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 “A particular shot or way of moving the ball can be a player’s personal signature, but efficiency of 
performance is what wins the game for the team.” Pat Riley (ex-Knicks, Lakers, and Heat coach) 10	  

Abstract 

This note examines the productive efficiency of 62 starting guards during the 2011/12 National 

Basketball Association (NBA) season. This period coincides with the phenomenal and largely 

unanticipated performance of New York Knicks’ starting point guard Jeremy Lin and the attendant public 

and media hype known as Linsanity. We employ a data envelopment analysis (DEA) approach that 15	  

includes allowance for an undesirable output, here turnovers per game, with the desirable outputs of 

points, rebounds, assists, steals, and blocks per game and an input of minutes per game. The results 

indicate that depending upon the specification, between 29 and 42 percent of NBA guards are fully 

efficient, including Jeremy Lin, with a mean inefficiency of 3.7 and 19.2 percent. However, while Jeremy 

Lin is technically efficient, he seldom serves as a benchmark for inefficient players, at least when 20	  

compared with established players such as Chris Paul and Dwayne Wade. This suggests the uniqueness of 

Jeremy Lin’s productive solution and may explain why his unique style of play, encompassing individual 

brilliance, unselfish play, and team leadership, is of such broad public appeal.   
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1. Introduction 

Jeremy Lin, New York Knicks starting point guard, Harvard economics graduate, and the 

first player of Taiwanese descent in the National Basketball Association (NBA), has thrilled the 

US and the world with an average of more than 27 points, 8 assists, and 2 steals per game in his 

first four starts. Leading his team to four successive victories in the 2011/12 season in his first 5	  

week as starting point guard earned him Eastern Conference player of the week as well as two 

straight Sports Illustrated covers—joining the likes of Dirk Nowitzki of the Dallas Mavericks 

and Michael Jordan (former Chicago Bulls player) with dual distinctions. Dubbed Linsanity 

(currently with more than seven million Google hits), Lin has become a phenomenon since he 

made history by scoring 89 points in his first three starts. This is the most of any player since the 10	  

NBA–American Basketball Association (ABA) merger in 1976/77, exceeding both LeBron 

James in his first three starts, and rivalling such legends as Michael Jordan and Larry Bird.  

However, the fascination with Linsanity goes beyond mere playing statistics. Lin never 

received a basketball scholarship out of high school and went undrafted in the 2010/11 NBA 

draft. He was a benchwarmer in his previous teams, played minimal minutes, and was waived off 15	  

the rosters of several teams after his first year in the NBA. Indeed, prior to the start of the 

2011/12 season, Lin was playing in the NBA D-league. But since February 4, when he came off 

the bench and led New York to victory over New Jersey scoring 25 points and handing out 7 

assists in 36 minutes of playing time, he has become the Knicks’ starting point guard. 

Linsanity has since moved beyond the basketball court into the world of business. 20	  

Adubato (2012) at nj.com argues that leaders and professionals in all arenas can learn from Lin’s 

can-do attitude, unselfishness, humility, and ability to recognize the achievements of his 

teammates. Gorrell (2012) in the Huffington Post maintains Lin’s story is all about the 
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importance of diversity in business and the infectious nature of success, while Crecenzo (2012) 

in Entrepreneur suggests “…the talent universe is full of overlooked people [like Lin], shunned 

for reasons of geography, status or background”. Lastly, Jackson (2012) in Forbes asserts that 

Lin’s success is proof that it is “…always better to be a first-rate version of yourself, instead of a 

second-rate version of somebody else”, to believe in yourself, and to seize opportunity when it 5	  

comes up.  

Paradoxically, Lin is not without his critiques, as exemplified by Neil Paine at Sports 

Illustrated. Paine (2012), of course, lauds Lin’s “…phenomenal ability to get to the basket” and 

natural playmaking ability, maintaining that his “…quick first step and attacking style naturally 

lead to a large number of free throws, which are great for enhancing offensive efficiency”:  10	  

[E]fficiency has definitely been the name of Lin's game during his recent run. His true 

shooting percentage, which measures the average number of points a player generates per 

possession when he shoots, compares favourably to that of other star players…only two 

players [Lakers’ Kobe Bryant and the Thunder’s Russell Westbrook] shoulder a greater 

proportion of their team’s offensive burden than Lin has this season, and Lin’s offensive 15	  

efficiency is considerably better. The only players in the NBA to use more than 30 

percent of team possessions and post better efficiency marks than Lin? Heat teammates 

[LeBron James and Dwyane Wade]. So, offensively, Lin is in elite company. 

However, as Paine continues, “It’s also fair to point out Lin’s propensity for turnovers. 

This season, 21.8 percent of Lin’s individual possessions have ended with him committing a 20	  

turnover, 16th most among guards with at least 159 minutes. Lin’s turnovers tend to come in 

bunches, too. He already has two eight-turnover games, to go with three more games in which he 

turned the ball over six times”. Lin himself concedes as much. After the Knicks’ win against 
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Sacramento, Lin said his greatest challenge thus far was to find ways to be efficient with the 

minutes given and to avoid turnovers. This is especially noteworthy in the Knicks’ following 

game, which they lost to New Orleans 89–85, when Lin had nine turnovers, tying for the most in 

the 2011/12 season.  

Inspired by these and other comments, the purpose of this note is to provide a timely and 5	  

comprehensive assessment of Jeremy Lin’s basketball playing efficiency. Fortunately, research 

in sports economics has recently embraced econometric and mathematical methods for the study 

of sporting efficiency, an important development as these empirical relationships are useful for 

making decisions on, among other things, hiring, play positions, and salaries. Beginning with 

work by Scully (1974) on baseball and Thomas et al. (1979) and Zak et al. (1979) on basketball, 10	  

successive works have estimated team production functions in an effort to quantify the 

relationship between sporting inputs and sporting success. Subsequently applied to many sports, 

including soccer (Dawson et al. 2000a, 2000b; Carmichael et al. 2001; Hass 2003; Espitia-

Escuer and Garcia-Cebrian 2004; Barros and Leach 2006a, 2006b, Barros et al. 2009), rugby 

league (Carmichael and Thomas 1995), baseball (Mazur 1994; Ruggerio et al. 1996; Einholf 15	  

2004, Kang et al. 2007; Lewis et al. 2007), and American football (gridiron) (Hadley et al. 2000; 

Hofler and Payne 1996) of particular relevance are those concerning basketball. These include 

Chatterjee et al. (1994), Hofler and Payne (1997, 2006), Berri (1999), McGoldrick and Voeks 

(2005), Lee and Berri (2008), Rimler et al. (2010) and Katayama and Nuch (2011). However, 

unlike nearly all of this research, we choose to focus on individual player efficiency. 20	  

The remainder of the note is structured as follows. Section 2 briefly describes the 

conceptual framework and the data used in the analysis. Section 3 explains the methodology, and 

Section 4 reports the results. Section 5 concludes the paper.  



[5]	  
	  

2.  Conceptual framework and data specification 

To measure the efficiency of a player, we need to specify an appropriate production 

process in which measurable inputs transform into measurable outputs. For instance, Lee and 

Berri (2008) considered the number of basketball wins as an output, which in turn is dependent 

on inputs such as points per possession employed and the points surrendered per possession 5	  

acquired. Likewise, Berri (1999) measured a player’s value by considering inputs such as points, 

rebounds, and steals, etc. and including the number of team wins. This model suggests that the 

number of wins influences a player’s efficiency or value. However, unlike individual sports 

where a win is largely dependent on an individual’s performance, basketball is a team sport, 

which suggests that the performance of all players must be included in the production model to 10	  

determine a win. In our framework, we measure a player’s contribution based on his own inputs 

and outputs, rather than those of the team. This may or may not correspond with team success. 

Consequently, our analysis measures the efficiency of point and shooting guards 

(collectively guards). The point guard and shooting guard, two of the five standard positions in a 

regulation basketball game are typically the team’s best ball handlers and passers. The point 15	  

guard is a position equivalent to that of the midfielder in soccer, the quarterback in American 

football (gridiron), the halfback in rugby league, or the centre in ice hockey, in that the player is 

responsible for directing plays and passing the ball as well as scoring. For this reason, the point 

guard should fully understand and implement the coach’s game plan and the team’s overall 

strategy and is a primary determinant of the team’s ability to win games. By way of comparison, 20	  

the shooting guard’s main objective is to score points, but may also serve as the ball handler, 

exemplified, for example, by Kobe Bryant of the Los Angeles Lakers and Jason Terry of the 

Dallas Mavericks. Recent years have seen an increase in the number of shooting guards being 
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point guards and vice-versa. Point guards as shooting guards include players like Derrick Rose of 

the Chicago Bulls and Russell Westbrook of the Oklahoma City Thunder. Because of the 

interchangeableness of the roles, it is difficult to ascertain which players are truly point guards 

and/or shooting guards, so our sample considers all guards. 

All our data are from the official NBA website (www.nba.com). We specify the outputs 5	  

based on a player’s overall contribution to game play. These are points per game (PPG) (scoring 

with field goals or free throws), rebounds per game (RPG) (gaining possession of the ball after a 

missed field goal or free throw), assists per game (APG) (passing the ball to a teammate in a way 

that leads to a score), steals per game (SPG) (legally causing a turnover to gain possession of the 

ball), and blocks per game (BPG) (legally deflecting a field goal attempt). These five outputs are 10	  

positive outputs associated with superior guard performance, though the weighting or emphasis 

placed on each output will of course vary throughout the game. For instance, points are a better 

indicator of offensive play while steals are a better measure of defensive play. In addition, we 

include turnovers per game (TOPG), which is a negative or undesirable guard output, as this is 

associated with the team turning from offensive to defensive play. The single input in our model 15	  

is minutes per game (MPG). Actual play in the NBA comprises 12-minute quarters in a 48 

minute game, but after including half-time, timeouts, fouls, and close games, a basketball game 

typically lasts around 2½ hours. Ideally, a guard would maximize the positive outputs and 

minimizing the negative output given the feasible resource limit of time in play.  

Using this framework, we need to ensure that our dataset allows for an appropriate 20	  

comparison. First, we include only guards in our analysis. This is because our behavioural 

assumption (i.e. the specification of inputs and outputs) differs markedly depending on the 

player’s position and responsibilities, in turn depending on archetypical physical attributes and 
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mental capabilities. This ensures we compare like with like. Second, we only include players 

who have played 19 games or more as a starter. We base this threshold on the number of games 

for which Lin has been a starter (that is, playing from the start of the game, and usually an 

indicator of the player’s importance in the team). We only consider starters as it is only from 

when Jeremy Lin became a starter that he performed most outstandingly. Hence, of the 128 5	  

guards in the NBA, 62 are eligible for inclusion in our sample. Finally, as we focus on the 

Linsanity phenomenon that began in February 2012, we restrict ourselves to a cross-sectional 

analysis of the 2011/12 season.  

<TABLE 1 HERE> 

Table 1 provides selected descriptive statistics for the guard input and outputs as 10	  

sampled. As shown, the typical NBA starting guard is on the court for 31.68 minutes, scoring 

13.83 points, making 3.35 rebounds, providing 4.42 assists, 1.18 steals, and 0.29 blocks. The 

guard also turnovers the ball to the opposing team 2.15 times. Of the variables included, the most 

variable as measured by the coefficient of variation is blocks per game and the least variable is 

minutes per game. By way of comparison with the focus of our analysis, Jeremy Lin is in the 15	  

upper quartiles for minutes (35.70), points (19.40), assists (8.40) and steals (2.40) per game. Less 

well, he is only in the next-to-upper quartile for rebounds per game (3.60) and the next-to-lower 

quartile for blocks per game (0.26). Most troublingly, Jeremy Lin also has the most turnovers 

(5.10) per game in the entire sample. 

 20	  
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3. Methodology 

We use a mathematical programming approach to calculate the productive efficiency of 

NBA starting guards, including Jeremy Lin. The mathematical programming approach seeks to 

evaluate the efficiency of a decision-making unit (here a player, but also an organisation or team) 

relative to other decision-making units in the same area (here other players, but also industries or 5	  

sports). The most commonly employed version of this approach is a linear programming tool 

referred to as ‘data envelopment analysis’ (DEA). DEA essentially calculates the economic 

efficiency of our given player relative to the performance of other players producing the same 

outcomes, rather than against some theoretical or idealised standard of performance.  

One obvious problem with DEA is that in contrast to the econometric approaches to 10	  

efficiency measurement it is both nonparametric and nonstochastic. Thus, we make no 

accommodation for the types of bias resulting from environmental heterogeneity, external 

shocks, measurement error, and omitted variables. Consequently, we assess the entire deviation 

from the productive frontier as being the result of inefficiency. This may lead to either an under 

or over-statement of the level of inefficiency. However, there a number of benefits implicit in 15	  

DEA that makes it attractive on a theoretical level. First, given its nonparametric basis, it is 

relatively easy to alter the specification of inputs and outputs and thereby the formulation of the 

production correspondence relating inputs to outputs. Second, when using the econometric 

approach, we impose considerable structure upon the data from stringent parametric form and 

distributional assumptions regarding both inefficiency and, in the case of stochastic frontiers, 20	  

statistical noise. These considerations, and the natural emphasis of DEA on the notion of ‘best-

practice’ performance, make it an attractive choice in our chosen context. 
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More specifically, we employ Seiford and Zhu’s (2002) data envelopment analysis (henceforth 

SZ-DEA) framework that deals with both desirable and undesirable outputs concurrently. SZ-

DEA has been used in recent studies such as Lu and Lo (2007) on regional development in 

China, Chin and Low (2010) on port performance and Yeh et al. (2010) on comparisons of 

energy utilisation efficiency between China and Taiwan. Under basketball conditions, we can 5	  

view individual efficiency in terms of the utilisation of ball possession with the aim of 

maximising points and other contributions while minimising the number of turnovers. This 

suggests increasing the desirable output (Yg) while reducing the undesirable output (Yb) which 

follows the linear monotone decreasing transformation in Seiford and Zhu (2002) based upon the 

classification invariance concept in Ali and Seiford (1990). Seiford and Zhu’s (2002) approach 10	  

helps preserve the linearity and convexity of the DEA model. Starting with the following DEA 

data domain: 
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where Yg and Yb represent the corresponding desirable and undesirable outputs and X represents 

the input. To increase Yg while reducing Yb, Seiford and Zhu (2002) multiplied each undesirable 15	  

output by negative one and then find a proper translation vector value w to convert all negative 
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Based upon (2), we then use Banker et al. (1984) model to modify the following linear program: 
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Here, θ is the efficiency score of the DMU, Yg and Yb are the j-th desirable and undesirable 

outputs, respectively, xj is the j-th input and zj is the weight of j-th player, and xo and yo represent 

the input and output vectors for all players.  

To investigate better the impact of undesirable outputs on starting guard productive 5	  

efficiency, we model two separate cases. All cases have the same set of inputs, but different sets 

of outputs. In the first case, we restrict the outputs to only the desirable outputs (PPG, RPG, 

APG, SPG, and BPG). The second case takes into account both desirable and undesirable 

outputs; that is, we also include TOPG. 

 10	  

4. Results 

Table 2 provides the efficiency scores and ranks for each player using the above method. 

An efficiency score of one indicates that the player is efficient and therefore lies on the best-

practice productive frontier. Note that the production frontier reflects different combinations of 

the inputs with the weights determined by the sample data, such that different players on the 15	  
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frontier are engaging in different productively efficient behaviour. For example, one player may 

be efficient because of a relatively large number of defensive plays while another may be 

efficient because of their offensive play in scoring points. In general, a larger number of outputs 

imply greater opportunity for efficient behaviour, and in turn, more players defining the frontier. 

A player with an efficiency score more than one indicates that a player can improve his 5	  

efficiency by modifying his production process in order to reach the production frontier along the 

closest path defined by the direction vector.  

<TABLE 2 HERE> 

If we consider the model including only desirable outputs, 19 of the 62 players (30.6 

percent) are efficient with a mean level of inefficiency of 19.2 percent (= 1.192 – 1). As our 10	  

model is output-orientated, focus is on the equiproportionate augmentation of outputs relative to 

inputs. Accordingly, the average NBA starting guard would have to increase his desirable 

outputs by 19.2 percent to place him on the best-practice productive frontier. The most 

inefficient player is Ray Allen (1.645 or 64.5 percent inefficient). However, when we include 

undesirable output (turnovers) in the model, 26 players are efficient, including all of the players 15	  

judged efficient with only desirable outputs. By considering undesirable outputs in the model, 

eight additional players are efficient largely because while their input and desirable output 

numbers may not be as high, their undesirable output is sufficiently low to place them on the 

frontier. The mean level of efficiency is lower when we take account of the undesirable outputs, 

with the typical NBA point guard being 3.7 percent inefficient relative to best practice. 20	  

This can work both ways. For example, Arron Affalo’s efficiency substantially improved 

after we considered the undesirable output from 61.9 percent inefficient to just 1.2 percent 
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inefficient, increasing his rank from 60th to 31st. In contrast, the efficiency of Tyreke Evans 

improved in terms of level (3.9 to 2.3 percent) but his ranking fell (from 25th to 37th). Similar to 

Färe et al. (1989), our results confirm the same findings that standard DEA method fails to credit 

DMUs for undesirable output reduction, and this potentially distorts the true measured 

efficiency. We can see that Jeremy Lin is fully efficient in both models. 5	  

<TABLE 3 HERE> 

Table 3 details the potential improvements for each inefficient player needed to achieve 

overall efficiency using the model including the undesirable output of turnovers per game (the 

model more favourable to players). This shows the percentage changes required to reduce the 

undesirable output or/and increase the desirable outputs relative to the level of input. For 10	  

example, Deron Williams can improve his overall efficiency by increasing his minutes played 

(MPG) by 14.7 percent (= 1 – 0.853), reducing his turnovers (TOPG) by 2.5 percent (= 1 – 

1.025) and increasing his blocks (BPG) by 82 percent (= 1 – 0.180). Alternatively, Anthony 

Parker could maintain the same level of input in terms of minutes played, and focus instead on 

increasing his outputs in terms of points (by 62.1 percent), rebounds (by 60.3 percent) and steals 15	  

(by 89.5 percent). Obviously, some of these improvements may be feasible in theory, but 

infeasible in practice, given the player’s endowments and game conditions. 

Table 4 provides information on the benchmark players used to determine the efficiency 

improvements needed for the inefficient players in Tables 2 and 3. Note that the benchmark 

players are not equally weighted. For example, Deron Williams’ benchmarks (percentage of 20	  

target needed) are Derrick Rose (77.8 percent), Chris Paul (10.3 percent), Jeremy Lin (10.7 

percent), and Steve Nash 1.2 percent). Note 77.8 + 10.3 + 10.7 + 1.2 = 100 percent. Clearly, of 
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the benchmark players needed for Deron Williams to improve his performance, the most 

important to observe and target is Derrick Rose as his (efficient) combination of inputs and 

outputs is closest to Deron Williams’ existing (inefficient) combination and therefore the easiest 

to imitate in terms of an efficiency improvement.  

<TABLE 4 HERE> 5	  

While any efficient player can potentially serve as a benchmark, in practice only a 

smaller subset typically comprise the optimal benchmark solution. This is quite telling in that the 

most important point guards in terms of defining efficiency improvements (number of player 

benchmarks set) are Chris Paul (29), Dwayne Wade (22), Jared Dudley (16), Daequan Cook (14) 

and Jose Calderon (14). We could then say with some justification that the productive behaviour 10	  

of these five point guards epitomises the NBA at its best. Surprisingly, Jeremy Lin with just four 

benchmarks accounts for only a small percentage of the optimal lambdas, suggesting that in both 

absolute and relative terms his unique performance as defined by Linsanity, while technically 

efficient, is neither feasible nor desirable for the majority of inefficient point guards in the NBA. 

The exceptions are Deron Williams (10.7 percent), Russell Westbrook (22.6 percent), Stephen 15	  

Curry (5.9 percent), and Monta Ellis (1.6 percent). This possibly emphasises the uniqueness of 

his productive solution, encompassing as it does exemplary performance in points, assists and 

steals, moderate performance in rebounds and blocks, and rather lacklustre performance in 

turnovers. A study by John Hollinger (ESPN) also showed similar results that Lin was in the top 

ten most efficient NBA point-guards in the 2011/2012 NBA season based on the Player 20	  

Efficiency Rating (PER)1. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The PER sums up all a player's positive accomplishments, subtracts the negative accomplishments, and returns a 
per-minute rating of a player's performance. 



[14]	  
	  

As DEA is non-parametric and lacks statistical inference, we test the reliability and 

robustness of our results by employing Spearman’s correlation rank test similar to Friedman and 

Sinuany-Stern (1998). The ranking for each model is based on the efficiency scores derived for 

each player from the models DEA and SZ-DEA. In essence, the correlation coefficient (rs) is 

derived from the ranks of the observations between the two models. The rs has a range between 1 5	  

and -1, whereby a value of 1 (-1) indicates perfectly positive (negative) rank-order association, 

while rs = 0 indicates no association exists. Our coefficient was 0.676 (t-statistic = 7.11) and 

statistically significant at 5 percent level which suggests a strong positive correlation between 

these two models indicating consistency in rankings. 

 10	  

5. Concluding remarks 

This note examined the individual player performance of starting point guards in the 

NBA during the 2011/12 season, a period personified by the Linsanity phenomena. Using DEA, 

we measured the productive efficiency of 62 guards using an input–output specification 

encompassing both desirable and undesirable inputs. The results indicate that between 29 and 42 15	  

percent of NBA guards are fully efficient, including Jeremy Lin, with a mean inefficiency of 3.7 

and 19.2 percent. However, while the phenomena that is Jeremy Lin and that spawned Linsanity 

is technically efficient, he seldom serves as a benchmark for inefficient players, at least when 

compared with players such as Chris Paul and Dwayne Wade. This necessarily reinforces the 

uniqueness of Jeremy Lin’s productive behaviour and perhaps highlights why his unique style of 20	  

play, encompassing individual brilliance, unselfish play, and team leadership, is of such broad 

public appeal. 
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Of course, the analysis does have some limitations and these provide useful directions for 

future research. First, due to the input–output specification, the study is limited to Spearman’s 

correlation rank test, although bootstrapping as suggested by Simar and Wilson (1998) would 

have been more appropriate. It is also likely that a smaller number of outputs would mean that 

fewer players define the efficient frontier. With some qualifications, this could more finely 5	  

distinguish between efficient and inefficient players given that the broad specification used in 

this analysis permits such a wide range of potentially productive behaviour. Second, we focused 

only on individual player efficiency compared with the more common analysis of team-level 

efficiency with its natural focus on win and losses. One future direction would be to integrate 

these two hitherto separate areas such that individual player efficiency would nest within team 10	  

efficiency in much the same manner as the performance of a business division or group nests 

with overall corporate performance.    

 

References  

Adubato, S. (2012). Leadership lessons we can take from “Linsanity”. Available at 15	  

http://www.nj.com/business/index.ssf/2012/02/adubato_leadership_lessons_we.html 

(accessed  19 February 2012). 

Ali, A. I., Seiford, L. M., (1990). Translation invariance in data envelopment analysis. 

Operations Research Letters 9, 403–405. 

Banker, R.D., Charnes, A., Cooper, W.W., (1984). Some models for estimating technical and 20	  

scale inefficiencies in data envelopment analysis. Management Science 30, 1078–1092. 

Barros, C. P., Leach, S. (2006a). Analyzing the performance of the English FA Premier League 

with an econometric frontier model. Journal of Sports Economics, 7, 391-407. 



[16]	  
	  

Barros, C. P., Leach, S. (2006b). Performance evaluation of the English premier football league 

with data envelopment analysis. Applied Economics, 38, 1449-1458. 

Barros, C. P., Garcia-del-Barrio, P., Leach, S. (2009) Analysing the technical efficiency of the 

Spanish Football League First Division with a random frontier model. Applied Economics, 

25, 3239-3247. 5	  

Berri, D. J. (1999). Who is “most valuable”? Measuring the player’s production of wins in the 

National Basketball Association. Managerial and Decision Economics, 20, 411-427. 

Carmichael, F., Thomas, D. (1995). Production and efficiency in team sports: An investigation of 

rugby league football. Applied Economics, 27, 859-869. 

Carmichael, F., Thomas, D., Ward, R. (2001). Production and efficiency in association football. 10	  

Journal of Sports Economics, 2, 228-243. 

Chatterjee, S., Campbell, M. R., Wiseman, F. (1994). Take that jam! An analysis of winning 

percentage for NBA teams. Managerial & Decision Economics, 15, 521-535. 

Chin, T. H. Anthony, Low, M. W. Joyce. (2010). Port performance in Asia: Does production 

efficiency imply environmental efficiency? Transportation Research Part D, 15, 485-488. 15	  

Crescenzo, B. (2012). Finding the Jeremy Lin on Your Team. Available at 

http://www.entrepreneur.com/article/222849 (accessed 16 February 2012). 

Dawson, P., Dobson, S., Gerrard, B. (2000a). Stochastic frontiers and the temporal structure of 

managerial efficiency in English soccer. Journal of Sports Economics, 1, 341-362. 

Dawson, P., Dobson, S., Gerrard, B. (2000b). Estimating coaching efficiency in professional 20	  

team sports: Evidence from English association football. Scottish Journal of Political 

Economy, 47, 399-421. 



[17]	  
	  

Einolf, K. W. (2004). Is winning everything? A data envelopment analysis of major league 

baseball and the National Football League. Journal of Sports Economics, 5, 127-151. 

Espitia-Escuer, M., García-Cebrián, L. I. (2004). Measuring the efficiency of Spanish first-

division soccer teams. Journal of Sports Economics, 5, 329-346. 

Färe, R., Grosskopf, S., Lovell, C.A.K., Pasurka, C., (1989). Multilateral productivity 5	  

comparisons when some outputs are undesirable: a nonparametric approach. The Review 

of Economics and Statistics, 71, 90–98. 

Friedman, L. Sinuany-Stern, Z. (1998). Comparing ranking scale and selecting variables in the 

DEA context: The case of industrial branches. Computers Ops Res, 25, 781–791. 

Hollinger, J. (2012). 2011-12 Hollinger NBA Player Statistics - Point Guards. Available at 10	  

http://insider.espn.go.com/nba/hollinger/statistics/_/position/pg/year/2012 (accessed 2012). 

Gorrell, P. (2012). What business can learn from the Jeremy Lin story. Available at 

http://www.huffingtonpost.com/paul-gorrell-phd/what-business-can-learn-

f_2_b_1281922.html (accessed 16 February 2012). 

Hadley, L., Poitras, M., Ruggiero, J., Knowles, S. (2000). Performance evaluation of National 15	  

Football League teams. Managerial and Decision Economics, 21, 63-70. 

Hass, D. J. (2003). Productive efficiency of English football teams: A data envelopment analysis 

approach. Managerial and Decision Economics, 24, 403-410. 

Hofler, R. A., Payne, J. E. (1996). How close to their offensive potential do National Football 

League teams play? Applied Economics Letters, 3, 743-747. 20	  

Hofler, R. A., & Payne, J. E. (1997). Measuring efficiency in the National Basketball 

Association. Economics Letters, 55, 293-299. 



[18]	  
	  

Hofler, R., Payne, J. (2006). Efficiency in the National Basketball Association: A stochastic 

production frontier approach with panel data. Managerial and Decision Economics, 27, 

279-285. 

Jackson, E. (2012). Just Lin, Baby! 10 Lessons Jeremy Lin Can Teach Us Before We Go To 

Work Monday Morning. Available at 5	  

http://www.forbes.com/sites/ericjackson/2012/02/11/9-lessons-jeremy-lin-can-teach-us-

before-we-go-to-work-monday-morning/ (accessed 11 February 2012). 

Kang, J. H., Lee, Y. H., Sihyeong, K. S. (2007). Evaluating management efficiency of Korean 

Professional Baseball teams using data envelopment analysis. International Journal of 

Sport and Health Science, 5, 125-134. 10	  

Katayama, H., Nuch, H. (2011). A game-level analysis of salary dispersion and team 

performance in the national basketball association. Applied Economics, 43, 1193-1207. 

Lee, Y. H., Berri, D. (2008). A Re-examination of Production functions and Efficiency estimates 

for the National Basketball Association. Scottish Journal of Political Economy, 55, 51-66. 

Lewis, H. F., Sexton, T. R., Lock, K. A. (2007). Player salaries, organization efficiency, and 15	  

competitiveness in major league baseball. Journal of Sports Economics, 8, 266-294.  

Lu,W-M., Lo, S-F. (2007). A closer look at the economic-environmental disparities for regional 

development in China. European Journal of Operational Research, 183, 882–894. 

Mazur, M. J. (1994) Evaluating the relative efficiency of baseball players, in Data envelopment 

analysis: Theory, methodology and application, (Eds) A. Charnes, W. Cooper, A. Y. 20	  

Lewin, A. Y. and L. M. Seiford, Dordrecht, the Netherlands, Kluwer Academic, pp. 369-

391. 



[19]	  
	  

McGoldrick, K. M., Voeks, L. (2005). We got game! An analysis of win/loss probability and 

efficiency differences between the NBA and WNBA. Journal of Sports Economics, 6, 5-

23. 

Paine, N. (2012). Lin’s game still has flaws, but stats show his rise to stardom is no fluke. 

Available at 5	  

http://sportsillustrated.cnn.com/2012/basketball/nba/02/16/jeremy.lin.knicks/index.html 

(accessed 16 February 2012). 

Rimler, M.S., Song S-H, Yi, D.T. (2010). Estimating Production Efficiency in Men’s NCAA 

College Basketball: A Bayesian Approach. Journal of Sports Economics, 11, 287-315.  

Ruggiero, J., Hadley, L., Gustafson, E. (1996). Technical efficiency in Major League Baseball. 10	  

In J. Fizel, E. Gustafson, L. Hadley (Eds.), Baseball economics: Current research (pp. 191-

200). Westport, CT: Greenwood, Praeger. 

Scully, G. W. (1974). Pay and performance in Major League Baseball. The American Economic 

Review, 64, 915-930. 

Seiford, L. M., Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European 15	  

Journal of Operational Research, 142, 16–20. 

Simar, L., Wilson, P. (1998). Sensitivity Analysis of Efficiency Scores: How to Bootstrap in 

Nonparametric Frontier Models. Management Science, 44, 49-61. 

Yeh, T-L., Chen, T-Y., Lai, P-Y. (2010). A comparative study of energy utilization efficiency 

between Taiwan and China. Energy Policy, 38, 2386-2394. 20	  

Zak, T. A., Huang, C. J. Siegfried, J. J. (1979). Production Efficiency: The Case of Professional 

Basketball. The Journal of Business, 52, 379-392. 



[20]	  
	  

 



 

 

 

 

 

 

 

 

Table 1. Selected descriptive statistics 

Statistic Input 
Outputs 

Positive  Negative 
 MPG PPG RPG APG SPG BPG  TOPG 
Mean 31.682 13.827 3.355 4.427 1.177 0.286  2.148 
Std. dev. 4.224 5.104 0.938 2.565 0.506 0.223  0.957 
Coef. of variation 0.133 0.369 0.280 0.579 0.430 0.780  0.446 
Minimum 22.400 3.200 1.500 0.300 0.400 0.030  0.400 
First quartile 29.450 10.500 2.700 2.200 0.800 0.133  1.600 
Median 32.600 13.500 3.300 4.100 1.000 0.265  2.000 
Third quartile 35.100 17.100 3.775 6.150 1.500 0.350  2.700 
Maximum 38.900 29.000 5.700 11.100 2.500 1.300  5.100 
Notes: MPG – minutes per game, APG – assists per game, PPG – points per game, SPG – steals per 
game, RPG – rebounds per game, BPG – blocks per game, – TOPG turnovers per game. 

 
 

 


