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Genome wide association study of response 
to interval and continuous exercise training: 
the Predict-HIIT study
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Christopher M. Hearon Jr10, Satyam Sarma10, Sylvan L. J. E. Janssen10,11, Emeline M. Van Craenenbroeck12, 
Paul Beckers12, Véronique A. Cornelissen13, Erin J. Howden14, Shelley E. Keating1, Xu Yan6,15, David J. Bishop6,16, 
Anja Bye7,17, Larisa M. Haupt4, Lyn R. Griffiths4, Kevin J. Ashton3, Matthew A. Brown18, Luciana Torquati19, 
Nir Eynon6 and Jeff S. Coombes1* 

Abstract 

Background: Low cardiorespiratory fitness (V̇O2peak) is highly associated with chronic disease and mortality from 
all causes. Whilst exercise training is recommended in health guidelines to improve V̇O2peak, there is considerable 
inter-individual variability in the V̇O2peak response to the same dose of exercise. Understanding how genetic factors 
contribute to V̇O2peak training response may improve personalisation of exercise programs. The aim of this study was 
to identify genetic variants that are associated with the magnitude of V̇O2peak response following exercise training.

Methods: Participant change in objectively measured V̇O2peak from 18 different interventions was obtained from 
a multi-centre study (Predict-HIIT). A genome-wide association study was completed (n = 507), and a polygenic 
predictor score (PPS) was developed using alleles from single nucleotide polymorphisms (SNPs) significantly associ-
ated (P < 1 ×  10–5) with the magnitude of V̇O2peak response. Findings were tested in an independent validation study 
(n = 39) and compared to previous research.

Results: No variants at the genome-wide significance level were found after adjusting for key covariates (baseline 
V̇O2peak, individual study, principal components which were significantly associated with the trait). A Quantile–Quan-
tile plot indicates there was minor inflation in the study. Twelve novel loci showed a trend of association with V̇O2peak 
response that reached suggestive significance (P < 1 ×  10–5). The strongest association was found near the membrane 
associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2) gene (rs6959961, P = 2.61 ×  10–7). A PPS created 
from the 12 lead SNPs was unable to predict V̇O2peak response in a tenfold cross validation, or in an independent 
(n = 39) validation study (P > 0.1). Significant correlations were found for beta coefficients of variants in the Predict-HIIT 
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Background
Cardiorespiratory fitness (CRF) is measured by peak 
oxygen uptake (V ̇O2peak) during a graded exercise 
test, and is strongly associated with a reduced risk of 
cardiometabolic diseases and mortality [1]. Improving 
V ̇O2peak can generally be achieved by regular endur-
ance exercise training, in a dose-dependent manner [2]. 
Data typically supports the notion that a higher dose 
of exercise (volume and intensity) will elicit greater 
V ̇O2peak gains [3–7]. Interval training, such as sprint 
interval training (SIT) and high-intensity interval train-
ing (HIIT) have shown comparable [8] and greater 
[9–13] group mean V ̇O2peak changes, respectively, 
compared with moderate-intensity continuous train-
ing (MICT). However, there is considerable inter-indi-
vidual variability in observed V ̇O2peak improvements 
following apparently similar exercise training [7, 14]. 
Identifying the genetic and environmental determi-
nants that can predict exercise response may pave the 
way to personalised exercise programs that can maxim-
ise health outcomes.

An early genome wide association study (GWAS) using 
data from the HEalth, RIsk factors, exercise Training And 
GEnetics (HERITAGE) Family Study reported that 21 
variants contributed to 49% of the variance in V̇O2peak 
response [15]. However, very few of these variants have 
been replicated in further testing or other studies sug-
gesting that the variants identified in the HERITAGE 
study were overfitted to the specific population. In a 
recent systematic review, we identified 35 studies describ-
ing 15 cohorts that found 97 possible variants associated 
with V̇O2peak training response [16]. Only 13 genetic 
variants were replicated by more than two authors [15, 
17–25], and none reached genome-wide significance. A 
lack of replication and significance in previous research 
is mostly likely due to underpowered studies that have 
predominantly been candidate-gene focused [26, 27]. 
Furthermore, a comparator arm is necessary to discrimi-
nate true inter-individual variability from random and 
technical variability, yet very few studies included such a 
group, nor did they investigate or control for population 
stratification. This evidence to-date questions the validity 

of using currently available commercial genetic tests to 
prescribe exercise interventions.

Larger sample sizes are needed to build upon current 
research and to overcome random error in V̇O2peak 
measurement at the individual level. Greater collabora-
tion between research centres using a discovery driven 
approach free from pre-existing bias is warranted [26]. 
V̇O2peak response between different population groups 
and training interventions along with assessing how indi-
vidual factors modulate response, should also be explored 
[28]. The aim of this study was to use one of the largest 
cohorts to-date (multi-centre Predict-HIIT [7] study) to 
complete a GWAS to investigate genetic variants associ-
ated with V̇O2peak response following exercise training 
interventions. In addition, we attempted to replicate can-
didate variants from previous studies, and aimed to build 
and validate a genetic prediction model for V̇O2peak 
response (polygenic predictor score, PPS) based on the 
genetic data.

Methods
Cohorts
Discovery cohort—‘Predict HIIT’
Predict-HIIT participant characteristics, recruiting and 
study intervention details have been previously outlined 
[7]. Ethical approval was obtained from the Bellberry eth-
ical committee at the University of Queensland (#2016-
02-062-A-1), and from all the institutions involved. 
Participant data was collated from 18 exercise training 
interventions across eight universities from three conti-
nents. As outlined in our previous paper [7], participant 
change in objectively measured V̇O2peak (indirect calo-
rimetry from a graded exercise test to volitional fatigue 
on a treadmill or cycle ergometer) was obtained following 
high-volume HIIT (sessions contained ≥ 15 min of high-
intensity efforts in total, n = 225), low-volume HIIT/SIT 
(sessions contained < 15  min of high-intensity efforts in 
total, n = 76), or MICT (sessions contained 30 + minutes 
of continuous exercise at 64–76% maximum heart rate, 
n = 206). The characteristics of the 507 participants from 
predominantly European descent used in our GWAS are 
outlined in Table  1 (24% female, age 55.9 ± 16.9  years, 

(P < 1 ×  10–4) and the validation study (P <  ×  10–6), indicating that general effects of the loci exist, and that with a 
higher statistical power, more significant genetic associations may become apparent.

Conclusions: Ongoing research and validation of current and previous findings is needed to determine if genetics 
does play a large role in V̇O2peak response variance, and whether genomic predictors for V̇O2peak response trainabil-
ity can inform evidence-based clinical practice.

Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR), Trial Id: ACTRN12618000501246, Date Regis-
tered: 06/04/2018, http:// www. anzctr. org. au/ Trial/ Regis trati on/ Trial Review. aspx? id= 37460 1& isRev iew= true.

Keywords: Genetics, V̇O2peak training response, Individual variability, GWAS, Polygenic predictor score

http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374601&isReview=true
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83% with pathologies and/or elderly). The deoxyribonu-
cleic acid (DNA) extraction, preparation and genotyp-
ing are outlined below. These details varied based on the 
study site where the sample was collected, and whether 
DNA extraction and/or genotyping had already been 
completed prior to this study. Our quality control meas-
ures have limited bias associated with different DNA 
preparation, extraction methods and genotyping.

Validation cohort—‘Improve‑HIIT’
For replication of our results, we utilised the unpub-
lished findings from an independent study recently 
performed in our laboratory (Improve-HIIT). The 
‘Improve-HIIT’ study examined the response to high-
volume HIIT by randomly allocating 40 sedentary 
(< 1  h of structured exercise each week) but appar-
ently healthy Caucasian adults (age 18–50) to one of 
two groups: (i) 6  weeks of supervised high-volume 
HIIT (5 min warm up, 4 min 90–95% heart rate maxi-
mum followed by 3 min recovery repeated 4 times, 3×/
week) + prebiotic fibre (oligofructose-enriched inulin) 
supplementation (12 g/day) or (ii) 6 weeks of supervised 
high-volume HIIT (3×/week) + placebo (maltodextrin) 
supplementation (12 g/day). There was no difference in 
the average V ̇O2peak response, or the inter-individual 
variability in V ̇O2peak response between study groups; 

as such, this study was deemed appropriate for vali-
dating findings from the Predict-HIIT GWAS. Ethical 
approval was obtained from the Institutional Human 
Research Ethics Approval committee at the University 
of Queensland (#2018000398).

Each participant completed a series of tests and sev-
eral measures were collated before and after the inter-
vention. Tests relevant to this analysis included the 
completion of an incremental V ̇O2peak test to exhaus-
tion on a treadmill (Ramped Bruce Protocol) using 
indirect calorimetry (Parvo Medica True One 2400 Sys-
tem, Parvo Medics, Inc., Sandy, UT, USA) before and 
after the intervention period, and provision of a saliva 
sample for genetic analysis (Oragene DNA collection 
kit, DNA Genotek, Ontario, Canada).

Genotyping, imputation and quality control were 
completed with the same protocol as for the Predict-
HIIT cohort. One sample was removed due to high 
missing genotyping rate, leaving 39 samples for fur-
ther analysis. V ̇O2peak response (post intervention 
V ̇O2peak—pre intervention V ̇O2peak) was calculated 
for each participant. Fibre/placebo supplement, age, 
sex, body fat percentage and baseline V ̇O2peak were 
not correlated with response and were not included as 
covariates for analysis. Using PLINK, the top ranked 
loci (P < 1 ×  10−5) from the Predict-HIIT study were 
compared in the Improve-HIIT study. Lower ranking 

Table 1 Genome-wide association study participant characteristics. Mean ± standard deviation

TEMs were slightly different for each training intervention and have been outlined in Table 3

Technical error of measurement (TEM) = multiplying mean V̇O2peak value by a previously published coefficient of variation for V̇O2peak of 5.6%, Minimal Clinically 
Important Difference (MCID) = 3.5 mL/kg/min, Polygenic Predictor Score (PPS). *Significant difference between high-volume HIIT & low-volume HIIT/SIT (P < 0.05),
** Significant difference between high-volume HIIT, MICT & low-volume HIIT/SIT (P < 0.05)

High‑volume HIIT MICT Low‑volume HIIT/SIT All

Participants 225 206 76 507

Sex (male/female) 187/38 156/50 42/34 385/122

Age (years) 53.4 ± 17.4 61.9 ± 12.2 46.6 ± 20.1 55.9 ± 16.9

Baseline relative V̇O2peak 
(mL/kg/min)

32.1 ± 11.5 27.6 ± 8.1 30.4 ± 13.7 30.1 ± 10.8

Relative V̇O2peak response 
(mL/kg/min)

3.4 ± 4.1
Range: − 6.5 to 18.4

2.9 ± 3.6
Range: − 7.4 to 15.3

1.9 ± 2.8
Range: − 4.6 to 8.8

*3.0 ± 3.8
Range: − 7.4 to 18.4

Number of ‘likely non 
responders’ (> 1 TEM 
below + MCID to < 1 TEM 
below the –MCID)

86 (38%)
V̇O2peak response = − 0.6 ± 1.9 

(mL/kg/min)
PPS: 2.7 ± 2.2

82 (40%)
V̇O2peak response = 
− 0.5 ± 1.9 (mL/kg/min)
PPS: 2.5 ± 2.2

42 (55%)
V̇O2peak 

response = − 0.1 ± 1.5 
(mL/kg/min)

PPS: 2.4 ± 2.6

*210 (41.4%)
V̇O2peak 

response = − 0.43 ± 1.9 
(mL/kg/min)

PPS: 2.5 ± 2.3

Number of ‘Likely 
responders’ (> 1 TEM 
above the + MCID)

67 (30%)
V̇O2peak response = 8.4 ± 2.8 

(mL/kg/min)
PPS: 6.8 ± 3.7

43 (21%)
V̇O2peak response = 8.0 ± 2.1 

(mL/kg/min)
PPS: 6.3 ± 3.1

12 (16%)
V̇O2peak response = 6.4 ± 0.9 

(mL/kg/min)
PPS: 4.8 ± 2.3

**122 (24.1%)
V̇O2peak response = 8.1 ± 2.4 

(mL/kg/min)
PPS: 6.4 ± 2.7

Number of ‘uncertain’ 
responders (< 1 TEM 
above to < 1 TEM 
below + MCID)

72 (32%)
V̇O2peak response = 3.6 ± 1.0 

(mL/kg/min)
PPS: 3.5 ± 2.6

82 (39%)
V̇O2peak response = 3.5 ± 3.6 

(mL/kg/min)
PPS: 3.4 ± 2.9

22 (29%)
V̇O2peak response = 3.1 ± 1.0 

(mL/kg/min)
PPS: 3.5 ± 0.9

175 (34.5%)
V̇O2peak response = 3.5 ± 0.99 

(mL/kg/min)
PPS: 3.5 ± 3.1



Page 4 of 15Williams et al. J Biomed Sci           (2021) 28:37 

loci (P < 1 ×  10−4) were also examined between cohorts 
(see Table 2 for study characteristics).

DNA preparation
DNA extraction from whole blood
Genomic DNA from 58 whole blood samples [29] was 
extracted using a QIAamp DNA blood midi kit (Qia-
gen, Hilden, Germany) according to the manufacturer’s 
instructions. The DNA samples were quantified using 
a Qubit fluorometer 3.0 and all samples were diluted to 
100 ng/µL for genotyping.

DNA extraction from buffy coat
DNA from 93 buffy coats [30] was extracted using a 
QIAsymphony DSP DNA Mini Kit according to manu-
facturer’s instructions [31]. The purified genomic DNA 
was stored at −20 degrees until genotyped.

DNA extraction from saliva samples
DNA from 289 saliva samples from two studies [32, 33] 
were extracted using a QIAsymphony (Qiagen) DNA 
MIDI Kit according to manufacturer’s instructions. 
The yield and purity were measured using a Trinean 
DropSense-96. DNA from a further 93 saliva samples 
from 10 studies [34–43] were extracted using the proto-
col outlined on the DNA Genotek website [44].

Genotyping
DNA from 417 samples [29, 30, 32, 34–43] were geno-
typed using Illumina CoreExome chips 24v1.1 follow-
ing standard protocols at the Australian Translational 
Genomics Centre, Princess Alexandra Hospital, Brisbane. 
A further 116 samples from Norway [33] were genotyped 
using Illumina CoreExome chips 24v1.2 at the Genomics 
Core Facility, NTNU. Bead intensity data was processed 
and normalised for each sample, and genotypes were 
identified using the Illumina Genome Studio software 
with corresponding manifest files. SNP coordinates were 
annotated to the GRCh37 genome build.

Data quality control
Genotypes at individual SNPs from all cohorts were 
merged according to the manifest and plink files. Quality 

control was completed separately on individual cohorts, 
and included assessment of missingness by individual 
(threshold < 5%), missingness by genotype (thresh-
old < 5%), Hardy–Weinberg equilibrium in controls 
(P < 1 ×  10−6), extreme heterozygosity (threshold > 3 
standard deviations from mean) and identity by descent 
threshold at 0.2 of PI_HAT score (n = 13 excluded 
individuals). For each pair of related samples (PI_
HAT > threshold), the sample with the higher missingness 
rate was removed (n = 3 excluded individuals). Along 
with quantitative GWAS analysis, we further defined 
groups based on their relative change in V̇O2peak (mL/
kg/min) for additional comparisons. Samples were classi-
fied as a ‘likely-responder’, ‘likely non-responder/adverse 
responder’ and ‘uncertain responder’ based on their rela-
tive change in V̇O2peak (mL/kg/min) following train-
ing. As outlined in Williams et al. [7], a likely responder 
achieved a V̇O2peak response above one minimal clini-
cally important difference (3.5  mL/kg/min) associated 
with a 10–25% improvement in survival over a 10-year 
period, plus one technical error of measurement (aver-
age baseline V̇O2peak multiplied by coefficient variation 
of 5.6%; calculated for each study). This high threshold 
for response was used to increase the confidence in the 
‘likely responder’/’likely non-responder’ classification. 
The thresholds are provided in Table 3.

SNPs with Minor Allele Frequency (MAF) > 0.05 
were then used to perform principal component analy-
sis (PCA) for ethnicity identification using SHELLFISH 
[45]. Ethnic and ancestry outliers (more than 6 standard 
deviations from the mean on either of the two first prin-
cipal components (PCs)) were excluded (n = 10). Then, 
data was imputed with the Haplotype Reference Con-
sortium (HRC) reference panel 1.1 [45] using the Sanger 
imputation server. SNPs with low imputation quality 
(INFO score ≤ 0.6) were excluded from further analysis. 
In total, 26 samples were removed due to large ethnicity 
deviations from the group, leaving 507 samples for asso-
ciation testing (Table 1). Genomic inflation factor λ and 
quantile–quantile (Q–Q) plots were used to compare the 
genome-wide distribution of the test statistic with the 
expected null distribution. The genomic inflation factor 
λ is defined as the median of the observed chi-squared 

Table 2 Validation study (Improve-HIIT) participant characteristics. Mean ± standard deviation

Intervention Age (years) Sex (M = male, F = female) Baseline V̇O2peak 
(mL/kg/min)

V̇O2peak 
response (mL/
kg/min)

8 weeks of maltodextrin + 6 weeks of high-volume HIIT 30.4 ± 9.8 4 M, 16 F (20 Total) 29.3 ± 7.4 3.7 ± 4.7

8 weeks of oligo-fructose enriched inulin + 6 weeks of 
high-volume HIIT

32.8 ± 9.8 5 M, 14 F (19 Total) 35.6 ± 5.3 3.9 ± 5.3

Total 31.6 ± 9.8 9 M, 30 F (39 Total) 32.4 ± 7.1 3.8 ± 5.0
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test statistic divided by the expected median of the cor-
responding chi-squared distribution. A λ close to 1 
reflects no evidence of inflation, while values up to 1.10 
are generally considered acceptable for a GWAS. Baseline 
V̇O2peak, the individual study and PC6 (the 6th principal 
components from the PCA analysis, which was signifi-
cantly associated with the phenotype) were included as 
covariates.

Statistical analysis
V̇O2peak response
Normality for V̇O2peak was assessed using the Shapiro–
Wilk test. An analysis of variance was used to compare 
average group V̇O2peak response between training inter-
ventions (high-volume HIIT, MICT, low-volume HIIT/
SIT). Variability in response was measured by the range 
of responses for each intervention. A chi-squared test 
was used to compare the proportion of likely responders, 
likely non-responders and those participants classified as 
uncertain between training groups.

Association testing of independent V̇O2peak responses
Similar to previous studies in this area [15] investigating 
polygenic phenotypes (i.e. V̇O2peak trainability), we used 
a quantitative approach rather than a case–control analy-
sis to identify variants associated with V̇O2peak response. 
Association testing was conducted in PLINK [46], using 
a linear regression. Baseline V̇O2peak, the individual 
study and the PC6 from the principal component analysis 
were found to be significantly associated with V̇O2peak 
response and were included as covariates in analysis. 
Age and sex were not associated with the trait. Our find-
ings did not change when age and sex were also included 
in the association analysis. Thus, we included covari-
ates based on a posteriori instead of a priori knowledge. 
Association analyses of imputed SNPs was assessed with 
PLINK best-guess genotypes. Genome-wide significance 
was set at the standard GWAS threshold of P < 5 ×  10−8 
and suggestive significance was set at P < 1 ×  10−5. The 
single most significant SNP (the lead SNP) was used 
to represent each of the loci. The cluster plots of the 
genotyped lead SNP, or supported genotyped SNPs of 

imputed lead SNP, were checked manually to eliminate 
poor signals. An analysis of covariance was used to com-
pare the average V̇O2peak response for each genotype of 
the top-ranked SNPs, including baseline V̇O2peak, the 
individual study and PC6 as covariates. Statistical analy-
sis was completed using SPSS (version 23.0, SPSS Inc., 
Chicago, IL, USA).

Polygenic predictor score
A polygenic predictor score (PPS) was calculated for 
each participant using the beta coefficient of the selected 
SNPs. The PPS was an extension of the ‘summary pre-
dictor score’ outlined by Bouchard et al. [15] using data 
from the HERITAGE study. In our study, we sought to 
improve on this model to ensure the ‘high response train-
ing alleles’/‘effect’ alleles were weighted by the effect size 
(beta coefficient) derived from our GWAS (see Eq. 1).

where i is the index of the SNP in k selected SNPs used 
to calculate the PPS.  βi is the effect size (beta coefficient 
of linear regression) of SNPi in the PPS model, ni is the 
number of effect alleles of SNPi.

Scores were then added across k SNPs to yield a final 
PPS and a comparison was made between likely respond-
ers, likely non-responders and those deemed uncertain 
(as described earlier). To avoid over-training (inability 
of model to be generalised to new data), we did a tenfold 
cross-validation (using MultiBLUP [47]) with the dis-
covery cohort samples and merged the results of 10 test 
folds for the analysis. The tenfold cross validation was to 
test the PPS model’s ability to predict V̇O2peak response 
in new data not related to the development of the PPS 
model internally.

Replication of candidate loci
The 97 loci identified as candidate loci for V̇O2peak 
response in our recent systematic review [16] were 
analysed and compared with the top-ranking loci 
(α < 1 ×  10−5) from the Predict-HIIT study. Lead SNPs 

(1)PPS =

k∑

i

βi ∗ ni

Table 3 Thresholds for response

Technical error of measurement (TEM) = multiplying mean V̇O2peak value by a previously published coefficient of variation for V̇O2peak of 5.6%,

Minimal Clinically Important Difference (MCID) = 3.5 mL/kg/min

Category Criteria High‑volume HIIT 
(mL/kg/min)

MICT (mL/kg/min) Low‑volume 
HIIT/SIT (mL/kg/
min)

Likely responder  > 1 TEM above the + MCID  > 5.3  > 5.0  > 5.2

Likely non-responder  > 1 TEM below + MCID to < 1 TEM below the –MCID − 5.3 to 1.7 − 5.0 to 2.0 − 5.2 to 1.8

Uncertain responders  < 1 TEM above to < 1 TEM below + MCID 1.7 to 5.3 2.0 to 5.0 1.8 to 5.2
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from all associated loci were used to calculate the PPS, 
as well as the 97 genetic variants found previously, were 
mapped to the nearest gene and submitted as a batch 
query to the ToppGene pathway analysis software [48]. 
Biological processes and pathways that appeared in both 
groups were selected. Genetic variants were also sub-
mitted to the GTEx Portal to identify if any SNPs were 
expressive quantitative trait loci (eQTL) [49].

Power calculation
Power calculations were performed using the Genome-
wide Complex Trait Analysis—Genomic-Relatedness-
Based Restricted Maximum Likelihood (GCTA-GREML) 
calculator [50].

Results
V̇O2peak response was normally distributed. Participants 
included in the GWAS from high-volume HIIT interven-
tions had a greater V̇O2peak response at the group level 
than participants from a low-volume HIIT/SIT interven-
tion (1.6  mL/kg/min, 95% CI 0.6 to 2.5, P = 0.002), but 
a comparable group V̇O2peak response to participants 
from MICT interventions (0.6 mL/kg/min, 95% CI − 0.1 
to 1.3, P = 0.1). Participants from MICT and low-volume 
HIIT/SIT interventions had similar group responses 
(1.0  mL/kg/min, 95% CI − 0.1 to 2.0, P = 0.05). Despite 
these group mean changes, there was large variability 
in individual V̇O2peak training response within each 
intervention (see Fig.  1 and Table  1 for ranges). High-
volume HIIT had more likely responders than MICT 
(9%, 0.7 to 17.0, P = 0.03) and low-volume HIIT/SIT 
(14%, 2.7 to 23.1, P = 0.02). However, high-volume HIIT 
had similar likely non-responders to MICT (− 2%, 95% 
CI − 7.2 to 11.1, P = 0.7) and less likely non-responders 

to low-volume HIIT/SIT (− 17%, 95% CI − 4.1 to − 29.3, 
P = 0.01). Furthermore, high-volume HIIT had simi-
lar uncertain responders to MICT (− 7%, 95% CI − 2.0 
to 15.9, P = 0.1) and low-volume HIIT/SIT (3%, − 9.4 
to 14.0, P = 0.6). To establish the genetic contribu-
tion towards this variance in response to each exercise 
training intervention, we completed a GWAS that was 
adjusted for significant covariates (individual study that 
the participant completed, baseline V̇O2peak and PC6).

No SNPs reached the typical threshold for genome-
wide significance (P < 5 ×  10–8). The Q-Q plot and a 
genomic inflation factor of 1.002 indicated there was very 
minor inflation in the study (i.e. population stratifica-
tion or DNA sample quality), and minor overdispersions 
of test statistics when compared to the null distribu-
tion (Fig.  2). Twelve loci were associated with V̇O2peak 
response at suggestive significance (P < 1 ×  10–5, Fig.  3 
and Table 4). The most significant association was found 
for rs6959961 near the membrane associated guanylate 
kinase, WW and PDZ domain containing 2 (MAGI2) gene 
(P = 2.61 ×  10–7). Homozygotes for the response allele 
(TT, n = 93) had a 2.4 mL/kg/min greater (P = 2.8 ×  10–7) 
average V̇O2peak response than those homozygote for 
the non-response allele (CC, n = 152) and a 1.3  mL/
kg/min greater (P = 0.002) average V̇O2peak response 
than heterozygotes (TC, n = 262). The second most 
significant association (P = 2.75 ×  10–7) was found for 
rs730747755 near the Unc-80 Homolog, NALCN Channel 
Complex Subunit (UNC80) gene. Homozygotes for the 
response allele (AA, n = 66) had a 2.6 mL/kg/min greater 
(P = 1.2 ×  10–7) average V̇O2peak response than those 
homozygote for the non-response allele (GG, n = 229), 
and a 1.8  mL/kg/min greater (P = 2.5 ×  10–4) average 
V̇O2peak response than heterozygotes (AG, n = 212).
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Fig. 1 Variability in V̇O2peak response between participants included in the GWAS
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A tenfold cross validation found the Pearson corre-
lation coefficient between subject polygenic predictor 
score (PPS) and V ̇O2peak response (likely responder, 

likely non responder or uncertain) was not significant 
 (R2 = 0.027, P-value = 0.76, see Fig.  4). Similarly, the 
PPS was not able to predict V ̇O2peak training response 
in the validation (Improve-HIIT) cohort  (R2 = 0.001, 
P = 0.8). None of the 12 lead SNPs from our GWAS had 
a P-value < 0.05 in the Improve-HIIT study. Further-
more, from the 992 variants with a P-value < 1 ×  10–4 
in the Predict-HIIT cohort, a correlation of beta coef-
ficients in the discovery (Predict-HIIT) cohort and 
the Improve-HIIT cohort was found to be significant 
 (R2 = 0.156, P-value = 7.62 ×  10–7). This suggests these 
variants in the Improve-HIIT cohort have a significant 
similar trend of effect as they do in the Predict-HIIT 
cohort.

Whilst none of the 12 lead SNPs from our GWAS val-
idated SNPs found in previous research, several of our 
lead 12 SNPs were found near genes that are in similar 
biological pathways and processes to predictor genes 
found in previous research (Table  5). Additionally, we 
were able to validate a number of SNPs from previous 
research at a nominal level (4 SNPs at P-value < 0.05, 
see Table  6). Furthermore, we found several SNPs to 
be eQTL in tissues that may influence training adap-
tations. For example, rs11647343, is an eQTL of zinc 
finger DHHC-type palmitoyltransferase 7(ZDHHC7) 
in whole blood (P = 1.8 ×  10–5). The SNP, rs2657147, is 

Fig. 2 Quantile–Quantile (QQ) plot and genomic inflation factor λ. 
λ is the observed median of test statistic distribution divided by the 
expected median of the test statistic distribution. A genomic inflation 
factor greater than 1.1 indicates there may be some inflation of the 
GWAS P-values; resulting from factors such as population stratification 
or DNA sample quality. λ = lambda, base = baseline  VO2peak, 
study = individual study participant completed, PC6 = 6th principal 
component

Fig. 3 Manhattan Plot of whole Training Cohort. The X-axis represents genomic coordinates, with the negative logarithm of the association p-value 
for each variant displayed on the Y-axis. Different chromosomes are shown with different colours. The blue line indicates the suggestive significance 
threshold 1 ×  10–5
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an eQTL of tripartite motif containing 68 (TRIM68) in 
subcutaneous adipose tissue (P = 4.8 ×  10–8).

The GCTA power calculator found a cohort of 2960 
samples would have 80% power to detect a quantitative 
trait with a true heritability of 30%.

Discussion
To our knowledge this is one of the largest multi-centre 
GWAS to investigate CRF response following exercise 
training. Compared to previous genetic studies in this 
field of research, we were able to user newer technol-
ogy and methodologies that increased the validity and 
accuracy of our results. Across the 507 participants and 
irrespective of the intervention completed, there was 
large variability in individual V̇O2peak response to high-
volume HIIT, MICT and low-volume HIIT/SIT. We were 
unable to identify genetic variants at a genome-wide sig-
nificant level that explained this variability in response to 
each training intervention. However, 12 SNPs were found 
at a suggestive level of significance and warranted further 
investigation. Several of our lead SNPs seemed possible 
candidate genes for predicting V̇O2peak response due 
to their association with previously identified predictor 

genes, and related biological pathways and processes that 
may influence training adaptations.

The most significantly associated SNP, MAGI2, can 
influence neuronal cell activin-mediated signalling, 
and may supress AKT Serine/Threoine Kinase 1 (AKT1) 
activation [51]. AKT1 is a V ̇O2peak response predic-
tor gene identified from previous research, and is one 
of three genes from the protein kinase B family that 
can influence growth, differentiation and metabolism 
[52]. The SNP, rs1130214, found near AKT1, was sig-
nificantly associated (P < 0.05) with V ̇O2peak response 
in previous research [52] and was found at a nominal 
level in our Predict-HIIT cohort (P = 0.06). One of our 
lead SNPs, rs79687662, is found near the IQ Motif Con-
taining GTPase Activating Protein 1 (IQGAP1) gene. 
IQGAP1 and AKT1 genes are both found in the E-cad-
herin signalling in the nascent adherens junction bio-
logical pathway, and together with Transcription Factor 
Hypoxia-Inducible Factor-1 (HIF1A) and Neuropilin 2 
(NRP2) (predictor genes from previous research), are 
found in the signalling events mediated by the Vascu-
lar Endothelial Growth Factor Receptor 1  (VEGFR1) 
and Vascular Endothelial Growth Factor Receptor 2 
(VEGFR2) biological pathway. Furthermore, a rat model 

Table 4 Lead SNP at each locus showing a trend for association with V̇O2peak response

Genome build GRCH37, chromosome (CHR), single nucleotide polymorphism (SNP), physical position (BP), odds ratio (OR), responder/non-responder allele (A1), 
minor allele frequency (MAF)

SNP CHR BP P‑value BETA Closet Gene Effect allele Other allele MAF

rs73074755 2 210627971 2.75 ×  10–7 1.17 UNC80
Unc-80 Homolog, NALCN Channel Complex Subunit

A G 0.34

rs16875411 5 5359876 1.22 ×  10–6 − 1.56 ADAMTS16
A Disintegrin-Like And Metalloprotease (Reprolysin Type) 

With Thrombospondin Type 1 Motif, 16

A G 0.12

rs2236368 6 41309353 4.27 ×  10–6 1.97 TFEB
Transcription Factor EB

A G 0.068

rs111346648 7 2322104 4.86 ×  10–6 3.27 AMZ1
Archaelysin Family Metallopeptidase 1

G A 0.026

rs6959961 7 79297997 2.61 ×  10–7 1.19 MAGI2
Membrane Associated Guanylate Kinase, WW And PDZ 

Domain Containing 2

T C 0.44

rs2657147 11 4573236 4.08 ×  10–6 − 1.08 OR52M1
Olfactory Receptor Family 52 Subfamily M Member 1

G A 0.37

rs145056992 11 23069615 2.92 ×  10–6 2.89 CCDC179
Coiled-Coil Domain Containing 179

G A 0.036

rs79687662 15 92921291 1.85 ×  10–6 2.33 IQGAP1
IQ Motif Containing GTPase Activating Protein 1

C T 0.052

rs11647343 16 84454267 3.10 ×  10–6 1.12 ATP2C2
ATPase Secretory Pathway Ca2 + Transporting 2

C A 0.32

rs11874598 18 11064859 4.02 ×  10–6 1.02 PIEZO2
Piezo Type Mechanosensitive Ion Channel Component 2

C T 0.47

rs149323705 20 30964328 4.52 ×  10–6 4.42 ASXL1
Additional Sex Combs Like 1, Transcriptional Regulator

T C 0.014

rs73193458 21 33375476 3.13 ×  10–6 1.49 CLDN14
Claudin 14

A G 0.14
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found the catenin (cadherin-associated protein) gene 
was upregulated in higher responders to HIIT, which 
helps to regulate angiogenesis, neurogenesis and tissue 
development [53]. Another recent rodent study found 
loss of Iqgap1 may lead to defective AKT and Extracel-
lular Signal-Regulated Kinase 1/2 (ERK1/2) signalling 
and impaired cardiomyocyte hypertrophy [54].

Our second strongest associated lead SNP, 
rs730747755, is found near the Unc-80 Homolog, NALCN 
Channel Complex Subunit (UNC80) gene. UNC80 is a 
gene that contributes to a large ion channel complex (the 
‘NALCN channelosome”), which includes the Sodium 
Leak Channel, Non Selective (NALCN) gene [55]. NALCN 
is a V̇O2peak response predictor gene found in previous 
research [18], and similar to the UNC80 gene, may influ-
ence the resting membrane potential of neuronal cells 

[55]. There is evidence that genes encoding the NALCN 
channelosome may contribute to the susceptibility for 
several diseases, including cardiac diseases, some cancers 
and psychiatric disorders [56].

Two of our associated lead SNPs were found near 
genes related to peroxisome proliferator-activated 
(PPAR) activity. The SNP rs14932370 is found near 
the ASXL Transcriptional Regulator 1 (ASXL1) gene. 
Overexpression of ASXL1 may reduce adipogenesis by 
decreasing Peroxisome Proliferator-Activated Receptor 
y (PPARy) activity [57]. The SNP, rs2236368, is found 
near the Transcription Factor EB (TFEB) gene. TFEB 
may regulate mitophagy, and in addition to Peroxisome 
Proliferator-Activated Receptor Gamma, Coactivator 1 
alpha (PGC-1α), is considered important for mitochon-
drial biogenic regulation [58]. TFEB may also regulate 

Fig. 4 Tenfold cross validation—no correlation between Polygenic Predictor Score (PPS) and V̇O2peak response  (R2 = 0.027, P = 0.76). Red, green 
and blue dots represent likely non-responders, likely responders and uncertain responders, respectively
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insulin sensitivity, glucose homeostasis and lipid oxida-
tion [59]. Overexpression of TFEB may increase mito-
chondrial biogenesis and ATP production in skeletal 
muscle, independently from PCG-1α [59]. A study also 
found PGC-1α expression can be increased through 

the dephosphorylation and nuclear translocation of 
TFEB [60]. With these points in mind, a recent study 
found completing two high-intensity exercise sessions 
within a short time frame (2  h) increased the nuclear 
abundance of TFEB and the transcription of PCG-1α 

Table 5 Gene interactions and common biological pathways and processes between this study and previous findings

Bolded genes from input from the Predict-HIIT cohort. All other genes from previous research

Biological pathways P‑value Genes from input

Signaling events mediated by VEGFR1 and VEGFR2 2.31 ×  10–4 HIF1A, IQGAP1, NRP2, AKT1

Cell adhesion molecules (CAMs) 3.76 ×  10–3 CLDN14, NLGN1, ITGB8 CD6

E-cadherin signaling in the nascent adherens junction 1.05 ×  10–2 IQGAP1, AKT1

Top 10 biological processes P‑value Genes from input

Ion transport 3.24 ×  10–6 KCNH8, ENPP3, GRIK4, NLGN1, PPARD, NR3C1, APOE, ACE, RYR2, ACSL1, PIEZO2, 
SHANK2, KCNQ5, NALCN, KCNF1, SLC22A3, ATP2C2, AKT1, PRKG1, GRIN3A, 
SLC45A1, KCNT1, UNC80

Growth 6.25 ×  10–6 HIF1A, NDN, PPARD, NR3C1, APOE, ACVR1C, TTN, IQGAP1, NRP2, MAGI2, SHANK2, 
RPTOR, CD44, AKT1, PRKG1, H19, CNTF

Developmental growth 7.08 ×  10–6 NDN, PPARD, NR3C1, APOE, ACVR1C, TTN, IQGAP1, NRP2, MAGI2, SHANK2, AKT1, 
PRKG1, H19, CNTF

Regulation of cell population proliferation 8.22 ×  10–6 HIF1A, ENPP3, NDN, BIRC7, PPARD, NR3C1, APOE, ACVR1C, ACE, NRP2, FABP6, 
PRDM1, GSTP1, MAGI2, CD6, RPTOR, CD44, PINX1, AKT1, PRKG1, H19, CNTF

Regulation of membrane potential 8.64 ×  10–6 KCNH8, GRIK4, NLGN1, RYR2, PIEZO2, SHANK2, NALCN, AKT1, GRIN3A, KCNT1, 
CNTF

Response to oxygen-containing compound 9.78 ×  10–6 HDAC9, ASXL1, HIF1A, HLCS, ID3, CAT, PPARD, NR3C1, APOE, ACVR1C, ACE, ADCY5, 
RYR2, IQGAP1, PRDM1, ACSL1, GSTP1, CD6, RPTOR, AKT1, GRIN3A

cation transmembrane transport 1.53 ×  10–5 KCNH8, GRIK4, NLGN1, RYR2, PIEZO2, SHANK2, KCNQ5, NALCN, KCNF1, SLC22A3, 
ATP2C2, PRKG1, GRIN3A, SLC45A1, KCNT1, UNC80

Cation transport 1.63 ×  10–5 KCNH8, GRIK4, NLGN1, ACE, RYR2, PIEZO2, SHANK2, KCNQ5, NALCN, KCNF1, 
SLC22A3, ATP2C2, AKT1, PRKG1, GRIN3A, SLC45A1, KCNT1, UNC80

Neurogenesis 1.85 ×  10–5 HDAC9, HIF1A, ID3, NDN, NLGN1, NR3C1, APOE, IGQAP1, NRP2, PRDM1, YTHDF1, 
MAGI2, SHANK2, DBX1, CD44, AKT1, PRKG1, GRIN3A, CNTF, ACE, GSTP1

Neuron differentiation 1.93 ×  10–5 HDAC9, HIF1A, ID3, NDN, NLGN1, NR3C1, APOE, IGQAP1, NRP2, PRDM1, YTHDF1, 
MAGI2, SHANK2, DBX1, CD44, AKT1, PRKG1, GRIN3A, CNTF

Table 6 Findings from previous studies found significant at a nominal level in the Predict HIIT study

CHR, Chromosome; SNP, single nucleotide polymorphism

SNP Closest gene CHR Beta coefficient P‑value in 
Predict ‑HIIT 
cohort

Author Responder allele/
non‑responder 
allele in previous 
research

Responder allele/non‑
responder allele in 
Predict‑HIIT study

rs10751308 SHANK2
SH3 and multiple 

ankyrin repeat 
domains 2

11 0.62 0.02 Gosh et al. [18] Unknown T allele (+)

rs10921078 RGS18
regulator of G protein 

signaling 18

1 0.68 0.02 Bouchard et al. [15] G allele (−) G (−)

rs1535628 GRIN3A
glutamate ionotropic 

receptor NMDA type 
subunit 3A

9 1.01 0.02 Bouchard et al. [15] Unknown A (+)

rs2003298 NLGN1
neuroligin 1

2 0.47 0.04 Bouchard et al. [15] A allele (+) T (+)
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in 8 healthy young men [61]. Furthermore, overexpres-
sion of PGC-1α has been associated with improved 
V ̇O2peak at baseline and following endurance training 
in several studies [62, 63].

Several of our other associated SNPs are found in the 
same biological processes and pathways to variants iden-
tified in previous research [16]. The SNP rs73193458 is 
found near the Claudin 14 (CLDN14) gene, and together 
with previously identified V̇O2peak response predic-
tor genes (Neuroligin 1 (NLGN1), Integrin Subunit Beta 
8 (ITGB8) and Cluster of Differentiation 6 (CD6)) is 
involved in the cell adhesion molecules (CAMs) bio-
logical pathway. The SNP rs11874598 found near the 
Piezo Type Mechanosensitive Ion Channel Component 2 
(PEIZO2) gene (which is a mechanosensitive ion chan-
nel involved in touch, proprioception, and respiratory 
function [64]); and rs11647343 found near the ATPase 
Secretory Pathway Ca2 + Transporting 2 (ATP2C2) gene 
(which is related to nucleotide binding and calcium trans-
porting ATPase activity and cardiac conduction [64]); 
along with several other genes identified from previous 
studies, are involved in cation transmembrane trans-
port biological processes. We also found rs11647343 and 
rs2657147 to be eQTLs of genes associated with whole 
blood (ZDHHC7) and subcutaneous tissue (TRIM68), 
respectively [49]. In mice, ZDHHC7 plays a role in glu-
cose transporter type 4 (Glut4) palmitoylation, contrib-
uting to glucose homeostasis [65], possibly contributing 
to metabolic adaptions required for V̇O2peak improve-
ments. TRIM68 variants have been associated with early 
onset obesity [66] and is upregulated following aerobic 
exercise [67]. TRIM68 is associated with ubiquitination 
[67] and may potentially play a role in proteolytic activ-
ity and exercise induced muscle damage. Body composi-
tion has been associated with exercise capacity, including 
maximal workload and oxygen uptake [68, 69]. However, 
more work is needed to go beyond association and to 
identify causal variants/genes. Future functional studies 
are needed.

Validation
We created a PPS from the top-12 associated loci from 
the discovery cohort to identify who was more likely to 
be a responder or non-responder to different forms of 
training. It was hypothesised that those identified as a 
lower responder may need a greater training dose than 
reported in our study to elicit a clinically meaningful 
response, or other environmental influences may need 
to be considered. For example, Montero and Lundby [4] 
have shown non-responders can become responders by 
increasing the dose of exercise training. Despite many of 
the suggestively associated SNPs showing a strong con-
nection to previously identified genes, processes and 

pathways that may influence training adaptions to exer-
cise, there was no significant correlation between the PPS 
score and V̇O2peak response following the tenfold cross-
validation. The variants and model could not accurately 
explain the variance in V̇O2peak response or predict who 
may be a lower or higher responder to each of the train-
ing interventions. Likewise, an independent cohort vali-
dation, from the Improve-HIIT study, did not support an 
association of the lead 12 SNPs with variance in V̇O2peak 
response when considered individually, or in the PPS 
model. This may be due to a relatively small sample size, 
or in fact that genetics plays a smaller role than previous 
research has alluded to. Our power calculation found we 
need at least 2960 samples to detect signals of common 
variants with a heritability of 30%.

Additionally, we were unable to replicate variants 
(V̇O2peak response predictor genes) identified from pre-
vious research [16] at a genome wide or suggestive level 
of significance. However, we were able to replicate sev-
eral genetic variants from previous research at a nomi-
nal significance level within the Predict-HIIT cohort, 
including: rs10751308, rs10921078, rs1535628 and 
rs2003298 (P < 0.05). Two of these SNPs (rs10921078 and 
rs2003298) had the same ‘response’ allele in the Predict-
HIIT cohort and previous research [15]. These SNPs 
warrant investigation in future studies. Furthermore, a 
significant Pearson correlation coefficient was found for 
the beta coefficient of variants with a P-value < 1 ×  10–4 in 
the Predict-HIIT cohort the Improve-HIIT cohort. This 
indicates general effects of the loci (as a group) exist, and 
a larger sample size may detect many of these effects as 
statistically significant.

Limitations
Several limitations may have prevented the finding of 
more significant associations and validating the proposed 
PPS model. Firstly, V̇O2peak response is considered a 
complex trait that may result from multiple interac-
tions between genes (epistasis) and epigenetic changes 
that can affect gene expression [27]. This was made evi-
dent with several of the lead Predict-HIIT SNPs sharing 
common biological pathways and processes to predictor 
genes identified from previous studies. Larger sample 
sizes than reported in our study (tens of thousands) are 
often needed to investigate these gene interactions via a 
GWAS, and to identify rare variants that may be contrib-
uting to overall response [70, 71]. A lack of detail in pre-
vious publications prevented some select variants from 
being replicated. Previous studies have predominantly 
been candidate-gene focused, and similar to our study, 
have lacked the necessary statistical power [16]. The vali-
dation study also lacked statistical power and the popu-
lation studied was different to the Predict-HIIT study. 
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The Predict-HIIT study included a mix of healthy, young, 
older and clinical European population groups from stud-
ies with a variety of exercise doses; whereas the validation 
study was a high volume HIIT intervention on young, 
healthy but inactive predominantly Caucasian adults, 
and included a nutrition intervention. Previous studies 
have predominantly investigated endurance interven-
tions, including participants from a mix of nationalities, 
and mainly inactive but healthy populations [16]. Moreo-
ver, there may be differences in the accuracy of findings 
between studies based on participant compliance to 
study protocols. These factors may have influenced the 
gene expression and the significance of variants discov-
ered in previous research, the validation study and the 
Predict-HIIT study. If our study had a larger sample size, 
we could have stratified our analysis to see if associations 
were different when clustered according to healthy and 
clinical populations, and training doses. We tried to com-
bat this by including significant covariates in our GWAS 
model, including the individual study.

Despite limited research, the declining cost of genetic 
testing has created an abundance of direct-to-consumer 
(DTC) DNA testing companies [71]. These testing com-
panies often base recommendations on single or very few 
genes. For example, Alpha-actinin-3 (ACTN3) is a com-
mon ‘fitness gene’ found in many DTC tests, whereby 
consumers are encouraged to modify the intensity, vol-
ume or frequency of their exercise training to suit their 
ACTN3 genotype. Potential ACTN3 ‘genotype-based 
training protocols’ for strength and endurance training 
improvements have been outlined in previous research 
[72]. For V̇O2peak improvement, the authors suggest RR 
allele homozygotes and RX allele heterozygotes are resist-
ant to muscle damage and better suited to HIIT; whereas 
XX allele homozygotes have lower skeletal muscle func-
tion and poorer recovery, and subsequently are better 
suited to MICT [72]. Our analysis and other research has 
shown that exercise-related phenotypes, such as change 
in V̇O2peak response, is a polygenic trait where multiple 
genes influence various cellular pathways [3, 14] and each 
gene may contribute only a small percentage to the over-
all change [16, 26, 73]. We have established that the sig-
nificance of these genes and associated variants remain 
uncertain, questioning the importance of genetics in pre-
dicting individual response and the validity of commer-
cial tests reliant on limited variants used for personalised 
exercise prescription.

An even larger study with more participants is needed 
to advance this field of research. In other areas of genetic 
research, this is achieved by combining datasets and 
completing a meta-analysis of many genome-wide asso-
ciation studies. As outlined by Zeggini and Ionnidis 

[74], combining many GWAS datasets would require a 
consortium with various institutions and laboratories 
combining to develop a robust protocol that addresses 
selection bias, quality control, heterogeneity of popula-
tions studied and the replication of biologically plausi-
ble previous findings. Based on our findings, we have 
calculated that at least 2960 participants would need to 
be included in well-controlled exercise interventions to 
measure V̇O2peak response. Future research should also 
focus on more than just the genome by using epigenom-
ics, transcriptomics and metagenomics. Having large 
datasets with this information may help to identify with 
greater confidence the gene and pathway interactions, 
and epigenetic changes resulting from environmental 
influences [75]. Analysis of how exercise dose and quan-
titative traits including diet, sleep, recovery between 
training sessions, clinical conditions (e.g. coronary artery 
disease, type 2 diabetes) and how the microbiome may 
affect epistasis could also be explored. The Athlome Pro-
ject Consortium is a collaborative initiative between sev-
eral institutions to find genetic variants associated with 
athletic performance [76]. A similar concept could be 
developed specifically for finding genetic variants associ-
ated with V̇O2peak response in non-athletes to aerobic 
training interventions.

Conclusions
In conclusion, we found 12 novel genetic variants asso-
ciated with V̇O2peak response in the Predict-HIIT study 
group. These SNPs have common biological pathways 
and processes to previous research  findings, but could 
not be replicated in a small independent study. Further-
more, cross-validation found the PPS created from the 
top-associated SNPS did not show significant correla-
tion with whom was likely to be a responder or non-
responder to exercise training. Heterogeneity and a lack 
of power in the discovery (Predict-HIIT) and validation 
(Improve-HIIT) cohorts may have prevented lead SNPs 
from being reproduced between studies. Our results 
highlight the possible risks associated with predictive 
scores for complex traits. Larger sample sizes with well-
prescribed, controlled and accurately measured exercise 
interventions are required to identify rare variants, gene 
interactions and epigenetic changes that may influence 
gene expression and V̇O2peak response, and to find the 
ideal exercise dose to negate non-response. Ongoing 
research and validation of current and previous findings 
is needed to confirm if genetics does play a large role in 
V̇O2peak response variance, and whether genomic pre-
dictors for V̇O2peak response trainability can inform evi-
dence-based clinical practice.
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