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BINARY MARKET MODELS WITH MEMORY

AKIHIKO INOUE, YUMIHARU NAKANO AND VO ANH

ABSTRACT. We construct a binary market model with memory that approx-
imates a continuous-time market model driven by a Gaussian process with
stationary increments. We give a sufficient condition for the binary model to
be arbitrage-free. In a case when arbitrage opportunities exist, we present the
rate at which the arbitrage probability tends to zero.

1. INTRODUCTION

Let T' € (0,00). We consider the stock price process (S¢)o<i<7 that is governed
by the stochastic differential equation

where o and the initial value Sy are positive constants, and b € R. In the
classical Black-Scholes model, Brownian motion is used as the driving noise pro-
cess Y, and the resulting price process S becomes Markovian. In Anh and In-
oue (2005), Anh et al. (2005) and Inoue et al. (2006), the Gaussian process
Y, = By — fot{ffoo pe (P~ dB Yds, 0 < t < T, which has stationary incre-
ments, is used instead as the driving noise process Y in (1.1), where p and ¢ are real
constants such that 0 < ¢ < 00, —¢ < p < 00, and (By)tcr is a one-dimensional
Brownian motion defined on a probability space (2, F, P) satisfying By = 0. The
parameters p and ¢ describe the memory of Y, and the resulting stock price process
S becomes non-Markovian.

We write (F;)o<t<r for the P-augmentation of the filtration generated by the
process (Y;)o<i<7. The theory of innovation processes as described in Liptser and
Shiryayev (2001) tells us that Y is an (F)-semimartingale (cf. Anh and Inoue, 2005,
Theorem 3.1) though the above representation itself is not a semimartingale repre-
sentation of Y since (By) is not (F;)-adapted. In fact, using the prediction theory
for Y which is developed in Anh et al. (2005), the following explicit semimartingale
representation of Y is obtained in Inoue et al. (2006):

t s
Y: :Wt—/ {/ l(s,u)qu}ds, 0<teT, (1.2)
o o

where (W;)o<¢<7 is a one-dimensional Brownian motion, called the innovation pro-
cess, satisfying c(W; : 0 <s<t) =0(Y;:0<s<t)for 0 <t <T and I(t,s) is a
bounded Volterra kernel given explicitly by

_ _ 2pq
— +q)(t—s
I(t, s) = pe~(PHa) ){1— (2q+p)2e2qs—p2}’ 0<s<t<T. (1.3)
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Thus the process Y has the virtue that it simultaneously possesses the property of
a stationary increments process and the simple semimartingale representation (1.2)
with (1.3). The market model driven Y is arbitrage-free and complete since the
process Y becomes a Brownian motion under a suitable probability measure (see
Anh and Inoue, 2005, Section 3).

As is well known, binary approximation of the Black-Scholes model plays a very
important role for the model in many ways. Sottinen (2001) constructed a binary
market model that approximates the market model driven by fractional Brownian
motion, and investigated the arbitrage opportunities in the binary model. In this
paper, we construct a binary market model with memory that approximates the
continuous-time market model driven by Y in (1.2). However, rather than consider-
ing the special kernel (¢, s) in (1.3), we take a general bounded measurable Volterra
kernel I(t,s). We remark that any centered Gaussian process Y = (Y;)o<¢<7 that
is equivalent to a Brownian motion has a canonical representation of the form (1.2)
with [(¢,s) satisfying square integrability (see Hida and Hitsuda, 1991, Chapter
VI). Thus, in this paper, we consider a subclass consisting of Y for which (¢, s)
is bounded. As in Sottinen (2001), the key feature to the construction of the ap-
proximating binary market is to prove a Donsker-type theorem for the process Y
(Theorem 2.1).

As stated above, the market driven by Y in (1.2) with (1.3) is arbitrage-free
unlike that driven by fractional Brownian motion. However, the approximating
binary market model may admit arbitrage opportunities. We consider conditions
for their existence or non-existence. We also study the rate at which the aribtrage
probability tends to zero.

2. A DONSKER-TYPE THEOREM

Let T € (0,00). In what follows, we write C = C7p for positive constants,
depending on 7', which may not be necessarily equal to each other. Let n € N. In
Sections 2 and 3, we write >, X EL"tJ X(inys o<t Xs H X( /n)-

Let I(t,s) be a bounded measurable function on [0,7] x [0,T] that vanishes
whenever s > t. Let W = (W;)o<;<7 be a one-dimensional Brownian motion on a
probability space (2, F, P). We define the process Y = (Y;)o<:<7 by (1.2).

We put, for t,u € [0,7],

z(t,u) = / I(s,u)ds, y(t,u):=1-2z(t,u).

Then both z(t,u) and y(¢,u) are bounded and continuous on [0,7] x [0,T], and
it holds that Y¥; = fo (t,u)dW, for 0 < t < T. Let C be a positive constant
satisfying, for (t1,u), (t2,u) € [0,T] x [0,T],
|2(t1,u) = 2(t2, u)| = [y(tr, u) —y(t2,w)| < Cltr —to]- (2.1)
Let {&}3°, be a sequence of i.i.d. random variables with E[¢;] =0, E[(&)?] =1
and E[(£1)*] < co. We define the process W (") = (Wt( ))UStST by
W, = — 5, 0<t<T,
t \/ﬁ ; 6 = =

where |z | denotes the greatest integer not exceeding z. The process W (™) converges
weakly to W in the Skorohod space by Donsker’s theorem (see, e.g., Billingsley,
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1968, Theorem 16.1). We define the process Y () = (Yt(n))OStST by
t
v = / y(ld s)dwm, 0<t<T.
0
Then it follows that Y™ = n~1/2 Sy ((nt) /nyifn)é; for 0 < t < T.
Here is the Donsker-type theorem for Y.

Theorem 2.1. The process Y™ converges weakly to' Y as n — 0o.

Proof. We first show that the finite-dimensional distributions of ¥ (") converge to
those of Y as n — oo. Thus, for ay,...,aq € R and ty,...,tq € [0,T], we show
that X (™) converges to a normal distribution with variance Var(X), where X(?) :=

Zk 1akY and X = Ek 1 arYs, . We have
Ln(tk/\tl)J

d
1 ) )
V (n) — - Lnth 4 LntlJ %
ar(X ) Z akaln Z y( n >n)y( n ’n)
k=1 =1
d [n(tpAt])]
= > war | y(bntel Lnsltly, (nis] nelil g
k=1 0
where t A s := min(¢,s). The function (t1,t2,u) — y(t1,u)y(t2,u) is continuous,

whence uniformly continuous, on the compact set [0, 7]3. From this and the fact
that 0 <t — (|nt]/n) < 1/n, we see that

te At
nh_}n;o Var(X k;l akal/ y(tr, s)y(t, s)ds = Var(X). (2.2)

)

We may assume Var(X) > 0. For, otherwise, (2.2) implies that X (™) converges
to X = 0 in law. We put bgn) = 22:1 ary(|ntr|/n,i/n) and Xi(n) = nil/zbgn)&
for n,i =1,2,.... Then we have X" = EEZITJ Xi(n) forn=1,2,.... We need to
show the following Lindeberg’s condition: for every € > 0,

[nT]
nli—>nolo Z E [(Xi("))21{|x§")|>m(n>} =0, (2.3)
i=1
where o™ := /Var(X (™). Choose a positive constant M satisfying [b\™| < M
for n,i =1,2,.... Then since |X\™| < Mn=1/2|¢|, we have
[nT] ( ) [nT]
n -1
Z E |: X \X(")\>ea(")}] < Z E [ Mn /2 fz) 1{\Mn_1/261\>6[r(")}]
i=1
L"TJ
- Z M?*n~ 61) Ljes>n- 1(7(")\/_}] < M°TE [(fl) e, >m- 10’(")\/_}]

We obtain (2.3) from this. By (2.3) and (2.2), we can apply the central limit
theorem (cf. Billingsley, 1968, Theorem 7.2), so that X converges to X in law,
as desired.

Next we show that, for 0 <t <t <ty <T andn=1,2,...,

B[V = vV - V2] < Clts - a2, (2.4)
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The theorem follows from this and Theorem 15.6 of Billingsley (1968). However, if
ty —t1 < 1/n, then either ¢; and ¢ or ¢ and ¢; lie in the same subinterval [2, mT“)

for some m, whence the left hand side of (2.4) is zero. Therefore we may assume
that tg — t1 Z l/n
We show that
E[|v" -y <clt s (2.5)

for t, s and n satisfying
0<s<t<T, t—s>1/n. (2.6)

This implies (2.4) under the condition 5 —t; > 1/n since

B[V =y - v R] < B [y ® -y B v - v

< Ot —ty||ta —t] < Clta — t1]*.
For distinct 4, j, k and [, E[(&)3¢;] = E[(&)%¢&] = E[&€;6&] = 0. Hence,
B[V, = v = n 2B (2, 1) — y(leed )ey s

n ’'n n 'n
[nt]

El(&) ) Do {u(B ) — (5 DY

FOBET Y e £ -yl gyl 4 -yl 52
1<i<j<|nt]
= (I + L)E[(&)*] + 6(J1 + J2 + J3) B[(&)°]?
for ¢, s and n satisfying (2.6), where
[ns] [nt|
A C D EC S TS SINTE )
i=1

and

(4,7)EAL

Jp=n? 3 {y(lntd by —y(lnel 1)y lntl a2
(2,7)EA2

Jy=n? Y y(lnd iyl iy
(i,5)EA3

with Ay = {(4,j) : 1 < i < j < [ns|}, Ao = {(i,5) : 1 < i < |ns|, [ns| <
Jj < |nt]}, and Ay = {(i,7) : |ns] < i < j < [nt]}. By (2.6), [nt] — [ns| <
nt—ns+1=n(t—s+1) <2n(t—s),sothat #A; < Cn?, #A, < Cn*(t—s), and
#A3 < Cn?(t — 5)%. Therefore, using (2.1), we have |J;| < C(t — s)? for i = 1,2,3
and ¢, s and n satisfying (2.6). Similarly, |I;| < C(t — s)? for i = 1,2. Thus (2.5)
follows. O

Denote by AX and [X] the jump and quadratic variation processes of a process
X, respectively, i.e., AX, := X, — limg X, [X]; := 3, , (AX,)”.

Theorem 2.2. The process AY (") converges to zero in probability, while [Y(")]
converges to the deterministic process (t)OStST in probability.
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Proof. By (2.5) with (2.6), E[(AY,")!] < E[(v," =V, )*] < Cn~2, so that,

ZE[ Y(")] C’Z—Z—)O

t<T

DAY,

E { sup <AY£">>4} <
t<T

0<t<T

as m — co. Thus AY (™ converges to zero in probability.

We put 2™ = f[fz(L"—TfJ,s)dWs(n) for 0 < t < T. Then we have Y™ =
W™ — z{™, whence [Y (], = W], — 23 _ (AWS)(AZM) + [2()]..

Since z(u,u) = 0, we have

LntJ—l
(n) _ ) _ 1 nt] i [nt]=1 _0 i _
z"M -z — Int] iy (b= iyve (=0 if [nt] = 1).
-t = n ;{Z( on) — (P ) (=00 if nt] =1)
From this and (2.1), E[(AZ{™)?] is at most
[nt]—1 5
() _ g y2] Z 1 Int] iy _ ylntl=t iyy2 oL €0 C
E[(Zt Zt—%) ] - n ; {Z( n ’n) Z( n ’n)} < n n2 - n2
Since [Z(™)], is increasing, we see that
c C
1| = c_¢
E L);lgT[Z ]t] - [ ]T] -3 E [ AZ™) ] ST == (27)

t<T

Thus [Z(™] converges to zero in probability.
We have [W(™], — t = (|nt]/n) — t + (1/n) " {(£)? = 1}. Let e > 0. Then,
by Kolmogorov’s inequality (see, e.g, Williams, 1991, Section 14.6),

1 [t [nt]
’ (oi;% R 0]z =7 (e[S e -0z m)
LnTJ 2 nT 2 2
_621’L2 5—1 _mE[(ﬁ—l)]—)O

as n — oo. From this and the fact that 0 < t — (|nt|/n) < 1/n, we see that [W ()]
converges to the deterministic process (¢) in probability.
By Schwarz’s inequality, we have

> AW @z < WERPZOR? < WAz,

whence, by (2.7),

[ Sy ‘qu AW )H <E [[W(")];,/Q[Z(n)];ﬂ

0<t<T
1/2
<E [[W(n)]T:| E |:[Z(n)]T:| < TY? . (Cn~Y)Y/2 = on—1/2,
Thus the process (qu(AWs("))(AZs(n))) also converges to zero in probability.

Combining, we see that [Y'(™)] converges to (t) in probability. O
5



3. APPROXIMATING BINARY MARKET

Let Y be as defined in Section 2. For T, o € (0, 00) and a deterministic continuous
function b(-) on [0,T], we consider the stock price process S that is governed by
the following more general stochastic differential equaltion than (1.1):

dS; = Si{b(t)dt + 0dYr}, 0<t<T,
where the initial value Sy is a positive constant. The solution S is given by S; =
So exp {U)Q + fo s)ds — l zt} For n =1,2,..., let Y™ is as in Section 2. We
consider the process S(™ = (St( ))OStST defined by
n n 1 ns
st ::11{1+0AYS( )+Eb(%)}, 0<t<T.

The aim of this section is to prove that S(™ converges weakly to the process S.
As in Eq. (10) and (11) of Sottinen (2001), we put

1 n) (2,n) n
=2 AV vy Y= DAYy gy
s<t s<t

Then we have

th(n) — th(l,n) + Y;(Z,n)’ (31)

YO = STAY) T sy cyyays (3.2)
s<t

[Y(2’n)]t = Z(Ays(n))21{|AYs(")\Z%a—l}’ (33)
s<t

[y ™, = [y )], + [y )], (3.4)

Lemma 3.1. The process [Y (>™)] converges to zero in probability, whence [Y(™)]
converges to the deterministic process (t) in probability. The process Y2 con-
verges to zero in probability, whence Y ('™ converges weakly to Y .

Proof. By Theorem 2.2, the process AY (") converges to zero in probability. Since
(3.3) implies that P(sup0<t<T[Y(2’")]t > ¢€) is at most P(supy<;<r[Y *™]; > 0) =
P(supp<;<r |AY | > 1o71), [Y(2™)] converges to zero in probability. Therefore,
by Theorem 2.2 and (3.4), [V ()] converges to zero in probability.

In the same way, since P(supg<,<r [V, >™| > €) < P(supy<;<r |AY, ™| > 507,
it follows from Theorem 2.2 that V(27 converges to zero in ;)r?)bability. Therefore,

by Theorem 2.1, (3.1) and Theorem 4.1 of Billingsley (1968), Y (1™ converges
weakly to Y. O

Theorem 3.2. The process S\ converges weakly to S.

Proof. Write St(") = St(l’n)St(2’n), where 5(2 M= [ A1+ UAYS(Q’")}, St(l’") =
[T {1+ s AV 4 (1/n)b(|ns|/n)}, and the processes Y (™) are as above. We
claim the following: (i) S converges weakly to S; (i) S3™) converges to one in
probability.
The claim (ii) implies that S(*™) (S(2™) —1) converges to zero in probability (see
Problem 1 in Billingsley, 1968, p. 28). Since S\ = "™ (S*™ — 1) + "™ we
6



see from (i) and Theorem 4.1 of Billingsley (1968) that S(™) converges weakly to S,
as desired.

For € > 0, we have P(supy<,<r 5%

—1/ > €) < P(suppe,er |AY, ™| > §o ).
Since the process AY (") converges to zero in probability by Theorem 2.2, S(27)
converges to one in probability. Thus (ii) follows.

We prove (i). Since the exponential is a continuous functional in the Skorohod
topology, it is enough to prove that log S(*™ converges weakly to the process
(0Y: + [3 b(s)ds — S02t). Notice that |oAY, ™| + L|p(L2)| < 2 for sufficiently
large n and ¢ € [0, T], whence the logarithm log S(™ is well defined for such n.

We have log(1 + z) = z — 2% + r(z)2® for |z| < 1, where r(z) is a bounded
function on |z| < 2. Hence

n 1 1 1 2
lOgSt(l, ) — Z {UAYS(L") + Eb(%) -3 (UAYS(LTL) n ﬁb(%o

s<t

n

3
+r (MYJW + 11)(%)) : <0AYS(1’") + lb(%» }
n

n 1 ns 1 n n
= oV 1Y b — s

s<t

where (") := ¥, {(1/m)b(ns] /m) + o AV""} and

3
W) = Y (oA 4 Lyl ) (aaviie 4 L)

s<t

We put T\ := De<t Ly( sy AY{"™ . Then

n

(}En) —n2 Z b(%)Q n 20F§N) + o[y m),.

s<t

Since b(-) is bounded, the first term n=> dos<t b(%)2 goes to 0 as n — oo. By

Lemma 3.1, the third term o[V (1] converges to (o%t) in probability. As for the
second term, it holds that
sup |I}"| < Csup AV < € < |AY™).
0<t<T s<T

Since AY (") converges to zero in probability by Theorem 2.2, so does T'™). Thus the
process (®;) converges to (0*t). Since supgc,<q Vs < C(t+ SUp,<r |AYS(1’")|)<I>T,
we see that the process (¥;) converges to zero in probability. Using these facts,
Lemma 3.1, and Theorem 4.1 of Billingsley (1968), we see that log S converges

t
weakly to (0Y; + [) b(s)ds — $07t). ad
4. ARBITRAGE OPPORTUNITIES IN THE BINARY MARKET

In this section, we study the arbitrage opportunities in the approximating binary
market model with memory constructed in Section 3. For simplicity, we assume
that the function b(:) is a real constant as in (1.1).

Let N € N, r,b € R,and o € (0,00). The number N corresponds to n in Sections
2 and 3. Let y(t,u) be as in Section 2. We define r¥) := r/N, (V) := b/N. The
| NT |-period market M) consists of a share of the money market with price

7



process (B,(lN))n:[)’l,m’LNTJ and a stock with price process (S,SN))nZO,LMLNTJ. The
prices are governed respectively by

=1, BM=BM a1 +rM™) n=1,...|NT,

SV =50, SN =M A+ +X(V), n=1,...,|NT],

where sq is a positive constant,

XN = oavy? = fZ{y% &) -y B}

and {¢;} are i.i.d. random variables such that P(§ = 1) = P(§ = —1) = 1/2. By
Theorem 3.2, the binary market model M) approximates the continuous-time
market model with bond price process (e™) and stock price process S in (1.1).

(N)

Given the values of &;,...,&,_1, the random variable X,, "’ takes the following
two possible values u, and d,: d; = —0/v/N, u; =o/v/N, and for n =2,...,N,

ag

= dn(&r,- oo 8n) = \/—Z{y%ﬁ - %a%)}ﬁi—ﬁ,

= tn(fsees bn) = \/—Z{y%ﬁ —y("%%}fﬂr\/—ﬁ

We investigate the arbitrage opportunities in M(N). Choose C € (0, o) so that
ly(t,u) —y(s,u)| < Clt—s|, 0<t,s,u<T. (4.1)

Theorem 4.1. Suppose that T < 1/C. Then there exists an integer Ny such that
for each N > Ny, the market MN) is arbitrage-free.

Proof. From the condition TC < 1, we have an integer Ny such that
b
NN
if N > N[) Let n € {1,...,|NT]|}. Then, by (4.1), minge{il’l}n_l dn(§) =
E |Z/(N,N) ("TA,%)I—\/LNis at least

—~oNY2[{(n-1)C/N}+1] > —oN V2(TC +1).

(TC+1)> -1, |r—b <VN1-TC)s (4.2)

This and (4.2) yield b™) + X*) > (b/N) +minge_y 1301 dn(€) > —1 for N > Ny
andn=1,...,|NT|, whence S,, > 0.

We show that M®) is arbitrage-free for N > Np. By Proposition 6.1.2 of
Dzhaparidze (1996), M) is free from arbitrage opportunities if and only if

dpy <™ —pN) <, n=1,...,|NT|. (4.3)

However, maxgc_; 301 dn(§) = N2 300 My(2, L) -y, L)) - o N2

is at most —oN~1/2[1 — {(n — 1)C/N}] < O'N 1/2(1 — TC). Similarly, we see

that ming gy yn-1 un(§) = —oN"1/2 37700 Dy, ) — g, )| o N2 s at

least cN~'/?[1 — {(n — 1)C/N}] > oN~ 1/2(1 — TC). Thus, by (4.2), (4.3) holds

for N > No. 0
8



By Theorem 4.1, the market M) is arbitrage-free for 7' small enough and
N large enough. However, in general, the market M) may admit arbitrage
opportunities, as we see below.

Suppose that there exists a positive constant C' such that I(s,u) > C for 0 <
u<s<T.Let T>1/C. We assume that r <b. Then, d ny7|(=1,...,—1) is

o o (C(INT]-1)
\/_ Z LNTJll( )ds—\/—N>\/—N<T—1>.

Since T'C' > 1, we have d|y7|(=1,...,=1) > rxy —by or S|n1) > (1+7N)S|NT)-1
for N large enough. Therefore, if the value of (&1,...,& nr)-1) turns out to be
(=1,...,—1), then we have an arbitrage opportunity: we may buy stocks at time
| NT'| — 1 using money obtained by shortselling bonds. In a similar fashion, we can
show that if T > 1/C, r < b and N is large enough, then the value (1,...,1) of
(&,---,& nrj—1) gives an arbitrage opportunity.

Put Py = P(U LNTJ {d, < T‘(N) -V < }C) As we see in the proof of Theo-

rem 4.1, the bmary market MW g arbltrage free if and only if Py = 0. The next
theorem gives the rate at which the arbitrage probability Py tends to zero.

NT
INT]-1 L NJ

Theorem 4.2. There exists a positive constant C' = Ch. such that, for each a €
(0,1), we have N(a) € N satisfying Py < C'N~* for N > N(a).

Proof. Set § := (o +1)/2, and choose N () € N so large that
NP2CVT < VN = |(r —b)/o|, N°?>4. (4.4)

if N> N(a). Then d; < r®™ —bN) < uy. For N > N(a) and n = 2,...,|NT],
we put A := NP/2 M, _; = Maxi<m<n—1| Yrey 7| and

1/2

o= [ s ]

where n; = \/N{y (%> ﬁ)—y( N %) }fz for i = 1,2,.... By (4.1), we have
$n_1 < OV/T. This and (4.4) imply that P((r —b)/N < dn) is at most

P (o7 =)+ VN < Myy) < P(Mooy 2 ACVT) < P(Myy > Asuca).
Similarly we have P(u, < (r —b)/N) < P(M,_1 > Asp_1). Since 1A > 1 and
Jdnax il = max [VN{y(F, %) =y )N < s,

it follows from Eq. (12.16) of Billingsley (1968, p. 89) that P(M,—1 > Asp—1) <
CoA~* for some constant Cy > 0 independent of N and n; notice that n; here
corresponds to &; in Eq. (12.16) of Billingsley (1968, p. 89). Hence, Py is at most

INT]
b r—b 2|NT|C, _ 2TCo

— < < — < < .
;{P<N d>+P<“"— N>}— N2 = Ne

Thus the theorem follows. g
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