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Attention Networks for Multi-Task Signal Analysis

David Ahmedt-Aristizabal'2, Mohammad Ali Armin!, Simon Denman?, Clinton Fookes?, Lars Petersson

Abstract— Recent advances in deep learning have enabled the
development of automated frameworks for analysing medical
images and signals. For analysis of physiological recordings,
models based on temporal convolutional networks and recur-
rent neural networks have demonstrated encouraging results
and an ability to capture complex patterns and dependencies
in the data. However, representations that capture the entirety
of the raw signal are suboptimal as not all portions of the
signal are equally important. As such, attention mechanisms
are proposed to divert focus to regions of interest, reducing
computational cost and enhancing accuracy. Here, we evaluate
attention-based frameworks for the classification of physiolog-
ical signals in different clinical domains. We evaluated our
methodology on three classification scenarios: neurogenerative
disorders, neurological status and seizure type. We demonstrate
that attention networks can outperform traditional deep learn-
ing models for sequence modelling by identifying the most
relevant attributes of an input signal for decision making.
This work highlights the benefits of attention-based models for
analysing raw data in the field of biomedical research.

I. INTRODUCTION

Modeling physiological observations plays an invaluable
role in assessing disease detection and treatment [1]. The
abundance of digital clinical data and the need to identi-
fying patterns that are unambiguous has increased research
interest in developing applications to learn from multi-modal
data [2]. Classical approaches for time-series analysis have
been centered around extracting hand-engineered features
from time and frequency domains. However, there are chal-
lenges related to expert knowledge, irregular sampling and
generalisation [2]. In recent years, machine learning models
such as convolutional neural networks (CNNSs) and recurrent
neural networks (RNN) have become popular for multi-
modal time series analysis, achieving high detection accuracy
for different case studies [3]. One disadvantage of these
sequence models is that the structure operates over the entire
sample signal, which is inefficient when processing long
sequences [4]. The inherent sequential nature makes also
parallelization challenging. Additionally, these methods show
minimal resilience in the presence of high levels of noise
from sensor recordings [5]. Therefore, it is desirable to
develop algorithms capable of processing raw signals that
automatically learns where to focus the attention. The family
of methods that emphasize important task-relevant features
of a given signal are termed attention mechanisms [6].

Attention mechanisms are established in neuroscience, but
have only recently become effective in sequence-to-sequence
modeling tasks [4] such as natural language processing

I CSIRO, DATAG61, Canberra, Australia. Corresponding author:
david.ahmedtaristizabal@data6l.csiro.au

2 Image and Video Research Laboratory, SAIVT, Queensland University
of Technology, Brisbane, Australia.

1

(NLP) [7]. Soft-attention mechanisms (global attention) with
a memory based approach (RNNs) can divide the signal
into partitions by emphasising important portions. These
networks focus on the most relevant parts of the input
to make a decision, and suppress uninformative features
in the observed data [8]. Attention mechanisms are an
integral network component, often placed between encoders
and decoders. They have shown promising results for anal-
ysis of physiological signals such as electrocardiograms
(ECQG) [5], phonocardiograms (PCG) [9], and polysomnogra-
phy (PSG) [10]. On the other hand, recent research in self-
attention mechanisms [11] indicates that models that rely
entirely on attention computations without using recurrent
architectures can achieve similar performance. This structure
has been proposed in the area of biomedical text mining [12].
Nevertheless, its application to time series prediction has not
been investigated sufficiently [4].

In this paper, we explore the feasibility of adapting
attention-based frameworks for analysis of multi-task data
and compare the results with baseline methods such as CNNs
and RNNs. We demonstrate the potential of these archi-
tectures for the classification of neurogenerative disorders,
neurological status and seizure type.

Our main contributions are summarized as follows:

1) We compare and introduce multiple deep learning
models including CNNs, LSTMs, soft- and self-
attention mechanisms for the purpose of classifying
raw physiological signals.

2) We show the effectiveness of attention mechanisms for
mapping discriminative features across sequential data.

II. METHODOLOGY

In this paper, we conduct a systematic evaluation of
convolutional and recurrent architectures commonly used
for sequence modeling. Then, we introduce attention-based
frameworks to analyse the time series signals. We aim to
determine if the success of attention networks for classify-
ing physiological signals is confined to specific application
domains. In this study, we design experiments that use raw
signals and eschew handcrafted features and preprocessing
phases (i.e. obtaining image-based representations). We also
compare the performance of adapted baseline methods using
our dataset configuration, experimental plan and evaluation
metric. A block diagram of the proposed methods is dis-
played in Fig. 1.

A. Sequence modeling with CNNs and RNNs

1) Temporal Convolutional Networks (TCNs): Recent re-
search shows that variations of convolutional neural net-
works can achieve impressive results for sequential data.
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The present architectures, temporal convolutional networks
(TCN) [13], use dilated causal convolution layers where
an output at time ¢ is convolved only with elements from
time ¢ or earlier in the previous layer, i.e. inputs have no
influence on output steps that proceed them in time. In a
dilated convolution layer, a filter is sequentially applied to
inputs by skipping input values with a certain step (dilatation
rate). This allows the network to consider temporal order
and capture long-term dependencies without an explosion
in model complexity [14]. In our experiments, the baseline
model is based on the wavenet implementation [15].

2) Bidirectional LSTMs (Bi-LSTMs): Recurrent neural
networks such as Long Short Term Memory (LSTM) [16]
have proven to be stable in modeling dependencies in sequen-
tial data by employing an external memory cell state. Bidi-
rectional LSTMs (Bi-LSTMs) [17] extend traditional LSTMs
and can improve model sequence classification performance
by training two LSTMs on the input sequence. This can
provide additional context to the network and result in faster
and more complete learning [18]. The hidden state dimension
of the encoder LSTMs in our baseline implementation is
determined empirically and is set to 60 units for each dataset.
The Bi-LSTM layer is followed by a classification layer.

B. Attention-based frameworks

1) Bidirectional LSTMs with attention (ABi-LSTM): Soft-
attention mechanisms are end-to-end approaches that can be
learned by gradient-based methods [7], [8]. They have been
proposed to further improve an encoder-decoder performance
for domain-specific applications by directing emphasis to
different parts of the encoder output in each step of decoding.
Here, we implement a Bi-LSTM to capture temporal infor-
mation from sequences that consider the previous and future
input information simultaneously. The attention network [8]
allows the model to learn the most relevant parts of the input
sequence during training. The Bi-LSTM encodes a feature
vector from the raw signal into a hidden representation #;.
We leverage attention mechanisms to capture the attributes
of a signal that influence the decision, and then form a dense
vector by considering the weights of different input vectors.
This can be formulated as follows:
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Overview of the models for classifying raw physiological signals: sequence modeling with CNNs and RNNs, and attention-based frameworks.

where £, is the concatenation output of the Bi-LSTM model
and W and b are the weight and bias of a single multilayer
perceptron (MLP), respectively. We measure the importance
of each element in 4; by estimating the similarity between
u, and h;, which is randomly initialized. Then, we infer a
normalized importance weight ¢; from a softmax function.
Finally, these scores are multiplied by the hidden states to
calculate the weighted combination s,. The attention layer is
followed by dense and classification layers. Dropout is used
between these layers to prevent potential overfitting.

2) Multivariate LSTM-FCN with attention (MALSTM-
FCN): Fully convolutional networks (FCN), comprised of
a TCN, are typically used as feature extractors. Augmented
FCNs with attention LSTMs have dramatically improved
the performance on univariate time series classification
tasks [19]. Here, we adopt a multivariate attention LSTM-
FCN to enhance the analysis of raw physiological sig-
nals [20]. The FCN consists of three stacked temporal
convolutional blocks with a global average pooling after the
final convolution block. The first two convolutional blocks
conclude with an attention mechanism known as squeeze-
and-excitation block [21]. This block allows the network
to perform feature recalibration, by which it can learn to
use global information to selectively emphasise informative
features and suppress less useful ones. The LSTM block
comprises an attention LSTM layer [7]. The output of the
FCN and the LSTM block is concatenated and passed to a
softmax classification layer.

3) Multivariate Transformer-FCN (MT-FCN): The trans-
former [11] follows the encoder-decoder paradigm and has
demonstrated an ability to capture temporal dependencies. It
is solely based on self-attention (intra-attention) and com-
putes representations without using sequence-aligned RNNs.
In self-attention, the queries, keys, and values (Q, K, and V)
are all created using encodings of the sequence [4]. Here,
we modify the MALSTM-FCN [20] model by changing the
attention LSTM block to a transformer model. This block
combines a 1D convolutional layer to compute an input
embedding, multi-head attention, and a fully connected feed-
forward network. By packing Q, K, and V, together in a
matrix, the output of the self-attention layer is computed by,
<

2)
N
where n is the input sequence length. The output is a
weighted sum of the values, where the weight assigned to
each value is determined by the dot-product of the query with
all the keys [11]. The multi-head mechanism runs through

Attention(Q, K, V) = softmax ( V),



the scaled dot-product attention multiple times in parallel.
Therefore, for each Head; (8 in this work), the attention is

Head; = Attention(Qw2, KWX VW?). 3)

These attention functions are concatenated and projected
resulting in the multi-head attention output,

MultiHead(Q, K, V) = Concat(Head;, ...,Head, )W, (4)

This module allows an attention mechanism to concentrate
different parts of the input. Further technical information on
the multi-head attention module can be found in [4], [11].

III. EVALUATION
A. Datasets and experimental setup

To evaluate the performance of each proposed method, we
selected publicly available datasets with particular character-
istics: multi-modal and multi-channel data.

1) Neurogenerative disorder: We distinguish neurogener-
ative disorders by analysing the gait cycle. Gait dynamics
from 15 patients with Parkinson’s disease, 20 with Hunt-
ington’s disease, 13 with amyotrophic lateral sclerosis and
16 healthy control subjects were recorded [22], [23]. The
raw data was obtained while the participant was walking
at their usual pace along a 77 meter long hallway for 5
minutes, with accelerometers sampling at 300Hz placed in
the subject’s left and right shoes. Raw data per patient is
split into sequences of one second. Thus each sample has a
dimension of [2 x 300]. Then, we combine all samples across
patients with the same disorder.

2) Neurological status classification: The database con-
tains non-EEG physiological signals for the assessment of
induced stress [23], [24]. We aim to distinguish responses
of 20 healthy participants by analysing physiological signals
collected from two wrist-worn biosensors while performing
the following tasks in order: relaxation (5min), physical
stress (Smin), relaxation (Smin), cognitive stress (3min),
relaxation (5Smin), emotional stress (5min) and relaxation
(Smin). A Nonin 3150, sampling at 1Hz, recorded the
arterial oxygen level (SpO2) and heart rate (HR), and an
Affectiva sensor sampling at 8Hz sensed the electrodermal
activity (EDA), temperature and acceleration. As such, the
dataset contains 7 channels of multi-modal data. We split
the recording of each participant according to the label of
each neurological status and concatenate all samples of the
same class across all participants. We consider only the first
session of relaxation to avoid class imbalance. All data is
re-sampled to 1Hz to ensure uniform input dimension and
each variable is independently normalized using a min-max
scaling. A sliding window of 20 seconds is used to create
samples, with each sample being of dimension [7 x 20].

3) Seizure type classification: We use the most recent
release of the TUH EEG seizure corpus (v1.5.0) [25]. The
seizure classes are simple partial seizure (n=52), complex
partial seizure (n=361), absence seizure (n=99), tonic seizure
(n=68) and tonic-clonic seizure (n=60). The general classes,
focal non-specific (FN) and generalized non-specific (GN)
seizures, were not considered in this analysis as in these

TABLE I
EVALUATION RESULTS ON THE EXPERIMENTAL DATASETS

Dataset Methods F1-score Adapted baseline Methods Fl-score
TCN 0.832 LSTM (based on [26]) 0.825
N tive disord BiLSTM 0.886 LSTM-DNN (based on [27]) 0.846
(Feumg;:nera ive disorder ABILSTM 0.902
our classes) MALSTM-FCN  0.924
MT-FCN 0914
TCN 0.934 CNN+FC (based on [28]) 0.882

BiLSTM 0.928 MLP (based on [29] 0.742

Neurological status

(Four classes) ABILSTM 0.940

MALSTM-FCN 0.988
MT-FCN 0.890

TCN 0.942

BiLSTM 0.948
ABILSTM 0.954
MALSTM-FCN 0.964
MT-FCN 0.961

CNN (based on [30] 0.875

. CNN-LSTM (based on [31] 0.923
Seizure type

(Five classes)

recordings the seizure origin was not precisely identified.
The experimental dataset is created by combining the official
training and test set with non-overlapping patients, resulting
in a total of 640 seizures. One class is defined as the
combination of all seizure recordings for the same seizure
type. Data was re-sampled to 200 Hz from the following
19 common EEG channels: FP1, F7, T3, T5, O1, F3, C3,
P3, FP2, F8, T4, T6, 02, F4, C4, P4, FZ, CZ, PZ. EEG
sequences are created from the raw EEG signal by a) sliding
a one second window over the signals to obtain clips, b)
concatenating all clips into an EEG sequence, and ¢) making
all samples the same sequence length (200) by padding
with zeros or truncating. Thus, each EEG sequence has a
dimension of [200 x 19 x 200].

B. Evaluation metric and implementation

All models were evaluated on each dataset with 80%
of data samples allocated for training, 10% for validation,
and 10% for testing, with a 10-fold cross-validation (CV).
We tested multiple window length to split each raw signal
and adopted the best one based on the validation set. We
evaluate the performance using the F1 score which takes
both false positives and false negatives into account [9], [10].
Categorical cross-entropy loss and the Adam optimizer [32]
(learning rate=0.002, betal= 0.9, beta2= 0.999) are used to
train the models. Models are trained for 100 epochs with a
mini-batch size of 32. Training terminates early if validation
loss does not improve for over 15 epochs. All models were
implemented in Keras [33] with a Tensorflow backend.

C. Experimental results and discussion

An evaluation of all proposed models and baseline meth-
ods for each dataset is shown in Table I. The results showed
improved performance of all attention-based frameworks in
comparison to convolutional and recurrent networks. The
MALSTM-FCN model, which uses two blocks with different
soft-attention mechanisms [7], [21], showed the best F1-
score on all datasets, and the proposed methods do not
rely on the accuracy of frequency domain representation of
raw signals. We note that the transformer model (MT-FCN)
achieved similar results to the soft-attention mechanism, but
its performance is limited when encountering a small input
sequence (e.g.stress classification). The TCN architecture can
reach a similar accuracy to the BiILSTM for analysing multi-
modal signals. However, with a time series that has a large
number of steps, using causal convolutions to learn from the



entire history makes the model computationally complex. On
the other hand, a critical disadvantage of encoder-decoder
Bi-LSTM is that they focus more on the recent history.
For this reason, incorporating attention mechanisms aims
to resolve issues caused by noisy multivariate time series
data, which is common in physiological data. The main
disadvantage of the attention mechanism is the increase in
model parameters, which increases training time, especially
if the input sequences are long. Although self-attention
mechanisms are popular in the NLP domain, their adaptation
to time series classification has remained limited. This is
likely due to the difficulty of defining how the query, key
and values are formed in different domains. Overall, one key
aspect of attention mechanisms is that they simultaneously
give more weight to related parts of each input sequence
and consider the whole recording to extract consecutive
dependencies. This can be useful when distinguishing contact
relationships in the evaluation of seizure type propagation.

An interesting direction for future research is that graph
structures may have more capacity to encode complicated
pair-wise relationships between signals. As such attention-
based architectures with graph-structured data [34] merit
investigation for use with complex physiological recordings
such as intracranial EEG and fMRI.

IV. CONCLUSIONS

We introduce and compare convolutions and recurrent
structures with attention-based frameworks for modelling
spatiotemporal dependencies in raw physiological signals.
Our analysis showed that attention-based models outperform
RNN and CNN-based models when applied to multi-modal
data such as gait, SpO2, HR, EDA, temperature, acceleration
and EEG recordings for the purpose of neurogenerative
disorder, neurological status and seizure type classification.
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