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ABSTRACT 

 

In many interventions that are based on an exercise program intended to induce weight loss, the 

mean weight loss observed is modest and sometimes far less than expected.   The individual 

responses are also widely variable, with some individuals losing a substantial amount of weight, 

others maintaining weight, and a few actually gaining weight.  The media have focused on the 

sub-population that loses little weight, contributing to a public perception that exercise has 

limited utility to cause weight loss. The purpose of the symposium was to present recent, novel 

data that help explain how compensatory behaviors contribute to a wide discrepancy in exercise-

induced weight loss.  The presentations provide evidence that some individuals adopt 

compensatory behaviors, i.e. increased energy intake and/or reduced activity, that offset the 

exercise energy expenditure and limit weight loss. The challenge for both scientists and 

clinicians is to develop effective tools to identify which individuals are susceptible to such 

behaviors, and to develop strategies to minimize their impact. 

 

Key Words: Energy expenditure, physical activity, non-exercise activity thermogenesis, energy 

intake 
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INTRODUCTION 

 

Paragraph number 1.  The recent focus on exercise as medicine is predicated on a fundamental 

dose-response relationship; the application of exercise will confer benefits to health.  On 

average, when previously sedentary individuals add exercise to their lifestyle, they become more 

physically fit, are at lower risk for many chronic disease and are better able to manage an 

appropriate body weight.  This forms the basis for physical activity guidelines to enhance the 

health of the general public.  The average response obscures considerable variability and the 

individual responses to habitual exercise deviate widely (Figure 1). In addition to the fortunate 

sub-group who lose body weight/fat, there are the unfortunate people who do not, despite 

completing a similar volume of exercise.  It is clear that not only is there a large inter-individual 

variability in exercise-induced weight loss, but in general, people also tend to lose less weight 

than theoretically expected.  For example, Ross and Janssen (58) reported that in studies lasting 

25 weeks or longer, average weight loss is only 30% of predicted values.  Although the 

phenomenon of individual variability in weight change in response to exercise or diet is not new 

(6, 53), it has yet to be exploited and used effectively to design better weight loss strategies.   

 

Paragraph number 2.  Individuals who are weight stable are assumed to be in energy balance, 

i.e. energy intake (EI) = energy expenditure (EE); to induce an energy deficit and therefore 

weight loss, EE must exceed EI.  Thus, the addition of structured exercise should theoretically 

result in energy deficit and weight loss.  Of course, not completing the prescribed amount of 

exercise will also contribute to a lower than theoretically expected weight loss.  However, the 

observation that observed weight loss is less than expected persists in studies where exercise is 

closely supervised and continuously adjusted over the course of the intervention (13).  Therefore, 
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people who lose little or no weight in response to adding structured exercise must be 

compensating for the increased EE of exercise by reducing their non-exercise physical activity 

and/or increasing their EI (Figure 2).  Either compensatory response will attenuate or even 

reverse the energy deficit generated by adding structured exercise.  However, data that support or 

refute the relative importance of less non-exercise activity or more EI in blunting the expected 

benefits of exercise on energy balance and body weight are equivocal.  Contributing factors to 

this ambiguity include not monitoring of the exercise intervention, as well as accuracy and 

validity issues related to the measurement of EI and EE.  The methodological issues are 

compounded by the fact that it is difficult to clamp EE during an exercise intervention because it 

is a behavioral adaptive response (i.e. non-exercise physical) that is also a dependent variable of 

interest.   

 

Paragraph number 3.  The purpose of this review is to summarize the presentations of 

participants in a symposium entitled "Behavioral Compensation to Exercise: Do We Eat More 

and Do Less?”, presented at the National American College of Sports Medicine Meeting in San 

Francisco, CA, in 2012.  The purpose of the symposium was to present recent, novel data related 

to the effects of exercise, specifically prescribed for weight loss, on compensatory eating and 

physical activity behaviors. The strategy was to feature speakers who could present data from 

each side of the energy balance equation.  Drs. Melanson and Kozey Keadle discussed the 

impact of exercise on non-exercise physical activity and EE, and Drs. King and Donnelly 

discussed the effect of exercise on energy and macronutrient intake.  The objectives of this 

review are to present the state of knowledge regarding the magnitude and direction of activity 

and diet compensation, identify areas where more research is needed, provide guidance to 
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improve exercise/diet recommendations, which in turn will improve the effectiveness of weight 

loss strategies. 

EFECTS OF EXERCISE ON NON-EXERCISE PHYSICAL ACTIVITY 

 

Paragraph number 4.  Total daily energy expenditure (TDEE) is the sum of resting metabolic 

rate, thermic effect of food (TEF), and physical activity energy expenditure (AEE) (Figure 2).  

AEE can be further divided into exercise (i.e., planned, structured physical activity, EXEE) or 

non-exercise physical thermogenesis (NEAT).  In human studies, if the outcome measure is 

physical activity assessed via accelerometry, than the appropriate term to describe this is non-

exercise physical activity (non-Ex PA).  However, if the outcome is non-exercise EE measured 

using DLW or estimated from accelerometry or other methods (see next paragraph), then the 

appropriate term to use is NEAT.  We have used this terminology to properly distinguish these 

two outcomes throughout the manuscript.  Garland et al. (23) recently addressed some challenges 

defining and measuring NEAT.  For the purpose of this review, we are interested in determining 

whether individuals “do less” when they start exercise training.  Therefore, we will broadly 

define non-Ex PA as including all activities of daily living which includes fidgeting, maintaining 

posture, and ambulation, and NEAT is the term that defines the EE associated with these 

activities (23, 37).  In humans, NEAT is highly variable (37, 56, 75), is a strong positive 

predictor of TDEE (56, 72), and is likely influenced by environmental (18)  and biological 

factors (29, 75).  Studies in rodents suggest that multiple neuroregulators (e.g. dopamine, orexin 

A, leptin, ghrelin, agouti-related protein) play a role in regulating SPA/NEAT (23, 35).   

 

Paragraph number 5.  Determining if behavioral compensation occurs in response to exercise 

training requires accurate measurement of all components of TDEE.  However, obtaining 
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accurate measures of TDEE in free-living EE in humans is challenging.  The two most common 

approaches are the doubly labeled water (DLW) method (24, 49, 69) or the use activity monitors 

(12, 27, 41).  A complete review of the various methods to measure physical activity have been 

published elsewhere (69).  DLW is the gold standard method for measuring TDEE (69).  When 

DLW is used in exercise training trials, NEAT is typically estimated using the measured or 

estimated resting metabolic rate and EXEE.  Few studies actually measure the thermic effect of 

food; most assume it is 10% of TDEE and that it does not change during the intervention period.  

NEAT is thus estimated as the difference between TDEE and the sum of RMR and exercise EE 

(e.g., TDEE of 2500 kcal – (RMR of 1600 kcal + EXEE of 400kcal) = 500 kcal NEAT).  The 

major limitation of this method is the cost, so sample sizes are typically small or contain only a 

sub-set of participants.  In addition, DLW provides one value of EE over a period of days; thus, 

unless total EXEE is accounted for, it is difficult to detect changes in NEAT.  DLW water does 

not provide information on the type of non-Ex PA that is taking place (e.g., sitting, ambulatory 

movement) or the patterns of physical activity.  These limitations can somewhat be overcome 

using activity monitors, but estimates of EE from accelerometry are less accurate than those from 

DLW due to limitations in data processing (69).  

 

Paragraph number 6.  Does NEAT contribute to body weight regulation? The strongest 

evidence that NEAT plays a role in regulating body weight comes from studies in animals.  For 

example, Teske et al. (65) demonstrated that obesity resistant rats had higher levels of SPA 

throughout their lifespan.  Obviously, performing such a detailed longitudinal study in humans 

would not be feasible, and consequently, the evidence from human studies is not as convincing.    

The best evidence in humans comes from prospective studies performed in Pima Indians which 

demonstrated that SPA measured in a respiration chamber was inversely correlated with fat mass 
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change in males (75).  Interestingly, there was no association between SPA and fat mass change 

in females.  This study also demonstrated that family membership accounted for 57% of the 

variation in SPA, suggesting that NEAT may be genetically programmed.  Additional evidence 

that NEAT contributes to body weight regulations comes from two long-term overfeeding 

studies.  The seminal studies of Bouchard (5) demonstrated that gains in fat mass were primarily 

determined by genetic factors (~50%), but given that physical activity levels were tightly 

controlled in this study, it is possible that differences in NEAT contributed to the unexplained 

variance in weight gain.  The second study, by Levine and colleagues, demonstrated that changes 

in NEAT was the only component of EE that predicted fat gain (38).  However, this was a small 

study (N=16), and as reviewed by Westerterp et al. (70) this is the only study in humans that 

demonstrated an increase in physical activity in response to overfeeding (38).  Additionally, how 

NEAT may regulate body weight during experimental overfeeding may be different from what is 

experienced in free-living individuals.  For example, data from a recent large (N=321) 

prospective stud of free-living women demonstrated that AEE, determined using DLW, was not 

a predictor of weight change over three years of follow up (40).  Even at modest levels of AEE 

(i.e., <4 MJ/d), some women lost weight, some remained weight stable, and others actually 

gained weight.  Consistent with this latter study, two recent cross-sectional studies of ~120 

individuals demonstrated that “incidental PA”, determined using accelerometry,  is positively 

associated with cardiorespiratory fitness, but shows no association with abdominal fat mass (46, 

47).  Thus, definitive studies demonstrating a clear link between NEAT and body weight 

regulation in humans are still lacking. 

 

Paragraph number 7.  Does initiation and adoption of exercise cause changes in NEAT? The 

acute effect of exercise (i.e. exercise initiation) on non-Ex PA and NEAT has been studied in 
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several studies that have measured changes in NEAT over a few days.   In a series of elegant 

studies, Stubbs et al. (61-63) studied the acute effects of different doses of exercise on EI, EE 

(measured using HR monitor), and energy balance over periods of 7-10 days.  In two of these 

studies, TDEE tended to decrease over time when medium (1.6 MJ/d) and high (3.2-4.0 MJ/d) 

levels of exercise were performed (61, 62), suggesting that NEAT decreased.  However, in the 

latter study, dietary fat intake was also increased, so it is possible that the compensation was 

partly due to the dietary manipulation.  More recently, Alahamdi et al. (1) compared the effects 

of single session of exercise performed at two different intensities on non-Ex PA in overweight 

and obese men.  Non-Ex PA remained unchanged for the first two days, but increased three days 

following the moderate- (16%, not significant) and high-intensity (25%) sessions.  The reasons 

for this delayed increase are not clear, but similar results were previously observed in obese boys 

(36).  In contrast, NEAT (estimated from HR and physical activity diaries) remained unchanged 

in a group of lean males and females participating in every other day moderate-intensity exercise 

training for eight days (48).  Although a strength of these short-term studies is the within-subject 

design, they are limited by the short-term nature of the intervention.  Longer term studies aimed 

at understanding the effects of exercise adaptation on NEAT, have also yielded equivocal results.  

Studies have shown reductions in non-Ex PA (12, 41, 49) and NEAT (13, 24, 49, 51)whereas 

other studies have reported no changes in NEAT during the training period (27, 71).  It is 

difficult to reconcile these discrepant findings, but it is likely that differences in intensity and 

mode of exercise, the measurement tool used, and the age and sex of study participants were 

contributing factors.  For example, it appears that older adults are more likely to exhibit 

compensatory changes in NEAT (24, 51) and non Ex-PA (50), although none of these studies 

compared younger to older adults.  A recent study in overweight adults suggested that reductions 
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in NEAT were dose-dependent, with reductions occurring only in the group performing a high 

dose of exercise (600 kcal/d)  but not in the group performing a moderate dose of exercise (300 

kcal/d) (57).  In contrast, no dose-response effect was observed in a secondary analysis in two 

large cohort studies that compared the effects of different doses of exercise on cardiovascular 

fitness and cardiovascular risk factors (10, 27).  However, these studies were not specifically 

designed to determine if there is dose-response effect of exercise on NEAT. 

 

Paragraph number 8.  The majority of the early studies in this area have based their conclusions 

on mean data.  As discussed above, there is large individual variability in the magnitude and 

even the direction of weight lost as a result of exercise training.  Recent evidence suggests there 

are individual differences in compensatory responses that may have important implications for 

weight loss and other important disease risk factors.  Manthou et al. (42) measured NEAT using 

HR and diaries in overweight and obese women who completed an 8-week exercise intervention.  

On average, the group increased TDEE by 0.62 MJ/day. However, there were large individual 

differences in weight loss. They classified 11 individuals as ‘responders’ (those who lost as 

much weight as predicted) and 23 individuals as ‘non-responders’ (those who lost less weight 

than predicted).  NEAT was the only variable that was significantly different between groups.  

Previous studies have reported individual variability in weight loss but this was the first to 

demonstrate that changes in NEAT are associated with changes in body weight.  Furthermore, 

change in NEAT was a significant predictor in fat mass in the group as a whole.  Similarly, Di 

Blasio reported that half of the post-menopausal women who started training were compensators, 

decreasing NEAT by an average 233 kcal/day. In this study, those who decreased NEAT did not 

have improvements in blood lipids, suggesting behavioral compensation may have implications 

for changes in health outcomes as well as weight loss. These two recent studies illustrate an 
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important shift from a group-based approach to an individual-level analysis. By considering 

individual difference in compensation, intervention strategies to reduce compensation and 

maximize weight loss strategies can be developed.    

 

Paragraph number 9.  Do changes in NEAT offset exercise EE during weight loss? There is 

evidence that caloric restriction, without exercise, induces compensatory changes in non-EX PA 

and NEAT that can offset intended weight loss.  The best evidence comes from a study in 

monkeys (64).  In that study, when EI was decreased by 30% in the first month, the decrease in 

SPA was substantial enough that no significant decrease in body weight occurred.  In the second 

month, when EI was decreased by 60%, significant weight loss occurred (-6.4 ± 1.7%), but 

further suppression of SPA was also observed.   A similar effect has been observed in humans in 

the CALERIE study (43); NEAT, decreased in the caloric restriction groups.  However, because 

there were no changes in physical activity measured with accelerometry, the authors concluded 

that the decreases in AEE were due to increased muscle efficiency or decreased “fidgeting”. 

 

Paragraph number 10.  The evidence that exercise, without caloric restriction, induces 

compensatory changes in NEAT, is not as strong.  Evidence can only be obtained from studies 

where either EI was controlled, or measured intake did not change.  The strongest evidence in 

studies conducted by Donnelly et al. (13).  The intervention produced weight loss in men (-

5.2±4.7 kg), but not women.  There were no changes in measured EI during the intervention.  At 

16 months, EXEE was 668±116 kcal/d in men and 438.9±88 kcal/d in women, but TDEE (DLW) 

increased only by 371±646 and 209±555 kcal/day in men and women, respectively TDEE 

increased by approximately 55% of EXEE in men and 48% of EXEE in women, so it does not 

appear that there were important sex differences in the degree of compensation.  Additional 
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evidence of the effects of exercise without caloric restriction on NEAT comes from the study of 

Tremblay et al. (67).  Subjects resided for a 12 week exercise intervention, and EI was held 

constant, at baseline levels.  Weight loss was only 65% of the induced energy deficit.  However, 

it is not possible to conclude that decreases in NEAT occurred, because TDEE was not 

measured, but also because a reduction in RMR was also observed.   Conversely, analysis of the 

carefully controlled studies performed by Ross et al. (28, 59) demonstrated that the estimated 

energy imbalance induced by exercise was not significantly different from the prescribed EXEE, 

suggesting that NEAT was preserved (66).  However, there are several limitations to this 

approach.  First, it cannot be determined to what degree changes in both EE and EI contributed 

to the estimated energy imbalance.  Second, errors in body composition are incorporated in this 

calculation, and the changes in NEAT may be within the bounds of error and thus beyond 

detection, but still of great enough magnitude to have a meaningful effect on body weight (26).  

These examples illustrate the pitfalls of attempting to assess the degree of exercise compensation 

without accurate measurement of the individual components of EE. 

 

Paragraph number 11.  When the magnitude of observed weight loss is less than the expected 

weight loss, this is often interpreted as evidence of compensation in non-Ex PA and NEAT (13).   

It is worth noting that in every study we reviewed, the expected weight loss was calculated using 

the “3500 kcal/lb body weight rule”, i.e. an energy deficit of 3500 kcals will induce a weight loss 

of 1 lb of body weight, which is based on the calculated energy content of body composition 

(70:30 FM:FFM) (74).  However, a limitation to this static approach is that it erroneously 

predicts a linear change in body weight over time.  Moreover, this model was derived from data 

obtained in short-term, low calorie diets, and thus, is not directly applicable to changes in energy 

stores induced by exercise.  As elegantly illustrated by Hall (25), the rate of weight change over 
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time will slow over time due to compensatory changes in EE , and that it assumes that all people 

lose weight at a fixed ratio of 70:30 FM:FFM.  Thus, the expected weight loss based on the 

“3500 kcal” rule is likely an overestimate of the true theoretical weight loss.   

 

Paragraph number 12.  From the above discussion, it is clear that more sophisticated studies are 

required to more completely understand the effects of exercise, prescribed for weight loss, on 

non-exercise physical activity.  Such studies should encompass the simultaneous measurement of 

EI and EE, including all components of EE, objective measurement of physical activity, and 

accurate measurement of changes in body energy stores.  There several outstanding questions 

related to how exercise modifies non-exercise physical activity.  To our knowledge, studies 

examining the effects of type (endurance versus resistance), mode (swimming, cycling, or 

running) or intensity of exercise on non-Ex PA and NEAT (or EI) have not been performed.  As 

discussed above, the effects of age, sex, and obesity have not been well-studied.  Finally, given 

the equivocal findings from both acute and chronic studies, it is not possible to draw conclusions 

about differences in compensation that may occur during the initiation and adaption to exercise.  

Thus, more studies are needed to determine the effects of these potentially important factors on 

non-EX PA and NEAT. 

 

EFECTS OF EXERCISE ON ENERGY AND MACRONUTRIENT INTAKE 

 

Paragraph number 12.  Compensatory increases in EI are thought to be at least partially 

responsible for the small magnitude of mean  weight loss induced by aerobic exercise training 

without energy restriction (66).  For example, King et al. (31, 32) have demonstrated significant 

increases in EI among participants who did not reduce weight or fat mass in response to aerobic 
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exercise training (12 wks., 5 d/wk., 500 kcal/session, 70% max HR).  However, evidence for an 

effect of exercise on EI or macronutrient composition is not compelling.  Acute exercise has 

been shown to have no effect (33, 34, 39, 45) or result in only partial compensatory increases in 

EI following a bout of acute exercise (54, 61, 73).  The majority of studies in this area have 

shown no change in EI  or macronutrient intake in response to aerobic exercise training (2, 8, 11, 

13, 14, 16, 44, 55, 60).  However, the literature on change in EI and macronutrient intake in 

response to exercise training should be interpreted cautiously.  With the  exception of the study 

by Donnelly et al. (13), EI in these studies has been assessed by self-reported 3 or 7-day food 

records which have been demonstrated to underestimate EI when compared with energy 

expenditure assessed by DLW (2). In addition, a number of these studies were conducted in 

small samples (< 20/group) (8, 14, 44, 60). 

 

Paragraph number 13.  Data from the Midwest Exercise Trial-2 (MET-2) afforded a unique 

opportunity not only to examine the effect of exercise training but also examine if a dose effect 

existed at 2 levels of EE and if there were gender differences for energy and macronutrient intake 

in a sample of previously sedentary, overweight/obese young adults.  Moreover, data for 

individual variation for weight loss and energy intake were available.  A detailed description of 

the design and methods for MET-2 has been previously published (16).  Briefly , MET-2  

randomized  141 young adults age 18-30 years, BMI 25-40 kg/m2  to a 10 month, 5 day/week 

supervised  exercise intervention at 2 levels of EXEE (400 or 600 kcal/session) or a non- 

exercise control group.  All participants continued their typical patterns of daily physical activity 

and dietary intake over the duration of the 10 month intervention.  
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Paragraph number 14.  Exercise consisted primarily of walking/jogging on motor-driven 

treadmills, and was supervised by trained research staff in a dedicated exercise facility.    The 

exercise protocol gradually increased EXEE from baseline to the end of month 3 and then 

remained at 400 or 600 kcal/session for the remainder of the study, as previously described (16).  

Compliance to the exercise protocol, an essential element of an efficacy study, was defined as 

successfully completing > 90% of scheduled exercise sessions defined as maintaining the target 

exercise HR±4 beats/minute for the prescribed duration of the exercise session. Participants who 

were non-compliant during any 3 month interval (months 0-3, 3-6, 6-9) or during the final month 

(month 10) were dismissed from the study. Participants assigned to the non-exercise control 

group were instructed to continue their typical patterns for physical activity and dietary intake 

over the duration of the 10 month study. With the exception of assessment of EXEE, the same 

outcome assessments were completed with both the exercise and control groups.  

 

Paragraph number 15.  Ninety-two of the 141 participants randomized at baseline (65.2%) 

complied with the study protocol and completed all outcome assessments. There were no 

significant between group differences in EI (kcal/d) at baseline.  During the exercise intervention 

EI was 121 kcal/day (4.5%) and 285 kcal/day (10.7%) higher in the 400 and 600 kcal/session 

compared with control; however these differences were not significant. Across the duration of 

the intervention, there were no significant changes for macronutrients for the 400 or 600 

kcal/session groups. The control group had significant decreases in percentage and grams of fat.  

When EI and macronutrients were analyzed by gender, no significant differences were found for 

men between groups and no significant changes were found across the duration of the 

intervention. Significant differences for were found in women for EI during the intervention. 
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Control women decreased EI by an average of 352 kcal/d compared to women in the 600 

kcal/session group who decreased by an average of 45 kcal/d (p<0.05). Control women had a 

significant increase in percentage of carbohydrate (4.0%) and significant decrease in percentage 

of fat (4.2%) across the duration of the study.  

 

Paragraph number 16.  Despite the supervision of exercise and tight control of EXEE, wide 

variation was shown for weight loss (Figure 1) suggesting compensation in components of 

energy balance. EI may be the largest source for compensation and the individual differences for 

change across the intervention were considerable.  The individual variation for EI may diminish 

weight loss and thus the impact of exercise alone as a primary weight loss strategy. These 

individuals may be considered “non-responders” with respect to exercise for weight loss and if 

identified early during a weight loss program may represent and opportunity for more targeted 

interventions using diet counseling or energy restriction.    

 

Paragraph number 17.  What are the causes of variability? There are a range of behavioral 

(increased food intake, decreased activity, non-compliance with the exercise) and metabolic 

(decrease in resting metabolic rate) adaptations that could occur in response to increased EXEE.  

However, there is strong evidence to suggest that over-eating is a pernicious and potent 

contributor to weight gain and obesity (4).  Therefore, increases in EI are likely a strong 

contributing factor to the modest weight loss often observed in exercise interventions.  The 

processes underpinning any compensation in EI need to be better understood. 

 

Paragraph number 18.  What are the drivers of exercise-induced compensatory eating?  With 

respect to biological needs and energy balance regulation, homeostatic processes of appetite 
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control are associated with changes in the orexigenic drive to eat (e.g. hunger), whereas hedonic 

processes are associated with reward and the pleasure of eating.  Individuals who are more 

susceptible to exercise-induced compensation could be characterized by an enhanced hunger 

(homeostatic processes) or hyper-responsivity to the pleasurable components of food (hedonic 

processes), or both.  

 

Paragraph number 19.  Homeostatic Processes: It is important to determine how the 

homeostatic processes of satiation and satiety are adjusted in response to increased EXEE. 

Blundell and colleagues at the University of Leeds in the UK have demonstrated that exercise 

can be used as a tool to better understand appetite regulation.  The researchers used a 12-week 

supervised exercise intervention model to characterize the drivers of compensatory eating (9, 30, 

31). The exercise intervention consisted of 5 moderately-high-intensity (70% VO2max) exercise 

sessions per week, with fixed intensity and duration for all individuals. The EE of each exercise 

session was approximately 2 MJ. An assay of appetite measures was used to objectively monitor 

EI and appetite sensations in the research unit. On each test day, following a fixed breakfast, 

participants were provided with ad libitum lunch and dinner test meals and an evening snack 

box, each separated by 4 hours. This methodological platform and approach is based on a 

number of conceptual principles and is designed to provide a comprehensive and flexible model 

for the study of EE and EI. Key features of the approach are that the exercise is supervised, and 

the measurements of EI and appetite are conducted under carefully controlled conditions. 

Blundell’s 12-week exercise intervention serves as an ideal model of resistance to weight loss, 

and provides an opportunity to help explain why exercise doesn’t work for everyone. 
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Paragraph number 20.  The series of studies by Blundell et al. revealed that 12 weeks of 

exercise exerted different effects on fasting and postprandial appetite sensations.  Compensators 

(i.e. non-responders) were defined as losing less weight after the exercise intervention than non-

compensators (i.e., responders).  Compared to their own baseline, compensators experienced 

marked and significant increases in EI and fasting hunger in response to the exercise intervention 

(Figure 3). However, both compensators and non-compensators experienced an increase in 

satiety immediately after the fixed breakfast meal (Figure 4). This dual response effect 

demonstrates that while some people might experience an orexigenic response to supervised 

exercise, exercise also has the capacity to improve satiety.  

 

Paragraph number 21.  Hedonic Processes: The hedonic aspects of food (e.g. the pleasure of 

eating) also influences appetite control (3). Reward plays an important role in the initiation, 

maintenance and cessation of eating. Therefore it is plausible that changes in food and 

macronutrient preferences might contribute to compensatory increases in EI (17). 

 

Paragraph number 22. Finlayson has worked extensively on the theoretical and methodological 

understanding of behavior related to ‘liking’ and ‘wanting’ food in humans to develop a novel 

methodology to detect changes or differences in ‘liking’ and ‘wanting’ hedonic responses (21, 

22). This procedure was used to demonstrate that individuals identified as compensators because 

they exhibit an acute compensatory increase in food intake after a single bout of exercise, also 

experience a significant exercise-induced increase in hedonic preference for a range of foods 

(19). The Liking and Wanting procedure was also used in the 12-week exercise intervention to 

assess changes in taste and nutrient preferences under more chronic energy balance conditions.  

Those who experienced an immediate post-exercise increase in liking for food in general, and an 
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increased wanting for high-fat sweet foods also experienced less weight loss (20).  Interestingly, 

this response to acute exercise was not influenced by chronic exercise.  Therefore it is possible 

that some people are more vulnerable to the acute effects of exercise on reward.  An enhanced 

motivational drive or wanting for food after exercise may help to explain why some people over-

compensate when given access to food after exercise.  

 

Paragraph number 23.  What are the potential physiological and psychological mechanisms 

underpinning compensation? Obvious physiological candidates include the peptides strongly 

associated with appetite regulation. For example, orexigenic peptides such as Ghrelin and 

anorectic peptides such as GLP-1 could partly explain some of the homeostatic and hedonic 

responses to exercise-induced EE (45).  There is evidence that psychological factors are 

associated with changes in food intake responses to exercise (7) such that individuals with a high 

level of disinhibition are more susceptible to overcompensate for the EXEE (68).  Individuals 

who are identified as compensators - hence experience lower weight loss compared to non-

compensators - could be characterized by a portfolio of psychological and/or physiological 

characteristics that partially explain the resistance. 

 

IMPLICATIONS: HOW CAN THE EVIDENCE BE USED TO IMPROVE THE 

EFFECTIVENESS OF WEIGHT MANAGEMENT STRATEGIES? 

 

Paragraph number 24.  Unless there is a better understanding of why some people fail to lose 

weight with exercise, the increase in the prevalence of obesity and the associated co-morbidities 

will be unmanageable and unsustainable.  Although we acknowledge that people aspire to 

unrealistically high rates of weight loss, it is futile to continue prescribing exercise and/or dietary 
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interventions using a one-size-fits-all approach, and expect people to be content when their 

efforts produce little or no weight loss.  The evidence is suggestive, but not conclusive, that 

when initiating an exercise program with the intent of losing weight, some individuals 

compensate by decreasing their non-Ex PA and NEAT.  This is likely mediated by subject 

factors (e.g. age, sex, body weight) as well as factors related to the exercise program itself 

(mode, duration, intensity, frequency), but how each of these factors contribute to the overall 

effect has not been well-studied.  Surprisingly, some data suggest that there are individuals who 

respond to an exercise program by increasing their non-Ex PA and NEAT.  Understanding how 

exercise impacts non-Ex PA has health implications far-beyond regulating energy balance, as 

evidence suggests that limiting sedentary behavior has positive effects on many health outcomes, 

independent of exercise (52).  Moreover, it is not clear from the existent literature, when 

compensation occurs, whether this is intentional (i.e. “I exercised today, so I will take the 

elevator”) or not.  Clearly, there is much more to be learned in this area.  

 

Paragraph number 25.  The evidence also suggests that a compensatory increase in EI could 

also account for variability and offset the expected weight loss. Preliminary evidence suggests 

that some people experience an orexigenic response to exercise, making them more resistant to 

exercise-induced weight loss. The potential underlying mechanisms underpinning this 

compensatory response include appetite peptide response and psychological eating behavior 

traits. Collectively, the evidence indicates that compensatory adaptive responses in EI and NEAT 

offset the effects of exercise and result in some individuals achieving little or no weight loss. 

However, to our knowledge, compensatory changes in both NEAT and EI have not been 

comprehensively examine within the same study, and this is a high priority for future research.  

The model of resistance to exercise-induced weight loss needs to be used strategically in future 



20 
 

studies.  Identifying the resistance to weight loss, and characterizing the adaptive compensatory 

responses will produce better strategies on how to individually tailor weight management 

programs.  Indeed, energy restriction studies can also benefit from this approach.  

 

Paragraph number 26.  Although a compensatory increase in food intake is disappointing to the 

people directly affected, it serves as an ideal model of resistance to weight loss, and provides an 

opportunity to help explain why exercise doesn’t work for everyone. It could also be used to 

inform strategies to help obese individuals who may avoid exercise based on their experience of 

disappointing weight loss.  We propose that it is possible to pool the current evidence and use it 

strategically in the form of evidence-based screening procedures to identify resistance to weight 

loss due to a compensatory increase in food intake.  This approach is novel because it targets 

resistance to weight loss and individuals susceptible to compensation during exercise 

interventions. Identification and characterization of behavioral and physiological characteristics 

will provide evidence-based screening information that will facilitate the identification of 

individuals vulnerable to compensation and resistant to weight loss. Early identification of 

weight loss resistance will eventually permit tailoring of obesity prevention and treatment 

strategies to suit individuals who are more susceptible to compensatory eating.  We also need to 

better educate people that weight loss is not the only health benefit of exercising.  Indeed, there 

is strong evidence that people experience other health benefits (e.g., reduced blood pressure and 

waist circumference) despite not attaining the expected, or any, weight loss (32).  In the past 

decade exercise – and its associated weight loss benefits – has received serious damage from the 

media.  We all have a responsibility to eradicate this ‘bad spin’, and to educate the public that 

weight loss is not the sole benefit of exercising; indeed, people can experience health benefits in 

the absence of weight loss (32).  
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FIGURE LEGENDS 

 

Figure 1.  Individual 16-month weight change in exercise groups by gender. (A) Women. (B) 

Men.  Adopted from (15) with permission. 

 

Figure 2.  Components of total daily energy expenditure. 

 

Figure 3. Area Under the Curve (AUC) Hunger for Responders (non-compensator) and non-

responders (compensators). Adopted from (30). 

 

Figure 4. Satiety Quotient (SQ) responses during the post-prandial period for (a) Responders R, 

non-compensators) and (b) Non-Responders (NR, compensators) at baseline (Week 0) and at 12 

weeks of exercise (12 week). Adopted from (30). 

 

 

 


