Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A

, , Mussatto, Solange I., , , , & (2021) Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A. Bioresources and Bioprocessing, 8, Article number: 85.

[img]
Preview
Published Version (PDF 1MB)
99620658.
Available under License Creative Commons Attribution 4.0.

Open access copy at publisher website

Description

Fructooligosaccharides (FOS) can be used as feed prebiotics, but are limited by high production costs. In this study, low-cost sugarcane molasses was used to produce whole-cell biocatalysts containing transfructosylating enzymes by Aureobasidium pullulans FRR 5284, followed by FOS production from molasses using the whole-cells of A. pullulans. A. pullulans in molasses-based medium produced cells and broth with a total transfructosylating activity of 123.6 U/mL compared to 61.0 and 85.8 U/mL in synthetic molasses-based and sucrose-based media, respectively. It was found that inclusion of glucose in sucrose medium reduced both transfructosylating and hydrolytic activities of the produced cells and broth. With the use of pure glucose medium, cells and broth had very low levels of transfructosylating activities and hydrolytic activities were not detected. These results indicated that A. pullulans FRR 5284 produced both constitutive and inducible enzymes in sucrose-rich media, such as molasses while it only produced constitutive enzymes in the glucose media. Furthermore, treatment of FOS solutions generated from sucrose-rich solutions using an invertase-deficient Saccharomyces yeast converted glucose to ethanol and acetic acid and improved FOS content in total sugars by 20–30%. Treated FOS derived from molasses improved the in vitro growth of nine probiotic strains by 9–63% compared to a commercial FOS in 12 h incubation. This study demonstrated the potential of using molasses to produce FOS for feed application. [Figure not available: see fulltext.].

Impact and interest:

3 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

39 since deposited on 13 Oct 2021
21 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 213869
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Khatun, Most Sheaulyorcid.org/0000-0002-6209-3236
Hassanpour, Mortezaorcid.org/0000-0001-6507-931X
Harrison, Mark D.orcid.org/0000-0002-0220-1565
Speight, Robert E.orcid.org/0000-0003-4161-8272
O'Hara, Ian M.orcid.org/0000-0002-0769-2201
Zhang, Zhanyingorcid.org/0000-0002-8041-0389
Additional Information: Funding Information: The Biorefineries for Profit project (project no. 2015/902) was funded through the Rural Research and Development for Profit Program. The work was undertaken as part of the Biorefineries for Profit project which was funded by Sugar Research Australia and the Australian Government Department of Agriculture, Water and the Environment through the Rural R&D for Profit Program and Queensland Government Department of Agriculture and Fisheries, Cotton Research and Development Corporation, Forest & Wood Products Australia, Australian Pork Ltd, Southern Oil Refining, Queensland University of Technology and NSW Department of Primary Industries. Prof. Solange I. Mussatto acknowledges the support from the Novo Nordisk Foundation, Denmark (grant number: NNF20SA0066233). The authors also thanked Microbiogen Pty Ltd for providing Saccharomyces cerevisiae 1403-7A to this study.
Measurements or Duration: 12 pages
Keywords: A. pullulans, Fructooligosaccharides, Prebiotics, Probiotics, Sugarcane molasses, Transfructosylating activity
DOI: 10.1186/s40643-021-00438-7
ISSN: 2197-4365
Pure ID: 99620658
Divisions: Current > Research Centres > Centre for Agriculture and the Bioeconomy
Current > Research Centres > Centre for a Waste Free World
Current > QUT Faculties and Divisions > Faculty of Science
Current > Schools > School of Biology & Environmental Science
Current > QUT Faculties and Divisions > Faculty of Engineering
Current > Schools > School of Mechanical, Medical & Process Engineering
Funding Information: The work was undertaken as part of the Biorefineries for Profit project which was funded by Sugar Research Australia and the Australian Government Department of Agriculture, Water and the Environment through the Rural R&D for Profit Program and Queensland Government Department of Agriculture and Fisheries, Cotton Research and Development Corporation, Forest & Wood Products Australia, Australian Pork Ltd, Southern Oil Refining, Queensland University of Technology and NSW Department of Primary Industries. Prof. Solange I. Mussatto acknowledges the support from the Novo Nordisk Foundation, Denmark (grant number: NNF20SA0066233). The authors also thanked Microbiogen Pty Ltd for providing Saccharomyces cerevisiae 1403-7A to this study.
Copyright Owner: 2021 The Author(s)
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 13 Oct 2021 01:02
Last Modified: 29 Apr 2024 16:24