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Novelty and Impact Statement 

This is the first study to use Mendelian randomization analysis to explore the relationship 

between blood lipid levels and risk of endometrial cancer and its subtypes. Genetically 

predicted lower LDL cholesterol levels or higher HDL cholesterol levels were associated 

with increased non-endometrioid endometrial cancer risk. Further work is required to 

elucidate the biology underlying these associations. These results indicate that cholesterol 

levels could be considered risk factors for endometrial cancer, and studies are required to 

assess the clinical significance of this association. 
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Abstract 

Blood lipids have been associated with the development of a range of cancers, including 

breast, lung and colorectal cancer. For endometrial cancer, observational studies have 

reported inconsistent associations between blood lipids and cancer risk. To reduce biases 

from unmeasured confounding, we performed a bidirectional, two-sample Mendelian 

randomization analysis to investigate the relationship between levels of three blood lipids 

(low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, and 

triglycerides) and endometrial cancer risk. Genetic variants associated with each of these 

blood lipid levels (P < 5×10-8) were identified as instrumental variables, and assessed using 

genome-wide association study data from the Endometrial Cancer Association Consortium 

(12,906 cases and 108,979 controls) and the Global Lipids Genetic Consortium (n=188,578). 

Mendelian randomization analyses found genetically raised LDL cholesterol levels to be 

associated with lower risks of endometrial cancer of all histologies combined, and of 

endometrioid and non-endometrioid subtypes. Conversely, higher genetically predicted HDL 
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cholesterol levels were associated with increased risk of non-endometrioid endometrial 

cancer. After accounting for the potential confounding role of obesity (as measured by 

genetic variants associated with body mass index), the association between genetically 

predicted increased LDL cholesterol levels and lower endometrial cancer risk remained 

significant, especially for non-endometrioid endometrial cancer. There was no evidence to 

support a role for triglycerides in endometrial cancer development. Our study supports a role 

for LDL and HDL cholesterol in the development of non-endometrioid endometrial cancer. 

Further studies are required to understand the mechanisms underlying these findings. 

 

Introduction 

Endometrial cancer primarily affects postmenopausal women and approximately 382,000 

cases were diagnosed in 20181. Risk factors for endometrial cancer include: family history of 

endometrial cancer2; increasing age, obesity (e.g. high body mass index (BMI) and low 

physical activity), unopposed estrogen exposure (e.g. early age of menarche, late age of 

menopause, nulliparity, hormone replacement therapy without progesterone and tamoxifen 

use)3,4; and fasting insulin levels5. Despite the advances that have been made in identifying 

endometrial cancer risk factors, endometrial cancer incidence is still rising6. 

Obesity is the strongest risk factor for endometrial cancer, with up to ~60% increased risk per 

5 kg/m2 higher BMI7. However, the mechanism(s) by which higher BMI predisposes to 

endometrial cancer are not well understood. Adipose tissue is an important site for the 

synthesis of estrogen (another endometrial cancer risk factor), especially after menopause, via 

the conversion of androgens to estrogens by aromatase8. BMI also has a complex relationship 

with blood lipid levels, with Mendelian randomization analyses finding bidirectional 

associations between levels of low-density lipoprotein (LDL) and high-density lipoprotein 
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(HDL) cholesterol, triglycerides and BMI9. Moreover, cholesterol has been suggested to play 

a role in cancer development by inducing chronic inflammation10-12.  

Blood lipid levels have been suggested to contribute to pathogenesis of endometrial cancer. 

As hypertriglyceridemia and hyper-LDL cholesterolemia are common in endometrial cancer 

survivors13, case-control studies assessing changes in blood lipid levels at/after endometrial 

cancer diagnosis are susceptible to reverse causation bias14-16. Observational studies 

conducted to examine the association between pre-diagnostic blood lipid levels and 

endometrial cancer risk17-23 reported significant positive associations from only three studies 

assessing blood triglycerides level and endometrial cancer risk18,19,23. Inconsistent findings 

from observational studies could be due to small study populations17,20 and a lack of 

adjustment for obesity18,22. Further, the use of non-fasting blood lipid levels in observational 

studies could also contribute to the variation in published findings17-19,21-23. Several studies 

have assessed the association of blood lipids with endometrial cancer by subtype15,19,21,23, but 

only one has assessed the pre-diagnostic blood lipid levels. This study reported increased 

triglycerides levels to be associated with the risk of both type 1 and 2 endometrial cancers23. 

However, this study did not adjust for obesity, and used non-fasting blood lipid levels. As 

obesity and blood lipid levels are interrelated9, it has been difficult for observational studies 

to disentangle the effects of blood lipid levels on endometrial cancer risk. Thus, the 

relationship between blood lipids and endometrial cancer remains unclear from the existing 

evidence. 

Mendelian randomization is an instrumental variable analysis that assesses the effects of 

exposures using genetic predictors as instrumental variables24. Mendelian randomization uses 

the principle that the alleles of genetic variants which predict higher levels of an exposure of 

interest are naturally randomized to individuals at meiosis, a process somewhat comparable 
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to the random assignment of participants to an exposure in a randomized controlled trial. 

Thus, associations between genetic variants and the outcome (and hence between the 

exposure and the outcome) will not be vulnerable to reverse causation because disease 

develops after meiosis. Provided that the selected genetic variants are associated with the 

outcome only via their effects on the exposure of interest (i.e. not via pleiotropic effects on 

other traits which could independently alter disease risk), effect estimates generated by 

Mendelian randomization analyses should also be less vulnerable to the influence of 

confounders24. 

In the current study, we employed a two-sample Mendelian randomization framework to 

assess the relationships between levels of three blood lipids (LDL and HDL cholesterol, and 

triglycerides) and the risk of endometrial cancer using genome-wide association study 

(GWAS) data from the Endometrial Cancer Association Consortium (ECAC) and Global 

Lipids Genetic Consortium (GLGC).  

 

Materials and Methods 

GWAS datasets 

In this study, we assessed three major blood lipids: LDL and HDL cholesterol, and 

triglycerides. Summary statistics from GWAS for the three blood lipids in 188,577 

individuals of predominantly European ancestry were obtained from the Global Lipid 

Genetics Consortium25 (http://csg.sph.umich.edu/willer/public/lipids2013/). A detailed 

description of the GLGC study has been previously published25. Briefly, blood lipid levels 

were measured more than eight hours after fasting in most GLGC studies. For each genetic 

variant association with blood lipid levels, association estimates were expressed in standard 

deviation (SD) per copy of the effect allele. 
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Endometrial cancer risk estimates were obtained from the largest published meta-GWAS to 

date, conducted by ECAC in 12,906 endometrial cancer cases and 108,979 controls, all of 

European ancestry26. In a secondary analysis, we investigated relationships between the three 

blood lipids and endometrial cancer subtypes using ECAC meta-GWAS results restricted to 

cases with either endometrioid histology (8,758 cases), or non-endometrioid histology (1,230 

cases)26. Histological subtypes of endometrial cancer were confirmed based on pathology 

reports, and detailed study descriptions have previously been reported26,27. The association 

estimates were expressed in log(OR) per copy of the effect allele. 

Instrumental variable selection  

Independent, genome-wide significant genetic variants (r2 < 0.05, P < 5 × 10-8) that were 

associated with each type of blood lipid were chosen as instrumental variables. Genetic 

variants with ambiguous strand codification (A/T or C/G) and minor allele frequency more 

than 0.42 were removed. We compared the allele frequencies between the GLGC and ECAC 

datasets, and a UKB10K reference panel (a random subset of 10,000 unrelated participants 

from UK Biobank cohort; https://www.ukbiobank.ac.uk/), and genetic variants with a large 

allele frequency difference (> 0.2) were also excluded.  

Bidirectional Mendelian randomization analysis 

We employed bidirectional Generalised Summary-data based Mendelian Randomisation 

(GSMR) analysis28 to explore the relationship between the three blood lipids and endometrial 

cancer. As Mendelian randomization estimates may be confounded by including pleiotropic 

variants, we implemented the built-in Heterogeneity in Dependent Instruments (HEIDI) 

outlier test28 with a P-value threshold of 0.01 to detect and filter heterogeneous variants that 

are likely pleiotropic. Remaining variants not excluded by HEIDI outlier test were used as 

non-pleiotropic instrumental variables.  

https://www.ukbiobank.ac.uk/
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Results with a Bonferroni-adjusted P < 0.05/3 = 0.017, correcting for the three blood lipid 

traits tested, were considered statistically significant. When blood lipid levels were treated as 

the exposure trait, the resulting effect estimates were expressed as odds ratios (OR) and 95% 

confidence intervals (CI) for endometrial cancer risk per SD increment in genetically 

predicted blood lipid level. When endometrial cancer risk was treated as the exposure trait, 

the resulting estimates represent the SD change for blood lipid level per SD increase in the 

genetic liability to endometrial cancer. Analyses were performed using default settings in the 

GSMR extension in GCTA (version 1.92)28, using the UKB10K reference panel to estimate 

linkage disequilibrium (LD) between variants. For comparison, we also performed inverse 

variance weighted (IVW) and MR-Egger regression Mendelian randomization analyses using 

MR-Base29. 

Conditional Mendelian randomization Analysis 

Since obesity could affect associations between blood lipid levels and endometrial cancer9, 

we additionally performed conditional Mendelian randomization analysis. GWAS summary 

statistics for the lipid of interest were conditioned for the effect of genetically predicted BMI 

using results from the largest GWAS of BMI to date30. Conditional analyses were performed 

using multi-trait-based conditional and joint analysis (mtCOJO) in the GCTA software 

package (version 1.92)28 and adjusted estimates were then reanalysed by GSMR.  

 

Results 

After removal of potential pleiotropic variants, 140 LDL cholesterol, 163 HDL cholesterol 

and 104 triglyceride independent genome-wide significant variants were considered as 

instrumental variables (Supplementary Tables 1-3). These instrumental variables were used 

by GSMR to estimate the effect of blood lipids on endometrial cancer risk of all histologies 
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combined (results presented in Table 1 and Figure 1). GSMR analysis indicated that 

genetically raised LDL cholesterol levels were associated with reduced risk of all endometrial 

cancer histologies combined (OR per SD increase in LDL cholesterol level = 0.88; 

95% CI = 0.83-0.93; P = 7.26 × 10-6). Consistent with the divergent roles of LDL and HDL 

cholesterol31, GSMR analysis provided evidence that increased HDL cholesterol levels may 

be associated with increased  risk of all endometrial cancer histologies combined (OR 1.07; 

95% CI = 1.00-1.14; P = 0.037). Secondary analysis assessing the relationships between 

blood lipid levels and endometrial cancer subtypes found genetically predicted higher LDL 

cholesterol levels were associated with lower risk of both endometrioid and non-

endometrioid endometrial cancer (Table 1). Conversely, genetically predicted higher HDL 

cholesterol levels showed suggestive evidence of association with higher risk of non-

endometrioid endometrial cancer only (Table 1). No significant effects were observed for 

triglycerides on endometrial cancer overall, or its subtypes (Table 1). Bidirectional GSMR 

analysis provided evidence for a unidirectional association e.g. genetically elevated LDL 

cholesterol level may affect endometrial cancer risk, while genetic liability to endometrial 

cancer does not appear to affect LDL cholesterol levels (Table 2). 

To reduce the influence of obesity on the associations between blood lipid levels and 

endometrial cancer risk, we performed Mendelian randomization analysis conditioning on 

genetically predicted BMI. Results are presented in Table 3 and Supplementary Figure 1. 

After controlling for the influence of genetically predicted BMI, the association between 

genetically predicted LDL cholesterol levels and risk of all histologies combined and non-

endometrioid endometrial cancer remained; whereas, the effect of LDL cholesterol level on 

endometrioid endometrial cancer risk was attenuated and no longer significant (OR 0.93, 

95% CI 0.87-1.01; P = 0.07). Conditioning on genetically predicted BMI had minimal impact 
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on the risk estimates for HDL and endometrial cancer, but associations did not pass the 

Bonferroni-correction threshold, reflecting the decreased power for these analyses. 

Results from IVW and MR-Egger analyses were consistent with our GSMR results 

(Supplementary Tables 4 and 5). None of the MR-Egger intercepts were significantly 

different from zero (P>0.05), except for the relationship between genetically predicted HDL 

cholesterol and non-endometrioid endometrial cancer, suggesting pleiotropy may have biased 

IVW results of HDL cholesterol and non-endometrioid endometrial cancer. However, the 

MR-Egger regression slope of HDL cholesterol and non-endometrioid endometrial cancer 

remained statistically significant after accounting for potential pleiotropy, supporting a 

relationship between HDL cholesterol and endometrial cancer risk (Supplementary Tables 4 

and 5).  

 

Discussion 

To our knowledge, this is the first Mendelian randomization study to assess the effects of 

genetically predicted blood lipid levels on endometrial cancer risk. While genetically 

increased LDL cholesterol had a protective effect on endometrial cancer, especially non-

endometrioid endometrial cancer, results suggest that genetically increased HDL cholesterol 

may have an adverse effect on non-endometrioid endometrial cancer risk. The opposing 

findings for LDL and HDL cholesterol are consistent with their opposing roles. For example, 

LDL delivers cholesterol to peripheral tissues, whereas HDL removes cholesterol from these 

tissues and transports it to the liver31. We found no evidence of a causal link between 

triglycerides and endometrial cancer, in contrast to three observational studies that have 

reported positive associations18,19,23. However, as previously noted, none of these studies 

assessed fasting blood triglycerides and one did not control for the effect of obesity18.  
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Mendelian randomization analysis has previously illustrated the complex interrelationship 

between BMI and blood lipid levels9. We therefore performed conditional Mendelian 

randomization analysis to investigate the influence of genetically predicted BMI on 

associations between LDL/HDL cholesterol and endometrial cancer risk. Comparison of the 

LDL/HDL cholesterol association estimates, before and after adjusting for genetically 

predicted BMI, did not support a role for BMI in the associations with endometrial cancer of 

non-endometrioid and combined histologies. In contrast, the LDL cholesterol association 

with endometrioid endometrial cancer was weaker with wider confidence intervals after 

including genetically predicted BMI as covariate. While a modest protective effect of LDL 

cholesterol for the endometrioid subtype of endometrial cancer cannot be excluded, this 

finding indicated that LDL cholesterol is likely to lie in the same causal pathway as obesity, a 

hypothesis consistent with results from previous genetic studies. Indeed, somewhat 

surprisingly, previous Mendelian randomization analyses have demonstrated a bidirectional 

relationship between LDL cholesterol and BMI with one study reporting that increased LDL 

cholesterol levels were associated with reduced BMI9 and, another reporting that increased 

BMI was associated with reduced LDL cholesterol levels32. Using Mendelian randomization 

analyses, we have previously found increased BMI to be associated with increased 

endometrioid endometrial cancer risk26,33. Measured LDL cholesterol levels have also been 

found to diminish with increasing BMI in overweight individuals34; whereas, in the same 

study, LDL cholesterol levels were only positively correlated with BMI in lean individuals. 

These findings indicate that the inverse relationship between LDL cholesterol and 

endometrioid endometrial cancer, a disease primarily affecting overweight individuals33, may 

be related to high BMI. Thus, we hypothesise that obesity is likely to be the mediator of the 

effect of LDL cholesterol on endometrioid endometrial cancer risk (i.e. ↑LDL → ↓BMI → 

↓Endometrioid Endometrial Cancer risk) (Figure 2). Moreover, as obesity is a stronger risk 
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factor for endometrioid than for non-endometrioid endometrial cancer26, it is perhaps not 

surprising that after adjusting for genetically predicted BMI we only observed an attenuation 

of the effect of LDL cholesterol on endometrioid endometrial cancer risk. 

It is intriguing that our results indicated that, independent of obesity, decreased LDL 

cholesterol level is inversely associated with risk of non-endometrioid endometrial cancer. 

While both endometrioid and non-endometrioid endometrial cancer share many other risk 

factors35, recent Mendelian randomization analyses have found that obesity and age at 

menarche are risk factors of endometrioid endometrial cancer only26.Given the rare nature of 

non-endometrioid histologies (~10% of all endometrial cancer cases), the tumorigenic 

mechanisms for these histological subtypes remain largely unknown35,36. Thus, further studies 

are required to explore how higher LDL cholesterol levels could protect against non-

endometrioid endometrial cancer development. 

As shown in Table 1, the association between HDL cholesterol and endometrial cancer 

appears to be largely driven by the non-endometrioid histological subtype. Despite not 

passing a Bonferroni statistical significance threshold, there was no substantial change in the 

association estimate before and after conditioning on BMI, suggesting HDL cholesterol may 

also affect non-endometrioid endometrial cancer risk independently of obesity. The wide 

confidence intervals suggest that future studies with more non-endometrioid endometrial 

cancer cases are required to further dissect any effect. 

The conflicting findings regarding the relationships between blood lipids and endometrial 

cancer risk in observational studies may be due to small sample sizes, varying timing of 

blood collection (e.g. fasting or non-fasting, and pre- or post- endometrial cancer diagnosis), 

and varying control for confounding factors. Findings presented in the current study, through 

the application of bidirectional Mendelian randomization which is less vulnerable to reverse 
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causation and confounding, have helped to clarify the effects of blood lipids on endometrial 

cancer risk. Consistent with our findings, other Mendelian randomization studies have 

observed a positive association between HDL cholesterol and breast cancer risk37-39, and an 

inverse association between LDL cholesterol and lung cancer risk40. Similarly, a time-to-

event Mendelian randomization using data from five longitudinal cohort studies reported 

increased LDL cholesterol level to be associated with reduced cancer risk (all reported cancer 

types combined)41.  

The potential mechanisms underlying the effects of decreased LDL and increased HDL 

cholesterol on cancer risk are unclear as reports of the effects of cholesterol in the literature 

are conflicting. However, oxidised LDL has been shown to be cytotoxic to cancer cells42 and 

can inhibit angiogenesis43,44, a key oncogenic process. Furthermore, given the prevalence of 

type 2 diabetes in endometrial cancer patients, it is noteworthy that HDL cholesterol from 

diabetic patients, which is often glycosylated or oxidised, promotes cancer cell proliferation, 

migration and invasion in vitro45 and metastasis in vivo46. 

The validity of Mendelian randomization analysis lies upon the satisfaction of the assumption 

that the effect of the instrumental variables on the outcome is only mediated through their 

influence on the measured exposure (i.e. no horizontal pleiotropy). One caveat of our study is 

that we do not have complete information of all confounding factors, and thus we did not 

have the ability to evaluate or adjust for unmeasured confounders in the Mendelian 

randomization analysis. Despite the lack of information on confounding factors, we also 

performed several Mendelian randomization analyses that are more robust to unmeasured 

confounding (i.e. HEIDI test in GSMR analysis removes variants which show evidence of 

horizontal pleiotropy, and MR-Egger analysis allows instrumental variables to be 

pleiotropic). We observed consistent results across different Mendelian randomization 
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analyses, and this suggests that residual confounding may have negligible impact on our 

results. The two-sample Mendelian randomization framework allowed us to incorporate data 

from two very large independent GWAS datasets to bolster power and yield more precise 

association estimates. However, we were restricted to summary-level GWAS data, and thus, 

could not perform more refined analyses (e.g. stratification analysis by BMI).  

This Mendelian randomization study provides evidence that increased LDL cholesterol and 

decreased HDL cholesterol, independent of obesity, may reduce the risk of endometrial 

cancer. This effect was particularly apparent for the non-endometrioid endometrial cancer 

subtype, which typically has a more aggressive phenotype and results in poorer prognosis. 

Although further work is required to elucidate the biological rationale underlying this 

association, these results suggest low LDL cholesterol levels and high HDL cholesterol levels 

should be considered as potential risk factors for endometrial cancer.  
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