each contestant participates if and only if his expected payoff offsets the

entry cost. Hence, the unique symmetric subgameperfect equilibriumentry probability

q∗D ∈ (0, 1) in Stage 1 should solve the following equation

M∑
N=1

CN−1
M−1q

∗N−1
D (1− q∗D)

M−Nπ∗
N = Δ,11 (2.3)

where CN−1
M−1q

∗N−1
D (1 − q∗D)

M−Nπ∗
N is the expected payoff of a representative contestant

who enters the contest, while another N − 1 contestants participate at the same time.

Given the equilibrium entry probability (q∗D), the expected total effort (TED) is

given by

TE∗
D(q

∗
D) = Mq∗D

M∑
N=1

CN−1
M−1q

∗N−1
D (1− q∗D)

M−N

(
N − 1

N2

rV

α

) 1
α

. (2.4)

When policy C is implemented,N remains unknown to all participants in the two-

stage subgame (after the preliminary stage). Therefore, no proper subgame exists after

the entry stage and the subgame perfect equilibrium does not bite. Each participant

chooses his level of effort after entry based on his (rational) belief about others’ entry

strategies, without knowing the actual number of entrants.

In this case, the strategy of each potential contestant is given by a pair (qi,C , xi,C),

where qi,C is the entry probability of a potential contestant i and xi,C is his effort after

entry. The symmetric equilibrium has been derived by Fu et al. (2015),12 which can be

summarized as follows: there exists a unique symmetric perfect Bayesian equilibrium,

in which each potential contestant enters with a probability q∗C that uniquely solves the

following equation

M∑
N=1

CN−1
M−1q

∗N−1
C (1− q∗C)

M−N V

N

(
1− N − 1

N

r

α

)
= Δ , (2.5)

10This symmetric pure-strategy Nash equilibrium can also be obtained by using the standard
technique, we relegate the details to the appendix.

11We recognize that theremay exist asymmetric equilibriumentry strategies, i.e., some contestantsmay
participatewith a positive probability, while othersmay never enter. However, following themainstream
literature, we focus on the symmetric equilibrium.

12We again relegate the detailed proof of the unique symmetric equilibrium to the appendix.
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and (upon entry) chooses a level of effort x∗
C given by x∗

C = [
M∑

N=1

CN−1
M−1q

∗N−1
C (1−q∗C)

M−N N−1
N2

rV
α
]
1
α .

The expected total effort (TEC) elicited by the contest organizer is

TE∗
C (q∗C) = Mq∗Cx

∗
C

= Mq∗C [
M∑

N=1

CN−1
M−1q

∗N−1
C (1− q∗C)

M−N N − 1

N2

rV

α
]
1
α . (2.6)

We are now able to compare the two equilibrium outcomes to explore the optimal

disclosure policy. First, by directly comparing Equations (3) and (5), which are essen-

tially the same, we can derive the following prediction.

Prediction 1 In a Tullock contest with costly endogenous entry, the equilibrium entry prob-

ability of the potential contestants does not depend on the disclosure policy, i.e., q∗D = q∗C = q∗.

An inference that directly follows Prediction 1 is that the total cost of effort and thus

the rent-dissipation rate are also insensitive to the disclosure policy. As each potential

contestant receives zero net expected payoff in equilibrium, the total cost of effort of

all participants should be exactly equal to the total prize value earned by all potential

participants minus the total cost of entry. When all contestants enter with the same

probability q∗, the expected total prize earned by all potential participants is [1 − (1 −
q∗)M ]V , while the expected total cost of entry is Mq∗Δ.13 Therefore, the total cost of

effort TCE should be the same under both policies

TCED = TCEC

= [1− (1− q∗)M ]V −Mq∗Δ. (2.7)

As the rent-dissipation rate is the ratio of the total cost of effort to the prize value, the

two policies will lead to the same level of rent dissipation. Thus, we have the following

prediction.

Prediction 2 In a Tullock contest with costly endogenous entry, both the (expected) total

cost of effort and the rent dissipation rate are the same under both disclosure policies.

Given the same equilibrium entry probability, the choice of effort in the competition

13Note that (1 − q∗)M is the probability that nobody enters the contest, thus the prize is kept by the
organizer, and 1− (1− q∗)M is the probability that the prize is taken by one participant.
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stage should be the same as that with exogenous and stochastic entry. As shown by

Fu et al. (2011) in Theorem 1(b), if H (y) is linear, expected equilibrium expenditure y

is invariant to the disclosure rule. In our model, H (y) ≡ f(y)

f ′ (y) = α
r
y is indeed linear.

Applying the inverse of effort-to-expenditure transformation x∗ = (y∗)
1
α , the expected

total effort corresponding to the expenditure level must vary with the disclosure policy,

in a direction that depends on whether α ≷ 1. Following the same intuition, by further

comparing the solutions of Equations (4) and (6), we can summarize the following.

Prediction 3 In a Tullock contest with costly endogenous entry: (a) concealing the actual

number of contestants leads to an expected total effort that is strictly greater (lower) than disclos-

ing the actual number of contestants if and only if the cost function is strictly convex (concave);

(b) (Disclosure Irrelevance) the expected total effort is independent of the prevailing disclosure

policy when the cost function is linear. That is, TE∗
C � TE∗

D if and only if α � 1.14

2.3 Experimental Design and Procedure

We design a 2 × 3 between-subjects experiment that closely follows the theoretical

framework described in Section 2.2. In one dimension, we vary the disclosure policy,

i.e., whether the actual number of entrants (N) is disclosed after the entry stage. In

the other dimension, we set the curvature of the cost of effort function to be concave

(α=2/3), linear (α=1), or convex (α=4/3). We use a lottery contest success function

(i.e., r = 1) to make the winning probabilities easier for the experimental participants

to understand. We conducted two sessions for each treatment with 24 participants

per session (except for the two sessions of the Conceal 1 treatment involving 18 and 30

participants, respectively). Table 2.1 summarizes the 2 × 3 design with the treatment

labels and the number of participants per session (in brackets).

Printed instructions were provided and read aloud by the experimenter before the

start of each experimental session (See Appendix A for an example). To further ensure

14This can be easily proven: α � 1 implies that TE∗
C(q) � TE∗

D(q) as [

M∑
N=1

CN−1
M−1q

N−1(1 −

q)M−N N−1
N2

rV
α ]

1
α �

M∑
N=1

CN−1
M−1q

N−1(1− q)M−N
(
N−1
N2

rV
α

) 1
α .
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Table 2.1: Experimental design
Concave Linear Convex

Disclosure Disclose 2/3 Disclose 1 Disclose 4/3
(24+24) (24+24) (24+24)

Concealment Conceal 2/3 Conceal 1 Conceal 4/3
(24+24) (18+30) (24+24)

that all participants understood the instructions correctly, at the beginning of each ses-

sion they were asked to take a quiz based on the experimental instructions. The partici-

pants could only continue if they answered each question correctly. In each session, the

participants were first randomly assigned to two (sub)session groups, which remained

the same for the entire experiment. Therefore, the size of the (sub)session groups was

9, 12, or 15. Any subsequent random matching was conducted at this (sub)session

level.15

Each session ran for 25 rounds. At the beginning of each round, the participants

were randomly assigned to a group of three players, each receiving 80 experimental

currency (EC) units as their initial endowment. In Stage 1, the participants simul-

taneously decided whether to enter. An entry fee of 40 EC was deducted from their

initial endowment if they decided to enter. Those who did not enter kept their 80 EC

as their payoff for the round, and were not allowed to participate in Stage 2. After all

participantsmade their entry decisions, the actual number of entrants (N)was revealed

(concealed) to all participants in the disclosed (concealed) treatments, including those

whodid not enter.16 In Stage 2, all entrants chose their level of effort, x, to compete in the

contest with a single prize worth 100 EC. Their level of effort was then converted into

cost and deducted from their remaining endowment (i.e., 40 EC). The participantswere

given a table listing all available levels of effort (and their corresponding costs) and a

graph showing the curvature of the cost function. Depending on the cost function used

in the treatment, the range of effort levels varied and was bounded by the remaining

endowment after entry fee is deducted (i.e., 40 EC).17

15This manipulation served the purpose of increasing the number of independent observations.
16By informing those who did not enter, we kept information and learning relatively symmetric

between participating and non-participating players.
17This corresponded to a range of effort levels from 0 to 40 when the cost function is linear, 0 to 253

when it is concave, and 0 to 15.9 when it is convex. We allowed the participants to enter decimal points
in their effort choices in all treatments so that the coarseness of the strategy space is more comparable
across treatments.
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After all of the entrants made their effort choices, a winner was randomly selected

from each contest group according to the lottery contest success function. An ani-

mated lottery wheel was used to show the process of the random draw. Once a winner

was determined, all group members received full feedback information, including all

group members’ entry and effort choices, their corresponding winning probabilities,

the outcome of the random draw, and their own payoff for this round. One of the

25 rounds was then randomly chosen by the computer at the end of each session for

payment calculation. The EC earned during this round were converted to RMB at a

rate of 3.2 EC = RMB1. The participants earned RMB40 on average (including RMB15

as a show-up fee) and each session lasted approximately one hour.18 The experiment

was programmed and run by z-Tree (Fischbacher, 2007). All 288 participants were

undergraduate or postgraduate students in Wuhan University in the winter of 2017.

At the end of each experimental session, a standard questionnaire was used to collect

demographic information (such as age, sex, study major, etc.).

2.4 Results

In this section, we first compare the average entry rate, the average total effort and

total cost across disclosure policies to test the main predictions presented in Section

2.2. We then examine the individual effort choices and compare them with the equi-

librium predictions. Unless otherwise specified, we always refer “treatment effect” to

the comparison between theDisclosed treatment and the Concealed treatment under the

same effort-cost function.

2.4.1 Entry Rate

Table 2.2 summarizes the average entry rates (with standard deviations in brackets)

for each treatment, in contrast with their corresponding equilibrium predictions. The

average entry rates are generally higher than the equilibriumpredictions. When the cost

function is concave, given a predicted probability of entry of 42%, over-entry is more

prominent (69% and 62% under the Disclosure and Concealment policies, respectively).
18This average payment was equivalent to the hourly rate paid to a university research assistant in that

region when the experiment was conducted.
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When the cost of effort is linear, over-entry is moderate (60% and 59% against 50% in

the predictions). When the cost function is convex, over-entry is the lowest (59% and

63% against 56% in the predictions).

Table 2.2: Average entry rates and equilibrium predictions
Concave Linear Convex

Equ. Rd.1-25 Equ. Rd.1-25 Equ. Rd.1-25
Disclosure 0.42 0.69 0.50 0.60 0.56 0.59

(0.46) (0.49) (0.49)
Concealment 0.42 0.62 0.50 0.59 0.56 0.63

(0.49) (0.49) (0.48)
Standard deviations are reported in brackets. The columns labeled “Equ.” provide
the equilibrium entry probabilities. Columns “Rd.1-25” show the summary statistics
of observations from all 25 rounds.

We further use regression analysis with multi-level mixed-effects models to control

for the random effects at the (sub)session and individual levels. Both linear and logistic

regressions are presented in Table 2.3. The average entry probabilities are not signifi-

cantly different across the Disclosure and the Concealment policies for all cost structures

(see the coefficients of the treatment dummy “Concealed” in columns 2 to 4). Over-

entry is slightly corrected from rounds 1-13 to rounds 14-25 in both treatments with

a concave cost when over-entry is the greatest (see the coefficient for “2nd half” in

column 5). After controlling for the learning effect, the treatment effect remains in-

significant under all cost structures. These results on entry behavior remain unchanged

inModel 3 whenmulti-level mixed-effects logistic regressions are used.19 Similar to the

previous studies, our data also suggest that those who claimed to be more risk-loving

also participatedmore frequently, and thosewhowon in the previous roundweremore

likely to participate in the next round.

19Adding other control variables to linear regressions does not change our main results either.
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We then test the estimated average entry rates against their corresponding equilib-

riumpredictions to establish the significance of the differences between the actual entry

probabilities and the equilibriumpredictions. Over-entry is significant in all treatments

with the concave cost function at the 1% level even if we only examine the entry choices

in rounds 14-25, but not significant at the conventional 5% level in other treatmentswith

a linear or convex cost. 20

Result 1 The entry behavior of the participants is largely invariant to the disclosure policies,

whether the cost of effort is concave, linear, or convex. (supporting Prediction 1)

2.4.2 Total Effort and Total Cost

After examining the average entry rates across the disclosure polices, we compare the

average total effort to identify the optimal disclosure policy that a contest organizer

should adopt. The average total effort is taken as one unit of observation in this part of

the analysis and it is calculated as the aggregate effortmade by each three-player contest

group averaged across all contest groups within a sub(session) in one round. Figure

2.1a presents the summary statistics of the average total effort. The corresponding

equilibrium predictions are also represented by the dashed lines. Figure 2.1a suggests

that the differences between theDisclosure andConcealment policies follow the direction

of the theoretical predictions, although the average total effort is generally higher than

the equilibrium predictions. When the cost function is concave, the average total effort

is 18% higher under the Disclosure policy than under the Concealment policy (336.24

vs. 284.35). In contrast, when the cost of effort is convex, the average total effort in the

disclosed treatment is 13% lower than that of the concealed treatment (16.08 vs. 18.57).

When the cost function is linear, the difference between treatments is the smallest of all

(40.93 vs. 42.32).

We again estimate the mixed-effects models to control for the random effects at the

(sub)session level, and thereby to further test the significance of the treatment effects.

The regression results are presented in Table 2.4. In the concave- and linear-cost cases,

the regression results further confirm what we observe in Figure 2.1a: the average
20The p values are 0.00 and 0.00 for the concave case, 0.07 and 0.14 for the linear case, and 0.58 and 0.35

for the convex case, based on Wald tests.
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Figure 2.1: A summary of the average total effort and the average total cost, in contrast
to their equilibrium predictions.

(a) Average total effort (b) Average total cost

total effort is significantly lower under the Concealment policy when the cost function is

concave (p = 0.036), and is not significantly different across disclosure policies when

the cost function is linear (p = 0.70). In the convex-cost case, although the direction

of the effect is in line with the theoretical prediction, it is not statistically significant

(p = 0.21). These results remain consistent even after we add a time dummy to control

for the potential learning effect (see Model 2 in Table 2.4).

Result 2 The average total effort is significantly higher under theDisclosure policy than under

the Concealment policy when the cost of effort function is concave, and it is insensitive to the

disclosure policy when the cost of effort is linear. The treatment effect is not significant when

the cost function is convex, although the direction of the effect follows Prediction 3. (partially

supporting Prediction 3)

Note that Prediction 2 also states that the total cost of effort should be invariant to

the disclosure policies, and the same applies to the rent-dissipation rate. Similarly, We

take the average total cost (of effort) that is calculated in the same way as the average

total effort, as one unit of observation. Figure 2.1b summarizes the average total cost

of effort for each treatment. The solid lines represent the corresponding equilibrium

predictions. In general, moderate levels of over-dissipation occur across all treatments

(in line with the higher than equilibrium levels of total effort), yet the treatment effects

seem small for all cost structures.
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Table 2.4: Total Effort: Mixed-effects Models
Model 1 Model 2

Concave Linear Convex Concave Linear Convex
Constant (Disclosed) 336.24*** 40.93*** 16.08*** 357.09*** 45.12*** 16.22***

(17.46) (2.13) (1.40) (18.74) (2.43) (1.49)
Concealed -51.89** 1.38 2.49 -53.61** -0.18 3.09

(24.70) (3.01) (1.98) (26.51) (3.44) (2.11)
2nd half -43.44** -8.73*** -0.31

(14.17) (2.46) (1.06)
Concealed× 2nd half 3.59 3.25 -1.27

(20.05) (3.48) (1.50)
σ2
(sub)session 1,001.42 11.49 6.73 1,019.49 12.04 6.74

(610.39) (9.07) (3.93) (610.39) (9.07) (3.93)
Obs 200 200 200 200 200 200
No. of groups 8 8 8 8 8 8
We compare the average total effort across disclosure policies by regressing the average total effort
on the disclosure policy dummy (“Concealed”) for different cost functions separately in Model 1.
In Model 2, we add a time-specific dummy (2nd half) that is equal to 1 for rounds 14-25. We use
mixed-effects regressions to control for the random effects at the (sub)session level. Stars indicate
the significance level (**p < 0.05, ***p < 0.01).

Following the same investigation logic as the average total effort, we run mixed-

effects regressions, controlling for random effects at the (sub)session group level for

the average total cost. The results are presented in Table 2.5. In line with the theoretical

predictions, we find that the average total costs are not significantly different across

disclosure policies when the cost function is linear and convex (p = 0.46 and p = 0.28,

respectively). When the cost function is concave, the difference ismarginally significant

in Model 1 (p = 0.065). However, after controlling for the learning effect by adding a

time-specific dummy in Model 2, we find that the difference becomes insignificant in

rounds 14-25 at all conventional levels (p = 0.107).21

Result 3 In line with Prediction 2, the average total cost is invariant to the disclosure policies

under all cost structures after some learning from the early rounds (1-13).

The total cost spent by the contestants is essentially borne by the contest organizer,

as the total cost of effort spent by the participants must be offset by the prize value

21To test the difference in rounds 14-25, we conduct a post-estimation test by comparing the sum of
the regression coefficients of the treatment dummy (Concealed) and the interaction term (Concealed ×
2nd half) with zero.
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Table 2.5: Total Cost: Mixed-effects Models
Model 1 Model 2

VARIABLES Concave Linear Convex Concave Linear Convex
Constant (Disclosed) 58.34*** 40.93*** 37.01*** 62.02*** 45.12*** 37.21***

(2.68) (2.13) (3.30) (2.90) (2.43) (3.52)
Concealed -6.99 1.38 5.04 -7.26 -0.18 6.71

(3.79) (3.01) (4.66) (4.10) (3.44) (4.97)
2nd half -7.66*** -8.73*** -0.41

(2.33) (2.46) (2.54)
Conceal × 2nd half 0.57 3.25 -3.48

(3.29) (3.49) (3.59)
σ2
(sub)session 22.72 11.49 36.99 23.29 12.04 37.07

(14.36) (9.08) (21.77) (14.36) (9.07) (21.77)
Obs 200 200 200 200 200 200
No. of groups 8 8 8 8 8 8
We compare the average total cost across disclosure policies by regressing the average total cost on
a disclosure policy dummy (“Concealed”) for each cost function separately in Model 1. In Model
2, we add a time-specific dummy (2nd half) equal to 1 for rounds 14-25. We use mixed-effects
regressions to control for the random effects at the (sub)session level. Stars indicate the significance
level (** p < 0.05, *** p < 0.01).

provided by the organizer. Integrating the results on the average total effort and the

average total cost, our study suggests that if the objective of a contest organizer is to

maximize the total effort while maintaining the cost of the contest, she should select

the disclosure policy after carefully considering the nature of the effort-cost function.

When the cost of effort is expected to be concave, fully disclosing the actual number

of contestants is expected to be more effective in eliciting total effort.22 When the cost

of effort is expected to be linear, the choice is irrelevant, as the expected total effort

and the expected total cost are both unresponsive to the disclosure policies. When the

cost of effort is expected to be convex, our data may be lack of power in detecting the

treatment effect, but ignoring the predicted differences across disclosure policies based

on our theoretical model may be sub-optimal. 23

22Naturally, if the objective of the contest organizer is to minimize the expected total effort, the optimal
policy is the opposite.

23In the current paper, we focus on the case that contest organizer value the total effort exerted from
the contest. There are other cases whereminimizing the total cost of the effort is the only goal. Our result
on total cost of effort implies that in the design of contests under such context, we don’t need to consider
the curvature of cost of effort or the disclosure policy.
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2.4.3 Individual Effort

The participants in the Disclosed and Concealed treatments make their effort choices

under different levels of information. In theDisclosed treatments, they know howmany

people they are competing against, while in the Concealed treatments, this information

is not available, thus theymust form a belief on the entry strategy of other people. In the

former case, the equilibrium effort choices change with the actual number of entrants.

We first compare the individual efforts exerted in different cases (i.e., N = 1, 2, or

3) in the Disclosed treatments to see if they follow the equilibrium predictions. In the

latter case, not knowing the actual number of entrants, the contestants are predicted to

make the same level of effort across different sizes of contests.24 We then check if this

is true and also compare the actual effort choices with the corresponding equilibrium

predictions.

N is Disclosed

Table 2.6: Individual Effort in Disclosed Treatments
Concave Linear Convex

Equ. Rd.1-25 Equ. Rd.1-25 Equ. Rd.1-25
N=1 0 23.33 0 5.02 0 0.86

(70.62) (11.85) (3.19)
N=2 229.27 197.48 25 26.76 9.01 11.64

(63.33) (10.39) (3.95)
N=3 192.45 156.05 22.22 24.33 8.25 9.91

(79.11) (12.06) (4.59)
Standard deviations are reported in brackets. The columns labeled
“Equ.” provide the equilibrium predictions. “Rd.1-25” show the
summary statistics of observations from all 25 rounds.

Table 2.6 reports the average individual efforts in each of the three Disclosed treat-

ments, conditional on the actual number of entrants, in contrast with the corresponding

theoretical predictions of their behavior. When the participants enter the contest alone

(N = 1), they should make 0 effort in all three treatments, as the prize is automati-

cally awarded to them. The summary statistics show that some participants still make

a small but positive effort, which may be driven by some confused participants not
24Formal proof of contestants’ equilibrium effort level in both cases can be found in Appendix A.2



28CHAPTER 2. WHEN SHOULD WE DISCLOSE THE NUMBER OF CONTESTANTS?

Figure 2.2: Histograms of individual effort in Disclosed treatments
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fully understanding the rule of the contest at the beginning. Multi-level mixed-effects

regressions using data from rounds 14-25 to study the choice of the participants after

learning show that the average effort in this case is small and not significantly different

from 0 (See Table 2.7, row “N = 1”). Whenmore than one contestant enters the contest,

their effort choices are in line with the equilibrium predictions when the cost function

is linear (comparing columns 4 and 5 in Table 2.6). Similarly, mixed-effects regressions

using data from the last 12 rounds provide estimates that are not significantly different

from the equilibrium predictions (see Table 2.7 column 3).

When the cost function is non-linear, we observe that the individual effort is slightly

lower than the equilibrium predictions when the cost function is concave (197.48 vs.

229.27 when N = 2, and 156.05 vs. 192.45 when N = 3). However, when the cost

function is convex, the average effort is slightly above the equilibriumpredictions (11.64

vs. 9.01 when N = 2, and 9.91 vs. 8.24 when N = 3). These results suggest that

the effort choices respond to the curvature of the cost function in the right direction,

although the reactions are slightly smaller than those suggested by the theoretical point

predictions. Table 2.7 (columns 2 and 4) shows that these deviations from the equilib-

rium predictions are statistically significant when using mixed-effects regressions.
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Table 2.7: Individual Effort in Disclosed Treatments: Rounds 14-25
Mixed-effects model Tobit model

Concave Linear Convex Concave Linear Convex
N=1 12.73 1.42 0.73

(16.17) (1.79) (0.58)
N=2 198.80** 25.93 12.07*** 242.60 28.49 13.22***

(13.10) (1.54) (0.50) (29.92) (2.85) (0.80)
N=3 157.00*** 22.63 9.57** 183.90 24.56 10.34**

(13.01) (1.64) (0.51) (29.62) (2.92) (0.81)
σ2
(sub)session 450.65 4.06 0.00 2,810 16.64 0.00

(452.61) (6.28) (0.00) (2,483) (22.61) (0.00)
σ2
individual 1,506.05 35.90 7.57 5,062 125.8 22.28

(448.04) (11.48) (1.94) (1,626) (38.92) (6.01)
Censored [10, 113] [4, 60] [3, 65]
Total Obs. 379 340 337 344 278 274

“Censored” represents the number of observations that are left-censored (first number in
brackets) and right-censored (second number in brackets). We control for the random effects at
the individual level (σ2

individual) and the (sub)session level (σ2
(sub)session) in the mixed-effects

and Tobit models. Stars indicate the significance level of the estimated coefficients against their
corresponding theoretical predictions (** p < 0.05, *** p < 0.01). Standard errors are reported
in brackets.

The histograms of the individual effort choices presented in Figure 2.2 suggest that

the effort choices are heterogeneous and often limited by the maximum effort available

to the participants. For example, approximately 40% of the choices are distributed at

the upper bound (253) when the cost function is concave, and the actual number of

contestants is two. In other cases, between 25% and 30% of the choices are distributed

at the upper bound. To take into account the effort choices bounded by the choice space,

we also estimate the average individual effort in each casewithmulti-levelmixed-effects

Tobit models, using data from rounds 14-25. The results are presented in Table 2.7

(columns 5 to 7).25 As Table 2.7 shows, the effort choices are not significantly different

from the equilibrium predictions when the cost function is concave or linear, while the

level of effort remains higher than the equilibrium predictions when the cost function

is convex.

Result 4 The participants’ individual effort largely follows the equilibrium predictions when

N is disclosed, although the participants slightly under-react to the curvature of the cost function
25All of the regressions using Tobit models are right-censored at the maximum effort level available to

the participants, and left-censored at the minimum level of 0. The case N = 1 is left out because most
participants choose 0 when nobody competes with them.
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when the cost of effort is non-linear, especially when it is convex.

N is Concealed

Table 2.8: Individual Effort in Concealed Treatments
Concave Linear Convex

Equ. Rd.1-25 Equ. Rd.1-25 Equ. Rd.1-25
117.97 154.12 18.12 23.78 7.42 9.88

(71.54) (12.11) (4.59)
Standard deviations are reported in brackets. The columns labeled “Equ.”
provide the equilibrium predictions. “Rd.1-25” show the summary
statistics of observations from all 25 rounds.

Table 2.8 summarizes the average individual effort, with the standard deviations for

each Concealed treatment given in brackets. The average individual effort is generally

higher than the equilibrium predictions in all treatments when the actual number of

contestants is concealed. To compare the individual effort with the equilibrium predic-

tions, we estimate the average individual effort using multi-level mixed-effects models,

controlling for the random effects at the individual and (sub)session levels. The esti-

mates are significantly higher than the equilibrium predictions in all three treatments

(p values are 0.00, 0.05, and 0.00, see Figure 2.3 for the estimated values.)26

Under the Concealment policy, the participants make effort decisions without know-

ing the actual number of entrants. They should choose an effort level that maximizes

their expected payoff, taking into account the probability distribution of the potential

number of opponents they will face.27 As the actual entry rates are slightly higher

than the equilibrium entry rates, the probability distribution of the actual number of

opponents theywill face also deviates from the equilibriumpredictions. Thus, the over-

exertion observed under theConcealment policymay be a rational reaction to over-entry.

In our experiment, the participants received full feedback at the end of each round,

irrespective of whether they entered the contest. As a result, the participants should

have had a good perception of the actual average entry rates. We conjecture that the
26The full regression results using data from rounds 14-25 can be found in Appendix C.1. The

estimated coefficients are similar if we use data from all rounds.
27We draw the histogram of individual effort in concealment treatments conditional on cost function

and the number of entrants. Participants effort choice does not vary with the number of entrants. See
Appendix C for the histogram.
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Figure 2.3: Individual Effort in Concealed Treatments: Rounds
14-25.

Note: The red solid lines represent the equilibrium predictions and the blue
dotted lines represent the predicted optimal individual effort, taking the actual
entry rates as given. The figures in brackets next to the theoretical predictions
are the p-values of the Wald tests, which compare the estimated coefficients
using multi-level mixed-effects models for rounds 14-25 (see the number at
the top of each bar) with the predictions adjusted by over-entry.

over-exertion observedmay reflect the best responses of participants to their belief/perception

of the actual entry behavior. To further test this conjecture, we calculate the payoff

maximization effort based on the observed average entry rates using data from rounds

14-25. As shown in Figure 2.3, the estimated average individual effort in the concave

and linear treatments (155.60 and 22.85) is not significantly different from the optimal

effort choices predicted by the actual average entry rates indicated by the blue dashed

lines (160.44 and 19.56, p =0.69 and p=0.18, respectively). However, when the cost

of effort is convex, the estimated average effort is still significantly higher than the

predicted adjusted optimal effort (9.76 vs. 7.63, p ≤0.01).28

Result 5 The participants’ individual effort is generally higher than the equilibrium predic-

tions in all treatments when the actual number of contestants is concealed. However, when

considering over-entry, the effort choices are largely consistent with the predictions adjusted by
28Note that over-entry is minimal when the cost of effort is convex. Therefore, controlling for over-

entry hardly changes the optimal effort predicted compared with the Nash equilibrium prediction (7.63
vs. 7.42).
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over-entry, except that there is still over-exertion when the cost function is convex.

In summary, our analysis on individual efforts suggests moderate levels of over-

exertion when the cost of effort is convex, contrasting the majority of the experimental

evidence on contest that shows much higher levels of over-exertion.29 One could rea-

sonably argue that the closer to equilibrium effort choices observed in our experiment

might be driven the fact that the strategy space is bounded by the initial endowment

assigned to the participants.30 As is shown by the Tobit regressions, the strategy space

is particularly restrictive under the Disclosure policy when the cost of effort is concave,

however, it restricts the effort choices to a lesser extent under the Concealment policy.

Therefore, we speculate that should the participants be allowed to exert higher effort,

the treatment difference on the expected total effort would have been more prominent

when the cost of effort is concave. When the cost function is convex, the difference

in equilibrium-effort predictions across disclosure policies is very small, the bounded

strategy space would be unlikely to affect the treatment effect significantly different.31

All in all, in spite of the various deviations observed on the individual level of choices,

our finding on the treatment effect with regard to the average total effort (summarized

in Result 2) remains unchanged.

2.5 Conclusion

In this paper we theoretically and empirically examine whether a contest organizer

should disclose the actual number of contestants when entry is endogenous. Although

previous studies suggest that the expected total effort made in a Tullock contest does

not depend on the disclosure policy when the cost of effort is linear, we theoretically

show that the optimal disclosure policy essentially depends on the convexity of the

cost function in Tullock contests when the cost of effort is non-linear, although the

equilibrium entry probabilities and rent dissipation rates are invariant to the disclosure

29We have shown that the over-exertion in the concealed treatments (when the cost of effort is either
linear or concave) may be driven by individuals best-responding to over-entries in these treatments.

30For example, Baik et al. (2020) provide experimental evidence on the impact of conflict budget on
the intensity of conflict.

31The bounded strategy space is to ensure the entry cost is non-trivial and the endowment is
comparable across cost structures. Obviously, restricted strategy space comes as its cost.
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policy.

Our experimental results using a lottery contest function provide good qualitative

support for our main theoretical predictions. We find that although the actual entry

rates slightly deviate from the equilibrium predictions, the entry behavior of the par-

ticipants is not significantly different under the Disclosure and Concealment policies,

whether the cost of effort function is concave, linear, or convex. Over-entry may be

driven by the usual disadvantages of a laboratory experiment, that is, the participants

may get bored by not participating and doing nothing during the experiment. We also

find that, consistent with our theoretical predictions, the total cost and thus the rent

dissipation rates are invariant to the disclosure policy under all cost structures.

More importantly, we find that the Disclosure policy tends to elicit more total effort

than the Concealment policy when the cost function is concave, and that the total effort

is neutral to the disclosure policy when the cost function is linear, both of which are

in line with our predictions. When the cost function is convex, although we observe

that the Concealment policy leads to a higher average total effort, the difference is not

statistically significant. The lack of significance may be attributed to two factors: first,

the predicted treatment effect is rather small, thus it is more difficult to detect with our

data, and second, relatively large standard errors in our sample prevent the results from

being significant.

Our paper is the first to provide insights to contest organizers on the optimal in-

formation disclosure policy they should use when the cost of effort is non-linear and

entry is endogenous. Our main results have important implications for the design of

contests, as endogenous entry is widely observed in the field and the cost of effort is

often non-linear. We argue that in contest environments, such as job applications and

college entrance exams, the cost of effort tends to be concave, while in sports contests

or R&D races, it tends to be convex. Further empirical research is warranted to identify

the nature of the cost of effort function in practice when a specific real contest is con-

cerned. Future studies are also needed to further explore the convex-cost case. In this

paper, we have focused on full disclosure and full concealment policies. Although we

expect that our main results can be extended to a more general information disclosure

policy framework, new issues related to information disclosure may arise and create
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additional challenges for analysis. We leave these interesting questions for future work.



Chapter 3

Risk taking in rank-order tournaments

3.1 Introduction

In a rank-order tournament, a contestant can increase her probability of winning by

either investing more effort or increasing the riskiness of her strategy. There are many

examples in the real world where agents in tournaments only have a restricted level

of effort: companies in a R&D race face limited time and resources; candidates in a

promotion contest have ability boundaries in the short run; and fund managers whose

compensation largely depends on their ranking among peers can only access a certain

amount of funds. In these scenarios, even though their expected performances are

limited by capacity constraints (resources, ability, money, etc.), contestants can flexibly

choose the level of risks taken in their strategies to increase their expected payoff in the

tournament.

In this paper, we investigate how the design of rank-order tournaments affects con-

testants’ risk-taking behavior using a laboratory experiment. Following the seminal

paper of Lazear and Rosen (1981), most theoretical and experimental work on rank-

order tournaments examine how the design of the tournament affects contestants’ effort

choice (Ehrenberg and Bognanno, 1990; Orrison et al., 1997; Moldovanu and Sela, 2001;

Harbring and Irlenbusch, 2008), whilemuch less attention has been given to risk-taking

behavior. However, extensive empirical literature, especially after the Global Financial

Crisis (GFC), finds that the tournament incentive can drive excessive risk-taking and

large volatility on the financial market (Diamond and Rajan, 2009; Kini and Williams,

35
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2012; Coles et al., 2018; Kirchler et al., 2018). While empirical studies provide great

insight, the types of tournament under examination are limited by data availability.

More importantly, we can only observe agents’ realized performance levels, but not

their choice of the performance distribution. The pressing need to understand the

effects of different tournament designs on contestants’ risk-taking behavior demands

more evidence from experimental studies.

There are a few studies that investigate risk-taking behavior experimentally. Gaba

and Kalra (1999) compare rank-order tournaments and the quota-based compensa-

tion system using data from an experiment that mimics the sales force competition.

Nieken and Sliwka (2010) study how the correlation among the contestants’ realized

performance affects contestants, risk-taking behavior. Eriksen and Kvaløy (2014) ex-

amine how myopia affects the risk-taking in the tournament while Eriksen and Kvaløy

(2017) vary the competitiveness of the tournament to examine excessive (more than

optimal) risk-taking. In these studies, contestants’ risk choice is often regarded as a

choice of variance. Consequently, the probability distribution of performance is treated

as symmetric. Nevertheless, a recent study by Fang and Noe (2016) finds that the theo-

retical equilibrium performance distribution in rank-order tournaments is only sym-

metric when the prize schedule is symmetric.1 When the prize schedule is convex

(concave), contestants will choose a positively (negatively) skewed distribution.2 This

result indicates that in themost commonly studied tournaments, such as awinner-takes-

all tournament or elimination contest, confining the risk choice to be symmetric cannot

fully reveal contestants’ risk-taking behavior.

Neglecting the skewness of the distribution can be hazardous from the risk gover-

nance perspective. The pay gap between fundmanagers with different rankings is usu-

ally significant and considered convex (Brown et al., 1996).3 If fund companies believe

the managers’ risk strategy is symmetric, they would assume a small probability for

1We call a set of prizes ,v1 ≤ v2 ≤ v3 ≤ ...,≤ vn, a prize schedule. For example, for a six-prize prize
schedule, symmetric means v6 − v5 = v2 − v1, v5 − v4 = v3 − v2.

2The convexity of the prize schedule is the second difference of the prize schedule. For instance,
v1 = 0, v2 = 0, v3 = 0, v4 = 100 is a convex prize schedule because the second differences of the prize
schedule are 0 and 100, which are non-negative. v1 = 0, v2 = 40, v3 = 40, v4 = 40 is considered a concave
prize schedule because its second differences are -40 and 0, which are non-positive.

3The best fund managers obtain not only the highest compensation but also improve client resources
which is considered even more valuable. In contrast, the worst fund managers cannot lose more than
they have no matter how badly they perform
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both good and bad outcomes, but a substantial probability of observing mediocre per-

formance. However, theory predicts that fundmanagers under a convex prize schedule

will adopt a positively skewed distribution, which leads to either very good outcomes

with a small probability or bad outcomes with a considerable probability. Therefore

fund companies and even the financial market can face greater-than-expected overall

volatility. In terms of social welfare, depending on the economic context of the contest,

the welfare effect of skewness in performance can be either beneficial or disastrous.4

To investigate risk-taking behavior in the tournament without any assumption on

the shape of the performance distribution,5 we design an experiment where contes-

tants can use a visualized interactive distribution builder to choose their risk strategies.

Participants can build any distribution over non-negative potential performance levels

as long as the capacity constraint is satisfied. Based on the model developed by Fang

and Noe (2016), we vary the convexity of the prize schedules used in the tournament

and the size of the tournament in the experiment to examine contestants’ risk-taking

behavior under different contest designs.

Our experimental results strongly support the convexity effect: contestants chose

the distribution that is not only more dispersed but also more (positively) skewedwith

the increase in convexity of prize schedule. Intuitively, a more convex prize sched-

ule indicates that moving forward one rank on the top of the prize schedule is more

profitable than moving forward one rank at the bottom of the prize schedule. Hence,

contestants have stronger incentives to stretch out the upper bound and fight for the

highest prize. Consequently, they will choose a more positively skewed and more

dispersed performance distribution.

We also find that the effect of tournament size on contestants’ risk-taking behavior

depends on how the tournament size is changed. When increasing the tournament size

by adding more entrants (namely, entrant effect), contestants will increase their risk-

taking by choosing a more dispersed distribution as predicted by the theory. However,

when increasing the size of the tournament by multiplying the number of contestants

4Relevant literature includes but not limited to Dasgupta and Stiglitz (1980), Klette and De Meza
(1986) and Brown et al. (2008).

5In this paper, the performance distribution needs to be non-negative. We do not limit the shape of
the performance distribution as long as it is non-negative.
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and the number of prizes by s (namely, scale-up), we observed that participants in-

crease the riskiness of their strategy as the theory predicted; however, the effect is not

statistically significant. These two methods of changing the size of the tournament

affect the dispersion of the distribution in different ways. The entrant effect encourage

contestants to stretch out the upper bound of the distribution in order to surpass more

contestants, while the scale-up effect encourages contestants to put more probability

mass on certain jumping points so that contestants can move up to a higher rank that

actually increases the payoff.

Past literature that examines the changes in tournament design mostly focus on

changing the proportion of winner prizes in a simple contest,6 which is a special case

of changing the convexity of prize schedule (Dekel and Scotchmer, 1999; Gaba and

Kalra, 1999; Gaba et al., 2004; Kräkel and Sliwka, 2004; Schedlinsky et al., 2016). Our

experiment can be seen as complementary to this branch of study. We also include this

variation as a special case and extend previous findings in a simple contest to a broader

range of prize schedules that are more complex. Gilpatric (2009) and Andersson et al.

(2020) also study the risk-taking behavior under more complex prize schedules. How-

ever, unlike our paper, they assume risk-taking is costly and examine the case where

participants can choose both the effort level and the riskiness of their strategy. Most

importantly, we show that the convexity effect does not only increase the dispersion

of the distribution, but also shifts the skewness of the distribution. To the best of our

knowledge, our study is the first experiment that is able to show the change in the

skewness of the distribution.

There are very few papers that study risk-taking under various group sizes.The few

papers that do investigate this problem focus on the entrant effect. Eriksen and Kvaløy

(2017) find in their experiment that addingmore entrants to the tournamentwill induce

even more excessive (non-rational) risk-taking. Hvide and Kristiansen (2003) study a

model where contestants are asymmetric in ability and find that riskiness of contes-

tants’ strategy only increases when the number of contestants is small. In the most

recent studies, List et al. (2020) and Drugov and Ryvkin (2020) discuss different risk

distributions and the tournament size. However, instead of treating risk as a decision

6A simple contest is a type of contest that only has two distinct prize values, i.e., prizes with higher
(lower) value are the winner (loser) prizes in a simple contest.
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variable, they assume risk distribution is exogenous and study how the number of

contestant affects the effort based on varying the risk distributions. Although whether

to combine a few small tournaments into a grand tournament is also something the

contest organizermight need to consider, surprisingly, there is no relevant experimental

study on scaling-up the contest as far as we know. Fang and Noe (2016) and Fang et al.

(2018) are the only two theoretical papers which discuss this effect.

Apart from the aforementioned literature, our paper is also related to the exten-

sive empirical and experimental literature that studies risk-taking when contestants

are asymmetric in status (Taylor, 2003; Grund and Gürtler, 2005; Kempf et al., 2009;

Nieken and Sliwka, 2010; Genakos and Pagliero, 2012; Grund et al., 2013; Hopkins,

2018), the literature examining the howdifferent tournament designs affect the stability

of financial markets (Palomino and Prat, 2003; Fang et al., 2017), and the literature on

tournaments and destructive activities (Harbring and Irlenbusch, 2008; Faravelli et al.,

2015).

The remainder of the paper proceeds as follows, Section 3.2 briefly reviews the the-

ory model and equilibrium, then moves to the experimental design, main predictions,

and experiment implementation. Section 3.3 elaborates the findings of this study and

Section 3.4 concludes.

3.2 Experimental framework

In tournaments, participants can typically choose both a level of average performance

and a level of risk-taking. These two choices are usually not independent. Very risky

strategies may for instance be associated with lower performance on average but also

a greater chance of having an extremely good performance.7 Since the link between

average performance and performance distribution is unclear and likely specific to dif-

ferent tournament setting, it is useful to look at a simplified situation where we isolate

risk-taking decisions from the concerns about average performance. We follow here

Fang and Noe (2016)’s approach looking at a tournament where contestants do not

7It is the case when contestants attempt to achieve a very difficult level of performance with the final
outcome being either a success or a failure. More ambitious targets can be associated with a lower
expected outcome but also with a better outcome in case of success.
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face a trade-off between risk-taking and average performance. Instead, players choose

the distribution of their performance, taking the average performance as given.

3.2.1 Model

Our experiment design follows Fang and Noe (2016)’s formal framework. We present

here this framework and its predictions about equilibrium play. N contestants compete

for N prizes which ranked as: 0 ≤ v1 ≤ v2 ≤ ... ≤ vN−1 ≤ vN in an rank-order tour-

nament. Participants compete by choosing a probability distribution, F (·), over non-
negative performance levels subject to an upper bound on the expected performance

level:

∫ ∞

0

xdF (x) ≤ μ. (3.1)

The parameter μ represents the average performance that the chosen distribution of

outputs must not exceed.

The prize allocation is based on the rank of the realized performance levels with

the highest performance receiving vN , the second highest, vN−1, and so on. Ranks are

randomly decided in case of a tie.

The main result of Fang and Noe (2016) shows that this taking game has a unique

equilibrium that is symmetric. This equilibrium distribution can be characterised by its

quantile function8

Qv(p) =
μN

V

N−1∑
i=0

(vi+1 − v1)C
i
N−1p

i(1− p)N−1−i, (3.2)

where V =
∑N

i=1(vi − v1) is the sum of real gains available in the contest.9 From

equation 3.2 it is clear that the equilibrium performance distribution is influenced both

by the prize schedule and by the number of participants (N).

Using this framework, we investigate the effect of three types of variations in contest

design which are predicted to affect the risk taking of participants: inequality in the
8See Theorem 1, Corollary 1, and preceding lemmas in Fang and Noe (2016). The quantile function

is the inverse of equilibrium performance distribution F (·).
9The real gain of a prize is the amount in excess of v1, the prize for having the lowest performance.
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distribution of prizes, competitiveness, and scale.

Definition 1 (Inequality) Let v = (v1, . . . , vn) and v′ = (v′1, . . . , v
′
n) be two prize schedule,

and vr = (0, v2 − v1 . . . , vn − v1) and vr ′ = (0, v′2 − v′1 . . . , v
′
n − v′1) be the vector of real gains

from these two prize schedule. Let V and V ′ be the total real gains associated with v and v′. The

prize schedule v′ is said to be more unequal than v if the Lorenz curve of vr ′ lies below the Lorenz

curve of vr in the sense that:

k∑
i=1

vr ′

V ′ ≤
k∑

i=1

vr

V
, ∀k ∈ {1, . . . , n− 1}, and

n∑
i=1

vr ′ =
n∑

i=1

vr

Amore unequal prize schedule is a distribution of prizes where the gains above the

minimumprizes aremore concentrated toward the higher rank of the tournament. One

aspect which makes a prize schedule more or less unequal is its convexity.

Definition 2 (Convexity) Let Δvi = vi+1 − vi. A prize schedule is convex if Δvj ≥ Δvi

whenever j ≥ i. A prize schedule is concave if Δvj ≤ Δvi whenever j ≥ i. Furthermore,

keeping the number of prizes in the schedule unchanged, a prize schedule v∗ is more convex than

prize schedule v, if Δv∗j/Δv∗i ≥ Δvj/Δvi, whenever i ≤ j.

A prize schedule which is more convex than another one is also more unequal.

Proposition 1 (Inequality and risk taking) Inequality influences the dispersion and skew-

ness of the performance distribution.

i. Tournaments with more unequal prize schedules induce more dispersion in performance

(measured in Gini Mean Difference, GMD).

ii. Tournaments with more convex prize schedules also induce a greater skewness in perfor-

mance.

This proposition comes from propositions 5, 7 and 10 in Fang and Noe (2016).

Inequality in gains increases the dispersion of performance, measured with the Gini

mean difference (GMD). The GMD is the weighted average absolute difference of any
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two values drawn from a probability distribution, where the weight is the probabilities

of these two values to be drawn at the same time.10

When the prize schedule is convex, the prize differences among higher ranks is

larger than the prize differences among the lower ranks. Contestants have stronger

incentives to stretch out the upper bound of the distribution to fight for the the higher

prize. Due to the limit of capacity, contestants have to choose a positively skewed

distribution in order to reach a relatively high performance level on the upper bound.

When the prize schedule is concave, the prize differences among lower ranks is larger

than the prize differences among the higher ranks. Contestants have stronger incentives

to put a large probability mass on intermediate performance levels to avoid ending up

last. Consequently they should choose a negatively skewed distribution. When the

prize schedule is linear, or more generally, as long as the prize differences are symmet-

ric in the low-rank range and the high-rank range, contestants should distribute their

probability mass symmetrically along the performance levels.

Another aspect which influences risk taking is the degree of competitiveness of the

competition. We provide a minimal definition of competitiveness.

Definition 3 (Competitiveness) Let v = (v1, . . . , vn) and v′ = (v′1, . . . , v
′
m) be two prize

schedules of tournaments with n and m participants, respectively. The prize schedule v′ is said

to be more competitive than v if the proportion of prizes equal to the top prize in v′ is smaller

than in v:
#{v′i = v′m}

m
<

#{v′i = v′n}
n

Proposition 2 (Competitiveness and risk taking) Competitiveness increases the disper-

sion of the performance distribution.

i. If the number of top prizes is replaced for a bottom prize in a tournament, the equilibrium

dispersion in performance increases.

ii. If the number of participants is increased in a tournament by simply adding new bottom

prizes, the equilibrium dispersion in performance increases.
10GMD=Σn

i=1Σ
n
j=1f(xi)f(xj)|xi − xj |. While GMD and variance are both often used to measure

the dispersion, studies have proved that when the distribution is not normal, GMD is a superior
measurement of the dispersion of the distribution (Yitzhaki, 2003).



3.2. EXPERIMENTAL FRAMEWORK 43

This proposition comes fromCorollary 6.b andProposition 8 in Fang andNoe (2016).

The competitiveness of prize schedules increases as it gets harder to obtain the top prize.

Intuitively, to aim for the same high prize as in the original tournament, a contestant

needs to stretch out the upper bound of the distribution to surpass more opponents in

the bigger tournament.

The entrant effect prediction can also be applied to situations where the contestants

pool is growing while the number of prizes is not (e.g. college admission and job

hunting). One can consider the lowest prizes in these scenarios as zero.

Definition 4 (Scaling) Let v = (v1, . . . , vn) and vs = (vs1, . . . , v
s
sn) be two prize schedules

of tournaments with n and sn participants, respectively. The prize schedule vs is said to be a

scaled up version of v by factor s, if the vs is generated by making s copies of each prize in v.

A scaled up tournament is a tournamentwithmore playerswhich retain the propor-

tion of prizes from the original tournament. The scaled up tournament has the same

level of inequality and competitiveness.

Proposition 3 If a prize schedule vs is a scaled up version of v, the equilibrium distribution of

performance for vs is more dispersed than for v.

This proposition comes from Proposition 9 in Fang and Noe (2016). When there

are s copies of each prize in the prize schedule, advancing in rank does not necessarily

meanhigher prize values. Contestants’ payoff only increasewhen advancing to a higher

rank with a higher value prize. Hence, contestants have the incentive to choose the

performance distribution that clusters on the critical “jumping” points. Compared

with the performance distribution in small tournaments, the clustered performance

distribution is more dispersed.
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3.2.2 Experimental design and predictions

We design an experiment which replicates this tournament design: participants com-

pete in a rank-order tournament by making risk-taking choices (i.e., choosing a prob-

ability distribution over performance) under a capacity constraint, μ = 3. The exper-

iment includes six tournament structures which vary in prize schedules or the num-

ber of contestants. Figure 3.1 shows the six prize schedules we implemented in the

experiment (see the first and the third row) along with the corresponding simulated

equilibrium performance distributions11 (see the second and the fourth row).

Note: The first and third row are six prize schedules used in the experiment, the corresponding
equilibriumperformance distribution is the bar graph below each prize schedule. Tomake the theoretical
distribution comparable to the observed distribution, we take the floor of the simulated values using the
quantile function and plot the discrete version of the theoretical distribution.

Figure 3.1: Prize schedules and equilibrium distributions

The first row presents three prize schedules with different levels of convexity, and,

therefore, inequality. The winner-take-all (WTA) prize schedule corresponds to the sit-

uation where only one contestant gets the top prize valued at 100, while the other
11The simulated equilibrium distribution is obtained using Equation 3.2.
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contestants get the low prize valued at 10. The elimination contest (EC3/4) is a concave

prize schedule which has 3 contestants getting a top prize of 40 and 1 contestant getting

a prize of 10. In the linear prize schedule, contestants ranking from the lowest to the

highest are rewarded 10, 25, 40 and 55, respectively. These three prize schedules only

differ in terms of their convexity, but have the same number of prizes and total prize

value of 130.

Prediction 1 (Inequality effect) The dispersion and skewness of performances increases from

the elimination contest (EC3/4) to the linear contest and from the linear contest to the winner-

take-all contest (WTA).

This prediction comes from the fact that these three contests are ranked by inequality

and convexity.

Prediction 1 implies that in our experiment, the performance distribution should in-

crease in both dispersion and skewness when moving from treatments EC3/4 to Linear,

and from Linear to WTA. More specifically, the equilibrium distribution is positively

skewed for WTA, symmetric for Linear, and negatively skewed for EC3/4. This pre-

diction stem from Proposition 1 and the fact that these three contests are ranked by

inequality and convexity.

The treatments also features variations in the competitiveness of the tournament. In

our design, the prize schedule WTA6 and EC3/6 (row three in Figure 3.1) corresponds

respectively, to modifications of, respectively tournaments WTA and EC3/4, to make

themmore competitive: Two new players and two bottom prizes have been added. We

make the following prediction. The tournament EC2/4 also represents a more competi-

tive version of EC3/4, the two tournaments are almost identical, with only one top prize

being converted in a bottom prize.

From the Proposition 2, we make the following prediction:

Prediction 2 (Competitiveness effect) The dispersion of the equilibrium distribution is greater

in:

i. WTA6 than WTA, due to the addition of participants and lower prizes.

ii. EC2/4 than EC3/4 due to the reduction in the number of top prizes
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Finally, our design also allows us to investigate the effect of the scale of the tourna-

ment. In our experiment, we can compare the performance distribution under EC2/4

and EC3/6 to investigate the scaling up effect.12 From the Proposition 3, we make the

following prediction:

Prediction 3 (Scaling up effect) The dispersion of the equilibrium distribution is greater in:

i. EC3/6 than EC2/4

3.2.3 Experiment implementation

We conducted the experiment at Wuhan University from February to April 2019. In

order to get the same number of observation groups, we conducted 2 sessions for four

4-prize treatments and 3 sessions for two 6-prize treatmentswhich results in 14 sessions

in total.13 Each session had 24 participant. In total, 336 students were recruited across

the campus. The experiment lasted around 1.5 hours and the average payment is 70

CNY.

The experiment contains two parts. Part 1 is an introduction which has 6 rounds

of one-shot games. Participants play each of the six prize schedules once in a random

order. The order of the 6 prize schedules are independently drawn for each participants.

Participants onlymake decisions. They do not observe the contest results.14 We use Part

1 to familiarize the participantswith the experimental interface and the prize schedules.

Part 2 is themain experiment. In Part 2, only one of the six prize schedules is used for

all participants for all 12 rounds. Wename the treatment after the prize schedule used in

Part 2. Before the start of Part 2, participants are randomly assigned into groups of four

in WTA, Linear and EC3/4 treatments, or groups of six in WTA6 and EC3/6 treatments.
12Theoretically speaking, the only contest transformation that guarantees an increase in skewness for

all contests is a convex transformation (Zwet, 1964) of the prize schedule. The effect of adding more
entrants (Prediction 2) or increasing the scale of the contest (Prediction 3) on the change of skewness is
indeterminate.

13The order of the treatment is determined by random draw before conducting the experiment.
14Participants are told they compete with other contestants in the tournament, but they are not

matched when they make their decision. Computer randomly draws one prize schedule at the end
of the experiment. Participants’ decision under that prize schedule are then matched to generate the
tournament result.
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These groups stay the same from all 12 rounds. All the competitions are held within

these groups.

In each of the 12 rounds, participants make their risk-taking decision by using a

distribution builder (DB) to build their own performance distribution (Sharpe et al.,

2000). Figure 3.2 presents a screenshot of the DB we use in the experiment. Each par-

ticipant has 100 markers to allocate to build a probability distribution against columns

numbered 0 to 25.15 Each number represents a performance level. To place a marker

on given number, the participant has to use incurs a cost equal to this number.16 The

cost is in “Experimental Currency Unit (ECU). For instance, the cost of 1 marker placed

on number 5 is 5, the cost of 2 markers on the number 5 is 10, and so on. The capacity

constraint takes the form of a budget of 300 ECU. Participants can choose a risk free

distribution by placing all their 100 markers on the value 3. Or they can spread the

markers around, but the sum of the values cannot exceed 300.17 Participants can only

submit the distribution when they use all 100 markers.

To help the participants make their decision, a budget box is placed next to the

distribution builder. The budget box indicates howmanymarkers have been used, how

many markers are left and what is the total cost of the current distribution. Once the

participant changes the allocation, the budget box changes accordingly.

Once all group members submit their distribution, the participants’ performance is

drawn according to the distribution they built. The probability of a certain performance

level to be drawn is equal to the number of markers put on that number divided by

100. Participants are then ranked according to their drawn performance, and prizes

are allocated to them according to their ranking. In case of ties, prizes are randomly

allocated.

In order to facilitate learning in Part 2, we add three features in each round: First,

feedback information including all groupmembers’ drawn number, ranking, prizewon
15The highest theoretical upper bound of the equilibrium distribution in the six treatments is 18, we

chose 25 as the maximum performance level to make sure the participants’ choice of distribution is not
bound by the design of the distribution builder.

16Note that as we explained in the theory section, the performance levels do not have cost itself, the
capacity constrain imposes a shadow price on each performance level, here the cost of each marker put
on the number is to mimic the shadow price of the performances

17Saturating the budget constraint is trivial since moving a marker by one notch increases the budget
used by one unit. In practice, most of the time participants (more than 90% of the decisions) do so in the
experiment
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Figure 3.2: Distribution builder
Participants select markers (blue) and place them over number values on the x-axis.They can do so
either using their mouse, or the + and - buttons under each number. Two numbers are written below
the values on the x-axis in a budget box: the number of markers placed on this value and the total cost

corresponding to these markers (e.g. 30 markers on “3” costs 90).

will be disclosed at the end of each round. Second, on the DB builder page, we add

a “reload” button which participants can use to start from the distribution they built

last round and make adjustments in the current round. Lastly, we provide a history

box to remind participants of the numbers chosen by other group members and the

distribution of prizes in all the previous rounds.

At the end of the experiment, the computer randomly draws one prize schedule in

Part 1 and one round in Part 2 to decide participants’ payoff. The prizes won under

the prize schedule drawn in Part 1 and the prize won in the round drawn in Part 2 are

converted in cash according to the exchange rate of 1 ECU = 0.5 RMB and 1 ECU = 1

RMB respectively, and paid to the participants together with their participation fee (20

RMB).18 In addition to the twomain parts, we also included a comprehension test and a

practice round to give participants a good understanding of the experiment. At the end

of the experiment, a questionnaire is also used to collect the demographic information

and ask a few questions about how participants made their decisions.

18The exchange rate is around RMB1=USD0.15.
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3.3 Results

3.3.1 Overview of the data

Figure 3.3 compares the performance distribution predicted by the equilibrium (first

row),19 and the actual distributions chosen by participants in Part 1 (second row), and

Part 2 (third row).

Note: The first row is the simulated distribution from the equilibriumquantile function in each treatment.
The second and third row show the aggregate performance distribution chosen by the participants in Part
1 and part 2, respectively.

Figure 3.3: Aggregate performance distribution in each treatment

Comparing the distributions of Part 1 across all treatments, although participants

slightly shift their distributionwith the change of the prize schedule, they always choose

a positively skewed distribution nomatter what prize schedule is implemented. Partic-

ipants’ chosen distribution get closer to equilibrium in Part 2.
19By design constraints the chosen distribution are de facto discrete in our experiment. So we

rounded all the simulated performance levels from the quantile function to form a discrete version of the
theoretical distribution and use this discrete theoretical distribution as the benchmark for the observed
distributions.
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The distribution in WTA6 has the same shape as WTA but with a higher upper

bound and a larger probability mass on the lower end. We can see that the performance

distributions in treatment EC2/4 and EC3/6 do have relative heavymass on the two ends

of the distribution as predicted.

Table 3.1 compares the distributions obtained in the Part 2 of each treatment to the

theoretical predictions. The second column presents a test of the overall difference in

distributions. We build a bootstrap test, based on the Kolmogorov-Smirnov (KS) test

statistic, D which measures the distance between two cumulative distribution at each

point of x and takes the value of the largest distance20. The KS statistic indicates how

different two distributions are. The standard Kolmogorov Smirnof test using this statis-

tic requires for distributions to be generated by iid observations. It is not the case in the

distributions we observe: each marker is part of a set of 100 markers allocated by a

participant. A participant’s choice to allocate one marker depends on the other choices

for markers. Therefore, we cannot test for differences in distributions directly using

the standard KS test.We therefore implement a bootstrap test whereby we generate a

distribution of KS statistics by resampling participants in each treatment, pooling their

distributions and calculating the KS statistics against the theoretical distribution. We

then use this bootstrap distribution to calculate a p-value of the KS statistic actually

observed with the whole sample. The results from these tests show that the empiri-

cal distributions we observe differ significantly from the theoretical predictions in all

treatments.

Looking at the dispersion and skewness of these distributions give us an idea of

how they differ. Table 3.1 presents the theoretical dispersion and skewness of the

equilibrium distributions in all treatments. These values are compared to the observed

dispersion and skewness. We test the difference between these values and the observed

ones using a t-test (clustered at the participant level). We observe that the observed

distributions tend to be less dispersed than the theoretical ones.21 They also tend to

have less skewness (positive or negative) than the theoretical one.22 In short, it seems

20D = sup
x
|F1,n(x)− F2,m(x)|, where F1,n and F2,m are the empirical distribution functions of sample

1 and sample 2
21The equilibrium GMD formula is provided by Fang and Noe (2016), GMD =

2μ
(
−1 + 2

n+1Σ
n
i=1

(
vi−v1

V

)
i
)

22We measured the theoretical skewness using simulated equilibrium distributions in each
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that the observed distributions are, in some sense, less extreme than the theoretical

distribution. It may suggests an under-adaptation of participants’ responses to the best

response strategies predicted from equilibrium play.

Table 3.1: Summary statistics of each treatment

Overall dist. Dispersion (GMD) Skewness N

p-value NE Obs. p-value NE Obs. p-value

WTA p < 0.01 3.60 1.46 p < 0.01 1.06 0.453 p = 0.04 564
(0.462) (0.803)

Linear p < 0.01 2.00 1.08 p < 0.01 0 0.112 p = 0.27 576
(0.455) (0.965)

EC3/4 p < 0.01 1.20 0.81 p < 0.01 -1.01 0.043 p = 0.03 564
(1.107) (0.193)

WTA66 p < 0.01 4.29 1.71 p < 0.01 1.65 0.879 p = 0.87 864
(0.506) (0.837)

EC3/6 p < 0.01 2.57 1.06 p < 0.01 0 0.082 p = 0.13 864
(0.489) (0.903)

EC2/4 p < 0.01 2.40 1.04 p < 0.01 0 0.015 p = 0.67 576
(0.422) (0.931)

Note: The predicted skweness and GMD are calculated based on the simulated distributions
and equlibrium GMD formula, respectively. p-value comparing the observed statistics and the
predictions. p-value for skewness is based on two-sample t-test clustered on individual level,
while p-value for GMD is based on one-sample t-test clustered on individual level. Column ”N”
indicates the number of observation.

3.3.2 Treatment effects

We now compare the observed distributions across treatment to investigate whether

they display the comparative static predictions described in section 3.2.2.

We start with an overall test of difference in the shapes of the distributions, based on

the KS statistic. Since the markers generating the distributions are not iid observations,

we cannot use the KS test as such. We therefore design and implement a permutation

test based on the KS statistic to calculate an accurate p-value. The principle of this

test is simple. The KS statistic D∗ observed between the distributions in two different

treatments (or between a treatment and the theoretical prediction) is compared to the

distribution FD of the KS statistic D obtained, when the participants’ decisions (their

chosen distributions) are permuted randomly across treatment (i.e. participants are

randomly relabelled as being from one or the other treatment). Under the null hypoth-

esis, the participants’ choices are then same across treatments. The statisticsD∗ should

measurements.
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then also be drawn from the distribution FD generated from the permutations. We can

therefore place D∗ in this distribution to get a p-value of the test that the distributions

are indeed the same across treatment: p = 1 − F (D∗).23 The detailed process of con-

ducting permutation test is described in Appendix B.

Table 3.3.2 displays the results of tests comparing each treatment with all the other

treatments. The first test, assessing the significance of differences over the whole dis-

tribution is the permutation test discussed with the KS statistics. We observe that

most treatments are significantly different from each others. This indicates that, while

the observed distributions differ from the theoretical ones, the participants’ behaviour

reacted to the different incentives provided in the different treatments.

Table 3.2: Treatment comparison

WTA Linear EC3/4 WTA6 EC3/6

Measure Diff p value Diff p value Diff p value Diff p value Diff p value

Linear
Whole dist. - p < 0.01

GMD 0.38 p < 0.01

Var. 4.90 p < 0.01

Skew. 0.34 p = 0.02

EC3/4

Whole dist. - p < 0.01 - p < 0.01

GMD 0.64 p < 0.01 0.27 p = 0.02

Var. 6.22 p < 0.01 1.33 p = 0.28

Skew. 0.41 p = 0.04 0.07 p = 0.70

WTA6

Whole dist. - p < 0.01 - p < 0.01 - p < 0.01

GMD -0.25 p < 0.01 -0.63 p < 0.01 -0.90 p < 0.01

Var. -5.22 p < 0.01 -10.11 p < 0.01 -11.44 p < 0.01

Skew. -0.43 p < 0.01 -0.77 p < 0.01 -0.84 p < 0.01

EC3/6

Whole dist. - p < 0.01 - p < 0.01 - p < 0.01 - p < 0.01

GMD 0.40 p < 0.01 0.02 p = 0.80 -0.25 p = 0.03 0.65 p < 0.01

Var. 4.84 p < 0.01 -0.06 p = 0.95 -1.39 p = 0.21 10.05 p < 0.01

Skew. 0.37 p < 0.01 0.03 p = 0.79 0.03 p = 0.81 0.80 p < 0.01

EC2/4

Whole dist. - p < 0.01 - p = 0.02 - p < 0.01 - p < 0.01 - p < 0.01

GMD 0.42 p < 0.01 0.04 p = 0.61 -0.23 p = 0.03 0.67 p < 0.01 0.23 p = 0.03

Var. 5.42 p < 0.01 0.52 p = 0.51 -0.80 p = 0.44 10.63 p < 0.01 -0.81 p = 0.44

Skew. 0.30 p < 0.01 0.10 p = 0.45 0.03 p = 0.90 0.86 p < 0.01 0.03 p = 0.90

Note: Tests of differences between the performance distributions observed in different treatments, overall and
for specific distribution statistics.

23E.g. If FD(D∗) = 0.99, p = 0.01: there is only 1% chance to observe aD greater or equal toD∗ under
the null.
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In each comparison, the table also presents the tests for variations in dispersion

(GMD and variance) and in skewness, using t-test with clustered standard errors at

the level of the participants (each participant produces 12 distributions in Part 2).

Looking at the inequality affects risk taking, we find that the convex transformations

of the prize schedule, from EC3/4 to Linear and from Linear to WTA, increase both the

dispersion and the skewness of the distribution. The values of the GMD are 1.2, 2, and

3.6 for the treatments EC3/4, Linear and WTA, respectively. All these differences are

significant from each other. Using variance gives a similar pattern, tough the difference

between Linear and EC3/4 is not statistically significant. Similarly, for the skewness, the

observed distributions become more positively skewed as the convexity of the prize

schedule increases, though the difference between Linear and EC3/4 is only significant

at 10%. These results are in support of Prediction 1:

Result 1 (Inequality) In line with Prediction 1, for more convex prize schedules, participants

opt for distributions of performance with a greater dispersion and skewness.

Looking at the variations in competitiveness, in the form of the proportion of win-

ners, the results are also supportive of our prediction. First, the competitiveness in-

creases when a top prize in EC3/4 is replaced for a bottom prize to make the prize

schedule EC2/4. We observe that the degree of dispersion, using the GMD, is signif-

icantly higher in EC2/4, as predicted by the theory.

Second, the competitiveness also increases with the addition of new entrants (with

the only the prizes at the bottom of the prize schedule being added). We observe that

there is more dispersion (GMD and variance) and more skewness in WTA6 relative to

WTA. There is alsomore dispersion in EC3/6 than in EC3/4. The difference is statistically

significant for GMD, not for variance. There is no effect on skewness. Over these

different treatments, the variations in dispersion are all in line with the theoretical

predictions with the differences always significant when using GMD as a measure of

dispersion, as predicted by the theory.

Result 2 (Competitiveness) An increase in competition in the form of a reduction of the

proportion of winner or an an increase in the number of participants, without additional prizes

above the lowest one, is associated with an increase in the dispersion of the distributions of
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performance chosen by the participants. This result is in line with Prediction 1

Looking at the scaling up effect, we compare treatments EC3/6 and EC2/4 with the

former being 1.5 times the size of the latter. Our KS permutation test shows that the dis-

tribution in EC3/6 significantly different from the distribution in EC3/4 (p < 0.01). The

level of dispersion is greater in treatment EC3/6, as predicted by Prediction 3, though it

is not significant. Unlike the equilibrium performance distribution in other treatment

which is uni-modal, the equilibrium performance distributions in EC2/4 and EC3/6 are

bi-modal. The increase in dispersion of scaling up the tournament is not through the

stretching out the upper bound of the distribution, but through putting more proba-

bility mass on the two modes. Using the former measurements to capture the scale-up

effect might be deceptive. Recent study by Cavallo and Rigobon (2011) introduce the

proportional mass score (pm-score) which use the ratio of the probability mass (per unit)

within in the small interval around the center to the probability mass (per unit) within

a larger interval around the center to measure the bi-modality. A bi-modal distribution

should always have a pm-scorewhich is smaller than 1, and a bi-modal distributionwith

more probability mass on the two ends should have a smaller pm-score. As we can see

from column pm-score in Table ??, in the second half of the experiment, the pm-score in

EC3/6 is 0.072 less than that in EC2/4, though the difference is not significant (p > 0.1)24

By observing the aggregate distributions in Figure 3.3, we can see that the perfor-

mance distributions in treatment EC2/4 and EC3/6 do have relative heavy mass on the

two end of the distribution. However, instead of putting all the mass on the upper

bound 6, participants put similar probability mass round the upper bound of the dis-

tribution. One possible limitation of our design is that we only multiply the size of the

contest by 1.5, starting from a small contest, a larger scale or a larger contest might be

helpful to increase the power of the test for the analysis of the scaling up effect.

Result 3 (Scale) When we scale-up the tournament from EC2/4 to EC3/6, participants, we

observe a non-significant increase in the dispersion of their performance distribution.

24Another detail readers might notice is that unlike what the theory predict, the pm-score in both
treatments are both larger than 1. The value of pm-score is sensitive to both the choice of the ”center”
and the intervals, however, the relative relationship of the two pm-scores under comparison is not affected
as long as the same center and intervals are used in the calculation.
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3.3.3 Learning

Since Part 2 takes place over 12 rounds, a natural question is whether participants get

better at approximating the equilibrium predictions with experience.

Figure B.1 shows the aggregate distribution in selected rounds (1, 3, 7, 12), using

local polynomial estimates. The estimates are contrasted with the predicted distribu-

tions represented by bar graphs. The observed distributions shift across the different

roundswith participants’ chosen distributions getting, overall, closer to the equilibrium

predictions over time (with the exception of the WTA condition).

Figure 3.4: Learning

Figure B.3 illustrates the distribution of ΔD = D12 − D1, which tests whether the

distribution in round 12 is closer to equilibrium or not compared with the round 1

distribution. D1 (D12) is the KS statistic measure the distance between the equilibrium

prediction and distribution of the 1st (12th) round in Part 2 in each treatment. If par-

ticipants converge to equilibrium from round 1 to round 12 in part 2, the ΔD statistics

should be negative. We use 10,000 bootstrap resamples, clustered by participants, to

generate distributions of D12 and D1.25 We then calculate ΔD = D12 − D1 for each

bootstrap sample. As we can see from the figure, only in treatment Linear are all the
25When bootstrapping, we re-sample the observation size equals to the original sample size.
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Figure 3.5: KS test for learning (round12-round1)

Note: D1 (D12) is the k-s statistics measure the distance between the equilibrium prediction and
distribution of the 1st (12th) round in Part 2 in each treatment. The solid line isΔD = 0, which indicates
the round 12 and round 1 are equally closed to the predicted distribution.

KS statistics below 0, which means participants converge to equilibrium distribution in

the Linear treatment. InWTA6 and EC2/4 we see the distribution is mostly even around

0, meaning the difference is not significant. However, in treatment WTA and EC3/6, we

see most of the differences are positive, which indicates participants are even further

away from the prediction in round 12 compared with round 1.

3.4 Conclusion

We investigate how the convexity of prize schedules and the number of participants

in the tournament affect contestant’s risk-taking behavior when they face a specific

capacity constraint. Our experiment allows us to directly observe the performance
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Figure 3.6: KS test for learning (part2-part1)

Note: Dpart2 (Dpart1) is the KS statistic of the difference between the equilibrium prediction and
distribution of Part 1 (Part 2) in each treatment. The solid line is ΔD = DPart2 −DPart1 = 0, which
indicates the distribution of Part 2 and Part 1 are equally closed to the predicted distribution.

distribution chosen by participants without any assumption on the shape of the dis-

tribution.

Our experiment provides strong evidence that the performance distributions chosen

by participants need not be symmetric. Participants in the experiment react to changes

in the design of tournaments in the direction predicted by comparative statics of the

equilibrium play: (1) increasing the convexity of the prize schedule not only increases

participant’s risk-taking behavior in terms of dispersion but also shifts the skewness of

the distribution; and (2) adding more contestants into the contest induces participants

to choose riskier performance distributions that are more dispersed. Although con-

testants choose a more dispersed distribution when the tournament is scaled up, the

difference is not significant. One potential reason is that participants in the experiment

under-react to the prize schedule when it is non-linear, which reduces the treatment
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effect.

In reality, the most prevalent prize schedules are either convex or concave. For ex-

ample, in R&D contests, only the companywith the highest performance gets the prize;

in the annual evaluation within a company, only the lowest performing employee faces

a career crisis. Our study has important implications for real-world tournaments that

resemble the characteristics of a rank-order tournament in which the primary choice

variable is the level of risks to be taken. The design of these tournaments may in-

centivize contestants to take too much risk, potentially at the cost of the principals.

Principals could underestimate the probability of having low outcomes if they assume

that the performance distributions are always symmetric. Moreover, the skewness of

the distribution leads to a skewed wealth distribution, which is essential for the social

planner to consider when measuring the social welfare.



Chapter 4

Indicative bidding in auctions with costly entry

4.1 Introduction

In company takeovers, government procurement and auctions of natural resources (oil,

gas, timber, etc.), the exact value of the asset is complicated to estimate. Potential

bidders only have imperfect information about their valuation before they enter the

auction, but will learn their true values after they perform the due diligence process

which is very costly and non-refundable (Li and Zheng, 2009, 2012; Athey et al., 2011;

Roberts and Sweeting, 2013).

The considerable cost decreases bidders’ willingness to participate, which poten-

tially causes auction failure and hence lower expected revenue. This is especially a

problem for the formerly mentioned auctions where the number of potential bidders

is already scarce. To deal with this issue, auctioneers commonly use a non-binding

bidding stage to select only the “right” bidders for the actual auction (Bhattacharya

et al., 2014; Sweeting and Bhattacharya, 2015; Gentry et al., 2017). However, due to the

lack of symmetric increasing equilibrium, the indicative bidding mechanism cannot

ensure the selection is efficient (Ye, 2007).

In this paper, we investigate a ”simple” indicative bidding model that can improve

the selection efficiency comparedwith the conventional indicative biddingmechanism.

By comparing the ”simple” indicative bidding mechanism with an unrestricted auc-

tion, a restricted auction using the experimental method, we aim to achieve two goals:

(1) to see whether the indicative bidding mechanism we consider can generate higher

59
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expected revenue than the alternative mechanisms; and (2) to disentangle the partic-

ipation effect and the selection effect which cause the differences in expected revenue

under the three different mechanisms. 1 2

The ”simple” indicative bidding mechanism we consider was first studied by Quint

and Hendricks (2018). It begins with potential bidders indicating a discrete and non-

binding entry message (i.e., m = 0, 1, 2, ...) based on the imperfect signal they have

regarding the asset.3 Then the auctioneer shortlists two buyers with the highest entry

messages as entrants to the auction. Only the bidders who are selected for the auction

pay the cost of due diligence to investigate their true value and bid in the auction.

The rationale behind the indicative bidding mechanism is that when bidders’ infor-

mation rent after entry is relatively small compared with the entry cost, potential bid-

ders do not have incentives to lie about their values. A non-binding first stage bidding

is efficient in selecting the bidders with the highest values. The small information rent

condition is also satisfied when the information learnt after entry is highly correlated

among bidders. This feature of indicative biddingmakes it a perfect mechanism to con-

sider for timber auctions, company takeovers and government procurement. Recently,

a stream of empirical literature finds that in these auctions, the information learned

after entry is highly correlated among bidders (Li and Zheng, 2009; Aradillas-López

et al., 2013). Take company takeovers as an example. Upon entry, buyers conduct due

diligence to estimate the value of the target firm in advance of the bidding. The primary

purpose of due diligence is to examine the ”skeletons in the closet” to eliminate poten-

tial uncertainties, which usually affect all bidders in the same manner. Conventional

auction models and experiments do not capture the feature of correlated information

among bidders. Our paper seeks to provide some insight by comparing under this

correlated information structure.

Our central results provide answers to the intriguing question of how the deviation

from the independent private value model will shift bidders’ entry behavior, bidding
1In the unrestricted auction, participants first make their entry decision based on their initial signal.

All the bidders who choose to enter pay the entry cost to learn their true values and then bid in the
auction.

2In an auction with restricted entry, the auctioneer will randomly choose a certain number of bidders
to enter the auction from those who chose to enter. In this sense, auctions with restricted entry can be
viewed as having a certain number of seats which are filled based on a first-come-first-serve rule.

3In conventional indicative bidding, the first stage non-binding bids are continuous. For clarity, from
now on, when we mention indicative bidding, we refer to ”simple” indicative bidding.
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behavior, and hence the auctioneer’s choice among the three auctionmechanisms under

consideration. As we show in the theoretical analysis section (Section 4.3), indicative

bidding always gives weakly higher expected revenue than either the unrestricted or

restricted entry mechanisms through two effects. Firstly, the participation effect: re-

stricting the number of participants encourages bidders to enter because it reduces the

possibility of entering into a highly competitive auction. Secondly, indicative bidding

improves expected revenue by selecting the bidderswith higher valuations to enter. We

also show that the relevant performance of the two alternativemechanisms depends on

the magnitude of the entry cost. If the entry cost is low, simply restricting the number

of entrants results in inefficiency in the selection which harms the auction revenue. On

the contrary, when the entry cost is high, bidders with lower values automatically drop

out, restricting the number of entrants and thus limit the competition size, which leads

to higher revenue compared with the unrestricted auction.

Principally following the theoretical prediction, our experimental results show that

indicative bidding always outperforms the restricted auction in terms of both selection

efficiency and revenue generation. Although indicative bidding cannot ensure the same

level of selection efficiency as the unrestricted auction, it generates higher revenue than

the unrestricted auction when the entry cost is high. Even for relatively low entry cost,

the indicative biddingmechanismgenerates at least asmuch revenue as the unrestricted

auction. In terms of the point predictions, we observe significantly higher revenue in

indicative bidding with high entry cost compared with the equilibrium. This is mainly

driven by participants’ over-entry in the entry stage, which results in a lower-than-

equilibrium probability of auction failing. Interestingly, we find that in indicative bid-

ding where they have two entry messages to choose from, participants tend to overuse

the higher entry message, but under-use the lower entry message. Aside from our

main findings, we also observe mild over-bidding in all treatments, which aligns with

previous experimental literature.

The remainder of the paper proceeds as follows, Section 4.2 summarizes the pre-

vious literature, and Section 4.3 sets up the model and prediction. The experimental

design is presented in Section 4.4 and the experimental results are discussed in Section

4.5. Section 4.6 concludes.
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4.2 Literature review

The majority of previous studies on auctions with costly entry suggest that limiting the

number of bidders in the auction can improve the expected revenue (Milgrom, 2004),

regardless of the mechanism used to select the bidders. One branch of the literature

assumes that bidders have no information about their valuation towards the asset un-

der auction prior to entry: each bidder enters stochastically with certain probability

(Levin and Smith, 1994; Pevnitskaya et al., 2004; Bulow and Klemperer, 2009). In this

model, both buyer and seller do not posses pre-entry information on buyers’ valua-

tions, and selection can only be random. In contrast, another branch of the literature

assumes that bidders have perfect information before they enter the auction and only

bidderswith private values that are higher than the entry cut-offwill enter (Samuelson,

1985; Engelbrecht-Wiggans, 1987; McAfee andMcMillan, 1987; Menezes andMonteiro,

2000). In this case, the selection is automatic since bidders with higher values will self-

select into the auction.

A more recent stream of empirical research uses structural estimation or identifica-

tion methods to examine auctions with the entry process. They find that the pre-entry

information is neither perfect nor non-existent (Li and Zhang, 2010; Marmer et al.,

2013; Gentry and Li, 2014; Gentry and Stroup, 2019). Correspondingly, the selection

is neither random nor automatic. Gentry et al. (2017) theoretically characterize the

arbitrary selection model (AS model) which allows the pre-entry private signal to be

zero, imperfect or perfect. In the numerous imperfect pre-entry information cases, the

efficiency of selection (entry) mechanism determines the expected auction revenue. Ye

(2007) is the first to study selectionmechanisms under the imperfect pre-entry informa-

tion assumption. He finds that under the conventional indicative bidding mechanism4

symmetric increasing equilibrium does not exist, which implies the selection is not

efficient. However, with entry subsidy, entry right auction (ERA)5 can induce efficient

entry.

Several theoretical studies investigate other different entry (selection) mechanisms

4Under the conventional indicative bidding mechanism, the bidders submit non-binding continuous
first-round bids.

5In the entry right auction (ERA) potential bidders need to place a binding bid for the right to enter
the auction first, then bid for the asset in the actual auction
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under the AS model. Bhattacharya et al. (2014); Sweeting and Bhattacharya (2015)

examine how entry right auctions and sequential auctions6 perform relative to the stan-

dard two-stage auction (unrestricted auction) in terms of revenue generation. They

conclude that under the AS model when the pre-entry signal is informative, both entry

right auctions and sequential auctions generate higher expected revenue than the unre-

stricted auction. Gentry and Stroup (2019) compare negotiations with the unrestricted

auction. They find that less accurate pre-entry information weakens the link between

bidders’ valuation and pre-entry beliefs, which reduces the bargaining power of the

seller in negotiation and encourages entry in the auction. Other papers investigate auc-

tions with private value and additional common value, finding that lower the common

values are, the more selection can affect the auction revenue(Goeree and Offerman,

2002; Boone et al., 2009; Aycinena et al., 2014). These studies imply that under the AS

model, smaller post-entry information rent renders the selection (entry) process more

crucial in terms of generating higher auction revenue.

In the auctions that the current paper investigates (company takeovers or timber

auctions), bidders’ information learned after entry during due diligence is often highly

correlated (Li and Zheng, 2009; Aradillas-López et al., 2013). This suggests the bidders

cannot gain much rent relative to others after-entry, or in other words, the post-entry

information rent is small. Quint and Hendricks (2018) consider indicative bidding

under the assumption that the post-entry information is trivial relative to the entry cost.

They prove the existence of symmetric increasing entry equilibriumwhere participants

partition into ”types” according to their pre-entry signal. They also conclude that any

mechanism with an efficient selection mechanism can improve the expected revenue

comparedwith the unrestricted auction. We adopt theirmodel as the theoretical bench-

mark for our experimental study. Our paper also relate to the literature on ”cheap talk”

game (Crawford and Sobel (1982), Farrell and Gibbons (1989)). However, what need

to be mentioned is that in the model we examine, sellers commits to the auction rule

and the monotone selection rule, which eliminates the multiplicity of equilibrium in

the ”cheap talk” game.

The amount of experimental literature on auctions with a costly entry is limited.

Aycinena and Rentschler (2018) examine first price and ascending auctions and find

6In a sequential auction, bidders are approached in turns and bidwhile observing the bidding history.
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the former generate a higher revenue. The differences in revenue are mainly driven

by bidding after entry. Ivanova-Stenzel and Salmon (2008a,b, 2011) investigate the

scenario where the ascending auction and the first price auction compete for a pool

of bidders. They find bidders with low values choose the first-price auction more often

but bid more aggressively. The combined effect results in no difference in terms of

revenue under these two auction mechanisms. Palfrey and Pevnitskaya (2008) find

that in the first-price auction, only risk-averse bidders enter the auction if bidders have

no pre-entry information. Consequently, bidding and revenue are lower in the auction

with entry compared with the one-stage auction. These studies extended the standard

auction into a two-stage auction under either no or perfect pre-entry information as-

sumption where the selection process is not considered.

Our paper is mostly related to the experiments that study how the selection mech-

anism can improve the auctioneer’s revenue under the AS model. Kagel et al. (2008)

compare indicative bidding with the entry right auction. They find that the variance

of the first-round bid in the entry right auction is so large that it reduces the selection

efficiency. Consequently, indicative bidding gives similar results in terms of selection

efficiency while achieving higher revenue and lower bankruptcy. Boone et al. (2009)

assume there is one fully informed ”inside” bidder and use a non-binding first-stage

which only excludes the bidder with the lowest bid. They observe arbitrary bidding

in the non-binding stage, which lowers auction revenue compared with the standard

one-stage second-price auction.

The current paper differs from these studies in several major ways. Firstly, our

experiment is based on a generic model which mimics the information structure in

auctions where the value of the asset is complicated to evaluate. To the best of our

knowledge, our experiment is the first to incorporate the property of correlated private

values in an auction with costly entry. Although in the broad literature on winner’s

curse (Kagel and Levin (1986), Camerer (1987),Camerer andHogarth (1999)), bidders

are also assumed to have incomplete information (private signals) of the asset, the

valuation of the asset is assume to be a common value. Secondly, in addition to the

revenue comparison, we distinguish the different effect of participation and selection

in indicative bidding. Due to the lack of increasing equilibrium, previous studies do not

provide evidence for mechanisms through which indicative bidding generates higher
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revenues. Our study provides a possible explanation for the extensive use of indicative

bidding in practice. Thirdly, we share the dimension of revenue comparison under

different mechanisms with previous literature, but also add the dimension of variation

of entry cost, which enriches the experimental evidence for comparative analysis.

4.3 Theoretical background

4.3.1 The model

In a two-stage auction with costly entry, a set ofN ≥ 3 risk-neutral potential buyers bid

for an indivisible asset. The value of the asset vi to each buyer i ( i = 1, 2, ..., N) is the

sumof an initial signal si and an additional value t. The initial signal si is independently

and privately drawn for each potential bidder from the uniform distribution F (·) on [0,

1], whereas the additional value t is commonly drawn for all bidders from distribution

G(·). Both F (·) and G(·) are commonly known by all participants.

The auction proceeds as the following: in stage 1, after observing their private signal

si, potential bidders choose one entrymessage to be sent to the auctioneer. According to

the pre-committed selection mechanism, the auctioneer chooses among those who are

willing to enter and advance them to stage 2. All entrants pay an entry cost c to learn the

additional value t and consequently their full valuation (vi = si + t), and submit their

bids simultaneously afterwards.7 A second-price sealed-bid auction is used in stage 2.8

We focus on three mechanisms, which differ in the entry messages available in stage 1

and/or the selection process used to advance interested bidders:

Unrestricted (Unr) In the unrestricted-entry mechanism there are only two entry

messages (m = {0, 1}) available to the participants. Entry message m = 0 indicates

a preference to stay out and messagem = 1 indicates a preference to enter the auction.

The selection process is unrestricted, namely, all bidders who expressed interests in

entering are advanced to stage 2.

7We use “entrants” to refer to those who actually enter the auction and use it interchangeably with
“bidders who enter the auction stage”.

8We assume that bidders cannot observe others’ entry decisions or the actual number of bidderswhile
choosing their bids.
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Restricted (Res) The restricted entry mechanism is otherwise the same as the unre-

stricted entry mechanism, except that the maximum number of entrants is restricted to

2. When there are more than 2 participants who choose message “1”, the auctioneer

will randomly select two bidders from among those choosing “1”.

Indicative (Ind) In the indicative bidding mechanism, bidders have one additional

message to use. Entry message m = 0 still indicates staying out while both m = 1 and

m = 2 signal interest in entering the auction. Participants can choose messagem = 2 to

express their higher willingness to enter the auction compared to messagem = 1. This

third message gives them a higher priority of being selected when there are more than

2 participants choosing to enter the auction. The selection process works as follows: the

auctioneer first randomly selects up to two entrants from those who chose the higher

entry message (m = 2). If the number of bidders selected is less than 2, the auctioneer

then randomly chooses from those who sent the lower entry message (m = 1).

4.3.2 Equilibrium Analysis

The setup of our theoretical framework is adopted from Quint and Hendricks (2018),

who has proved that there is a unique symmetric equilibrium in all mechanisms under

which the bidders’ profit is monotonic in their initial signal si. When the additional

value t is perfectly correlated among all bidders, all three mechanisms we have de-

scribed above satisfy this condition.9 Therefore, the potential bidders should select their

entry message based on their initial signal si in equilibrium. In each mechanism, the

equilibrium characterization involves identifying cut-off point(s)which separate(s) the

participants into groups choosing different entrymessages. The following analysis only

presents the main results that are most relevant for our experimental design; interested

readers can refer to the original paper for the formal proof and technical details.

Unrestricted (Unr) : There exists a marginal bidder i (with an initial signal si equal to

9The existence of a symmetric equilibrium in partition strategies (i.e. when intervals of types map
to each message) requires that the information learned after entry is small relative to entry cost (i.e.,
the “small rent” condition in Quint and Hendricks (2018)), which is satisfied when the additional value
(t) learned after entry is highly correlated. We allow t to be perfectly correlated which guarantees this
equilibrium is unique.
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the entry cut-off α1) who is indifferent between entering or staying out and receiving 0

payoff. Above this cutoff, a potential bidder should always choose entry message “1”.

This equilibrium cutoff point αUnr
1 satisfies:

π(α1) = αN−1
1 (α1 + E(t)− c) +

N−1∑
k=1

pk · (−c) = 0, (4.1)

where pk = Ck
N−1(1 − α1)

kαN−1−k
1 . In a standard second-price sealed-bid auction, the

bidders have a (weakly) dominant strategy of bidding his own value vi. Upon entry,

a bidder is potentially faced with two scenarios: there is probability αN−1
1 that bidder

i is advanced with no other competitor, and his payoff will be α1 + E(t) − c, which

constitutes the first term in the equation; and there is probability pk that bidder i enters

with k ≥ 1 other bidder(s), and his payoffwill be−c (since his opponent(s) will always

outbid him as he is the marginal entrant), which is the second term in the equation.

Restricted (Res) : Under this mechanism, the maximum number of entrants is two.

Similarly, the equilibrium entry cut-off, αRes
1 , can be obtained by solving:

π(α1) = αN−1
1 (α1 + E(t)− c) +

N−1∑
k=1

pk · (−c) · 2

k + 1
= 0. (4.2)

The first item in this equation is the same as the first item in Equation 4.1, because

themarginal bidderwill have the same expected payoffwhen he enters alone. However,

when there are k other participants who choose m = 1, his payoff will still be −c upon

entering, but the probability of being selected into the auction is only 2
k+1

and hence the

second term in Equation 4.1 needs to be multiplied by it.

Indicative (Ind) : The equilibrium characterization under indmechanism involves the

identification of up to two cut-offs, α1 and α2, which divide the initial signal space [0, 1]

into three intervals ([0, α1], [α1, α2] and [α2, 1]). Corresponding to each interval, poten-

tial bidders will send message m = 0, m = 1 and m = 2, respectively. The equilibrium

cut-offs αInd
1 and αInd

2 can be solved by considering the indifference conditions for the

marginal bidderwith signal si = α1 (who should be indifferent between choosing entry

message “0” and “1”) and with signal si = α2 (who should be indifferent between
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choosing entry message “1” and “2”)10:

π(α1,m = 1) = π(α1,m = 0) = 0 (4.3)

π(α2,m = 1) = π(α2,m = 2) (4.4)

Note that when the entry cost c is high enough, the simultaneous equations 4.3 and

4.4 do not have a solution. Potential bidders only want to send the message “2” if they

still want to enter the auctionwhen they know they are facing competition from another

entrant. When the entry cost is relatively high, the entry cut-off α1 moves closer to the

upper bound of the signal space (i.e., 1), such that all bidders who enter the auction

have similar values. Under this mechanism, even the bidder with the highest signal

si = 1 does not profit from sending message “2”, because the valuation of another

entrant is likely to be too close for the bidder’s profit to cover the entry cost. The entry

cost c must satisfy the following equation to ensure that m = 2 will be chosen:

π(si = 1,m = 2) > π(si = 1,m = 1) (4.5)

When this condition is violated, the indicative-bidding mechanism will degenerate to

the restricted-entry mechanism. With this result in mind, we design an experiment

with both a low-cost and high-cost condition under each mechanism.

4.4 Experimental design and prediction

4.4.1 Design and implementation

Following the theoretical framework, our experiment has a 3 × 2 hybrid design. We

vary the entry/selection process between subjects, which we denote as treatments T ∈
{Unr,Res, Ind}, and change the entry cost within subjects (i.e, low-cost and high-cost

conditions). Every treatment contains 20 rounds of the two-stage auctionwith no carry-

over value. The entry cost is set at c = 5 in rounds 1-10 and at c = 25 in rounds 11-20.

The total number of potential bidders is fixed at five (N = 5). The participants are

randomly assigned to groups of five in round 1 and stay with each other for ten rounds
10For the specific equations, see appendix C.3.
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and are randomly re-matched again in round 11 (when the cost condition changes) and

stay in the same group for the second 10 rounds.

In each round, the computer randomly and independently draws an integer from

the uniform distribution of [0,100] for each participant as their initial signal si. Having

observed their private signal, the participants choose an entry message, after which

selected entrants are advanced to the second stage according the treatment’s selection

process. All the entrants then pay the entry cost and learn the additional value twhich

is randomly drawn for each group. This additional value follows a discrete distribution

with probabilities of 25%, 50% and 25% of being 0, 100 and 200, respectively.11 After

learning the additional value, the second-price sealed-bid auction is conducted. At the

bidding stage, entrants do not know the number of other entrants they are bidding

against. When there is only one entrant, that entrant always wins the object and pays

zero (i.e, no reserve price).

At the end of each round, all participants are provided with group-level feedback,

which includes each participant’s initial signal, entry decisions, (selected) entrants’

bids, and each member’s profits. These information is also recorded in a history table

and displayed to them in every round after round 1. After participants finish all 20

rounds, the computer then randomly draws one round each from the low-cost and high-

cost condition to pay them.12

The experiment is programmed in oTree (Chen et al., 2016) and was ran in Novem-

ber 2019. We recruited 360 participants campus-wide at Zhejiang Gongshang Univer-

sity, China and conducted four sessions per treatment, with thirty participants in each

session.13 Sessions lasted approximately 1.5 hours, and the average payment was 75

RMB, including a show-up fee of 30 RMB.

11See Appendix C.3 for details about how this was implemented in the experiment.
12To cover the entry cost, participants are given 30 experimental currency (i.e., EC) as their initial

endowment. Hence, the final payment also includes the (remaining) endowment in those two rounds
selected for payment. Their earnings from the payment rounds are converted to RMB using an exchange
rate of 1 EC = 1.5 RMB.

13To help the participants understand the experimental procedure, at the beginning of each session, a
video that summarizes the experimental instructions was played after they read the printed instructions.
Please see Appendix C.3 for the experimental instructions and relevant screenshots. Participants were
also given control questions wihch they have to answer all correctly after before they entered the main
part of the experiment.
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4.4.2 Predictions

For each treatment, the equilibrium predictions for the cut-offs, αT = (αT
1 , α

T
2 ), and the

resulting expected auction revenue, RT , in each cost condition are given in Table 4.1.14

Using theUnr treatment as a benchmark, we break down the revenues differences in the

Res and Ind treatments into the differences attributable to the willingness to participate

in the auction (participation effect) and those stemming from the mechanism’s ability to

select the participants with the highest value (selection effect). To do this, we consider

the counterfactual scenarioswhere bidders sendmessages using cutoffs from treatment

T , but are selected using the mechanism in treatment T̃ . We denote the revenue of

these counterfactual scenarios as Rev(αT , T̃ ).15 We then define the participation effect

of treatment T as PET = Rev(αT , Unr) − Rev(αUnr, Unr) and the selection effect as

SET = Rev(αT , T )−Rev(αT , Unr).16 The summation of these two effects is the expected

revenue difference between treatment T and the Unr treatment.

Table 4.1: Theoretical Predictions
Low-cost (c=5) High-cost(c=25)

Unr Res Ind Unr Res Ind

α1 43.23 38.74 35.50 62.62 59.28 59.28
α2 77.59 -
Revenue 151.39 146.79 155.77 109.89 116.73 116.73
Rev(αT , Unr) 156.536 159.39 119.38 119.38
participation effect 5.15 8.00 9.49 9.49
selection effect -9.75 -3.62 -2.65 -2.65

As shown in Table 4.1, the expected revenue in Ind is higher than that of the Unr

treatment in both the low-cost and high-cost conditions, while the relative revenue be-

tween the Res and Unr treatment depends on the entry cost.

14The expected revenue in equilibrium can be calculated once the entry threshold(s) are pinned down.
Details can be found in the Appendix C.2.

15For example, Rev(αInd, Unr) is calculated by assuming bidders use the equilibrium cut-offs from
Ind, but all bidders who choose m = 1 or m = 2 enter to the bidding stage and the revenue is equal to
the second highest bid.

16Note that Rev(αT , T ) = RT .
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Prediction 1 (Revenue ranking) The relative revenue ranking of the three treatments de-

pends on the entry-cost condition. Specifically: when entry cost is low, RInd > RUnr > RRes;

when entry cost is high, RInd = RRes > RUnr.

As is shown in Table 4.1, the relative advantage of the Ind treatment in terms of

revenue is due to a larger positive participation effect relative to the negative selection

effect (8 vs -3.62 in the low-cost condition and 9.46 vs -2.65 in the high-cost condition.

On the contrary, the Res treatment performs the worst among all three mechanisms

when the entry cost is low, which is driven by a more negative selection effect (-9.75 vs

5.15). When the entry message m = 2 is not required, the Res treatment as the same

participation and selection effect as the Ind treatment.

To illustrate the participation effect intuitively, we can use the examples depicted

by Figures 4.1a and 4.1b. The real line indicates the signal space U [0, 100]. The dots

represent the signals of potential entrants.

Figure 4.1: Entry Thresholds and Selection

(a) Low entry cost (b) High entry cost

In the treatment with unrestricted entry, uncertainty about the competition in the

auction stage lowers the willingness to pay the entry cost to enter the auction. The

restricted-entry mechanism fixes the maximum number of entrants to two which en-

sures that an entrant faces at most one competitor in the auction stage. As a con-

sequence, an entrant is more likely to be the highest-value bidder in the restricted-

entry treatment than in the unrestricted treatment. This follows because interested

bidders are less likely to be selected when the auction is more competitive (i.e. more

participants are willing to enter). This encourages potential bidders to participate and

lowers the entry cutoff from αUnR
1 to αRes

1 .
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Indicative bidding (Ind) pushes the cutoff point further to the left because bidders

with lower values (for instance, si slightly below αRes
1 ) have the option to choose a

message with lower entry priority. Using the message m = 1 decreases even further

the chance the bidder is selected into an auction against a higher-value bidder who

is more likely to use m = 2. Hence, there is a larger positive participation effect in

the Ind treatment compared with the Res treatment when the bidders with the highest

values are willing to choose m = 2. When the entry cost is too high, as in the high-cost

treatment, all bidders prefer this safer message, and hence no bidders choose m = 2.

Under this condition, the Res and Ind treatments are equivalent and therefore, result in

the same positive participation effect.

Prediction 2 (Participation effect) Under both cost conditions, both Res or Ind treatments

have positive participation effects. When entry cost is low, PEInd > PERes > 0; when the

entry cost is high, PEInd = PERes > 0.

In the unrestricted-entry treatment, no bidder will be excluded once they choose to

participate. In both the Ind and Res treatments, stochastic selection processes cannot

ensure that the two highest value bidders that are willing to participate are actually

selected into the auction (see Figures 4.1a and 4.1b). In the Ind treatment under the

low-cost condition, bidders with high values will choose the higher entry message in

the low-cost mechanism. This prioritized selection process will increase the chance of

selecting the bidders with the highest value over the completely random process of Res.

In the high-cost condition, all participating bidders will selectm = 1 in both Ind and Res

leading to a random selection process in both treatments.

Prediction 3 (Selection effect) Under both cost conditions, both Res and Ind treatments have

negative selection effects. When the entry cost is low, SERes < SEInd < 0; when the entry cost

is high, SERes = SEInd < 0.
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4.5 Experimental Results

In this section, we first compare the auction revenues across treatments and examine

how revenue rankings are affected by the participation effect and selection effect, respec-

tively in Section 4.5.1. Then we report the individual bidding and entry choices in

contrast to the equilibrium predictions, and how each has driven the discrepancies

between the observed and predicted revenues in each treatment in Section 4.5.2. Lastly,

we investigate the bidder’s profit and social welfare in Section 4.5.3.

4.5.1 Auction revenue: participation and selection effects

Table 4.2 presents panel-regression results on auction revenue under each cost condi-

tion, controlling for the group-level random effect. In all regressions, theUnr treatment

is set as the baseline group. In model 1, each of the Res and Ind treatments is compared

to the Unr treatment, while the second-highest value of each group and the time trend

(i.e., round number) are also added as control variables in model 2.17 When the entry

cost is low, the revenue generated in the Res treatment is around 13.90 units lower than

that of theUnr treatment, whereas the revenue in the Ind treatment is also slightly lower

than that of the Unr treatment, but the difference is not significant (see the second

and third row in Table 4.2).18 Under the high-cost condition, the average revenue in

the Ind treatment is 25.37 units higher than that of the Unr treatment. However, the

same (predicted) revenue advantage of the Res treatment in high-cost condition is not

observed in our data. These results provide partial support for Hypothesis 1.

Result 1 When the entry cost is low, the Ind and Unr treatments generate similar auction

revenue and they both generate significantly higher revenue than the Res treatment; When entry

cost is high, the average revenue in the Ind treatment is significantly higher than that of the other

two treatments.

17When estimates are reported, we will focus on model 2 only given that they are similar across the
two models.

18The revenue in theRes treatment is also significantly lower than that of the Ind treatment (p−value =
0.046)
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Table 4.2: Panel regressions on auction revenue
Model 1 Model 2

low-cost highcost low-cost highcost

Constant (Unr) 156.3*** 107.1*** -10.28 -31.57***
(5.74) (7.44) (7.21) (10.53)

Res -15.51* -2.12 -13.90*** 5.65
(8.12) (10.52) (5.31) (8.85)

Ind -7.22 24.79** -3.31 25.37***
(8.12) (10.52) (5.31) (8.84)

V2nd 0.94*** 0.84***
(0.03) (0.03)

Round 1.46** 0.24
(0.71) (1.02)

# of Obs. 720 720 720 720
# of Groups 72 72 72 72

Note: Both Model 1 and Model 2 use panel regressions, while
model 2 further controls for the second-highest value in the
group (V2nd) and the time trend ( i.e.Round). *** Significant
at the 1% level, ** at the 5% level, and * at the 10% level.

Table 4.3: Participation effect and selection effect

Low-cost (c=5) high-cost (c=25)

Res Ind Res Ind

Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred.

Participation 2.85* 6.96 7.99 9.14 9.88 11.06 27.1*** 6.28

(43.67) (34.99) (57.80) (40.42) (80.38) (43.49) (91.43) (32.14)

Selection -17.39*** -10.28 -13.73*** -4.83 -7.64*** -2.04 -7.28*** -2.15

(20.92) (9.87) (19.10) (6.23) (17.04) (4.33) (14.31) (4.60)

Note: Columns labeled ”Obs.” present the observed participation effect and selection effect. Columns ”Pred.”
present the predicted effects, using the actual values drawn in the experiment and assumingparticipants all
follow the equilibrium entry and bidding behaviors. Numbers in the round parentheses are the standard
deviations. Asterisks next to the observed effect stands for the significance level of the t-test (clustered
on the group level) comparing the observed effect to the equilibrium prediction. *** Significant at the 1%
level, ** at the 5% level, and * at the 10% level.

In theory, the cross-treatment revenue comparisons should be purely driven by the

entry outcomes since entrants should simply bid their valuations in stage 2. The entry
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outcomes are co-products of the entry cutoffs shifted across treatments and the selec-

tion process. To study how entry outcomes affect the observed revenue differences

across treatments and their deviations from the predicted rankings, we calculate both

the predicted and observed participation and selection effects (as defined in Section

4.4), given the signals drawn for each treatment in the experiment.19 Specifically, the

predicted effects in 4.3 use equilibrium cutoffs to determine how drawn signals should

map to entry choices while the observed effects use the actual entry messages chosen

by the participants.20 We use equilibrium bidding strategies in these calculations to

segregate the impact of potential over-/under-bidding behavior on auction revenue.21

Table 4.3 presents the summary statistics of these effects and p-values comparing them

to corresponding equilibrium predictions. Panel regressions on across treatment com-

parisons are presented in Table 4.4

Table 4.4: Panel regressions: participation effect and selection effect
Participation effect Selection effect

Model 1 Model 2 Model 1 Model 2

low-cost highcost low-cost highcost lowhcost highcost low-cost highcost

Res (Cons.) 2.85 9.88 -6.28 7.25 -17.39*** -7.64*** -12.34*** -5.09**
(3.86) (7.05) (7.87) (13.09) (1.74) (1.29) (3.13) (2.37)

Ind 5.13 17.22* 5.23 17.01* 3.65 0.36 3.55 0.58
(5.46) (9.97) (5.47) (10.05) (2.46) (1.82) (2.48) (1.81)

V2nd 0.04 0.02 -0.04*** -0.03***
(0.03) (0.05) (0.01) (0.01)

Round 0.43 -0.21 0.37 0.26
(0.80) (1.33) (0.30) (0.24)

Obs. 480 480 480 480 480 480 480 480
# of Groups 48 48 48 48 48 48 48 48

Note: Model 1 and Model 2 are both panel regressions at the group level, while model 2 further controls
for the second-highest value in the group (v2nd) and the time trend variable ”Round”. Standard errors are
in the parenthesis. *** Significant at the 1% level, ** at the 5% level, and * at the 10% level.

As shown in Table 4.3, the average participation effect is positive in all treatment-cost

conditions. In the Ind treatment and high-cost condition the observed effect is much
19Predicted effects given in Table 4.3 differ from those in Table 4.1 which are calculated using the prior

distribution of signals.
20Note that in calculating the observed participation effect, we do not observe the counterfactual entry

choices under the unrestricted treatment for the signals drawn in the other treatments. Therefore, in
order to calculate R(αUnr, Unr) we use the equilibrium cutoffs in Unr and the drawn values from the
relevant treatment.

21We will examine individual bidding behavior and it impact on revenue in the next subsection.
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higher than its prediction (27.1 vs 6.28, p = 0.004). All other observed effects are all

slightly smaller than the predicted values, though the differences are not statistically

significant. Using panel regressions to assess the treatment difference (see Table 4.4),

we find that the participation effect is generally higher in Ind (5.23 in low-cost condi-

tion and 17.01 in high-cost condition), though the difference compared to Res is only

marginally significant under the high-cost condition. When we compare the observed

effects to zero, they are generally not significant in the Res treatment (p = 0.460 in low-

cost and p = 0.161 in high-cost), whereas we can reject that the participation effects are

equal to zero in the Ind treatment (p = 0.03 in low-cost and p < 0.01 in high-cost ).22

Result 2 Although the average participation effects are positive in both the Res and Ind treat-

ments under both conditions, the effects are only significantly different from zero in the Ind

treatment. The effect in Ind is marginally larger than the effect in Res in the high-cost condition,

but not in the low-cost condition.

Beside the participation effects, the random selection occurring in the Res and Ind

treatments (when more than two interested bidders choosing to enter) are predicted

to have negative selection effects on auction revenue irrespective of whether the entry

cost is low or high. As shown in Table 4.4, the selection effects are all negative and

significantly different from zero. Furthermore, the negative selection effects are all sig-

nificantly bigger than predicted under all treatment-cost conditions (see Table 4.3).

While the theory predicts that the Ind treatment should have a less negative selection

effect when the cost is low, we do not observe significant treatment difference in terms

of the selection effect under either cost condition (see the right panel of Table 4.4).

When entry cost is high, message “2” is predicted to be not useful and hence the two

treatments should have the same level of selection inefficiency. While this is in line

with observed differences in the selection effect, there is still widespread use of the

message “2” in the Ind treatment. These results indicates that participants used the

entry messages differently than predicted, which we investigate in Section 4.5.2.

Result 3 Following the theory, selection effects are always negative but the size of effect is always

bigger than what is predicted by the equilibrium. Selection inefficiency impacts the Res and Ind
22These two p-values are obtained from theWald tests (based on the panel regression results in model

1), comparing the sum of the two estimates for Res and Ind against zero.
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treatments similarly under both the low-cost and high-cost conditions.

In summary, we find that in the high-cost condition the revenue in the Ind treatment

is much higher than the other treatments which is largely driven by the surprisingly

high participation effect; in the low-cost condition the advantage of the Ind treatment com-

pared to theUnr treatment is dampened by both the smaller (positive) participation effect

and the larger (negative) selection effect, such that the predicted treatment difference

between Ind andUnr is not observed. Unfortunately the Res treatment, which could be

a simpler mechanism used under the high-cost condition to maximize auction revenue,

lowers revenue in both cost conditions compared to the Ind treatment.

4.5.2 Comparisons to equilibrium predictions

After comparing auction revenue across treatments and identifying the impact of the

participation and selection effects, we now investigate individual bidding and entry choices.

We compare these choices to equilibrium predictions and use them to further under-

stand the observed cross-treatment revenue comparisons.

Bidding Behavior

Theory predicts that in a second-price auction, participants’ bids should equal to their

value for the asset. Figure 4.2 showsparticipants’ bids (on the vertical axis) against their

values (on the horizontal axis). The majority of the bids are very close to the drawn

values (i.e. near the 45 degree line). Among the bids which deviate from this, there

appears to be more overbidding than underbidding in all treatments, a phenomenon

which has been identified previously in the experimental literature (see Kagel et al.

(1987)). Comparing the high-cost to low-cost conditions in the same treatment, Fig-

ure 4.2 shows that while both the number of overbids and underbids decreases, the

number of underbids decreases more obviously, further suggesting that over-bidding

is a rather persistent phenomenon in these second-price auctions.23

We calculate the bid-value ratio (B-V ratio), which is the observed bid divided by

the valuation v, for each bid. A B-V ratio greater than 1 indicates overbidding and
23Because the high-cost rounds follow the low-cost rounds, subjects have had more time to learn about

bidding in the second price auction in those treatments.
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a B-V ratio lower than 1 indicates underbidding. To compare the bidding behavior

across treatments, we regress B-V ratio on treatment dummy for low-cost and high-cost

conditions separately using the multi-level mixed effect model. Table 4.5 presents the

regression results. When entry cost is low, participants bid 15%, 22% and 35% more

than their valuation in Unr, Res, and Ind treatments, respectively (p = 0.042, p = 0.012

and p < 0.01), whereas these numbers become 17%, 29% and 29% under the high cost

condition. Comparing the overbidding across treatment for a given cost condition, the

differences are not statistically significant at 5% of significance level.

Result 4 In line with previous experimental evidence on second-price auctions, we also find

significant and consistent overbidding in all treatments. However, the over-bidding behavior is

not significantly different across treatments.

Figure 4.2: Bidding behavior

Entry behavior

To compare the observed entry choices to their equilibrium predictions, we break down

participants’ entry choices intoNash entry, over-entry andunder-entry categories. Nash

entry refers to the entry choices that are consistent with the equilibrium predictions

given the signals. Over (under) entry refers to the entry choices wherein a higher
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Table 4.5: Mixed-effect regression of bid-value ratio
low-cost Highcost

Coef Wald test Coef Wald test

Unr (Cons.) 1.15*** p = 0.042 1.17*** p < 0.01

(0.08) (0.06)
Res 0.07 p = 0.012 0.12 p < 0.01

(0.11) (0.09)
Ind 0.20* p < 0.01 0.12 p < 0.01

(0.11) (0.09)
σ2
group 0.08 0.02

(0.03) (0.02)
σ2
individual 0 0.07

(0) (0.03)
# of Obs. 1,581 1,252
# of Groups 72 72

Note: Mixed-effect regressions control for both group and
individual levels of random effects. Wald test are used to
compare the observed B-V ratio with 1).24

(lower) entry message was chosen compared to the equilibrium prediction for that

signal.

Figure 4.3: Entry choices compared to equilibrium predictions

(a) Low cost (b) High cost

Note: “NE” represents theNash entry choice, “over” represents over entry and “under” represents under
entry. The first number in the parenthesis is the actual entry message chosen by the participants, while
the second number in the parenthesis is the entry message predicted by equilibrium.

As the stacked-bar graphs show in Figure 4.3a, the Nash entry, represented by the

dark-green solid shares on each bar, accounts for 77.58% and 76.42% of all entry choices

in theUnr and Res treatments respectively, under low-cost condition. In contrast, in Ind,

only 52.08% of the entry choices are in line with the predictions. For the entry choices

that deviate from the equilibrium, the percentage of under-entry choice and over-entry
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choice is balanced within each treatment in both the Unr and Res treatments(11% ver-

sus 11.42% in Unr and 11.75% versus 11.83% in Res).25 This leads to the remarkably

close-to-equilibrium distributions of the number of participants who chose to enter in

these treatments (see Figure 4.4). On the contrary, in the Ind treatment, there is only

9.25% under entry, but 38.67% over entry, which shifts the distribution of the number

of participants who chose to enter to the right in Figure 4.4. The majority of the over-

entry choices in the Ind treatment is driven by the misuse ofm = 2whenm = 1 should

be chosen (accounting for 24.58% of the total entry choices). There are around 15%

of entries (including instances when either m = 2 or m = 1 was chosen) that are not

predicted by the theory.

Figure 4.4: Frequency of the average number of participants chose to enter

For the high-cost condition, similar results as the low-cost condition hold for the

Unr and Res treatments (see Figures 4.3b and 4.4). From Figure 4.4 we can observe

that the over-entry allows the Ind treatment to have much fewer incidences of 0 or

25See the detailed summary statistics in Appendix C. We define over-entry (under-entry) as
participants’ entry choices that are higher (lower) thanwhat they should have chosen in the equilibrium.
Over-entry includes participants choosing m = 1 or m = 2 when they should have chosen m = 0 or
m = 1, respectively. Under-entry includes participants choosingm = 0 orm = 1when they should have
chosenm = 1 or m = 2, respectively.
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1 interested bidders in the auction compared with equilibrium (19.58% vs 37.09%)

in high-cost condition, whereas the chance of 0 or 1 interested bidders in the auction

in the low-cost condition is similar with the prediction (5.42% vs 7.08%). Whenever

the auction has less than two bidders who chose to enter, the auction revenue is zero

(given a second-price auctionwith no reserve price). This helps explains the larger than

predicted participation effect observed in Ind treatment under the high-cost condition.

To further compare the entry behavior across treatments, we also estimate the prob-

ability of each message being chosen given the initial signal si (see Table C.2 in Ap-

pendix ??). Similar to the observations in Figure 4.4, regardless of whether the entry

cost is high or low, participants in the Ind treatment always have a significantly higher

probability of choosing to enter (including both m = 1 and m = 2) than those in the

Res treatment (p < 0.01, t-test) given a si, while participants are more likely to enter in

Res compared with their counterpart in Unr (p < 0.01, t-test). Table C.2 further shows

howoftenmessage “2” is overused in the Ind treatment, which togetherwith over-entry,

explain the higher than predicted negative selection effect observed in the experiment.

Result 5 Except a small portion of mistakes with a balanced account of both over-entry and

under-entry, almost 80% of the entry choices followed equilibrium predictions in both the Res

and Unr treatments. However, only around 50% of the entry choices followed equilibrium

prediction in the Ind treatment. The deviations from the equilibrium behavior are largely driven

by over-entry and the misuse of message “2”, which lead to both the higher than expected par-

ticipation effect and more selection inefficiency observed in the Ind treatment under high-cost

condition.

Auction revenue compared to equilibrium

Having observed deviations of both the participants’ bidding and entry behaviour, we

put these together to consider the impact on deviations frompredicted auction revenue.

Figure 4.5 compares the average revenue in each treatment to its equilibrium prediction

using the realised values from the experiment. In almost all treatments except for Ind

with high entry cost, the observed revenue is very close to predictions.26 When the
26Note that although the observed average revenue is remarkably close to the prediction based on

the realized valuations, the revenue ranking only partially follows the equilibrium prediction. The main
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entry cost is low, the observed average revenue compared with the prediction is 156.25

versus 153.9 in the Unr treatment, 140.75 versus 145.69 in the Res treatment and 149.04

versus 150.02 in the Ind treatment. None of them are statistically different from the

prediction (p > 0.1 for all three treatments, Wald-test). When entry cost is high, the

discrepancies between the observed and predicted revenue in Unr and Res treatments

are still not significant (p > 0.1 for both treatments, Wald-test), while the observed

average revenue is significantly higher than the prediction in the Ind treatment (131.89

versus 106.84, p < 0.01, Wald-test).

Figure 4.5: Average revenue

Connecting the dots we lined up in the former analysis, the (higher than predicted)

revenue advantage in Ind treatment with high entry cost is mainly driven by partici-

pants’ entry outcomes, more specifically, the prominent participation effect. By having

significantly fewer auctions with 0 or 1 bidders, the indicative bidding avoid ending

up with auction failure and zero auction revenue. Consequently, it generated higher

auction revenue comparedwith othermechanisms and comparedwith the equilibrium.

reason is that the random draws of values are slightly different across treatment. In the previous analysis
on revenue ranking, we account for this problem by controlling for the second highest value in each
group.
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4.5.3 Bidders’ profit and social welfare

To fully assess the effectiveness of these three mechanisms, we also compare the bid-

ders’ profit and social welfare (total profit of buyers and sellers) across treatments. We

measure the bidders’ profit using the sum of the profit of all five potential bidders in

each group for each decision round, and further calculate the social welfare as the sum

of bidders’ profit and the auction revenue.

Table 4.6: Bidders’ profit and social welfare: Panel regression
total bidders’ profit social welfare

Model 1 Model 2 Model 1 Model 2
lowcost highcost lowcost highcost lowcost highcost lowcost highcost

Constant (Unr) 0.96 7.03 -13.36*** -26.90*** 157.2*** 114.1*** -27.12*** -59.02***
(3.76) (7.07) (4.37) (8.21) (5.43) (5.51) (3.16) (4.18)

Res 15.81*** 4.275 15.84*** 6.38 0.30 2.15 2.04 12.05***
(5.32) (10.00) (5.19) (9.81) (7.68) (7.79) (2.62) (3.79)

Ind 10.30* -15.31 8.623* -12.92 3.08 9.48 5.40** 11.39***
(5.33) (10.00) (5.20) (9.81) (7.68) (7.79) (2.62) (3.78)

v1 − v2 0.91*** 1.81***
(0.15) (0.23)

v1 1.00*** 0.95***
(0.01) (0.02)

Obs. 720 720 720 720 720 720 720 720
# of groups 72 72 72 72 72 72 72 72

Note: Model 1 and Model 2 are both panel regressions, while model 2 further controls for the difference of the
highest value and the second-highest value in the group (v1−v2)in bidders’ profit and controls for the highest
value in the group (v1) in social welfare. Standard errors are in the parenthesis. *** Significant at the 1% level,
** at the 5% level, and * at the 10% level.

Table 4.6 presents the panel regressions of bidders’ profit and social welfare on a

treatment dummy for each cost condition. Bidders in Ind and Res earn respectively

10.42 units and 15.86 units more profit compared to their counterparts inUnr treatment

when the entry cost is low (p = 0.05 and p = 0.003, respectively, Wald test). There

is no significant difference between Ind and Res treatments (p = 0.31, Wald test).27

When entry cost is high, the bidders’ profit is not significantly different in Res and Unr

treatments (p = 0.63,Wald test), whereas the bidders’ profit is significantly lower in Ind

27We discus the results based on Model 2, where the variation of random draw is controlled.
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treatment than that in Res treatment (p = 0.044,Wald test). Due to the overbidding and

mistakes participants made in entry choices in the experiment, the observed bidders’

profit in Unr and Ind treatments are significantly lower than predicted (See the predic-

tions in the Appendix Table ??) regardless of the entry cost.28 Although a similar level

of overbidding and entry mistakes is observed in both Res and Unr, the bidders’ profit

follows the prediction well in Res (p = 0.22 and p = 0.43, respectively, t-test). This

is because there is no restriction on the number of entrants in Unr. Any bidder who

chooses to enter will pay the entry cost, whereas the maximum number of bidders that

can pay the entry cost is limited to two in the Res treatment.

In terms of the social welfare, the Ind treatment generates significantly higher social

welfare (compared to Unr treatment) regardless of the entry cost (see the right panel

of Table 4.6). The advantage in auction revenue in the Ind is fully offset by the drop in

the bidders’ profit in both cost conditions such that it is on a par with the Res treatment

on social welfare (p-values are 0.199 and 0.862 respectively)

Result 6 The social welfare is higher in Ind treatment than in the Unr treatment, and there is

no significant difference between the Ind and Res treatments, under both cost conditions.

4.6 Conclusion

In this paper, we use the experimental method to investigate a ”simple” indicative bid-

ding mechanism which theory predicts should generate more revenue than a standard

two-stage auction when the information rent after entry is small. In the selling of com-

plex assets, the bidders possess only a part of the information required for valuation.

They have to pay the significant entry cost to complete the rest of their valuation. Most

information obtained after entry has a similar impact on the bidders, which means the

post-information rent is small. The seller’s and buyers’ interests are aligned under this

condition. Sellers only want the bidders with the highest value to enter, and only those

buyers who have high enough pre-entry value can profit from entering.

In theory, under the assumption that the post-entry information is highly correlated
28p = 0.026 and p = 0.003 inUnr, p = 0.017 and p = 0.026 in Ind under low-cost and high-cost condition,

respectively, t-test
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among bidders, indicative bidding should perform better (weakly better) than unre-

stricted (restricted) auctions in terms of revenue generation. We are interested to see

whether this can be proven by experimental evidence. More importantly, we seek to

examine how participants behave in terms of entry, bidding, and how their behavior

affects the auction revenue.

The primary result of our experiment is on auction revenue. We find that indicative

bidding does have an advantage among the three mechanisms we considered. Indica-

tive bidding performs significantly better than the restricted auction and as good as

the unrestricted auction when the entry cost is low. In both indicative bidding and the

restricted auction, the participation effect has a slightly positive impact on revenue as

predicted. However, due to the non-equilibrium entry choices participants made, the

negative effect of inefficient in selection is much higher than it should be in theory.

Consequently, the indicative bidding treatment fails to outperform the unrestricted

auction. When the entry cost is high, the participation effect still has a marginal impact

on revenue in the restricted auction. In contrast, in indicative bidding, due to the signif-

icantly fewer auctions with 0 or 1 bidders, the participation effect has a strong positive

impact on revenue. At the same time, higher entry cost increases the entry threshold.

As bidders with lower values drop out, the negative selection effect is smaller. The

overall impact of these two factors is that indicative bidding outperforms both the other

two mechanisms when the entry cost is high.

In addition to the revenue results, we also find that participants’ entry behaviour

mostly follows the prediction. We only see very mild over-entry in the indicative bid-

ding treatmentwith both high and low entry cost and in the restricted auction treatment

with the high entry cost. As for selection efficiency, the unrestricted treatments is the

most efficient, while indicative bidding and the restricted auction treatment have no

significant difference in selection. In line with the previous experiment on second-price

auction, we find a similar degree of overbidding across all treatments. Last but not least,

we observe the misuse of entry message 1 and 2 observed in the indicative bidding

treatment. This phenomenon is not abnormal since the entry choice in the indicative

bidding treatment is more demanding compared with the other two treatments. How-

ever, it raises questions for future research regarding factors that cause these mistakes

and how the auctioneers can improve the mechanism or nudge the bidders to make the



86 CHAPTER 4. INDICATIVE BIDDING IN AUCTIONS WITH COSTLY ENTRY

right choices.

The current study contributes on the experimental literature of auctions with costly

entry. By assuming correlated values among bidders, our experiment takes the liter-

ature a step closer mimicking the auction of complex assets (which usually involves

millions of dollar). Even the slightest difference shown in the experiment could mean

massive profit changes for the auctioneer. Our experiment provides some supportive

evidence for the use of indicative bidding. In reality, the process of information learning

after entry usually reveals important and non-public information about the asset. Auc-

tioneersmaywish to limit the number of entrants, even at the cost of selection efficiency.

The results in this paper show that indicative bidding is one potential mechanism they

can consider.



Chapter 5

General Conclusions

Contests and auctions play an essential role in modern economic activities. This thesis

is part of the growing literature that studies how the design of contests and auctions

affect agents’ behavior in these activities. From the perspective of the contest or auc-

tion organizer, this thesis conducted three laboratory experiments to investigate: (1)

how the information disclosure policy can affect contestants’ effort elicited in a Tullock

contest; (2) how contestants’ risk-taking behavior is affected by the prize allocation and

the size of the tournament; and (3) which two-stage auction mechanism can select and

achieve the highest revenue for the auctioneer.

Chapter 2 investigated the design of a Tullock contest with endogenous entry. The

model developed in this chapter indicates that whether to conceal or reveal the number

of actual contestants in the contest depends on the curvature of the cost function. A

2 by 3 laboratory experiment which varies the disclosure policy (fully disclosed or

fully concealed) on one dimension and the cost function (concave, linear or convex) on

another dimension was used to test the predictions of the model. The main findings in

the experiment are aligned with the theory. When the cost of effort function is concave

(convex), the total effort invested by the contestants is higher when the number of

actual entrants is disclosed (concealed) to the contestants. The experimental results

also support the prediction that the disclosure policy does not affect contestants’ entry

probability. In this experiment, we also also find that overbidding, which is commonly

observed in the contest literature, can be largely explained by over-entry in the first

stage. This study contributes to the literature on Tullock contests with costly entry both

87
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theoretically and experimentally. Contests with an entry-stage extend contestants’ de-

cision to two dimensions. There is only a handful of studies examining the relationship

between contest design and contestants’ behavior under this framework. Chapter 2

provides another structural factor within the contest, namely the disclosure policy, that

the organizer can utilize to regulate contestants’ behavior.

Chapter 3 examined another aspect of contestants’ behavior in contests: risk-taking

behavior. In the experiment, contestants only decide the level of risks they are willing

to take by building a performance distribution using a visualized distribution builder.

Their realized performance and hence their rankings and the prize they get in the

tournament depends on the distribution they build. By varying the prize allocation

and the size of the tournament, we inspect how contestants’ risk-taking behavior (the

distribution they build) change in reaction to the change in tournament design. The

results from the experiment suggest that when more entrants are added to a contest,

contestants will choose a more dispersed distribution. In contrast, when the convexity

of the prize schedule increased, contestants will choose not only a more dispersed but

also a more skewed distribution. The results in Chapter 3 are enlightening from risk

governance perspective. Previous studies on risk-taking in tournaments commonly

measure risk using the variance. The experimental results of this chapter prove that

for the most of prevalent tournaments (e.g. winner-takes-all tournament), using the

variance as the only risk measurement might lead to underestimation of the overall

volatility.

Chapter 4 investigated the revenue generation and selection efficiency of the indica-

tive bidding mechanism. The experiment has three treatments, each with one auction

mechanism. In the unrestricted entry treatment, all bidders who choose to enter can

enter the auction stage; in the restricted entry treatment, at most two bidders who

choose to enter are randomly selected to enter the auction stage; and in the indicative

bidding treatment, at most two bidders who send the highest entry message are se-

lected to enter the auction. Principally following the prediction, the indicative bidding

treatment performs significantly better than the restricted auction, and as well as the

unrestricted auction when the entry cost is low. When the entry cost is high, indicative

bidding generates the highest revenue among the three mechanisms. This study has

two key contributions. Firstly, we find supportive evidence for theoretical predictions
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and the wide application of indicative bidding in practice; secondly, unlike the field

datawhere the entry decision and bidders’ private value are usually not observable, the

experimentalmethod provides the opportunity to examine the channels that contribute

to the auction revenue. Using the experimental data in this study, we disentangle two

key effects that affect the revenue generation in two-stage auctions: the participation

effect and the selection effect. Furthermore, we find that themain reason that indicative

bidding has an advantage over the other two mechanisms is that it increases bidders’

entry probability. Potentially, the findings in this study can shed light on the design of

auctions with complex assets and very limited bidders.



Appendix A

Appendix of Chapter 2

A.1 Additional results

Table A.1: Individual effort in concealed treatments:
mixed-effects regressions (Rounds 14-25)
VARIABLES Concave Linear Convex

Effort 155.60*** 22.85*** 9.76***
(12.30) (2.46) (0.54)

σ2
(sub)session 258.59 14.44 0.00

(435.39) (17.63) (0.00)
σ2
individual 3,007.12 82.35 11.02

(793.56) (21.46) (2.69)
Equ. 117.97 18.12 7.42

p-value 0.00 0.05 0.00
Adjusted Equ. 160.44 19.56 7.63

p-value 0.69 0.18 0.00
No. of Groups 4 4 4
We estimate the average individual effort for different cost functions separately
with mixed-effects models to control for the random effects at the individual and
(sub)session levels, using data from rounds 14-25. The p-values under “Equ.”
and “Adjusted Equ. ” are from Wald tests, and compare the estimated average
individual effortwith the corresponding predictions. Stars indicate the significance
level of each coefficient (** p < 0.05, *** p < 0.01).
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A.2 Proof

Equilibrium Characterization when N is Disclosed

Whenever N ≥ 2, each participant i chooses his level of effort xi to maximize his

expected payoff

πi =
xr
i∑N

j=1 x
r
j

V − xα
i ,

The unique equilibrium effort x∗
N is determined by the first order condition

r
N − 1

N2xN

v = αxα−1
N .

Note that payoff πi of a representative contestant i is globally concave in xi given all oth-

ers taking the effort of x∗
N , therefore x∗

N =
(
N−1
N2

rV
α

) 1
α is a unique symmetric equilibrium.

And the equilibrium payoff is π∗
N = 1

N
V − (x∗

N)
α = V

N

(
1− N−1

N
r
α

)
.

Equilibrium Characterization when N is Concealed

Consider an arbitrary potential bidder i who has entered the contest. Suppose that all

other potential bidders play a strategy (qC , xC)with xC > 0.1 He chooses his bid xi,C to

maximize his expected payoff

πi(xi,C | qC , xC) =
M
N=1 C

N−1
M−1q

N−1
C (1− qC)

M−N [
xr
i,C

xr
i,C + (N − 1)xr

C

V − xα
i,C ].

Differentiating πi(xi,C | qC , xC) with respect to xi,C yields

dπi(xi,C | qC , xC)

dxi,C

=M
N=1 C

N−1
M−1q

N−1
C (1− qC)

M−N
(N − 1)rxr−1

i,C xr
CV

[xr
i,C + (N − 1)xr

C ]
2
− αxα−1

i,C .

Suppose that a symmetric equilibriumwith pure-strategy bidding exists. The (pure)

bidding strategy in the equilibrium can be solved by the first order condition dπi

dxi,C
|xi=x =

1It is impossible to have all participating bidders bid zero deterministically in an equilibrium. When
all others bid zero, a participating bidder would prefer to place an infinitely small positive bid, which
allows him to win the prize with probability one.
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0 given the equilibriumentry probability q∗C , while q∗C is characterized by the zero-payoff

condition.2

According to the first order condition dπi(xi,C)

dxi,C
= 0 and the symmetry condition xi,C =

xC , x∗
C must solve

M
N=1C

N−1
M−1q

N−1
C (1− qC)

M−N (N − 1)rV

N2x∗
C

− αx∗α−1
C = 0,

which yields

x∗(qC) = [MN=1C
N−1
M−1q

N−1
C (1− qC)

M−N N − 1

N2

rV

α
]
1
α .

The equilibrium expected payoff is

π∗(x∗(qC), qC) = M
N=1C

N−1
M−1q

N−1
C (1− qC)

M−N V

N
− [MN=1C

N−1
M−1q

N−1
C (1− qC)

M−N N − 1

N2

rV

α
]

= M
N=1C

N−1
M−1q

N−1
C (1− qC)

M−N V

N
(1− N − 1

N

r

α
).

By entering the contest and submitting the bid x∗(qC), every potential contestant i

ends up with an expected payoff

π∗(x∗(qC), qC)−Δ.

The equilibrium payoff cannot be negative. When q∗C ∈ (0, 1), the equilibrium pay-

offs of players must be zero, otherwise there is no equilibrium (as players would enter

with probability 1 and earn a positive payoff). Therefore, each potential bidder receives

a zero expected payoff for the equilibrium entry q∗C , i.e., π∗(x∗(q∗C), q
∗
C) = Δ.

The expected overall effort of the contest (TE∗
C (q∗C)) is as follows

TE∗
C (q∗C) = Mq∗Cx

∗(q∗C) = Mq∗C [
M
N=1C

N−1
M−1q

∗N−1
C (1− q∗C)

M−N N − 1

N2

rV

α
]
1
α .

Therefore, q∗C satisfies F (q∗C , r) =
M
N=1 C

N−1
M−1q

∗N−1
C (1 − q∗C)

M−N V
N
(1 − N−1

N
r
α
) −Δ = 0.

Apparently, F (q∗C , r) is continuous in and differentiable with both arguments. We first

claim that F (q∗C , r) strictly decreases with q∗C . Define πN = V
N
(1− N−1

N
r
α
). Taking its first

2r ≤ α M
M−1 guarantees the pure-strategy bidding in the equilibrium.
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order derivative yields

F (q∗C , r)
dq∗C

= M
N=1C

N−1
M−1[(N − 1)q∗N−2

C (1− q∗C)
M−N − (M −N)q∗N−1

C (1− q∗C)
M−N−1]πN

= M
N=1C

N−1
M−1(N − 1)q∗N−2

C (1− q∗C)
M−NπN −M

N=1 C
N−1
M−1(M −N)q∗N−1

C (1− q∗C)
M−N−1πN

= (M − 1){MN=2C
N−2
M−2q

∗N−2
C (1− q∗C)

M−NπN −M−1
N=1 CN−1

M−2q
∗N−1
C (1− q∗C)

M−N−1πN}
= (M − 1)M−1

N=1C
N−1
M−2q

∗N−1
C (1− q∗C)

M−N−1 (πN+1 − πN) ,

which is obviously negative because πN = 1
N

[
1− (

1− 1
N

)
r
α

]
V ≥ 0 and it mono-

tonically decreases with N .

When all other potential contestants play qC = 0, a potential contestant receives

a payoff V − Δ > 0, and he must enter with probability one. When all others play

qC = 1, a participating contestant receives a negative expected payoff since V
M

< Δ,

which cannot constitute an equilibrium either. Hence, a unique q∗C ∈ (0, 1) must exist

that solves π∗(x∗, qC) = Δ. Each potential contestant is indifferent between entering

and staying inactive when all others play the strategy. This constitutes an equilibrium.

A.3 Experimental instructions

Welcome to our experiment! You will receive RMB15 for having shown up on time.

Please read all of the instructions carefully. Properly understanding the instructions

will help you to make better decisions and therefore earn you more money. The ex-

periment will last approximately one hour. Your earnings in this experiment will be

measured in the experimental currency (i.e., EC) unit. At the end of the experiment,

we will convert your earnings in EC to RMB, and pay you your earnings in private. The

exchange rate is 3.2 EC= RMB1.

Your total payment in this experiment will be the sum of

(1) Your show-up fee: RMB15;

(2) Your earnings in this experiment;

To make sure you understand the experiment, the experimenter will first read the
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instructions out loud before the start of the experiment, and support will also be avail-

able at any time during the experiment. Please remember that you are not allowed to

communicate with other participants during the experiment. If you do not obey this

rule, you will be asked to leave the laboratory andwill not be paid. Whenever you have

a question, please raise your hand and an experimenter will come to help you.

The game

In this experiment, there are two decision-making stages in each period. At the begin-

ning of each period, you will be randomly assigned to a group of 3 players. Each of you

will be randomly labeled A, B, or C and will receive 80 EC as your initial endowment.

Stage 1: Entry decision

In this stage, you will have to choose whether to enter the competition stage (Stage

2).

• If you choose to enter the competition, an entry fee of 40 EC will automatically be

deducted from your initial endowment. In exchange, you will have the opportu-

nity to compete against your group members and receive a prize of 100 EC with a

certain probability in Stage 2. Your winning probability will depend on both your

decision and those of your group members in Stage 2, and on how many of you

have chosen to enter Stage 2.

• If you choose not to enter Stage 2, no entry fee will be charged. However, you will

not have a chance to win the prize.

• Once all players have made their entry decisions, the total number of participants

in the competition in Stage 2 will be revealed to all members (participants and

non-participants) in your group. Those who have chosen not to enter Stage 2 will

no longer need to make decisions in this period, but will have to wait quietly for

their group members to complete Stage 2. If no-one in your group enters Stage 2,

the prize will be kept by the experimenter.

Stage 2: Competition
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In this stage, all entrants compete for a prize of 100 EC. After learning the actual

number of entrants in his/her group, each entrantmust choose the level of effort he/she

is willing to invest. The cost of effort x is calculated by a cost function, C(x) = xα(α =

2/3), and will be deducted from your initial endowment for this period (therefore, you

can choose an effort level that costs less than the balance of your endowment, i.e., 40

EC.). After all entrants in your group have made their decisions, the computer will

select one winner in your group:

Figure A.1: Lottery Wheel Screenshot–Entrants

• If only one player has chosen to enter Stage 2, this player will receive the prize

with a probability of 100%, no matter how much he/she has invested in the com-

petition.

• If more than one player has chosen to enter Stage 2, your probability of winning

the prize will depend on your choice of effort relative to that of all entrants in

your group. Specifically, your probability of winning will be equal to your effort

divided by the total effort of all entrants in your group, namely Pi = (xi)/(xi+xj),

where xj is the total effort of all other entrants in your group). Note that in this

case you may have one or two other competitors in your group. After choosing

your effort level, a lottery wheel will appear on your computer screen. The prob-

ability of all entrants winning and the random draw process will be displayed in
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Figure A.2: Lottery Wheel Screenshot–Non-entrants

a dynamic lottery wheel. The wheel will be divided into three colored areas: red,

blue, and yellow. The red area represents the winning area of participant A, the

blue area, the winning area of participant B, and the yellow area, the winning

area of participant C. The relative size of the colored areas will correspond to the

probability of each participant winning (note that if there are only two entrants

in your group, the wheel will only have two colors). In the center of the lottery

wheel an arrow will initially point vertically upwards. When the random draw

begins, the arrow will start spinning and after a while will stop randomly. If the

arrow stops in the red area, participant A will win the prize. If the arrow stops

in the blue area, participant B will win the prize. If the arrow stops in the yellow

area, participant C will win the prize. Obviously, the higher the level of effort you

choose relative to that of your competitor(s), the larger your winning area on the

lottery wheel, and the more likely you will be the winner of this competition. At

the same time, the higher the level of effort, the higher the cost.

(To help you to better understand the relationship between your choice of effort

and the cost of your effort, we provide a table on the last page of this document that
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describes the levels of effort you can choose and their corresponding costs. You can also

use the calculator button on your screen to help you with your decision.)

Your earnings

Your earnings for each period will be calculated at the end of each period, as follows

(and displayed to you):

• If you choose not to enter Stage 2

your earnings = Endowment = 80EC

(Please note that although you can keep your initial endowment for this period,

it cannot be carried over to the next period(s) to help your decisions in other

periods.)

• If you choose to enter Stage 2

a If you lose,

your earnings = Endowment(80EC)−Entry Fee(40EC)−effort cost(xαEC)

b If you win,

your earnings = Endowment(80EC)− Entry Fee(40EC)

+ Prize(100EC)− effort cost(xαEC)

Procedure

You will play 25 periods of this two-stage game. However, you will always be ran-

domly matched with two participants and labeled A, B, or C at the beginning of each

period. On the lottery screen, your group members’ entry decision, effort level and

corresponding cost, probability of winning, and the number of entrants in your group

will be displayed on your screen, irrespective of whether you choose to enter Stage 2.

(see the sample screenshots above) At the end of each period, your earnings will be

calculated by the computer and displayed on your screen.
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After completing all 25 periods, the computer will randomly draw one period out

of these 25 periods. Your total earnings from this period will be converted to RMB (at

the rate of 3.2 EC= RMB1) and paid to you, together with your show-up fee (RMB15).

To further ensure that all participants in this experiment understand the game cor-

rectly, youwill need to answer several control questions designed based on the informa-

tion provided in these instructions. The experiment will start after all participants have

answered these questions correctly. Please do not hesitate to ask for help if you have

any questions regarding the information provided in our instructions or the control

questions.

At the endof today’s experiment, youwill also need to complete a short post-experiment

questionnaire, including your demographic information (e.g., sex, age, study major,

etc.) and your decisions in the experiment. All information provided will remain

anonymous and will be kept strictly confidential. This information is collected only

for academic research purposes.

Thank you again for your participation and your patience! The experiment will start

soon.
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Cost schedule



Appendix B

Appendix of Chapter 3

B.1 Additional results

B.1.1 Learning

We use the local polynomial estimation to show the aggregate distribution in selective

rounds. The estimated graphs are contrasted with the predicted distribution shown

by the bar graph in each treatment. The trajectory of the shift of observed distribution

indicates participants adjust their risk-taking choice with learning.

Figure B.1: Learning

100
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B.1.2 Robustness check

To test the robustness of the treatment effect, we add individual characteristic variables

into the mixed regressions. The results are similar to the main results observed in the

paper.

Table B.1: Mixed regression on convexity effect with other
controlled variables

Skew GMD

VARIABLES All rounds Rnd 7-12 All rounds Rnd 7-12

Linear (cons) 0.339 0.0119 1.049*** 1.042***

(0.303) (0.318) (0.162) (0.167)

WTA 0.351* 0.490** 0.376*** 0.462***

(0.184) (0.199) (0.111) (0.122)

EC34 -0.0864 -0.0660 -0.271** -0.307**

(0.185) (0.200) (0.111) (0.122)

Gender 0.273** 0.240** 0.0335 0.0252

(0.111) (0.116) (0.0575) (0.0576)

Degree -0.257 -0.180 -0.169* -0.196**

(0.191) (0.199) (0.0993) (0.0997)

Major -0.0939 -0.0679 0.00165 0.0157

(0.0692) (0.0721) (0.0360) (0.0361)

Risk 0.0160 0.00420 0.0408*** 0.0231

(0.0289) (0.0302) (0.0151) (0.0153)

σgroup 0.115 0.143 0.051 0.066

(0.049) (0.057) (0.018) (0.021)

σindividual 0.29 0.312 0.077 0.078

(0.046) (0.049) (0.012) (0.011)

Observations 1,704 852 1,704 852

Number of groups 36 36 36 36

In the tables, gender, degree and major are category variables. Gender: ”1” repre-

sents male while ”0” represents female. Degree takes the value ”1”, ”2”, and ”3” when

the participant is an undergraduate, master, or doctoral student, respectively. Major is

equal to ”1”, ”2”, ”3”, and ”4” when the major is science and engineering, business and

economics, social science other than business or economics, or others, respectively. Risk
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takes values from 0 to 10; the higher the number, the more risk-loving the participant

is.

Table B.2: Proportion of winners: mixed regression with
controlled variables

Skewness GMD

VARIABLES All rounds Rnd. 7-12 All rounds Rnd. 7-12

EC 3/4 (Cons.) 0.164 -0.0688 0.686*** 0.801***

(0.388) (0.445) (0.217) (0.214)

EC 2/4 -0.0305 -0.00422 0.199* 0.242*

(0.193) (0.218) (0.108) (0.124)

Gender 0.418*** 0.413** 0.0320 0.0212

(0.140) (0.160) (0.0781) (0.0747)

Degree -0.248 -0.251 -0.162 -0.298*

(0.287) (0.329) (0.160) (0.154)

Major -0.0584 -0.0553 0.0442 0.0332

(0.0838) (0.0962) (0.0468) (0.0448)

Risk 0.00563 0.00105 0.0442** 0.0265

(0.0337) (0.0386) (0.0188) (0.0184)

σ2
group 0.136 0.17 0.043 0.068

(0.067) (0.085) (0.021) (0.027)

σ2
individual 0.28 0.372 0.093 0.086

(0.056) (0.074) (0.017) (0.016)

Observations 1,140 570 1,140 570

Number of groups 24 24 24 24
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Table B.3: Entrant effect: mixed regression with controlled variables

Winner-takes-all Elimination contest

Skew GMD Skew GMD

All R. 7-12 All R. 7-12 All R. 7-12 All R. 7-12

Baseline (Cons.) 0.275 0.186 1.583*** 1.604*** 0.0270 -0.0582 0.668*** 0.820***

(0.298) (0.261) (0.176) (0.181) (0.375) (0.377) (0.208) (0.214)

Entrant effect 0.412** 0.483*** 0.226** 0.289*** 0.0205 0.0505 0.242** 0.293***

(0.160) (0.172) (0.101) (0.111) (0.163) (0.180) (0.0978) (0.114)

Gender 0.136 0.164** -0.00882 -0.0146 0.157 0.0819 0.0390 -0.0130

(0.0967) (0.0806) (0.0563) (0.0569) (0.130) (0.129) (0.0714) (0.0715)

Degree -0.0476 0.0287 -0.109 -0.128 -0.0184 -0.0225 -0.131 -0.289*

(0.167) (0.140) (0.0976) (0.0988) (0.279) (0.277) (0.153) (0.155)

Major -0.0619 -0.0423 -0.0506 -0.0291 0.0225 0.0153 0.0924** 0.0988**

(0.0687) (0.0576) (0.0401) (0.0406) (0.0817) (0.0809) (0.0448) (0.0449)

Risk 0.0538** 0.0181 0.0201 0.00882 -0.0165 -0.0411 0.0244 0.00241

(0.0261) (0.0219) (0.0152) (0.0154) (0.0328) (0.0328) (0.0181) (0.0183)

σ2
group 0.0538** 0.0181 0.0201 0.056 0.082 0.118 0.033 0.054

(0.0261) (0.0219) (0.0152) (0.021) (0.053) (0.063) (0.018) (0.024)

σ2
individual 0.213 0.152 0.07 0.073 0.341 0.328 0.103 0.103

(0.035) (0.025) (0.012) (0.012) (0.057) (0.055) (0.017) (0.017)

Observations 1,428 714 1,428 714 1,428 714 1,428 714

Number of groups 24 24 24 24 24 24 24 24

Note: Baseline under WTA and EC column correspond to WTA and EC 3/4.
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Table B.4: Scale-up effect: mixed regression with controlled
variables

Skew GMD

All rounds Round 7-12 All rounds Round 7-12

EC 2/4 (cons) -0.0370 -0.146 0.998*** 1.034***

(0.365) (0.390) (0.199) (0.214)

EC 3/6 0.0698 0.0566 0.0498 0.0606

(0.110) (0.128) (0.0618) (0.0716)

Gender 0.284** 0.299** -0.0325 -0.0519

(0.114) (0.120) (0.0620) (0.0658)

Degree -0.266 -0.245 -0.240* -0.263*

(0.256) (0.272) (0.139) (0.149)

Major -0.00953 -0.0600 0.133*** 0.100**

(0.0729) (0.0761) (0.0395) (0.0417)

Risk 0.0383 0.0269 0.0132 0.00509

(0.0305) (0.0326) (0.0167) (0.0179)

σ2
group 0.008 0.03 0.004 0.01

(0.022) (0.031) (0.006) (0.009)

σ2
individual 0.245 0.266 0.074 0.085

(0.043) (0.046) (0.012) (0.013)

Observations 1,440 720 1,440 720

Number of groups 24 24 24 24
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B.2 Permutation test

Consider two treatments with n observations each. Let F1 and F2 be the observations

of two different treatments and F be the pooled observations over the two treatments.

Each observation unit is one performance distribution chosen by one participant in one

round.

To construct the permutation test, we first establish the H0 assumption, which is:

H0 : F1 = F2 = F . The null hypothesis implies that if there is no difference in the two

distributions from these two treatments, they can be seen as independent draws from

the same pooled distribution. Then we calculate the observed two-sample K-S statistic

D* comparing F1 and F2.

We then pool all the observations to get F and randomly reassign the treatment

labels to the pooled observations to form new treatment group F p
1 and F p

2 . Next, we

compute the K-S statistic D between F p
1 and F p

2 . This process is repeated 10,000 times

and then we have a distribution of Dj (j ∈ {1, · · · , 10, 000}) draw from F .

We can reject theH0 hypothesis ifD∗ is above the 95th percentile of the distribution of

Dj . The implication of this test is that only if theD∗ is significantly larger thanDj (which

comes from the pooled data of two treatments), can we reject the null hypothesis that

F1 and F2 come from the same distribution.

Figure B.2 illustrates the distribution of Dj , 55th percentile, 99th percentile and D∗

values between any of the two treatments in our experiment. As we can see from the

figure, all D∗s are significantly larger than the 99th percentile of the distribution. The

treatment difference is significant.
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Note: Each figure is the histogram of all the permuted two sample K-S statistics. Each comparison
(histogram) contains 10,000 repetitions. The short dashed line and the long dashed line represent the
95th percentile and 99th percentile of the all observed K-S statistics from the permutation, respectively.
D* is observed K-S statistics.

Figure B.2: Permutation test of KS statistics

Figure B.3 illustrates the distribution of ΔD = D12 − D1, which tests whether the

distribution in round 12 is closer to equilibrium or not compared with the round 1

distribution. As we can see from the figure, only in treatment Linear are all the KS

statistics below 0, which means participants converge to equilibrium distribution in the

Linear treatment. InWTA6 and EC 2/4we see the distribution is mostly even around 0,



B.2. PERMUTATION TEST 107

Figure B.3: KS test for learning

meaning the difference is not significant. However, in treatment WTA and EC 3/6, we

see most of the differences are positive, which indicates participants are even further

away from the prediction in round 12 compared with round 1.
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B.3 Experimental instructions

Welcome to our experiment! You will receive 20 RMB for showing up on time. Please

read these instructions carefully and completely. Properly understanding the instruc-

tions will help you make better decisions and hence earn more money. The experiment

will last about 1.5 hour. Your earnings in this experiment will be measured in experi-

mental currency (i.e., EC). At the end of the experiment, we will convert your earnings

in EC to RMB, and pay you in private.

This experiment is composed of two parts. Instructions for Part 2 will be given out

once all participants finished Part 1. Please do not start Part 2 until the experimenter

finish giving out and reading the instructions for Part 2.

Your total payment from this experiment will be the sum of:

(1)Your show-up fee: 20 RMB;

(2)Your earnings in Part 1;

(3)Your earnings in Part 2.

To make sure you understand the experiment, the experimenter will first read the

instructions aloud before the experiment starts. Support is available at any time during

the experiment. Please keep in mind that you are not allowed to communicate with

other participants during the experiment. If you do not obey this rule youwill be asked

to leave the laboratory andwill not be paid. Whenever you have a question, please raise

your hand; an experimenter will come to assist you.

Part 1

Part 1 is composed of 6 rounds. In each round, youwill need to compete within a group

of 4 or 6 participants to win one of the prizes in a set. At the beginning of each round,

computer will randomly assign the group and decide which set of prizes to be used.

You will see the number of people and prize set used in your group for this round on

the screen. The set of prizes will look like the following example:
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Figure B.4: Prize schedule Example

In this example, there are 4 participants in the group. The first row is the ranks (1 to

4) you can get within your group. The second row shows the corresponding prizes for

each rank. The value of the prizes is measured by the number of EC. Which prize you

get depends on your ranking in your group. The higher you rank in your group, the

higher prize you will get and hence the higher chance that you can get a better payoff.

The total number of prizes in the set should always be equal to the total number of

groupmembers. In other words, everyone will get a positive prize, but the size of prize

increases in rank.

Your task

In each round, your task is to build a distribution against 0 to 25 (26 integers in total)

using 100markers. Computerwill draw1 of the 26 integers according to the distribution

you build. The distribution you build will determine the chances of each number will

be drawn. Each marker you put on a certain number represents 1% of the chance that

this particular number will be drawn by the computer. That is to say, the more markers

you put on a certain number, the more likely this number will be drawn. Computer

will draw one number for each of your group member simultaneously. Similar with

how the computer draw the number for you, which number will be drawn for other

group members depend on the distribution they build. From the biggest number to

the smallest, all group members’ drawn numbers will be ranked and then prizes will

be given according to the rank. For instance, if your draw is 7 and the others’ draws are

5, 10 and 0 respectively, then your ranking is 2nd in your group, and youwill receive the

2nd prize on the prize set for this round (According to the sample set of prizes above,

you will get 15 EC).

You will use the following distribution builder in this experiment:

While building the distribution, you face the following budget constraint: the

total cost of the 100 markers has to be less or equal to 300. Each marker you put
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Figure B.5: Distribution builder

on different number will incur different cost. Although one more marker put on a

bigger number would increase your chance to win the best prize in the set, it is also

proportionally more costly. To be more specific:

The cost of each marker on certain number=this number

The total cost of all markers put at each number = the number of markers on this number * the

cost of each marker on this number (i.e., this number)

For example, if you decide to put 10 markers on number 10, it will cost you 100 in

total and at the same time give you 10% that 10 is drawn by the computer.

Note that while you are building the distribution, you cannot keep any unused

budget, nor can you exceed your budget at the time you submit you allocation (Note:

the cost of all markers placed on number 0 is 0.). Once you change the distribution,

the cost will be calculated automatically by the computer. Only when the sum of

the total cost is less or equal to 300 and the total amount of markers equals to 100,

can you submit the distribution. However, you can change as many times as you like

before you confirm that you would like to submit the distribution.

After you submit your allocation in each round, the computer will randomly draw
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one number for each group member according to their submitted distribution respec-

tively, and rank the drawn numbers. In the case of tie, the computer will break the

tie randomly. The random group assignment and number draw will be automatically

done by computer in the background. You will NOT observe them nor receive any

information about your ranking at the end of each round.

Your payoff

One out of the six rounds will be randomly selected for payment. The prize you

received in the selected round will be converted into RMB according to the exchange

rate of 1 EC =0.5 RMB as your payoff in Part 1. All the information about the selected

round, including the round number, the set of prizes used, the number of participants

in your group, and the information about all group members’ (including your own)

drawn numbers, rankings, prizes allocatedwill be disclosed to you at the end of today’s

experiment.

Pre-experimental questionnaire and practice round

Before starting the experiment, you will answer several questions regarding the

instructions. Once all of you have answered these questions correctly, you will proceed

to the practice round. The purpose of practice round is to give you some idea how

to operate the distribution builder and how computer use the lottery wheel to draw a

number for you. The practice round will NOT be included in your payment. Please

do not hesitate to ask for help if you have any questions regarding the information

provided in the instructions or the questions we ask you to answer.

Thank again for your participation and patience! The experiment will start soon...
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Part 2

Part 2 is composed of 12 rounds. Youwill be using 100markers to build distributions

against 0-25 like you did in part 1, but with the following changes:

1) Before Part 2 starts, you will be randomly assigned into a four-people group.

Group members in your group will be randomly named as player 1, player 2,

player 3 and player 4. Your name in the group and your group members and will

stay the same for all 12 rounds.

2) You will compete for the same set of prizes for 12 rounds. Specifically, one of the

five four-prize sets you faced in Part 1 will be randomly selected by the computer,

and will be used throughout Part 2.

3) Computer will randomly draw one round for payment. The prize you won in the

drawn roundwill be converted to RMB according to the exchange rate of 1 EUC=1

RMB as your total earnings from Part 2.

4) After the distribution is submitted, youwill observe computer using lotterywheel

(which you have seen in the practice round) to draw a number for you. You will

also receive information about your own as well as your group members’ drawn

number, rankings, and prize allocations at the end of each round (Except from

round 1).

5) To help you build and adjust your distribution, you are also provided a “reload

previous distribution” button in this part. You can (but are not obliged to) use

this button (from round 2) to build your distribution in the new round based on

what you have submitted before.

Post-experimental questionnaire

At the end of today’s experiment, youwill also need to fill out a small questionnaire,

including questions about you (e.g., your gender, age, major...) and your decisions in

the experiment. All the information you providewill be kept anonymous and in strictly

confidential. The only purpose of collecting this information from you is for academic

research analysis.
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Appendix of Chapter 4

C.1 Additional results

Table C.1: Entry choice breakdown

c=5 c=25

UnR Re Ind UnR Re Ind

No. Perct. No. Perct. No. Perct. No. Perct. No. Perct. No. Perct.

Nash Entry 931 78% 917 76% 625 52% 990 83% 958 80% 632 53%

0 405 34% 313 26% 260 22% 668 56% 597 50% 514 43%

1 526 44% 604 50% 134 11% 322 27% 361 30% 118 10%

2 231 19%

Under Entry 132 11% 141 12% 111 9% 99 8% 95 8% 86 7%

(0,1) 132 11% 141 12% 97 8% 99 8% 95 8% 86 7%

(0,2) 8 0.6%

(1,2) 6 0.4%

Over Entry 137 11% 142 12% 464 39% 111 9% 147 12% 482 40%

(1,0) 137 11% 142 12% 89 8% 111 9% 147 12% 116 10%

(2,0) 80 7% 93 8%

(2,1) 295 25% 273 22%

N 1200 1200 1200 1200 1200 1200

113
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Table C.2: Average probability of the entry message being chosen

UnR Re Ind

NE Mean p NE Mean p NE Mean p

Low cost

m=1
0.55 0.55 0.73 0.62 0.64 0.09 0.44 0.22 0.00

(0.372) (0.352) (0.160)

m=2
0.20 0.51 0.00

(0.375)

High cost

m=1
0.35 0.36 0.46 0.38 0.42 0.00 0.40 0.22 0.00

(0.352) (0.369) (0.157)

m=2
0 0.29 0.00

(0.324)

Note: The probability of each message been chosen given s for each observation is
estimated bymulti-level ordered logisticmodels controlled for both individual and group
level random effects. We leave out the estimation of probability of m = 0 being chosen,
because it can be calculated from 1− p(enter). P values are from theWald test clustered
at group level comparing the observed probability with corresponding predicted entry
threshold. Standard deviations are in parentheses.

Table C.3: Selection efficiency: regression

Low cost High cost

Logistic Linear Logistic Linear

Eff1|2 Eff1&2 RE Eff1|2 Eff1&2 RE

Constant (Ind) 1.836*** -0.761*** 0.624*** 1.909*** -0.568** 0.886***

(0.250) (0.127) (0.014) (0.203) (0.248) (0.036)

UnR 0.724*** 1.924*** 0.328*** -0.182 1.436*** 0.111***

(0.218) (0.171) (0.019) (0.227) (0.350) (0.042)

Re 0.021 -0.349* -0.016 -0.039 -0.247 -0.067

(0.302) (0.189) (0.023) (0.182) (0.279) (0.044)

# of Obs 714 655 700 666 435 639

# of group 72 72 72 72 72 72

Note: Indicator Efficiency1or2 (Eff1|2) and Efficiency1&2 (Eff1&2) are binary variables
which take the value 1 if they are efficient, 0 if otherwise. Ratio Efficiency (RE)
is a continues variable which takes values from 0 to 1 (inclusive). The entry
decision of each group in each round is one observation unit. We run panel logistic
regressions for indicator Efficiency1or2 andEfficiency1&2, and panel linear regressions
for indicator Ratio Efficiency; all models are clustered at session level.
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Table C.4: Participation and selection effect

c=5 c=25

UnR Re Ind UnR Re Ind

Rpredicted 153.93 145.69 150.02 101.80 104.83 106.84

NERunr 151.39 155.97 154.85 101.80 106.86 109.00

Participation 4.58 3.46 5.06 7.20

Selection -12.82 -7.37 -2.04 -2.15

Note: Rpredicted is the predicted expected revenue calculated using
the drawn values in the experiment. NERunr is the expected revenue
calculated using the drawn values in the experiment, assuming that all
the bidders who choose to enter the auction by equilibrium can enter the
auction.
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C.2 Characterization of equilibrium

C.2.1 Expected payoff functions in indicative bidding

For entrant i’s expected payoff conditional on advancing with the opponent whose

signal is drawn from interval [a, b] is:

π(si|[a, b]) =
∫ b

a

max{0, si − s} 1

b− a
ds− c

Assume there is an marginal entrant i, who received a signal α0 in stage 1. His

expected payoff is:

π(α0, 1) =αN−1
0 (α0 + E(t)− c) +

N−1∑
j=1

Pj · 2

j + 1
· (−c)

+ C1
N−1(1− α1) ·

N−2∑
h=0

Ph · 1

1 + h
· (−c)

In which Pj = Cj
N−1(α1 − α0)

j(α0)
N−1−j , Ph = Ch

N−2(α1 − α0)
h(α0)

N−2−h. The second

term is the expected payoff when j opponent(s) chosem = 1 and no one choosem = 2,

while the third term is the expected payoff when h opponent(s) chose m = 1 and 1

opponent choose m = 2.

We then assume marginal entrant i received α1, his expected payoff from entering

the auction is:

π(α1, 1) =(α0)
N−1(α0 + E(t)− c) +

N−1∑
j=1

Pj · 2

j + 1
· π(α1|[α0, α1])

+ C1
N−1(1− α1) ·

N−2∑
h=0

Ph · 1

1 + h
· (−c)

However, if he choose entry message m = 2 with the signal of α1, his expected payoff

is:

π(α1, 2) = (α0)
N−1(α0 + E(t)− c) +

N−1∑
j=1

Pj · π(α1|[α0, α1]) +
N−1∑
l=1

Pl · 2

1 + l
· (−c)

In which Pj = Cj
N−1(α1 − α0)

jαN−1−j
0 , Pl = C l

N−1(1 − α1)
lαN−1−l

1 . The second term is
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the expected payoff when j opponent(s) chose m = 1,no one choose m = 2, while the

third term is the expected payoff when l opponent(s) choosem = 2.

C.2.2 Expected revenue under three mechanisms

The expected revenue of unrestricted auction equals to:

RUnR(α0) =
N∑

n=2

Pn ·
[
α0 +

n− 1

n+ 1
· (100− α0) + 100

]
(C.1)

Where Pn = Cn
N(

100−α0

100
)n( α0

100
)N−n. The expected revenue of unrestricted auction can be

seen as the weighted average of the revenue from the second price auction with n fixed

number of bidders, where the weight is the probability of auction has n entrants.

The expected revenue of restricted auction is:

RRe =

(
N∑

n=2

Pn

)
· [α0 +

1

3
· (100− α0) + 100

]
(C.2)

Where Pn = Cn
N(

100−α0

100
)n( α0

100
)N−n. The expected revenue of restricted auction equals to

the expected revenue from the second price auction with two bidders conditional on

entry as long as the number of bidder who choose to enter is larger than 2.

The expected revenue of indicative bidding is:

RInd =
N∑

n=2

Pn ·
{
(
α1 − α0

100− α0

)n · [α0 +
1

3
· (α1 − α0)]

+ C1
n · (

α1 − α0

100− α0

)n−1 · (100− α1

100− α0

) · [α0 +
1

2
· (α1 − α0)]

+
n∑

w=2

Cw
n · (100− α1

100− α0

)w · [α1 +
1

3
· (100− α1)] + E(t)

} (C.3)

Where Pn = Cn
N(

100−α0

100
)n( α0

100
)N−n, w is the number of bidders who choose m = 2. The

first, second and their term in the cursive bracket is the expected revenue when 0, 1 or

at least 2 bidder(s) choosem = 2 conditional on n ≥ 2 bidders choose to enter (m ≥ 1),

respectively. 1

1When all bidder who choose to enter send m = 1 or at least 2 bidder who send m =, the expected
revenue is the expected second highest signal in interval [α0, α1] or [α1, 100], plus the expected additional
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C.3 Experimental instructions

Welcome to our experiment! You will receive 30 RMB for showing up on time. Please

read these instructions carefully and completely. Properly understanding the instruc-

tions will help you make better decisions and hence earn more money. The experiment

will last about 1.5 hours. Your payoff in this experiment will be measured in experi-

mental currency (i.e., EC). At the end of the experiment, we will convert your payoff in

EC to cash and pay you in private. The exchange rate is 1 EC = 1.5 RMB.

Your total payment from this experiment will be the sum of:

(1) Your show-up fee: 30 RMB;

(2) Your payoff in this experiment;

Please keep in mind that you are not allowed to communicate with other partici-

pants during the experiment. If you do not obey this rule you will be asked to leave the

laboratory. Whenever you have a question, please raise your hand; an experimenter

will come to assist you.

Your task

At the beginning of the experiment, you will be given 30 EC as your initial endowment.

In this experiment, there are 20 rounds in total. Before round 1, you will be randomly

assigned to a group of 5 players and will stay in this group for the first 10 rounds. In

round 11, you will be randomly reassigned to a new group of 5 players and stay in that

group for the rest of the experiment. The computer will randomly assign letters from

A to E to each of you as your player label and this assignment changes in every round.

You will only be competing against the participants in your group.

In each round, you will participate in an auction. The auction takes place in two

stages: in stage 1, you decide if you would like to enter stage 2 or not; in stage 2, (if you

enter successfully,) you choose how much to bid in the auction. Your total valuation

value t. When 1 bidder choose m = 2 and n − 1 choose m = 2, the expected revenue is the expected
highest signal in interval [α0, α1], plus the expected additional value t.
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towards the asset that you are bidding for is composed of two parts: You will get the

first part of your valuation in stage 1 before you make the entry decision; then you will

get the second part of your valuation in stage 2 before you enter your bid if you enter

the auction.

Stage 1: Entry decision

The computer first randomly draws an integer from 1 to 100 (including 1 and 100) for

each participant independently. Each integer has 1% chance to be drawn. You only

observe your own draw. This number reveals the first part of your valuation towards

the asset that you are bidding for in stage 2. After seeing this information, you need

to make a decision on whether or not to enter the auction stage based on this partial

information you have about your total valuation for the asset. You can choose 1 of the

3 options to indicate your willingness to enter: “0” (Do Not Enter), “1” and “2” (both

represent enter with 2 giving you a higher entry priority than 1).

The number of entrants in each group in the auction stage is restricted to at most

2. If the number of players that choose either “1” or “2” is equal or less than 2, then

all participants who choose “1” or “2” are selected to enter automatically. However, if

there are more than 2 participants in your group choosing to enter, a selection process

will apply. First we randomly select up to two players from those who chose “2”. Then,

if less than 2 players have been selected, we randomly select the remaining entrants

from those who chose “1”.

The selected entrant(s) will proceed to stage 2 and an entry fee will be charged.

Notice that the entry fee is 5 EC in Round 1-10, and then increases to 25 EC in Round

11-20. If you are not selected, no entry fee will apply, and you do not need to make any

more decisions in this round.

Stage 2: Auction stage

In this stage, all the entrants first see two cards on the screen. Each of the cards has two

possible values, 0 and 100. The computer will randomly assign one of the values (0,

or 100 with equal chance) independently to each card. The sum of the two numbers

assigned to the two cards is the second part of your the asset valuation, which is the

same for all entrants. There are four possible scenarios: both cards have 0; the first card
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is 0 and the second card is 100; the first card has 100 and the second card has 0; both

cards have 100. Hence, the second part of the value shared by all entrants could be 0

EC with 25% chance, 100 EC with 50% chance, and 200 EC with 25% chance.

Each entrant’s full valuation for the asset (V) is calculated as the sum of the first

part of the valuation revealed in stage 1 (i.e., the independent private draw between

1-100) and the second part of the valuation (i.e., the sum of the numbers on the two

cards which are drawn for each group) shared by all entrants revealed in stage 2. In

the example below, if an entrant’s draw in the first stage is 56, and then the computer

assigned 100 and 0 to two cards in stage 2 respectively, his/her total valuation for the

asset is 56+(0+100)=156.

After learning your total valuation, all the entrants need to bid for the asset. The

entrant with the highest bid in your group will win the asset. The winner will pay an

amount equal to the second highest bid. If there is a tie for the highest bid, a winner

will be randomly selected among these bidders. In this case, the second highest bid is

the same as the highest bid. When there is only one entrant, that player wins the asset

and pays zero (i.e. the second highest bid).

Your payoff

Your payoff for each round will be calculated at the end of auction as the following:

• If you do not enter stage 2: your payoff = 0

• If you choose to enter and are selected:

– If you lose, your payoff= - entry fee
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– If you win, your payoff= your total valuation - the second highest bid - entry

fee

Summary

You will play 20 rounds of this 2-stage auction game. You will be randomly assigned to

a group of 5 participants twice during this experiment (first before round 1 and again

before round 11). In each round, you decide whether to enter the auction or not and

how much to bid. Your valuation for the asset in each round is determined by the sum

of your independent draw (revealed in stage 1) and the common draw given to all

entrants in stage 2. At the end of each round, all group members’ entry decisions, two

parts of the valuation information, entrants’ bids and payoffs will be displayed to you,

regardless of whether you chose to enter stage 2 or not. See a screenshot of this page

below:

In addition, a history table which gives information about entry decisions and win-

ner’s payoffs from previous rounds is provided.

Your total payment

After you complete all 20 rounds, the computer will randomly draw 1 round to pay

you. Your total payoff from the experiment will be your endowment (30 EC) plus your

payoff in the drawn round. Your total payoff will then be converted into cash and paid

to you together with your show-up fee (30 RMB) at the end of today’s session.
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Other information

To further ensure that everyone in this lab understands the game properly, you will

need to answer several control questions that are constructed based on the information

given out in these instructions. The experiment will start once all of you have answered

these questions correctly. Please do not hesitate to ask for help if you have any questions

regarding the information provided in our instructions or the control questions we ask

you to answer.

At the endof today’s experiment, youwill also need to fill out a small post-experimental

questionnaire, including some demographic information (e.g., your gender, age, ma-

jor...) and your decisions in the experiment. All the information you provide will

be kept anonymous and is strictly confidential. The only purpose of collecting this

information from you is for academic research analysis.

Thank again for your participation and patience! The experiment will start soon. . .
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Grund, C. and Gürtler, O. (2005). An empirical study on risk-taking in tournaments.

Applied Economics Letters, 12(8):457–461.
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