Sulfonation and Phosphorylation of Regions of the Dioxin Receptor Susceptible to Methionine Modifications

, Whelan, Fiona, Bindloss, Colleen, Furness, Sebastian, Chapman, Anne, Whitelaw, Murray, & Gorman, Jeffrey (2009) Sulfonation and Phosphorylation of Regions of the Dioxin Receptor Susceptible to Methionine Modifications. Molecular and Cellular Proteomics, 8(4), pp. 706-719.

View at publisher

Description

Tagged murine dioxin receptor was purified from mammalian cells, digested with trypsin, and analyzed by capillary HPLC-MALDI-TOF/TOF-MS and -MS/MS. Several chromatographically distinct semitryptic peptides matching two regions spanning residues Glu409–Arg424 and Ser547–Arg555 of the dioxin receptor were revealed by de novo sequencing. Methionine residues at 418 and 548 were detected in these peptides as either unmodified or modified by moieties of 16 (oxidation) or 57 amu (S-carboxamidomethylation) or in a form corresponding to degradative removal of 105 amu from the S-carboxamidomethylated methionine. MS/MS spectra revealed that the peptides containing modified methionine residues also existed in forms with a modification of +80 amu on serine residues 411, 415, and 547. The MS/MS spectra of these peptide ions also revealed diagnostic neutral loss fragment ions of 64, 98, and/or 80 amu, and in some instances combinations of these neutral losses were apparent. Taken together, these data indicated that serines 411 and 547 of the dioxin receptor were sulfonated and serine 415 was phosphorylated. Separate digests of the dioxin receptor were prepared in H216O and H218O, and enzymatic dephosphorylation was subsequently performed on the H216O digest only. The digests were mixed in equal proportions and analyzed by capillary HPLC-MALDI-TOF/TOF-MS and -MS/MS. This strategy confirmed assignment of sulfonation as the cause of the +80-amu modifications on serines 411 and 547 and phosphorylation as the predominant cause of the +80-amu modification of serine 415. The relative quantitation of phosphorylation and sulfonation enabled by this differential phosphatase strategy also suggested the presence of sulfonation on a serine other than residue 411 within the sequence spanning Glu409–Arg424. This represents the first description of post-translational sulfonation sites and identification of a new phosphorylation site of the latent dioxin receptor. Furthermore this is only the second report of serine sulfonation of eukaryotic proteins. Mutagenesis studies are underway to assess the functional consequences of these modifications.

Impact and interest:

12 citations in Scopus
10 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 217586
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
Measurements or Duration: 14 pages
Keywords: Dioxin receptor, Methionine Modifications, Orbitrap-FT-MS, Phosphorylation, Sulfonation
DOI: 10.1074/mcp.M800459-MCP200
ISSN: 1535-9484
Pure ID: 32003600
Divisions: Past > QUT Faculties & Divisions > Faculty of Health
Past > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Biomedical Sciences
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 06 Nov 2021 08:29
Last Modified: 03 Mar 2024 14:22