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Abstract 

“One of the most important reasons to identify unknown persons is because non-identification may 

result in numerous issues at emotional and legal level for the surviving family members and friends.” 

(Beauthier et al., 2009, p.54). 

Reliable prediction of biogeographic ancestry (BGA) requires a complex biological and statistical 

process.  BGA can be used for criminal case work, missing persons, counterterrorism, ancient 

remains, including historical military remains. In this thesis, a knowledge-based decision support 

system (KBDSS) is developed which can assist researchers and investigators perform BGA 

prediction without requiring the user to have a statistical background. This thesis presents a case 

study on the use of the KBDSS, named DNA-Military Ancestry Predictor (DNA-MAP), for 

unidentified WWII remains recovered from the Asia-Pacific by Unrecovered War Casualties-Army 

(UWC-A).  Specifically, the KBDSS is used to estimate the probability of the remains being those of 

an Australian soldier, or those of a Japanese soldier, to facilitate decisions about the soldier’s final 

resting place.  To determine the requirements of a KBDSS for BGA prediction, two sets of literature 

reviews were performed. The first analysed (i) the literature surrounding the creation and validation 

of KBDSSs, with particular emphasis on a system’s typical format. This literature review identified 

key components for a KBDSS such as, the user inputs to be provided to the system, the processing 

hub where statistical modelling is performed, and the format of the outputted report. Based on these 

components, a second literature review (ii) was performed on studies of BGA prediction to identify 

the factors that affect BGA prediction, while considering new factors not previously considered. This 

review resulted in the identification of ten factors required for reliable BGA prediction, namely: (1) 

admixture, (2) parsimony, (3) choice of classifier, (4) defining the relevant populations, (5) sample 

size in the relevant population, (6) selecting a sample from the relevant populations, (7) the possibility 

of rare events, (8) prior probability, (9) degradation and (10) the inclusion of a margin of error. 

Subsequently, the literature was searched for each of the ten BGA factors, to determine how, if at all, 

these factors had been addressed previously in the forensic and non-forensic literature. Following a 

comparison of BGA classifiers previously been used in the literature, a new classifier was chosen for 

implementation, namely, the Parsimonious Logistic Model Tree (pLMT) classifier (Landwehr et al., 

2005). The pLMT consists of iterative applications of the basic Logistic Model Tree to create 

successive models, each of which provides an independent estimate of the required probability of 

ancestry. These independent estimates are then combined using a geometric mean average which 

becomes the final value used to determine ancestry. The method is parsimonious since it uses only 
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the components of the data (markers in a DNA panel) which are deemed the most informative based 

on a normalised information gain (also referred to as the Kullback-Leiber divergence). An additional 

difference from the methods of BGA prediction found in the literature, is that the pLMT procedure 

does not necessarily use all markers available in the original dataset, rather, each analysis is 

performed only using the markers contained in the unknown sample. The unknown sample 

information drives the modelling process. 

The effectiveness of the pLMT classifier for BGA prediction was compared to two commonly used 

classifiers in forensics and BGA prediction, the program STRUCTURE and the Generic Bayesian 

method. To compare these three classifiers, and address the other BGA factors identified, a case study 

of a current UWC-A operation was considered. The focus of the case study was remains from World 

War II Australian and Japanese soldiers in the South-East Asia Pacific. Discrimination between these 

two populations was achieved using the ancestry informative DNA marker panel, Ghaiyed Population 

Specific Panel (GPSP) (in collaboration with Ghaiyed (2020)), which contained 40 single nucleotide 

polymorphisms (SNPs) selected for their ability to distinguish between Australians and Japanese.  

The available samples were: (i) WWII era Australian individuals (n = 108), (ii) Contemporary 

Japanese individuals found in the 1000 Genomes Project (n = 104), and (iii) degraded WWII era 

Australian samples (n = 80). Samples (i) and (iii) were collected in collaboration with Ghaiyed 

(2020). Due to the small sample sizes available, and the lack of publicly available data, additional 

samples were generated for testing. Individuals were simulated based on various admixed pedigrees 

were simulated using an admixture simulation tool, SimAdmixtR (available at 

https://github.com/danwkenn/SimAdmixtR, Kennedy (2019)). For a DNA sample with a complete 

GPSP profile, the pLMT created a classification model which consisted of five independent LMT 

models which involved 34 out of the 40 total SNPs. 

Using simulated data, ten scenarios were created which consisted of varying degrees of admixture 

between Australian and Japanese ancestors across four generations. For each scenario, a sample of 

ten thousand individuals was simulated. Initially, simulated data were used to define classification 

thresholds of the predicted probability of Australian ancestry which would enable one of three 

outcomes of allocated ancestry: (i) Australian, (ii) Ambiguous and (iii) Japanese. A second, 

independent group of simulated data (using the same scenarios but each with ten thousand newly 

simulated individuals) were then used to validate these thresholds. The establishment and validation 

of thresholds were performed for all three classifiers. The following metrics were used to compare 

the classifiers: (i) the number of Australian individuals who were correctly classified as Australian, 

https://github.com/danwkenn/SimAdmixtR


viii 

 

(ii) the number of Australian individuals who were incorrectly classified as Japanese, and (iii) the 

number of Australian individuals who could not reliably be assigned to a population group. The 

results of the pLMT classifier’s validation when unknown samples included the complete GSPS 

panel, showed that for individuals with all Australian ancestors (no admixture), 99.48% were 

successfully classified as Australian and none were incorrectly classified as Japanese; the remaining 

samples were Ambiguous. For simulated individuals with a pedigree consisting of 75% Australian 

ancestors, approximately 80.64% were classified as Australian, while the remainder were 

Ambiguous. The equivalent figures were 100% and 73.15%, respectively, for the Generic Bayesian 

classifier, and 100% and 73.84%, respectively, for STRUCTURE, with the remaining individuals 

again being classified as Ambiguous. For all three classifiers, the percentage of individuals who could 

be classified as Australian, as opposed to Ambiguous, declined as the admixture proportion increased, 

however, no cases of incorrect assignment were observed.  The result of the comparison between all 

three classifiers showed that there were admixture scenarios where the percentage of correctly 

classified individuals with complete GPSP profiles was equal to or greater for pLMT than for both 

STRUCTURE and the Genetic Bayesian classifier.  

A degradation experiment using simulated data and randomly removed sets of SNPs was performed 

using the pLMT classifier to determine the minimum number of SNPs needed for accurate 

classification, information which is needed for the development of guidelines. A minimum of ten 

SNPs, out of the GPSP’s original 40, was recommended for accurate model creation. This 

recommendation was made after the pLMT was found to be unable to create accurate classification 

models with less than ten SNPs. Note that there were still instances where ten SNPs were available 

but the pLMT was unable to create an accurate classification model, suggesting that the 

recommended ten may be conservative.  

The effectiveness of the three classifiers on degraded samples (incomplete GPSP profiles) was also 

tested using a subset of the WWII Australian samples (n = 80) which had incomplete GPSP profiles 

thus representing degraded samples. Five of the available 80 were excluded from the experiment as 

they had less than ten SNPs, based on the results of the previous degradation experiment. Both 

STRUCTURE and the pLMT classifiers, which classified all 75 samples as Australian (100%), 

outperformed the Generic Bayesian classifier which classified 40 individuals (53%) as Australian 

and 35 individuals (47%) as ambiguous. These results indicate that both STRUCTURE and the pLMT 

classifiers are more readily suited for classifying degraded samples, such as would be expected in 

forensic case work. To test how the number of SNPs available affected a classifier’s performance, a 

regression analysis was performed between the number of missing SNPs and each of the classifier’s 
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outputs, (i) the probability of Australian ancestry for the pLMT, (ii) the Australian Q value for 

STRUCTURE, and (iii) the natural log of the likelihood ratio of Australian ancestry for the Generic 

Bayesian. The results of the regression demonstrated that the pLMT’s outputted probability of 

Australian ancestry was significantly affected by the number of missing SNPs, where a reduction of 

≈ 0.001 in the Geometric Mean of Australian Membership Probability was observed for each SNP 

removal (p = 0.0477). Note that this reduction was slight, and all degraded samples (n = 75) were 

still correctly classified as Australian using the established thresholds. Based on the obtained R-

squared value, approximately 20% of the variation observed was due to the number of missing SNPs. 

For STRUCTURE, there was no significant reduction observed in the Australian Q value (p = 0.776), 

demonstrating that the number of missing SNPs did not contribute to the calculated Q value. Finally, 

for the Generic Bayesian classifier, a significant reduction in the log likelihood ratio of 2.941 (p ≤ 

0.001) for each additional missing SNP, with the number of missing SNPs accounting for 

approximately 92% of the variation, based on R-squared. Note that this equates to an average 

reduction of approximately 19 in the likelihood ratio for each missing SNP. 

The Generic Bayesian classifier suffered from several limitations, namely, reduced classification 

ability for degraded samples, assumptions which may lack a scientific basis in real-casework, difficult 

comprehension for reported statements and the inability to handle values of zeros (the likelihood 

ratio). While STRUCTURE is currently considered the ‘gold-standard’ for ancestry prediction, it 

suffers the limitations of lengthy run-times, silent crashes, potential bias when selecting a value for 

K (the number of assumed populations) and assumptions which may lack a scientific basis in real-

casework. Given these limitations of these methods the pLMT classifier is a suitable alternative 

classifier which provides a shorter run-time (minutes as opposed to STRUCTURE’s hours) and 

introduces a parsimonious nature to the aspect of classification not previously accessible in other 

classifiers.   

For casework where historical knowledge is available (before the DNA is considered), it is possible 

to include an estimated weighting (a prior odds ratio), based on a believed difference in the present 

sizes of the two populations of interest. This prior odds ratio can subsequently be used to inform the 

conditional probability of a DNA profile being observed in either population (due to shared genes or 

the possibility of a rare event), thus providing an updated posterior probability. A sensitivity analysis 

was performed to evaluate how the posterior probability is affected by three factors: (i) the probability 

of Australian ancestry estimated using DNA evidence (the conditional probability), (ii) the sample 

size of the original data available for this estimation, and (iii) the prior odds ratio. It was found that 

the posterior probability is dramatically affected by the prior odds value, with an estimated 
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probability of 0.99 assuming an equal odds prior representation, being reduced to a posterior 

probability of 0.93 for a prior odds value of 0.5 and being further reduced to a posterior probability 

of 0.57 for a prior odds value of 0.05. In addition, the sample size of the data used for model 

formulation had a direct effect on the likelihood ratio, which is used to estimate the posterior 

probability. A posterior probability of 0.57 (Prior Odds = 0.05) obtained using a sample size of 100 

individuals was increased to 0.87 when a sample size of 500 individuals was used. 

The Delta method was used to estimate the variance of a function to allow for confidence intervals 

to be applied to the resulting probability of Australian ancestry. Providing a measure of the variation 

which is inevitable when the data are samples representing a much larger population, enables a 

measure of the margin of error, or reliability, to be placed on the results. Rather than outputting only 

a point estimate, information is provided to account for the presence of sampling error and its 

propagation across the modelling process.  

The statistical models created from this research were then developed into a user-friendly KBDSS 

software application for BGA prediction, DNA-Military Ancestry Predictor (DNA-MAP). DNA-

MAP provides the user with an estimate of ancestry in a clear, English statement which includes a 

measure of reliability, and provides various suggestions to the user for consideration to create a 

feedback loop. Suggestions include demonstrating how the results will vary if the user selected a 

different level of confidence or if a larger sample size had been used. DNA-MAP is the prototype of 

an ancestry prediction tool that is the first of its kind in forensic BGA prediction with key features 

including a parsimonious approach to marker selection, adaptability to any case relevant DNA panel, 

incorporation of rare event detection and prior information, provision of a measure of reliability, and 

a process which allows the information in the unknown sample to drive the classification models. 

These are features that have either not been addressed previously in the literature or not compiled 

into a single BGA prediction tool. 
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Lexicon 

Admixture Two types of admixture are discussed in the biogeographic ancestry, archaeology and 

ancient DNA literature, namely population-level admixture and family-level admixture. The former, 

is the result of two or more populations interbreeding in previous eras during settlements and 

geographic migration. The latter corresponds to ancestors from different population groups being 

introduced into a recent family pedigree   resulting in offspring who carry a proportion of genetic 

information from each ancestral population. Note that only the latter is of interest in this thesis, 

namely, family-level admixture going back four generations (great-grandparents). 

Population A homogenous group of individuals who have been selected based on one or more 

demographics/criteria using self-declared information. Therefore, the individual’s self-declaration is 

assumed to be fact despite the possibility that their self-believed ancestry may differ from their true-

genetic ancestry. 

Validation “Validation’ is broadly defined as the process by which the scientific community 

acquires the necessary information to assess the ability of a procedure to obtain reliable results, 

determine the conditions under which such results can be obtained, and define the limitations of the 

procedure” (Ogden et al., 2009, p.187). In the forensic community, the term validation is associated 

with a method being rigorously tested against standards which have been established by a governing 

accreditation body, such as the National Association of Testing Authorities (NATA) (Ogden et al., 

2009). However, in this thesis, the term is used in the broader sense, that is, confirming that the 

outputs of a statistical model are correct in a situation where the answer is known. 
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Chapter 1 – Introduction 

1.1 Project Overview 

The prediction of biogeographic ancestry (BGA) is a complex process that requires extensive 

biological and statistical testing. Note that the focus of the research presented in this thesis is on the 

statistical aspect of BGA prediction; it will be assumed that the biological testing prior to statistical 

modelling is performed accurately.  

An individual’s BGA is the culmination of unique biological variations in their DNA that have 

occurred over numerous generations based on geographic location. For example, a human clade that 

through migration and geographic separation (such as the loss of land bridges over time) evolved 

independently, would genetically present as homogeneous, with little change (barring random 

mutation) over time. Compare this to a second human population which was situated in a “migratory 

hub” and became exposed to genetic mixture between multiple coinciding populations; for example, 

Europe. This second population would evolve to display a completely different range of genetic 

profiles compared to the first which only had access to the genes that were available in the original 

ancestors. To infer BGA for an unknown individual, numerous sections of the unknown individual’s 

DNA, known to be highly variable between populations, are examined and comparisons are made to 

determine with which of the populations of interest, if any, the unknown individual shares similarity. 

This technique presents itself as a complex issue of BGA analysis; the initial search for these highly 

variable regions, requires extensive sampling from the populations of interest and thorough genetic 

testing of the human genome. 

Previous BGA studies have determined that achieving accurate prediction is based on a combination 

of collecting representative samples from the true populations of interest, a DNA panel with high 

discrimination power, and a statistical classifier with high accuracy (Cheung et al., 2017; Phillips, 

2015). To determine how these three factors, and any other factors which may be identified, have 

been previously addressed in the literature, a review of relevant BGA prediction methods will be 

performed. In instances where an approach has not been addressed in the relevant forensic literature, 

literature from other disciplines will be explored for possible alternative methods. These factors will 

be combined into a user-friendly knowledge-based decision support system (KBDSS), where 

information from various sources related to an individual’s BGA can be uploaded and analysed in a 

single program. These sources include the genetic information provided by the utilised DNA panel, 

historic information (or relevant case information), the possibility of a rare event, and accounting for 

sampling error as determined by the size of the available sample.  
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To assist with the creation of this KBDSS, the current operations of Unrecovered War Casualties – 

Army (UWC-A) will be utilised as a case study. It is estimated that there are thousands of 

unaccounted for Australian soldiers whose remains have yet to be recovered after dying in past 

military conflict (Unrecovered War Casualties – Army, n.d.). UWC-A, a multidisciplinary team 

within the Australian Defence Force (ADF), was formed to investigate areas where there may be the 

remains of Australian solders. When a set of remains are discovered UWC-A attempts to determine 

their possible ancestry to decide where the soldier should be laid to rest, and where possible for 

Australian soldiers, identify who the soldier is by name. By incorporating a user-friendly KBDSS 

into UWC-A procedures, BGA prediction may be possible without the user requiring a statistical 

background or experience in the necessary computer coding languages needed to perform the 

analyses. It is important to note that the KBDSS will act only as a decision-supporting tool, and that 

the decision-making process of assigning ancestry will ultimately be performed by UWC-A. This 

thesis will detail the construction of the KBDSS, named “DNA Military Ancestry Predictor” (DNA-

MAP), and outline the proposed statistical methodology for BGA prediction for an unknown 

individual while clearly stating and explaining the assumptions and limitations of the underlying 

processes. For this methodology it is assumed that the outcome variable of BGA is binary, that is, 

only two populations are considered for this case study, these populations are WWII-era Australian 

and Japanese soldiers. It is acknowledged that most individuals in the Australian forces in the WWII-

era were individuals with a biogeographic origin related to ancestors who settled into Australia from 

a European background and therefore can be considered as having ‘European-Australian’ ancestry. 

For the remainder of this thesis the term Australian will refer to these individuals. Note that it is 

recognised that the remains of individuals from other nationalities may be recovered by UWC-A, 

such as American or local indigenous groups, however, in this thesis a binary approach was adopted 

to demonstrate proof of concept in the process.  

An important aspect of this thesis is accounting for possible error, and where possible, providing 

processes which will mitigate error. There are two types of error that are critical for ancestry 

prediction: classification error and sampling error. Classification error relates to the possibility of the 

implemented method/model misclassifying an individual into an incorrect ancestry. This type of error 

can be mitigated by applying certain techniques to make the method/model more conservative and 

reduce the opportunity of under/overfitting. These techniques include options such as cross-

validation and will be discussed further in this thesis. Sampling error is affected by how accurately 

the sample taken reflects the true greater population. Such error will be minimised by ensuring that 
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the individuals utilised in the sample are representative of the population of interest (which may vary 

from the population as a whole), and that an adequate size is taken. 

Due to the standards of forensic casework aiming to maintain as low an error as possible, reducing 

the chance of misclassification is an important aspect of this thesis and DNA-MAP’s operations. For 

misclassification to occur, an individual would need to deviate from their own population group 

sufficiently to enable them to be more closely associated with a different population group. If this 

deviation is not taken into account in into the classification system, a misclassification could occur. 

It is proposed by this thesis that the method applied must ensure the chance of such a deviation 

occurring would be extremely low, but at the same time acknowledge and quantify the remaining 

possibility. Methods of detecting a rare event are utilised in DNA-MAP to ensure that if a deviation 

as described did occur it would be detected and accounted for in the classification model.  

1.2 Global Objective 

The global objective of this research is to develop a user-friendly KBDSS that would provide UWC-

A with a reliable BGA prediction estimate that mitigates the chance of misclassification of WWII 

soldiers’ remains to almost zero and aids in their decision-making, reducing the proportion of 

‘ambiguous’ classifications. 

1.3 Specific Aims 

Five specific aims are proposed in this project, namely, to: 

1. Identify and review key components and factors from the relevant literature on KBDSSs and 

BGA prediction studies; 

2. Determine methods of ensuring relevant populations are selected given the DNA panel and 

specific situation; 

3. Develop and validate an optimal methodology for classifying individuals, and compare said 

method to other alternative methods from the literature; 

4. Expand upon the currently used methodology to incorporate prior information, degradation 

of DNA (missing data) and measures of reliability and error; 

5. Develop a user-friendly KBDSS using the developed methodology; 

1.4 Significance 

The primary gap that was identified during this research is the lack of guidelines in the forensic 

science community describing how accurate and precise BGA prediction should be performed. In 

this thesis, several statistical factors were identified that play a key role in BGA prediction that are 
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either overlooked in the literature or as of yet have no recommended universal approach. Of particular 

importance are the detection of a rare event, and the incorporation of prior historical information 

together with genetic data. Where available, methodology has been outlined in this thesis to 

demonstrate possible approaches for other applications of BGA prediction.  

The creation of DNA-MAP provides a user-friendly software application for binary BGA prediction. 

While software such as STRUCTURE can be used as a predictor of BGA, such tools stop short of 

providing a clear statement with an interpretable measure of reliability together with a warning of 

their limitations.  

DNA-MAP is adaptable for any binary classification method and can be utilised with different 

populations and DNA panels. By recording which, if any, SNPs are missing from the unknown test 

sample’s profile and subsequently removing the same SNPs from the original training data, DNA-

MAP ensures that the unknown profile drives the modelling process. The use of the unknown profile 

as the driving force has not been previously observed in the literature. DNA-MAP can readily create 

a new classification scheme that is appropriate for the specific case of interest. This SNP removal 

process allows DNA-MAP to adapt to samples with missing data, which may occur from DNA 

degradation. 

Two important aspects of DNA-MAP’s algorithm are the incorporation of a prior odds ratio and the 

provision of a given level of confidence in the obtained results. A posterior is calculated by 

incorporating empirical cumulative distribution functions to estimate the probability of observing a 

BGA profile in the populations of interest; said probability is then combined with a prior odds ratio 

chosen by the user. Providing a measure of the associated error of a resulting probability is paramount 

to DNA-MAP’s reporting process. Each of DNA-MAP’s two outputted statistics, the geometric mean 

of the probability of Australian ancestry and the posterior probability, have a method for estimating 

the associated variance which is then used to calculate a confidence interval. These methods utilise 

the Delta method, which allows DNA-MAP to estimate the variance of a function, ensuring that any 

propagation of error is accounted for during analysis, ensuring that the result is not simply stated as 

a point estimate. 
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1.5 Structure of Thesis 

The structure of this thesis will be as follows: 

Chapter 2 provides an overview of a typical KBDSS, exploring the relevant literature to determine 

the key components and functions of these systems by analysing four specific KBDSSs selected from 

the literature. Aims addressed in this chapter: 1. 

Chapter 3 provides a literature review of BGA prediction studies, outlining a list of factors that may 

affect a classifier’s effectiveness. This chapter compares previous approaches performed in the 

forensic literature and other disciplines. Aims addressed in this chapter: 1. 

Chapter 4 details the materials and methodology used in this thesis, and outlines the case study, and 

how the two classifiers selected for testing were utilised. Aims addressed in this chapter: 2, 3, 4. 

Chapter 5 provides the results obtained from the methodology outlined in Chapter 4. Aims addressed 

in this chapter: 3, 4. 

Chapter 6 describes DNA-MAP’s process, how the results from Chapter 5 were incorporated into the 

KBDSS software application to create a decision-supporting tool for UWC-A. Aims addressed in this 

chapter: 5, 6. 

Chapter 7 is the discussion, suggesting where methods may have been limited, and proposing future 

directions for additional research with concluding remarks about the overall research. 
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Chapter 2 – Implementing a Knowledge-Based 

Decision Support System 

2.1 Introduction – The Need for an Information Hub 

Prediction of BGA for an unknown set of skeletal remains is a complex process, which involves a 

variety of biological and statistical methods and which can encompass unwieldy amounts of data. 

Benefit, therefore, lies in creating a “meeting point” system, through which the various types of data 

involved in BGA prediction can be accurately analysed and combined into a single output. Simply 

put, this “meeting point” system could be constructed in the form of a packaged algorithm contained 

within a programming language such as R or Python, however, a standalone algorithm requires the 

user to have some minimal understanding of the programming language. The primary intended users 

for a BGA prediction system are forensic scientists, the military, and police investigators, and it 

cannot be assumed that every user would have training or even an interest in the relevant 

programming language. Therefore, the system must have a user-friendly front-end that requires as 

few instructions and as little training as possible.  

It was decided that a KBDSS would be a suitable format for a BGA prediction tool. The utility of a 

basic Decision Support System (DSS) becomes apparent when one considers the nature of ancestry 

prediction for forensic investigations. A DSS ensures the human element of the decision-making 

process is kept intact, by supplying the pertinent information in an accessible format that assists the 

user with their decision (Leni et al., 2013). Marin (2008) details that most DSS fall into one of five 

type-based categories, (i) communication, (ii) data, (iii) document, (iv) knowledge, and (v) model. 

The proposed KBDSS belongs to the knowledge-based category. A KBDSS is described as a 

specialised problem-solver which is designed for a specific task and can “…suggest or provide 

action…” to the user (Marin, 2008, p.2).   

This chapter will use four KBDSSs selected from the literature to establish common themes seen in 

such tools; it will identify the primary components of any KBDSS and develop a proposed plan for 

the development of a KBDSS for BGA prediction. 
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2.2 What is a KBDSS? 

Black and Stockton (2009, p.1) state that KBDSSs can be broadly defined as “computational systems 

that provide access to a wealth of information pertaining to a specific problem.”. KBDSS have also 

been said to utilise knowledge from numerous sources to support an expert in problem-solving and 

decision-making (Workneh et al., 2019). The key term in this statement is “support”, as discussed in 

Section 2.1 the objective of a KBDSS is to provide detailed reports summarising various inputs of 

data, but ultimately, the outputs are used to inform a human decision-maker. Since their conception, 

KBDSSs have been developed for a wide range of disciplines, with some examples from the literature 

shown in Table 2.1.  

To date, a KBDSS has not been utilised for BGA prediction, making this thesis the first 

implementation of such a system in this discipline. However, in the broader forensic literature there 

have been instances of DSSs being utilised in areas such as entomology or policing (Morvan et al., 

2007; Noor et al., 2014; Oatley et al., 2006; Shen et al., 2006).  
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Table 2.1: Examples of Applied KBDSS found in the Literature. 

Knowledge-based decision support systems for a variety of disciplines which have been implemented to assist one or 

more users to improve quality/efficiency in the given area. 

Study Discipline Scope 
Primary User 

(Decision-Maker) 

Kerr et al. (1999a), Kerr 

et al. (1999b)  
Agriculture 

Optimisation of factors 

used in dairy farming to 

improve overall milk 

production 

Dairy farmers, bank 

managers, loan 

officers, farm 

consultants 

Ritchie (1990)  Traffic Management 

Addressing congestion in 

large or complex traffic 

networks 

Control room staff 

Uricchio et al. (2004) 
Water Treatment 

Management 

Evaluating relationships 

between human activities 

and environment 

conservation 

Environmental 

resource managers 

Workneh et al. (2019)  Clinical Research 
Detection and diagnosis 

of acute abdominal pain 
Physicians 

González-Ferrer et al. 

(2018) 
Healthcare 

Assisting civilians and 

health professionals detect 

mistakes, reducing wasted 

resources, selecting health 

policies 

Health Professionals 

Yurdakul et al. (2020)  Manufacturing 

Selection of materials for 

creating high-pressure 

components in machinery 

Manufacturers 

Zouri et al. (2019)  
Clinical and Health 

Management 

Improving patient quality-

of-life based on various 

performance metrics 

Managers and 

Physicians 

Asad et al. (2019a)  
Industrial Safety 

Management 

Prevention of hazardous 

activities in oil and gas 

drilling operations 

On-site industrial 

managers 

Jung and Chung (2016)  Health Management  

Providing 

recommendations for 

preventative management 

and health improvements 

for obese youths. 

Dieticians and Obese 

Youths.  

Jo et al. (2016)  Education 

Identify key elements of a 

smart classroom 

(integrated with IT) to 

achieve positive effects on 

education.   

Teachers and 

Administration 
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A typical KBDSS is comprised of three layers: i) inputs, ii) statistical modelling, and iii) reported 

output. Figure 2.1 illustrates this in a generalisation, note that more layers may be required for 

systems of greater complexity.  

 
Figure 2.1: Generalised Flowchart of a KBDSS 

The general KBDSS will consist of three primary phases i) inputs, ii) statistical modelling, and iii) reported output, 

each phase handles multiple functions within the system. 

 

The input layer is where the KBDSS’s user will spend most of the time when interacting with the 

system, often in the form of a user-friendly front-end interface. It is here that the user will provide 

the system with key information that is pertinent to the user’s targeted scenario. In addition to user-

uploaded data, a KBDSS will usually have input components of data and expert knowledge, the latter 

based on ideal circumstances provided by an expert in the relevant discipline. The availability of 

expert knowledge allows these systems to make comparisons between the user’s observed inputs and 

an expert’s ideal standard (Asad et al., 2019a); recommendations can be suggested to the user based 
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on any discrepancies. The expert selected will be a professional with a wealth of experience and 

knowledge in the relevant discipline which they have obtained over a long period of time. 

With all relevant user-inputs uploaded, the system will then proceed to the statistical modelling phase, 

which is often invisible to the user. As previously discussed, the users of KBDSSs are not expected 

to have the required training in the relevant programming language or to be statisticians. Therefore, 

the statistical modelling phase of a KBDSS itself provides little to the user in most cases, and instead 

may overwhelm or confuse them. Selecting which modelling techniques to implement in a KBDSS 

is closely related to the problem at hand. As will be shown in this chapter when examining KBDSSs 

from the literature, a wide variety of statistical techniques are utilised in these systems.  

Once the user’s data has been successfully analysed, the final stage of the KBDSS is to provide the 

user with a report of recommended actions or suggestions. As with the statistical modelling phase, 

the format of the reporting phase of a KBDSS will be largely driven by the system’s purpose. Reports 

may contain: (i) suggested actions for the user, (ii) sensitivity analyses in the form of what-if 

scenarios, and/or (iii) simplified statements detailing the outcomes of utilised statistical models. 

Section 2.3 examines four KBDSSs that were selected from the literature to identify any common 

themes that are utilised across different KBDSSs. These KBDSSs were selected due to having a clear, 

and concise overview of their KBDSS’s construction, methodology, and validation phases.  

2.3 Real-World KBDSS 

2.3.1 HAZFO Expert 1.0 

Created by Asad et al. (2019a), Hazard Free-Operation (HAZFO) Expert 1.0 was designed to improve 

the industrial safety management for onshore and offshore drilling sites. It was estimated that within 

the period of 2014 – 2019 an average of 70 individuals died and 2,500 suffered major injuries 

annually as the result of insufficient hazard preventions on oil and gas drilling sites (Asad et al., 

2018a; Asad et al., 2018b; Asad et al., 2019a). Previous DSS in the discipline either lacked a sufficient 

database of potential hazards resulting in poor performance or were designed for a different purpose 

such as environmental and climate change prediction (Asad et al., 2019b). The first stage of HAZFO’s 

construction, was collecting and creating the system’s internal knowledge base, namely, what are the 

expected hazards and preventative measures that occur on the drilling site. Seven onshore and nine 

offshore drilling sites were examined throughout Malaysia, Saudi Arabia, and Pakistan, where a total 

of 150 possible potential hazards and 510 hazard preventative measures were found. Both the hazards 

and preventative measures were discovered through a combination of quantitative (using descriptive 

statistics) and qualitative (what-if scenarios) techniques.   
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The base model of HAZFO’s system can be described as a comparative loop between the user’s 

current safety measures and knowledge obtained from experts in the field on an ideal state of safety. 

By using IF and THEN conditional rules, HAZFO can perform operations on the user’s data to 

recommend where, if any, improvements can be made to hazardous safety measures (Figure 2.2). 

 
Figure 2.2: HAZFO Expert 1.0’s Base Decision Model 

By performing IF and THEN statements (Knowledge Base) on the user’s observed data, the system can make inferred 

suggestions to safety measures based on an integrated ideal scenario provided by experts in the discipline (Working 

Memory) (Obtained from Asad et al. (2019a, Figure 1, p. 707). 

 

The statistical modelling utilised by HAZFO involves Structured Query Language (SQL) 

interrogations of a predesigned database. Care was taken to ensure the collective sample size of expert 

knowledge and onsite inspections depicted complete management of safety with the possibility of 

injury as low as possible. The original intent of HAZFO was to improve the safety measures taken 

for on-site locations, however, additional applications were also discovered for the KBDSS. These 

were the conducting of risk assessments and job safety analysis pre- and post-drilling operation, and 

the implementation in education institutes to train the workforce prior to field work (Asad et al., 

2019a). 

The development of the KBDSS HAZFO can be summarised as follows: 

What problem is the KBDSS assisting with: Improvement of on-site safety management of oil and 

gas drilling. 

Who are the intended users: Oil and gas drilling site managers, construction officials, educators, 

health and safety officials; 

What user-inputs are required: Details regarding the current safety measures taken on the drilling 

site; 
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What is the primary statistical modelling used: What-if scenarios through comparison of 

descriptive statistics; 

What output is provided to the user: Hazardousness preventative actions that should be taken to 

reduce the possibility of death or major injury on-site. 

Key theme/s identified from examining this KBDSS: The utility of an extensively researched 

knowledge base as the major building block for the software providing adequate decision-support 

without the need for complex statistical modelling. 

2.3.2 DAIRYPRO 

DAIRYPRO was constructed to assist dairy farmers with the optimisation of resources to improve 

milk production for the given circumstances of their farm (Kerr et al., 1999a; Kerr et al., 1999b). The 

dairy farmer would input the following variables into the software, based on their farm’s particular 

circumstances:  

1) Farm details such as annual milk production (in litres), number and breed of cows, and farm 

area (in hectares); 

2) Area in hectares dedicated to the pasture species; 

3) Amount and type of concentrate (in tonnes) fed to the milking herd (yearly) in both regular 

feed and through wet matter; 

4) Amount and type of fertiliser (in tonnes) applied to the farm (yearly); 

5) Daily milk production for the average cow on specified months, including the amount of feed 

given to the cow during the same month; 

6) Amount of nitrogen fertilizer (in tonnes) applied to the relevant pasture or crop; 

7) Average percent of butterfat in the milk for the herd. 

To determine which dairy farm factors, if any, could be altered to improve average milk production, 

two statistical models are utilised by DAIRYPRO, a rule-base using expert knowledge, and multiple 

regression modelling. Once the user has inputted the aforementioned variables for their given dairy 

farm, the following descriptive statistics are estimated by DAIRYPRO:  

1) the average milk production across a region (RAP), which is calculated using multiple linear 

regression, and; 

2) the achievable production (AP) for an individual farm (using expert rules of thumb).  

Both descriptive statistics (i.e. RAP and AP) serve to act as an estimation of the expected milk 

production for a given farm under its current conditions; a prediction in the case of RAP, and a 
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comparison of pre-defined idealistic scenarios from the AP. Note that these rules of thumb were 

created based on a combination of extensive interviews with a dairy expert, examination of dairy 

management guidelines and numerous discussions with dairy farmers and dairy advisors. Both 

statistics are compared to the farm’s actual average milk production and a series of what-if scenarios 

are presented to the user. Each scenario hypothetically alters one or more of the dairy farm’s input 

variables to observe any changes in estimated milk production; these changes are provided to the user 

in profit or loss margins. The user can then determine which variables should be adjusted, and by 

how much, to achieve an optimal level of milk production. For example, if DAIRYPRO records the 

user is “…feeding too much concentrate” a suggestion to resolve the issue is made, “Excessive 

pasture substitution is occurring…” (Kerr et al., 1999a, p.253).  

DAIRYPRO consists of two modules, the first – referred to as FARMPROD – is where the estimation 

of optimal dairy production (RAP and AP) and suggestions for the user occur. The second module, 

FARMDIAG, extends beyond general milk production, and assists the user with determining 

efficiency with specified feeding programs (for the dairy cows), such as a winter or summer program. 

Unlike the first module, FARMDIAG relies on expert rules of thumb alone to provide suggestions to 

the user. Figure 2.3 describes DAIRYPRO’s base model, demonstrating the roles performed by each 

module. A concept shared by both DAIRYPRO (Kerr et al., 1999a; Kerr et al., 1999b) and HAZFO 

(Asad et al., 2019a), is the acknowledgement that a well-structured expert knowledge base can be 

crucial when constructing a KBDSS. The inclusion of expert knowledge serves to improve the 

software’s decision-supporting ability. Also important is input from the end-users. As stated in Kerr 

et al. (1999a, p.254) “The consultation process was successful with major changes to DAIRYPRO 

being suggested by farmers.”. These changes greatly enhanced the final product (the KBDSS), 

outlining the critical role experts and end-users can have during construction.  
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Figure 2.3: DAIRYPRO’s Base Model 

The DAIRYPRO KBDSS is comprised of two decision assisting modules: FARMPROD, which provides suggestions to 

the user on how farm conditions can be altered to improve the current milk production rate, and FARMDIAG, which 

provides suggestions on how the user can improve various feeding programs (taken from Kerr et al. (1999a, Figure 1, 

p.246)). 

 

The development of the KBDSS DAIRYPRO can be summarised as follows: 

What problem is the KBDSS assisting with: Improvement of average milk production on dairy 

farms; 

Who are the intended users: Dairy farmers, bank managers, loans officers, and farm consultants; 

What user-inputs are required: Information regarding the conditions on the dairy farm, such as 

quality and quantity of feed and fertilizer; 

What is the primary statistical modelling used: A combination of what-if scenarios created with 

expert rules of thumb and multiple linear regression modelling; 

What output is provided to the user: Profit and loss margins to suggest where certain farm 

conditions can be altered to improve milk production. 
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Key theme/s identified from examining this KBDSS: Combining an extensive expert knowledge 

base with statistical modelling of available databases to provide decision-support based on both 

empirical experience and predictive algorithms. How the inclusion of a discipline expert in the early 

stages of a KBDSS’s construction can identify new components to greatly improve the system’s 

structure.  

2.3.3 PVSEL 

During the construction of a pressure vessel (a large container designed to hold gases or liquids), 

appropriate material for its construction must be selected based on various criteria such as: strength 

of the material, temperature and pressure of intended use, corrosion resistance, hardness, and weld 

ability (Yurdakul et al., 2020). To assist with the decision-making process of material selection, the 

Pressure Vessel SELection (PVSEL) KBDSS draws from a database containing all feasible materials 

(Yurdakul et al., 2020).  

The user first defines the required criteria needed for the selected material through a list of extensive 

user-inputs reflecting the desired specifications. Unlike the input phase of DAIRYPRO and HAZFO, 

PVSEL has an additional step where the user can weight each input based on the importance that this 

criterion be met. Following the user defining the required material specifications, PVSEL compiles 

an initial list of suitable materials that are contained within the software’s internal database. 

Feasibility of materials to be included in this list is determined based on pre-defined specifications 

for each material that are known to PVSEL. For example, the user may outline that a required 

specification for their desired material is a working temperature range between –195°C and 360°C. 

Any materials within PVSEL’s database that cannot adequately function within the user’s specified 

temperature range are excluded from the list. The remaining materials are then rank ordered using 

three alternative multiple-criteria decision-analysis (MCDA) methods (TOPSIS, VIKOR, and 

ELECTRE – see Yurdakul et al. (2020, Appendix 1) for details). The independent rankings are then 

compared using Spearman’s correlation and a decision for the best material is made. If the rankings 

disagree, an option to obtain a combined sum across the three rankings is used. The output of PVSEL 

is a comprehensive report outlining: (i) the user’s inputted material specifications, (ii) the weighted 

criteria as defined by the user, (iii) a compiled list of feasible materials with their respective MCDA 

results, and (iv) a resulting table with the final materials recommended to the user. 

The development of the KBDSS PVSEL can be summarised as follows: 

What problem is the KBDSS assisting with: Selecting an appropriate material during construction 

of pressure vessels; 
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Who are the intended users: Pressure vessel manufacturers; 

What user-inputs are required: Criteria regarding the user’s desired specifications of the 

environmental conditions to which the material will be exposed; 

What is the primary statistical modelling used: Three MCDA analyses whose resulting rankings 

are compared using a Spearman rank correlation test; 

What output is provided to the user: A defined list of feasible materials that fit the user’s 

specifications (ranked by suitability); 

Key theme/s identified from examining this KBDSS: Allowing the user to weigh which inputs 

have case-specific importance, providing the KBDSS with additional information that can allow the 

system to further clarify advice for a given scenario. 

2.3.4 APSIM 

Developed to aid in improving crop production, the Agricultural Production Systems Simulation 

(APSIM) (see Holzworth et al. (2014) for the reference of its current iteration), is one of the most 

prominent KBDSSs in the agriculture industry within Australia, and since its creation has been 

utilised in New Zealand and the USA. APSIM’s primary goal is to assist users in determining which 

farming strategies are optimal for improving crop production (Keating et al., 2003; McCown et al., 

1995). Areas that gain the most benefit from APSIM are those with uncertain degrees of rainfall, or 

with no rainfall at all, and those where soil erosion and/or infertility threaten crop production. 

APSIM contains an expansive internal database of ideal crop conditions for commonly grown crops, 

pastures and forests (and their interactions with the soil) in tropical and temperate areas throughout 

Australia. For every crop-type provided in the APSIM database, the following data is available: 

phenology, biomass, canopy, root system type, senescence pools, water, nitrogen and phosphorus 

levels. The user can then select the crop-type that will be grown and input details regarding the soil 

used. Crop ontogeny is then simulated based on the relationships between the crop-type database and 

soil details. These relationships are tested using several agriculture-based modelling techniques 

(Keating et al., 2003, Section 3). There are four stages of APSIM’s process, which are presented as 

modules (Keating et al., 2003).  The first is a biophysical module that simulates both the biological 

and physical processes that occur in farming. The second module is a management module which 

allows the user to specify their intended management rules which then characterise the scenario being 

simulated - these rules are implemented as “What-if” scenarios for subsequent simulations.  Module 
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three provides various options to facilitate the data input and output from APSIM’s simulations.  The 

final module is a simulation engine which drives the simulation process.  

After APSIM has analysed the inputs and simulated the various “What-if” scenarios, it provides one 

or more possible outputted suggestions to the user on how to improve crop production. An example 

of possible suggestions from APSIM include (Keating et al., 2003, p.276):  

- Resetting individual module values.  

- Reinitialising all data in modules to a given state.  

- Sowing/harvesting/killing crops.  

- Applications of fertiliser, irrigation or tillage to soil.  

- Calculation of additional variables to track system state. 

- Reporting of system state in response to events and/or conditional logic 

The development of the KBDSS APSIM can be summarised as follows: 

What problem is the KBDSS assisting with: Improving crop production in areas with subpar 

rainfall and soil fertility conditions. 

Who are the intended users: Farmers, farm developers and managers, agricultural department 

employees. 

What user-inputs are required: Desired crop-type to be grown as well as multiple conditions 

related to the soil being utilised. 

What is the primary statistical modelling used: Through simulation, multiple agriculture-based 

modelling techniques are utilised to test the relationships between the user’s desired scenario and 

the internal database of observed data. 

What output is provided to the user: Possible suggestions regarding what action the user should 

take to improve crop production, such as application of various treatments or the sowing of a crop 

altogether. 

Key theme/s identified from examining this KBDSS: The importance of a strong database to 

represent ideal conditions when performing heavy simulation through “What-if” scenarios. 
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2.4 Development and Evaluation of DNA-MAP, a KBDSS, for BGA Prediction 

Based on an examination of the four KBDSSs examples described above, and a literature review of 

other systems (provided in Table 2.1), a generalised framework for DNA-MAP has been developed, 

a KBDSS designed to predict BGA for an unidentified person.  

The initial stage of creating a KBDSS is identifying the complex problem within the user’s discipline 

and recognising that it could be resolved through a decision-making framework. Identification of the 

problem was a common theme observed in the literature of KBDSSs (Table 2.1). For example, in the 

construction of HAZFO, Asad et al. (2019a) demonstrate through census data that the oil and gas 

drilling workforce suffer from hundreds of cases of serious injuries and deaths annually. To reduce 

the number of cases, safety measures needed to be improved on these drilling sites, and the authors 

proposed that one approach of doing this was to create a KBDSS which could assist site managers in 

determining where improvements could be made. In the context of BGA prediction, investigators are 

faced with the issue of having an unidentified person who could belong to one of several populations 

of interest.  

As stated by Asad et al. (2019a), Kerr et al. (1999a), and Kerr et al. (1999b) having an expert from 

the discipline involved during the KBDSS’s construction can greatly improve the system’s efficiency. 

This involvement can occur through the utilisation of an extensive knowledge-base obtained from 

the expert to be used in the system’s modelling phase, or through direct interaction with the user 

regarding key features of the system itself. The KBDSS’s developers act as the bridge between the 

expert and other users, providing both the statistical modelling and graphical user interface (GUI). 

For DNA-MAP, the intended users are UWC-A, though its utility could extend to other forensic and 

military investigations. During the development of DNA-MAP Dr Kirsty Wright, a UWC-A forensic 

scientist with an extensive background in forensic biology and experience in identifying and 

assigning BGA to unknown remains, was consulted. These consultations took place in the form of 

informal and unstructured interviews regarding key features – such as inputs, outputs and error 

thresholds – that would be required for DNA-MAP. Evolutionary prototyping was demonstrated to 

numerous potential users in the discipline through presentations at conferences and informal 

discussions. 

2.4.1 User Inputs  

DNA-MAP’s primary question of interest is “what is the probability that an unidentified individual 

belongs to a given population based on their observed genetic profile and any prior information?”. 

To determine what user inputs would be relevant to DNA-MAP, it is necessary to first ascertain what 
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information is available to the user when performing BGA prediction. The genetic sources of 

information required when inferring ancestry are the observed genetic profile for an unknown person, 

together with estimates of the relative frequencies of seeing that profile for any specified populations 

of interest. Note that the genetic profile is obtained through a specifically created DNA panel 

containing multiple genetic markers chosen for their highly discriminating power at distinguishing 

between populations of interest. These two inputs act as the main source of information for BGA 

prediction, as ancestry is inferred based on which population the unknown person is most closely 

aligned to genetically. Several criteria regarding the genetic inputs need to be considered. These are: 

(i) which genetic marker should be included in the DNA panel and how many, (ii) the sample size 

available from each population of interest, (iii) the possibility of DNA degradation, and therefore, 

missing ancestry profile information, (iv) dependency between utilised markers, and (vi) the 

possibility of missing data from a variety of sources including stochastic processes. Phillips (2015) 

lists these criteria as required when creating an ancestry informative marker (AIM) panel, that is, a 

biological test that is created for the sole purpose of discriminating between two or more populations 

using highly discriminating sections of the human genome. Secondary to the genetic information, for 

certain cases the user will also have access to information regarding the probability of an unknown 

person belonging to a certain population prior to any genetic testing. Such information could be 

available through historical records or census data and will form a pertinent user input in conjunction 

with the genetic information. Lastly, certain inputs may become apparent during the establishment 

of a KBDSS’s statistical modelling, such as the user’s desired measure of achievable confidence. For 

the UWC-A (who rely almost solely on DNA to predict ancestry) an incorrect ancestry decision will 

result in an Australian soldier being laid to rest in a Japanese War shrine or a Japanese soldier being 

laid to rest with an Australian headstone in a Commonwealth War Cemetery, such errors need a zero 

threshold. How these various user inputs and criteria are addressed for DNA-MAP is discussed in 

Chapter 3, while Chapter 6 provides a detailed overview of DNA-MAP. 

In addition to the user inputs, a key process that is required in the early stages of DNA-MAP’s 

algorithm is the use of checkpoints, where multiple error checks and data cleansing functions take 

place. Within these checkpoints various internal checks and functions occur which aim to reduce the 

possibility of clerical errors in uploaded data files and examine whether the user has provided 

sufficient information required for accurate classification. These checks and functions are a typical 

feature of most KBDSSs. 
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2.4.2 Statistical Modelling 

Methods for predicting BGA for a set of remains are not new to the literature, and previous studies 

have proposed various techniques from simplistic conditional multiplicative estimates to more 

complex clustering algorithms (Cheung et al., 2017; Cheung et al., 2018a; McNevin et al., 2013; 

Phillips 2015; Phillips et al., 2009). Ultimately, BGA prediction is a classification problem, that is, 

taking an unidentified individual and assigning them to a single population based on observed 

relationships and trends in the utilised populations. For this thesis DNA-MAP will only be concerned 

with binary classification, that is, inferring BGA for a set of remains where only two populations are 

possible, Japanese and Australian WWII soldier populations. Creating a KBDSS and predicting BGA 

are two complex tasks alone and starting with the simpler binary classification for the initial 

development is seen as a logical starting point to develop a proof of concept. Chapter 3 will examine 

and compare the various BGA prediction methods that have been utilised previously in the literature 

and propose alternative methods which may have successful application. 

2.4.3 Desired Output 

When DNA-MAP is used, there are several outputs that are pertinent to the user. These are: (i) the 

probability that the unknown person belongs to a given population of interest based on the user inputs, 

(ii) any assumptions and/or limitations made by DNA-MAP and the statistical modelling used, (iii) 

the level of confidence the user can have in the outputted probability of BGA, and (iv) relevant 

information that is obtained from the DNA-MAP’s algorithm, for example, any error prompts or 

further suggestions to the user. These outputs are compiled into a BGA prediction report which is 

presented using clear, concise, English statements to assist the user with subsequent decision-making. 

2.4.4 Evaluating a KBDSS 

Evaluating DNA-MAP, namely, ensuring the system is working as intended within clearly identified 

software limitations is an important aspect of KBDSS development. Mysiak et al. (2005) understood 

the importance of evaluating a KBDSS and provided a list of priority considerations to be addressed 

when creating a system together with suggestion to how they can be addressed. Table 2.2 summarises 

the considerations suggested by Mysiak et al. (2005, Table 1, p. 205).  
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Table 2.2: Priority Considerations for Evaluating a KBDSS  

A list of measurements to be considered when evaluating a KBDSS, adapted from Mysiak et al. (2005, Table 1, p. 205) 

Subject of Validation Examples of Measurement 

KBDSS Development Process 

1. Involvement of future users in early development phases; 

2. Appropriately defined system requirements; 

3. Evolutionary system development; 

4. Clear definition of beneficiaries 

KBDSS Components 

1. Precision of models; 

2. Quality of data; 

3. User interface; 

4. Reporting system to choose a suitable technology and 

management of data; 

5. Complexity of DSS and data inputs. 

Decision Process 

1. Appropriateness of logical process followed when using 

DSS; 

2. Number of alternatives explored by DSS; 

3. Internal communication; 

4. Correspondence to and appropriateness for decision 

organisation. 

Decision output 

1. Quantification profit/loss from DSS usage; 

2. Consensus achieved among decision-makers; 

3. Savings of time or other resources through DSS usage; 

4. Contribution to organisational efficiency; 

5. Consistency of solution 

User satisfaction 

1. Degree of confidence in results derived by DSS;  

2. Acceptance (willingness to change current management 

methods);  

3. Improvement of personal efficiency;  

4. Correspondence of DSS output with decision-making style;  

5. Users’ understanding of implemented models 

 

Integrating information from various sources and providing different pathways depending on which 

inputs are available (and on occasion, based on input values themselves) allows the decision support 

system to have more applications within its discipline of interest. Other benefits of utilising a KBDSS 

include i) being able to summarise unwieldly amounts of data into a single report tailored to the 

scenario of interest, ii) combining multiple statistical models and feedback checks into a single 

application, and iii) the automation of a complex and resource-consuming process (Pick, 2008; Pick 

and Weatherholt, 2013). As Pick (2008, p.719) states “…automation of tedious tasks allows a 
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decision maker to explore a problem more thoroughly than would be possible without the DSS”. The 

limitations of a KBDSS are less distinct, namely, the limitations rarely focus on the concept of a 

KBDSS, but rather on poor implementation of the system itself. As González-Ferrer et al. (2018) and 

Zouri et al. (2019) discuss, the quality of a KBDSS is only as good as the quality of the data being 

inputted. The use of incorrect data or illogical justification of statistical models are just some key 

examples of how a KBDSS can be limited. Close collaboration with an expert in the discipline 

(preferably one who acts as an intended end-user) can improve the KBDSS’s performance, as “most 

DSS development problems result from poor identification of end users’ needs” (Pick and 

Weatherholt, 2013, p.9). Additionally, poor selection of statistical modelling can lead to poor 

performance if the techniques utilised by the KBDSS are inappropriate for the actual question of 

interest. 

2.5 Concluding Statement 

This chapter has drawn on several KBDSSs from the literature, to outline the key factors that should 

be generally considered during development of a KBDSS. In addition, a generalised overview of 

DNA-MAP was presented which described initial reasonings behind the system’s inputs, modelling, 

and outputs. A forensic scientist considered to be an expert in the discipline representing the end-user 

(UWC-A) was consulted during these early stages of DNA-MAP’s development and was able to 

provide feedback and suggestions based on their experience and knowledge.  

Chapter 3 analyses the literature surrounding BGA prediction to determine how key factors in the 

methodology have been previously addressed. Chapter 6 provides a detailed discussion of DNA-

MAP’s algorithm, describing both the GUI and the underlying procedures.  
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Chapter 3 – Predicting BGA 

3.1 What is Current Practice? 

It is always paramount to have a rounded view of the literature to identify knowledge gaps and 

subsequently make a contribution towards filling these gaps. Previous studies have commented on 

three key factors to consider when attempting BGA prediction, these are: (i) adequate genetic 

representation of the populations of interest, (ii) sufficient genetic markers that provide 

informativeness (that is, clear genetic separation between the populations of interest), and (iii) an 

appropriate prediction algorithm (Cheung, et al., 2017, 2018a, 2018b; Phillips, 2015). However, as 

this chapter will discuss, there are additional factors beyond these that need to be considered to ensure 

accurate BGA prediction. Note that this thesis is not concerned with the development of a BGA 

prediction panel, rather, it assumes that all panels discussed and utilised in this thesis have already 

undergone extensive research. For a detailed guide on panel development, see examples such as 

Ghaiyed (2020) and Phillips (2015).  

This chapter will be structured as follows: (i) a comparison of how BGA prediction has been utilised 

to date by commercial groups and for assisting forensic investigation, (ii) outlining the primary issues 

associated with BGA prediction observed in the literature and (iii) discussing how these issues have 

been previously addressed. 

3.1.1 Commercial Groups  

Ancestry analysis has become popular in recent years due to the commercialisation of ‘at-home’ 

ancestry kits; the popularity can be attributed to TV shows surrounding genealogical discoveries and 

massive TV/online marketing. It is reported that by the beginning of 2019, more than 26 million 

individuals had their DNA profile added to the database of the four leading commercial ancestry 

companies (Regalado, 2019). Different commercial kits offer a variety of results including: (i) 

information regarding heritage, (ii) connections to extended family, and (iii) susceptibility to 

ailments/disease which are known to be hereditary (Royal et al., 2010). With commercial companies 

boasting such large global databases, it suggests that the tests offered are accompanied with high 

precision and accuracy, but how true is this statement? When an individual obtains a result from a 

commercial test, no mention is made regarding any margin of error or variability. Furthermore, there 

have been instances of individuals who have submitted an identical DNA sample to several different 

commercial ancestry companies, only to receive different results from each test (Letzer, 2018). In 

2018, one commercial ancestry company, “Orig3n”, faced allegations of falsifying genetic results 

after failing to detect that one sample submitted for testing belonged to a golden retriever (Griffith, 
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2019). The commercial company reported that the “subject” had a higher-than-average muscle mass 

and a cardio output that would be suitable for high-intensity activities such as boxing and cycling. 

The same canine sample was submitted to multiple other commercial ancestry companies, all of 

which correctly rejected the case, recognising the sample to belong to non-primate DNA. 

The reason an individual may obtain a different result between two commercial tests is that the kits 

and analytical processes used differ between companies, being treated as “trade-secrets”. Rarely is 

the development and validation process made public, making it difficult for investigators and 

scientists to determine the accuracy of such panels. Thus, the public is unaware of factors such as 

how these tests were designed and validated, and which algorithms are utilised in their analysis. In 

addition, the consumer is not always aware of the level of confidence that can be assigned to obtained 

results. While some commercial companies do provide a measure of confidence, for example, in the 

case of 23andMe the user can adjust this measure to observe the effect it has on the results, this feature 

is not guaranteed. As the answers to these questions are not readily available, these tests are unsuitable 

for use in forensic casework. Despite each commercial company having access to their own large 

global database, there is no sharing of data between companies. For example, one commercial 

company may have an extensive sub-database of individuals from the Middle East but lacks a 

comprehensive sample of individuals from Oceania; therefore, certain company kits have a reduced 

accuracy for certain global regions. These aspects of the kits are unavailable to the consumer. 

The type of output that the consumer receives when using a commercial kit depends on what tests the 

company offers. These outputs may include autosomal, mitochondrial and Y-chromosomal ancestry 

testing and assigned percentages of ancestry contributions, phenotypic information, possible 

proneness to medical ailments and other traits. However, the consumer should be cautious as rarely 

is the error rate associated with these outputs provided. 

3.1.2 Forensic Case Work 

BGA prediction has multiple applications within the forensic discipline, with one example being to 

supplement eyewitness reports. Eyewitness reports can form the preliminary stage in criminal 

investigations, either leading investigators towards suspects, or excluding suspects (Marano and 

Fridman, 2019; Phillips, 2015). However, these reports are subject to several limitations including 

lighting conditions, cognitive bias, personal trauma, and memory distortion (Cheung et al., 2018b). 

The ability to predict BGA, and other externally visible characteristics such as hair and eye colour 

“…provides opportunities to strengthen eyewitness accounts or in their absence, gain information 

about a suspect” (Phillips, 2015, p. 49). Other primary applications of BGA prediction include 
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counter-terrorism, disaster victim identification, cold case investigation, missing persons (Phillips, 

2015), archaeology, ancient DNA analysis (Bongers et al., 2020; Harvard Medical School, 2019; 

Slatkin, 2016; Wright et al., 2018), and historical military remains. 

Unlike the commercial application of BGA prediction, information regarding the data and techniques 

used in forensic investigation is more readily available. To ensure that BGA prediction is as close to 

the standard of “evidence” as possible, relevant studies should typically provide: (i) a clear 

description of utilised data (often providing the data itself as a supplementary file), (ii) details of the 

classification algorithm used (where possible, links are provided for utilised software/packages), and 

(iii) results from any validation experiments. Despite all the information being accessible, there is 

still an apparent lack of unification across BGA prediction studies regarding statistical standards 

(such as sample size) and the methods utilised for inferring a population of origin. 

The literature surrounding BGA prediction can be classified into two primary categories: (i) those 

concerned with the creation and validation of panels consisting of ancestry informative markers for 

discriminating populations (group-level classification), and (ii) validating a classifier’s accuracy 

through the comparison of the predicted ancestry to an individual’s declared ancestry (individual-

level classification). Research related to the former is concerned with determining which sections of 

the human genome are suitable for distinguishing between two or more populations of interest. When 

selecting genetic markers, criteria of interest typically include differential variant frequencies 

between populations, independence between selected markers, the number of necessary markers, and 

other assumptions about genetic structure (Phillips, 2015). In the latter research category, interest lies 

in utilising patterns observed in the genetic markers to create statistical models which can infer a 

population of origin to an unknown individual with an associated measure of accuracy. Criteria 

typically of interest should include achievable accuracy, precision, ease of calculation/performance, 

and validity of assumptions. The focus of this thesis, and of the accompanying KBDSS, falls into the 

latter of these two research categories. 

A similar area to BGA prediction is the research performed in archaeology and ancient DNA analysis 

(Bongers et al., 2020; Harvard Medical School, 2019; Slatkin, 2016; Wright et al., 2018). Extra 

components in these studies are the concepts of time and evolution. As opposed to BGA prediction, 

where interest lies in distinguishing between two or more divergent populations, the archaeologic and 

ancient DNA analysis studies trace the various evolutionary populations through history that 

culminated into a given convergent population. These ancient DNA analysis studies will often 

employ group-level classification methods that are also utilised in the BGA prediction studies, such 



26 

 

as Principle Component Analysis and the F-statistic. For a compiled list of classifiers that are 

employed in ancient DNA studies, the reader is referred to Slatkin (2016). As these studies are 

concerned with group-level classification, they will not be examined in further detail in this thesis, 

with exceptions being made where applicable methodology was observed. 

Various statistical classifiers that have previously been reported in the literature will be examined to 

determine which, if any, are suitable to integrate into the KBDSS. Based on an analysis of the relevant 

literature, the following is a list of key factors that need consideration when selecting a BGA 

prediction method.  

1) Admixture – Naturally occurring mixture between populations in recent generations, can 

occur at a population-level of a family-level; 

2) Parsimony – Estimating the minimum amount of information needed; 

3) Classifiers – Determining which classification model should be utilised; 

4) Prior probability – Accounting for the probability of an individual having a higher chance of 

belonging to a specific population prior to any genotyping; 

5) Relevant populations – Ensuring relevant and accurate populations are selected for a given 

scenario; 

6) Sample size & Rare Event – Determining the appropriate sample size to ensure an accurate 

representation of the population and including measures to allow for the possibility of a rare 

but unseen event; 

7) Degraded samples/partial profiles – How well the utilised classifier can handle missing data 

while still outputting accurate classification; 

8) Margin of error – Applying a measure of reliability to the estimated probabilities of ancestry. 

Many factors that have been previously discussed in the literature (Cheung et al., 2017; Phillips, 

2015), but currently no standardised method of BGA prediction has been adopted by the forensic 

science community. This is a prominent gap in the global forensic science literature, as BGA 

prediction is not included in prominent forensic DNA analysis and interpretation guidelines or reports 

by groups such as: 

• President’s Council of Advisors on Science and Technology (PCAST) Report (President’s 

Council of Advisors on Science and Technology, 2016); 

• Scientific Working Group on DNA Analysis Methods (SWGDAM); 

• European Network of Forensic Science Institutes (ENFSI) (Willis et al., 2015). 
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Each factor will be explored in detail in following sections. Note that while BGA prediction can be 

performed using a variety of genetic measures (including mitochondrial DNA analysis), the measure 

of interest in this thesis is autosomal single nucleotide polymorphisms (SNPs) 

3.2 Factors to be Addressed for Ancestry Prediction 

3.2.1 Admixture 

A common limitation that can arise during ancestry analysis is the concept of “admixture”. In this 

thesis, only recent family-level admixture is of interest to UWC-A casework, that is the mixture of 

two populations in recent generations resulting in an offspring with non-homogenous ancestry. For 

example, consider a child that is the offspring of an individual from Hungary and an individual from 

Poland. An admixed individual, this child would likely have segments of DNA which could be linked 

to each parental population. For an investigator to go a step further and assign BGA to the admixed 

child, certain complications will arise. Depending on which segments of DNA are analysed, the 

investigator may only observe ancestry indicative of one parental population, while the other 

population goes unobserved. By chance, an individual containing admixture from Poland and 

Hungary may be genetically similar to a typical individual from Slovakia (located between the two 

countries), which could lead to a potential misclassification (Cheung et al., 2018a).  

When admixture occurs, there is the possibility of individuals occurring in a population who may 

deviate from what is considered “genetically-typical” of that population. This can lead to 

misclassification. It is important to note there is also the possibility that random mutations may occur, 

resulting in an individual’s DNA being indicative of the wrong BGA. In current available data, there 

is little opportunity to obtain data with known levels of admixture, and there are no readily available 

datasets for admixed Australians and Japanese individuals. Therefore, in situations where no admixed 

data is available, one approach is to simulate individuals with known levels of admixture by using 

known non-admixed individuals as ancestors. This approach was previously utilised in Cheung et al. 

(2018a). These admixed samples are then classified using the employed classification model, to 

determine how well the current practice can estimate the true percentages of original contributing 

populations. The value of using such a simulation is that “it is worthwhile to gain knowledge of the 

admixture profile of a population sample, even though this is highly variable” (Phillips, 2015, p.60). 

The ability of current BGA prediction models to correctly detect and resolve admixture will be 

discussed in Section 3.2.3. 



28 

 

3.2.2 Parsimony 

The principle of parsimony in statistics refers to a statistical model or theory that utilises as few 

parameters as possible, makes use of linear models as opposed to non-linear models, relies on as few 

assumptions as possible, and provides simple explanations (Crawley, 2012). There is a belief that 

when performing ancestry predictions, the greater the number of markers used, the higher the 

achievable accuracy (Pardo-Seco et al., 2014). Cheung et al. (2019), however, advocate that this has 

yet to be proven, and that it may be advantageous to utilise smaller, refined panels consisting of 

highly efficient markers to reduce cost. Note that with the advancements in current SNP panel 

analyses the costing factor is becoming less of an issue, with current technology providing the ability 

to sequence up to a million markers at a time (LaFramboise, 2009). Therefore, the primary objective 

when selecting which SNPs to include and exclude from a panel should be based on discrimination 

power. 

To demonstrate the utility of parsimony, consider a set of n ancestry informative markers which have 

been selected to distinguish between two populations and have been ranked according to 

discrimination power. In this context, a high discrimination power is defined as a genetic marker with 

a variant that is observed in a high proportion in one population, while either low or absent in the 

other. Using the marker with the highest discrimination power will yield discrimination power, dp1; 

the addition of each marker will increase that power by some measure resulting in 𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑛. 

Eventually, the discrimination power will plateau, and a point will be reached where effectively 

complete discrimination is achieved; the addition of further markers will become unnecessary, that 

is, no additional information will be gained (Tal and Tran, 2018). However, while no information 

may be gained, there is the possibility that the addition of further markers may introduce increased 

noise. This noise, in the context of BGA prediction, refers to the two associated errors that may be 

present for each marker, these are:  

i) sampling error: the probability that an error has occurred because the sample size 

collected was not large enough to accurately represent the true population;  

ii) classification error: the probability that the classification algorithm has misclassified 

an individual for that given marker.  

Unlike discrimination power, these errors do not plateau and will continually increase with the 

addition of more markers, that is, the error will propagate through the system. However, the concept 

of noise and its role in panel and model development is complex. If the inclusion of every marker 

subsequently increased the total noise of a panel, conclusions could be made that the use of a single 
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SNP is the best solution as it introduces the least amount of noise. Even if a SNP were truly fixed in 

one population and absent in another, the use of a single SNP is not practical due to the possibilities 

of random mutation and degradation. Therefore, multiple markers are required to reduce the impact 

of these possibilities and a balance must be achieved between the total number of markers and their 

collective noise. By assuming the noise introduced by each marker in not equal, one approach could 

be to categorically weight the markers, for example, homozygote markers with greater disparity in 

allele probabilities between populations would theoretically introduce less noise in comparison to 

heterozygote markers. Alternatively, the concept of noise could be treated as the by-product of sample 

size, where if a large enough sample size was collected the noise would be diminished by the strong 

data. Therefore, noise can be treated analogously to discrimination power in conjunction with the 

perceived confidence of the available data. To demonstrate this relationship, consider a SNP marker 

panel consisting of 1000 SNPs, whose allele frequencies – based on a sample of n = 20 from each 

population – are situated around a 60%/40% disparity. Based on these frequencies having a low 

discrimination power, further substantiated by the small sample used to obtain them, the possibility 

of misclassification is likely. Replace this panel with one consisting of only 20 SNPs, but whose 

frequencies, now based off a sample of n = 300 from each population, are close to fixed (≈

95%/5%). There is greater confidence in this smaller panel as the discrimination power per SNP is 

higher and is based on a larger sample size, despite there being significantly fewer SNPs available. 

Therefore, to combat the “noise” of a panel, it is important to only include SNPs that have an 

acceptable level of discrimination power, noting that sample size also play an important role in a 

SNP’s discrimination power. 

A parsimonious classifier will utilise only the number of markers required for the best classification 

that set of variables can achieve, while minimising the possible error that occurs with the inclusion 

of additional markers. One approach to developing a parsimonious model is to utilise a concept 

known as information theory. Information theory can be described as the theory describing the 

process of “…reproducing at one point exactly or approximately a message selected at another 

point” (Shannon, 1948, p.379), namely, recreating a sequence of symbols which may otherwise be 

obscured due to interference. The earliest application of what would eventually be known as 

information theory can be traced back to the introduction of Morse code (Beechey, 1876); where 

frequently used letters, such as “E”, were formatted to be transmitted more quickly than uncommonly 

used letters, such as “J”. Information theory has since been utilised in numerous disciplines, with a 

prominent example being the work of Alan Turing during WWII, who used information theory in 

cryptanalysis to decode the complex German “Enigma” cipher (Good, 1979), providing key 
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intelligence to Allied forces. In BGA the aim is to find the minimum number of genetic markers 

required to accurately convey the underlying ancestry, that is, to match an individual’s perceived 

BGA with their true genetic BGA. 

The pivotal moment in information theory’s history was its official establishment as a discipline in 

Claude Shannon’s publication (Shannon, 1948). Shannon’s information theory of communication 

was invented during the creation of the communication network, as people began attempting to send 

messages between continents. The limitation faced at the time was that the message could not travel 

big distances without so much distortion and weakening that it was not discernible by the receiver. 

The issue was “noise”, a stochastic, natural phenomena which destroys/masks parts of a message. To 

demonstrate the logic behind Shannon’s theory, and why noise is causing problems, consider a 

generalised communication system (Figure 3.1).   

 
Figure 3.1: Communication System 

Flowchart diagram of generalised communication system, taken from Lombardi et al. (2016, p.3). 

 

Where: 

i. S is the source, which generates the initial message; 

ii. T is the transmitter, which converts the message into a format (signal) to be transmitted, if 

encoding is required in the system, it occurs here; 

iii. CH is the channel, namely, a medium/device where the transmitted signal is carried from 

sender to receiver; 

iv. R is the receiver, if encoding was performed at the transmitter then the message is decoded; 

v. D is the destination where the message is received. 

At the source a message is constructed, S, which consists of a set of individual states, s1, …, sn, usually 

termed letters. An example of this form of message are the codons, the array of bases (A, C, G, U), 

which encode and define the amino acids, as shown in Figure 3.2. The message (the amino acid itself) 

is the totality of the codon, for example, “Valine” (Val, Column 1, Row 4) can be encoded either by 

“GUU”, “GUC”, “GUA” or “GUG”. 
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Figure 3.2: List of Amino Acids 

Codon chart for amino acid classification, taken from Openstax (n.d). 

 

Another example that people experience every day unknowingly, and the initial problem that 

Shannon faced back in the 1900s, is the sending of an online message through a communication 

system, such as a voice message of a phone conversation or the text message in an email. In these 

examples, every letter on an electrical keyboard has an underlying binary code unique to itself, as 

dictated by the American Standard Coding for Information Interchange (ASCII). For example, the 

message “A” is encoded by the binary sequence “1000001”. During transmission through the channel 

the message can be degraded due to noise, which may cause the received message to be missing parts 

of the original message, for example, “1?00?0?” where “?” is the missing information. To apply the 

same ASCII classification system to the degraded message, there are now multiple possible outcomes 

as the receiver is uncertain what information was lost due to noise. (Figure 3.3).  
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Figure 3.3: Updated Communication System  

Example of the effect noise has on message communication, note that the three decoded examples shown are only some 

of the possibilities but there are many more that are feasible. 

 

 Noise can be considered as uncertainty, where the message prior to transmission had a high degree 

of certainty and a low degree of uncertainty (as the message was known); but the message received 

had a low degree of certainty and a high degree of uncertainty (there were numerous possible 

solutions). Shannon conceived this ratio of certainty versus uncertainty as information where the 

more information a message had, the greater degree of certainty one could have in the received 

message. If pi is the probability of the ith letter/state, then under Shannon’s definition, the amount of 

information this letter provides to the message is equal to: 

 log (
1

𝑝𝑖
)  

 

Which can be simplified to: 

 −log (𝑝𝑖) (3.1) 

 

For equiprobable states, information is equal to 1/p. As Shannon explains, the use of the logarithmic 

scale has the useful properties: i) scaling large, unwieldy numbers to a manageable scale, and ii) 

practicality, since parameters of interest in communication (time and bandwidth) scale linearly with 

the logarithmic scale (Shanon, 1948). Selecting which logarithmic base to use should be based on the 

unit of measurement, for example, a binary unit of two likely alternatives should utilise log2X (termed 

by Shannon, a bit). Since the source will typically produce a sequence of letters/states to comprise a 

Etc. 
Decoded 
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message, the average amount of information produced at the source, H(S), termed Shannon’s entropy 

(due to relations to the terminology used in thermodynamics (Lombardi et al., 2016)), equals: 

 𝐻(𝑆) = − ∑ 𝑝(𝑠𝑖) × log (

𝑛

𝑖=1

𝑝(𝑠𝑖)) (3.2) 

Where p(si) is the probability of the sith letter/state, and s refers to the individual symbols which 

construct the complete message set S.  

To demonstrate how information theory is applicable for BGA prediction, consider the original 

source message as the complete set of SNPs used in the panel, S, which will be used to estimate an 

individual’s ancestry. This message is encoded by the series of genotypes, acting as the sith state, 

observed from the utilised SNPs. Sections of the message may be omitted due to degradation or 

stochastic errors, causing some SNPs to be unavailable for analysis. The question of interest, 

therefore, is how many of the available SNPs need to be analysed to accurately decode the message, 

which is required to predict the individual’s ancestry.  

An important aspect of information theory is determining the minimum amount of information 

required for accurate message decryption. In any typical communications system, there is the 

possibility of error occurring at each given letter/state within a message. Note, that “communications 

system” here is any given system in which a message comprised of individual symbols is encrypted 

and decrypted across some form of channel/medium (such as the amino acid cypher or the SNP 

panel). It is possible that a given symbol within a message is misread, or some alternative stochastic 

influence occurs, which introduces error(s) into the final message. Assuming, the chance of such an 

error occurring is independent for each symbol, then the addition of each symbol would increase the 

possibility of error in a linear manner infinitely. Conversely, the addition of symbols to increase 

information rarely occurs linearly. The balance of information gain makes information theory a 

valuable tool for ancestry analysis, and thus for finding the minimum number of SNPs required to 

predict ancestry. DNA analysis (generally speaking) is an expensive task, with one of the criteria 

affecting the total cost being the number of SNPs being analysed. Determining the minimum number 

of SNPs required to accurately predict ancestry provides a cost-benefit option to the forensic scientist, 

outlining which SNPs available are providing the highest amount of information. Determining the 

minimum number of SNPs required is also beneficial for degraded samples, it is highly unlikely for 

a degraded sample to have all SNPs in a panel available.    
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Information theory has been utilised previously in ancestry analysis, where the theory has been 

applied when creating an ancestry panel and estimating the minimum number of SNPs needed for 

accurate distinction between populations (Rosenberg et al., 2003; Tal and Tran, 2018). Tal and Tran 

(2018) present their approach for measuring informativeness for a set of DNA markers derived from 

Shannon’s information theory and formulate it into a Bayes classifier (that is, incorporating 

population priors into the calculations). Rosenberg et al. (2003) made use of Shannon’s theory to 

create a measure of an ancestry panel’s informativeness based on two models: i) the no-admixture 

model where individuals were assumed to only originate from one of K populations (where K is the 

number of populations of interest), and ii) an admixture model, where coefficients were estimated for 

an individual’s proportion of association to each population of interest. Alternatives to informatic-

theoretic methods are also utilised for measuring a panel’s “informativeness”. These tend to be 

simplistic algebraic methods based on comparing allele frequencies without considering interactions 

between DNA markers and include the absolute allele frequency difference (δ) between two 

populations of interest and the Fixation Index (Fst) (where 𝐹𝑠𝑡 ≈ 𝛿/(2 − 𝛿)) (Phillips, 2015; 

Rosenberg et al., 2003). The focus of this thesis is on creating a classification system using an already 

predefined set of SNPs, these information-theoretic and algebraic techniques which aim at estimating 

the number of SNPs needed in a panel will not be discussed in further detail in this thesis. However, 

the methodology introduced will draw on information theory and will be discussed as presented.  

3.2.3 Classifiers 

As Cheung et al. (2017, p.902) state “a good classifier should be able to accurately predict BGA 

under a number of conditions”. These conditions are that i) non-admixed individuals should ideally 

be assigned wholly to a given population, and ii) admixed individuals should have BGA proportions 

that reflect the relative contributions of the appropriate populations. This section will compare and 

discuss four classifiers that have previously been utilised for BGA prediction, together with a 

classifier proposed in this thesis, outlining the benefits and limitations of each method. The classifiers 

included here are: STRUCTURE, Generic Bayesian, Genetic Distance Algorithms (GDA), 

Multinomial Logistic Regression (MLR), and Logistic Model Tree (LMT). 

STRUCTURE. This is a program which utilises a Bayesian cluster algorithm to infer population 

structures within a dataset using observed patterns in genotype data (Pritchard et al., 2009, available 

at https://web.stanford.edu/group/pritchardlab/structure.html). The program was originally 

developed by Pritchard et al. (2000) as a technique for identifying and separating populations based 

on genetic structures, with later extensions made by Falush et al. (2003) and Falush et al. (2007). 

Current applications for STRUCTURE include: (i) demonstrating the presence of population 

https://web.stanford.edu/group/pritchardlab/structure.html
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structure, (ii) identifying distinct populations and sub-populations, (iii) assigning individuals to 

possible population origins, and (iv) the identification of admixture (Pritchard et al. 2009, p.3). To 

date, STRUCTURE has been considered the gold standard of BGA prediction tools (Cheung et al., 

2018b; Phillips, 2015) and has been utilised in several BGA prediction studies. A key example of 

STRUCTURE being applied to BGA prediction is the investigation following the 11-M Madrid 

commuter train bombing as documented in Phillips et al. (2009). Where STRUCTURE’s 

performance is compared with an alternative classifier, the Generic Bayesian approach. In the 

investigation, interest lay in determining whether several biological samples, believed to belong to 

the perpetrators, had a Spanish or Moroccan origin; these populations were selected based on case 

information. Figure 3.4 (sourced from Phillips et al. (2009, Figure 1, p.4)) shows a standard 

STRUCTURE output, and demonstrates how the clustering method can be a means to visualise the 

distinction between the two populations, Moroccan (n = 48) and Spanish (n = 48). In addition to these 

two groups, seven case samples are shown on the right, and, based on metrics utilised by 

STRUCTURE, it can be determined which of the two groups the samples are more closely related 

towards. An important factor when using STRUCTURE is the need for the user to provide a value 

for K, the number of population groups STRUCTURE is to use in its calculations. Ensuring K 

accurately reflects the number of groups present in the dataset is important, as STRUCTURE will 

attempt to create K clusters, therefore, if the number of groups in the dataset differs from the assumed 

K, the model will be inaccurate (Porras-Hurtado et al., 2013; Pritchard et al., 2009). Providing a value 

for K can be a limitation in certain scenarios, as the exact number of population groups in a dataset 

is not always clear, requiring the user to run multiple iterations of the analysis under several values 

of K, if K is unknown. The K value which fits the user’s beliefs the best is then selected, introducing 

a level of bias. 

 
Figure 3.4: Phillips et al. (2009) STRUCTURE Output 

Each vertical strip represents a single individual within each of the relevant sets (Moroccan, n = 48; Spanish, n = 48), 

where K = 2 (Sourced from Phillips et al. (2009, Figure 1, p.4)). 

 

To measure the extent of how K affects the outputted models, Kalinowski (2011) used STRUCTURE 

on simulated populations under several values of K. Kalinowski (2011) observed that STRUCTURE 

would (i) frequently create incorrect clusters when K was not representative of the true populations 
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present and (ii) be highly influenced by variation in sample size (Kalinowski, 2011; Kidd et al., 2011). 

This is supported by a review by Cheung et al. (2017), who found inferring a value of K to be 

subjective. To avoid the possibility of incorrect clusters based on subjective K values, both Cheung 

et al. (2018b) and Kalinowski (2011) suggest the use of repeated STRUCTURE runs using several 

values of K. However, this approach introduces high run-times and is not robust. In addition to the 

subjectivity of K, other limitations associated with using STRUCTURE include (Cheung et al., 2017, 

2018b; Kalinowski, 2011; McNevin et al., 2013): 

i) High run-time;  

ii) Silent crashes; 

iii) Strict formatted input files; 

iv) Model assumptions of independence regarding genetic structure. 

Of particular importance is the observation made by Cheung et al. (2017) and McNevin et al. (2013) 

that STRUCTURE assumes Hardy-Weinberg Equilibrium when inferring population clusters. These 

authors then comment that ancestry markers which have been subjected to selection criteria, that is, 

handpicked for their ability to discriminate populations, are less likely to be in equilibrium; caution 

should be exercised as the predictions may be inappropriate when this assumption is invalid.  

An additional aspect of STRUCTURE is that the program provides the user the option to use an 

admixed model or a non-admixed model. The user can select one of the two models based on whether 

the user believes that the individuals originate purely from one of the K populations (non-admixed) 

or that the individuals may have a mixed ancestry (admixed) (Pritchard et al., 2009). The 

STRUCTURE user manual recommends starting with the admixture model as it is a “reasonably 

flexible model for dealing with many of the complexities of a real population” (Pritchard et al., 2009, 

p.7), and that admixture is a common feature of real data which, is unlikely to be detected in the no-

admixture model. 

While STRUCTURE may have several drawbacks that make the program complex, requiring 

significant time to both learn and use the application, it is not without benefits. Comparisons of 

STRUCTURE and a number of other classifiers (Generic Bayesian, GDA, MLR), are provided by 

Cheung et al. (2017) and Cheung et al. (2018a), for situations involving non-admixed and admixed 

individuals, respectively. For the non-admixture situation, Cheung et al. (2017) used a training dataset 

of 1093 individuals from four populations collected from the 1000 Genomes Project (Genomes 

Project Consortium, 2015), namely, Africa (n = 246), Europe (n = 380), East Asia (n = 286), and 

America (n = 181). They used the results to classify a test dataset of 516 individuals collected from 
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the CEPH Human Genome Diversity Panel (Li et al., 2008), namely, Africa (n = 95), Europe (n = 

150), East Asia (n = 210), and America (n = 61). 

Figure 3.5 (Cheung et al., 2017, Online Resource 8) shows the output from their STRUCTURE 

analysis, where K = 4. While the European and East Asian training sets are highly homogenous, both 

the African and American training sets exhibit noticeable admixture. Regardless, STRUCTURE was 

able to assign all test subjects with the highest classification accuracy compared to the other 

classifiers. Classification accuracy was inferred by comparing the test individual’s predicted ancestry 

to the original self-declared accuracy and utilising Area Under the Receiver Operating Characteristic 

(AUROC) Curve values.  
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Figure 3.5: Cheung et al. (2017) STRUCTURE Output 
Each vertical strip represents a single individual within each of the relevant sets where K = 4 (Sourced from Cheung et al. (2017, Online Resource 8)). 
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To test STRUCTURE’s ability to handle admixed samples, Cheung et al. (2018a) simulated 

individuals by selecting samples from the aforementioned four training sets that were unambiguously 

non-admixed based on self-reporting, resulting in four ‘non-admixed’ samples of  African (n = 66), 

European (n = 64), East Asian (n = 23), and Amerindian (American) (n = 5). Using these non-

admixed individuals as initial ancestors, third generation offspring were produced under a total of 35 

scenarios as given in Table 3.1 (Cheung et al., 2018a, Table 1, p.106) 

Table 3.1: Cheung et al. (2018a) Admixture Scenarios 

35 scenarios that Cheung et al. (2018a, Table 1, p.106) used to simulate individuals of varying admixture. 

 
 

 

Classification accuracy for admixed individuals was determined by comparing the predicted relative 

contributions for each population to the known scenario. For example, ideally an individual created 

from scenario 5 (50% African and 50% European, Table 3.1) should have a STRUCTURE output 

with all individuals having approximately the same proportions of membership to the two 
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populations. Cheung et al. (2018a) observed that STRUCTURE performed well for “simple” 

admixed scenarios, that is, those comprised of a mixture of two populations. However, the 

introduction of a third population caused a noticeable reduction in STRUCTURE’s ability to 

accurately infer contributing populations. The validity of these comparisons is, however, 

questionable, as the sample sizes used to simulate individuals were small. Consider, especially, the 

Amerindian individuals who were simulated based on allele frequencies from a sample size of five, 

which was sub-sampled from a previous sample of 61. There is a possibility that these five 

individuals, or even the original sample of 61, is of inadequate size to accurately reflect the true 

population. In conjunction with the sample size used to create the simulations, the outputted number 

of simulated individuals was also small, with no scenario shown in Table 3.1 exceeding 30 

individuals.  

Generic Bayesian. The Generic Bayesian approach combines information regarding genotype/allele 

frequencies for reference populations to update a prior probability of belonging to a given population. 

Note that the Generic Bayesian is also referred to as the Naïve Bayesian. In the statistical literature, 

the generalised version of this technique is referred to as Bayes’ theorem of conditional probabilities. 

There are two components to the Generic Bayesian method as used for forensic DNA situations: (i) 

the likelihood ratio (LR) comparing an individual’s observed genotype/allele frequencies in one 

population to those in a different population, and (ii) the prior odds ratio which is the ratio of the 

probabilities of an individual belonging to a population before any genetic testing has occurred. 

Methodology for calculating the Generic Bayesian is shown and discussed in Section 4.4, while the 

effects of the prior odds ratio and how to estimate its value are discussed in Section 3.2.6.  

The Generic Bayesian approach was adopted to BGA prediction following its previous uses in the 

forensic science, such as its application in paternity testing as demonstrated by Essen-Möller (1938) 

and its later application to criminal case work. For the latter, the method was used when DNA 

evidence was presented in the justice system to compare two mutually exclusive hypotheses. The 

first instance of the Bayesian technique for BGA prediction was used by Lowe et al. (2001) to infer 

BGA for crime scene samples to reduce the number of potential suspects in a police investigation. 

To date, the Generic Bayesian approach has been utilised as an information tool in multiple BGA 

prediction studies (Cheung et al., 2017, 2018a; Gettings et al., 2018; Jin et al., 2018; Kidd et al., 2014; 

Phillips et al., 2009; Phillips et al., 2014; Phillips, 2015; Rishishwar et al., 2015; Tvedebrink et al., 

2017, 2018; Tvedebrink and Eriksen, 2019).  
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The 11-M Madrid commuter train bombing is also a key example in the literature for the application 

of the Generic Bayesian method in BGA prediction (Phillips et al., 2009). In conjunction with the 

STRUCTURE output shown in Figure 3.4, Phillips et al. (2009) also calculated a log LR scale to 

create a range of expected log LR values for the individuals (note a logarithmic scale was applied to 

the LR to create a manageable scale). As shown in Figure 3.6 the distribution of LR values for 

individuals from the Moroccan population are shown in the left-hand section to be greater than 1, 

with the distribution of LR for the Spanish population in the right-hand section shown to be less than 

1. The seven crime scene samples, shown on the right, are then compared to the estimated sample 

ranges to determine which, if any, can be assigned ancestry based on LR classification thresholds. 

Phillips et al. (2009) outline their classification thresholds as: (i) Log LR ≥ 100 = Moroccan BGA 

(which they equate to North African ancestry), (ii) Log LR ≤ 0.001 = Spanish BGA (which they 

equate to European ancestry), and (iii) if the Log LR is between 0.001 and 100 the individual remains 

unassigned as there is minor overlap between the Moroccan and Spanish samples. For the unassigned 

situation, ancestry is ambiguous. Three crime scene samples (1, 4 and 6) are classified as unassigned 

as they fall within the classification zone of 0.001 to 100 as previously described.  

 
Figure 3.6: Phillips et al. (2009) Log Likelihood Ratio Output 

Log likelihood ratio classification system to classify several test samples (Case DNAs) as belonging to either a North 

African (Moroccan n = 48) or a European (Spanish n = 48) origin (Sourced from Phillips et al. (2009, Figure 1, p.4)).  

 

Limitations that are observed in Phillips et al. (2009)’s analysis that the authors do not comment on 

are: 
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1) The sample sizes used to generate the classification thresholds are relatively small (n = 48 

each), and these may not accurately reflect the true populations; 

2) No margins of error are attached to estimated likelihood ratios, providing little reliability in 

their respective classifications; 

3) Possible overestimation of likelihood ratio values by multiplying genetic markers which were 

selected through selection criteria, a limitation previously discussed for the STRUCTURE 

classifier, and addressed by Cheung et al. (2017); 

4) The LR inability to handle a relative frequency of zero when an allele is not observed.  

GenoGeographer is software that performs BGA prediction using an adjusted version of the Generic 

Bayesian approach, incorporating a z-score analysis to determine if any of the utilised populations 

are in fact relevant (Mogensen et al., 2020; Tvedebrink et al., 2017, available at https://cran.r-

project.org/web/packages/genogeographer/index.html). The software addresses several limitations of 

the Generic Bayesian classifier, such as the removal of zero probability values (see Concluding 

Remarks for this section) and the suitability of populations. Another application of the Generic 

Bayesian approach is seen in Rishishwar et al. (2015), who utilised the method to assign sub-

continental African BGA to Afro-Colombians. A technique used by Rishishwar et al. (2015) that has 

not been utilised widely in other applications is the incorporation of historical data for estimating a 

value for the prior odds ratio. Rishishwar et al. (2015), based on a simulation study, concluded that 

incorporation of historical data improved the overall classification accuracy. The significance of this 

technique is discussed in Section 3.2.6.  

Genetic Distance Algorithm (GDA). GDAs are used to measure the cumulative genetic distance of 

genotypes/alleles over multiple DNA markers between populations of interest. Several statistical 

measures have been proposed for measuring the divergence between populations, based on varying 

evolutionary models. Commonly used algorithms are Nei’s measure (Nei, 1972), Cavalli-Sforza and 

Edward’s measure (Cavalli-Sforza and Edwards, 1967), and Reynolds, Weir and Cockerham’s 

measure (Reynolds et al., 1983).  

Compared to the Bayesian classifiers, GDAs are less commonly utilised for inferring ancestry of an 

unknown individual.  Comparing an in-house GDA algorithm to the other classifiers discussed in this 

chapter, Cheung et al. (2017) found the GDA to have the lowest classification accuracy for non-

admixed individuals. For admixed individuals, the GDA underperformed compared to other 

classifiers, including STRUCTURE, for basic admixture scenarios, that is with only two contributing 

populations. However, for complex admixture scenarios, with three or more contributing populations, 

https://cran.r-project.org/web/packages/genogeographer/index.html
https://cran.r-project.org/web/packages/genogeographer/index.html
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the GDA had the highest classification accuracy.  As Cheung et al. (2018a, p.109) state “GDA is a 

more accurate classifier than STRUCTURE when the degree of admixture increases, and particularly 

when the ratio is evenly divided between reference populations”. Unlike Bayesian classifiers the 

GDA makes no assumptions regarding Hardy-Weinberg equilibrium or other assumptions for the 

genetic structure of the population. 

Multinomial Logistic Regression (MLR). MLR is a regression analysis which aims to predict a 

categorical dependent variable consisting of two or more levels, from a set of independent variables. 

Prior to BGA prediction, MLR was already being utilised in ancestry studies as a method for 

phenotype predictions of hair (Walsh et al., 2013) and eye colour (Liu et al., 2009; Walsh et al., 2011; 

Walsh et al., 2013). In these phenotypic studies, hair and eye colour (the dependent variables) were 

predicted using numerous SNPs (the independent variables) that were known to have statistically 

significant association with hair and eye colour. An example of how SNPs can be used to predict hair 

colour is shown in Figure 3.7.  

 

Figure 3.7: Multinomial Logistic Regression Pathways for Hair Prediction 

Walsh et al. (2013, Figure 2, p.105) describes the pathways necessary for which hair colours (shown in boxes) are 

obtained based on the observed genotypes at the dependent SNPs. By observing which set of alleles are present at the 

SNPs of interest and the resulting combination, one can predict the phenotype that will occur. For example, an individual 
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with the following alleles: rs1805005-TT, rs1110400-CC, rs2228479-AA, rs12821256-GG, rs4959270-AA and 

rs1800407-AA will be predicted to have blonde hair. 

McNevin et al. (2013) compares MLR to STRUCTURE to determine whether MLR could be a viable 

alternative for BGA prediction. The two classifiers’ prediction accuracies were compared using 

several admixed and non-admixed subpopulations from the Human Genome Diversity Project 

(HGDP) database (Africa n = 98, Europe n = 157, East Asia n = 225, Oceania n = 27, Indigenous 

Americans n = 64). These authors commented that MLR is a practical substitute for STRUCTURE 

as the loss of accuracy from STRUCTURE to MLR was minimal. In addition, unlike STRUCTURE, 

MLR does not require assumptions such as Hardy-Weinberg equilibrium to be valid and is readily 

performed even in an excel spreadsheet (and other statistical software) as opposed to STRUCTURE’s 

strictly formatted input files and long run-times.  

Logistic Model Tree. Landwehr et al. (2005, p.16) describe the LMT algorithm as “… a standard 

decision tree structure with logistic regression functions at the leaves…” providing a combination of 

these two statistical classifiers. The idea of combining tree induction with logistic regression follows 

a logical application as the benefits of each approach complement the limitations of the other. Simply 

put, tree induction can exhibit low bias but high variance, while conversely, logistic regression can 

have high bias with lower variance (Landwehr et al., 2005). Note that this section only provides a 

basic summary of the LMT algorithm’s methodology as the focus of this thesis is not specifically this 

method, but rather on a specific application of it (see Section 4.3).  The reader is referred to Landwehr 

et al. (2005) for a full description of the method. Before describing the LMT algorithm, a short 

summary is provided for tree induction and for logistic regression. 

Tree Induction. A decision tree can be described as a classification model that builds events which 

contain various outcomes using conditional ‘rules’ occurring over a number of variables (referred to 

as attributes) (see Figure 3.8 for an example), “a map of the possible outcomes of a series of related 

choices.” (Lucid Chart, n.d.). A decision tree is comprised primarily of “nodes” which generally take 

two forms: i) a question node (sometimes referred to as a chance or terminal node) which describes 

a range of values for a given attribute, and ii) an outcome node which describes the observed 

classification outcome based on the tree pattern leading up to this node. Nodes are connected to 

outcomes through branches, which describe the conditional rule applied to the attributes in the node 

to determine which outcome is observed. The outcomes of a question node can be one of two 

possibilities: i) either the question node results in a brand-new question node (with a new attribute of 

interest and conditional branches) which extends the length of the tree, or ii) the outcome can result 

in a leaf node, or terminal node, (represented by a square). A leaf node will contain the predicted 
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class output, which the user is attempting to classify using the available variables (Perner, 2015). 

Figure 3.8 demonstrates a simplified example of how decision trees are presented and interpreted. 

The question of interest is determining whether an individual should go to the beach on a given day 

based on three variables of interest: whether it is raining, the temperature (°C) and whether there are 

sufficient shark safety measures in place. As seen in Figure 3.8, this tree has three levels based on the 

number of descending question nodes, with each question node containing a single attribute variable 

(note, an attribute can be comprised of more than one variable). Each question node in Figure 3.8 

consists of binary branches – however, multivariate branches are also possible – resulting in either 

the next question node or the predicted class output, “Don’t go to the beach” or “Go to the beach”.      

 

 
Figure 3.8: Simple Decision Tree 

Basic decision tree to support the question, “should you go to the beach?”, utilising three decision nodes.  

 

Decision trees can become increasingly complex as more variables are utilised causing the tree itself 

to become a large network of conditional outcomes.  
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There are numerous algorithms for creating decision trees, each one producing different trees based 

on varying methods used for selecting which attributes will be used to build nodes and the criteria to 

be used for splitting the nodes into branches (Song and Ying, 2015). Notable algorithms found in the 

literature include: C4.5 (Quinlan, 1994), CART (Breiman et al., 1984), CHAID (Kass, 1980), ID3 

(Quinlan, 1986) and M5 (Quinlan, 1992). Each algorithm has advantages and disadvantages for 

different scenarios and determining which one to use will depend on the available data and the 

question of interest (Song and Ying, 2015). Each decision tree algorithm has a stopping criterion 

(similar to Shannon’s balance of information versus error) according to which the gain of information 

is minimised, and tree generation stops. While the difference between stopping criteria is not a topic 

discussed in this thesis, the logic behind most algorithm’s stopping criteria can be broadly described 

as a threshold after which the data can no longer be partitioned into distinct homogenous sub-groups 

(Hssina et al., 2014; Mingers, 1989; Singh and Gupta, 2014; Song and Ying 2015). It should be noted 

that not all input variables will always be used. Some variables may not be deemed informative 

enough and thus will not be included in the tree. 

Logistic Regression. Logistic regression describes the relationship between a dichotomous outcome 

variable and one or more predictor variables (Peng et al., 2002). As an example, consider a bank 

detecting credit card fraud application. When a purchase is made using a credit card, the bank receives 

data on numerous variables such as: where the transaction occurred, the amount of the transaction, 

date of transaction for this particular individual, and category of purchase. Using the data, the bank 

can then build a logistic regression model based on the individual’s typical purchases, that is, building 

a characterized profile of what is a standard purchase and what constitutes an out of the ordinary or 

an “outlier” transaction. When a purchase is made which is outside what the model considers a 

“normal” purchase, based on a predetermined threshold, the transaction is flagged for further 

investigation, and is considered potentially fraudulent.  

Logistic Model Tree. The first stage of LMT is creating the initial decision tree, which is constructed 

using a standard classification tree algorithm, such as the C4.5 algorithm. The LMT will build the 

tree by analysing the available variables and estimating the information gain, that is, the ability to 

distinguish between the two populations of interest (known as classes), for each individual variable 

and for sets of variables. The variable/s with the highest information gain is then used to construct 

the tree. Once the tree has been constructed, logistic regression models are fitted to the leaves of the 

tree, resulting in the output of the LMT algorithm as a regression formula for each population of 

interest. An important aspect of the LMT algorithm is the way in which missing values are handled 

in the training data. Missing values are replaced with the mean of that respective variable. Landwehr 
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et al. (2005) note that this simplistic approach did not cause noticeable issues during analysis but 

suggest more sophisticated methods could be an advantage in the future. 

By implementing the concept of information theory – how many SNPs are needed to identify the true 

ancestry – multiple LMTs of different subsets of the available SNP panel can be generated. For 

example, the LMT is sensitive to rare genotypes, and if a SNP is present where the genotype is fixed 

in one population but absent in the other, the algorithm will likely construct a tree which solely utilises 

this one SNP. The limitations of utilising a single LMT are: 

i) As remains in a historic military case are likely to be degraded resulting in partial 

profiles, the SNPs present in the single LMT may not be available;  

ii) The sample sizes used to generate the LMT may be small (≤100). Note this has already 

been flagged in the majority of forensic applications (such as Cheung et al. (2018a) 

and Phillips et al. (2009)). There is the possibility that the genotype which is believed 

to be absent based on the sample may in fact be present in the population, the sample 

size was simply insufficient to detect it. 

By obtaining estimates of ancestry from a number of independent models, a better knowledge of the 

true panel value and thus of the true ancestry will be possible. This parsimonious adaptation of the 

LMT can ensure that the most informative SNPs are included in the models, while SNPs that only 

add noise to the analysis are excluded. 

Parsimonious Logistic Model Tree. To overcome the issue of utilising a classifier which may consist 

of only a single SNP, a variation to the basic LMT approach is developed. Where multiple models 

are coupled with the concept of parsimony. Instead of a single model being obtained from the 

available SNPs, multiple LMT models are generated iteratively. Using information theory’s logic of 

balancing information and error, the Parsimonious LMT (pLMT) approach determines the number 

of LMT models, M, that can be generated from a set of SNPs (without replacement) before a threshold 

is reached where the gain of information is offset by the gain in error, certainty and uncertainty are 

balanced. Details of this approach are given in Section 4.3. 

Concluding Remarks. When comparing the Generic Bayesian approach to STRUCTURE, GDA, 

and MLR, Cheung et al. (2017) found that the correct classification rate of the method was only 

minimally lower than that of STRUCTURE for non-admixed individuals. Since the Generic Bayesian 

is computationally simpler and it can be readily implemented in a spreadsheet, Cheung et al. (2017) 

suggested using it as an alternative to STRUCTURE when analysing non-admixed individuals with 

minimal loss in accuracy. However, for admixed individuals, the Generic Bayesian method was 
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considered less effective.  Unlike STRUCTURE which can output several proportions of the relative 

contributing populations, the Generic Bayesian approach provides an “all-or-nothing” output, that is, 

“…individuals are assigned largely to a single BGA despite the presence of admixture” (Cheung et 

al., 2018a, p.109). By assigning individuals to a single population, the Generic Bayesian – and any 

other “all-or-nothing” classifier – is not useful for determining an individual’s admixture proportion. 

Cheung et al. (2018a) also states that BGA predictions should not be performed using “all-or-

nothing” classifiers in general. From the above it becomes apparent that if one’s interest is in 

estimating relative admixture proportions for multiple populations, then classifiers such as 

STRUCTURE are more suitable, but for scenarios where interest lies purely in assigning an 

individual to a single BGA, “all-or-nothing” classifiers such as the Generic Bayesian are attractive 

options due to their computational simplicity. 

For Cheung et al. (2017)’s comparison of MLR, STRUCTURE, Generic Bayesian, and the GDA on 

non-admixed individuals, MLR’s overall classification accuracy (98.25%) was only slightly lower 

than those of STRUCTURE (100%) and the Generic Bayesian (99.5%). As MLR was categorised by 

Cheung et al. (2018a) as an “all-or-nothing” classifier, MLR was excluded during experiments on 

admixed individuals. One limitation of MLR raised by Cheung et al. (2018a) is that the method is 

highly sensitive to single locus effects, that is, having the classification model being driven heavily 

by a genotype that is fixed in one population and absent in the other population, which may cause 

other informative SNPs to be overlooked by the model. 

There are three additional limitations of the Generic Bayesian approach. As is the case with most 

Bayesian classifiers (including STRUCTURE), the Generic Bayesian method assumes that all loci 

are independent of each other. This assumption has been contested in the literature by both Cheung 

et al. (2017) and McNevin et al. (2013), both of whom have commented on the matter stating DNA 

markers chosen under selection criteria are unlikely to adhere to such assumptions in reality. From a 

practical forensics’ application perspective, this assumption may be true: markers are often selected 

using metrics such as linkage disequilibrium (measuring the dependency or correlation between 

genetic markers) (Phillips, 2015) to ensure a panel consists of independent markers. However, this 

assumption may not be valid if one considers how these markers may be linked through an 

individual’s heritage. The goal of ancestry prediction is to create a panel where each DNA marker 

has good discrimination power between two or more populations, therefore, it is possible that these 

selected markers may be correlated. 
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The second limitation of the Generic Bayesian, specifically when outputted in the format of the LR, 

is the difficulty of interpreting the output number. This limitation becomes exceedingly complex 

when the predicted ancestry outcome is not binary, but rather, comparing multiple populations. In 

these cases, the recipient is left with a series of pairwise LR statements to weight the unknown. In 

the literature, two possible solutions to alleviate the difficulty of LR interpretation have been 

suggested. The first solution is the application of some form of scale, such as the logarithmic scale 

as in Phillips et al. (2009). The second approach is the use of a qualitative or ‘verbal’ scale which 

attempts to substitute numbers with words, which some suggest are easier to follow. Ballantyne et al. 

(2017) provide an example of a verbal scale (Table 3.2). 

Table 3.2: Verbal Scale for the Likelihood Ratio 

Verbal scale to assist forensic scientists when providing LR evidence to the jury (Sourced from Ballantyne et al. (2017, 

Table 1, p.8)). 
Verbal Conclusion 

(Support for or against the referent) 
Corresponding Likelihood Ratio 

Extremely strong support against < 0.000001 

Very strong support against 0.000001 – 0.001 

Strong support against 0.001 – 0.01 

Moderate support against 0.01 – 0.1 

Slight support against 0.1 – 1 

Neutral 1 

Slight support for 1 – 10 

Moderate support for 10 – 100 

Strong support for 100 – 1,000 

Very strong support for 1,000 – 1,000,000 

Extremely strong support for > 1,000,000 

 

The issue with utilising a verbal scale is the subjectivity of how an individual interprets that verbal 

conclusion. While Ballantyne et al. (2017)’s scale deems a LR of 10 – 100 as “Moderate support for”, 

that does not mean to say that another individual would have the same conclusion for this range. 

Rather, the scale seems to have been arbitrarily ranked in magnitudes of ten, rather than through 

empirical surveys of individual’s beliefs. As stated in Marquis et al. (2016, p.4) “…numbers allow 

us to make the distinction that words cannot make…only numbers can cope with this challenge”. A 

study by Berger et al. (2011, p.47), evaluating various court appeals revolving around the 

interpretation and reporting of DNA evidence, suggested that “In those cases where a quantitative 

likelihood ratio has been calculated…it is the number alone that should be put to the jury”. The 
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interpretation of LR values remains a limitation in the investigative ancestry context, as ultimately 

there is still a human element involved in decision making that involves the subjectivity of 

comprehending large numbers. The interpreter must also be aware when interpreting likelihood ratios 

that simply calculating that one population is more likely to occur than another does not imply that it 

is the correct or relevant population (Tvedebrink et al., 2018). An additional limitation to interpreting 

LR values beyond a verbal scale, is that most BGA studies do not rely on a sole LR, rather, a 

comparison of several LRs between all possible populations and their pair-wise permutations which 

are then ranked. An issue with this approach is that subconsciously, most people will tend towards 

the largest LR value and ignore all remaining outcomes.  

The final limitation of the Generic Bayesian method is its inability to handle zero probabilities. If a 

genotype/allele is absent in a sample, then its frequency estimate will be zero. However, in another 

sample from the same population the genotype/allele may be seen; it is simply an issue of an event 

which occurs rarely in a population not being seen in a particular sample. As the Generic Bayesian is 

calculated using the LR, which is estimated through the multiplication of an individual’s genotype 

frequencies, any zeros in the calculations will result in an uninformative result – either the numerator 

or the denominator of the LR will be zero. An approach utilised in the literature to account for zero 

sample probabilities, is to apply a conservative frequency (based on sample size) (Gettings et al., 

2018; Graydon et al., 2009; Lowe et al., 2001; National Research Council, 1996; Phillips et al., 2007; 

Voskoboinik et al., 2018). Different approaches for estimating a conservative minimum frequency 

were found in the literature (Table 3.3). 

Table 3.3: Conservative Minimum Frequency Methods 

Examples of conservative minimum frequency estimation methods from the literature where n is the sample size. 

Articles where a minimum frequency has been 

utilised 

Conservative minimum 

frequency formula 

Budowle et al. (1991); Gettings et al. (2018); 

National Research Council (1996); 

Voskoboinik et al. (2018)  

5

2𝑛
 

Graydon et al. (2009); Phillips et al. (2007) 
1

2𝑛 + 1
 

Lowe et al. (2001); Mogensen et al. (2020)  
1

𝑛
 

 

The methods shown in Table 3.3 are ad-hoc, with little empirical or theoretical support. The original 

minimum frequency proposed for forensic science situations (National Research Council, 1996), 

stemmed from need to have a minimum number of entries to address sampling error (Budowle et al. 

1996).  
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Based on these limitations of both STRUCTURE and the Generic Bayesian method, the pLMT was 

selected as the analysis machine for inclusion in DNA-MAP, however, as part of this thesis, these 

two additional classifiers are also applied for comparison purposes (see Chapters 4 and 5 for methods 

and results, respectively). It is important to note, that the focus of this thesis is the construction of the 

user-friendly KBDSS, which is constructed in such a way that the selected classifier should be 

interchangeable with other statistical methods. Therefore, while the choice of which classifier to 

implement in the KBDSS’s prototype is a personal preference (and should not be viewed as the final 

choice), during this early stage of development it was considered desirable to select and validate a 

method with a high accuracy and few limitations. 

3.2.4 Relevant Populations 

Selecting the appropriate populations is imperative for accurate classification. It is first important to 

define what is a “population” in the context of BGA prediction. Depending on the scope of the study 

a population can consist of a continental group, if interest lies solely in distinguishing between racial 

groups such as Asian versus European, or can be as specific as the distinction between two separate 

human clades within a regional area. Note that as the scope becomes more defined, so too does the 

difficulty of finding highly variable genetic regions between the populations of interest since there is 

less chance of biodiversity evolving from geographic separation. The term population can be further 

defined in terms of homogeneity, determining whether admixture between groups has occurred which 

may also restrict the ability to accurately assign BGA. For contemporary populations, the issue of 

admixture is rapidly becoming a greater limitation for BGA studies; with the modernisation of 

commercial travel, the rate of admixture between distant populations is expected to increase.  

Several criteria need to be considered including geographic location, population history, age, 

biological sex and historical time. Typically for BGA studies, both commercially and in current 

research, geographic location and population history are the two primary criteria of interest. When 

creating a reference database for a population, a researcher has two options: (i) collection of a new 

sample, and/or (ii) the use of freely available data from online databases. As previously discussed, 

the databases within commercial ancestry companies are kept as trade-secrets and very rarely can be 

accessed by researchers. Phillips (2015) states that the following three databases are commonly 

utilised for research: (i) the 1000 Genomes Project (Genomes Project Consortium, 2015), (ii) the 

CEPH Human Genome Diversity Panel (Li et al., 2008), and (iii) the Allele Frequency Database 

(Rajeevan et al., 2012).  
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Determining which populations, and how many, to include in an analysis relies heavily on the 

question of interest. For example, if a study is concerned with the distinction and classification 

between only two populations of interest, additional resources can be directed towards collection of 

appropriate individuals from these two populations. However, when a study focuses on a global scale, 

it can be a difficult task to determine which (sub)populations to include, given that it will be 

impossible to sample all (sub)populations. The researcher should consider the possibility that a 

classifier may infer an individual belongs to a specific population, however, this may not be the 

individual’s true population of origin, which was not present in the original samples. For example, 

consider a study consisting of only Asian populations. To then subsequently classify an unknown 

individual, the sample will likely be inferred to have Asian ancestry given that these are the only 

reference populations available. However, the true origin of the unknown individual may in fact 

belong to any number of ancestries, but no samples from the individual’s true origin were available 

in the reference database. Such an outcome may lead to erroneous, classifications, a perspective 

shared by Kidd et al. (2014) and Themudo et al. (2016). Online databases might consist of numerous, 

specific populations, however, such populations are not exhaustive (Tvedebrink et al., 2017, 2018; 

Tvedebrink and Eriksen, 2019).  

Researchers/investigators should also be wary of the assumption that their databases include all 

relevant populations, since publicly available databases such as the 1000 Genomes Project (Genomes 

Project Consortium, 2015) are used without questioning how the observations in these resources were 

obtained. Royal et al. (2010) raise several points regarding this issue: (i) certain ancestral populations 

cannot be accurately represented as a definitive sample no longer exists, (ii) admixed populations are 

severely under-represented, and most importantly, (iii) proxy populations are often poor 

representations of the desired population. An example of a doubtful proxy population is in the 1000 

Genomes Project’s (Genomes Project Consortium, 2015) British individuals from England and 

Scotland (abbreviated as GBR). Information readily available through the 1000 Genomes Project 

shows that this GBR sample was collected from individuals in Kent and Cornwall (England), the 

Orkney Islands, Argyll and Bute (Scotland) (Figure 3.9). It is hard to see how these samples could 

be a truly representative and unbiased representation of the general British population’s genome when 

the samples are collected from remote areas that may not represent the true nature of the greater 

British population. Despite this, researchers use this sample as an overall representation of Britain 

(see for example, Bulik-Sullivan et al. (2015), Khrameeva et al. (2014), and Ramos et al. (2014)), 

without commenting on the accuracy of the representation. 
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Figure 3.9: 1000 Genomes Project’s GBR Location 

Geographic location of the source of the 1000 Genomes Project’s GBR sample (n = 91), Cornwall, Kent, Orkney, and 

Argyll and Bute. 

 

Great care must be exercised when selecting which populations to include in an analysis, and the 

researcher/investigator should determine which populations are relevant to the question of interest. 

There is little point in trying to get an accurate estimate, only to realise that the sample used is 

inadequate or atypical of the true population, and that conclusions inferred and assumed to be 

applicable to the population of interest, may be invalid and misleading. 

3.2.5 Sample Size and Rare Event 

Prediction of ancestry relies on the comparison of allelic and/or genotypic frequencies which are 

estimated using samples from different populations. Sample sizes used typically vary between and 

within studies. Little, if any, attention is given in the literature to the following important issues which 

arise when sample sizes are small: (i) the effects on the estimation of the allele frequency and (ii) the 

real possibility that some alleles present in a population may not be identified in the sample 

(Chakraborty, 1992). The importance of “rare” allele detection in ancestry analysis is ensuring that 

any statistical models generated based on observed allele frequencies are accurate. A rare, or elusive 

allele is characterised by occurring in low abundance, restricted due to geographic elements, or 

carrying a low probability of detection (Budowle et al., 1996; Chakraborty, 1992). In the forensic 

literature, there have been several definitions for what constitutes a rare allele, Budowle et al. (1996) 
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use a frequency less than or equal to 0.01, while Chakraborty (1992) uses values of 0.05, 0.01, and 

0.001 during his analyses. When an algorithm is used to find the most parsimonious set of genetic 

markers for classifying individuals, it uses all available information. When an allele is rare it might 

be missed in a small sample and thus, this information is not available to the algorithm which might 

lead to misclassification.  

Loci used for inferring ancestry are typically those found to provide high discrimination power. The 

best case, and most desirable scenario, is when specific alleles are found in all individuals of one 

population of interest and none in another. Thus, the alleles common (potentially fixed) in one 

population are rare (potentially absent) in the other. When the alleles are ‘rare’ it is likely that these 

alleles will fail to be detected in any relatively small sample of individuals usually found in the 

literature (Chakraborty, 1992; Hackshaw, 2008). However, such failure to detect does not mean that 

the allele is not present in the population: absence of evidence should not be interpreted as evidence 

of absence. To demonstrate the impact failing to detect a rare event may have, consider an ideal SNP 

which is fixed with one allelic state in one population while the other allelic state is fixed in the 

second population. Note that this decision will be based on the available sample data. Despite this 

expected situation, there will always be the possibility of a small percentage of one of the populations 

having the unexpected fixed allelic state, either due to a random mutation occurring at some prior 

generation and by chance being passed down, or through an unknown admixture event. If the 

prediction-based modelling technique employed to assign BGA was heavily influenced by this SNP 

(a fair assumption considering its ideal discrimination power), then there is a possibility for 

misclassification for this small percentage. Due to the SNP’s high discrimination power, these 

individuals who truly belong to one population may be misclassified to the other population simply 

because the original sample taken was of inadequate size to detect the rare allele and adjust the 

modelling to account for this rare case. 

Articles proposing techniques for dealing with and acknowledging rare events detection have been 

published in numerous research areas, with some examples shown in Table 3.5. 

In these papers (Table 3.5) it is clearly acknowledged that not detecting a particular observation in a 

sample does not mean that the observation is not present in the population; it simply means that the 

item was not seen in the sample. Underlying all considerations of the impact of using samples to 

make decisions about populations is the assumption that the sampling was carried out randomly, that 

is, every allele could be sampled according to the probability with which it occurs in the population. 

It is also assumed that the sample is taken from a single homogeneous population of interest. In 
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assigning ancestry, consideration should also be given to differences in the genotype distributions for 

different ancestral populations and not just to the allele frequencies.  

Table 3.5: Examples of Rare Events in Various Disciplines 

Examples from multiple disciplines regarding their equivalent rare event, with respective papers providing methodology 

to detect these events. 

Scientific Discipline The Rare Event Article 

Ecology A rare species of flora/fauna Krebs (1980); Robinson et al. (2018)  

Epidemiology 
An unexpected disease within a healthy 

population of people 

Kamangar and Islami (2013); Miller et 

al. (2018)  

Geology A rare mineral Hystad et al. (2015)  

Veterinary Science A diseased-state animal within a healthy herd Humphry et al. (2004). 

Brewers A defective bottle Gojanovic (2007)  

Clinical Science Uncommon drug side-effect Chow et al. (2007)  

Post-Marketing 

Safety 
A severe/irreversible drug reaction Makuch (2006)  

Psychology 
A gambling decision with a low probability of 

success 
Rakow et al. (2008)  

International 

Relations 

The occurrence of wars, coups, revolutions, 

economic shocks 
King and Zeng (2001)  

Air Traffic 

Management 
Aircraft collisions Nassar et al. (2011)  

Transportation Vehicle accidents Theofilatos et al. (2016)  

 

Chakraborty’s early work from the 1990s forensic literature lists the difficulties associated with 

observing rare alleles when sampling from a population (Chakraborty, 1992). He outlines the 

limitations and approaches of sampling that need to be considered to achieve an accurate 

representation of the population, addressing the effect that a small sample size has on the reliability 

of detecting a rare allele. The effects of sample size can be seen in studies such as Szabolcsi et al. 

(2015) where a newly collected sample from a previously sampled population resulted in the 

detection of 85 previously unobserved alleles; the previous sample was of size 4213 individuals 

whereas the new sample consisted of 21,473 individuals. Despite the literature advising against the 

use of small samples due to potentially imprecise estimates (Chakraborty, 1992; Hackshaw, 2008; 
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President’s Council of Advisors on Science and Technology, 2016; Royal et al. 2010), population 

inference in ancestry analysis is commonly carried out using samples of insufficient size. As stated 

in the President’s Council of Advisor’s on Science and Technology report “When the sample size is 

small, the estimates may be far from the true value…” (President’s Council of Advisors on Science 

and Technology, 2016. p.153). It is suggested that this statement should be further expanded to 

incorporate that a small sample size may also miss events with a low probability of occurrence, 

namely, that a rare allele may not be seen.  

To calculate the minimum sample size required to detect a rare event, three specific methods are 

compared from the literature, one from within forensic science, and two from other disciplines. These 

methods were selected based on the criteria of (i) adequately answering the question of interest, that 

is, what is the minimum sample size required to detect a defined rare event, (ii) utilise simplistic 

calculations, and (iii) are generalisable to any ancestry prediction scenario? It is acknowledged that 

other methods for sample size calculation are available in the literature, both in forensics and other 

disciplines, however they did not meet the previous criteria. For those interested in alternative 

methods published in the forensic literature, the reader is directed to the following studies (Aitken, 

1999; Brenner, 2010, Cereda, 2017; Cereda et al., 2018; Cereda and Gill, 2020). 

In the forensic literature, Chakraborty (1992) assumed that the variable of interest (number of 

observed alleles) has a binomial distribution and used this probability distribution to develop 

formulae and tables of recommended sample sizes. This distribution is justified as being appropriate 

when the variable of interest has only two possible outcomes such as the tossing of a coin to give 

either heads or tails with the variable analysed being the number of heads seen in a fixed number of 

tosses. In the current application, the variable of interest comes from a “yes” or “no” answer to the 

question “Does this individual have the rare allele of interest”. If so, is there one or two of these rare 

alleles present?’, followed by considering the number of individuals to which the answer is ‘yes’, 

together with how many alleles are present for each individual, to obtain a count of the number of 

alleles. In his methodology, Chakraborty outlines the calculations for estimating the minimum 

number of individuals needed to observe a specified number of alleles with a given minimum 

frequency (See Chakraborty (1992, Table 6, p.152)).  

Green and Young (1993) outline methodology for estimating the sample size for collection of 

different species of molluscs, rather than the occurrence of a rare allele. As Green and Young state, 

“One can only decide how rare a species one wants to detect, and then allocate sampling effort 

accordingly” (Green and Young, 1993, p.356), pointing out that sampling effort, such as sample size, 
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is directly related to detectable rarity. In their work Green and Young (1993) use the Poisson 

distribution in place of the binomial, as relevant for the occurrence of rare events. They also consider 

the negative binomial distribution which specifically addresses the question (in the DNA setting): 

“how many individuals must be sampled before a specified number of successes (rare alleles) is 

seen?” In the forensic science setting of detecting a rare allele, this question of interest becomes more 

specific, namely, ‘how many individuals must be sampled before the first occurrence of a single rare 

allele is seen?’ This special case of a negative binomial is known as the geometric distribution in the 

statistical literature (Kotz, 2006). 

As stated in Chakraborty (1992), the Poisson distribution is closely related to the binomial 

distribution and is a good approximation for modelling when the probability of the allele is rare. 

Green and Young (1993) show that for rare events, the formula for sample size calculations using the 

simpler Poisson distribution is approximately the same as those for the negative binomial and is 

identical with the formula derived from the binomial distribution. They conclude that: “… the simple 

Poisson-based formula is usually adequate for estimating the necessary number of samples to detect 

the presence of a rare species.” (Green and Young, 1993, p.355). Jovanovic and Levy (1997) present 

the ‘The Rule of Three’, a very simple method for sample size determination, which they say is part 

of the ‘folklore’ seen in clinical research. They develop this simple equation for a binomial 

distribution, a Poisson distribution, and a Bayesian approach. The use of rare event calculations is 

shown in Section 4.8. 

3.2.6 Prior Probability 

In the context of BGA prediction the prior probability is the probability of an individual belonging 

to a population prior to genotyping. For example, suppose investigators are tasked with identifying 

remains from a mass-grave where it is known that individuals from two populations are buried. Also 

known are the number of individuals per population within the grave. The prior probability could be 

the ratio of the two population numbers. To illustrate the possible effect of the prior probability, 

consider a scenario where a forensic scientist is attempting to predict ancestry for a set of remains 

discovered in a given geographic area. The remains are assumed to belong to either Population A or 

Population B, and the utilised DNA panel is comprised of a single SNP. Based on the observed 

genotype for the set of remains, the probability of observing this genotype in Population A is 0.95, 

while for Population B is 0.1. Therefore, it is 9.5 times more likely (0.95/0.1) that the remains 

originate from Population A than Population B. Now consider, if prior to DNA testing, the forensic 

scientist has knowledge regarding the possible population sizes of Populations A and B in that given 

area and can incorporate this knowledge. In this area, there are a total of 1050 remains, 50 of these 
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are believed to be individuals from Population A, and 1000 from Population B; clearly, Population 

A is largely outnumbered, and if no DNA testing was available, a set of remains is more likely to 

belong to Population B. Despite the genotype being more common in Population A (approximately 

95% of the 50 = 48 individuals present should have this genotype), there is still a greater chance of 

the unknown remains belonging to Population B (approximately 10% of the 1000 = 100 individuals 

present should have this genotype) simply due to the mass disproportion between the two populations. 

It should be noted that the inclusion of additional SNPs will provide the discrimination power 

necessary to reduce the effect of the prior. Alternatively, cases with populations with greater 

distinction between their genomes would have a lessened effect from a prior probability, due to the 

preliminary discrimination power. However, it is still important to acknowledge the importance the 

prior probability can have on the resulting ancestry prediction. The incorporation of a prior into BGA 

prediction will be discussed in Section 4.8. 

Budowle et al. (2011, p.2) discuss concerns regarding the prior odds in a forensic context, stating that 

while “…the forensic DNA community has made recommendations for using Bayes’ Theorem, they 

have not addressed the variables that should be considered when establishing prior odds…”. The 

primary concern that Budowle et al. (2011) raise is the methods used to estimate a prior odds value, 

where the typical approach observed is to use simply 
1

𝑣
, where v is the pooled number of potential 

victims. Budowle et al. (2011) outline how utilising 
1

𝑣
 can be a poor estimate, using the work of Pajnic 

et al. (2010) as an example, where the authors were attempting to identify WWII remains for a given 

area in Slovenia. A prior odds ratio was chosen based on the estimated number of victims within the 

mass grave, however, it was suggested that some remains may have been buried in a separate site. 

Budowle et al. (2011) raise further concerns for this approach as not all remains were successfully 

identified, and the authors did not consider the possibility that additional victims may be present in 

the mass grave.  

Two other methods for inferring a value for the prior odds were found in the literature for BGA 

prediction. The most common method is to use a prior odds ratio equal to 1, a so called non-

informative prior as it assumes the prior is equal to one for all populations, resulting in the prior 

having no effect on the posterior probability. When Lowe et al. (2001, p.19) first introduced the 

Generic Bayesian approach to BGA prediction for providing intelligence to criminal investigations, 

an equal prior odds was utilised, supported by the following logic “…base an ethnic classification of 

the origin of the crime profile on the DNA information alone”. Additionally, Graydon et al. (2009), 

who was also concerned with the utilisation of BGA prediction for informing criminal casework, 
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used the Generic Bayesian approach and assumed an equal prior odds ratio. Rishishwar et al. (2015) 

used the Generic Bayesian approach to determine whether accurate classification could be made 

between historical sub-populations within Africa. Rather than assume an equal prior odds Rishishwar 

et al. (2015) uses historical records to estimate the relative contributions of ancestral regions to the 

modern-day African populations. It was found that the inclusion of a historical prior, versus a non-

informative prior, led to a significant reduction on the misclassification error for known cases 

(Rishishwar et al., 2015). Despite utilising a non-informative prior odds, Lowe et al. (2001, p.19) 

comments that the selection of the prior should be fluid, updated based on the given scenario, “The 

assignment of prior probabilities will depend on the circumstances of the individual case.”, a 

comment reiterated by Rishishwar et al. (2015). It must be noted that while the inclusion of a prior is 

beneficial for measuring the size discrepancy between populations, there is the associated limitation 

of the so-called prior wash-out. Simply put, as the prior-odds ratio tends towards extreme values, 

around 0 or 1, the posterior probability tends towards these extreme values as well. This prior wash-

out can therefore, cause informative results to be considered otherwise uninformative simply due to 

an extreme prior probability heavily skewing the results. Therefore, it is imperative for the prior to 

be based on accurate information to ensure any estimations are accurate. Despite the possibility of 

prior washout occurring even with informed prior probabilities, the impact of using an uninformative 

prior is if subsequent estimates result in a different answer, when genuine prior information may 

indicate otherwise. 

Another area of forensics where the prior probability is used is paternity testing, when comparing the 

probability of the alleged man being the father with the probability a random man from the same 

population is the father. A paternity index is first calculated by comparing the two previously 

described scenarios, which utilises a 50:50 prior (also referred to as an uninformative or equal prior). 

The use of a 50:50 prior assumes that every man in the given population has an equal chance of 

fathering the child, a grossly inappropriate assumption that is not likely to hold true. Alternatively, if 

a non-equal prior is selected, the resulting probability of paternity will then change. For example, for 

a LR of it being 10 times more likely that the alleged father is the true father rather than a random 

man from the population, the resulting probability of paternity assuming an equal prior is 0.83 (83%). 

If a prior probability of 0.95 was used however, the resulting probability of paternity is then changed 

to 0.9 (90%). Therefore, the choice of prior selection is important due to the changes it can cause to 

the subsequent paternity index; the limitation, however, is that selecting an appropriate prior would 

be extremely difficult. 
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It is acknowledged that there may be other prior information that could be used as prior inputs, for 

example anthropological evaluation indicating an individual belongs to a given racial group based on 

bone structure, or personal belongings found on the remains. However, for the UWC-A framework 

these priors are excluded due to the remains found being highly fragmented (it is rare to find remains 

completely intact) and the high possibility of disturbance from looters or wild animals leading to 

disturbed burials.  

3.2.7 Degraded/Partial Profile 

Obtaining a partial, or incomplete, DNA profile is common for forensic samples due to degradation 

or stochastic errors in the chemical process (Cheung et al., 2017). To determine which classifier is 

suitable for forensic application, considerations are required for how the classifier handles both 

complete and incomplete DNA profiles.  

Cheung et al. (2017) discusses the limitation of how incomplete profiles affect certain classifiers and 

simulated “degraded” samples by randomly removing SNPs from the original profiles. These 

degraded samples were then classified using STRUCTURE, Generic Bayesian, GDA, and an MLR 

approach. Of the original 142 SNPs used in their panel, test samples had 10% (127 SNPs remaining), 

50% (71 SNPs remaining), 70% (42 SNPs remaining), and 90% (14 SNPs remaining) of SNPs 

missing from the finale profile. Cheung et al. (2017) were able to rank the classifiers based on their 

ability to correctly assign BGA across various levels of degradation, with STRUCTURE being 

consistently the most accurate, followed by the Generic Bayesian approach, GDA, and then MLR. It 

is important to know how missing data is handled by each classifier, as if done incorrectly it could 

lead to biased results and possible misclassifications. For the Generic Bayesian and GDA, missing 

data is ignored, namely, missing SNPs are not utilised in subsequent analysis. The correct approach 

for the MLR, would be to remove the SNPs initially, before the classifier constructs the models used 

for later predictions.  

3.2.8 Margin of Error 

Since estimates of genotype frequencies are obtained from a sample taken from a population, a 

measure of precision of the results obtained should be attached to give a measure of confidence, that 

is an expression of the margin of error that can be expected in the result. This measure of precision 

can be obtained by applying a confidence interval to resulting inferences obtained with sample data. 

The application of a confidence interval is important to achieve accurate reporting, as an outputted 

result may vary significantly had a different sample had been used, and a confidence interval will 

account for most of this variation. Currently, there is no standardised method for estimating a measure 
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of error in BGA prediction. Methodology for calculating confidence intervals varies and is reliant on 

the statistical modelling used. An example of a previously utilised method for calculating confidence 

intervals used in forensics is the Delta method (see Chakraborty et al. (1993) and Curran et al. (2002)). 

The Delta method is used to estimate the variance of a function and is useful in forensic science and 

BGA prediction for classifiers that utilise functions such as the likelihood ratio, a ratio of two 

proportions. Bootstrapping is another method for applying a margin of error and was employed in a 

recent ancient DNA study (Wright et al., 2018), however, it is noted that this is a computationally 

intensive process and leads to substantially increased processing time. 

Methods used in this research for calculating a confidence interval are discussed in Section 4.9. 

3.3 Conclusion 

In this chapter several key factors were identified that should be considered to achieve accurate BGA 

prediction. These factors were: 

1. Population-level and Family-level Admixture: how certain individuals may be genetically 

related to two or more populations and the limitations this scenario can introduce; 

2. Parsimony: selecting the minimum number of SNPs required to achieve accurate 

discrimination using information theory; 

3. Relevant populations: ensuring that the samples collected for analysis are an adequate 

representation of the true populations of interest; 

4. Sample size and rare events: the possibility that a genotype believed to be absent in a 

population is present as a rare event and whether the collected sample has detected this event; 

5. Prior probability: are the populations of interest equally represented; 

6. Degraded/Partial profile: how does missing data affect the classification; 

7. Margin of error: the inclusion of a measure of precision to provide a level of confidence in 

obtained results. 

Selecting a suitable approach for BGA prediction should be based on both the question of interest, 

and what is being measured. The next chapter will outline the methodology for each factor that was 

implemented into this thesis’ KBDSS, with the associated justifications. 
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Chapter 4 – Materials and Methods 

4.1 Introduction 

This chapter outlines how the various factors regarding BGA prediction, as discussed in Chapter 3, 

were implemented in this thesis. Each analysis was performed using the case study described in 

Section 4.2. Finally, these methods will be combined and integrated to build the KBDSS known as 

DNA-MAP, which is discussed in greater detail in Chapter 6. This chapter will be structured as shown 

in Table 4.1.  

Table 4.1: Implemented Methods for Addressing BGA Prediction Factors 

A list of the seven BGA prediction factors that are tested in this chapter, with their respective method of testing. 

Factors Method 

Relevant Population Case Study 

Admixture Simulation Tool 

Classifier Logistic Model Tree, Generic Bayes and STRUCTURE 

Rare event Green and Young 

Prior User input, Bayes formula  

Partial/degraded DNA Systematic Removal of Markers 

4.2 Materials 

4.2.1 Case Study, Relevant Populations, DNA Panel 

In this thesis, a case study will be used for developing and demonstrating the KBDSS developed. The 

case study used is the ongoing recovery of missing WWII Australian soldiers in the South-East Asia 

Pacific being carried out by UWC-A. Australia has been involved in numerous conflicts in different 

parts of the world for over a century. Table 4.2 summarises the most notable conflicts Australia has 

been involved in since becoming an independent Commonwealth from the British in 1901 (National 

Museum of Australia, n.d.). While the number of Australian soldiers who remain unrecovered from 

each area of conflict is not shown in Table 4.2, it is estimated that thousands are still missing 

(Unrecovered War Casualties – Army, n.d.). 
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Table 4.2: Australia’s History of War Participations  

List of significant conflicts Australian troops have been involved in since 1900 (Australian War Memorial, n.d.). 

War Fought (Geographic 

regions) 
Timeline 

Estimated Number of 

Australian Soldiers 

Involved 

Estimated Number of 

Australian Soldiers 

Deceased 

Boer War (South Africa) 1899 – 1902 16, 175 251 

Boxer Rebellion (China) 1900 – 1901 300 – 500 6 

First World War (South-

East Asia Pacific, Middle 

East, Europe) 

1914 – 1918 416, 809 60, 000 

Second World War (South-

East Asia Pacific, Middle 

East, Europe) 

1939 – 1945 1, 000, 000 27, 000 

Occupation of Japan 1946 – 1951 16, 000 0 

Korean War 1950 – 1953 17, 000 340 

Malayan Emergency 1950 – 1960 7, 000 39 

Indonesian Confrontation 1963 – 1966 3, 500 23 

Vietnam War 1962 – 1975 60, 000 521 

The First Gulf War (Iraq) 1990 – 1991 1800 0 

Afghanistan 2001 – present 400 41 

The Second Gulf War 

(Iraq) 
2003 – 2009 2000 0 

 

It is estimated that over 2000 Australian soldiers are currently unaccounted for in the Southeast Asia-

Pacific region from WWII (Unrecovered War Casualties – Army, n.d.), the region that will be the 

focus of this thesis. Papua New Guinea (PNG) is just one country where large-scale battles took 

place, with the Kokoda Track being a notable geographic area where numerous engagements were 

fought. The two primary armies of interest in this thesis which fought in the Southeast Asia-Pacific 

during WWII were the Australian and Japanese. Additional nations involved were the North 

Americans, Chinese, British, and New Zealand military forces and the local populations of Papuans, 

and New Guineans (Australian Government – Department of Veteran Affairs, 2009). Figure 4.1 

outlines a detailed map of the Kokoda Track, where significant casualties were suffered by all 

participants in areas such as Isurava, Sanananda, and Buna (Jackson, 2019).   
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Figure 4.1: Kokoda Track  
Detailed overview of the Kokoda Track, obtained from https://anzacportal.dva.gov.au/history/conflicts/kokoda-

track/kokoda-track/about-kokoda-track-1942-and-today 

 

To assist with the recovery of thousands of unaccounted for Australian soldiers from historical 

conflicts throughout the world, UWC-A, was formed. Their task is to investigate areas where it is 

believed there may be the remains of Australian soldiers (Unrecovered War Casualties – Army, 

2012). If remains are recovered, identification is attempted with three possible outcomes (Figure 4.2):  

1. Complete Identification: remains are assigned to a specific individual, e.g. “M. Madge MM, 

2/1 Field Regiment R.A.A, 7th June 1944 Age 43”   

2. Partial Identification (ancestry): remains are assigned to one of the populations of interest 

from the given geographical location, e.g. “An Australian soldier of the 1939 – 45 war” 

3. No Identification: remains are assigned to a time period based on the given geographical 

location, e.g. “A soldier of the 1939 – 45 war, known only to God”.  

  

https://anzacportal.dva.gov.au/history/conflicts/kokoda-track/kokoda-track/about-kokoda-track-1942-and-today
https://anzacportal.dva.gov.au/history/conflicts/kokoda-track/kokoda-track/about-kokoda-track-1942-and-today
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Figure 4.2: Military Burials  
Three outcomes of UWC-A recovery operations: 1). Complete identification; 2). Partial identification (ancestry); 3). No 

identification. Images provided by Felicity Poulsen – Personal Communication, 2017. 

 

While identification is the desired goal, in real casework success is hindered by various factors 

including: 

(i) Lack of family reference samples: To determine if a set of remains belong to an individual in 

modern missing persons cases, a known sample is required for comparison; this sample could 

belong to the individual or to a close family member (such as a sibling or parent). A constraint 

of UWC-A is that such samples are not available, so distant maternal or paternal relatives are 

sought. 

(ii) Environmental: Often remains are subject to harsh environmental conditions such as 

prolonged exposure to ultraviolet light, heat, moisture, microbes and scavengers (Figure 4.3). 

These circumstances can cause DNA degradation and reduce the amount of information 

produced by genetic testing.  
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Figure 4.3: UWC-A Investigators  
UWC-A investigators excavating a set of skeletal remains from a WWII soldier, in PNG. Image taken from 

https://www.army.gov.au/our-work/unrecovered-war-casualties/world-war-two-papua-and-new-guinea.  

 

 

Accurate methods for ancestry prediction is the first step required by UWC-A to facilitate decisions 

about the final resting place of each soldier. For DNA-MAP to be implemented into UWC-A 

casework, the system needs to be tailored to their case work needs. Thus, in the case of PNG it 

requires: (i) a method of ancestry prediction for distinguishing between two populations of interest 

with a high degree of accuracy (ii) a clear explanation of assumptions and limitations, and (iii) a 

report of the results designed for the intended end-user. The main user of DNA-MAP is UWC-A 

forensic biologists. UWC-A investigators and the Identification Decision Board will use the 

conclusions and opinions of the forensic biologists and can be considered as ‘consumers’ of the 

information. Forensic biologists will input data on a case-by-case basis in order to infer potential 

BGA for a set of unknown remains. When creating and calibrating DNA-MAP, the end user and 

report consumers will be kept as the focus, particularly when developing the areas of reporting 

language and user-interface options. 

The importance of the work UWC-A performs is in providing closure to the families of the service 

personnel who lost their lives, and in ensuring that soldiers who fought for their country receive a 

respectful burial. “One of the most important reasons to identify unknown persons is because non-

identification may result in numerous issues at emotional and legal level for the surviving family 

members and friends.” (Beauthier et al., 2009, p.54). As stated in the honouring of World War 1 

soldier Private Thullier Lake Cardew, “Identifying Private Cardew and honouring him with a 

headstone that bears his name is one small way we honour every man and woman who serves in 

defence of our nation” (Tehan, 2017, p.1)  

https://www.army.gov.au/our-work/unrecovered-war-casualties/world-war-two-papua-and-new-guinea
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An important aspect of this research is the distinction between the WWII era populations and their 

respective present-day counterparts. Prior to WWII, Australia was exposed to numerous waves of 

immigration by individuals from Asian populations, notably, Chinese and Japanese (Parliament of 

Australia, n.d.). The significance of noting all Asian immigration, rather than Japanese alone, is that 

the proposed classification approach in this thesis works on a binary basis; for an unknown set of 

remains the probabilities of belonging to the Australian population and to the Japanese population 

will be assessed and compared. An individual with Asian ancestry (regardless of which specific Asian 

country) will still be assigned to one of these two populations and is expected to be more likely 

associated with the Japanese population based on the genetic similarity of these geographical regions.  

Post-WWII, the contemporary populations of Australia and Japan have been affected by a degree of 

multicultural influence, especially in Australia. The influence can be seen in Census data provided 

by the Australian Bureau of Statistics (ABS). During the Census of 1933, the last one prior to WWII, 

approximately 8000 (0.12%) of the total 6,629,839 censored individuals in Australia nominated 

themselves as Chinese, and 2000 (0.03%) nominated as Japanese ancestry (Australian Bureau of 

Statistics, 1933). In the 2016 Census, with a total population of 24,130,000 individuals, these 

equivalent figures were approximately 1.18 million (≈5%) and 41,000 (≈0.2), respectively 

(Australian Bureau of Statistics, 2017). The increases in both Asian ancestries within the current 

Australian population indicate that present-day Australia may not accurately represent its WWII era 

counterpart. Samples which will be used to represent Australian WWII era soldiers must be collected 

carefully based on appropriate criteria. The specification of European/British as the common ancestry 

for Australian soldiers arises from the Defence Act of 1909 which stated that individuals ‘not 

substantially of European origin or descent’ were exempted from enlisting (Australian Government, 

1909). Additionally, historical data from the Australian Bureau of Statistics (1933) indicates that 

British nationality was the highest ancestry self-declared by Australian individuals in the 1933 

Census, approximately 6.5 million out of the total 6.630 million (98%). Note that there were 

exceptions, Australian soldiers with non-British ancestry, and although the choice of these two 

populations for this thesis is a limitation, it is done so to demonstrate a proof of concept.   
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To ensure the data utilised in this thesis is representative of Australian WWII era soldiers, samples 

need to be taken from:  

1) Individuals who could have been alive during the WWII period, as these individuals are the 

same generation as the Australian WWII era soldiers; 

2) Direct descendants of individuals from the Australian WWII era generation, since the 

offspring will inherit genetic profiles similar to those of the soldiers with minor variation. 

Using these two criteria, the timeframe of birth dates for including Australian individuals who self-

declared European/British ancestry is “1918 to 1939”. Collection of samples representing Australian 

WWII era soldiers and generation of the relevant DNA profiles were not performed as part of this 

thesis; this was conducted by Ghaiyed (2020).  

The data used in this case study was provided by two sources:  

1) Individuals who met the criteria to be classified as a WWII era Australian – provided by 

Ghaiyed (2020); 

2) Contemporary Japanese individuals were collected from the publicly available 1000 

Genomes Project online database (Genomes Project Consortium, 2015). 

From these sources, the following data was used in this thesis: 

1) Complete profiles of WWII era Australians (n = 108) – Provided by Ghaiyed; 

2) Partial profiles of WWII era Australians (n = 80) – Provided by Ghaiyed; 

3) Contemporary Japanese individuals (n = 104) – Collected from the 1000 Genomes Project. 

As WWII era Japanese data was not available, contemporary data was utilised as a proxy. The 

ancestry panel used in this thesis, Ghaiyed Population Specific Panel (GPSP) (Ghaiyed, 2020) is 

comprised of 45 autosomal SNPs that were selected for their ability to differentiate between 

Australian and Japanese individuals. Note that the experiments described in this thesis only utilise 40 

of the original 45 SNPs, with five SNPs being removed due to genotypes not being obtained for any 

individuals. The process of how these SNPs were selected is not discussed in this thesis, the reader 

is referred to Ghaiyed (2020) for full details. Summaries of the set of SNPs with their corresponding 

allele and genotype frequencies for each population can be found in Appendix 1 and Appendix 2, 

respectively. Note that due to the small sample sizes, test data will be simulated based on the 

frequencies obtained from the original training data to avoid overfitting the model. While it would 

be ideal to have completely independent test data, this is not available and therefore, simulation is 

the next option to mitigate the chance of overfitting. It is also noted that the number of variables can 



69 

 

also impact the possibility of overfitting, wherein that, the inclusion of each variable requires an 

increased number of observations to reduce the chance of overfitting the data based on a small sample 

size being used in conjunction with many variables. 

4.3 Methods – Parsimonious Logistic Model Tree (pLMT) 

4.3.1 Experimental Overview 

The following section outlines the experimental process used for developing, executing and testing 

the pLMT classifier in this thesis. Following sections will expand on each of the following steps. 

1) Data Input. The relevant population datasets are uploaded. 

2) LMT Generation. Using the relevant datasets established in (1), the LMTs are generated in a 

parsimonious way to provide an overall estimate of the Australian membership probability (a 

geometric mean, which averages estimates from each iterated model), that is, the probability that the 

individual belongs to the Australian population. From this point onwards, this estimate will be 

collectively referred to as the Geometric Mean of Australian Membership Probabilities (GMAMP). 

3) Simulate Known Data. To test the effectiveness of a classifier, known individuals from the two 

major populations of interest (Australia and Japan) and individuals with known levels of admixture 

of these two populations are required. However, as individuals with known levels of admixture are 

unavailable, and the only known non-admixed individuals are those from the original population 

datasets used in Step 1 (Data Input), samples of varying degrees of admixture will be simulated to 

provide testing data. The inclusion of admixture scenarios is to observe the accuracy of the classifier 

for complex cases and to determine the point at which the classifier can no longer accurately 

discriminate between the two populations of interest. Relevant admixture scenarios are defined using 

appropriate ancestors, and the admixture simulation tool, SimAdmixtR (Kennedy (2019), accessible 

at https://dkenn.shinyapps .io/ww2-admixture/). For each ancestral scenario the tool is used to 

simulate 10,000 individuals. SimAdmixtR is initially validated by comparing theoretical genotype 

estimates with the observed simulated genotype estimates.  

4) Analyse Simulated Data and Establish Classification Thresholds. The simulated individuals 

from each scenario used in (3) are submitted to the models generated in (2) to estimate the Australian 

membership probability of being an Australian for all individuals within each scenario. The 

distributions of the resulting probabilities are examined using boxplots to determine the points where 

one can no longer confidently assign simulated individuals to the major populations (Australian and 

Japanese). From these graphs, thresholds are defined to be used in establishing classification 
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guidelines for unknown samples. These thresholds establish the points at which ancestry can 

confidently be assigned, and at what stage the outcome is ambiguous. The threshold for each of the 

two major populations are selected to represent approximately a 90% success rate for either 

Australian or Japanese ancestry assignment. 

5) Validate Classification Thresholds. A second set of simulated individuals are created for the 

scenarios in (3). These second group of simulated individuals are submitted to the models generated 

in (2) to estimate the Australian membership probability for all individuals. These individuals are 

then classified using the thresholds previously established in (4). The resulting estimated ancestry is 

compared with actual ancestry which is known from the information used to generate the simulated 

individuals. Two errors are considered, ‘direct error’ where an individual is assigned to an incorrect 

ancestry, and ‘indirect error’ where an individual with ambiguous ancestry is assigned to a specific 

population group.  

4.3.2 pLMT Algorithm: Data Input 

Datasets are uploaded from the two relevant populations. The dataset consists of the raw genotype 

values for all individuals in the sample for the complete set of SNPs in the DNA panel. The panel 

used is Ghaiyed’s (2020) Population Specific Panel, comprised of 40 biallelic SNPs selected for 

discriminating between Australia and Japan. 

The WWII era Australians (n = 108) and contemporary Japanese individuals (n = 104) described in 

Section 4.2 are used as the population datasets.  

4.3.3 pLMT Algorithm: LMT Generation 

The Parsimonious Logistic Model Tree’s methodology is as follows: 

1. Relevant population data is uploaded as the working dataset which contains the total number 

of panel SNPs, S. 

2.  An LMT is generated using the dataset from (1). The resulting selected SNPs, {sm}, in the 

model, together with their coefficients are recorded as “Model m”. The LMT is fitted using 

10-fold cross-validation, repeated ten times, with the accuracy across each run averaged and 

recorded as the model’s average accuracy. Note that due to the model’s accuracy being used 

as the stopping criterion for model generation, it is imperative to ensure the process is robust. 

Minor variations between a model’s accuracy between runs on the same data may result in a 

model being accepted in one run but not in another. To avoid this inconsistency, multiple runs 

of cross-validation are performed, and the averaged accuracy is used as the criterion. This 

technique was also implemented by Landwehr et al. (2005) when experimenting with the 
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original LMT algorithm. If the average classification accuracy of Model i is below a specified 

threshold (default 99%), the pLMT proceeds to step 4. If the accuracy is greater than or equal 

to the specified threshold (default 99%), the algorithm proceeds to step 3.  

3. The SNPs, {sm}, are removed from the working dataset and, providing there are remaining 

SNPs in the working dataset, the algorithm repeats step 2 generating a new model using the 

SNPs remaining in the working dataset after those from the previous model are removed. If 

no SNPs remain in the working dataset the algorithm proceeds to step 4. 

4. Once accuracy falls below the specified threshold (default 99%), or if all available SNPs are 

utilised, the pLMT algorithm stops, and M models are obtained (where M is ≥1). Note, the 

model whose accuracy falls below 99% is excluded from the M models. 

The output of the pLMT algorithm is a set of M models, where each model contains a subset of SNPs 

and their corresponding coefficients. The output from each LMT regression model gives an estimate 

of the logarithm of the odds ratio between memberships of the individual in the two populations. This 

estimate is then used to obtain the predicted membership probability for the required population of 

interest, in this situation, Australian. Equation 4.1, based on Landwehr et al. (2005, p.18), provides 

the probability membership for the Australian population (calculated for each of the models), where 

𝐹𝑘(𝑥) is the outputted regression function for the kth population (k being either Australian or 

Japanese): 

 𝑝𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛 =
𝑒𝐹𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛(𝑥)

𝑒𝐹𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛(𝑥) + 𝑒𝐹𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒(𝑥)
 (4.1) 

The output of the pLMT at this stage is a series of predicted probabilities of population membership, 

pAustralian,m, for m = 1, 2, …, M, for the given individual. These independent estimates are then 

combined into a single value, to give a final estimate of the probability of ancestry which will be 

provided to the end user. The combined population probability is calculated using the geometric mean 

which was selected over the standard arithmetic mean as outliers have a reduced effect on the 

geometric mean (Manikandan, 2011) (Equation 4.2).  

 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑒𝑎𝑛 = (∏ 𝑝𝑚

𝑀

𝑚=1

)

1
𝑀

 (4.2) 

4.3.4 pLMT Algorithm: Simulate Known Data 

The “SimAdmixtR” tool created by Dr. Daniel Kennedy (Kennedy, 2019) utilises SNP allele 

frequencies from two populations to create the genetic profiles of simulated individuals based on a 
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nominated pedigree. Figure 4.4 shows an example of an admixed pedigree, an Australian individual 

with a Japanese great-grandparent. Simulated data will be used to provide a large sample size for 

subsequent experiments, as the original datasets are quite small, consisting of approximately 100 

individuals.  

The Admixture Simulation tool was created as a package for the statistical software R (R Core Team, 

2019) called “SimAdmixtR” (Kennedy, 2019) and is currently available online as a user-friendly 

Shiny application (https://dkenn.shinyapps.io/ww2-admixture/).  

It is acknowledged that the Australian sample may have admixture already present, however, as the 

sample size available is small (n = 108), it may not represent the true measure of admixture in the 

population. To accommodate for this possibility, individuals of known degrees of admixture are 

simulated. The pedigrees of interest for this thesis are based on four generations, going back to great-

grandparents. The selection of four generations was made based on recommendations from previous 

UWC-A research (Ghaiyed, 2016; Poulsen, 2015), and the expectation that admixture beyond four 

generations will be washed-out. 

To simulate individuals using SimAdmixtR three files are required: the allele frequencies data file, 

the simulation details file, and an example of the required STRUCTURE input. A description of each 

file and a summary of the Admixture Tool’s process is described in Appendix 3.  

 

Figure 4.4 Simulated Pedigree 

Example pedigree of an Australian soldier with a single Japanese great-grandparent (orange), providing approximately 

1/8th of the soldier’s ancestry. 

 

https://dkenn.shinyapps.io/ww2-admixture/
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Ten scenarios of admixture are simulated in this thesis, with n = 10,000 individuals simulated in each 

scenario. An ad hoc value of 10,000 was selected as it is estimated to be a large enough number to 

ensure robust inferences but also to not be prohibitively computationally slow. The following data 

are used to estimate input allele frequencies: (i) WWII era Australians (n = 108), and (ii) 

Contemporary Japanese individuals with (n = 104). The scenarios are detailed in Table 4.3.  

Two independent groups of simulated individuals are created and used at different stages of the 

development: Simulation Group 1, consisting of seven scenarios (1, 2, 4, 6, 8, 9, 10), and Simulation 

Group 2, which consists of all ten scenarios. In each scenario for each Group, 10,000 individuals are 

simulated giving a total number of 70,000 individuals for Group 1 and a completely different set of 

100,000 individuals for Group 2. 
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Table 4.3: Admixture Scenario  

Simulated admixture scenarios with their respective scenario ID for subsequent analyses. Each scenario is simulated with 

n = 10,000 observations. The correct interpretation of Australian or Japanese for a scenario’s key was selected based on 

whether the scenario consisted of primarily (≥75%) Australian or Japanese ancestors, scenarios which do not meet this 

criterion are to be interpreted as ambiguous. The scenario ID indicates the respective ratio of Australian to Japanese 

ancestors’ proportion, that is, what percentage of ancestors at the great-grandparent level belong to each population. Note 

that the subscript of a and b on Scenarios 3 and 4 is simply to distinguish between these two scenarios which share an 

approximately equal average pedigree proportions. 

Scenario 

# 
Scenario ID Admixture Scenario 

Representing Pedigree Proportions 
Simulation 

Group Australian 

Proportion 

Japanese 

Proportion 

Correct 

Interpretation 

1 100/0 An individual with all Australian ancestors 100% 0% Australian 1 and 2 

2 87.2/12.5 
An individual with one Japanese great-

grandparent 
87.5% 12.5% Australian 1 and 2 

3 75/25a 

An individual with a Japanese great-

grandparent on both the maternal and 

paternal lineage 

75% 25% Australian 2 

4 75/25b An individual with a Japanese grandparent 75% 25% Australian 1 and 2 

5 62.5/37.5 

An individual with one Japanese 

grandparent and one Japanese great-

grandparent 

62.5% 37.5% Ambiguous 2 

6 50/50 
An individual with an Australian parent 

and a Japanese parent 
50% 50% Ambiguous 1 and 2 

7 45/55 
An individual with a Japanese parent and 

Japanese great-grandparent 
45% 55% Ambiguous 2 

8 25/75 
An individual with one Australian 

grandparent 
25% 75% Japanese 1 and 2 

9 12.5/87.5 
An individual with one Australian great-

grandparent 
12.5% 87.5% Japanese 1 and 2 

10 0/100 An individual with all Japanese ancestors 0% 100% Japanese 1 and 2 

 

 

 

In a binary context such as applies in the case study, based on conservative expectations, scenarios 

1, 2, 3 and 4 will produce individuals who should be assigned Australian ancestry, scenarios 5, 6 and 

7 will produce individuals who cannot be distinguished into either population, and scenarios 8, 9 and 

10 will produce individuals who should be assigned Japanese ancestry. The choice of assigning an 

ambiguous outcome to scenarios between 25% and 75% admixture from a second population was ad 

hoc. The reasoning behind the selection is as follows: an individual with no more than one 

grandparent (that is 25%) deviating from the common ancestry shared by the remaining lineage could 

be described as consisting primarily of a single ancestry. However, for cases where more than one 
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grandparent deviates from the commonality (that is, greater than 25%) the individual could instead 

be described as a mixture of the two resulting ancestries. 

Validation of the software, SimAdmixtR, was carried out by comparing the observed genotype 

frequencies obtained from each admixture scenario with the expected genotype frequencies as 

estimated algebraically using Mendelian inheritance calculations. This validation is to test the 

assumption that the SimAdmixtR software is correctly simulating Mendelian inheritance. Note that 

the simulations assume that the observed genotype frequencies accurately represent the true 

population values. 

4.3.5 pLMT: Analyse Simulated Data and Establish Thresholds 

The individuals in Simulation Group 1 (seven scenarios: 1, 2, 4, 6, 8, 9 and 10, n = 10,000 per 

scenario) are processed through the M models generated from the original data using the pLMT 

algorithm described in Section 4.3.3. The distribution of the GMAMP for all seven scenarios are 

calculated and viewed using boxplots. Thresholds of classification are established by viewing the 

boxplots to determine where approximately 90% of the Australian and approximately 90% of the 

Japanese data lie. The area in between is regarded as Ambiguous and is where neither ancestry can 

confidently be defined. Note that this phase indirectly identifies the level of admixture where 

predicting ancestry is not possible. 

4.3.6 pLMT Algorithm: Validate Thresholds 

Simulation Group 2, as described in Section 4.3.4, are submitted to the same M models created in 

Section 4.3.3, and the GMAMP is estimated for individuals in all ten scenarios. The individuals are 

classified by comparing their calculated GMAMP with the thresholds established in Section 4.3.5. A 

misclassification rate is then estimated, using two classes of an erroneous classification:  

i) Direct Error – Occurs when an individual who should be assigned as Australian 

(scenarios 1 – 4, Table 4.3) or Japanese (scenarios 8 – 10, Table 4.3), is assigned to 

the incorrect population; 

ii) Indirect Error – Occurs when an individual from scenarios 5 – 7 (Table 4.3) is assigned 

to one of the populations instead of being left unassigned. 

The direct error occurs when an individual whose pedigree consists mainly of ancestors belonging to 

one population (≥75%) is misclassified to the wrong population. The indirect error, however, occurs 

when the ancestry could belong to either population, that is, it is in one of the unassignable scenarios 

(5 – 7), but the individual is assigned to a population. From a genetic perspective, an Australian 

soldier with 50/50 admixture and a Japanese soldier with 50/50 admixture are indistinguishable. The 
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difference in the context of this case study, is that they are soldiers who fought for different armies. 

Hence it is a historical reason which makes them different not a genetic one, therefore, assignment 

based on their genetic profile cannot accurately be determined, however, may still provide useful 

intelligence to the user regarding possible family-level admixture. The relationship between genetic 

admixture and assignment of ancestry is discussed in Section 7.1.2. 

4.4 Methods – Generic Bayesian 

4.4.1 Experimental Overview 

The following section outlines the proposed experimental process for performing and testing the 

Generic Bayesian classifier as used in this thesis. 

1) Data Input. See Section 4.3 

2) Simulate Known Data. See Section 4.3. 

3) Analyse Simulated Data and Establish Thresholds. The natural log of the likelihood ratio is 

estimated for all simulated individuals and thresholds are established using the same methodology 

outlined in Section 4.3, but with the variable used to establish the threshold being the log likelihood 

ratio instead of the Geometric Mean of the Australian/Japanese membership probability. 

4) Validate Thresholds. See Section 4.3. Again, the variable used is the log likelihood ratio instead 

of the Geometric Mean Australian/Japanese membership. 

4.4.2 Generic Bayesian: Data Input 

See Section 4.3. 

4.4.3 Generic Bayesian: Simulate Known Data 

The same two groups of simulated individuals as are discussed in Section 4.3.4 are used for this 

analysis. For each scenario in each group, 10,000 individuals are simulated. Simulation Group 1 

consists of seven scenarios (1, 2, 4, 6, 8, 9, 10) giving a total number of 70,000 simulated individuals. 

Simulation Group 2 consists of all ten scenarios giving a total number of 100,000 individuals. The 

scenarios are defined in Table 4.3. 

4.4.4 Generic Bayesian: Analyse Simulated Data and Establish Thresholds 

To estimate the LR the probability of observing the genotype for each SNP in each population k, sk, 

seen in the simulated individual’s profile is recorded. The probability of observing the simulated 

individual’s complete genotype at all SNPs, S, in the kth population is: 



77 

 

Pr (𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑆|𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘) = ∏ 𝑝𝑠𝑘

𝑆

𝑠=1

 (4.3) 

Where 𝑝𝑠𝑘 is the relative sample frequency of observing the individual’s genotype on the sth SNP in 

the kth population. An individual will have two probabilities, Pr (𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑆|𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘), one 

for the frequency of observing that genotype in each of the populations of interest. If 𝑝𝑠𝑘 = 0, then 

the zero probability is replaced using the conservative replacement formula, Equation 4.4, as 

proposed in Phillips et al. (2007), where n is the number of individuals. Note the formula has been 

adjusted to be n instead of 2n as originally proposed in Phillips et al. (2007) as interest here lies in 

genotypes, not alleles. 

𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =
1

𝑛 + 1
 (4.4) 

The likelihood ratio is then calculated using Equation 4.15; 

 LR𝑖 =  
Pr (𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑆|𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐴)

Pr (𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑆|𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐵)
 (4.5) 

The likelihood ratio is estimated for all individuals in Simulation Group 1 (seven scenarios, n = 

10,000 per scenario).  

Thresholds are established by viewing the boxplots of the resulting LRs to determine where 

approximately 90% of the Australian and approximately 90% of the Japanese individuals lie. Note 

that the relative frequencies used in Equation 4.3 are estimates based on the samples used, therefore, 

these values are subject to sampling error, which is explored in Section 4.9. 

4.4.5 Generic Bayesian: Validate Thresholds 

The second Group of simulated individuals as described in Section 4.3.6 is again used for validation 

of the LR thresholds. 

4.5 Methods – STRUCTURE 

4.5.1 Experimental Overview 

The following section outlines the proposed experimental process used in this thesis for performing 

and testing the STRUCTURE classifier. 

1) Data Input. See Section 4.3.1 point 1. 

2) Simulate Known Data. See Section 4.3.4. 
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3) Analyse Simulated Data and Establish Thresholds. The membership proportion, Q, for the 

Australian population is estimated by STRUCTURE for all simulated individuals. Thresholds are 

established using the same methodology outlined in Section 4.3.5 with the Q value from 

STRUCTURE used in place of the GMAMP obtained from the pLMT. 

4) Validate Thresholds. See Section 4.3.6 with the Q value from STRUCTURE used in place of the 

GMAMP obtained from the pLMT. 

4.5.2 STRUCTURE: Data Input 

See Section 4.3.1 point 1. 

4.5.3 STRUCTURE: Simulate Known Data 

The same two groups of simulated individuals as discussed in Section 4.3.4 are used for this analysis. 

For each scenario in each group, 10,000 individuals are simulated. Simulation Group 1 consists of 

seven scenarios (1, 2, 4, 6, 8, 9, 10) giving a total number of 70,000 simulated individuals. Simulation 

Group 2 consists of all ten scenarios giving a total number of 100,000 individuals. The scenarios are 

defined in Table 4.3. 

4.5.4 STRUCTURE: Analyse Simulated Data and Establish Thresholds 

The following parameters were used to analyse the simulated data using the STRUCTURE program. 

A total of 10,000 Markov Chain Monte Carlo (MCMC) replicates are performed following an initial 

burn-in period of 10,000 replicates using the Admixture model. K, the number of populations present 

in the training data, is set at two as the number of populations present is known. The membership 

proportion (Q value) for the Australian population is estimated and recorded for each individual in 

the test data. 

Thresholds are established by viewing the boxplots of the distribution of the resulting Q values to 

determine where approximately 90% of the Australian and approximately 90% of the Japanese 

individuals lie.  

4.5.5 STRUCTURE: Validate Thresholds 

The second Group of simulated individuals as described in Section 4.3.6 is again used for validation 

of the Australian membership proportion thresholds. 
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4.6 Classifier Comparison on Degraded Samples 

To observe how the pLMT, Generic Bayesian and STRUCTURE classifiers handle degraded remains 

the classifiers are each applied to a WWII era Australian sample with missing data (n = 80) in which 

individuals have between 10 and 39 SNPs out of the original 40 SNPs available.  

For the pLMT classifier, if any SNPs are not available for the unknown individual, the corresponding 

SNPs are removed from the original population dataset before the analysis to develop the initial 

models. This removal of SNPs ensures that any subsequent statistical modelling is derived only from 

the subset of SNPs that are present in the genotype of the unknown individual. The genotype from 

the unknown individual becomes the driving force of the model, allowing the classification 

framework to adapt on a case-by-case basis to handle missing data, a technique previously unused in 

BGA prediction classifiers. STRUCTURE ignores missing data when calculating Q values, to ensure 

the resulting model is based purely on what information is available (Pritchard et al., 2009). 

For the Generic Bayesian classifier, if a SNP is not available for the unknown individual, the relative 

probabilities are replaced with a value of one. This replacement ensures that the missing SNP does 

not affect the resulting likelihood ratio as it cannot be known what the true genotype was. Note that 

this is an additional approach used in conjunction with the minimum allele frequency, where values 

of zeros for genotypes not observed in the training sample are replaced with a conservative frequency 

based on the sample size. 

Each of the classifier’s estimated outputs (GMAMP, likelihood ratio and Q value of Australian 

ancestry) for the n = 75 degraded WWII Australian samples are plotted against the number of SNPs 

available for that individual. A linear regression is performed, using Microsoft Excel, to explore the 

effect the number of SNPs may have on the resulting classifier’s output. A classifier’s weakness for 

accurately classifying degraded samples will result from two factors, (i) if a linear decline in the 

estimated probability of Australian ancestry occurs as the number of SNPs decrease and (ii) if the 

known degraded Australian samples are assigned as ambiguous or misclassified as Japanese. 

Classifications for factor (ii) occur using the relevant thresholds established for each classifier in 

Sections 5.2.3, 5.3.1 and 5.4.1.  

The degraded samples are then categorised using the thresholds established in each classifier’s 

respective section, to observe whether one classifier outperformed the other. Performance level is 

determined by: (i) the number of individuals correctly classified as Australian as opposed to 

Ambiguous, and (ii) the number of individuals incorrectly classified as Japanese. The purpose of this 
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experiment will be to observe any trends resulting from the loss of SNPs, that is, how will each 

classifier perform for different numbers of missing SNPs?  

4.7 SNP Removal Experiment 

Due to degradation and other possible stochastic errors, it is likely that casework samples will not 

obtain a complete SNP panel profile. In keeping with the concept of information theory discussed in 

Section 3.2.2, it is important to determine the minimum number of SNPs required to still achieve the 

same accuracy that would be obtained if the complete panel were available. To determine the 

minimum number of SNPs needed, on average, to generate a credible pLMT, SNPs are randomly 

removed using RStudio (R Core Team, 2019). For Simulation Group 2’s scenarios of 100% 

Australian and 100% Japanese (n = 10,000 each), SNPs are removed in groups of 5, 10, 15, 20, 25, 

30, and 35, with each subset being selected randomly. Each grouping is repeated independently 100 

times. For each of the 700 replications, a pLMT is computed using the remaining SNPs, giving 700 

different pLMTs. For each pLMT, the GMAMP is computed for the 20,000 individuals who are then 

categorised based on the previously defined thresholds. Individuals in the ambiguous classification 

are then omitted as they provide no interest in specific ancestry determination. For the individuals 

classified as either Australian or Japanese two possible outcomes are recorded, correct or a direct 

error. Note that there is no possibility of indirect error as only non-admixed individuals are used. For 

each grouping, the minimum, mean and maximum numbers of correct and direct error for each of the 

Australian and Japanese populations are estimated. The results will be reviewed to identify the 

minimum number of SNPs that are required to still retain a valid result. 

4.8 The Effect of the Prior  

At this stage of analysis, the output of the pLMT is a sample estimate of an unknown individual’s 

GMAMP. This GMAMP is obtained with the assumption that the two populations are approximately 

equally represented in the combined sample used for analysis and in the true populations being 

considered. However, this may not be the case and there may be additional, pertinent information 

that needs to be incorporated. In particular, there may be genuine knowledge of the expected 

probability of unknown remains being Australian before any DNA is measured. That is, there may 

be information that allows a sound estimate of the prior odds. For example. UWC-A may have 

historical records which show that in the battlefield of interest there are 10 unaccounted for Australian 

soldiers and 1000 Japanese. Thus, without considering any further information, the probability that a 

sample found in this area is from an Australian soldier is 10/1010 (0.0099), giving a prior odds ratio 

of 10/1010 divided by 1000/1010 (0.0099/0.9901) which is 0.01.  However, suppose the DNA profile 

seen in the recovered sample is one which all 10 of the Australians have, but which is not seen in any 
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of the Japanese. Clearly this would change the probability of the remains being from an Australian. 

The hope is that by taking into consideration other information as well as the DNA and including it 

in the final analysis, it is possible to get a better estimate especially if that estimate can carry some 

measured form of confidence, that is, a margin of error.   

To combine the prior odds with the GMAMP estimate from the pLMT, Bayes’ theorem is proposed, 

however, first it will be necessary to determine the probability of obtaining such a geometric mean 

in each of the two populations, Australian and Japanese. Once there are estimates for these values, a 

likelihood ratio can be established and used in conjunction with the prior odds to obtain a posterior 

estimate of Australian membership that does not assume equal representation in the analysis. Note 

that the exact same value of the estimated GMAMP could be obtained by: (i) individuals having the 

exact same genotype as the original sample, or (ii) individuals whose genotype causes the utilised 

regression coefficients to estimate the same GMAMP by chance.  

To estimate these equivalent variables, an Empirical Cumulative Distribution Function (ECDF) of 

estimated GMAMP is obtained by using the individuals from the simulated scenarios, 100% 

Australian (n = 10,000) and 100% Japanese (n = 10,000), from Simulation Group 2. An area in the 

ECDF of ±0.025 around the unknown sample’s GMAMP (uGMAMP) will be used to obtain the 

probability of seeing this particular geometric mean in each of the populations. A likelihood ratio 

will be built from these probabilities: 

 𝐿𝑅 =
Pr (𝑢𝐺𝑀𝐴𝑀𝑃|𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛)

Pr (𝑢𝐺𝑀𝐴𝑀𝑃|𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)
  

Using Bayes’ theorem, the posterior probability of an Australian (Equation 4.6) given this general 

mean can be written as: 

 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛|𝑈𝐺𝑀) =
1

1 +
1

𝐿𝑅 ∗
1

𝑃𝑟𝑖𝑜𝑟 𝑂𝑑𝑑𝑠

 (4.6) 

If one of the probabilities in the LR is zero, that is, no individual in the sample is observed to have 

an approximately similar GMAMP, the LR cannot be calculated. This zero may occur because there 

genuinely is no possibility of a profile in the population generating such a UGM, or it may simply be 

that the original dataset did not contain the SNP structure required to get the GMAMP of interest as 

the profile required represents a rare event in the population which could not be picked up in the 

sample size used. In the Generic Bayesian classifier, this issue is dealt with by replacing a zero 

frequency with a conservative value derived using ad-hoc methods, namely one. Rather than draw on 
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this or some similar ad-hoc method, it is acknowledged that rare events typically follow a Poisson 

distribution, and the approach taken here is to follow the methodology of Green and Young (1993) 

which draws on this statistical distribution to obtain Equation 4.7. In Equation 4.7, which was 

developed to estimate the sample size needed for a given situation, m is the probability of the rare 

event occurring, and β is the probability that the rare event will not be seen in the sample when it 

really is present in the population, meaning that (1 − 𝛽) is the ‘confidence’ that the event will be 

seen in the sample if it is really is in the population.  

 𝑛 = −
ln (𝛽)

𝑚
 (4.7) 

Equation 4.7 can be re-arranged to solve for m to determine the rarest event that could be detected 

with reliability of (1 − 𝛽) for a given sample size. The result is given in Equation 4.8, where n is the 

sample size used in the original dataset.  

 𝑚 =
−ln (𝛽)

𝑛
 (4.8) 

For the case of 95% ‘confidence’, Equation 4.8 can be simplified to: 

  𝑚 =
−ln (0.05)

𝑛
  

Equation 4.8 can therefore, be used as a conservative frequency estimation method to replace a value 

of zero in the previous LR. If a UGM was not detected in the available sample, one possible reason 

is that the profile required to obtain said UGM is a rare event in the population, therefore, Equation 

4.8 can be used to estimate a conservative frequency for observing the UGM that is also dependent 

on the available sample size. By using Equation 4.8, the calculations become such that for analyses 

with a large sample size available, one can have a high degree of confidence that the UGM is 

extremely unlikely to occur in the population, which is then reflected in the resulting LR. 

To observe the effect of the prior odds ratio on the resulting posterior probability of Australian 

ancestry for the pLMT classifier, a sensitivity analysis was performed where the variables tested 

were: (i) the prior odds ratio, (ii) the sample size used in the original data, and (iii) the GMAMP. 

Values for the prior odds ratio were chosen using two criteria: (i) values that are expected for UWC-

A, and (ii) generic values which may be relevant in most cases; these values are shown in Table 4.4. 

In addition to these prior odd values, the following sample sizes were selected: 100, 200, 300, 400 

and 500, alongside the following GMAMP values: 0.01, 0.9, 0.95 and 0.99. 
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It is noted that Budowle et al. (2011) state that prior odds obtained through war manifests may not be 

entirely reliable. Therefore, a sensitivity analysis testing the effect of the prior odds is important to 

demonstrate the care that should be taken when estimating a value for the prior odds. It will also 

allow decision makers to decide whether or not to proceed in an area where the expected prior is such 

that no amount of further DNA analysis could result in a change to the probability associated with 

unknown remains. Such a decision could be invaluable in allocating resources to areas where a result 

is a real possibility.  

Table 4.4: Prior Odds Ratio Values 

Values for the prior odds ratio variable used in the sensitivity analysis, with the respective English statement describing 

the value’s corresponding scenario.  

Prior odds Ratio Value Respective English Statement 

0.5 The ratio of individuals from population 1 to population 2 is 1:2 

0.3 The ratio of individuals from population 1 to population 2 is approximately 1:4* 

0.1 The ratio of individuals from population 1 to population 2 is 1:10 

0.05a The ratio of individuals from population 1 to population 2 is 1:20 

0.01b The ratio of individuals from population 1 to population 2 is 1:100 

*Rounded up from 1: 3. 33̅̅̅̅ . a This prior odds ratio value is expected in PNG areas such as Buna. b This prior odds ratio 

value is expected in PNG areas such as Sanananda. 

 

4.9 Applicability to Alternative Populations 

As part of the case study utilised in this thesis, it is assumed that there are only two outcome 

populations of interest, Australian or Japanese. However, it is acknowledged that individuals from 

additional populations were present during the time of conflict, including Americans, Chinese, British 

and Papuans. To determine how individuals from populations outside the primary interest (Australian 

versus Japanese) are classified using the nominated panel, freely available samples from alternative 

populations will be analysed using the pLMT classifier. Individuals from the following populations 

were obtained from a combination of the 1000 Genomes Project and HGDP database: 

• British (GBR; n = 91); 

• Chinese (CHB; n = 103); 

• Papuan (OCE; n = 26); 

• American from European descent (CEU; n = 99). 

4.10 Estimating the Margin of Error and a Measure of Confidence 

The two outputs that can be used to infer ancestry when utilising the pLMT method are the GMAMP 

(Equation 4.2), if interest does not lie in the prior odds, and the posterior probability (Equation 4.6), 
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if the prior odds is of importance. Each of these two outputs has its own respective method for the 

calculation of a margin of error in the form of a confidence interval. The estimation of a confidence 

interval for each output is described in the following section. 

 Calculation of a Confidence Interval for the Geometric Mean 

The geometric mean (Equation 4.2, repeated below), together with its variance, is required for a series 

of M random variables, each an output from a different model: p1, p2, …, pm, Each of these has its 

own variance as measured by the Mean Square Error from the relevant model. 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑒𝑎𝑛 = (∏ 𝑝𝑚

𝑀

𝑚=1

)

1
𝑀

  

To facilitate the calculation of the combined variance, the logarithm of the GM can be considered, 

requiring the addition of the logarithms of the k estimates (Equation 4.10). Note that natural 

logarithms (to the base e) are used. 

 Ln(𝐺𝑀) =  
ln (𝑝1) + ln (𝑝2) + ⋯ + ln (𝑝𝑚)

𝑀
 (4.10) 

The following two basic properties of variations for functions of variables can then be used (Adams 

and Clarkson, 1934): 

1. The variance of a sum of independent variables is the sum of their variances. 

2. The variance of a variable, p, divided by a constant, say a, is 𝑉 (
𝑝

𝑎
) =

𝑉(𝑝)

𝑎2  

 

Thus, the variance of the logarithm of the GM is: 

 V[Ln(𝐺𝑀)] =  
𝑉[ln (𝑝1)] + 𝑉[ln (𝑝2)] + ⋯ + 𝑉[ln (𝑝𝑚)]

𝑀2
 (4.11) 

Before this variance can be computed, the variance of the logarithms of the original random variables 

must be found. To do so, the Delta method for estimating the variance of a function is proposed. The 

Delta method is a statistical technique, which uses a Taylor expansion to approximate the expected 

values for functions of random variables when it is not possible to directly evaluate the expectation 

itself (Oehlert, 1992). The Delta method can be described in simple terms as follows. Suppose there 

is a function of a proportion (f(p)) for which a variance is required. Providing f(p) is differentiable 

(that is, has an estimable derivative with respect to (p)), then its variance (V) can be approximated as 

shown in Equation 4.12. 
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 𝑉(𝑓(𝑝̂)) = (
𝜕(𝑓(𝑝̂))

𝜕𝑝̂
)

2

× 𝑉(𝑝̂) (4.12) 

Using the Delta method (Chakraborty et al., 1993; Curran et al., 2002), the variance of the logarithm 

of a random variable can be calculated as follows:  

 𝑉(ln 𝑋)  ≈
𝑉(𝑋)

[𝐸(𝑋)]2
 (4.13) 

where E(X) is the expected value of the variable. 

Note that this approximation is reported to be satisfactory provided that (Curran et al., 2002): 

 
𝐸(𝑋)

𝜎
> 2.5 (4.14) 

Where E(X) is the expected value and σ is the standard deviation of the random variable. 

Once the variance of ln(GM) is calculated it can be used to obtain confidence intervals for the 

logarithm of the geometric mean using the standard z-score method. These confidence intervals can 

then be back transformed (using exponentiation) to give the confidence interval for the estimated 

GM. 

In the current problem, the random variables are independent estimates of the probability of BGA, 

outputted by the pLMT for each of the models. 

Posterior Probability Model. As the posterior probability is obtained through a function that 

contains a likelihood ratio of two probabilities, each of which has its own variance, the Delta method 

is utilised again. Note that it is assumed that the prior odds ratio is a constant and no variance is 

required to be estimated. 

To estimate the variance of the likelihood ratio function (𝑥̂/𝑦̂), the Delta method is used. The final 

variance of the function (𝑥̂/𝑦̂), is given as Equation 4.15, while the full derivation is provided in 

Appendix 9, where n1 and n2 are the sample sizes used to estimate 𝑥̂ and 𝑦̂ respectively: 

 𝑉 (
𝑥̂

𝑦̂
) =

𝑥̂

𝑦̂2
× [(

1 − 𝑥̂

𝑛1
) + (

𝑥̂(1 − 𝑦̂

𝑦̂𝑛2
)] (4.15) 

Note that it is standard to also consider the covariance of the function when utilising the Delta method. 

However, as the likelihood ratio utilised in BGA prediction is estimated from samples taken from 

two independent populations, Australian and Japanese, there is no reason to expect a non-zero 

covariance, except by random chance, and thus is assumed to be zero and is omitted. As the variance 
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within the posterior probability calculation is assumed to be limited to solely the LR, the approach 

taken in this thesis to estimate a confidence interval of the posterior probability is to calculate a lower 

and upper limit for the likelihood ratio. These limits are then inputted into the calculation of the 

posterior probability, estimating a lower and upper confidence limit for the posterior respectively. As 

per standard statistical theory for the estimation of two-tailed 100(1 − 𝛼)% confidence interval (CI), 

using z scores and therefore assuming normality, the CI for the likelihood ratio of probability of 

Australian and Japanese BGA, Equation 4.16 is used, where z is the corresponding z score. 

 ±𝐶𝐼 =
𝑥̂

𝑦̂
± 𝑧√𝑉 (

𝑥̂

𝑦̂
) (4.16) 

Equation 4.16 can then be incorporated into Equation 4.17 (a reiteration of Equation 4.6, now with 

the likelihood ratio adjusted to utilise the lower and upper limits obtained in Equation 4.16) to 

estimate a confidence interval for the posterior probability. 

 𝑇𝑤𝑜 − 𝑡𝑎𝑖𝑙𝑒𝑑 𝐶𝐼 𝑓𝑜𝑟 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

1 +
1

𝑃𝑟𝑖𝑜𝑟 𝑂𝑑𝑑𝑠
×

1
±𝐶𝐼

 (4.17) 
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Chapter 5 – Results and Discussion 

5.1 Introduction 

This chapter will outline the results of the experiments discussed in Chapter 4, with accompanying 

discussions where required. The structure will coincide with the order provided in Chapter 4, with 

the pLMT classifier, the Generic Bayesian classifier, and some additional sensitivity tests. 

5.2 Parsimonious Logistic Model Tree (pLMT) 

5.2.1 Logistic Model Tree Generation 

For the training dataset of WWII era Australians (n = 108) and contemporary Japanese individuals 

(n = 104), a pLMT was generated which resulted in M = 5 independent LMTs which met the 

requirement of an averaged 10-fold cross-validation accuracy level across ten runs of 99%. Note that 

the same model is obtained for every repetition of the cross-validation, it is simply the accuracy which 

varies and is subsequently averaged. The SNPs for those models are shown in Table 5.1. Of the 40 

utilised SNPs from the GPSP, 34 of them were used in the pLMT. Note that the SNPs shown in Table 

5.1b demonstrate only the expected model for these 40 SNPs, at this stage, no unknown samples have 

been analysed. A detailed list of the SNPs and their coefficients as estimated in each model is 

provided in Appendix 4. 

Table 5.1: SNPs Included in the pLMT Models 

A summary list of the 40 SNPs used in this thesis, and whether the SNP was incorporated into the pLMT models. a) Lists 

which SNPs were utilised together for a given pLMT, b) summarises the full panel outlining which SNPs were and were 

not used - note the SNPs are in rank order for original discrimination power. 

 

a)  

LMT 1 LMT 2 LMT 3 LMT 4 LMT 5 Excluded 

rs1426654 rs12913832 rs28777 rs9809818 rs1876482 rs6754311 

 rs2196051 rs820371 rs4683510 rs10455681 rs4787040 
 rs3811801 rs4749305 rs7997709 rs9319336 rs2357442 

  rs6494411 rs1448485 rs192655 rs1393350 
  rs9286879 rs730570 rs11725412 rs12203592 
  rs10496971 rs722869 rs4918664 rs4959270 

  rs683 rs1250233 rs4781011  

   rs1366220 rs1471939  

   rs2758988 rs1950993  

   rs984654 rs4984913  

   rs4463276   

   rs4833103   

   rs3907047   
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b) 

SNP Used? SNP Used? 

rs1426654 YES rs10496971 YES 
rs9809818 YES rs2758988 YES 

rs28777 YES rs9319336 YES 
rs12913832 YES rs192655 YES 
rs4683510 YES rs984654 YES 
rs820371 YES rs11725412 YES 

rs4749305 YES rs4918664 YES 
rs6494411 YES rs4463276 YES 
rs7997709 YES rs683 YES 
rs1448485 YES rs4787040 NO 
rs730570 YES rs4781011 YES 

rs1876482 YES rs1471939 YES 
rs722869 YES rs1950993 YES 

rs1250233 YES rs4984913 YES 
rs9286879 YES rs4833103 YES 
rs2196051 YES rs3907047 YES 
rs6754311 NO rs2357442 NO 

rs10455681 YES rs1393350 NO 
rs1366220 YES rs12203592 NO 
rs3811801 YES rs4959270 NO 

 

Of the six SNPs excluded from the pLMT, four had the lowest discrimination power, where 

discrimination power is equated to the absolute difference in allele frequencies between the 

Australian (n = 108) and Japanese (n = 104) samples. The exclusion of these four SNPs demonstrates 

the utility of a parsimonious model, where these low discriminatory SNPs are not used as they are 

likely to only introduce noise and reduce the efficiency of the subsequent classification. For SNP 

“rs6753411”, its exclusion is likely linked to the SNP having insufficient discrimination power when 

used in tandem with other SNPs in the panel.  

5.2.2 Validation of SimAdmixtR 

A comparison was then made between the observed (calculated from the simulated data) and expected 

(determined algebraically using Mendelian inheritance formulae) genotype frequencies to determine 

SimAdmixtR’s accuracy, results shown in Appendix 5. Using the 10,000 individuals created for 

scenarios 1 – 10, the estimated genotype frequencies for each SNP were calculated for each scenario. 

These estimated frequencies were then compared to the expected genotype frequencies as determined 

algebraically using the Australian and Japanese databases and Mendelian inheritance formulae and 

the absolute difference between the estimated and expected frequencies were recorded for each 
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scenario. The minimum, mean, maximum and standard deviation for the absolute difference across 

all ten scenarios are then calculated for the three genotypes at each SNP. 

It should be noted that some departure from the theoretical expected frequencies are to be expected 

due to the randomness of the above process, however, the observed genotype frequencies did not 

deviate significantly (≥0.1) from their expected values. 

5.2.3 Analysis of Simulated Data and Establishment of Thresholds 

The individuals from the seven scenarios (1, 2, 4, 6, 8, 9 and 10) in Simulation Group 1 were analysed 

using the pLMT classifier. The resulting distributions of GMAMPs are shown in the following 

boxplots (Figure 5.2). The key indicating each boxplot is based on the admixture scenario as 

originally described in Table 4.3, where the key describes the ratio of Australian/Japanese ancestor 

proportions. For example, 75/25 describes individuals simulated based on a pedigree with 75% 

Australian great-grandparents and 25% Japanese great-grandparents. 

 
Figure 5.2: Distribution of Simulation Group 1’s GMAMP 

Distribution of Simulation Group 1’s GMAMP for seven scenarios (with full descriptions provided in Table 4.3). The 

key represents the ratio of Australian/Japanese ancestor proportions, from the top down, the scenarios used are 1, 2, 4, 

6, 8, 9 and 10. 

 

Based on the distributions of the Australian scenarios and the Japanese scenarios, the following 

classification thresholds were selected: 

Australian: GMAMP ≥ 0.8 

Ambiguous: 0.1 < GMAMP < 0.8 

Japanese: GMAMP ≤ 0.1 
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These thresholds were selected as approximately ≥90% of the Australian distributions (Scenarios 1, 

2 and 4, Table 4.3: Correct Interpretation = Australian) were observed to be greater than 0.8, while 

≥90% of the Japanese distributions (Scenarios 8, 9 and 10, Table 4.3: Correct Interpretation = 

Japanese) were below 0.1. Due to the overlap of Australian and Japanese distributions between 0.1 

and 0.8, this region was classified as Ambiguous. Individuals with probabilities within the ambiguous 

region cannot confidently be assigned to one of the populations and should remain unclassified to 

avoid error. Note that a single instance was observed in the 75% Japanese scenario (25/75, Scenario 

8), of a Japanese individual being misclassified as Australian based on these thresholds. These 

thresholds could be changed based on the desired accuracy, but any such change will also affect the 

misclassification rate. For example, a more conservative threshold, such as 0.9, will result in less 

misclassifications, but more samples being classified as ambiguous. While samples that fall within 

the ambiguous range may be indicative of family-level admixture, it is important to note that there is 

the alternative possibility the obtained sample does not originate from either of the populations of 

interest. It is important to acknowledge then when outlining interpretation guidelines based on 

thresholds such as these, there is always the possibility of false positives and negatives. In the context 

of the UWC-A scenario, a false negative would be an individual who truly originates from Australia, 

yet they are misclassified as Japanese, and a false positive is the reversal of this scenario. To 

investigate the possibility of either of these false outcomes occurring, validation of thresholds is 

required (Section 5.2.4). However, said validation will only relate to the thresholds as they currently 

stand, if a threshold is adjusted in either direction, the probabilities of a false positive or a false 

negative are altered as well. The occurrence of false positives and negatives is an unavoidable aspect 

of any prediction-based modelling, and the KBDSS must ensure that the user is aware of their 

possible existence and of how probable each is, understands their possible impact, and is advised of 

measure that can be taken to mitigate their effects. 

5.2.4 Validation of Thresholds 

Simulation Group 2 (consisting of all ten scenarios) was then processed through the M models 

obtained from the original data using the pLMT classifier, and individuals were categorised using the 

thresholds that were established using Simulation Group 1. The distributions of the resulting 

GMAMP for the ten scenarios are shown in Figure 5.3. 
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Figure 5.3: Distribution of Simulation Group 2’s GMAMP 

Distribution of simulation group 2’s GMAMP for ten scenarios (with full descriptions provided in Table 4.3). The key 

represents the ratio of Australian/Japanese ancestor proportions, from the top down, the scenarios used are 1, 2, 3, 4, 5, 

6, 7, 8, 9 and 10. 

 

Table 5.2 outlines the count of inferred ancestry for the 10,000 individuals within each of Simulation 

Group 2’s admixture scenarios using the classification thresholds. 

Table 5.2: Counts of Classification Outcomes for Simulation Group 2 for pLMT 

Australian: GMAMP ≥ 0.8, Ambiguous: 0.1 < GMAMP < 0.8, and Japanese: GMAMP ≤ 0.1. The key (represented 

average pedigree proportions) represents the ratio of Australian/Japanese ancestor proportion. Shown are the counts of 

individuals assigned to each inferred ancestry within a scenario (n = 10,000), alongside the respective percent. 

Scenario Number 
Represented Average 

Pedigree Proportions 

Inferred Ancestry 

Australian Ambiguous Japanese 

1 100/0 9948 (99.48%) 52 (0.52%) 0 (0%) 

2 87.5/12.5 9496 (94.96%) 504 (5.04%) 0 (0%) 

3 75/25a 8064 (80.64%) 1936 (19.36%) 0 (0%) 
4 75/25b 7086 (70.86%) 2914 (29.14%) 0 (0%) 

5 62.5/37.5 3606 (36.06%) 6370 (63.70%) 24 (0.24%) 

6 50/50 1988 (19.88%) 7967 (79.67%) 45 (0.45%) 

7 45/55 116 (1.16%) 7744 (77.44%) 2140 (21.40%) 

8 25/75 0 (0%) 2109 (21.09%) 7891 (78.91%) 

9 12.5/87.5 0 (0%) 61 (0.61%) 9939 (99.39%) 

10 0/100 0 (0%) 2 (0.02%) 9998 (99.98%) 

 

Errors observed in this table were assigned using the previously defined direct and indirect errors 

terms. The appropriate error rate calculated for each of the ten scenarios, together with 95% Wilson 

confidence interval where relevant are given in Table 5.3. 
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Table 5.3: pLMT Error Rates 

Error rates for the pLMT classifier on each of the ten admixture scenarios tested, a two-tailed 95% Wilson confidence 

interval was included where relevant (Sergeant, 2018). N/A = Not available, namely, that this error cannot occur in this 

given scenario. The key (represented average pedigree proportions) represents the ratio of Australian/Japanese ancestor 

proportion. 

Scenario 

Number 

Represented Average Pedigree 

Proportions 
Direct Error (95% CI) Indirect Error (95% CI) 

1 100/0 <0.0004 N/A 

2 87.5/12.5 <0.0004 N/A 

3 75/25a <0.0004 N/A 

4 75/25b <0.0004 N/A 

5 62.5/37.5 N/A 0.3630 (0.3536 – 0.3725) 

6 50/50 N/A 0.2033 (0.1955 – 0.2113) 

7 45/55 N/A 0.2256 (0.2175 – 0.2339) 

8 25/75 <0.0004 N/A 

9 12.5/87.5 <0.0004 N/A 

10 0/100  <0.0004 N/A 

 

The difference between a direct versus an indirect error is the resulting outcome. A direct error is 

akin to a false negative or positive (depending which population is used as the reference population), 

that is, an Australian soldier misclassified as Japanese would be a true misclassification, similarly a 

Japanese soldier misclassified as Australian. An indirect error would result in a soldier receiving an 

ambiguous classification when the correct response should be an Australian or Japanese 

classification. The impact of the indirect error is that the soldier’s family receive no resolution and 

the soldier’s identity remains in limbo indefinitely. Note that it is expected that, given the exclusions 

in place at the time of WWII, the majority of remains that will be discovered by the UWC-A will 

consist of Australian and Japanese individuals with little, if no, admixture between the two 

populations. However, it is important to explore these complex, admixed pedigrees to understand the 

capabilities and limitations of the proposed model. 

For Simulation Group 2, there was not a single observed direct error, with the indirect error occurring 

in the unknown scenarios ranging between approximately 19.5% - 37.2% of the GM. Note that while 

no instances of direct error were observed in this test simulation group, as previously discussed a 

single instance of direct error did occur for Simulation Group 1 in the 75% Japanese scenario. 

Therefore, it is appropriate to acknowledge a direct error rate of <0.0004 (95% CI), to account for 

the possibility of another direct error in a different sample of simulated individuals. Based on the 

results from Table 5.3, this experiment has also indirectly identified that Australian and Japanese 

individuals can still be reliably classified for pedigrees consisting of as low as 75% of their majority 

ancestry. The region between these reliable classifications consists of pedigrees that are less likely to 

occur naturally, and in these instances BGA cannot confidently be assigned.   

If the pLMT’s direct error rate is considered as the primary metric for comparison, the classifier can 

be compared to other methods observed in the literature, such as Cheung et al. (2017). Based on the 
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results from Table 5.3, in comparison with Cheung et al. (2017, Table 1, p.905), the pLMT classifier 

has an error rate similar to that of STRUCTURE (<0.01), which had the highest accuracy of the 

several methods compared.  

5.3 Generic Bayesian 

5.3.1 Analyse Simulated Data 

The likelihood ratio was calculated for all individuals from Simulation Group 1 using the original 

dataset of WWII era Australians (n = 108) and contemporary Japanese individuals (n = 104) to 

provide relative genotype frequencies. The natural logarithmic scale was applied to these likelihood 

ratios to assist with scaling and interpretation. The distributions of the resulting likelihood ratios for 

each scenario are shown in Figure 5.4, which is the equivalent of Figure 5.2 for the pLMT.  

 
Figure 5.4: Distribution of Simulation Group 1’s Natural Log of the Likelihood Ratio (LR) 

Distribution of Simulation Group 1’s natural log of the likelihood ratio for seven scenarios (with full descriptions 

provided in Table 4.3). The key represents the ratio of Australian/Japanese ancestor proportion, from the top down, the 

scenarios used are 1, 2, 4, 6, 8, 9 and 10. 

 

Based on the distributions of the Australian scenarios and the Japanese scenarios, the following 

thresholds were selected: 

Australian: Natural Log of Likelihood Ratio ≥ 50 

Ambiguous: -25 < Natural Log of Likelihood Ratio < 50 

Japanese: Natural Log of Likelihood Ratio ≤ -25 

 



94 

 

These thresholds were selected using the methodology as discussed in Section 5.2.3, with the criterion 

that approximately 90% of the population, that is, Australian = Scenarios 1, 2 and 4, and Japanese = 

Scenarios 8, 9 and 10, was covered by the threshold. 

5.3.2 Test Thresholds 

Simulation Group 2 was then analysed using the Generic Bayesian classifier, and individuals were 

categorised using the thresholds established on Simulation Group 1. The resulting distributions of the 

natural log of the likelihood ratio for the ten scenarios are shown in the following boxplots (Figure 

5.5).  

 
Figure 5.5: Distribution of Simulation Group 2’s Natural Log of the LR 

Distribution of Simulation Group 2’s natural log of the likelihood ratio for ten scenarios (with full descriptions provided 

in Table 4.3). The key represents the ratio of Australian/Japanese ancestor proportions, from the top down, the scenarios 

used are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. 

 

Table 5.4 presents the count of inferred ancestry for the 10,000 individuals within each of Simulation 

Group 2’s admixture scenarios using the classification thresholds. 
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Table 5.4: Counts of Classification Outcomes for Simulation Group 2 for Generic Bayesian 

Australian = Natural Log of Likelihood Ratio ≥ 50, Ambiguous = 50 > Natural Log of Likelihood Ratio > -25, 

Japanese = Natural Log of Likelihood Ratio ≤ -25. The key (represented average pedigree proportions) represents the 

ratio of Australian/Japanese ancestor proportions. Shown are the counts of individuals assigned to each inferred 

ancestry within a scenario (n = 10,000), alongside the respective percent. 

Scenario Number 
Represented Average 

Pedigree Proportions 

Inferred Ancestry 

Australian Ambiguous Japanese 

1 100/0 10000 (100%) 0 (0%) 0 (0%) 

2 87.5/12.5 9878 (98.78%) 122 (1.22%) 0 (0%) 

3 75/25a 7315 (73.15%) 2685 (26.85%) 0 (0%) 

4 75/25b 6942 (69.42%) 3058 (30.58%) 0 (0%) 

5 62.5/37.5 1490 (14.90%) 8507 (85.07%) 3 (0.03%) 

6 50/50 14 (0.14%) 9960 (99.60%) 26 (0.26%) 

7 45/55 0 (0%) 7325 (73.25%) 2675 (26.75%) 

8 25/75 0 (0%) 1012 (10.12%) 8988 (89.88%) 

9 12.5/87.5 0 (0%) 6 (0.06%) 9994 (99.94%) 

10 0/100 0 (0%) 1 (0.01%) 9999 (99.99%) 

 

Errors observed in this table were assigned using the previously defined direct and indirect error 

terms, and the appropriate error rate calculated for each of the ten scenarios, with a 95% Wilson 

confidence interval being applied where relevant (Table 5.5). 

Table 5.5: Generic Bayesian Error Rates 

Error rates for the Generic Bayesian classifier on each of the ten admixture scenarios tested together with a 95% Wilson 

confidence interval where relevant (Sergeant, 2018). N/A = Not available, namely, that this error cannot occur in this 

given scenario. The key (represented average pedigree proportions) represents the ratio of Australian/Japanese ancestor 

proportion. 

Scenario 

Number 

Represented Average Pedigree 

Proportions 

Direct Error (95% CI) Indirect Error (95% CI) 

1 100/0 <0.0004 N/A 

2 87.5/12.5 <0.0004 N/A 

3 75/25a <0.0004 N/A 

4 75/25b <0.0004 N/A 

5 62.5/37.5 N/A 0.1493 (0.1424 – 0.1564) 

6 50/50 N/A 0.0040 (0.0029 – 0.0054) 

7 45/55 N/A 0.2675 (0.2589 – 0.2763) 

8 25/75 <0.0004 N/A 

9 12.5/87.5 <0.0004 N/A 

10 0/100  <0.0004 N/A 

 

For the Generic Bayesian classifier, there were no observed direct errors, on either Simulation Groups 

1 or 2, and the resulting indirect error rate ranged from 0.3% - 27.6%, compared to the pLMT’s 

indirect error rate range of 20% - 38%.  
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5.4 STRUCTURE 

5.4.1 Analyse Simulated Data 

The Australian membership proportion (Q value) was estimated by STRUCTURE for all individuals 

from Simulation Group 1 using the original dataset of WWII era Australians (n = 108) and modern-

day Japanese individuals (n = 104) to provide relative genotype frequencies. The distributions of the 

resulting likelihood ratios for each scenario are shown in Figure 5.6 (equivalent to Figure 5.2 for 

pLMT).  

 
Figure 5.6: Distribution of Simulation Group 1’s Australian Membership Proportion (Q Value) 

Distribution of Simulation Group 1’s Australian Q value for seven scenarios (with full descriptions provided in Table 

4.3). The key represents the ratio of Australian/Japanese ancestor proportions, from the top down, the scenarios used 

are 1, 2, 4, 6, 8, 9 and 10. 

 

Thresholds were selected using the methodology as discussed in Section 5.2.3, with the criterion that 

approximately 90% of the population, that is, Australian = Scenarios 1, 2 and 4, and Japanese = 

Scenarios 8, 9 and 10, was covered by the threshold. Based on the distributions of the Australian 

scenarios and the Japanese scenarios, the following thresholds were selected: 

Australian: Australian Q Value ≥ 0.7 

Ambiguous: 0.3 < Australian Q Value < 0.7 

Japanese: Australian Q Value ≤ 0.3 
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5.4.2 Test Thresholds 

Simulation Group 2 was then analysed using STRUCTURE, and individuals were categorised using 

the thresholds established with Simulation Group 1. The resulting distributions of the Australian Q 

Value for the ten scenarios are shown in the following boxplots (Figure 5.7).  

 
Figure 5.7: Distribution of Simulation Group 2’s Australian Membership Proportion (Q Value) 

Distribution of Simulation Group 2’s Australian Q value for ten scenarios (with full descriptions provided in Table 4.3). 

The key represents the ratio of Australian/Japanese ancestor proportions, from the top down, the scenarios used are 1, 

2, 3, 4, 5, 6, 7, 8, 9 and 10. 

 

Table 5.4 outlines the count of inferred ancestry for the 10,000 individuals within each of Simulation 

Group 2’s admixture scenarios using the classification thresholds. 

Table 5.6: Counts of Classification Outcomes for Simulation Group 2 for STRUCTURE 

Australian = Australian Q Value ≥ 0.7, Ambiguous = 0.3 < Australian Q Value < 0.7, Japanese = Australian Q Value 

≤ -0.3. The key (represented average pedigree proportions) represents the ratio of Australian/Japanese ancestor 

proportions. Shown are the counts of individuals assigned to each inferred ancestry within a scenario (n = 10,000), 

alongside the respective percent. 

Scenario Number 
Represented Average 

Pedigree Proportions 

Inferred Ancestry 

Australian Ambiguous Japanese 

1 100/0 10000 (100%) 0 (0%) 0 (0%) 

2 87.5/12.5 9936 (99.36%) 64 (0.64%) 0 (0%) 

3 75/25a 7222 (72.22%) 2778 (27.78%) 0 (0%) 

4 75/25b 7384 (73.84%) 2616 (26.16%) 0 (0%) 

5 62.5/37.5 1482 (14.82%) 8518 (85.18%) 0 (0%) 
6 50/50 0 (0%) 10000 (100%) 0 (0%) 
7 45/55 0 (0%) 9149 (91.49%) 851 (8.51%) 
8 25/75 0 (0%) 2727 (27.27%) 7273 (72.73%) 
9 12.5/87.5 0 (0%) 43 (0.43%) 9957 (99.57%) 

10 0/100  0 (0%) 0 (0%) 10000 (100%) 
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Errors observed in this table were assigned using the previously defined direct and indirect errors 

terms, and the appropriate error rate calculated for each of the ten scenarios, with a 95% Wilson 

confidence interval being applied where relevant (Table 5.7). 

Table 5.7: STRUCTURE Error Rates 

Error rates for the STRUCTURE classifier on each of the ten admixture scenarios tested where a 95% Wilson confidence 

interval was calculated (Sergeant, 2018). N/A = Not available, namely, that this error cannot occur in this given scenario. 

The key (represented average pedigree proportions) represents the ratio of Australian/Japanese ancestor proportion. 

Scenario 

Number 

Represented Average Pedigree 

Proportions 

Direct Error (95% CI) Indirect Error (95% CI) 

1 100/0 <0.0004 N/A 

2 87.5/12.5 <0.0004 N/A 

3 75/25a <0.0004 N/A 

4 75/25b <0.0004 N/A 

5 62.5/37.5 N/A 0.1482 (0.1413 – 0.1553) 

6 50/50 N/A <0.0004 

7 45/55 N/A 0.0851 (0.0798 – 0.0907) 

8 25/75 <0.0004 N/A 

9 12.5/87.5 <0.0004 N/A 

10 0/100  <0.0004 N/A 

 

For STRUCTURE, there were no observed direct errors, on either Simulation Group 1 or 2, and the 

resulting indirect error rate was lower than the pLMT, ranging from 8.51% - 14.82%.  

Comparing the error rates across the three classifiers demonstrates that for a complete panel profile 

(Table 5.8), all three methods are effective based on no observed direct errors in the used sample, 

however, STRUCTURE had highest performance based on having the lowest maximum indirect error 

rate.  

Table 5.8: Summarised Classifier Error Rates 

The direct and indirect error rate range for the three utilised classifiers: pLMT, Generic Bayesian and STRUCTURE. 

Values were obtained from the recorded minimum and maximum for the two error rates across all ten scenarios from 

Tables 5.3, 5.5 and 5.7 respectively. Note that for the Direct Error, there were no observations in this sample, therefore, 

a minimum conservative estimate is used in its place. 

Classifiers Direct Error Indirect Error (95% CI) 

Parsimonious Logistic Model Tree < 0.0004 19.5% - 37.2% 

Generic Bayesian < 0.0004 0.3% - 27.6% 

STRUCTURE < 0.0004 8.5% - 14.8% 
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5.5 Classifier Comparison on Degraded Samples 

To observe how the three classifiers compared when inferring BGA for degraded remains, a second 

WWII Australian sample (n = 80) consisting of individuals with missing data, mimicking 

degradation, was utilised (collected in collaboration with Ghaiyed (2020)). Based on the results of 

the SNP removal experiment (see Section 5.6), a minimum threshold of ten SNPs was selected. This 

selection resulted in five samples being excluded for having less than 10 SNPs available, providing 

a final sample of 75 degraded Australians.  

For the pLMT, the data for all individuals were analysed separately as the intended use of the pLMT’s 

procedure, having their own respective pLMT generated based on which SNPs were available. The 

GMAMP was then estimated for each of the 75 individuals. Appendix 6 lists the estimated GMAMP 

and available SNPs for each of the 75 individuals. For the Generic Bayesian, probabilities for missing 

SNPs were replaced with a value of one, resulting in these SNPs having no effect on the resulting 

likelihood ratio, thus effectively being removed. The natural log of the likelihood ratio was estimated 

for each of the 75 individuals. Full details are provided in Appendix 7. STRUCTURE’s standard 

procedure to ignore missing data was utilised for these runs, and full details for the Australian Q 

values obtained from STRUCTURE are provided in Appendix 8. 

Since interest lies in the effect on the ancestry estimation caused by the number of SNPs available, 

the following figures depict each classifier’s estimated output of interest for each of the n = 75 WWII 

degraded Australian samples, against the number of SNPs missing for that individual (ranging from 

5 to 28 out the total possible 40). Note that the SNPs missing (or present) will not necessarily be the 

same between individuals. A simple linear regression is applied to each plot to observe any effect the 

number of SNPs may have on the classifier’s estimated output. 

In addition, each of the n = 75 WWII degraded Australian samples are categorised using the 

thresholds established in Sections 5.2.3, 5.3.1 and 5.4.1. Table 5.9 details the averaged output of each 

classifier (GMAMP, natural log of the likelihood ratio of Australian ancestry and the Q value of 

Australian membership proportion) for the number of missing SNPs (out of the total possible 40). 
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Table 5.9: Averaged Classifier Outputs for Degraded Samples 

The averaged outputs for the pLMT (GMAMP), Generic Bayesian (natural log likelihood ratio of Australian ancestry) 

and STRUCTURE (Q value of Australian membership proportion) at various levels of missing SNPs ranging from 5 to 

28 (out of 40). Number of observations is also included for each level. 

  
No. Missing SNPs No. Observations 

pLMT 

(GMAMP) 

Generic Bayesian 

(Log Likelihood Ratio) 

STRUCTURE 

(Q Value) 

5 1 0.971 98.52 0.999 

6 3 0.931 87.07 0.990 

7 3 0.970 84.53 0.997 

8 2 0.972 92.09 0.999 

10 1 0.968 87.78 0.999 

11 5 0.972 74.77 0.995 

12 3 0.959 66.67 0.987 

13 1 0.972 67.28 0.991 

14 4 0.935 70.03 0.997 

15 2 0.982 79.81 0.999 

16 3 0.988 69.88 0.997 

17 8 0.976 65.38 0.997 

19 5 0.955 52.38 0.996 

20 7 0.938 44.69 0.979 

21 2 0.956 40.92 0.995 

22 5 0.953 45.44 0.997 

23 5 0.955 38.05 0.993 

24 8 0.956 36.22 0.991 

25 2 0.936 39.69 0.998 

26 3 0.937 41.02 0.997 

28 1 0.936 27.52 0.997 
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Note that the outputs of Figures 5.8, 5.9 and 5.10 depict the different measures used by the pLMT 

(GMAMP), Generic Bayesian (log likelihood ratio) and STRUCTURE (Q value) classifiers. 

 

 
 

 

 

 

 

R-Squared = 0.1956 

 
Figure 5.8: GMAMP Distribution in the Degraded WWII Australian Sample 

Averaged GMAMP for individuals in the degraded WWII era Australian sample (n = 75), based on the number of 

missing SNPs out of the total possible 40 available. Accompanied by the regression coefficients, standard error, 

significance value and R-squared value. 

 

 

 Coefficients Standard Error P-value 

Intercept 0.9755714   0.0089376 <2e-16 

Missing SNPs -0.0010877   0.0005061   0.0447 
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 Coefficients Standard Error P-value 

Intercept 110.2607 3.4315 < 2e-16 

Number of SNPs -2.9408 0.1943 4.7e-12 

 

R-Squared = 0.9234 

 

Figure 5.9: Log Likelihood Ratio Distribution in the Degraded WWII Australia Sample 

Averaged log likelihood ratios for individuals in the degraded WWII era Australian sample (n = 75), based on the number 

of missing SNPs from the possible 40 available. Accompanied by the regression coefficients, standard error, significance 

value and R-squared value. 
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 Coefficients Standard Error P-value 

Intercept 0.9954675 0.0029053 <2e-16 

Number of SNPs -0.0000474 0.0001645 0.776 

 

R-Squared = 0.0044 

 

Figure 5.10: Australian Q Value Distribution in the Degraded WWII Australia Sample 

Averaged Australian Q values for individuals in the degraded WWII era Australian sample (n = 75), based on the number 

of missing SNPs from the possible 40 available. Accompanied by the regression coefficients, standard error, significance 

value and R-squared value. 

 

By plotting each classifier’s averaged output against the number of missing SNPs, a significant 

reduction was observed for the pLMT classifier (p-value = 0.0447) and the Generic Bayesian 

classifier (p-value ≤ 0.01). For these classifiers, the loss of each SNP resulted in a loss of 0.001 for 

the GMAMP and 2.941 for the natural log likelihood of Australian ancestry. Note that converting the 

natural log value of 2.941 back to a normal likelihood ratio results in a reduction of approximately 

19 for each missing SNP. The R-squared values for these two classifiers indicate that approximately 

20% and 92% of the variation for the pLMT and Generic Bayesian classifiers, respectively, is 

accounted for by the number of missing SNPs. The Generic Bayesian’s high R-squared value 

indicates that the classifier’s performance is limited as the degree of degradation increases. 
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For STRUCTURE, it was observed that the number of missing SNPs did not have a significant effect 

on the resulting Q-values of Australian membership proportion (p-value = 0.776). In addition, the R-

squared indicates that virtually no variation is occurring from the number of missing SNPs. This 

occurrence is likely due in part to STRUCTURE’s algorithm and how it handles missing data. 

Following regression, the previously established classification thresholds for the three classifiers in 

Sections 5.2.3, 5.3.1 and 5.4.1, were applied to the degraded WWII Australian individuals (See 

Appendices 6, 7 and 8). Both the pLMT and STRUCTURE classifiers resulted in 100% of individuals 

(n = 75) being correctly classified as Australian. The Generic Bayesian classifier however, resulted 

in the following outcomes: 40 (53%) were classified as Australian (Log LR ≥ 50), 35 (47%) were 

classified as Ambiguous (-25 < Log LR < 50), and 0 (0%) were classified as Japanese (Log LR ≤ -

25). As it is expected for most historical cases will be degraded, the utilised classifier must be readily 

adaptable to DNA profiles with missing data. While the Generic Bayesian did not incorrectly classify 

any of the individuals, almost half of the sample (35/75) were classified as ambiguous.  

5.6 SNP Removal Experiment 

For the two scenarios, 100/0 (Scenario 1) Australian (n = 10,000) and 0/100 (Scenario 10) Japanese 

(n = 10,000), SNPs were randomly removed from the individuals in Simulation Group 2. SNP 

removal was carried out in sets of 5, 10, 15, 20, 25, 30, and 35 and 100 independent repetitions were 

completed for each set. Ambiguous classifications were removed from further analysis as there was 

no further interest in monitoring indirect error situations. The remaining individuals were classified 

into either correct or a direct error. The distributions of these classifications across the 100 repetitions 

are summarised as minimum, mean and maximum counts in Table 5.10. For example, when 5 SNPs 

were removed from the 100% Australian group, across the 100 replications, the mean number of the 

10,000 individuals who were correctly classified was 9915, with the minimum being 9728 and the 

maximum 9991. For this example, no direct errors were observed for this group but there were some 

ambiguous classifications (not shown in Table 5.10). Similarly, when 5 SNPs were removed from 

the 100% Japanese group. The minimum, mean and maximum individuals correctly classified were 

9966, 10000 and 10000, respectively. Again, there were no direct errors, the remaining individuals 

resulted in an ambiguous classification (not shown). Note that for this section, only the pLMT 

classifier was used. 
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Table 5.10: Artificial SNP Removal Summary 

SNPs were artificially removed from a 100% Australian and 100% Japanese scenario (n = 10,000 each) in sets of five 

SNPs with 100 iterations per set. The minimum (min), mean and maximum (max) counts (based on 100 repetitions) for 

the subsequent correct and direct error categories are shown rounded up to the nearest integer, N/P = Not Possible. 

Each entry in the table is a count out of 10,000 
  Correct Direct Error 

SNP 

Removed 
Scenarios Min Mean Max Min Mean Max 

5 SNPs 
Australian 9728 9915 9991 0 0 0 

Japanese 9966 10000 10000 0 0 0 

10 SNPs 
Australian 9713 9906 9989 0 0 0 

Japanese 9929 9999 10000 0 0 0 

15 SNPs 
Australian 9607 9898 9992 0 1 9 

Japanese 9930 9996 10000 0 0 0 

20 SNPs 
Australian 9540 9893 9998 0 1 1 

Japanese 9745 9981 10000 0 0 0 

25 SNPs 
Australian 9588 9869 9994 0 1 4 

Japanese 0a 9812 9994 5 8 114 

30 SNPs 
Australian 8836 9791 9994 0 2 23 

Japanese N/Pb 9464b 9989 5 13 114 

35 SNPs 
Australian N/P N/P N/P N/P N/P N/P 

Japanese N/P N/P N/P N/P N/P N/P 
a One repetition resulted in a pLMT where no Japanese individuals were correctly assigned, that is, the individuals were 

either classified as Ambiguous (not shown) or a direct error (114/10,000) 
b Three repetitions resulted in pLMTs that were unable to generate a single LMT, therefore, the average will be marginally 

skewed due to the presence of ‘false’ zeros. 

 

Table 5.10 can be interpreted as follows, using the example of 5 SNPs removed. Initially, five SNPs 

were randomly removed, and these same five SNPs were removed from the 100% Australian (n = 

10,000) and the 100% Japanese (n = 10,000) samples. A pLMT was generated based on the remaining 

available SNPs and these 20,000 individuals were classified based on the pLMT and previously 

established GMAMP thresholds. The count was then recorded for the number of individuals who 

were correctly assigned to their respective population and the number of direct errors. This entire 

process was repeated 100 times, with a new set of five SNPs selected at random for each repetition. 

The minimum, average (mean) and maximum were then estimated for the count of correct and direct 

error classifications over the 100 iterations. 

It was observed that when 35 SNPs were removed (that is 5 SNPs were left for analysis), in nearly 

all repetitions there were too few SNPs available for the pLMT classifier to successfully construct a 

single LMT to predict ancestry. Therefore, it is indicative that the pLMT requires at least ten SNPs 

out of the 40 utilised SNPs to create models. Note that this statement is directly related to this specific 

panel (GPSP) of 40 SNPs and may not be applicable to other panels. As the generation of models 

depends on the discrimination power of the available SNPs, a different panel which contains SNPs 
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of a reduced power may require more than a minimum of ten. While recommendation for this panel 

is a minimum of ten SNPs available, the current analysis suggests that it is possible for the pLMT to 

be ineffective with only fifteen SNPs available (25 removed from the 40) (Table 5.10a).  

For severely degraded remains, 30 SNPs missing, the pLMT was still able to create models with a 

high classification rate. On average, with only ten SNPs available (30 removed) the pLMT was able 

to correctly assign 97.9% of Australian individuals (9791/10,000), and 94.6% of Japanese individuals 

(9464/10,000). Also, with only ten SNPs (30 SNPs missing), the maximum numbers of direct errors 

in the 100% Australian and 100% Japanese sample were 23 and 114, respectively.  

The classification thresholds used during this experiment remained static, based on the same 

thresholds established on individuals with complete panel profiles. However, there may be merit in 

establishing thresholds based on the number of SNPs that are available for a degraded set of remains, 

which may improve the pLMT’s classification ability. Despite using static thresholds, the pLMT was 

still able to classify individuals from these two samples with a high success rate. In comparison to 

other classifiers in the literature, the pLMT’s classification accuracy for degraded remains is 

relatively high; comparing the classifier to STRUCTURE and the Generic Bayesian results from 

Cheung et al. (2017) indicate the three classifiers have similar classification accuracies for highly 

degraded remains. However, the results observed in this thesis indicate that the Generic Bayesian 

classifier has limited prediction power as the number of SNPs available is reduced. 

5.7 Factors Affecting the Posterior Probability 

Three factors, prior odds, original sample size and the resulting BGA probability, are identified as 

affecting the posterior probability of Australian ancestry (PPAA) with varying amounts of sensitivity. 

A sensitivity analysis was performed using these three factors: 

1. The GMAMP; 

2. The sample size of the original data used to estimate the minimum genotype frequency using 

Green and Young’s formula (Equation 4.8); 

3. The prior odds ratio. 

In the sensitivity analysis, only GMAMP relevant to the Australian and Japanese populations are 

shown. These values are obtained using the distributions observed in Figure 5.3, that is, the GMAMP 

observed in the individuals with all Australian ancestors’ scenario, approximately > 0.9, and the 

individuals with all Japanese ancestor’s scenario, approximately < 0.03. 
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The original data’s sample size affects the PPAA during the calculation of the likelihood ratio, which 

is later used to estimate the PPAA. The ECDF curve is used to estimate the conditional probabilities 

of observing a GMAMP in each population. If a value of 0 is obtained, it is replaced using Green and 

Young’s formula to account for the possibility of a rare event. This effect is demonstrated in Table 

5.11. 

Table 5.11: Conditional Probabilities of the GMAMP in the Two Populations and the Resulting LR 

The conditional probabilities of observing the GMAMP in the Australian and Japanese ECDF curve. If a sample of 

zero was obtained, a conservative frequency was estimated (shown in brackets) using the Green and Young formula 

where the original data’s sample size (n) = 100 (a) and 300 (b), demonstrating the effect of sample size on the resulting 

LR, and thus, the posterior probability (not shown). 

 

a). Original Data’s Sample Size = 100 

 GMAMP 

0.99 0.95 0.9 0.01 

Australian Proportion 0.7987 0.9462 0.043 0 (0.03) 

Japanese Proportion 0 (0.03) 0 (0.03) 0 (0.03) 0.9998 

Resulting LR 26.62 31.54 1.43 0.03 

 

b). Original Data’s Sample Size = 300 

 GMAMP 

0.99 0.95 0.9 0.01 

Australian Proportion 0.7987 0.9462 0.043 0 (0.01) 

Japanese Proportion 0 (0.01) 0 (0.01) 0 (0.01) 0.9998 

Resulting LR 79.87 94.62 4.3 0.01 

 

As the sample size for the original data is increased, the conservative estimated frequency is reduced 

(using the examples n = 100 and 300) which alters the resulting likelihood ratio used to estimate the 

PPAA. 

Table 5.12 extends on the results of Table 5.11, demonstrating how the original data’s sample size 

and the prior odds ratio affect the resulting PPAA. Note that the likelihood ratio used to estimate each 

PPAA is not shown in Table 5.12. 

Table 5.12: Posterior Probabilities of Australian Ancestry 

Posterior probabilities of Australian Ancestry resulting from the sensitivity analysis where the GMAMP from the 

pLMT, sample size of original data and prior odds are combined. Note the LR used during the estimation is not shown.  

 

a). Prior Odds = 0.5, the Japanese soldiers outnumber the Australian soldiers 2 to 1. 

 Sample Size for Original Data (n) 

GMAMP 100 200 300 400 500 

0.99 0.930 0.964 0.976 0.982 0.985 

0.95 0.940 0.969 0.979 0.984 0.987 

0.9 0.418 0.589 0.683 0.742 0.782 

0.01 0.015 0.007 0.005 0.004 0.003 
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b). Prior Odds = 0.3, the Japanese soldiers outnumber the Australian soldiers 4 to 1. 

 Sample Size for Original Data 

GMAMP 100 200 300 400 500 

0.99 0.889 0.941 0.960 0.970 0.976 

0.95 0.905 0.950 0.966 0.974 0.979 

0.9 0.301 0.463 0.564 0.633 0.683 

0.01 0.009 0.004 0.003 0.002 0.002 

 
c). Prior Odds = 0.1, the Japanese soldiers outnumber the Australian soldiers 10 to 1. 

 Sample Size for Original Data 

GMAMP 100 200 300 400 500 

0.99 0.727 0.842 0.889 0.914 0.930 

0.95 0.760 0.863 0.905 0.927 0.940 

0.9 0.126 0.223 0.301 0.365 0.418 

0.01 0.003 0.001 0.001 0.001 0.001 

 

d). Prior Odds = 0.05 (Similar to the expected value for Buna in Papua New Guinea), the unrecovered Japanese soldiers 

outnumber the Australian soldiers 20 to 1. 

 Sample Size for Original Data 

GMAMP 100 200 300 400 500 

0.99 0.571 0.727 0.800 0.842 0.870 

0.95 0.612 0.760 0.826 0.863 0.888 

0.9 0.067 0.126 0.177 0.223 0.264 

0.01 0.001 0.001 0.001 0.001 0.001 

 
e). Prior Odds = 0.01 (Similar to the expected value for Sanananda in Papua New Guinea), the unrecovered Japanese 

soldiers outnumber the Australian soldiers 100 to 1. 

 Sample Size for Original Data 

GMAMP 100 200 300 400 500 

0.99 0.210 0.348 0.444 0.516 0.571 

0.95 0.240 0.387 0.487 0.558 0.612 

0.9 0.014 0.028 0.041 0.054 0.067 

0.01 0.001 0.001 0.001 0.001 0.001 

 

The results of the sensitivity analysis indicate that both the prior odds ratio and the original data’s 

sample size have a substantial effect on the estimated PPAA. An individual with a GMAMP of 0.95, 

indicative of Australian BGA, combined with a prior odds ratio of 0.5 (Table 5.12a) would result in 

a PPAA of 0.94 (original data’s sample size = 100). If that same individual was discovered in an area 
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where the appropriate prior odds ratio was 0.05 (Table 5.12d), the resulting PPAA would be reduced 

to 0.612, an ambiguous classification. In addition, for a prior odds ratio of 0.05 (Table 5.12d), a 

sample size increase from 100 to 500 can increase the resulting PPAA from a GMAMP of 0.95 from 

an ambiguous classification, PPAA = 0.612, to an Australian classification, PPAA = 0.888. 

Ultimately, in areas with an extremely low prior odds ratio, such as 0.01 it is unlikely that any 

Australian remains will be classified unless the original sample size is increased substantially. 

A limitation of this approach for incorporating the prior, is that it cannot be used when the obtained 

GMAMP is outside the expected distribution of GMAMPs for both populations, that is, the ECDF of 

conditional probabilities. If the GMAMP is not observed in either population’s ECDF curve, the 

resulting LR will be 1, as the Green and Young formula will be used to update the zero value 

conditional probabilities obtained for both populations. However, in this scenario, this method of 

incorporating the prior may indirectly alert the user that the unknown test sample may not truly belong 

to either of the populations of interest, as the GMAMP is not observed in either of the populations. 

Additionally, this method of incorporating the prior is limited if the unknown test sample’s GMAMP 

is on the extreme ends of their true population’s ECDF conditional probability distribution. This 

limitation is demonstrated in Table 5.12, where the conditional probability of observing a GMAMP 

of 0.9 in the Australian population is 0.043. As the proportion of individuals within the ECDF curve 

of the Australian sample with an approximate GMAMP of 0.9 is small, the resulting conservative 

value estimated for the Japanese sample causes the likelihood ratio to also be small. 

With the prior odds and original data’s sample size having a noticeable effect on the PPAA, it is 

important to recognise how a confidence interval may also affect the decision-making process. The 

use of a confidence interval, and the choice of how it is reported, one-tailed or two-tailed, may cause 

the outputted PPAA to result in a different classification. This effect is another means of how sample 

size can alter the result, and the subsequent decision-making. 

5.8 Classifying Alternative Populations 

Individuals from alternative populations which may be of interest for the utilised case study were 

analysed using the pLMT classifier. Note that for the British, Chinese and American samples, all 40 

of the GPSP SNPs were available for testing. For the Papuan sample, only 30 GPSP SNPs were 

available, resulting in a pLMT consisting of four LMT groups which utilised 26 of those SNPs. The 

distributions of the GMAMPs for each sample are shown in Figure 5.11. 
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Figure 5.11: Distribution of GMAMPs for Alternative Populations 

Observed GMAMP for alternative populations, British (GBR) = 91, Chinese (CHB) = 103, Papuan (OCE) = 26, 

American (CEU) = 99, Australian (AUS) = 108 and Japanese (JPT) = 104.  

 

Since the pLMT classifier works on a binary model, additional populations are forced onto the same 

probability scale based on which of the two primary clusters (Australian or Japanese) they are most 

closely related towards. As expected, Caucasian-based populations such as British (GBR) and 

American (CEU) have GMAMPs which tend Australian, while Asian-based populations like Chinese 

(CHB) are more closely related to the Japanese population. Of interest is the Papuan (OCE) 

population, which was observed to have a distribution separate to the two primary clusters, indicating 

that it may be possible to distinguish Papuan individuals from other soldiers. However, as the Papuan 

sample only had 30 out of the GPSP’s 40 SNPs available, it is possible that should the sample be 

reanalysed but with all 40 SNPs available, this distribution may differ. 
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5.9 Concluding Statement 

In this chapter comparisons were made between three classifiers: (i) the Generic Bayesian, which is 

still commonly used in forensic practice, (ii) STRUCTURE, considered the ‘golden standard’ of BGA 

prediction, and (iii) the pLMT, a classifier proposed in this thesis for DNA-MAP. While all three 

classifiers performed equally for complete panel profiles, with regards to no observed direct errors, 

only STRUCTURE and the pLMT classifiers remained consistently effective for degraded DNA 

profiles, and with high accuracy, whereas the effectiveness of the Generic Bayesian increasingly 

decreased in a linear fashion with the number of SNPs missing. The ability to handle missing data is 

a key benefit for a BGA prediction classifier.  

While STRUCTURE slightly outperformed the pLMT classifier in terms of having a reduced indirect 

error rate, it is important to compare other factors between the two remaining classifiers. To analyse 

Simulation Group 1 (n = 70,000) and Group 2 (n = 100,000), STRUCTURE took approximately four 

and six hours, respectively on a laptop. The equivalent analyses using the pLMT classifier took 

approximately <20 minutes. Therefore, the pLMT classifier offers significant advantages in terms of 

computing speed and with minimal reduction in classification accuracy.  
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Chapter 6 – DNA-Military Ancestry Predictor 

6.1 Stages of DNA-MAP 

There are three distinct stages to DNA-MAP’s process: (i) the input stage, (ii) the statistical modelling 

stage, and (iii) the reported outputs stage. The following sections outlines each stage, detailing both 

the user-friendly front-end and the algorithms used in the background. In its current stage, DNA-

MAP is a prototype, and suggestions of future updates are outlined which will be implemented prior 

to being made publicly available. This chapter has been written while still utilising the UWC-A case 

study to provide context to the reader. 

6.1.1 The Input Stage 

When launching DNA-MAP’s Shiny application, available at (https://dna-

map.shinyapps.io/shinydeployed/), the user is directed to the “Inputs” tab, which contains the 

following user-inputs. (Appendix 10 of this thesis provides a OneDrive and Dropbox link containing 

example files for Inputs b, c and i). 

(a) “Do You Wish to Input a Prior Odds?” The first task the user must complete is selecting 

whether they wish to utilise a prior odds model. Two action buttons are presented to the user: (i) “No 

prior model is needed” and (ii) “I want to use a Prior Model”. Note that by default, the “Prior Odds” 

model is enabled. Enabling or disabling a prior model will indicate to DNA-MAP whether to include 

or hide the tab “Prior”. If the user selects not to utilise a prior model, the user will only be presented 

with an ancestry prediction statement containing the GMAMP. However, if the user does opt to utilise 

a prior model, two additional inputs (Inputs i and j) are then required, which will result in DNA-MAP 

to carrying out an analysis utilising an ECDF curve to estimate the posterior probability. Using the 

prior model, will result in the display of both the GMAMP and the posterior probability as separate 

statements in the output. 

(b) “Training Data Containing Samples Collected from the Populations of Interest”. A 

Comma Separated Values (.csv) file containing the raw genotype data for the two populations of 

interest (Table 6.1) is required. The file’s required format is as follows: each row represents a single 

individual sampled from the populations of interest and each column should contain a single SNP 

with the given raw genotype shown for each individual. A column headed “POP” is required, which 

contains the name of an individual’s declared population, which DNA-MAP uses as the classification 

variable (dependent variable) when performing the pLMT analysis. A search function in DNA-

MAP’s algorithm checks column names and identifies the column titled “POP” (case sensitive) as 

the classification variable. Thus: (i) each row is assumed to be one individual, (ii) a column named 
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“POP” is required and is taken to be the column which contains the dependent variable (in a logistic 

regression), (iii) all other columns are assumed to be explanatory variables (independent variables) 

and are used as such. The intended, default use of DNA-MAP, is for the outcome variable (“POP”) 

to be binary and the rest of the variables to be SNP genotypes. It is required that the input file has no 

additional columns, the only columns are the outcome variable and the explanatory SNP variables. 

Therefore, the ordering of the columns does not affect the resulting pLMT, with the “POP” column 

be taken as the dependent variable and all other variables assumed to be outcome, SNP data.  

Table 6.1: Example of the Population Data File 

An example of the format required by the “Population Data” user-input (.csv) file, columns represent the genetic markers 

used with the last column containing the population variable used for classification. 

rs1426654 rs9809818 rs28777 POP 

AA AA AA AUS 

AA AA AC AUS 

AA AA AC AUS 

AA AC AA AUS 

GG CC CC JPT 

GG CC CC JPT 

GG CC CC JPT 

GG CC AC JPT 

 

(c) “Unknown Sample for Ancestry Prediction.” A comma separated file (.csv) file containing the 

raw genotype data for an unknown individual (Table 6.2) is required. Note that in its current phase, 

DNA-MAP analyses one unknown sample per run. Note that at this stage of DNA-MAP’s prototype 

development, only a single unknown sample can be analysed at a time due to the need for the SNPs 

present to drive the modelling. Therefore this file is assumed to contain data of a single individual. 

Section 6.2 outlines how prior to DNA-MAP becoming publicly available, the system will be altered 

to allow the user to analyse multiple unknown samples at a given time, with each sample having its 

own unique modelling performed for the SNPs available. This file requires an additional column to 

identify the unknown sample. The location of this column in the file is irrelevant, DNA-MAP is made 

aware of the column of interest through  the user’s compliance with Input (h).  As the population to 

which this sample fits the best, is the outcome of this analysis, no equivalent to “POP” column of the 

previous file is assumed for the data file with the sample from the unknown sample. The remaining 

explanatory SNP columns in this file must match those that are present in the population data file. If 

a SNP is missing from the unknown sample under question, the cell for this SNP is left blank. This 

allows DNA-MAP to remove SNPs that are missing in the unknown individual from the original 

population data prior to pLMT analysis. Empty cells for SNPs in this file are removed and the values 
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of the remaining columns are recorded. The SNP columns that had missing values in this file, are 

then removed from the file containing the population data (Input (b)).   

Table 6.2: Example Unknown Individuals File 

An example of the format required by the “Unknown Data” user-input (.csv) file. 

Unknown 

Sample ID 
rs1426654 rs9809818 rs28777 

rs … rs4959270 

UNK1 AA AA AA … GG 

 

(d) “Max Number of pLMT Models Before Algorithm Stops”. The maximum number of models 

to be generated by the pLMT algorithm before DNA-MAP forces model generation to stop and utilise 

the available models, must be provided. This user-input is included for cases where many SNPs are 

available (several hundred) and the process of generating models may exceed the user’s 

computational limits. The default value is 50 and the available range is 1 – 1000. 

(e) “Number of 10-fold Cross-Validation Iterations per Model”. The number of instances that 

ten-fold cross-validation is performed and averaged for a single given pLMT model must be 

provided. Note that large values will substantially increase the algorithm’s run-time. The default 

value is 10, and it is recommended that the user treats this value as a minimum. This input has been 

implemented as a measure of precision to ensure a consistent result is achieved when repeatedly 

fitting the same model to the same data. Therefore, while lowering this value does reduce DNA-

MAP’s overall run-time, the importance of a precise analysis should be prioritised wherever possible. 

The user may opt for a higher number of iterations in scenarios with: (1) a panel containing many 

markers (>100), (2) a panel which contains only SNPs with allele frequencies between 0.6 – 0.8, and 

(3) when using DNA-MAP for a real-world application to ensure high precision. The available range 

on this input is 1 to 1000. 

(f) “Classification Threshold for a pLMT Model to be Accepted”. The cut-off threshold that 

instructs DNA-MAP when to cease generating models must be provided. A model’s average 

classification accuracy calculated over the multiple iterations of ten-fold cross-validation, is tested 

against this threshold to determine whether to accept the model or not. Default value is 0.99 and the 

available range is 0 to 1. 

(g) “Desired Level of Confidence”. The user’s desired level of confidence in the result which is 

used during the estimation of confidence intervals for the output and when creating conservative 

values for the detection of a rare event (Equation 4.8). There are three options available, a 90%, 95% 

or a 99% level of confidence, which are presented in statements as a two-tailed Wilson confidence 

interval (See Chapter 4 for methodology). The choice of confidence should be based on one of the 
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following reasons: (1) the user’s beliefs, (2) guidelines or standards that require a minimum level of 

confidence, or (3) on the available sample size, that is, knowing a reduced confidence is the only 

option due to a small sample size.   

(h) “Name of Designated Identification Column in Your Unknown File”. This input acts as a 

quality assurance measure, allowing the user to nominate which column in their unknown sample file 

(Input c) contains the sample’s identification tag. DNA-MAP will find the column whose text string 

matches the input and record the identification code given to the unknown sample. The user simply 

needs to provide the column name they have used for identifying their sample (see Table 6.2, column 

1). 

Figure 6.1 provides a visual overview of the “Inputs” tab that the user is first directed to upon DNA-

MAP’s launch. 
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Figure 6.1: Prototype User-Interface – “Inputs” Tab. 

A prototype of DNA-MAP’s Shiny application user-interface for the initial Inputs stage of operations. Users will 

automatically begin on the Inputs tab upon launch of DNA-MAP where all user-input files and variables are uploaded. 
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If the user has enabled the “Prior Odds” Model, by selecting the “I want to use a Prior Odds” action 

button, the tab “Prior” appears at the top of the user’s screen. This tab contains the two remaining 

inputs and indicates to DNA-MAP to calculate the posterior probability. Note that if the user has 

disabled the “Prior Odds” model, the “Prior” tab is removed from DNA-MAP’s user interface, and 

the following two inputs are treated as “null” inputs and are no longer required by DNA-MAP.  

(i) “Sample Data of Known Individuals not Included in the Training Data”. A comma separated 

values file (.csv) containing the raw genotype values for a sample of individuals from both 

populations of interest, that have not been used in the model development (i.e. Input (b) above). Note 

that these individuals can be obtained through simulation or by taking a subset from the original 

training data prior to analysis, if the available sample size is large. For simulating individuals, the 

relative frequencies of alleles of the SNP panel in the available data (or obtained from the literature) 

can be used in conjunction with appropriate software such as SimAdmixtR (Kennedy, 2019). This 

file should be identical in format to the population data file (Input (b), Table 6.1). Missing SNPs 

observed in the individuals file to be classified (i.e. Input (c)) are also removed from this data file 

using the procedure described above. The data contained in this file are used to create the Empirical 

Cumulative Distribution Function (ECDF) curve required to incorporate the prior odds ratio.  

(j) “Prior Knowledge of the Estimated Ratio of Two Populations for a Given Geographic Area”. 

The prior odds value that the user has estimated for their situation. This value is assumed to be the 

ratio of the probabilities that an individual could belong to a given population versus another in a 

geographic area. To demonstrate, consider an area with 200 Australian soldiers, (na = 200) and 400 

Japanese soldiers (nb = 400). Therefore, the ratio of the probability that the individual could be an 

Australian soldier (Pr(𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛) =
𝑛𝑎

𝑛𝑎+𝑛𝑏
=

200

200+400
=

1

3
) versus the probability that the 

individual could be a Japanese soldier (Pr(𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒) =
𝑛𝑏

𝑛𝑎+𝑛𝑏
=

400

200+400
=

2

3
), is equal to 

Pr (𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛)

Pr (𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)
=

1

3
2

3

= 0.5. This value of 0.5 can also be interpreted as there are half as many Australian 

soldiers to Japanese soldiers for the area of interest.   

Note that no default value is available for this input as it is assumed that for the user to enable the 

“Prior Odds” model in the first place, they must have access to some information regarding a possible 

estimate of the prior odds. Otherwise, if the “Prior Odds” model is disabled, Inputs i and j are not 

required. Figure 6.2 provides a visual overview of the optional “Prior” tab that the user has access to 

after enabling DNA-MAP to utilise the “Prior Odds” model. 
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Figure 6.2: Prototype User-Interface – Prior Tab. 

A prototype of DNA-MAP’s Shiny application user-interface for the Prior tab. Users will have access to this tab once enabling a prior odds model using the action buttons available on the 

Inputs tab. 
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Once the user has successfully uploaded all required files and nominated all input variables, the user 

should then proceed to the “Analyse” tab to complete the process.  

6.1.2 Statistical Modelling Stage 

 

The following sections occur behind the front-end in DNA-MAP’s algorithm, invisible to the user. 

Match-Up Phase. The first phase of the analytical stage is the “match-up” process. SNPs that are 

missing for the test individual in the “Unknown Sample for Ancestry Prediction” file are removed 

from the “Training Data Containing Samples Collected from the Populations of Interest” and 

“Sample Data of Known Individuals not Included in the Training Data” files; the latter occurring 

only if the Prior Odds model is enabled. This process is performed as described in the “Unknown 

Sample for Ancestry Prediction” input. This allows the unknown individual to drive the subsequent 

pLMT models. 

 

pLMT Phase. With the user-inputs uploaded and the data files checked for errors, the pLMT 

algorithm is then applied to the “Training Data Containing Samples Collected from the Populations 

of Interest” file using the methodology as described in Chapter 4.3. A summary of the process 

follows, outlining where user-inputs are utilised. 

The Process 

1) DNA-MAP will select the file uploaded to “Training Data Containing Samples Collected 

from the Populations of Interest” input as the working dataset; 

2) An LMT model is trained on the working dataset under x iterations of 10-fold cross-

validation, where x is the numeric value for the “Number of 10-fold Cross-Validation 

Iterations per Model” user-input; 

3) The obtained LMT’s classification accuracy averaged over the x iterations is compared to 

the accuracy threshold which equals the numeric value for the “Classification Threshold 

for a pLMT Model to be Accepted” user-input; 

4) If the LMT model’s averaged classification accuracy is greater than or equal to the 

accuracy threshold then the model is accepted and stored internally. Any SNPs utilised in 

this LMT are then removed from the “Training Data Containing Samples Collected from 

the Populations of Interest” file. If the initial LMT model’s averaged classification 

accuracy is below the accuracy threshold, no further analysis is performed; 
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5) If the model’s accuracy was accepted, then Steps 2 – 4 are repeated continuously until one 

of the following three conditions is reached: 

a. There are no more SNPs available in the “Training Data Containing Samples 

Collected from the Populations of Interest” file; 

b. The number of generated LMT models has reached the maximum threshold which 

equals the numeric value for the “Max Number of pLMT Models Before the 

Algorithm Stops” user-input; 

c.  The LMT model’s averaged classification accuracy is less than the accuracy 

threshold. 

6) Once one of these conditions is met, DNA-MAP ceases model creation and records the 

models created; 

7) The regression coefficients are extracted from the models and are then applied one model 

at a time, to the respective individual in the “Unknown Sample for Ancestry Prediction” 

file to obtain the probabilities of membership from each model; 

8) The geometric mean of the resulting probabilities of membership is then calculated, and 

a confidence interval is estimated using the methodology as shown in Section 4.10. 

Posterior Probability Phase. This optional phase allows the incorporation of prior knowledge (such 

as historical records) of the expected relative population size with the estimated geometric mean to 

obtain a posterior probability. After the pLMT stage, if the user has enabled the “Prior Odds” model, 

the following steps are carried out:  

1) DNA-MAP uses the user’s “Sample Data of Known Individuals not Included in the 

Training Data” file as a working dataset of known individuals from both populations, 

where the SNPs missing from the unknown individual have been removed; 

2) The individuals in the “Sample Data of Known Individuals not Included in the Training 

Data” file are analysed through the same pLMT model used for the unknown individual, 

creating a distribution of geometric means of ancestry for each population; 

3) An empirical cumulative distribution function (ECDF) curve is constructed for each 

population’s geometric mean of ancestry distribution; 

4) The geometric mean of ancestry that was calculated for the individual in the “Unknown 

Sample for Ancestry Prediction” file is recorded  (assume it is recorded as “g”);  

5) A likelihood ratio (LR) of g’s occurrence in each population is calculated by taking a 

cross-section of each population’s respective ECDF (as shown in Section 4.8); 

6) The posterior probability of Australian ancestry is then calculated using Equation 6.1.  
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7) A confidence interval is calculated for the posterior probability using the methodology 

outlined in Section 4.10 by first calculating a confidence interval to the LR and 

incorporating those limits into Equation 6.1. 

a. Note that smaller sample sizes (n < 150), may result in the lower confidence 

interval for the LR being negative. To ensure the resulting confidence interval for 

the posterior probability is not affected by this negative, an if statement is present 

to replace the negative LR with a minimum conservative estimate using the Green 

and Young method.  

6.1.3 Reported Outputs Stage 

The reported outputs stage summarises the information that is pertinent to the user from the analytical 

stage, which is provided to the user on the “Analysis” tab. Note that the length of the analysis stage 

will depend primarily on two factors: the user’s selected Number of Iterations per Model and the total 

number of SNPs in the panel. For a value of 10 iterations of cross-validation per model on the GPSP 

(40 SNPs), DNA-MAP had a run time of approximately two minutes. Note that the GPSP was also 

tested with a value of 100 iterations which extended the software’s runtime to 20 minutes. These runs 

were completed using a Windows operating system; results may vary for other operating systems. 

No Prior Information Interpretation. If the user has disabled the “Prior Odds” model, the 

geometric mean is used to classify the individual sample under question. A simple statement is 

provided to the user describing the estimated geometric mean of the probability of Australian ancestry 

with the appropriate confidence intervals. See the following outputs (Figure 6.3). 

Unknown Sample ID: As a quality assurance measure, the ID of the unknown sample is provided. 

Statement of Results: An ancestry prediction statement (with no posterior probability) with its 

accompanying confidence interval. 

Number of Models: The number of successful LMT models that were accepted and utilised for 

analysis. 

SNPs not Used in Models: Which SNPs, if any, were unsuccessful in creating an LMT model above 

the required threshold. A ratio of the number of SNPs used versus the total available will also be 

provided. 
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Figure 6.3: Prototype User-Interface – Example Output with No Prior. 

A prototype of DNA-MAP’s Shiny application user-interface for the reported Output. Users are provided with these 

outputs by disabling the Prior Odds model. 

 

Prior Incorporation Phase – Posterior Probability Interpretation. If the user has enabled the 

“Prior Odds” model, then in addition to the outputs provided the No Prior Information 

Interpretation section (Figure 6.3). The posterior probability, and its applied confidence intervals, 

are also provided in a simple, English statement for the user (Figure 6.4). 
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Figure 6.4: Prototype User-Interface – Example Output with Prior. 

A prototype of DNA-MAP’s Shiny application user-interface for the reported Output. Users are provided with these 

outputs by enabling the Prior Odds model. 

 

Feedback Loop/Warnings: As the final interaction with the user, DNA-MAP may provide 

suggestions to the user on where alterations could be made to the inputted data and what effect these 

would have on the obtained BGA prediction. These suggestions, with their respective trigger and 

response, are: 

Trigger: If the “Training Data Containing Samples Collected from the Populations of Interest” file 

contains a sample size less than 300 individuals (Note that this is based on the results found in this 

thesis, see Section 5.7). 

Response: WARNING: The uploaded training data contains less than 300 individuals total. This may 

result in subsequent models not representing the true differences between the populations of interest. 

Additionally, resulting confidence intervals and the posterior probability will be affected. Consider 

increasing the sample size AND/OR lowering the desired level of confidence. 

Trigger: If the number of available SNPs for the unknown sample in the “Unknown Sample for 

Ancestry Prediction” file is less than ten (Note that this is based on the results found in this thesis, 

see Section 5.6). 

Response: WARNING: The number of available SNPs for the unknown sample is less than 10. These 

remaining SNPs may not provide the necessary discrimination for accurate ancestry prediction or 
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may result in informative models. Consider using a DNA panel with additional SNPs or lowering the 

threshold for model acceptance so more SNPs are utilised. 

Trigger: The outputted number of successful models used in the analysis is less than three. 

Response: WARNING: The number of models used to generate the ancestry prediction statements is 

less than three. These models may not provide adequate discrimination, or this may be the result of a 

small number of highly discriminating SNPs. Consider lowering the threshold for model acceptance. 

6.1.4 Supplementary Download File 

After the analysis is complete, the user has access to a download action button which will provide a 

supplementary comma separated values (.csv) file. This output contains the original unknown sample 

data uploaded in the “Unknown Sample for Ancestry Prediction” file, with the addition of multiple 

estimates. Those that are pertinent to the user are:  

• “Pr_AUS” = GMAMP; 

• “Lower_GM_CI” = Lower Confidence Interval for the GMAMP;  

• “Upper_GM_CI” = Upper Confidence Interval for the GMAMP; 

• “Post_PrAUS” = Posterior Probability of Australian Ancestry; 

• “lower.Post_PrAUS” = Lower Confidence Interval for the Posterior Probability of Australian 

Ancestry; 

• “upper.Post_PrAUS” = Upper Confidence Interval for the Posterior Probability of Australian 

Ancestry. 

Note that these outputs will be renamed prior to DNA-MAP becoming publicly available to be 

relevant to the user’s situation. 

6.1.5 Optional User Manual 

An important aspect of DNA-MAP is that it provides a user-friendly option to statistical prediction 

of BGA without the user requiring the necessary background in statistics or programming. However, 

there is still a minimum level of understanding that the user should have to ensure the software is 

being used correctly. DNA-MAP’s GUI will provide brief statements for user inputs, phase 

transitions through DNA-MAP’s process, outputs and any assumptions made during the modelling. 

These statements will allow the user to have a basic understanding to ensure proper application and 

interpretation. Beyond these statements, an optional user manual will be available for download upon 

DNA-MAP’s official public access release that will go into greater detail of the software’s operations. 

While the user manual will be available for download from DNA-MAP’s front-end, it is 
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acknowledged that the greater level of detail will not be understood by all users, and rather, may 

serve to overwhelm certain users. Instead, it is provided as a secondary level of information for those 

who wish to learn more about DNA-MAP’s processes. 

6.1.6 Applicability to Other Populations 

In its current format, DNA-MAP can perform the analysis on any two given populations. However, 

the majority of the outputted reports and estimates are written using the term “Australian soldier” to 

reflect the case study used to develop this prototype. If the user wished to utilise DNA-MAP for a 

case study outside of the UWC-A framework on which this prototype has been built, the following 

steps can be taken: 

1. In the “Training Data Containing Samples Collected from the Populations of Interest” file, 

have the two populations still represented as “AUS” or “JPT”.  

2. Set the primary population that the user wishes to have ancestry prediction statements related 

to, as the “AUS” sample.  

6.2 Future Changes to DNA-MAP 

The following list contains a list of future directions/changes that will be made to DNA-MAP before 

being made publicly available” to improve its efficiency, user friendliness, and reduce the occurrence 

of computational errors. 

Suggested Changes: 

• An additional output which provides the user with a list of the inputs they have selected, that 

is, “The user selected a desired confidence interval level of x, a number of y iterations of 10-

fold cross-validation…”. 

• If the user’s inputted “Training Data Containing Samples Collected from the Populations of 

Interest” file does not contain any columns with the string name value “POP”, DNA-MAP 

will opt to rename the last column on the population data file to this value, to ensure an 

outcome column is available. A warning prompt will be given to the user if this replacement 

occurs. 

• Removing the “Name of Downloadable Supplementary File” input and having DNA-MAP 

instead name the output file to match the “Unknown Sample for Ancestry Prediction” file 

name with the addition of “…results”. 

• The inclusion of a progress bar, so that the user can determine the remaining run time for the 

analysis. 
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• The removal of unnecessary output estimates from the downloadable .csv supplementary file 

to avoid overwhelming the user. 

• Rewrite DNA-MAP’s coding to allow the user to nominate the populations they wish to 

utilise, removing the necessity to use the “AUS” and “JPT” population tags. 

o In addition, this change will allow DNA-MAP to provide better personalised 

statements. 

• Inclusion of additional warnings and suggestions to the user based on evolutionary 

prototyping. 

• Currently, when DNA-MAP’s algorithm errors out, the Shiny server will crash, prompting 

the user to reload the server. This will later be changed to instead prompt the user with a 

personalised error message directing the user to which aspect of the analysis failed. 

• Hide the “Download” action button until after the user has performed a successful analysis. 

• The addition of various “data-cleansing” functions to reduce the possibility of clerical errors, 

these include. 

• Provide an optional output to the user of a “power ranking” table of all SNPs provided. The 

table would rank all SNPs based on various informatic values commonly used in forensics 

such as δ and FST. Additionally, it would provide a binary response for whether a SNP was 

included or excluded in the pLMT models.  

• Provide a calculator for the user to input the ratio of their given populations to estimate the 

prior probability. 

Noted Bugs as of 04/02/2021 

As with the future changes, below is a list of bugs that the creator is aware of and is currently fixing 

to improve DNA-MAP’s efficiency.  

• DNA-MAP has been observed to crash if the user sets both the “Max Number of pLMT Models 

Before Algorithm Stops” and “Number of 10-fold Cross-Validation Iterations per Model” 

inputs to one. 

• The “Download” action button, when pressed prior to a successful analysis being performed, 

will instead download the Shiny page as a HTML file. 

Appendix 11 documents the proposed structure of DNA-MAP’s operational manual which will be 

subsequently released. 
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Chapter 7 – Discussion & Conclusion 

7.1 Discussion 

Accurate prediction of BGA has numerous real-world applications within the forensic science 

discipline such as corroboration of eyewitness accounts (Phillips, 2015), counterterrorism (Phillips 

et al., 2009), missing persons, Disaster Victim Identification (DVI), and criminal cases. However, 

BGA prediction is a complex process that requires multiple biological and statistical considerations. 

This thesis focuses on the statistical aspect of the process. To assign an individual to a population of 

origin based on an inferential process using evidence requires a decision-making framework. In this 

thesis, the case was developed that a KBDSS is one approach that could be utilised to support the 

decision-making process for inferring BGA. The developed KBDSS, named DNA-MAP, would 

collectively analyse and combine all pertinent information provided by the user regarding an 

unknown person’s possible ancestry and output a concise BGA prediction report. The creation of 

DNA-MAP consisted of addressing two primary aspects: (i) the KBDSS itself, including what factors 

needed to be considered when creating a decision-support system (inputs and outputs), and (ii) the 

methodology used to predict BGA, involving the statistical aspects of the process which are required 

to ensure accurate inference. The following sections are structured as follows: a discussion regarding 

the KBDSS aspect of DNA-MAP, followed by the BGA prediction methods utilised and their various 

statistical aspects including assumptions and limitations, and finally conclusions drawn from this 

research. 

7.1.1 Developing DNA-MAP 

A review of published KBDSSs identified that although each system is addressing a unique problem, 

there are a number of “aspects” which were common in all cases. During the conceptualisation of 

DNA-MAP, two criteria were considered: (i) the general structure of a KBDSS along with the factors 

that should be considered during its construction and evaluation, and (ii) what additional 

factors/considerations would be required for a KBDSS specific for BGA prediction, to accommodate 

possible additional needs of forensic scientists. To address the former, a literature review was 

performed on KBDSSs from various disciplines, with four systems being selected from the literature 

for a detailed examination. Outlined below are the key concepts for a KBDSS which were identified 

in the literature, together with the approaches taken to develop them in DNA-MAP: 

(i) Acknowledgement of an Issue. There must first be a need to address a pressing problem/issue in 

the discipline which has not yet been otherwise appropriately addressed at the time of the KBDSS’s 

development. For example: (i) ineffective safety measures on oil and gas drilling sites – resulting in 
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serious injuries or death (Asad et al., 2019a), (ii) inefficient state of dairy farm conditions for milk 

production – resulting in a loss of profits due to less milk production than what could optimally be 

achieved (Kerr et al., 1999a, 1999b), and (iii) determining a suitable material for a pressure vessel – 

resulting in poor selection which could require material replacement (earlier than necessary) or risk 

of malfunction leading to workforce accidents (Yurdakul et al., 2020). In this thesis, the complex 

issue is inferring BGA for a set of unidentified remains obtained from a battlefield for UWC-A 

casework, with the repercussions being a soldier’s remains being given to the wrong country, for 

example, an Australian soldier being sent to a Japanese War Cemetery.  

(ii) An Extensive Knowledge Base. As the name implies a KBDSS’s foundation is an extensive 

underlying knowledge base which the system uses during modelling. The knowledge base should 

define the issue that the KBDSS was designed for, and ultimately, allow comparisons and 

recommendations to the user (Mysiak et al., 2005). For example, in Kerr et al. (1999a)’s DAIRYPRO, 

the objective of the KBDSS was to inform the user where improvements could be made to dairy farm 

conditions to increase the average milk production to an optimal level. This optimal level was defined 

based on lengthy interviews with dairy farm experts with many years’ experience in the field; it 

detailed the optimal conditions that a dairy farmer should adhere to in order to achieve maximum 

milk production. A KBDSS’s knowledge base acts as a comparative tool, which the system treats as 

an optimal environment and to which comparisons can be made by the user’s inputted values with 

suggestions. For DNA-MAP’s equivalent, this knowledge base is the default settings (predefined in 

the R Shiny application and described in the user manual) that have been set by the experts (forensic 

scientist and statistician). These predefined settings allow a new user to operate the KBDSS without 

the need for investigative analyses themselves, however, they may wish to do so separately to inform 

their own knowledge as to what settings are suitable for their case.  

(iii) Consultation with Experts and End Users in the Discipline.  

The creation of DNA-MAP was a multidisciplinary project that expanded beyond the forensic science 

literature. Ultimately, the development included the use of statistics, machine learning, forensic 

biology and knowledge incorporated from other disciplines such as ecology, all with respect to the 

topic of classifying an unknown sample between two populations of interest. While the initial 

development stages of DNA-MAP were completed through a statistical modelling perspective, the 

final product could not have been readily achieved without consultation and input from the 

disciplinary expert. As stated by Kerr et al. (1999a), having an expert from the discipline involved in 

the KBDSS’s construction can greatly improve the applicability of the system for users. For DNA-
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MAP’s construction, a forensic biologist with experience in ancestry analysis of unidentified remains 

(obtained during their work with historical military remains, missing persons and DVI units) was part 

of the supervisory team and had continuous input in the project development. During the early stages 

of DNA-MAP’s development the expert was able to clearly define what inputs would be required in 

a typical BGA prediction setting; indicating that the historic information input may be necessary in 

certain cases. When DNA-MAP’s development reached the stage of statistical modelling, the expert 

was able to provide the necessary information to ensure that any incorporated methodology adhered 

to current forensic science standards. 

Originally, it was planned to consult end users (UWC-A members) during the final stages of DNA-

MAP’s development, so that evolutionary prototyping could occur, a common process during 

KBDSS development (Kerr et al., 1999a). In KBDSSs where evolutionary prototyping takes place, 

this consultation is performed to address questions that may arise during development, and to identify 

where clarification is required for given inputs or outputs. While direct evolutionary prototyping did 

not occur between the UWC-A due to time limitations, DNA-MAP and its research was presented at 

multiple international forensic and statistical conferences. From these presentations, multiple 

discussions occurred with other scientists and statisticians who were able to provide different insights 

and suggestions which were either incorporated into DNA-MAP’s development or taken into 

consideration. 

7.1.2 Influencing Factors of BGA Prediction 

Cheung et al. (2017) described accurate BGA prediction as relying on three factors: (i) the selected 

SNPs used in the panel, (ii) the training data from the populations of interest, and (iii) the employed 

classifier. Based on an examination of previous BGA prediction studies from the literature, additional 

factors were identified in this thesis, which can affect the accuracy of results. The extended list of 

factors is provided below with their respective discussion. 

Admixture. Admixture, in the context of genetic ancestry, can be defined as the combination of 

multiple divergent genetic lineages into a single gene flow as a result of geographic contact and 

interbreeding (Rius and Darling, 2014). The persistence of admixture in modern-day populations is 

a well-known issue that is prevalent during BGA prediction (Cheung et al., 2018a, 2018b; Phillips et 

al., 2014; Phillips, 2015). In current research, interest lies beyond simple classification of individuals 

into a single population, but rather to infer an individual’s membership proportions to two or more 

populations. However, accurate estimation of an individual’s admixture is extremely difficult and 

requires large samples from multiple populations to adequately train the utilised classifier. To 
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demonstrate with an example, consider an individual whose BGA membership proportions are 

estimated to be 50% Greek and 50% Romanian. Based on this, the ancestry of this individual could 

be inferred to be: 

1) The individual has one parent from Greece and one parent from Romania; 

2) The individual is from a country that is a mixture of these two populations; 

3) The individual is from an entirely different country that was not sampled in the training data. 

Base on genetic data alone, the above alternatives cannot be distinguished. Any difference between 

them is based on personal identity, namely, which population the individual declares as their origin. 

While it is relatively easy to select a group of biological markers to discriminate between two very 

different populations like Australian and Japanese, distinguishing between two populations with 

more similar genetic backgrounds would be much more complex. The historic background of two 

populations is another factor which can introduce ambiguity to the admixture issue. Two populations, 

which may consider themselves as two distinct populations based on differences such as creed or 

linguistics, may in fact be difficult to distinguish between on a genetic level.  

Parsimony. The aim of incorporating a parsimonious model into DNA-MAP was to create an 

adaptive classification scheme which could find and determine the least number of markers needed 

to achieve the greatest discrimination. From a statistical perspective, the benefit of utilising 

parsimony is the reduction of noise (Crawley, 2012). In terms of a biological perspective, parsimony 

also has several benefits with respect to panel creation. When creating a SNP panel for ancestry 

analysis, the inclusion of each marker has an additional cost. A parsimonious approach to panel 

development can be considered cost effective, where, given the user’s possibly limited resources, 

only the markers which will contribute to maximising the discrimination power. By drawing on 

information theory, DNA marker panels can be developed to only utilise the “best” (highest 

discrimination power either alone or in conjunction with other markers) markers (Rosenberg et al., 

2003; Tal and Tran, 2018) 

Models were only accepted by the pLMT algorithm if the classification accuracy was equal to or 

higher than the user’s nominated threshold, the default value for this being set as 0.99. The model 

undergoes multiple repetitions of 10-fold cross-validation, where the average classification accuracy 

of these iterations is tested against the threshold, to get robust results (Landwehr et al., 2005). In the 

initial phases of the statistical development when multiple iterations of the cross validation were not 

implemented it was noticed that the same model fitted to the same data would result in a different 

number of models reaching the threshold for acceptance. This discrepancy was due to minor variation 
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in the accuracies obtained from the ten-fold cross-validation between runs generating the same 

models, despite the same datasets being used. Following the implementation of  multiple iterations 

of cross-validation, and averaging the accuracy for all runs, the same number of models was 

generated each time. The benefit of this application is improving the method’s robustness and 

ensuring that the same datasets can be analysed a number of times and result in the same number of 

models for each run (Landwehr et al., 2005). However, it should be noted that the number of specified 

iterations of cross-validation directly increases the computational time of the pLMT algorithm. 

During development, the following number of 10-fold cross-validation iterations were tested on the 

40 SNP panel, 1, 10 and 100, which resulted in run-times of approximately less than one minute, two 

– three minutes, and twenty minutes, respectively.  

Classifiers. Examining the BGA prediction literature provided several classifiers which had 

previously been tested and compared for their efficiency at inferring ancestry (such as Cheung et al. 

(2017, 2018a), McNevin et al. (2013) and Phillips (2015)). It was decided that these previous 

classifiers (STRUCTURE, Generic Bayesian, GDA, and MLR, see Cheung et al. (2017)) were not 

suitable for integration into DNA-MAP’s system due to factors discussed in Cheung et al. (2017) 

such as extensive run times (STRUCTURE), relatively weaker performance (GDA and MLR), made 

use of assumptions which may not be true in a realistic scenario (Generic Bayesian and 

STRUCTURE), or make it difficult for the average user to determine which SNPs and what model 

have been utilised by the classifier (STRUCTURE), see Section 3.2.3. A new classifier was 

implemented for DNA-MAP’s primary analysis, the LMT, which was ultimately adjusted to 

incorporate parsimonious modelling, resulting in the pLMT algorithm. To determine how effective 

the pLMT approach was, the Generic Bayesian and STRUCTURE classifiers were also utilised in 

subsequent analyses so that comparisons between the two could be made.  

Comparing the three classifiers on complete panel profiles showed that for all three methods, no 

direct errors were observed. To compare this result to what has been previously observed in the 

literature, the “0% Genotypes Missing” section of Table 1 from Cheung et al. (2017, p.905) is used. 

For complete profiles, Cheung et al. (2017) observed their Generic Bayesian classifier and 

STRUCTURE to have a perfect 100% accuracy, based on AUROC curves. The comparable metric 

of the three classifiers (pLMT, GB and STRUCTURE) tested in this thesis, is the percentage of 

individuals with all Australian ancestors (Simulation Group 2, Scenario 1) classified as Australian. 

Compared to Cheung et al. (2017)’s result of 100% accuracy for STRUCTURE and the GB 

classifiers, the results in this thesis show an accuracy of 99.5% (pLMT), 100% (GB) and 100% 

(STRUCTURE), depicting the same outcome as observed in Cheung et al. (2017). 
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It is possible in real-world cases of BGA prediction for historical military remains that a full panel 

profile will not be obtained; markers may be missing due to degradation. It is imperative, therefore, 

that the classifier utilised by DNA-MAP can still readily infer ancestry for remains with incomplete 

panel profiles. To represent degraded samples, a second independent sample of WWII era Australians 

(n = 75) with varying degrees of missing data was utilised. For the 75 individuals, 100% were 

categorised as Australian using both the pLMT classifier and STRUCTURE, while only ≈53% (40 

individuals) were categorised as Australian with the Generic Bayesian classifier, the remaining 35 

individuals being classed as ambiguous. This degradation experiment demonstrates that 

STRUCTURE and the pLMT are still able to infer ancestry accurately even for heavily degraded 

samples, while the Generic Bayesian classifier was limited.  However, the Cheung et al. (2017, Table 

1, p.905) study, which also tested the Generic Bayesian’s accuracy on degraded samples, observed 

the classifier to still retain a perfect 100% accuracy for samples with 90% SNPs removed (14 out of 

142 remaining). The difference in results between the results of this thesis and Cheung et al. (2017) 

could potentially be due to two factors: 

1. Panel Difference: The ability to classify degraded DNA samples relies on which markers are 

remaining, if markers with a high discrimination power remain, classification may still be 

possible with missing data. Therefore, Cheung et al. (2017)’s utilised 142 SNP panel may 

have contained a higher number of highly discriminative SNPs as opposed to the 40 SNP 

GPSP utilised in this research; 

2. Strictness of Classification: For the degradation experiment performed in this thesis, degraded 

individuals were classified based on thresholds previously established on individuals with 

complete DNA panel profiles. It is possible that the Generic Bayesian’s ability to classify 

degraded remains may have increased if different thresholds were used. However, 

establishing classification thresholds on a case-by-case basis dependent on which SNPs are 

available is a time-consuming process, and risks incorrect assignment due to fulfilling 

expected outcomes (confirmation bias).   

Note that another similarity observed in this research is the minimum number of SNPs utilised in the 

SNP removal experiment performed in both this thesis and in Cheung et al. (2017)’s study. The results 

of both experiments determined that the study’s highest-accuracy classifier, this theses’ pLMT and 

Cheung et al. (2017)’s STRUCTURE, achieved high accuracy with as few as 10 SNPs. 
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Sample Size and Rare Event. 

Sample size is critical for the efficiency of DNA-MAP, as is the case with any statistical modelling, 

and there are two instances where sample size has a direct effect on DNA-MAP’s output. These are: 

1) Development of models; 

The series of pLMT models are generated based on training data that the user has uploaded. Models, 

and the SNPs incorporated into these models, are selected based on an algorithm (C4.5, refer Section 

3.2.3) which measures the interactions between a set of one or more SNPs and determines those 

which are significantly informative in the process of separating the two known population groups 

(thus allowing classification to occur). Relative genotype frequencies obtained from a small sample 

size may not accurately reflect the true population (Chakraborty, 1992), which may lead to models 

being included or excluded when the opposite action may have been taken had the user provided a 

larger sample size. 

2) Estimation of confidence intervals; 

To estimate confidence intervals to the resulting probabilities, both the GMAMP of the probability 

of Australian BGA and the posterior probability of Australian BGA, the Delta method was used. 

Sample size is incorporated into the Delta method by decreasing (larger sample size) or increasing 

(lower sample size) the width of the confidence interval. The benefit of tighter confidence intervals 

is that it provides greater reassurance to the user that the applied intervals do in fact cover the true 

value (Brown et al., 2001). 

Prior Probability. 

As discussed by Budowle et al. (2011), estimating a value for the prior odds can be a complex process 

where multiple variables to be considered. Ultimately, the value selected by the user should be 

determined with reasonable justification. When using DNA-MAP, the user can incorporate their 

selected prior odds into the analysis, by combining the prior odds with a likelihood ratio of 

conditional probabilities to output a posterior probability of population membership (as per a 

“normal” Bayesian approach). Incorporating the prior probability through ECDF curves provided an 

intuitive method for calculating the posterior probability, which ensures the effect of the sample size 

is taken into account through the use of rare events (See Equation 4.8).  
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As expected, and confirmed through a sensitivity analysis, both the prior odds ratio and the sample 

size, had a dramatic effect on the resulting posterior probability of population membership. This is 

similar to what has been previously reported in the forensic literature. For example, Budowle et al. 

(2011) performed a sensitivity analysis of the posterior probability, in the context of missing persons, 

varying the above two factors, namely the prior odds and the sample size of the data in hand arriving 

at a similar conclusion as in this thesis.  

7.2 Advantages of DNA-MAP 

DNA-MAP provides the first KBDSS designed for informative ancestry prediction in the form of a 

user-friendly tool. The user interface at the inputs phase at the beginning of DNA-MAP’s process 

allows the user to customise various measures to a certain degree based on their particular case 

scenario, without being involved in subsequent statistical analytical steps. This user-friendly front-

end ensures that the tool is accessible to more users and does not require advanced knowledge of 

statistics or computer programming. Numerical inputs, such as thresholds and desired confidence 

level, have placeholder values to ensure that users can opt for the default classification settings in 

situations where knowledge regarding the optimal values for a given case are unknown. These default 

settings are based on the experimentation for the differentiation of the Australian and Japanese 

populations utilised in this thesis. However, the user is always encouraged to use informed choices 

for their dataset and to perform sensitivity analyses by using different input values to assess the 

robustness of the output. For example, of such analyses, see Chapter 5. In its current state, DNA-

MAP is able to accommodate any marker panel available and is not specific to the markers used in 

the GPSP. 

DNA-MAP, and its utilised pLMT algorithm, presents several new features of a BGA prediction tool 

that have not been previously demonstrated in the literature. The removal of SNPs in the relative 

population datasets based on which SNPs are missing for the unknown sample is an approach not 

readily performed by other BGA classifiers, rather, the user must perform this task beforehand. This 

removal process ensures that the unknown sample is the driving force of the classification system 

and that subsequent models are derived based on the available DNA from the unknown individual, 

as opposed to a generic model based on DNA present in the training datasets. Additionally, the 

proposed methodology for incorporating prior information allows DNA-MAP to provide the user 

with an outputted probability of predicted ancestry which is based on information obtained from (i) 

genetic information (the DNA panel using information theory), (ii) historic knowledge (prior odds 

ratio using Bayes' theorem) and (iii) sample size and the possibility of rare events. While other tools 

do incorporate some of these features, such as STRUCTURE’s ability to incorporate a prior, DNA-



135 

 

MAP is the first tool to combine all these features within the one software. Finally, DNA-MAP 

provides the reported probabilities of ancestry in simple statements for the user, unlike other tools 

such as STRUCTURE which only provide values which the user must then interpret themselves. 

7.3 Future Directions 

A number of future directions have been identified throughout this research and these are briefly 

outlined below. 

1. Forensic Standard Validations 

The scope of DNA-MAP’s development in this thesis did not include validation to the level of 

forensic standards, namely, ensuring the software is consistent with guidelines such as ISO17025. 

Therefore, a future direction identified is to carry out testing to ensure the software and methods meet 

the standards of the forensic science community. 

2. Alternative Pooling Methods 

Utilising the pLMT classifier resulted in multiple independent estimates of the same measure, the 

probability of Australian ancestry given the respective model. To ensure reports were user friendly, 

these multiple estimates were pooled together into a single value using the geometric mean as a 

method of averaging (Manikandan, 2011). The benefits of using the geometric mean are that the 

method is simple, easily performed and is minimally affected by outliers. However, there is merit in 

having a pooling method which incorporates some form of weighting based on information theory 

(Shannon, 1948, Rosenberg et al., 2003). For example, combining multiple estimates which are all 

indicative of the same population should ideally increase the likelihood that the overall result should 

be the suggested population, regardless of any averaging process. This ideal stems from the 

information theory’s philosophy of how many sections of the message are required before the full 

message becomes apparent. While other pooling methods were considered during this research, at 

this stage, only the geometric mean will be available during DNA-MAP’s early stages. A future 

direction would be to investigate further pooling methods to determine which, if any, are appropriate 

for DNA-MAP to improve the overall discrimination power and reduce the number of Ambiguous 

classifications. 

3. Expand to Encompass More Than Two Populations  

Expanding DNA-MAP to perform ancestry prediction using more than two populations of interest 

will allow the application to have greater utility in forensic casework, such as the other possible 

applications suggested in Section 7.2. This expansion may allow DNA-MAP to be an alternative 
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classifier to STRUCTURE for more complex cases with several populations. However, to incorporate 

a multinomial classification scheme into DNA-MAP, an alternative algorithm may be used in place 

of the pLMT. For example, the R package “RWeka” (Hornik et al., 2009) through which the original 

LMT algorithm was obtained, provides a list of various machine-learning classification algorithms, 

some of which may be pertinent for future research. 

4. Inclusion of Other Genetic Markers 

While the research performed in this thesis used solely autosomal SNPs, there are mitochondrial 

DNA and Y-chromosome markers that can also provide information regarding BGA prediction. The 

UWC-A has already performed initial research regarding these other marker types (Barden, 2014; 

Best, 2014; Ghaiyed, 2016; Poulsen, 2015), see Ghaiyed (2020) for a detailed history of the UWC-

A’s use of lineage markers. However, there still may be utility in the future for these markers to be 

incorporated into DNA-MAP’s modelling process. 

7.4 Conclusion  

The primary objective of the research undertaken in this thesis was to create a KBDSS that could 

assist investigators to predict BGA for unknown individuals. A case study involving historical 

military remains was used as proof of concept. The role of the software is to act as an information 

hub, where the user can upload data, which are analysed through several statistical analyses hidden 

behind a user-friendly interface. While BGA prediction is the prime directive of DNA-MAP, the 

software has the additional benefit of providing the user with various suggestions related to casework 

figures to inform the user where further resources can be directed to increase the rate of classifiable 

remains. For example, as shown in Chapter 5, the ability to confidently assign BGA to a set of remains 

becomes increasingly difficult where extremely low prior odd ratios (less than 0.1) is used. Through 

sensitivity testing in the form of “what-if” scenarios, the user can prioritise areas where it is expected 

that the prior odds ratio will have a smaller effect on the resulting GMAMP. By utilising a profile 

known to belong to an individual who originated from the smaller size population, the user can 

analyse the sample under question under multiple prior odd values to determine “if” these were 

realistic prior odd ratios, “what” would be the estimated posterior probability? 

In addition to creating a KBDSS, a comparison of three classifiers was performed: the Generic 

Bayesian, which has been previously utilised in the forensic discipline, STRUCTURE, a commonly 

utilised program for BGA prediction, and the Parsimonious Logistic Model Tree, a classifier that was 

adapted in this thesis as a potential BGA predictor. It was found that while the three classifiers 

performed similarly in their ability to correctly infer ancestry for individuals with a complete panel 
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profile, the Generic Bayesian’s ability to correctly classify a sample was reduced for degraded 

samples. As missing data are expected in forensic casework, a classifier which can readily predict 

ancestry for individuals who may not have all SNPs available is highly desired. While DNA-MAP 

has only been utilised on a single case study (the UWC-A’s investigations in the South-East Asia 

Pacific), it is expected that in the future it will be tested on other databases and expand the software 

to be applied in other casework and be developed beyond the binary-approach. 

DNA-MAP introduces to the field of BGA prediction several key functions which are either not 

currently present or are not readily available within a single tool. These include: (i) the unknown 

sample  driving the classification model, (ii) the incorporation of prior information to estimate a 

posterior probability, (iii) accounting for the possibility of a rare event occurring, (iv) a parsimonious 

selection method for utilising only the most informative SNPs, (v) accounting for sampling error and 

its propagation across a function, (vi) stylised report generations with several informed feedback 

prompts to the user. All these functions are contained within a single user-friendly tool which does 

not require any training, has minimal file formatting and provides a clear statement of BGA with its 

associated margin of error. The outcome of this thesis is expected to be both the basis for future work 

as outlined above and provide forensic scientists with the support they need in ancestral decision 

making.  
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Appendix 

 

A.1 Allele Frequencies 

 rs1426654 rs9809818 rs28777 rs12913832 rs4683510 rs820371 rs4749305 rs6494411 

Allele A A A A C C A C 

AUS 1 0.9279 0.9252 0.1961 0.8925 0.7381 0.8411 0.1085 

JPT 0.0048 0.0625 0.1635 1 0.0913 0.0385 0.0288 0.9183 

Allele G C C G T T G T 

AUS 0 0.0721 0.0748 0.8039 0.1075 0.2619 0.1589 0.8915 

JPT 0.9952 0.9375 0.8365 0 0.9087 0.9615 0.9712 0.0817 

 rs7997709 rs1448485 rs730570 rs1876482 rs722869 rs1250233 rs9286879 rs2196051 

Allele C G A A C A A A 

AUS 0.028 0.8878 0.8774 0.0787 0.8785 0.217 0.7684 0.6989 

JPT 0.8077 0.1058 0.101 0.7981 0.1971 0.9663 0.0288 0 

Allele T T G G G G G G 

AUS 0.972 0.1122 0.1226 0.9213 0.1215 0.783 0.2316 0.3011 

JPT 0.1923 0.8942 0.899 0.2019 0.8029 0.0337 0.9712 1 

 rs6754311 rs10455681 rs1366220 rs3811801 rs10496971 rs2758988 rs9319336 rs192655 

Allele C A A A G A C A 

AUS 0.2731 0.8524 0.215 0 0.0566 0.1963 0.0514 0.8785 

JPT 1 0.1346 0.9471 0.7019 0.7788 0.899 0.7163 0.2548 

Allele T G G G T T T G 

AUS 0.7269 0.1476 0.785 1 0.9434 0.8037 0.9486 0.1215 

JPT 0 0.8654 0.0529 0.2981 0.2212 0.101 0.2837 0.7452 

 rs984654 rs11725412 rs4918664 rs4463276 rs683 rs4787040 rs4781011 rs1471939 

Allele C A A A A A G C 

AUS 0.2067 0.081 0.8935 0.2576 0.7423 0.3287 0.7664 0.225 

JPT 0.899 0.7163 0.2163 0.8942 0 0.9038 0.1538 0.7788 

Allele T G G G C T T T 

AUS 0.7933 0.919 0.1065 0.7424 0.2577 0.6713 0.2336 0.775 

JPT 0.101 0.2837 0.7837 0.1058 1 0.0962 0.8462 0.2212 

 rs1950993 rs4984913 rs4833103 rs3907047 rs2357442 rs1393350 rs12203592 rs4959270 

Allele G A A C A A C C 

AUS 0.6731 0.7689 0.4811 0.0602 0.9 0.3095 0.8056 0.5142 

JPT 0.101 0.2019 0 0.5817 0.3173 0 1 0.6058 

Allele T G C T C G T C 

AUS 0.3269 0.2311 0.5189 0.9398 0.1 0.6905 0.1944 0.4858 

JPT 0.899 0.7981 1 0.4183 0.6827 1 0 0.3942 
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A.2 Genotype Frequencies 

 Genotype AUS JPT Genotype AUS JPT Genotype AUS JPT 

rs1426654 AA 1 0 AG 0 0.0096 GG 0 0.9904 

rs9809818 AA 0.8654 0 AC 0.125 0.125 CC 0.0096 0.875 

rs28777 AA 0.8598 0.0288 AC 0.1308 0.2692 CC 0.0093 0.7019 

rs12913832 AA 0.0588 1 AG 0.2745 0 GG 0.6667 0 

rs4683510 CC 0.8037 0 CT 0.1776 0.1827 TT 0.0187 0.8173 

rs820371 CC 0.5524 0 CT 0.3714 0.0769 TT 0.0762 0.9231 

rs4749305 AA 0.7009 0 AG 0.2804 0.0577 GG 0.0187 0.9423 

rs6494411 CC 0.0094 0.8365 CT 0.1981 0.1635 TT 0.7925 0 

rs7997709 CC 0 0.6827 CT 0.0561 0.25 TT 0.9439 0.0673 

rs1448485 GG 0.7857 0.0288 GT 0.2041 0.1538 TT 0.0102 0.8173 

rs730570 AA 0.783 0.0192 AG 0.1887 0.1635 GG 0.0283 0.8173 

rs1876482 AA 0 0.6635 AG 0.1574 0.2692 GG 0.8426 0.0673 

rs722869 CC 0.757 0.0481 CG 0.243 0.2981 GG 0 0.6538 

rs1250233 AA 0.0755 0.9423 AG 0.283 0.0481 GG 0.6415 0.0096 

rs9286879 AA 0.6 0 AG 0.3368 0.0577 GG 0.0632 0.9423 

rs2196051 AA 0.4946 0 AG 0.4086 0 GG 0.0968 1 

rs6754311 CC 0.1111 1 CT 0.3241 0 TT 0.5648 0 

rs10455681 AA 0.7143 0.0096 AG 0.2762 0.25 GG 0.0095 0.7404 

rs1366220 AA 0.0187 0.9038 AG 0.3925 0.0865 GG 0.5888 0.0096 

rs3811801 AA 0 0.5821 AG 0 0.3731 GG 1 0.0448 

rs10496971 GG 0 0.5962 GT 0.1132 0.3654 TT 0.8868 0.0385 

rs2758988 AA 0.028 0.8077 AT 0.3364 0.1827 TT 0.6355 0.0096 

rs9319336 CC 0 0.5096 CT 0.1028 0.4135 TT 0.8972 0.0769 

rs192655 AA 0.757 0.0769 AG 0.243 0.3558 GG 0 0.5673 

rs984654 CC 0.0673 0.8077 CT 0.2788 0.1827 TT 0.6538 0.0096 

rs11725412 AA 0 0.6418 AC 0.1619 0.2761 GG 0.8381 0.0821 

rs4918664 AA 0.7963 0.0481 AC 0.1944 0.3365 GG 0.0093 0.6154 

rs4463276 AA 0.0909 0.8077 AC 0.3333 0.1731 GG 0.5758 0.0192 

rs683 AA 0.5773 0 AC 0.3299 0 CC 0.0928 1 

rs4787040 AA 0.0741 0.8077 AT 0.5093 0.1923 TT 0.4167 0 

rs4781011 GG 0.5607 0.0288 GT 0.4112 0.25 TT 0.028 0.7212 

rs1471939 CC 0.08 0.6058 CT 0.29 0.3462 TT 0.63 0.0481 

rs1950993 GG 0.4423 0 GT 0.4615 0.2019 TT 0.0962 0.7981 

rs4984913 AA 0.6132 0.0385 AG 0.3113 0.3269 GG 0.0755 0.6346 

rs4833103 AA 0.1792 0 AC 0.6038 0 CC 0.217 1 

rs3907047 CC 0 0.3462 CT 0.1204 0.4712 TT 0.8796 0.1827 

rs2357442 AA 0.8 0.1058 AC 0.2 0.4231 CC 0 0.4712 

rs1393350 AA 0.0571 0 AG 0.5048 0 GG 0.4381 1 

rs12203592 CC 0.6759 1 CT 0.2593 0 TT 0.0648 0 

rs4959270 CC 0.2642 0.1442 AC 0.5 0.5 CC 0.2358 0.3558 
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A.3 Files for SimAdmixtR 

1) Allele frequencies data file – a spreadsheet with the allele frequencies of each SNP for each of the 

two populations (example of 3 SNPs given in Table A.1);  

Table A.1: Allele Frequency Data File 

Example of allele frequency data required for the “Admixture Tool”, detailing the SNP’s ID, alleles present, and the 

allele frequency in both populations for the allele that occurs first based on lexicographic order. 

SNP ID Alleles AUS JPT 

rs1426654 A/G 1 0.0048 

rs9809818 A/C 0.9279 0.0625 

rs28777 A/C 0.9252 0.1635 

 

2) Simulation details – the nominated base-generation (great-grandparents) to describe the intended 

admixture to be simulated and the number of simulations required, that is, the number of individuals 

to be independently simulated based on the specified base-generation (Figure A.1); 

 

 
Figure A.1: Nominated Simulation Details File 

An example of the admixed pedigree to be simulated by describing the base-generation where 1 = Australian and 2 = 

Japanese. The string 11111112 is a pedigree of 7 Australian great-grandparents and one Japanese great-grandparent, 

giving the soldier 1/8th Japanese ancestry. Ten individuals have been requested to be simulated independently with using 

the nominated base-generation string. For the scenarios used in this thesis (Table 4.3) the number of simulations was set 

to 10000. 

 

3) Example STRUCTURE Input – In its current state, the Admixture Simulation tool outputs the 

simulated individuals in the format of a file that can readily inputted into STRUCTURE; as such, the 

tool requires an example STRUCTURE file (Figure A.2). 

 
Figure A.2: Formatting File Example 

Each row represents a different individual with their respective Sample ID number described in the SAMPLE column. 

The POP column details which population the sample belongs to, and the successive columns represents the given SNPs 

with each SNP consisting of two sub-columns to detail the two alleles for that given individual. The numbers represent 

the four possible bases (or alleles): where 1 = A, 2 = C, 3 = T, and 4 = G. 

 

If the user does not wish for the outputted file to be in the format of a STRUCTURE file, additional 

steps must be taken by the user to transform the file into the format they desire. For the testing 
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performed in this chapter, input files were needed detailed an individual’s genotype. Therefore, the 

following steps were taken to transform the output file (identical to the input file shown in Figure 

A.2) to the desired format: 

1) The “POP” column is removed; 

2) Alleles are converted from numbers back to their respective letters using the following key: 

1 = A, 2 = C, 3 = T, 4 = G. 

3) The two alleles at a given SNP, shown in Figure 4.6 to be spread across two cells, are 

combined into a single cell to create a genotype. 

4) Genotypes are converted into lexicographic order, ensuring that only the following genotypes 

are present: AA, CC, GG, TT, AC, AG, AT, CG, CT, GT. 

With the files uploaded, the simulation tool then creates the pedigree as follows:  

1) A SNP profile is created for each member of the base-generation by randomly assigning 

two alleles independently for each SNP based on the allele frequencies for that individual’s 

nominated ancestry  

2) After the base-generation has been simulated, the program simulates the offspring in the 

next generation using the laws of Mendelian inheritance (Bateson and Mendel, 1913). One 

allele at each SNP is selected at random with equally likely probabilities, and passed down to 

the offspring, which is then combined with the inherited allele from the offspring’s other 

parent to create the genotype of the offspring.  

3) Step 2 occurs repeatedly until reaching the desired individual at the end of the pedigree, 

whose simulated genetic profile is then outputted by the Admixture Simulation tool.  
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A.4 Parsimonious Logistic Model Tree for the GPSP 

 

Classification System >> SNPs not used in models: rs6754311, rs4787040, rs2357442, rs1393350, rs12203592, 

rs4959270, 

Total SNPs in panel = 40, Total SNPs used in models = 34. 

Model 1 

Class AUS : 

0.98 +  

[rs1426654GG] * -1.98 

 

Class JPT : 

-0.98 +  

[rs1426654GG] * 1.98 

 

Model 2 

Class AUS : 

1.18 +  

[rs12913832AA] * -1.89 + 

[rs2196051GG] * -1.3 + 

[rs3811801GG] * 1.21 

 

Class JPT : 

-1.18 +  

[rs12913832AA] * 1.89 + 

[rs2196051GG] * 1.3  + 

[rs3811801GG] * -1.21 

 

Model 3 

 

Class AUS : 

2.06 +  

[rs28777AA] * 1.12 + 

[rs820371TT] * -0.94 + 

[rs4749305GG] * -1.85 + 

[rs6494411CC] * -1 + 

[rs9286879GG] * -1.32 + 

[rs10496971TT] * 0.93 + 

[rs683CC] * -1.22 

 

Class JPT : 

-2.06 +  

[rs28777AA] * -1.12 + 

[rs820371TT] * 0.94 + 

[rs4749305GG] * 1.85 + 

[rs6494411CC] * 1    + 

[rs9286879GG] * 1.32 + 

[rs10496971TT] * -0.93 + 

[rs683CC] * 1.22 

Model 4 

 

Class AUS : 

2.23 +  

[rs9809818AA] * 0.89 + 

[rs9809818CC] * -0.98 + 

[rs4683510CC] * 0.91 + 

[rs7997709TT] * 0.95 + 

[rs1448485TT] * -1.27 + 

[rs730570AA] * 1.1  + 

[rs722869GG] * -0.89 + 
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[rs1250233AA] * -0.85 + 

[rs1366220AA] * -1.79 + 

[rs2758988AA] * -0.89 + 

[rs984654CC] * -0.92 + 

[rs4463276AA] * -1.18 + 

[rs4833103CC] * -0.87 + 

[rs3907047TT] * 0.85 

 

Class JPT : 

-2.23 +  

[rs9809818AA] * -0.89 + 

[rs9809818CC] * 0.98 + 

[rs4683510CC] * -0.91 + 

[rs7997709TT] * -0.95 + 

[rs1448485TT] * 1.27 + 

[rs730570AA] * -1.1 + 

[rs722869GG] * 0.89 + 

[rs1250233AA] * 0.85 + 

[rs1366220AA] * 1.79 + 

[rs2758988AA] * 0.89 + 

[rs984654CC] * 0.92 + 

[rs4463276AA] * 1.18 + 

[rs4833103CC] * 0.87 + 

[rs3907047TT] * -0.85 
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Model 5 

 

Class AUS : 

-0.39 +  

[rs1876482GG] * 0.94 + 

[rs10455681AA] * 0.72 + 

[rs10455681GG] * -1.11 + 

[rs9319336TT] * 1.62 + 

[rs192655AA] * 0.91 + 

[rs11725412AA] * -0.79 + 

[rs11725412GG] * 0.83 + 

[rs4918664GG] * -0.95 + 

[rs4781011TT] * -1.22 + 

[rs1471939TT] * 0.79 + 

[rs1950993TT] * -1.24 + 

[rs4984913GG] * -1 

 

Class JPT : 

0.39 +  

[rs1876482GG] * -0.94 + 

[rs10455681AA] * -0.72 + 

[rs10455681GG] * 1.11 + 

[rs9319336TT] * -1.62 + 

[rs192655AA] * -0.91 + 

[rs11725412AA] * 0.79 + 

[rs11725412GG] * -0.83 + 

[rs4918664GG] * 0.95 + 

[rs4781011TT] * 1.22 + 

[rs1471939TT] * -0.79 + 

[rs1950993TT] * 1.24 + 

[rs4984913GG] * 1  
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A.5 Validation of SimAdmixtR 

Expected genotype frequencies were estimated using Mendelian inheritance formulae and observed 

genotype frequencies were calculated by simply recording the genotype’s proportion for a given 

scenario’s output from the Admixture Simulation tool. The accuracy of the Admixture Simulation 

tool was determined by calculating the absolute difference of the expected frequency and the 

observed frequency for each genotype. The following thresholds were established to assess the 

Admixture Simulation tool’s accuracy: (i) an absolute difference of ≥ 0.05 was highlighted as a 

possible error, and (ii) 0.01 ≤ 0.05 was highlighted as a noticeable difference but may simply have 

occurred by chance. Summary statistics for the ten scenarios are shown in Table A.2 where a possible 

error is highlighted in red, bold, italics, and a noticeable difference in yellow, bold. 

Table A.2 is interpreted as follows: 

• The observed genotype frequencies were obtained from the ten admixture scenarios, where 

each scenario contained n = 10,000 observations and simulated once; 

• The absolute difference was calculated for the expected and observed genotype frequencies 

for each of the ten scenarios at each SNP; 

• The minimum, mean, standard deviation, and maximum of the absolute difference was then 

estimated for each SNP across the ten scenarios. 

o For example, SNP rs1426654’s genotype 1 was observed on average to have an 

absolute difference of 0.0013 between the expected and observed genotype 

frequencies across the ten scenarios. 
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Table A.2: Admixture Simulation Tool Verification 

Summary statistics obtained from the absolute difference of expected genotype frequencies and observed genotype frequencies across ten scenarios. Genotypes 1, 2 and 3 

represent the three possible genotypes at each SNP and have been ordered lexicographically at each given SNP, for example rs1426654 has alleles A and G, therefore,  

Genotype 1 = AA, Genotype 2 = AG, and Genotype 3 = GG. 

SNP 

Genotype 1 Genotype 2 Genotype 3 

Minimum Mean 
Standard 

Deviation 
Maximum Minimum Mean 

Standard 

Deviation 
Maximum Minimum Mean 

Standard 

Deviation 
Maximum 

rs1426654 0 0.0013 0.001417 0.004 0 0.00362 0.002324 0.008 0 0.00252 0.002411 0.007 

rs9809818 0 0.00316 0.003259 0.011 0 0.00306 0.002338 0.008 0.0006 0.00192 0.001056 0.004 

rs28777 0 0.00226 0.001632 0.006 0.001 0.00311 0.002258 0.009 0 0.00215 0.001624 0.006 

rs12913832 0 0.0029 0.002108 0.008 0 0.00365 0.003163 0.011 0 0.00195 0.002509 0.008 

rs4683510 0 0.00229 0.002477 0.008 0.001 0.00432 0.002794 0.009 0 0.00203 0.00215 0.008 

rs820371 0 0.00212 0.001954 0.007 0.0009 0.00412 0.002844 0.01 0.0004 0.00368 0.002481 0.009 

rs4749305 0 0.00135 0.001468 0.005 0.0008 0.00484 0.003095 0.011 0 0.00372 0.002954 0.009 

rs6494411 0 0.00205 0.001379 0.005 0 0.00312 0.002642 0.008 0 0.00252 0.002465 0.009 

rs7997709 0.0001 0.00325 0.002726 0.0094 0.0005 0.00562 0.00294 0.009 0 0.00373 0.003071 0.009 

rs1448485 0.0004 0.00451 0.003206 0.012 0 0.0047 0.003232 0.011 0.0006 0.00349 0.002383 0.009 

rs730570 0 0.00309 0.002365 0.0074 0 0.00362 0.00227 0.007 0.001 0.00319 0.00213 0.007 

rs1876482 0 0.00238 0.001659 0.006 0.0005 0.00348 0.003131 0.01 0 0.00357 0.002619 0.01 

rs722869 0 0.00328 0.002668 0.007 0 0.00297 0.002581 0.009 0 0.00231 0.002788 0.009 

rs1250233 0 0.00368 0.002206 0.008 0.001 0.00482 0.002663 0.011 0 0.00213 0.002168 0.008 

rs9286879 0 0.00193 0.001567 0.005 0 0.00361 0.00262 0.008 0.001 0.00327 0.002008 0.008 

rs2196051 0 0.00177 0.002295 0.0077 0 0.00393 0.002005 0.007 0 0.00254 0.002033 0.007 

rs6754311 0 0.00359 0.003232 0.012 0 0.00297 0.002282 0.007 0 0.00166 0.002256 0.006 

rs10455681 0 0.00212 0.001692 0.0061 0 0.00243 0.00232 0.0067 0.0005 0.00252 0.001515 0.006 

rs1366220 0.001 0.00441 0.002253 0.009 0.001 0.00627 0.00358 0.013 0.001 0.00384 0.003276 0.012 

rs3811801 0 0.00099 0.001027 0.003 0 0.00371 0.002252 0.007 0 0.00339 0.002151 0.008 

rs10496971 0 0.00244 0.002324 0.008 0 0.00196 0.001944 0.007 0.0013 0.00341 0.001685 0.008 

rs2758988 0.0001 0.003 0.002249 0.009 0.001 0.00485 0.002846 0.011 0.001 0.00425 0.003694 0.014 

rs9319336 0.0007 0.00177 0.000961 0.004 0.001 0.00367 0.002178 0.008 0 0.00219 0.001903 0.007 

rs192655 0 0.0026 0.00325 0.01 0.0006 0.00286 0.001967 0.008 0 0.00151 0.001203 0.004 

rs984654 0 0.00331 0.001941 0.007 0.0015 0.00405 0.00163 0.008 0 0.00266 0.002322 0.009 

rs11725412 0 0.00321 0.002963 0.011 0.001 0.00416 0.002388 0.009 0.0005 0.00285 0.001383 0.006 
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SNP 

Genotype 1 Genotype 2 Genotype 3 

Minimum Mean 
Standard 

Deviation 
Maximum Minimum Mean 

Standard 

Deviation 
Maximum Minimum Mean 

Standard 

Deviation 
Maximum 

rs4463276 0 0.00181 0.001759 0.005 0.0009 0.00391 0.002304 0.008 0.0007 0.00294 0.002165 0.007 

rs683 0 0.00201 0.002347 0.007 0 0.00338 0.002666 0.01 0 0.00323 0.002769 0.01 

rs4787040 0 0.00281 0.001736 0.006 0.001 0.00228 0.001068 0.005 0 0.00145 0.000912 0.003 

rs4781011 0.001 0.00281 0.001759 0.008 0 0.00409 0.002463 0.008 0 0.00247 0.001574 0.0064 

rs1471939 0 0.00227 0.002638 0.01 0.0006 0.0043 0.002911 0.011 0 0.00317 0.001925 0.006 

rs1950993 0 0.00185 0.001367 0.005 0 0.00409 0.002913 0.01 0.002 0.00414 0.001634 0.007 

rs4984913 0 0.00258 0.002313 0.008 0.0007 0.00317 0.001624 0.006 0 0.0026 0.00142 0.005 

rs4833103 0 0.00185 0.002559 0.009 0 0.00286 0.001667 0.0056 0 0.00311 0.003342 0.012 

rs3907047 0 0.00116 0.001644 0.006 0.001 0.0028 0.001725 0.006 0 0.00247 0.001908 0.006 

rs2357442 0 0.00358 0.002278 0.007 0.001 0.00333 0.00269 0.01 0 0.00259 0.00177 0.005 

rs1393350 0 0.00053 0.001231 0.0043 0 0.00311 0.002599 0.007 0 0.00374 0.002421 0.007 

rs12203592 0 0.00272 0.001865 0.007 0 0.00229 0.001747 0.005 0 0.00077 0.000795 0.002 

rs4959270 0.0051 0.07261 0.043788 0.149 0.001 0.00657 0.00496 0.0149 0.0033 0.07852 0.048586 0.1639 
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A.6 Geometric Means for Degraded Australian Sample 

Table A.3: Second WWII era Australian Sample’s Geometric Mean 

Collected in collaboration with (Ghaiyed, 2020). The observed geometric mean for each individual in the second 

WWII Australian sample along with their respective sample identification code (ID) and their available number 

of SNPs. 

Sample 

No. 

Sample 

ID 

Geometric 

Mean 

No. 

SNPs 

Sample 

No. 

Sample 

ID 

Geometric 

Mean 

No. 

SNPs 

1 8072 0.996255 24 39 A64 0.956983 23 

2 8075 0.96458 33 40 A83 0.940189 20 

3 8080 0.955861 20 41 GN0976 0.936424 20 

4 8134 0.966901 28 42 GN13 0.964039 26 

5 8152 0.968288 30 43 GN133 0.952388 20 

6 8177 0.996965 23 44 GN92 0.956809 20 

7 8198 0.995044 24 45 GRF217 0.967367 29 

8 8201 0.96525 26 46 GRF243 0.998481 14 

9 8204 0.957042 23 47 GRF29 0.956808 16 

10 8247 0.956729 23 48 GRF332 0.953859 17 

11 8281 0.972345 24 49 GRF37 0.956896 18 

12 8286 0.996417 23 50 GRF370 0.955171 17 

13 8331 0.9636 28 51 GRF508 0.968143 29 

14 8338 0.996746 25 52 GRF623 0.912997 21 

15 8373 0.971634 27 53 GRF689 0.869156 20 

16 8377 0.935922 15 54 GRF715 0.971035 35 

17 8388 0.967347 25 55 GRF732 0.954677 21 

18 8393 0.971792 29 56 GRF816 0.955664 29 

19 8462 0.955301 16 57 MU1324 0.996919 26 

20 8494 0.957084 16 58 MU1457 0.995834 21 

21 8501 0.935445 15 59 MU8007 0.945657 28 

22 8534 0.953858 23 60 MU8008 0.956803 17 

23 8570 0.955594 16 61 MU8016 0.957116 16 

24 8571 0.87689 14 62 MU8028 0.972076 34 

25 8600 0.972074 32 63 MU8029 0.956464 19 

26 8606 0.994569 29 64 MU8039 0.954541 19 

27 8607 0.936405 18 65 MU8049 0.952846 17 

28 8611 0.956827 21 66 MU8057 0.936343 12 

29 8632 0.905964 34 67 MU8086 0.95688 18 

30 8726 0.956399 18 68 MU8091 0.813843 26 

31 8762 0.971397 33 69 MU8145 0.956803 17 

32 8794 0.934713 14 70 MU8169 0.955152 39 

33 8799 0.913816 34 71 MU968 0.971608 32 

34 8810 0.973962 33 72 N24 0.996521 23 

35 8818 0.957007 16 73 OTH23 0.956786 18 

36 8825 0.991714 23 74 OTH47 0.954857 21 

37 8826 0.951224 16 75 OTH48 0.953833 20 

38 8923 0.956406 16     
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A.7 Natural Log of the Likelihood Ratio for Degraded Australian Sample 

Table A.4: Second WWII era Australian Sample’s Likelihood Ratio 

Collected in collaboration with (Ghaiyed, 2020). The observed natural logs of the likelihood ratio for each 

individual in the second WWII Australian sample along with their respective sample identification code (ID) and 

their available number of SNPs. 

Sample 

No. 

Sample 

ID 
LR LN(LR) 

No. 

SNPs 

Sample 

No. 

Sample 

ID 
LR LN(LR) 

No. 

SNPs 

1 8072 3.28E+32 74.87 24 40 A64 1.03E+22 50.69 23 

2 8075 1.2E+31 71.57 33 41 A83 9.89E+18 43.74 20 

3 8080 2.19E+17 39.93 20 42 GN0976 4.85E+21 49.93 20 

4 8134 9.97E+29 69.07 28 43 GN13 1.14E+28 64.60 26 

5 8152 1.33E+38 87.78 30 44 GN133 5.74E+16 38.59 20 

6 8177 2.65E+36 83.87 23 45 GN92 3.36E+24 56.47 20 

8 8198 7.42E+25 59.57 24 46 GRF217 7.63E+35 82.62 29 

9 8201 4.16E+26 61.29 26 47 GRF243 9.83E+21 50.64 14 

10 8204 2.15E+22 51.42 23 48 GRF29 2.45E+13 30.83 16 

11 8247 7.96E+26 61.94 23 49 GRF332 9.04E+13 32.13 17 

12 8281 4.51E+32 75.19 24 50 GRF37 2.72E+18 42.45 18 

13 8286 9.09E+35 82.80 23 51 GRF370 1.16E+13 30.08 17 

14 8331 1.81E+32 74.28 28 52 GRF508 4.17E+33 77.41 29 

15 8338 2.72E+33 76.98 25 53 GRF623 1.6E+15 35.01 21 

16 8373 1.66E+29 67.28 27 54 GRF689 6.61E+11 27.22 20 

17 8377 1.45E+17 39.51 15 55 GRF715 6.11E+42 98.52 35 

18 8388 1.05E+33 76.03 25 56 GRF732 2.07E+20 46.78 21 

19 8393 2.9E+30 70.14 29 57 GRF816 6.43E+30 70.94 29 

20 8462 2.34E+14 33.09 16 58 MU1324 2.98E+35 81.68 26 

21 8494 4.85E+16 38.42 16 59 MU1457 1.75E+25 58.12 21 

22 8501 1.22E+14 32.44 15 60 MU8007 2.43E+21 49.24 28 

23 8534 2.6E+23 53.91 23 61 MU8008 6.74E+17 41.05 17 

24 8570 3.39E+12 28.85 16 62 MU8016 1.13E+18 41.57 16 

25 8571 5.54E+13 31.65 14 63 MU8028 4.06E+41 95.81 34 

26 8600 1.96E+42 97.38 32 64 MU8029 4.63E+21 49.89 19 

27 8606 1.35E+25 57.87 29 65 MU8039 2.74E+14 33.24 19 

28 8607 5.86E+20 47.82 18 66 MU8049 2.39E+12 28.50 17 

29 8611 1.11E+24 55.37 21 67 MU8057 3.91E+11 26.69 12 

30 8632 2.31E+44 102.15 34 68 MU8086 9.29E+16 39.07 18 

31 8726 6.08E+13 31.74 18 69 MU8091 1.93E+28 65.13 26 

32 8762 5.47E+39 91.50 33 70 MU8145 3.95E+18 42.82 17 

33 8794 3.05E+14 33.35 14 71 MU8169 2.51E+20 46.97 39 

34 8799 5.61E+26 61.59 34 72 MU968 9.23E+31 73.60 32 

35 8810 5.38E+35 82.27 33 73 N24 3.73E+28 65.79 23 

36 8818 1.4E+16 37.18 16 74 OTH23 8.32E+21 50.47 18 

37 8825 2.25E+26 60.68 23 75 OTH47 9.29E+19 45.98 21 

38 8826 4.65E+10 24.56 16 76 OTH48 1.55E+17 39.58 20 

39 8923 7.9E+14 34.30 16      
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A.8 Australian Q Value for Degraded Australian Sample 

Table A.4: Second WWII era Australian Sample’s Q Values 

Collected in collaboration with (Ghaiyed, 2020). The observed Australian Q values for each individual, obtained 

from STRUCTURE, in the second WWII Australian sample along with their respective sample identification code 

(ID) and their available number of SNPs. 

Sample 

No. 

Sample 

ID 

Australian 

Q Value 

No. 

SNPs 

Sample 

No. 

Sample 

ID 

Australian 

Q Value 

No. 

SNPs 

1 8072 0.998 24 39 A64 0.991 23 

2 8075 0.995 33 40 A83 0.985 20 

3 8080 0.915 20 41 GN0976 0.998 20 

4 8134 0.997 28 42 GN13 0.997 26 

5 8152 0.999 30 43 GN133 0.991 20 

6 8177 0.999 23 44 GN92 0.999 20 

7 8198 0.994 24 45 GRF217 0.999 29 

8 8201 0.997 26 46 GRF243 0.998 14 

9 8204 0.998 23 47 GRF29 0.995 16 

10 8247 0.999 23 48 GRF332 0.993 17 

11 8281 0.998 24 49 GRF37 0.999 18 

12 8286 0.999 23 50 GRF370 0.993 17 

13 8331 0.998 28 51 GRF508 0.997 29 

14 8338 0.999 25 52 GRF623 0.987 21 

15 8373 0.991 27 53 GRF689 0.968 20 

16 8377 0.998 15 54 GRF715 0.999 35 

17 8388 0.999 25 55 GRF732 0.998 21 

18 8393 0.998 29 56 GRF816 0.999 29 

19 8462 0.997 16 57 MU1324 0.997 26 

20 8494 0.998 16 58 MU1457 0.998 21 

21 8501 0.998 15 59 MU8007 0.965 28 

22 8534 0.996 23 60 MU8008 0.999 17 

23 8570 0.964 16 61 MU8016 0.999 16 

24 8571 0.998 14 62 MU8028 0.998 34 

25 8600 0.999 32 63 MU8029 0.998 19 

26 8606 0.98 29 64 MU8039 0.992 19 

27 8607 0.999 18 65 MU8049 0.984 17 

28 8611 0.999 21 66 MU8057 0.997 12 

29 8632 0.999 34 67 MU8086 0.995 18 

30 8726 0.994 18 68 MU8091 0.998 26 

31 8762 0.998 33 69 MU8145 0.998 17 

32 8794 0.995 14 70 MU8169 0.707 39 

33 8799 0.972 34 71 MU968 0.998 32 

34 8810 0.999 33 72 N24 0.998 23 

35 8818 0.998 16 73 OTH23 0.999 18 

36 8825 0.998 23 74 OTH47 0.998 21 

37 8826 0.976 16 75 OTH48 0.994 20 

38 8923 0.997 16     
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A.9 Derivation of Delta Method 

𝑉 (𝑓 (
𝑥̂

𝑦̂
)) ≈ (

𝜕𝑓 (
𝑥̂
𝑦̂

)

𝜕(𝑥̂)
)

2

× 𝑉(𝑥̂) + (
𝜕𝑓 (

𝑥̂
𝑦̂

)

𝜕(𝑦̂)
)

2

× 𝑉(𝑦̂) 

𝑉 (𝑓 (
𝑥̂

𝑦̂
)) = (

1

𝑦̂
)

2

×
𝑥̂(1 − 𝑥̂)

𝑛1
+ (−

𝑥̂

𝑦̂2
)

2

×
𝑦̂(1 − 𝑦̂)

𝑛2
 

𝑉 (𝑓 (
𝑥̂

𝑦̂
)) =

𝑥̂(1 − 𝑥̂)

𝑦̂2 × 𝑛1
+

𝑥̂2

𝑦̂4
×

𝑦̂(1 − 𝑦̂)

𝑛2
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A.10 Example DNA-MAP Files 

The following links contain example files for the DNA-MAP inputs “Training Data 

Containing Samples Collected from the Populations of Interest”, “Unknown Sample for 

Ancestry Prediction” and “Sample Data of Known Individuals not Included in the Training 

Data”. 

Dropbox: https://www.dropbox.com/sh/cwny7fz8zuld88y/AACMjNe2aPNm2AavjIY3j-

qYa?dl=0 

OneDrive: https://1drv.ms/u/s!AvNVx7NP1j7vawr_N3YbXDUlU0Y?e=1aH5Z7 

 

  

https://www.dropbox.com/sh/cwny7fz8zuld88y/AACMjNe2aPNm2AavjIY3j-qYa?dl=0
https://www.dropbox.com/sh/cwny7fz8zuld88y/AACMjNe2aPNm2AavjIY3j-qYa?dl=0
https://1drv.ms/u/s!AvNVx7NP1j7vawr_N3YbXDUlU0Y?e=1aH5Z
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A.11: DNA-MAP’s Operation Manual 

The following lists the planned operation manual for the Shiny application DNA-MAP which 

will be extending from this thesis. 

1. Introduction 

a. A summary of the DNA-MAP application and the currently utilised pLMT 

algorithm it utilises. 

2. Benefits/Limitations/Assumptions 

a. A list of benefits and limitations of DNA-MAP compared to other classifiers in 

the literature. Along with any assumptions that are assumed by the algorithm. 

3. Inputs 

a. What inputs are required for DNA-MAP’s operation, including any formatting 

required for files. This section will be carried over from the contents of Chapter 

6. 

4. Algorithm 

a. An outlined methodology of the pLMT algorithm, indicating where each input 

is utilised. This methodology will be an extension of the content provided in 

Chapters 4 and 6. 

5. Outputs and Interpretations 

a. Descriptions of what outputs are available to the user, as well as suggestion 

interpretation guidelines based on previous research. This section will be carried 

over from the contents of Chapter 6. 

 

 

 




