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Abstract 13 

Driver decisions at the onset of yellow traffic lights are often critical, as inaccurate decisions 14 

may result in traffic conflicts and collisions. A future connected environment where vehicles 15 

can communicate with traffic lights is expected to minimize the uncertainty associated with a 16 

driver’s decision-making at signalized intersections by providing advance information related 17 

to traffic light changes. The effectiveness of such a connected environment, however, remains 18 

unexplored due to the paucity of relevant data. This study examines driver decisions at the 19 

onset of yellow traffic lights when they are assisted with advance information about traffic light 20 

changes. Seventy-eight participants with diverse backgrounds performed driving experiments 21 

on an urban route with a signalized intersection simulated in the CARRS-Q Advanced Driving 22 

Simulator. The experiment consisted of two randomized driving conditions: baseline (without 23 

advance information aids) and connected environment (with advance information aids). 24 

Contrary to the existing literature, this study employs a hybrid approach, leveraging the 25 

combined benefits of data mining to identify a priori relationships and a panel mixed logit 26 

model (more specifically, correlated grouped random parameters logit with heterogeneity-in-27 

means approach) to account for unobserved heterogeneity as well as the correlation among 28 

random parameters. Our analysis shows that drivers in the connected environment are less 29 

likely to proceed through intersections at the onset of yellow light compared to the baseline 30 

condition. However, at the individual driver-level, the connected environment’s impact on 31 

driver decisions is mixed. Female drivers have been found to have a higher propensity for 32 

yellow light running in the connected environment than that of male drivers. Overall, the 33 

connected environment assists drivers in making safer decisions at the onset of yellow light.  34 

Keywords: Connected environment; road safety; yellow light; driving behavior; correlated 35 

grouped random parameters model; machine learning. 36 

1. Introduction 37 

Advancements in communication technologies like connected vehicles have shown promise to 38 

address massive transport issues related to traffic congestion, road safety, and greenhouse gas 39 

emissions. Although recent research efforts have emphasized the effectiveness of a connected 40 

environment in minimizing crash risk and improving traffic flow conditions on motorways, it 41 

is imperative to assess the efficacy of a connected environment in more complex interactions 42 
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such as in case of urban road networks. This study focuses on the impact of a connected 1 

environment in an urban context with signalized intersections. 2 

Intersections are susceptible to conflicting movements of various road users from 3 

different directions. Specifically, traversing through a signalized intersection is a complex 4 

driving maneuver that requires significant cognitive capability and visual-manual attention (Lu 5 

et al., 2015, Caird et al., 2007). Due to this complexity, intersections are associated with high 6 

crash risk (Choudhary and Velaga, 2019). For instance, during 2010, the U.S. National 7 

Highway Traffic Safety Administration reported about 35% of crashes occurred at intersections 8 

(Choi, 2010). In 2018, 179 and 48 drivers were killed in intersection-related crashes in New 9 

South Wales and Queensland, Australia, respectively (DTMR, 2019, TfNSW, 2019). 10 

 Traversing through a signalized intersection when a traffic light changes from green to 11 

yellow is an attentive task, requiring a driver to quickly decide whether to stop or cross the 12 

intersection and thus regarded as a critical interval (Elmitiny et al., 2010, Papaioannou, 2007). 13 

Drivers may end up in the dilemma zone, where one cannot safely stop before the stop line nor 14 

proceed through the intersection during a yellow interval, and then often make a decision based 15 

on their driving speeds, distance to the stop line, and their position in traffic stream (Elmitiny 16 

et al., 2010). Elmitiny et al. (2010) observed two frequent behaviors: (i) aggressive driving, 17 

where one is far away from the stop line but decides to proceed through an intersection, tending 18 

to run the red light; and (ii) conservative driving, where one is close to the stop line and could 19 

safely pass through an intersection, but decides to stop. Due to driver heterogeneity, conflicting 20 

decisions may arise from a following vehicle, leading to an increased probability of rear-end 21 

or angle crashes at intersections. It is reported that about 139,000 and 846 people were 22 

respectively injured and killed in red light running crashes in the U.S. during 2018 (IIHS, 23 

2020). 24 

 An inappropriate and risky decision of crossing an intersection at the onset of yellow 25 

light often leads to a red light violation as well as conflicts with leading vehicles that have 26 

decided to stop at the intersection and conflicts with vehicles from other directions of travel 27 

(Elmitiny et al., 2010). Along this line, Baguley (1988) classified driving behavior at 28 

intersections in three groups: (a) drivers who are likely to clear the intersection before the red 29 

light but are either hindered by a slow-moving leader or their own indecisiveness (Retting et 30 

al., 2002); (b) uncertain drivers in the dilemma zone; and (c) drivers deliberately running the 31 

red light knowing that they could cross without any safety hazards (NHTSA, 2006). This study 32 

attempts to understand driver decisions collectively from these three groups at the onset of 33 

yellow light and their contributing factors.  34 

 To study the cause-and-effect relationship of driver decisions with its contributory 35 

factors, most of the previous studies solely apply traditional statistical models (mostly 36 

commonly binary logistic models). These models require an analyst to specify main effects and 37 

potential interactions among them based on their prior knowledge and do not account for 38 

unobserved heterogeneity. This problem further aggravates while specifying higher-order 39 

interactions typically unknown to an analyst and when there exist multiple (or repeated) driving 40 

conditions that add an additional layer of potential correlation between repeated observations 41 

(Mannering et al., 2016). Ignoring these issues during the model development process may lead 42 

to model misspecification issues (see Mannering et al. (2016) for a detailed discussion). To this 43 

end, Mannering et al. (2020) pointed out that “there is a clear need in the safety field to ground 44 
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intrinsically predictive models within causal frameworks, while also taking insights from 1 

intrinsically predictive models (especially from big data) to improve upon causal structures 2 

through insights from associations involving variables not typically available in traditional 3 

safety data. One promising direction for future research would be a hybrid modeling approach 4 

of data-driven and statistical methods (with strong consideration to causal elements)”. 5 

Following the recommendation of Mannering et al. (2020), there is a clear need to combine 6 

two approaches (data mining for obtaining prior knowledge about underlying relationships and 7 

advanced econometric modeling for capturing unobserved heterogeneity) to better understand 8 

driver decisions in a connected environment (more details are provided in Section 3). 9 

The objective of this study is to investigate the impact of a connected environment on 10 

driver decisions at the onset of yellow light at signalized intersections. We address the 11 

following research questions: (1) can a connected environment reduce (or even eradicate) 12 

yellow light running?; (2) do drivers use advance information aids provided by a connected 13 

environment in a conservative manner to stop before the stop line?; (3) do drivers utilize such 14 

information in a counterproductive manner to safely proceed through an intersection?; and (4) 15 

does a connected environment result in a monotonous effect on driver decisions or there is a 16 

differential impact based on driver demographics? To answer these research questions, we 17 

employ a hybrid approach of data mining and advanced econometric modeling using real 18 

trajectory data collected from the advanced driving simulator experiment designed to mimic 19 

driving conditions in a connected environment.  20 

To this end, the rest of the paper is structured as follows: Section 2 reviews the relevant 21 

literature. Section 3 explains the experimental plan, including the driving simulator, scenario 22 

design, participant details, data collection procedure, data processing, and the hybrid modeling 23 

approach adopted in this study. Modeling results are presented in Section 4, and Section 5 24 

discusses the impact of the connected environment on driver decisions. Finally, Section 6 25 

concludes the study and provides an outlook for future research. 26 

2. Previous work on driver behavior at signalized intersections in traditional and 27 

connected environments 28 

A synthesis of the literature reveals abundant research studies related to driving behavior at 29 

signalized intersections. These studies can be classified into two streams: studies related to 30 

driver decisions at signalized intersections in a traditional environment and identifying the 31 

factors affecting their decisions (Lu et al., 2015, Elmitiny et al., 2010, Caird et al., 2007, 32 

Papaioannou, 2007, Retting et al., 2002, Porter and England, 2000, Newton et al., 1997, 33 

Baguley, 1988, Mahalel and Prashker, 1987, Sheffi and Mahmassani, 1981), and studies related 34 

to distracted driver decisions at signalized intersections (Choudhary and Velaga, 2019, Eluru 35 

and Yasmin, 2016, Haque et al., 2016a, Xiong et al., 2016). For instance, using field data, 36 

Elmitiny et al. (2010) developed a binary logit model for estimating the probability of stopping 37 

at or crossing the stop line as a function of approaching speed, distance to the stop line, driver 38 

demographics such as gender, age group, and the presence or absence of a dilemma zone. Along 39 

similar lines, younger and older driver decisions were predicted using a binary logistic model 40 

as a function of the time to stop line using a moderate-fidelity simulator (Caird et al., 2007). In 41 

another driving simulator study, a new traffic light change anticipation system was tested and 42 

compared with a regular traffic light system and found that the new system reduced red light 43 

running violations compared to the baseline system. On the other hand, Haque et al. (2016a) 44 

investigated how mobile phone use affects driver stop/go decisions at signalized intersections 45 
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using a driving simulator. This study found that running a yellow light while distracted is a 1 

function of driver demographic and speed at the onset of yellow light. More specifically, 2 

distracted young and middle-aged drivers showed a lower probability of yellow right running, 3 

reflecting risk compensation behavior. Similarly, in another driving simulator-based study, it 4 

was found that time to the stop line, maneuver type, and distraction caused by a mobile phone 5 

and a music player had a significant impact on the probability of crossing the intersection at 6 

the onset of yellow light (Choudhary and Velaga, 2019). Although these, as well as other 7 

relevant, studies have substantiated the significance of research related to driver decisions at 8 

signalized intersections during undistracted and distracted driving conditions in a traditional 9 

environment, it is yet unclear what the impact is of advance information provided by a 10 

connected environment on driver decisions at signalized intersections. This research gap 11 

motivates the present study. 12 

 Using vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, a 13 

connected environment provides event-based as well as advance information aids, which will 14 

assist in reducing the uncertainty associated with decision-making and thereby alleviating (if 15 

not completely suppressing) traffic safety issues (Ali, 2020). A thorough literature review 16 

suggests that most of the existing studies related to a connected environment are based on 17 

numerical simulations and focus on analyzing macroscopic (or network-wide) benefits of a 18 

connected environment (Njobelo et al., 2018, Xiang et al., 2016, Sam et al., 2015, Lee and 19 

Park, 2012, Chang et al., 2009). For example, Xiang et al. (2016) reported the effectiveness of 20 

auditory warning messages on brake response time to a red-light running vehicle provided by 21 

a connected environment and found reduced collision rates at intersections when warning 22 

messages were available. Similarly, another study found that an advanced stop assist system in 23 

a connected environment lowered hard braking events by about 50% at signalized intersections 24 

(Sam et al., 2015). Although these studies provide evidence of the potential benefits of a 25 

connected environment using network simulations, an important component—the human 26 

factor—is not accounted for in these studies, which is vital for the success of a connected 27 

environment (Sharma et al., 2017). Realizing this limitation of microsimulations, recent 28 

simulator-based studies have shown a positive impact of real-time driving aids in a connected 29 

environment in improving safety during car-following (Sharma et al., 2020b, Sharma et al., 30 

2019) and lane-changing (Ali et al., 2020a, Ali et al., 2020b, Ali et al., 2020c, Ali et al., 2020e, 31 

Ali et al., 2019a, Ali et al., 2019b, Ali et al., 2018)—note that these studies focused on 32 

motorways. However, it is still unclear how advance information in a connected environment 33 

affects driver decisions in an urban road context with signalized intersections.  34 

3. Methodology 35 

3.1 Design of experiment 36 

Given the novelty of a connected environment and paucity of relevant data, this study designed 37 

an experiment to collect high-quality vehicle trajectory data. As data related to driver decisions 38 

at the onset of yellow light at a signalized intersection can be difficult and unsafe to obtain 39 

from field experiments, the Centre for Accident Research and Road Safety-Queensland 40 

(CARRS-Q) Advanced Driving Simulator (shown in Figure 1(a)) was utilized to provide a 41 

controlled driving environment and flexibility of collecting data without safety concerns. 42 

Participants were asked to drive in a city environment in two randomized driving conditions: 43 

baseline driving (without advance information aids; same as the traditional driving 44 

environment) and connected environment (with advance information about traffic light 45 
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changes). The baseline driving condition is considered the ‘default’ driving condition to which 1 

the driving performance is compared. 2 

3.1.1 Advanced Driving Simulator 3 

The CARRS-Q Advanced Driving Simulator (Figure 1(a)) consists of a Holden Commodore 4 

car with fully functioning controls, fitted with three projectors displaying a 180° field of view. 5 

The simulator is also attached to a flexible rotating base that can provide six degrees-of-6 

freedom, mimicking real driving features like acceleration, deceleration, braking, cornering, 7 

and road surface. In addition, the simulator car produces simulated engine noises, vehicle-road 8 

interaction noises, and sounds of other traffic interactions. The simulator uses SCANeRTM 9 

studio software that connects eight computers for controlling the simulator car dynamics and 10 

virtual environment, and records basic operational variables (speeds, accelerations, positions, 11 

etc.) at every 0.05 s. 12 

 
(a) 

 
(c) 

 
(b) 

Fig. 1. Experiment design: (a) the Advanced Driving Simulator; (b) schematic of the 13 

designed driver-traffic signal interaction; and (c) a snapshot of the advance information 14 

displayed on the windscreen in the connected environment. 15 

Red light in 5 secs
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3.1.2 Participants  1 

To ensure the diversity and representativeness of participants recruited for this study, we 2 

advertized our experiment at various public places and social media platforms. In total, 78 3 

participants were recruited for this study, and their descriptive statistics are presented in Table 4 

1. The mean age of the participants was 30.8 years (standard deviation [SD] 11.70 years), with 5 

64% of them being male. The mean ages for male and female participants were respectively 6 

34.1 (SD 12.6) years and 24.9 (SD 6.7) years. About 80% of the participants possessed an open 7 

driving licence, and their average driving experience was 12.2 (SD 11.5) years. About 10% of 8 

the participants self-reported that they were involved in a traffic crash in the past one year. 9 

About 58% of the participants reported that they had heard about connected vehicles 10 

previously. To compensate for their time of volunteer participation in the experiment, each 11 

participant received AUD 75 after completing the experiment. 12 

Table 1 Descriptive statistics of the participants  13 

Driver characteristics Mean SD Count Percentage 

Driver’s age (years) 30.8 11.7 — — 

   Young drivers 22.11 2.44 38 48.72 

    Middle-aged drivers 35.34 3.36 32 41.03 

    Older drivers 58 4.08 8 10.26 

Gender 

   Male — — 50 64.1 

   Female — — 28 35.9 

Education 

   Primary — — 2 2.5 

   Junior (Grade 10) — — 1 1.3 

   Senior (Grade 12) — — 18 23.1 

   TAFE or Apprenticeship — — 9 11.5 

   University — — 48 61.6 

Licence type 

   Open  — — 62 79.5 

   Provisional — — 16 20.5 

Years of driving 12.2 11.5 - - 

Kilometers driven in a typical year 

   0-5,000 km — — 10 12.8 

   5,001-10,000 km — — 19 24.4 

   10,000-15,000 km — — 15 19.2 

   15,001-20,000 km — — 18 23.1 

   20,001-25,000 km — — 6 7.7 

   > 25,000 km — — 10 12.8 

Crash involvement in last one year 

   Involved — — 8 10.3 

   Not involved — — 70 89.7 

Frequency of driving per week 

   Less than 2 times — — 5 6.4 

   2-4 times — — 28 35.9 

   5-6 times — — 16 20.5 

   7-8 times — — 7 9.0 

   More than 8 times — — 22 28.2 

Prior information about Connected Vehicles 

   Yes — — 33 42.3 

   No  — — 45 57.7 



7 

 

3.1.3 Design of traffic signals 1 

To satisfy the study needs, the Brisbane Central Business District (CBD) area and its 2 

surrounding environment were simulated in the driving simulator with high accuracy with 3 

traffic signs and road marking designed according to Australian road standards. The posted 4 

speed limit in the city was 40 km/h. The interaction with a traffic signal was judiciously placed 5 

on two intersections along a city route. Prior to interacting with traffic signals, drivers drove in 6 

the simulated city environment to familiarize themselves with city driving. When approaching 7 

a signalized intersection, a driver was required to respond to the change in the traffic light 8 

turning from green to yellow. In the experiment, the driver interacted with one of the two traffic 9 

signals in each drive while the other traffic signal was green when drivers approached the 10 

intersection. The selection of the intersection for yellow light interactions in a drive was 11 

randomized among the participants. 12 

The driver-traffic signal interaction event was scripted in such a way that the traffic 13 

light turned from green to yellow when the driver was 5 s away from the stop line (see Figure 14 

1(b)) based on the speed and distance to the stop line of the subject vehicle. Following the 15 

guidelines of the Department of Transport and Mains Roads, Queensland, the yellow interval 16 

between the red and the green light was set as 3 s, which means that participants had 2 s to read 17 

and interpret the message. Although previous studies have used this time period as an 18 

explanatory variable in the model (Choudhary and Velaga, 2019, Haque et al., 2016a) due to 19 

variability in the design of traffic lights, in our study, we use a fixed time period of 5 s to 20 

minimize confounding factors as otherwise, it would be difficult to determine whether the 21 

change in driving behavior is caused by different time periods or due to the connected 22 

environment. We also avoided having lead vehicles or ambient traffic near the two intersections 23 

to further avoid confounding the data. The simulated environment is the same for both the 24 

baseline and connected environment scenario with the exception of advance traffic light 25 

information shown in the simulated connected environment.  26 

3.1.4 Design of the connected environment 27 

Using simulated vehicle-to-infrastructure (V2I) communications between the traffic light and 28 

the subject vehicle, advance information was disseminated to the participants in the connected 29 

environment driving condition. For the design of the advance information, a thorough literature 30 

review was conducted, and designs of major car manufacturers were reviewed to determine 31 

how information is disseminated to drivers. By utilizing this knowledge, the information in the 32 

driving simulator was provided in two forms: visually (a text message) and auditory (a beep 33 

sound). The visual information was displayed on the windscreen resembling the heads-up 34 

display equipped in some of the recent vehicle models. Figure 1(c) illustrates an example of 35 

advance information showing the message “Red light in 5 secs” when the participant was 5 s 36 

away from the stop line. 37 

 Prior to the two actual experiment drives, participants performed a familiarization drive 38 

to get acquainted with the driving environment, simulator car, and designed interactions. Once 39 

they felt confident about their driving, they were allowed to participate in the actual 40 

experiment. Several strategies were implemented to minimize learning effects (and resulting 41 

bias) caused by repeated driving. First, the order of the two scenarios (baseline and connected 42 

environment) was randomized. Second, the intersection where advance information was 43 

received was also randomized in each drive. Third, the surrounding environment (including 44 
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cars and buildings) was changed for each drive while keeping the signalized intersections 1 

identical. Fourth, although the scope of this paper is limited to investigating driver-traffic signal 2 

interaction in the city, each drive consisted of several other tasks such as car-following, lane-3 

changing, and interactions with a pedestrian crossing, which are presented elsewhere (Ali et 4 

al., 2020c). Each of the two drives took on average 10-12 mins, and the entire experiment 5 

finished in about 50 mins.  6 

3.1.5 Participant experiment protocol  7 

At the CARRS-Q Advanced Driving Simulator facility, participants were briefed about the 8 

driving simulators and the objective of the experiment, including a detailed explanation about 9 

advance traffic light information in the simulated connected environment using schematics 10 

presented in Figure 1. Participants were instructed to obey the posted speed limit and drive to 11 

the speed limit as close as possible. Before starting the two experiment drives, participants 12 

were asked to complete a pre-driving questionnaire, including questions related to 13 

demographics, driving history, and driving behavior, and to perform a familiarization drive 14 

consisting of interactions with traffic light changes. Participants were tested for motion 15 

sickness using the standard instrument of motion sickness assessment adapted from Brooks et 16 

al. (2010), and workloads were assessed after each drive using the NASA TLX questionnaire. 17 

After completing the experiment, the participants received their fixed monetary reward. 18 

3.2 Data collection 19 

Driver decisions are extracted from the driving simulator data as a binary dependant variable 20 

for econometric modeling purposes, where 1 means that the participant proceeded through the 21 

intersection at the onset of yellow light, while 0 means that the participant stopped before the 22 

stop line. Explanatory variables are classified into traffic operational variables, driver 23 

demographics, and driving conditions. Traffic operational variables include driving speed, 24 

distance to the stop line at the onset of yellow light, and acceleration noise (or variation) prior 25 

to the onset of yellow light. Driver demographics contain age, gender, driving experience, 26 

licence type, and education. The driving condition variable has two categories, baseline and 27 

connected environment. 28 

Table 2. Summary statistics of operational and response data for each driving scenario 29 

Variable Description of variables Mean (SD) Count (Percentage) 

  Baseline CE Baseline CE 

Driving condition   

Baseline Driving without information aids (reference) — — 78 100 

CE Driving with information aids (dummy) — — 78 100 

Traffic operational variables 
  

Speed The speed of drivers at the onset of a yellow light (m/s) 
10.16 

(1.41) 

9.65 

(1.07) 
— — 

Acceleration 

noise 

The standard deviation of acceleration/deceleration of a 

driver prior to the onset of a yellow light (m/s2) 

0.64 

(0.25)  

0.25 

(0.15) 
— — 

Distance  
The distance from the stop line at the onset of a yellow 

light (m) 

30.23 

(4.15) 

50.70 

(5.84) 
— — 

Response variable 
    

Decisions Driver decisions to proceed through a yellow light — — 51 (65.38) 26 (33.33) 

CE: connected environment 30 
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 Seventy-eight participants performed two drives, resulting in 156 decisions at the onset 1 

of yellow interval at signalized intersections. Each driver encountered two interactions with a 2 

traffic signal in repeated driving, thereby forming a panel dataset. Summary statistics of the 3 

explanatory and response variables are presented in Table 2. Among the 156 encounters with 4 

yellow lights, 51 drivers decided to proceed through the intersection in baseline conditions, 5 

while 26 drivers did so in the connected environment (this difference is also statistically 6 

significant, Fisher’s exact test: p-value < 0.001). The mean driving speeds during the baseline 7 

and connected environment driving conditions are respectively 10.16 m/s (SD 1.41 m/s) and 8 

9.65 m/s (SD 1.07 m/s). Acceleration noise—measured as the standard deviation of 9 

acceleration during the roadway segment prior to the onset of yellow light—is considered as 10 

an indicator of reckless driving (Ali et al., 2020e), and its values for the baseline and connected 11 

environment driving conditions are 0.64 m/s2 (SD 0.25 m/s2) and 0.25 m/s2 (SD 0.15 m/s2), 12 

respectively.  13 

3.3 Data analysis techniques 14 

Let 
ijy  be the indicator variable for the decision of driver i in scenario 15 

{baseline, connected},j  which equals 1 if the driver has proceeded through the intersection 16 

at a traffic signal and is 0 otherwise. Let 
ijx  and 

iz  be column vectors of corresponding 17 

driver/scenario-specific values of the traffic operational variables and driver-specific values of 18 

the sociodemographic variables, respectively. Further, let 
ijw  be a column vector of relevant 19 

interaction terms between traffic operational variables and sociodemographic variables 20 

obtained via decision tree analysis (see Section 4.1). The systematic utility 
ijV  that driver i 21 

attaches to proceeding through the intersection in scenario j, relative to stopping, is assumed to 22 

be described by a linear-additive relationship of operational and sociodemographic variables,  23 

,ij i ij i ijV    = + + +β x γ z δ w  (1) 

where,   is a constant, γ  is a column vector of coefficients for the sociodemographic variables 24 

to describe unobserved heterogeneity across drivers, and δ  is a column vector of coefficients 25 

associated with the interaction terms. We also include random parameters as suggested in the 26 

literature (e.g., Sharma et al. (2020a), Fountas et al. (2018a), Fountas and Anastasopoulos 27 

(2017), Mannering et al. (2016)), namely 
iβ  is a column vector of driver-specific random 28 

parameters for the operational variables defined as 29 

,i i= + +β μ Ψz Ωφ  (2) 

where φ  is a column vector of independent standard normally distributed random variables. 30 

As a result, the mean of the distribution of 
iβ  is equal to ,i+μ Ψz  where μ  and Ψ  are a column 31 

vector and a matrix of coefficients, respectively, the latter describing unobserved heterogeneity 32 

across drivers with respect to the sensitivity towards traffic operational conditions. The 33 

covariance of the distribution of 
iβ  (to describe unobserved heterogeneity) is equal to matrix 34 

,ΩΩ  where Ω  is a lower triangular matrix in the Cholesky decomposition that contains 35 

information about variances as well as covariances to explicitly account for correlations in the 36 

coefficients (Fountas et al., 2018b, Greene, 2012). Let σ  denote the non-zero elements in 37 

matrix .Ω . The standard deviation of the k-th random parameter in vector ,iβ  denoted by ,ki  38 
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can be obtained as 2 2 2 2

, , 1 , 2 ,1var( ) ,ki k k k k k k k    − −= + + + +  where the indices refer to 1 

positions in matrix .Ω  2 

Both probit and logit model formulations were tested, and the logit formulation was 3 

found to outperform its counterpart in terms of statistical fit, namely McFadden’s pseudo 𝜌2 4 

and Akaike Information Criterion (AIC). Considering the logit model, the probability of 5 

observing 1ijy =  in the data is given by 6 

1
Pr( 1) .

1 ij
ij ij V

p y
e
−

= = =
+

  (3) 

Given that there are two interactions with a traffic light by the same driver, it is likely 7 

that behavioral responses to both interactions are similar (Pantangi et al., 2019). To account for 8 

repeated observations of the same participant, also referred to as panel data, we explicitly 9 

consider correlations across observations in the baseline and connected environment scenarios 10 

by taking the same draw from the distribution of 
iβ  for both scenarios (Huo et al., 2020, Sharma 11 

et al., 2020b). 12 

 Maximum likelihood estimates for coefficients ( , , , , , ) γ δ μ Ψ σ  are obtained by 13 

maximizing the following loglikelihood function: 14 

1
ln (1 ) ( | , , ) ,ij ij

i

y y

ij ij i i

i j

L p p f d
− 

= − 
 

 
β

β μ Ψ σ β   (4) 

where the product over the scenarios accounts for the panel nature of the data (see Revelt and 15 

Train (1998)) and the integral considers the expectation over all possible values of 
iβ  where f 16 

is the probability density function of the corresponding multivariate normal distribution that 17 

depends on distributional coefficients. We use Monte Carlo simulation with 1000 quasi-18 

random Halton draws to numerically approximate the integral. We also tested log-normal, 19 

Weibull, uniform, and triangular distributions, but the normal distribution density function 20 

outperformed others in terms of statistical fit and interpretation, which corroborates the safety 21 

literature (Eker et al., 2019, Pantangi et al., 2019, Mannering and Bhat, 2014).  22 

 As this study finds more than one random parameter to be statistically significant (see 23 

Section 4.3), the potential correlation between the random parameters is captured. Note that 24 

such a modeling approach is frequently used in the safety literature and called a correlated 25 

grouped random parameters logit with heterogeneity-in-means approach, whereas the 26 

correlation between random parameters can be obtained using the elements in variance-27 

covariance matrix ΩΩ  as ( )corr( , ) cov( , ) / var( ) var( )ki li ki li ki li     =  where k and l refer 28 

to rows in .iβ   29 

To evaluate the validity of the parameter estimates and provide easy and 30 

straightforward interpretation of each explanatory variable on the probability of yellow light 31 

running, (point) elasticities for continuous variables and (arc) pseudo-elasticities for 32 

categorical variables are calculated using the fitted model. Note that the mathematical 33 

formulations of these elasticities are omitted for brevity purpose, and interested readers are 34 

referred to Washington et al. (2020) for more details. While the elasticity measure indicates the 35 
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percentage effect of 1% change in a continuous explanatory variable on the yellow light 1 

running probability, the pseudo-elasticity is an arc elasticity that explains the percentage effect 2 

on the yellow light running probability of an indicator variable when its value changes from 3 

zero to one. 4 

 In an effort to justify the superiority of the adopted approach (i.e., a correlated grouped 5 

random parameters logit model with heterogeneity-in-means) over its competing approaches 6 

(e.g., an uncorrelated grouped random parameters logit model with heterogeneity-in-means and 7 

a fixed parameters logit model), likelihood ratio tests are conducted, whose statistic can be 8 

calculated as 2

1 22[ ]L L = − −  (Washington et al., 2020), where 
1L  and 

2L  are the 9 

loglikelihood values at the convergences of two competitive models. 2  is chi-squared 10 

distribution with degrees-of-freedom corresponding to the difference of explanatory 11 

parameters between the two competitive models. In addition, goodness-of-fit measures such as 12 

AIC, which penalizes for additional parameters in the model, and McFadden pseudo 2  are 13 

employed for model comparison. 14 

 Specifying the best subset of explanatory variables that often includes main effects and 15 

potential interactions among them is challenging primarily because of limited prior knowledge 16 

of the underlying relationships. To this end, the analyst selects a priori second- and higher-17 

order interaction effects and non-linearities associated with main effects in conventional 18 

approaches before the model estimation. However, it is practically impossible to cater for all 19 

the possible combinations of main effects and potential higher-order interaction effects that 20 

tend to grow geometrically and exponentially, respectively, with the number of ordinal and 21 

nominal variables (Haque et al., 2016a). This issue poses a problem of judiciously selecting 22 

and omitting variables in a model, which may lead to misspecification issues like omitted 23 

variable bias (Washington et al., 2020, Mannering et al., 2016, Mannering and Bhat, 2014). 24 

 To overcome this problem, this study employs a hybrid approach of data mining (i.e., 25 

decision tree) and advanced econometric modeling approach (i.e., panel mixed logit model, 26 

more specifically, the correlated grouped random parameters logit model with heterogeneity-27 

in-means). At the first level, a decision tree analysis, which is a non-parametric method to 28 

obtain possible interactions by classifying the observations in the predictor space in an iterative 29 

process, is performed. Various potential predictors can be identified during this decision tree 30 

classification, where each predictor receives various cut-off values. However, it is often 31 

reported that decision trees are often associated with type I error due to this multiplicity, making 32 

it hard to obtain proper inferences about the underlying relationships. Nevertheless, decision 33 

tree analysis can be used to obtain a priori knowledge obtained from tree branches and can 34 

assist in determining which interaction effects to include in the logit model. At the second 35 

stage, the model is estimated by considering relevant interactions from the decision tree. This 36 

combined approach allows the consideration of higher-order interaction effects (using decision 37 

tree) and makes inferences about model output (Washington et al., 2020, Haque et al., 2016a). 38 

4. Results 39 

4.1 Decision tree 40 

We use a hybrid approach to determine relevant higher-order interaction effects in a systematic 41 

way using a data mining technique. More specifically, this study employed a decision tree 42 

based on Chi-Squared Automatic Interaction Detection (CHAID) algorithm using the ‘CHAID’ 43 
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library in Python (Ramotowski and Fitzgerald, 2020). This algorithm constructs a tree from 1 

various possible combinations and divisions on the basis of chi-square tests with a 2 

corresponding p-value of less than 0.05. While the dependent variable is a binary outcome (i.e., 3 

a driver deciding to stop at a signalized intersection or not) in the decision tree, the input 4 

variables are driving conditions, traffic operational variables, and driver demographics, as 5 

shown in Table 2. To construct the tree, a k-fold validation was performed, where we consider 6 

10k =  to divide the entire dataset into 10 unique subsets, and each subset was used to assess 7 

the tree structure. In this process, each cycle used nine-tenths of the data to train the decision 8 

tree. The decision tree correctly classified 79% of cases using 19 numbered leaves (terminal 9 

nodes), see Figure 2. Driving condition reveals the highest information gain, and thus is located 10 

at the extreme left (or top) of the tree. Table 3 presents these 19 terminal nodes that serve as 11 

potential interaction terms for inclusion in vector w in our econometric model. 12 

The decision tree classifies the driver decisions to stop or proceed by dividing the data 13 

into 37 smaller and homogenous groups, and their corresponding statistics are presented within 14 

each node (see Figure 2). The total number of cases reaching each node (N) and the percentage 15 

of stopping and proceeding at the intersection for that particular node are listed in Figure 2. For 16 

instance, terminal node 1 indicates that about 50% of drivers in the baseline condition with 17 

speed ≤ 10.22 m/s and distance to the stop line ≤ 37.4 m are likely to proceed. Similarly, 18 

terminal node 8 implies that 50% of young (or older) male drivers in the baseline condition 19 

with experience > 8.25 years are likely to stop. Terminal node 18 shows that 100% of female 20 

drivers in a connected environment with experience > 8.25 years, acceleration noise ≤ 0.43 21 

m/s2, and speed > 10.22 m/s will stop. 22 

Table 3. Interaction effects obtained from the decision tree and their descriptions 23 

No. Description 

1 Drivers in the baseline condition with speed ≤ 10.22 m/s and DSL ≤ 37.4 m 

2 Drivers in the baseline condition with speed ≤ 10.22 m/s, DSL > 37.4 m, and AN > 0.43 m/s2 

3 Drivers in the baseline condition with speed ≤ 10.22 m/s, DSL > 37.4 m, and AN ≤ 0.43 m/s2 

4 Middle-aged drivers in the baseline condition with speed > 10.22 m/s and AN > 0.43 m/s2 

5 Middle-aged drivers in the baseline condition with speed > 10.22 m/s and AN ≤ 0.43 m/s2 

6 Young (or older) drivers in the baseline condition with experience ≤ 8.25 years 

7 Young (or older) female drivers in the baseline condition with experience > 8.25 years 

8 Young (or older) male drivers in the baseline condition with experience > 8.25 years 

9 Middle-aged drivers in CE with experience ≤ 8.25 years, speed ≤ 10.22 m/s, and DSL ≤ 37.4 m 

10 Middle-aged drivers in CE with experience ≤ 8.25 years, speed > 10.22 m/s, and DSL ≤ 37.4 m 

11 Young drivers in CE with experience ≤ 8.25 years, DSL ≤ 37.4 m, speed ≤ 10.22 m/s, and AN > 0.43 m/s2 

12 Young drivers in CE with experience ≤ 8.25 years, DSL ≤ 37.4 m, speed ≤ 10.22 m/s, and AN ≤ 0.43 m/s2 

13 Young female drivers in CE with experience ≤ 8.25 years, DSL ≤ 37.4 m, speed > 10.22 m/s, and AN > 0.43 m/s2 

14 Young male drivers in CE with experience ≤ 8.25 years, DSL ≤ 37.4 m, speed > 10.22 m/s, and AN > 0.43 m/s2 

15 Drivers in CE with experience ≤ 8.25 years and DSL > 37.4 m 

16 Drivers in CE with experience > 8.25 years and AN > 0.43 m/s2 

17 Drivers in CE with experience > 8.25 years, AN ≤ 0.43 m/s2, and speed ≤ 10.22 m/s 

18 Female drivers in CE with experience > 8.25 years, AN ≤ 0.43 m/s2, and speed > 10.22 m/s 

19 Male drivers in CE with experience > 8.25 years, AN ≤ 0.43 m/s2, and speed > 10.22 m/s 

CE, DSL, AN, Exp., and speed respectively denote connected environment, distance to the stop line at onset of a 24 
yellow light (m), acceleration noise (m/s2), experience (years), and speed at onset of a yellow light (m/s). 25 

Logit models with and without interaction effects were compared, and it was found that 26 

although both the models possess a reasonable explanatory power, the model with interaction 27 

effects outperformed the counterpart model based on goodness-of-fit statistics (AIC and 28 

McFadden’s pseudo 2 ). Thus the model with interaction effects is considered hereafter. 29 
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 1 

Note that numbers in circle indicate the interaction term; C.E., DSL, AN, Exp., and speed respectively denote 2 
connected environment, distance to the stop line at the onset of a yellow light (m), acceleration noise (m/s2), 3 
experience (years), and speed at the onset of a yellow light (m/s). 4 

Fig. 2. Decision tree schematic for the stop/proceed decision model 5 
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4.2 Model selection 1 

Apart from estimating the correlated grouped random parameters logit with heterogeneity-in-2 

means (CGRPLHM) model, this study also estimated an uncorrelated grouped random 3 

parameters logit with heterogeneity-in-means (UGRPLHM) model and a fixed parameters (FP) 4 

model to evaluate the best performing model. To assess the overall statistical performance of 5 

the estimated models, following metrics are used: the log-likelihood value at convergence, L 6 

(the higher the better), the log-likelihood value with only a constant, 
0 ,L  AIC (the smaller the 7 

better), and McFadden’s pseudo 2  (the larger the better). 8 

Table 4 presents the statistical model fits for all three models. The AIC value is 190.4 9 

in the FP model, which is decreased to 189.1 and 184.1, respectively, in the UGRPLHM and 10 

CGRPLHM models, while the McFadden 2  is increased from 0.059 in the FP model to 0.153 11 

in the CGRPLHM model. These statistics reflect the better performance of the CGRPLHM 12 

model, which is also confirmed by performing likelihood ratio tests, and results are presented 13 

in Table 4. Following observations can be made from these results: (a) both the UGRPLHM 14 

and CGRPLHM models show better performance compared to the FP model at a 95% 15 

confidence level; and (b) a higher 2  statistics (i.e., 9.1) is obtained when comparing the 16 

UGRPLHM and CGRPLHM models, implying the superior performance of the CGRPLHM 17 

model (the critical value is 5.99 with two degrees-of-freedom), further ensuring the 18 

appropriateness of the CGRPLHM model for this study.  19 

 Table 4. Summary of statistical fits of the models considered in this study 20 

Candidate model 0L  L  df 
2   AIC McFadden’s pseudo 𝜌2 

Fixed parameters model (FP) -92.13 -88.20 7 7.86 190.4 0.042 

Uncorrelated grouped random parameters logit 

with heterogeneity-in-means model (UGRPLHM) 

-92.13 -82.56 12 19.14 189.1 0.104 

Correlated grouped random parameters logit with 

heterogeneity-in-means model (CGRPHM) 

-92.13 -78.01 14 28.24 184.1 0.153 

Comparisons (H0 = simpler model is better)   df 𝜒2 p-value Remark 

FP versus UGRPLHM   5 11.28 0.045 UGRPLHM is superior 

FP versus CGRPLHM   7 20.38 0.004 CGRPLHM is superior 

CGRPLHM versus UGRPLHM   1 9.10 0.002 CGRPLHM is superior 

df: degrees-of-freedom 21 

4.3 Model interpretation 22 

Table 5 presents the estimation results for the correlated grouped random parameters logit with 23 

heterogeneity-in-means model fitted to the driver decisions of proceeding through the 24 

intersection at the onset of yellow light. The dummy variable for the connected environment 25 

and distance to the stop line variables are found to be random and normally distributed, which 26 

is consistent with the literature (Ali et al., 2020d, Fountas et al., 2019). Moreover, unobserved 27 

heterogeneity in the connected environment is associated with gender. The non-random 28 

parameters in the model are speed at the onset of yellow light, acceleration noise, dummy 29 

variables for young and older drivers. Systematic utility function (1) can be written as 30 
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CE

0.946

      CE 0.224 speed 1.685 acc. noise distance to thestop line

      0.6 YoungDriver 0.972 OlderDriver

      0.914 Interaction Term 2 1.262 Interaction Term12,

DSL

V

 

= −

+  +  −  + 

+  − 

+  − 

  (5) 1 

where the first line contains the constant, the second line the traffic operational variables, the 2 

third line the sociodemographic variables, the fourth line the interaction terms, and where 3 

CE 1

DSL 2

0.889 0.841 2.531 0
FemaleDriver

0.024 0 0.26 0.058

 

 

−        
= +  +        

− −       
    (6) 4 

is the specified correlation structure between random parameters with 
1  and 

2  be the 5 

independent standard normally distributed random variables. 6 

 The diagonal and below diagonal elements of Cholesky matrix for each random 7 

parameter are given in Table 5. The standard deviation of each random parameter can be 8 

calculated as the square root of the variance (elements on the diagonal of the variance-9 

covariance matrix, which can be calculated as ΩΩ ). For instance, the standard deviations of 10 

the connected environment and distance to the stop line variables are calculated as 11 

6.405 2.531= and 0.071 0.266= , respectively.  12 

Table 5. Estimation results of the correlated grouped random parameters logit with 13 

heterogeneity-in-mean model 14 

            95% CI of estimate 

Variable estimate s.e. z-value p-value elasticity lower upper 

Non-random parameters 
       

Constant -0.946 0.329 -2.87 0.004 — — — 

Speed at onset of a yellow light 0.224 0.101 2.20 0.027 1.607 0.026 0.421 

Acceleration noise 1.685 0.742 2.27 0.023 4.376 0.231 3.139 

Young driver 0.600 0.303 1.98 0.048 0.189 0.001 1.193 

Older driver -0.972 0.421 -2.31 0.021 -0.131 -1.797 -0.148 

Interaction term 2 0.914 0.404 2.26 0.023 0.156 0.122 1.705 

Interaction term 12 -1.262 0.627 -2.01 0.044 -0.080 -2.490 0.033 

Random parameters 

Connected env. (mean) -0.889 0.440 -2.02 0.043 -0.346 -1.751 -0.026 

Distance to stop line (mean) -0.024 0.012 -2.00 0.045 -0.453 -0.048 -0.001 

Diagonal values in Cholesky matrix 
 

  

Connected env. 2.531 1.145 2.21 0.027 — — — 

Distance to stop line 0.260 0.082 3.17 <0.001 — — — 

Below diagonal values in Cholesky matrix 
  

  

Distance to the stop line: 

connected environment 

0.058 0.014 4.14 <0.001 — — — 

Heterogeneity in mean of connected environment 

Female 0.841 0.403 2.08 0.037 0.125 0.051 1.631 

L = -78.01; 
0L = -92.13; Likelihood ratio = 28.24 (p-value < 0.001); McFadden pseudo 

2 = 0.153; AIC = 184.1; 

No. of observations = 156; No. of groups = 78; Group size = 2 
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Speed at the onset of the yellow light is a significant predictor and positively associated 1 

with driver decisions (Table 5). The model suggests that drivers are more likely to proceed 2 

through the intersection with an increased speed. More specifically, with every one percent 3 

increase in the speed, the probability of proceeding through the intersection at the onset of the 4 

yellow light increases by 1.61%. This finding is intuitive because drivers with higher speeds 5 

often think that they can cross the intersection without red light violations and do not want to 6 

disrupt their continuous motion by braking hard to stop before the stop line. 7 

 Acceleration noise (or variation) has a significant and positive impact on driver 8 

decisions at the onset of the yellow light, as shown in Table 5. Results reveal that drivers with 9 

higher acceleration noise are more likely to proceed at the onset of the yellow light, with the 10 

probability of yellow light running increases by 4.38% with every one percent increase in the 11 

acceleration noise. This result implies that reckless drivers, indicated by higher acceleration 12 

noise, have a higher tendency to proceed through the intersection at the onset of the yellow 13 

light. 14 

 Young and older drivers have a higher and a lower propensity of proceeding through 15 

the intersection at the onset of the yellow light compared to middle-aged drivers (Table 5), 16 

respectively. More specifically, compared to middle-aged drivers, the probability of yellow 17 

light running increases and decreases by 0.19% and 0.13%, respectively, for young and older 18 

drivers. As it is well-known that younger drivers are often risk-takers, and older drivers are 19 

conservative (Ali et al., 2019a), our findings are intuitive and in line with the literature. We 20 

further elaborate on these findings in detail in the next section. 21 

 Apart from the main effects, the developed model contains two interaction terms. 22 

Interaction term 2 shows that drivers in the baseline condition with speed ≤ 10.22 m/s, distance 23 

to the stop line > 37.4 m, and acceleration noise ≤ 0.43 m/s2 are more likely to proceed through 24 

the yellow light at the intersection, with the corresponding increase in the probability of 0.16% 25 

(Table 5). Similarly, interaction term 12 indicates that young drivers in the connected 26 

environment with speed ≤ 10.22 m/s, distance to the stop line ≤ 37.4 m, acceleration noise > 27 

0.43 m/s2, and experience ≤ 8.25 years have a lower propensity of proceeding through the 28 

intersection at the onset of yellow light.  29 

Table 5 indicates that the mean (z-stats = -2.02; p-value = 0.043) and standard deviation 30 

(z-stats = 3.89; p-value < 0.001) of the connected environment dummy variable are statistically 31 

significant. Figure 3(a) shows the distribution of the connected environment’s coefficients, 32 

reflecting a significant heterogeneity in driver decisions in the connected environment where 33 

according to Figure 3(a), the probability of yellow light running decreases for most drivers 34 

(64%), but not necessarily for all. This finding implies that driver decisions in the connected 35 

environment are not monotonous, as there exist two classes of drivers: one who stops before 36 

the stop line and one who proceeds through the intersection at the yellow light. This result 37 

suggests that not all the drivers use the advance information provided by the connected 38 

environment in the same way, as some drivers use this information to stop prior to the stop line, 39 

reflecting their safer behavior, while others use it in a counterproductive manner and proceed 40 

through the intersection. 41 
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(a) 

 
(b) 

Fig. 3. Distributions of coefficients of (a) the connected environment; (b) Distance to stop 1 

line; note that the distribution of coefficients is obtained by keeping one of the two random 2 

parameters fixed at the mean value 3 

 We also find that heterogeneity in driver decisions in the connected environment is 4 

related to gender (Table 5). More specifically, female drivers reveal a higher likelihood of 5 

proceeding through the intersection at the onset of the yellow light in the connected 6 

environment with the probability of 0.13% compared to male drivers. 7 

Table 5 also reveals that not just the mean of the distance to the stop line is statistically 8 

significant (z-stats = -2.00; p-value = 0.045), but also its standard deviation (z-stats = 4.10; p-9 

value < 0.001), indicating a significant heterogeneity in driver decisions corresponding to the 10 

distance to the stop line. Figure 3(b) shows the existence of heterogeneity where the probability 11 

decreases for most drivers (60%), but not for all. The negative sign of the distance to the stop 12 

line variable implies that when this distance increases, the probability of proceeding through 13 

the intersection decreases, which is intuitive because drivers have a large distance to safely 14 

stop before the stop line. On the other hand, this probability increases for some drivers who 15 

tend to be aggressive and often accelerate to proceed through the intersection at the onset of 16 

yellow light. 17 

 Table 5 also presents the diagonal and below diagonal elements of Cholesky matrix, 18 

which can be used to calculate variance-covariance of the correlated random parameters and 19 

thereby assist in calculating the correlation coefficient between two random parameters (see 20 

detailed calculations in Section 3.3). We find that distance to the stop line and connected 21 

environment are statistically correlated at a 5% significance level (t-stats = 3.13; p-value = 22 

0.001) with a covariance of -0.66 and a correlation coefficient of 0.27. Note that t-stats is 23 

calculated following the post-estimation technique presented in (Fountas et al., 2018a), and for 24 

mathematical details, we refer interested readers to their study. It is worth noting that the 25 

correlation between random parameters suggests the existence of interactions of unobserved 26 

characteristics associated with the explanatory variables with correlated random parameters 27 

(Huo et al., 2020). More specifically, a positive correlation of random parameters implies 28 

homogeneous effects of unobserved characteristics of driver decisions to stop or proceed, 29 

whereas a negative correlation of random parameters suggests mixed effects of unobserved 30 

characteristics on driver decisions. In this study, we find a positive correlation between distance 31 

to the stop line and connected environment, reflecting a homogeneous effect of the unobserved 32 

characteristics associated with driver decisions related to distance to the stop line in the 33 
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connected environment. In other words, an increase in the effect of the distance to the stop line 1 

(represented by
DSL ) in the connected environment would increase the probability of running 2 

the yellow light because of unobserved heterogeneity associated with these two variables. This 3 

result implies that drivers receive information in advance about traffic light change and use 4 

such information to navigate through the intersection, reflecting that they are aware of the time 5 

left for the signal to turn red, and they decide to cross the intersection in the given time without 6 

causing a red light violation. 7 

5. Discussion 8 

5.1 Driver decisions in the connected environment 9 

Driver decisions and subsequent actions approaching a signalized intersection are regarded as 10 

critical because of their direct implications on traffic safety (Papaioannou, 2007). An 11 

uncertainty in driver decisions may cause a rear-end collision (if a driver decides to stop and 12 

applies sudden hard braking) or angle collision (if the driver decides to proceed). This 13 

uncertainty mainly arises when a traffic light suddenly changes, and the driver finds him/herself 14 

in the dilemma zone. To this end, a connected environment provides advance information that 15 

is expected to minimize (if not completely eliminate) the uncertainty associated with driver 16 

decision-making. As such, the developed model can provide insights into the probabilities of 17 

drivers’ running the yellow light as a function of driving condition, traffic operational variables, 18 

and driver demographics. More specifically, the probabilities can be calculated using the 19 

parameter estimates reported in Table 5 together with the mean values of the continuous 20 

explanatory variables and reference category for categorical variables. Note that the 21 

probabilities obtained from Equations (7) and (8) and depicted in Figure 4 are calculated for 22 

the reference category participants in the baseline and connected environment driving 23 

conditions, reflecting the average probabilities for middle-aged male drivers. The predicted 24 

probability for drivers’ running the yellow light in the baseline (without advance information) 25 

for a driving speed of 9 m/s can be computed as follows:  26 

Baseline

exp( 0.946 0.224 9 1.685 0.45 0.6 0 0.972 0 0.024 40.47 0.914 0 1.262 0 ( 0.889 0 0.841 0))
0.70

1 exp( 0.946 0.224 9 1.685 0.45 0.6 0 0.972 0 0.024 40.47 0.914 0 1.262 0 ( 0.889 0 0.841 0))
p

− +  +  +  −  −  +  −  + −  + 
= =

+ − +  +  +  −  −  +  −  + −  + 
  27 

            (7) 28 

Similarly, the corresponding probability for the connected environment can be 29 

computed as follows: 30 

CE

exp( 0.946 0.224 9 1.685 0.45 0.6 0 0.972 0 0.024 40.47 0.914 0 1.262 0 ( 0.889 1 0.841 0))
0.49

1 exp( 0.946 0.224 9 1.685 0.45 0.6 0 0.972 0 0.024 40.47 0.914 0 1.262 0 ( 0.889 1 0.841 0))
p

− +  +  +  −  −  +  −  + −  + 
= =

+ − +  +  +  −  −  +  −  + −  + 
31 

            (8) 32 

The probabilities of running the yellow light for the speed of 9 m/s (or, approximately 33 

30 km/h) are respectively 70% and 49% for the baseline and connected environment (Figure 34 

4(a)), suggesting a 21% reduction in the probability, which is attributed to the advance 35 

availability of the traffic signal information in the connected environment. This result further 36 

highlights the benefits of the connected environment in assisting drivers to make safer and 37 

informed decisions. Interestingly, the benefit of advance information is found to be a function 38 

of driver’s approaching speed, i.e., the lower the speed, the higher the benefit (in other words, 39 

a higher reduction in the probability of yellow light running, see Figure 4(a)). This can be 40 
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explained by the fact that when drivers are driving at higher approaching speeds, they tend to 1 

utilize the information presented by the connected environment to traverse the intersection, 2 

keeping in mind the time left for the signal to turn red from green. A similar interpretation can 3 

made for the relationship of acceleration noise with the probability of yellow light running (see 4 

Figure 4(b) for more details). 5 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Probabilities of running the yellow light in different conditions as a function of (a) 6 

speed at the onset of the yellow light; (b) acceleration noise; and (c) distance to the stop line 7 

Some previous studies also highlighted the benefits of the connected environment. For 8 

instance, Sharma et al. (2020a) reported that advance information disseminated via a connected 9 

environment provided additional time to drivers in a hard-braking event, where drivers were 10 

found to decelerate smoothly. In another study where drivers were given advance information 11 

about congestion ahead, it was found that drivers performed discretionary lane-changing earlier 12 

with a higher safety margin in a connected environment (Ali et al., 2020c). In line with these 13 

studies, we also observe that the connected environment assists most of the drivers to comply 14 

with the traffic lights. 15 
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Drivers’ approaching speeds have been repeatedly noted in the literature as a 1 

contributing factor to their decisions of stopping or proceeding at the onset of the yellow light. 2 

In general, drivers tend to drive as close as possible to the posted limit, but in some cases, they 3 

may violate the posted speed limit, and in turn, find themselves in a dilemma to stop or proceed. 4 

On the contrary, the connected environment provides event-based warning information 5 

whenever a driver exceeds the posted speed limit, which may result in selecting a lower driving 6 

speed. To examine whether any speed reduction is observed in our dataset, drivers’ 7 

approaching speeds to the signalized intersection are tested and compared between two driving 8 

conditions using a paired t-test, as used in our previous studies (Ali et al., 2018, Haque et al., 9 

2016b). Results reveal that the difference in the approaching speed at the onset of the yellow 10 

light is statistically significant (t = 3.56, p-value = 0.03) between two driving conditions. More 11 

specifically, the mean speeds at the onset of the yellow light in the baseline and connected 12 

environment driving conditions are respectively 10.16 m/s and 9.65 m/s. Drivers, on average, 13 

are found to drive 0.5 m/s slower while driving in the connected environment. 14 

Table 6. Approaching speed selection of different driver groups at the onset of a yellow light 15 

Speed (m/s) Driving condition Significance by a paired t-test Remark 

 Baseline  CE  

All drivers 10.12 9.66 t = 3.56, p-value = 0.03 Significant 

Age group     

Young 10.05 9.76 t = 1.01, p-value = 0.21 Not significant 

Middle-aged 10.38 9.44 t = 4.41, p-value = 0.02 Significant 

Older 9.65 10.07 F = 0.61, p-value = 0.30 Not significant 

Gender     

Male 10.27 9.62 t = 3.25, p-value = 0.04 Significant 

Female  9.95 9.73 t = 0.53, p-value = 0.32 Not significant 

CE: connected environment  16 

 Figures 4(b) and 4(c) display the probability of yellow light running in the baseline and 17 

connected environment driving conditions corresponding to different acceleration noise and 18 

distance to the stop line values, respectively, and these probabilities can be interpreted in a 19 

similar manner. 20 

Furthermore, using the developed model, probability surface plots are generated as a 21 

function of distance to the stop line, speed at the onset of yellow light, and acceleration noise, 22 

while controlling for other exogenous variables. To illustrate the impact of driving conditions, 23 

probability surfaces specific to the driving condition (e.g., baseline and connected 24 

environment) are developed and presented in Figure 5. These plots clearly highlight how under 25 

the connected environment condition, the probability of yellow light running drops 26 

significantly with higher distance and lower speeds, compared to that of the baseline condition 27 

(Figure 5(a)). Similarly, with lower distance and higher acceleration noise, the probability of 28 

yellow light running reduces significantly in the connected environment compared to the 29 

baseline condition (Figure 5(b)). These results imply the effectiveness of the connected 30 

environment in reducing the likelihood of yellow light running, thereby improving safety. 31 
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 1 

(a) Speed and distance to the stop line (DSL) 2 

 3 
(b) Acceleration noise (AN) and distance to the sop line (DSL) 4 

Fig. 5. The impact of interaction effects on the probability of yellow light running 5 
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5.2 Impact of driver demographics on the probability of yellow light running 1 

5.2.1 Driver age  2 

Figure 6 displays the probability of yellow light running across all age groups. It can be 3 

observed that the probabilities tend to increase for all age groups with the increase in 4 

approaching speed for both the scenarios, while a higher likelihood of running the yellow light 5 

is found in the baseline driving condition. For instance, the probability of yellow light running 6 

for young drivers in the baseline driving condition at 9 m/s is 75% (Figure 6(a)), while at the 7 

same approaching speed, the probability of yellow light running for young drivers in the 8 

connected environment is 55%, suggesting a 20% reduction in yellow light running. This 9 

reduction in the probability can be attributed to the slower approaching speed selection of 10 

young drivers in the connected environment. More specifically, young drivers’ approaching 11 

speeds were 0.3 m/s lower (but not statistically significant) in the connected environment 12 

compared with the speed in the baseline condition (Table 6). In general, young drivers have 13 

repeatedly been noted as risky drivers in the literature (Montgomery et al., 2014, Leung and 14 

Starmer, 2005), as they have the propensity to proceed through the intersection at the onset of 15 

the yellow light either by increasing their speed or causing a red light violation (Yang and 16 

Najm, 2006). The connected environment, however, has been found to reduce such risky 17 

behavior of young drivers by providing advance information related to traffic light change, as 18 

found in this study. 19 

 Middle-aged drivers appear to have a lower propensity for yellow light running in the 20 

connected environment. In particular, we find that middle-aged drivers show about a 15% 21 

reduction in the probability of yellow light running at the speed of 9 m/s in the connected 22 

environment compared to the baseline condition (Figure 6(b)). In line with this finding, the 23 

approaching speed of middle-aged drivers in the connected environment is found to be 1 m/s 24 

lower, which could be one of the reasons for this age group of drivers’ decreased yellow light 25 

running probabilities. As noted in Khatoon et al. (2013), middle-aged drivers are less risky 26 

compared to young drivers, and they are more likely to take better advantage of the available 27 

information (Ali et al., 2019a). Consistent with the literature, this study finds that middle-aged 28 

drivers’ probability of yellow light running is further decreased in the connected environment. 29 

 
(a) Young drivers 

 
(b) Middle-aged drivers 
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(c) Older drivers 

Fig. 6. Impact of the connected environment (CE) on the probability of yellow light running 1 

of different age groups 2 

 As reported in the literature, older drivers, in general, take more time in processing 3 

information, deciding, and taking safe actions to avoid potential safety-critical events (Preusser 4 

et al., 1998). Also, when driving without advance information, these drivers are more likely to 5 

proceed through an intersection at the onset of the yellow light (Caird et al., 2007). However, 6 

this study demonstrates that the probability of yellow light running of older drivers can be 7 

significantly decreased in the connected environment when they are assisted with advance 8 

information. Such information provides additional time to older drivers, which in turn, they use 9 

for making better and safer decisions related to when they should stop, they stop safely, and 10 

when they should pass through the intersection, they pass through it efficiently. Although the 11 

approaching speed of older drivers is about 0.4 m/s higher (but not statistically significant) in 12 

the connected environment, they appear to utilize the information and stop before the stop line 13 

more often. For instance, the probability of yellow light running in the baseline condition at 14 

the speed of 9 m/s is 68%, while the corresponding probability in the connected environment 15 

is 47% (Figure 6(c)), implying a 21% reduction in the yellow light running. 16 

In summary, the connected environment has shown to reduce the probability of yellow 17 

light running across all age groups, whereas the older age group has been found to take the 18 

most advantage of available information compared to other age groups. To support this 19 

argument, the area between curves for the baseline and connected environment is calculated 20 

for each age group. The areas for young, middle-aged, and older drivers are 1.52, 0.76, and 21 

1.81, respectively, implying that older drivers benefits more from the connected environment. 22 

This finding corroborates with some of the existing literature (Caird et al., 2008, Kramer et al., 23 

2007), suggesting that older drivers are likely to benefit more from the in-vehicle information 24 

systems compared to other age groups. 25 

5.2.2 Drivers’ gender 26 

Figure 7 represents the probability of yellow light running for both male and female drivers. 27 

Note that these probabilities are calculated using Equations (7) and (8), but the only difference 28 

is that the heterogeneity in the connected environment is defined for female drivers by setting 29 
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the dummy variable for female as one. As shown in Figure 7, both male and female drivers 1 

appear to reduce their yellow light running probabilities in the connected environment across 2 

the whole speed range, with the corresponding probability decrease on average being about 3 

23% and 31%, respectively for male and female drivers in the connected environment 4 

compared to the baseline driving condition. The connected environment has been found to 5 

provide more advantage to male drivers compared to their female counterparts. For instance, 6 

the probability reduction for female drivers in the connected environment compared with the 7 

baseline condition at 9 m/s is about 32% (Figure 7(a)), while the corresponding reduction for 8 

male drivers is about 45% (Figure 7(b)), implying that male drivers appear to better utilize the 9 

advance information from the connected environment. This is also supported by the large area 10 

between curves for the baseline and connected environment for male drivers (i.e., 5.80) 11 

compared to female drivers (i.e., 4.22). Although previous research has also documented a 12 

higher propensity of yellow light running of female drivers when they are driving without 13 

driving assistance systems (Yang and Najm, 2006), such higher propensity appears to be 14 

reduced when female drivers are assisted with advance information in the connected 15 

environment.  16 

 
(a) Male drivers 

 
(b) Female drivers 

Fig. 7. Probability of yellow light running for gender type; CE: connected environment  17 

 Furthermore, this study finds that the approaching speed of male drivers in the 18 

connected environment is about 0.65 m/s lower (and statistically significant) than that in the 19 

baseline condition, while the corresponding reduction in the speed of female drivers is about 20 

0.22 m/s (statistically insignificant, though). This result also substantiates that the connected 21 

environment assists drivers in making better decisions, as they tend to reduce their speeds 22 

significantly, avoiding being in the dilemma zone, where drivers can neither cross the 23 

intersection without causing red light violations nor stop before the stop line without applying 24 

hard braking (Haque et al., 2016a, Papaioannou, 2007). 25 

6. Conclusions 26 

This study examined driver stop/go decisions at the onset of yellow lights at signalized 27 

intersections when they are assisted with advance information of traffic light change provided 28 

by a connected environment. Data related to driver decisions were obtained from the CARRS-29 
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Q Advanced Driving Simulator. A hybrid framework of decision tree and a panel mixed logit 1 

model (more specifically, correlated grouped random parameters logit with heterogeneity-in-2 

means approach) leveraged the strengths of both these approaches, as the former approach 3 

heuristically provides information about unknown relationships while the latter approach has 4 

the ability to test the significance of observed effects by capturing unobserved heterogeneity 5 

associated with driver decisions as well as the correlation between random parameters. 6 

Modeling results revealed that although the majority of drivers in the connected environment 7 

decide to stop at the onset of the yellow signal, there also exists a class of drivers who decide 8 

to proceed through the intersection in the connected environment. Results also uncovered that 9 

such heterogeneity is associated with gender, as male drivers are less likely to proceed at the 10 

onset of the yellow light in the connected environment compared to female drivers. Moreover, 11 

by allowing the correlation between random parameters, it was found that with a higher 12 

distance to the stop line in the connected environment, the probability of yellow light running 13 

may increase. Furthermore, the speed selection behavior of drivers to approach a signalized 14 

intersection was found to be significantly influenced by the connected environment. In general, 15 

drivers in the connected environment appeared to select relatively lower approaching speeds. 16 

More specifically, young and middle-aged drivers selected lower speeds in the connected 17 

environment resulting in a lower probability of yellow light running, unlike older drivers who 18 

were found to take the most advantage of the advance information compared to other age 19 

groups. Meanwhile, both male and female drivers selected lower approaching speeds, and their 20 

probabilities of yellow light running also reduced in the connected environment.  21 

 As this study analyzed the effects of a connected environment at signalized 22 

intersections for different driver demographics, the resulting impact should be viewed with 23 

respect to the age groups and gender within the sample of this study. Note that the age groups 24 

considered in this study are aligned with Australian guidelines and some past studies (Tränkle 25 

et al., 1990, Zhang et al., 1998, Makishita and Matsunaga, 2008, Cheung and McCartt, 2011, 26 

.idcommunity, 2016). However, given the discrepancy in the definition of age groups in the 27 

literature (Thompson et al., 2012), future studies can examine whether the impact of the 28 

connected environment is sensitive to age group definition. Furthermore, we made significant 29 

efforts in ensuring the realistic representativeness of the general population in our participant 30 

recruitment; however, it can be observed that the cohort of participants is skewed towards 31 

young and male drivers. Future studies can try to maintain an equal ratio of different age groups 32 

and gender to obtain a full picture of the connected environment’s impact on driver decisions 33 

at signalized intersection. In particular, the effects of the connected environment on drivers 34 

aged more than 65 years needs to be studied 35 

Although this study employed decision tree analysis to systematically obtain higher 36 

order interactions to investigate the complex interactions of driver gender, age group, driving 37 

conditions, and traffic operational variables, many of these interaction effects were found to be 38 

insignificant and thus dropped (except for two interactions) from the parsimonious model. This 39 

restricts the current study from analysing the effects on the connected environment for driver 40 

characteristics, such as young female drivers versus young male drivers, etc. A possible reason 41 

for such insignificance could be the small sample size. As such, it is recommended for future 42 

studies to collect data from more participants to gain more insights into higher-order 43 

interactions and the probability of yellow light running. Note that although the probabilities of 44 

yellow light running are calculated using the adopted approach (i.e., random parameters with 45 
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heterogeneity-in-means), this study only uses mean values of the random parameters. As future 1 

work, a simulation-based approach could be employed to obtain more insights about the 2 

probabilistic nature of driver decisions at the onset of yellow light.   3 

Furthermore, as the time of dissemination of advance information about traffic light 4 

change was fixed in the connected environment, more research is required to understand the 5 

relationship of varying time with the effectiveness of the connected environment. It will be 6 

interesting to see whether driver decisions can change with change in the time when the 7 

information is provided. As noted in the literature, driver decisions at the onset of the yellow 8 

light are a function of driver’s position in a traffic stream. To minimize the confounding factors, 9 

this study intentionally did not place other traffic in the direction of travel, which would have 10 

restricted us to investigate the effect of driver’s position in the traffic stream on driver decisions 11 

combined with the promise of a connected environment. Investigating such effects will allow 12 

us to develop a relationship of the degree of effectiveness of a connected environment with 13 

driver’s position in the traffic stream. This study considered a fixed threshold of 5 s for 14 

changing the traffic light in the driving simulator experiment to avoid confounding factors in 15 

the analysis. It would be interesting to examine driver decisions’ sensitivity with respect to 16 

different time gaps to the stop line. Findings from such an exercise will add new insights into 17 

how the behavioral response towards the yellow light dilemma may be adjusted in the highly 18 

anticipated connected vehicle environment. In addition, this study is only concerned with an 19 

uninterrupted supply of information aids from a connected environment; however, the 20 

information supply could be impaired, such as communication delay, and the study of the 21 

effects of such impaired communication merits a research pursuit.  22 

Acknowledgments 23 

The authors would like to acknowledge Mr. Andrew Haines for programming the simulator 24 

experiment, and the help of Dr. Anshuman Sharma and Dr. Mohammad Saifuzzaman in the 25 

experiment design and data collection. This research is partly funded by Australian Research 26 

Council grants DE160100449 and LP160101021. 27 

References 28 

.Idcommunity. 2016. Service age groups | Australia | Community profile [Online].  [Accessed 29 

19 August 2019]. 30 

Ali, Y. 2020. Investigation of lane-changing behaviour in a connected environment. Ph.D. 31 

Dissertation, The University of Queensland. 32 

Ali, Y., Bliemer, M., Zheng, Z. and Haque, M. M. 2020a. Comparing the usefulness of real-33 

time driving aids in a connected environment during mandatory and discretionary lane-34 

changing manoeuvres. Transportation Research Part C, 121, 102871. 35 

Ali, Y., Bliemer, M., Zheng, Z. and Haque, M. M. 2020b. Cooperate or not? Exploring drivers’ 36 

interactions and response times to a lane-changing request in a connected environment. 37 

Transportation Research Part C, 120, 102816. 38 

Ali, Y., Haque, M., Zheng, Z., Washington, S. and Yildirimoglu, M. 2019a. A hazard-based 39 

duration model to quantify the impact of connected driving environment on safety 40 

during mandatory lane-changing. Transportation Research Part C, 106, 113-131. 41 

Ali, Y., Sharma, A., Haque, M., Zheng, Z. and Saifuzzaman, M. 2020c. The impact of the 42 

connected environment on driving behavior and safety: A driving simulator study. 43 

Accident Analysis and Prevention, 144, 105643. 44 



27 

 

Ali, Y., Zheng, Z. and Haque, M. 2018. Connectivity’s impact on mandatory lane-changing 1 

behaviour: evidences from a driving simulator study. Transportation Research Part C, 2 

93, 292-309. 3 

Ali, Y., Zheng, Z., Haque, M. and Wang, M. 2019b. A game theory-based approach for 4 

modelling mandatory lane-changing behaviour in a connected environment. 5 

Transportation Research Part C, 106, 220-242. 6 

Ali, Y., Zheng, Z., Haque, M., Yildirimoglu, M. and Washington, S. 2020d. Detecting, 7 

analysing, and modelling failed lane-changing attempts in traditional and connected 8 

environments. Analytic Methods in Accident Research, 28, 100138. 9 

Ali, Y., Zheng, Z., Haque, M., Yildirimoglu, M. and Washington, S. 2020e. Understanding the 10 

discretionary lane-changing behaviour in the connected environment. Accident 11 

Analysis and Prevention, 137, 105463. 12 

Baguley, C. 1988. Running the red'at signals on high-speed roads. Traffic Engineering and 13 

Control, 29 (7-8), 415-420. 14 

Brooks, J., Goodenough, R., Crisler, M., Klein, N., Alley, R., Koon, B., Logan Jr, W., Ogle, J., 15 

Tyrrell, R. and Wills, R. 2010. Simulator sickness during driving simulation studies. 16 

Accident Analysis and Prevention, 42 (3), 788-796. 17 

Caird, J., Chisholm, S., Edwards, C. and Creaser, J. 2007. The effect of yellow light onset time 18 

on older and younger drivers’ perception response time (PRT) and intersection 19 

behavior. Transportation Research Part F, 10 (5), 383-396. 20 

Caird, J. K., Chisholm, S. and Lockhart, J. 2008. Do in-vehicle advanced signs enhance older 21 

and younger drivers’ intersection performance? Driving simulation and eye movement 22 

results. International journal of human-computer studies, 66 (3), 132-144. 23 

Chang, S., Lin, C., Hsu, C., Fung, C. and Hwang, J. 2009. The effect of a collision warning 24 

system on the driving performance of young drivers at intersections. Transportation 25 

Research Part F, 12 (5), 371-380. 26 

Cheung, I. and Mccartt, A. 2011. Declines in fatal crashes of older drivers: Changes in crash 27 

risk and survivability. Accident Analysis and Prevention, 43 (3), 666-674. 28 

Choi, E. 2010. Crash factors in intersection-related crashes: An on-scene perspective. National 29 

Highway Traffic Safety Administration, U.S. Department of Transportation. 30 

Choudhary, P. and Velaga, N. 2019. Driver behaviour at the onset of yellow signal: a 31 

comparative study of distraction caused by use of a phone and a music player. 32 

Transportation Research Part F, 62, 135-148. 33 

Dtmr 2019. 2018 Summary Road Crash Report, Queensland Road Fatalities. Customer 34 

Services, Safety & Regulation Division, Department of Transport and Main Roads, 35 

Brisbane, Australia: Queensland Transport. 36 

Eker, U., Ahmed, S., Fountas, G. and Anastasopoulos, P. 2019. An exploratory investigation 37 

of public perceptions towards safety and security from the future use of flying cars in 38 

the United States. Analytic Methods in Accident Research, 23, 1-20. 39 

Elmitiny, N., Yan, X., Radwan, E., Russo, C. and Nashar, D. 2010. Classification analysis of 40 

driver's stop/go decision and red-light running violation. Accident Analysis and 41 

Prevention, 42 (1), 101-111. 42 

Eluru, N. and Yasmin, S. 2016. Disentangling the influence of cell phone usage in the dilemma 43 

zone: An econometric approach. Accident Analysis and Prevention, 96, 280-289. 44 

Fountas, G. and Anastasopoulos, P. 2017. A random thresholds random parameters hierarchical 45 

ordered probit analysis of highway accident injury-severities. Analytic Methods in 46 

Accident Research, 15, 1-16. 47 

Fountas, G., Anastasopoulos, P. and Abdel-Aty, M. 2018a. Analysis of accident injury-48 

severities using a correlated random parameters ordered probit approach with time 49 

variant covariates. Analytic Methods in Accident Research, 18, 57-68. 50 



28 

 

Fountas, G., Pantangi, S., Hulme, K. and Anastasopoulos, P. 2019. The effects of driver fatigue, 1 

gender, and distracted driving on perceived and observed aggressive driving behavior: 2 

a correlated grouped random parameters bivariate probit approach. Analytic Methods 3 

in Accident Research, 22, 1-15. 4 

Fountas, G., Sarwar, M., Anastasopoulos, P., Blatt, A. and Majka, K. 2018b. Analysis of 5 

stationary and dynamic factors affecting highway accident occurrence: a dynamic 6 

correlated grouped random parameters binary logit approach. Accident Analysis and 7 

Prevention, 113, 330-340. 8 

Greene, W. 2012. LIMDEP Version 10/NLOGIT Version 5. Econometric Modeling Guide. 9 

Haque, M., Ohlhauser, A., Washington, S. and Boyle, L. 2016a. Decisions and actions of 10 

distracted drivers at the onset of yellow lights. Accident Analysis and Prevention, 96, 11 

290-299. 12 

Haque, M., Oviedo-Trespalacios, O., Debnath, A. and Washington, S. 2016b. Gap acceptance 13 

behavior of mobile phone–distracted drivers at roundabouts. Transportation Research 14 

Record, 2602 (1), 43-51. 15 

Huo, X., Leng, J., Hou, Q. and Yang, H. 2020. A Correlated Random Parameters Model with 16 

Heterogeneity in Means to Account for Unobserved Heterogeneity in Crash Frequency 17 

Analysis. Transportation Research Record, 0361198120922212. 18 

Iihs. 2020. Red light running [Online]. Available: https://www.iihs.org/topics/red-light-19 

running [Accessed 16 September 2020]. 20 

Khatoon, M., Tiwari, G. and Chatterjee, N. 2013. Impact of grade separator on pedestrian risk 21 

taking behavior. Accident Analysis & Prevention, 50, 861-870. 22 

Kramer, A. F., Cassavaugh, N., Horrey, W. J., Becic, E. and Mayhugh, J. L. 2007. Influence 23 

of age and proximity warning devices on collision avoidance in simulated driving. 24 

Human factors, 49 (5), 935-949. 25 

Lee, J. and Park, B. 2012. Development and evaluation of a cooperative vehicle intersection 26 

control algorithm under the connected vehicles environment. IEEE Transactions on 27 

Intelligent Transportation Systems, 13 (1), 81-90. 28 

Leung, S. and Starmer, G. 2005. Gap acceptance and risk-taking by young and mature drivers, 29 

both sober and alcohol-intoxicated, in a simulated driving task. Accident Analysis and 30 

Prevention, 37 (6), 1056-1065. 31 

Lu, G., Liu, M., Wang, Y., Wan, H. and Tian, D. 2015. Logit-based analysis of drivers’ crossing 32 

behavior at unsignalized intersections in China. Human Factors, 57 (7), 1101-1114. 33 

Mahalel, D. and Prashker, J. 1987. A behavioral approach to risk estimation of rear-end 34 

collisions at signalized intersections. Transportation Research Record, 1114, 96-102. 35 

Makishita, H. and Matsunaga, K. 2008. Differences of drivers’ reaction times according to age 36 

and mental workload. Accident Analysis and Prevention, 40 (2), 567-575. 37 

Mannering, F. and Bhat, C. 2014. Analytic methods in accident research: Methodological 38 

frontier and future directions. Analytic Methods in Accident Research, 1, 1-22. 39 

Mannering, F., Bhat, C., Shankar, V. and Abdel-Aty, M. 2020. Big data, traditional data and 40 

the tradeoffs between prediction and causality in highway-safety analysis. Analytic 41 

Methods in Accident Research, 25, 100113. 42 

Mannering, F., Shankar, V. and Bhat, C. 2016. Unobserved heterogeneity and the statistical 43 

analysis of highway accident data. Analytic Methods in Accident Research, 11, 1-16. 44 

Montgomery, J., Kusano, K. and Gabler, H. 2014. Age and gender differences in time to 45 

collision at braking from the 100-car naturalistic driving study. Traffic Injury 46 

Prevention, 15 (sup1), S15-S20. 47 

Newton, C., Mussa, R., Sadalla, E., Burns, E. and Matthias, J. 1997. Evaluation of an 48 

alternative traffic light change anticipation system. Accident Analysis & Prevention, 29 49 

(2), 201-209. 50 

https://www.iihs.org/topics/red-light-running
https://www.iihs.org/topics/red-light-running


29 

 

Nhtsa 2006. Traffic safety facts. National Highway Traffic Safety Administration. 1 

Njobelo, G., Sando, T., Sajjadi, S., Mtoi, E., Ozguven, E. and Sobanjo, J. 2018. Safety 2 

evaluation of the advanced stop assist system in connected vehicle environment. 3 

Transportation Research Record, 2672 (22), 47-57. 4 

Pantangi, S., Fountas, G., Sarwar, M., Anastasopoulos, P., Blatt, A., Majka, K., Pierowicz, J. 5 

and Mohan, S. 2019. A preliminary investigation of the effectiveness of high visibility 6 

enforcement programs using naturalistic driving study data: a grouped random 7 

parameters approach. Analytic Methods in Accident Research, 21, 1-12. 8 

Papaioannou, P. 2007. Driver behaviour, dilemma zone and safety effects at urban signalised 9 

intersections in Greece. Accident Analysis and Prevention, 39 (1), 147-158. 10 

Porter, B. and England, K. 2000. Predicting red-light running behavior: a traffic safety study 11 

in three urban settings. Journal of Safety Research, 31 (1), 1-8. 12 

Preusser, D. F., Williams, A. F., Ferguson, S. A., Ulmer, R. G. and Weinstein, H. B. 1998. 13 

Fatal crash risk for older drivers at intersections. Accident Analysis & Prevention, 30 14 

(2), 151-159. 15 

Ramotowski, M. and Fitzgerald, R. 2020. Chi-Squared Automatic Inference Detection 16 

(CHAID) decision tree. Apache Software License, Version 5.3.0. 17 

Retting, R., Chapline, J. and Williams, A. 2002. Changes in crash risk following re-timing of 18 

traffic signal change intervals. Accident Analysis and Prevention, 34 (2), 215-220. 19 

Revelt, D. and Train, K. 1998. Mixed logit with repeated choices: households' choices of 20 

appliance efficiency level. Review of Economics and Statistics, 80 (4), 647-657. 21 

Sam, D., Evangelin, E. and Raj, V. 2015. Improving road safety for pedestrians in black spots 22 

using a hybrid vanet of vehicular sensors and pedestrian body unit. ARPN Journal of 23 

Engeering and Applied Sciences, 10, 4639-4644. 24 

Sharma, A., Ali, Y., Saifuzzaman, M., Zheng, Z. and Haque, M. Human factors in modelling 25 

mixed traffic of traditional, connected, and automated vehicles.  International 26 

Conference on Applied Human Factors and Ergonomics, 2017. Springer, 262-273. 27 

Sharma, A., Zheng, Z., Kim, J., Bhaskar, A. and Haque, M. 2019. Estimating and Comparing 28 

Response Times in Traditional and Connected Environments. Transportation Research 29 

Record, 0361198119837964. 30 

Sharma, A., Zheng, Z., Kim, J., Bhaskar, A. and Haque, M. 2020a. Is an informed driver a 31 

better decision maker? A grouped random parameters with heterogeneity-in-means 32 

approach to investigate the impact of the connected environment on driving behaviour 33 

in safety-critical situations. Analytic Methods in Accident Research, 1-24. 34 

Sharma, A., Zheng, Z., Kim, J., Bhaskar, A. and Haque, M. 2020b. Is an informed driver a 35 

better decision maker? A grouped random parameters with heterogeneity-in-means 36 

approach to investigate the impact of the connected environment on driving behaviour 37 

in safety-critical situations. Analytic Methods in Accident Research, 100127. 38 

Sheffi, Y. and Mahmassani, H. 1981. A model of driver behavior at high speed signalized 39 

intersections. Transportation Science, 15 (1), 50-61. 40 

Tfnsw. 2019. Centre for Road Safety [Online]. Transport for New South Wales, Australia 41 

https://roadsafety.transport.nsw.gov.au/statistics/interactivecrashstats/nsw.html?tabns42 

w=2 [Accessed 26 November 2019]. 43 

Thompson, K., Johnson, A., Emerson, J., Dawson, J., Boer, E. and Rizzo, M. 2012. Distracted 44 

driving in elderly and middle-aged drivers. Accident Analysis and Prevention, 45, 711-45 

717. 46 

Tränkle, U., Gelau, C. and Metker, T. 1990. Risk perception and age-specific accidents of 47 

young drivers. Accident Analysis and Prevention, 22 (2), 119-125. 48 

Washington, S., Karlaftis, M., Mannering, F. and Anastasopoulos, P. 2020. Statistical and 49 

econometric methods for transportation data analysis, CRC press. 50 

https://roadsafety.transport.nsw.gov.au/statistics/interactivecrashstats/nsw.html?tabnsw=2
https://roadsafety.transport.nsw.gov.au/statistics/interactivecrashstats/nsw.html?tabnsw=2


30 

 

Xiang, W., Yan, X., Weng, J. and Li, X. 2016. Effect of auditory in-vehicle warning 1 

information on drivers’ brake response time to red-light running vehicles during 2 

collision avoidance. Transportation Research Part F, 40, 56-67. 3 

Xiong, H., Narayanaswamy, P., Bao, S., Flannagan, C. and Sayer, J. 2016. How do drivers 4 

behave during indecision zone maneuvers? Accident Analysis and Prevention, 96, 274-5 

279. 6 

Yang, C. D. and Najm, W. 2006. Analysis of red light violation data collected from 7 

intersections equipped with red light photo enforcement cameras, US Department of 8 

Transportation, National Highway Traffic Safety Administration. 9 

Zhang, J., Fraser, S., Lindsay, J., Clarke, K. and Mao, Y. 1998. Age-specific patterns of factors 10 

related to fatal motor vehicle traffic crashes: focus on young and elderly drivers. Public 11 

health, 112 (5), 289-295. 12 

 13 


