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ABSTRACT
This paper develops analytical distributions of temperature indices on which temperature derivatives are written. If the
deviations of daily temperatures from their expected values are modelled as an Ornstein-Uhlenbeck process with time-
varying variance, then the distributions of the temperature index on which the derivative is written is the sum of truncated,
correlated Gaussian deviates. The key result of this paper is to provide an analytical approximation to the distribution of
this sum, thus allowing the accurate computation of payoffs without the need for any simulation. A data set comprising
average daily temperature spanning over a hundred years for four Australian cities is used to demonstrate the efficacy of
this approach for estimating the payoffs to temperature derivatives. It is demonstrated that expected payoffs computed
directly from historical records is a particularly poor approach to the problem when there are trends in underlying average
daily temperature. It is shown that the proposed analytical approach is superior to historical pricing.

Keywords: weather derivatives, temperature models, cooling-degree days, distributions for correlated variables

1. Introduction
A weather derivative takes its value from an underlying
measure of weather, such as temperature, rainfall or snow-
fall over a particular period of time, and permits the finan-
cial risk associated with climatic conditions to be man-
aged. Major participants in this market include utilities
and insurance companies along with other firms with costs
or revenues that are dependent upon the weather. For ex-
ample, an electricity supplier normally provides its cus-
tomers with electricity at a fixed price irrespective of the
wholesale price. On the other hand the wholesale price of
electricity can fluctuate wildly with extreme temperatures,
and so temperature-based derivatives can provide a hedg-
ing tool for fluctuations in wholesale electricity prices.
The first weather derivative was transacted in the US in
1996 and the size of the market now exceeds US$ 8 bil-
lion. Almost all weather derivatives are based on temper-
ature indices such as heating degree days and cooling de-
gree days and consequently the focus of this paper will
be exclusively on developing closed-form approximations
to the distribution of the temperature indices on which
temperature-based derivatives are written which in turn af-
fects their valuation.∗

Traditionally, the valuation of options discounts the ex-
pected payoff at the risk-free force of interest based on a
zero-arbitrage argument involving the formation of a port-
folio consisting of a risk-free combination of an option

and the underlying asset [3]. Because temperature can-
not be traded, there is no arbitrage-free pricing framework
available to price this kind of option. The generally ac-
cepted way to value temperature derivatives is the actuar-
ial method in which the fair price is taken to be the ex-
pected value of the payoff ignoring discounting and any
volatility premium. The crucial element of this valuation
strategy is the accurate calculation of the distribution of the
relevant temperature index on which the weather deriva-
tive is written.

The most direct way to compute the distribution of tem-
perature indices is from historical records [4, 5]. A more
elaborate method is to fit a model to the time-series of
average daily temperature so as to capture seasonal vari-
ations in both temperature and its volatility [5, 6]. The
model is then used to simulate temperature outcomes over
the period of the contract in order to construct the distribu-
tion of the temperature-based index on which the deriva-
tive is written. Note that widely-available meteorological
forecasts are not suitable for this purpose because these
forecasts are made over relatively short horizons, such as
7 days, whereas temperature derivatives are often traded
well before the contracts generate any payoffs [7, 8, 6].

This paper makes two contributions to the existing liter-
ature on pricing temperature derivatives. First, it builds on
the early work of Benth and Šaltynė-Benth [9] by develop-
ing closed-form approximations to the distribution of the
indices on which temperature-based derivatives are writ-

∗ The first recorded activity was an over-the-counter heating degree day swap option between Entergy-Koch and Enron for the winter of 1997 in
Milwaukee, Wisconsin [1]. Garmen et al. [2] posit that 98-99% of all weather derivatives currently traded are based on temperature. Currently
temperature-based derivatives are traded in several US, European and Japanese cities.

Copyright c©2013 SciRes. AM
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ten with particular emphasis on obtaining good estimates
of the variance of relevant index. Second, two methods are
provided for estimating the parameters of the model un-
derpinning the behaviour of temperature that are required
to implement the pricing strategy. There are respectively
a two-step least-squares based approach and a more com-
prehensive maximum-likelihood procedure.

The ideas developed in this paper are applied to data
comprising average daily temperatures for over a century
in four Australian cities, namely, Brisbane (BNE), Mel-
bourne (MEL), Perth (PER) and Sydney (SYD), where ac-
curate temperature records of long-duration are available
at single weather stations. This is a quality data set which
represents a substantial improvement on what appears to
be the current standard used in the literature. The em-
pirical results based on this data set, demonstrate that the
closed-form pricing strategy performs substantially better
that using historical pricing.

2. A Model of Daily Temperature

The first step in pricing any temperature-based option must
be a model of the underlying index from which the op-
tion derives its value, which in the case of temperature
derivatives is average daily temperature. Let average daily
temperature be expressed as the sum of the seasonal mean
temperature T ptq at time t and the deviation θptq of the av-
erage daily temperature from its seasonal mean. Suppose
that θptq is modelled by the Ornstein-Uhlenbeck process∗

dθ “ ´αθ dt` σptq dW , α ą 0 , (1.1)

where dW is the increment in the Wiener process. The
parameter α and the volatility σptq are to be determined
from observations of average daily temperature. Equation
(1.1) has solution

θptq “

ż t

´8

e´αpt´sqσpsq dW psq , (1.2)

with autocorrelation function at lag u given by

E rθptqθpt` uqs “ e´αuSptq ,

Sptq “

ż t

´8

e´2αpt´sqσ2psq ds ,
(1.3)

where Sptq is the variance of daily average temperature. It
is straightforward to show that σ2ptq and Sptq satisfy

σ2ptq “
dSptq

dt
` 2αSptq .

The joint distribution of the average daily temperatures
Tt and Tt`s at the respective calender times t and pt ` sq
(s ą 0) is given by the product

fpTt, Tt`sq “ fpTt, tqfpTt`s, t` s |Tt, tq (1.4)

where fpTt, tq is the marginal distribution of Tt, namely

fpTt, tq “
1

?
2πSt

exp
”

´

`

Tt ´ T t
˘2

2St

ı

and

fpTt`s, t` s |Tt, tq “
1

a

2πpSt`s ´ e´2αsStq

ˆ exp
”

´

`

Tt`s ´ T t`s ´ pTt ´ T tq e
´αs

˘2

2pSt`s ´ e´2αsStq

ı

,

is the transitional probability density function from Tt to
Tt`s. Consequently the joint probability density function,
fpTt, Tt`sq, in equation (1.4) becomes

e´φ

2π
a

StpSt`s ´ β2Stq

where

φ “

St`spTt ´ T tq
2 ´ 2βStpTt ´ T tqpTt`s ´ T t`sq

`StpTt`s ´ T t`sq
2

2StpSt`s ´ β2Stq

and β “ e´αs. Thus the joint probability density function
of pTt, Tt`sq is multivariate Gaussian with mean value
µ “ pT t, T t`sq and covariance matrix

Σ “

»

–

St e´αsSt

e´αsSt St`s

fi

fl .

This model of average daily temperature is now used to de-
velop a closed form approximation to the distributions of
the underlying temperature indices on which vanilla Eu-
ropean options† are written, namely cumulative heating
degree days (HDDs) and cumulative cooling degree days
(CDDs).

3. Distribution of Temperature In-
dices

Let T ave denote the average temperatures in degrees Cel-
sius measured on a particular day at a specific weather sta-
tion. The HDD and CDD indices at that station on that day
are defined respectively by

HDD “ max
`

T ´ Tave, 0
˘

,

CDD “ max
`

Tave ´ T, 0
˘

,
(1.5)

where T ˝C is a threshold temperature. The choice of
threshold, in this instance 18˝C, is set by market conven-
tion and is the standard used in the US. In the southern
(northern) hemisphere the HDD (CDD) season would be
from May to September, while the CDD (HDD) season
would be from November to March. Without loss of gen-
erality, the analysis of this paper will be limited to consid-
ering European call options written on cumulative CDDs.

∗ This specification is consistent with previous work [9, 10, 11].
† The choice of European option is not limiting in the sense that many more complex derivative strategies are in fact combinations of simple European

options.
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The CDD index over a period of N consecutive days is
defined by

CN “
N
ÿ

k“1

Tk , Tk “ max
`

Tk ´ T, 0
˘

(1.6)

where Tk is the average daily temperature on the kth day
of the derivative.

Let D be the strike of a call option defined as a particu-
lar value of the CDD index. The buyer of this option pays
an up-front premium and receives a payout if the value of
the CDD index exceeds D at the maturity of the option.
The tick value of a cumulative CDD call option with strike
D and duration N days is therefore

TN “ max
`

CN ´D, 0
˘

. (1.7)

The per-unit monetary payoff from the contract is its ex-
pected tick value

E r TN s “
ż 8

D

px´Dq fN pxq dx , (1.8)

where fN pxq is the probability density function of CN and
therefore the efficacy of this pricing strategy relies upon
the accurate estimation of fN pxq. The idea pursued here
is that although the daily contributions to CN are trun-
cated correlated random variables in which the degree of
truncation is nontrivial, nevertheless CN will behave as
a Gaussian random variable provided N is suitably large.
The central theoretical result of the paper is summarized
in Proposition 1.

Proposition 1
The tick value CN of a European option defined on cu-
mulative cooling degree days is approximately Gaussian
distributed with mean value

E rCN s “
N
ÿ

k“1

a

Sk
“

zkΦpzkq ` φpzkq
‰

,

and variance Var rCN s with expression
N
ÿ

k“1

Sk
“

Φpzkq ´
`

φpzkq ` zkΦpzkq
˘

ˆ
`

φp´zkq ´ zkΦp´zkq
˘‰

` 2
N´1
ÿ

k“1

´

N
ÿ

j“k`1

a

SjSk
`

zkφpzjqΦpχj,kq

`zjφpzkqΦ
`

ηj,kq
˘

´ ErT skErT sj
`
`

zkzj
a

SjSk ` βj,kSk
˘

Φpzkq

`

b

SkpSj ´ β2
j,kSkqφpzkqφpηj,kq

´

`

zkzj
a

SjSk ` βj,kSk
˘

?
q ` 1

Φ
`

´ ηj,kq

ˆΦ
´ p` zk
?

1` q

¯

exp
”1

2

´

pp` zkq
2

1` q
´ z2k

¯ı¯

,

where zk “ pT k ´ T q{
?
Sk, βj,k “ e´αpj´kq and the

constants ηj,k, χj,k, p and q are defined respectively by

ηj,k “
zj
a

Sj ´ βj,k zk
?
Sk

b

Sj ´ β2
j,kSk

,

χj,k “
zk
a

Sj ´ βj,kzj
?
Sk

b

Sj ´ β2
j,kSk

,

p “ ´
βj,k

?
Sk

b

Sj ´ β2
j,kSk

φpηj,kq

Φp´ηj,kq
,

q “ p2
´

1´
ηj,kΦp´ηj,kq

φpηj,kq

¯

.

(1.9)

Proposition 1 establishes that accurate closed form ex-
pressions for the mean and the variance of CN are avail-
able in terms of the density function and distribution func-
tion of the standard normal distribution alone. Given these
results, the per-unit monetary payoff of a CDD call option
is stated in Proposition 2.
Proposition 2
The per-unit monetary payoff of a European call option
with strike D written on CN , where the distribution of CN
is Gaussian with mean and variance established in Propo-
sition 1, is given by
a

Var rCN s
”

φpξq ` ξΦpξq
ı

, ξ “
E rCN s ´D
a

Var rCN s
.

The focus of subsequent subsections is to develop and
prove the results stated in Proposition 1.

3.1. Mean of CN

It follows directly from equation (1.6) that

E rCN s “ E rT1s ` ¨ ¨ ¨ ` E rTN s
where

E rTks “
1

?
2πSk

ż 8

T

pθ ´ T q exp
”

´
pθ ´ T kq

2

2Sk

ı

dθ .

(1.10)
Let zk “ pT k ´ T q{

?
Sk, then the change of variable

θ “ T k ´
?
Sk z gives immediately

E rTks “

?
Sk

?
2π

ż zk

´8

pzk ´ zq e
´z2{2 dz

“
?
Sk

“

zkΦpzkq ` φpzkq
‰

,

(1.11)

where φpzq and Φpzq are respectively the probability den-
sity function and cumulative distribution function of the
standard normal. The quoted expression for E rCN s fol-
lows immediately from result (1.11). Moreover, it should
be noted in passing that the proof of Proposition 2 is anal-
ogous to the derivation of equation (1.11).

3.2. Variance of CN

The computation of the variance of CN is less straightfor-
ward. The key steps in this calculation are outlined here
with the detail being relegated to Appendices 1 and 2. The
analysis begins by noting that Var rCN s can be expressed
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as the sum of variances and covariances in the usual form

Var rCN s “
N
ÿ

k“1

Var rTks ` 2
N´1
ÿ

k“1

N
ÿ

j“k`1

Cov rTk, Tj s .

(1.12)
Straightforward calculation indicates that

Var rTks “

ż 8

T

pθ ´ T q2
?

2πSk
exp

”

´

`

θ ´ T k
˘2

2Sk

ı

dθ

´ Sk
“

zkΦpzkq ` φpzkq
‰2
,

(1.13)
which under the change of variable θ “ T k ´

?
Sk z be-

comes

Var rTks “ Sk

ż zk

´8

pzk ´ zq
2 φpzq dz

´ Sk
“

zkΦpzkq ` φpzkq
‰2
.

(1.14)

It is demonstrated in Appendix 1 that

Var rTks “ Sk

”

Φpzkq ´
`

φpzkq ` zkΦpzkq
˘

ˆ
`

φp´zkq ´ zkΦp´zkq
˘

ı (1.15)

thereby completing the computation of the first item on the
right hand side of equation (1.12).

The second item on the right hand side of equation
(1.12) is a sum of covariances of generic form

Cov rTt, Tt`s s “
8
ĳ

T

pTt ´ T qpTt`s ´ T qfpTt`s, Ttq dTt dTt`s

´ ErT st ErT st`s

(1.16)

in which t and s (ą 0) are to be given appropriate val-
ues. First, the integral on the right hand side of equa-
tion (1.16) is simplified using the change of variables
Tt “ T t ´

?
St z and Tt`s “ T t`s ´

a

St`s w to get

Cov rTt, Tt`s s “
a

StSt`sˆ

ˆ

ż zt

´8

ż zt`s

´8

pzt ´ zqpzt`s ´ wq rfpzt`s, ztq dz dw

´ ErT st ErT st`s,
(1.17)

where zt “ pT t´T q{
?
St and zt`s “ pT t`s´T q{

a

St`s

and rfpzt`s, ztq is the joint probability density of z and w,
namely

1

2π

d

St`s
St`s ´ β2St

e´ψpz,wq , (1.18)

where β “ e´αs and

ψpz, wq “
St`sz

2 ´ 2zwβ
a

StSt`s ` St`sw
2

2pSt`s ´ β2Stq
.

The integral in equation (1.17) is expressed as a repeated
integral in which integration is first performed with respect
to w and then again with respect to z. The detailed calcu-
lations can be found in Appendix 2, but the outcome of

these operations is that

Cov rTt, Tt`s s “
a

StSt`s

´

ztφpzt`sqΦpχt`sq

`zt`sφpztqΦ
`

ηt`sq
¯

´ ErT st ErT st`s

`

´

ztzt`s
a

StSt`s ` βSt

¯

ˆ

ż zt

´8

Φ
´zt`s

a

St`s ´ β z
?
St

a

St`s ´ β2St

¯

φpzq dz

`
a

StpSt`s ´ β2Stqφpztqφpηt`sq ,
(1.19)

where ηt`s and χt`s are defined respectively by

ηt`s “
zt`s

a

St`s ´ β zt
?
St

a

St`s ´ β2St
,

χt`s “
zt
a

St`s ´ βzt`s
?
St

a

St`s ´ β2St
.

(1.20)

In particular each component of Cov rTt, Tt`s s, with the
exception of the integral, may be evaluated from the prob-
ability density function φpzq and cumulative distribution
function Φpzq of the standard normal with appropriately
chosen arguments. The usefulness of expression (1.19) for
Cov rTt, Tt`s s can be improved if the value of the integral
appearing in this formula can be expressed, albeit approxi-
mately, in terms of φp q and Φp qwith appropriately chosen
arguments.

For positive values of the parameter q, this objective
can be achieved by making the approximation

Φ
´zt`s

a

St`s ´ β z
?
St

a

St`s ´ β2St

¯

« 1´ Φp´ηt`sq e
´pppz´ztq`qpz´ztq

2
{2q ,

(1.21)

noting, in particular, that the approximation agrees with
the interpolated function at z “ zt and as z Ñ ´8 in-
dependently of the values of the parameters p and q. The
quality of the approximation is improved by choosing the
values of p and q to ensure that the first and second deriva-
tives of the interpolating function match those of the in-
terpolated function when z “ zt. The outcome of this
matching procedure is that

p “ ´
β
?
St

a

St`s ´ β2St

φpηt`sq

Φp´ηt`sq
,

q “ p2
´

1´
ηt`sΦp´ηt`sq

φpηt`sq

¯

.

(1.22)

In particular, it is easy to show that q ą 0, as required.
The use of the interpolating formula (1.21) to evaluate the
integral in expression (1.19) leads to the conclusion that
ż zt

´8

Φpξt`sqφpzq dz « Φpztq

´
1

?
q ` 1

Φ
´ p` zt
?

1` q

¯

exp
”1

2

´

pp` ztq
2

1` q
´ z2t

¯ı

.

(1.23)
Expression (1.23) is now incorporated into expression
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(1.19) to give the final approximate form

Cov rTt, Tt`s s “
a

StSt`s

´

ztφpzt`sqΦpχt`sq

` zt`sφpztqΦ
`

ηt`sq
¯

´ ErT st ErT st`s
`
`

ztzt`s
a

StSt`s ` βSt
˘

Φpztq

´
a

StpSt`s ´ β2Stqφpztqφpηt`sq

´

`

ztzt`s
a

StSt`s ` βSt
˘

?
q ` 1

Φ
´ p` zt
?

1` q

¯

ˆ exp
”1

2

´

pp` ztq
2

1` q
´ z2t

¯ı

.

(1.24)
Expressions (1.15) and (1.24) (with t replaced by k and
t`s replaced by j) when substituted into expression (1.12)
provide a closed-form approximation for the variance of
the cumulative temperature index which is then treated as
a Gaussian random variable with the computed variance
and mean value given by expression (1.11).

4. Approximating the Variance
A closed form expression for the variance of the cumula-
tive temperature index was derived in the previous subsec-
tion. Curiously a heuristic argument based on interpola-
tion can be used to generate a simpler expression for this
variance, one that exhibits good accuracy despite the em-
pirical nature of the derivation. The argument begins by
noting that the k-th day in the lifetime of a CDD option
will contribute to the cumulative temperature index driv-
ing the value of the option with probability

pk “ Φpzkq , zk “
T k ´ T
?
Sk

, (1.25)

where Φpzq is the cumulative distribution function of the
standard normal and T is the temperature above which
CDDs are accumulated. If the k-th day always contributes
to the cumulative temperature index then the variance of
that contribution would be Sk. On the other hand if the
k-th day never contributes to the cumulative temperature
index then the variance of that contribution would be zero.
Since in reality the k-th day contributes fraction pk of the
time then linear interpolation suggests that the variance
of this contribution may be reasonably approximated by
Skpk. Based on this idea, the first summation on the right
hand side of equation (1.12) has approximate values

m
ÿ

k“1

Var rTks «
m
ÿ

k“1

pkSk . (1.26)

The second summation on the right hand side of equation
(1.12) is a correction to expression (1.26) to take account
of the fact that contributions to the value of the temperature
index from different days are not independent. The contri-
bution made by the quantity Cov rTk, Tjs to the variance
of the temperature index is argued in a similar way. In the
absence of clipping, the variance of this product is equal to
Cov rθk, θjs with value Sk e´αpj´kq assuming that j ą k.

However, the product TkTj is nonzero with probability
pkpj and therefore the same linear interpolation argument
suggests that Cov rTk, Tjs is reasonably approximated by
pkpjSk e

´αpj´kq. Based on this idea, the second summa-
tion on the right hand side of equation (1.12) has approxi-
mate value

2
N´1
ÿ

k“1

N
ÿ

j“k`1

Cov rTk, Tj s

« 2
N´1
ÿ

k“1

pkSk

N
ÿ

j“k`1

pj e
´αpj´kq .

(1.27)

In conclusion, linear interpolation suggests that the vari-
ance of T is well approximated by the formula

Var rCN s “
N
ÿ

k“1

pkSk ` 2
N´1
ÿ

k“1

pkSk

N
ÿ

j“k`1

pj e
´αpj´kq .

(1.28)

In fact equation (1.28) is the first-order approximation
to the closed-from expression of the variance in Proposi-
tion 1. Consequently, it is expected that this approximation
will perform particularly well when the level of truncation
is low and also when the persistence in temperature is low
which means that deviations in temperature, θptq, are re-
stored to their mean value relatively quickly.

To test the accuracy of the approximate closed-form ex-
pression for Var rCN s stated in Proposition 1, tranches of
one million realizations of equation (1.1), each of dura-
tion 90 days, were constructed for fixed values of α and σ.
Specifically, each realization pθ0, ¨ ¨ ¨ , θ90q was obtained
by drawing θ0 from the marginal density of θ expressed in
the form N p0, S2q, and subsequent values of θ were deter-
mined exactly using the iteration

θk “ e´αθk´1 ` S e
´α{2

a

2 sinhpαq ξk ,

k “ 1, ¨ ¨ ¨ , N ,
(1.29)

where ξk „ N p0, 1q. Realizations of θptq generated in this
way had mean value zero and stationary standard deviation
S which was set at 4C˝ for all simulation experiments. A
threshold value of θ was chosen, say Θ, and a cumulative
CDD for the 90 day period was constructed from a real-
ization pθ0, ¨ ¨ ¨ , θ90q using the formula

C “
90
ÿ

k“1

maxpθk ´Θ, 0q . (1.30)

For a given value of α and a given value of Θ, each
tranche of one million realization of equation (1.1) gener-
ated one million independently and identically distributed
realizations of CDDs. Table 1.1 shows the result of seven
experiments for the case α “ 0.2 and thresholds Θ P

p´3S,´2S,´S, 0, S, 2S, 3Sq. Table 1.2 shows the equiv-
alent result when α “ 0.5 and the thresholds are un-
changed.
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Θ Mean Std Dev Exact Approx
-12 1080.1 116.63 116.67 116.69
-8 722.98 114.25 114.23 114.32
-4 389.92 99.608 99.545 99.272
0 143.57 63.325 63.269 61.422
4 29.975 24.680 24.465 23.148
8 3.0560 5.7022 5.3141 6.2514
12 0.1379 0.8556 0.5688 1.4022

Table 1.1: For α “ 0.2 the column headed “Θ” gives thresh-
old temperature relative to zero for contributions to cumulative
CDD. Columns headed “Mean” and “Std Dev” give the mean
cumulative CDD and its standard deviation based on one mil-
lion simulations. Estimates of this standard deviation based on
Proposition 1 (Exact) and the heuristic argument of Section 4.
(Approx) are shown.

Θ Mean Std Dev Exact Approx
-12 1080.1 75.730 75.751 75.766
-8 723.01 74.189 74.181 74.346
-4 389.95 64.740 64.703 65.310
0 143.60 41.281 41.246 42.409
4 29.982 16.243 16.154 18.359
8 3.0537 3.8667 3.7333 5.9155
12 0.1379 0.6207 0.5527 1.3970

Table 1.2: For α “ 0.5 the column headed “Θ” gives thresh-
old temperature relative to zero for contributions to cumulative
CDD. Columns headed “Mean” and “Std Dev” give the mean
cumulative CDD and its standard deviation based on one mil-
lion simulations. Estimates of this standard deviation based on
Proposition 1 (Exact) and the heuristic argument of Section 4.
(Approx) are shown.

It is clear from these results that the variance of cu-
mulative CDDs predicted by the closed-form approxima-
tion of Proposition 1 is achieved in practice. Minor differ-
ences between the approximate variance in Proposition 1
and that achieved by simulation become evident only when
the threshold temperature lies two standard deviations or
more above the mean temperature largely due to the fact
that under these circumstances realizations of CDDs will
be dominated by zero values. However this is not a sce-
nario that will be occur in practice.

The most interesting observation in Tables 1.1 and 1.2
lies in the unexpected accuracy of the heuristic estimate of
variance. In the region of most interest, that is when the
threshold temperature lies on or below the average daily
temperature taken to be zero in this analysis, the heuristic
approach delivers parsimonious estimates of variance that,
although marginally inferior to the estimates of true vari-
ance provided by Proposition 1, are negligibly different
from it for all practical purposes.

5. Parameter estimation

To use this model for predicting the payoffs from
temperature-based derivatives an estimate of the parameter
α in equation (1.1) is required. This parameter measures
the rate at which deviations of temperature from the sea-
sonal are restored to this mean. In order to do so, it is first
necessary to obtain estimates of T ptq and σptq. Follow-
ing Campbell and Diebold [6], T ptq and σptq are approxi-
mated by the Fourier series

T psq “ a0 ` b0s`
n
ÿ

k“1

ak cospωksq ` bk sinpωksq ,

(1.31)

σ2psq “ c0 `
n
ÿ

k“1

ck cospωksq ` dk sinpωksq ,

where ωk “ 2kπ{365 and s “ 0 is assumed to be the
calender date of the first observation of average daily tem-
perature. The contribution b0s in the expression for T psq
is present to take account of any annual trend in daily av-
erage temperature. Otherwise expressions (1.31) assume
that seasonal variations in daily average temperature fol-
low an annual cycle which is independent of calendar year.
Consequently, the expression for Sptq corresponding to
the expression (1.31) for σ2psq is

Spsq “ p0 `
n
ÿ

k“1

pk cospωksq ` qk sinpωksq , (1.32)

where the Fourier coefficients c0, c1, ¨ ¨ ¨ , cn, d1, ¨ ¨ ¨ , dn
are related to the Fourier coefficients p0, p1, ¨ ¨ ¨ , pn, q1, ¨ ¨ ¨ , qn
by the formulae

c0 “ 2αp0 ,
ck “ 2αpk ` ωkqk ,

dk “ ´ωkpk ` 2αqk ,

ff

(1.33)

where k takes all integer values from k “ 1 to k “ n in-
clusive. Two strategies to estimate the value of α and the
coefficients in the Fourier series (1.31) are now described.

5.1. Two-step estimator

Suppose that the data consists of observations of
daily average temperatures T1, T2, ¨ ¨ ¨ , TN at times
t1, t2, ¨ ¨ ¨ , tN . The Fourier coefficients of T psq can be
estimated in a straightforward way by minimizing the ob-
jective function

Ψpa0, b0, a1, ¨ ¨ ¨ , an, b1, ¨ ¨ ¨ , bnq “
N
ÿ

j“1

`

Tj ´ T ptjqq
2 .

Once these coefficients are known, then the deviations
from the seasonal means θ1, θ2, ¨ ¨ ¨ , θn can be com-
puted directly from the formula θj “ Tj ´ T ptjq. The
problem is now to find the values of α and the coeffi-
cients c0, c1, ¨ ¨ ¨ , cn, d1, ¨ ¨ ¨ , dn which best fit the resid-
uals θ1, θ2, ¨ ¨ ¨ , θn.

Using a result established by Bibby and Sorensen [12],
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an unbiased estimate pα of α is given by the expression

´ log

»

—

—

—

—

–

n
ÿ

k“1

θk´1

σ2
k´1

n
ÿ

j“1

θj
σ2
j

´

n
ÿ

k“1

θk´1θk
σ2
k´1

n
ÿ

j“1

1

σ2
j´1

´

n
ÿ

k“1

θk´1

σ2
k´1

¯2

´

n
ÿ

k“1

θ2k´1

σ2
k´1

n
ÿ

j“1

1

σ2
j´1

fi

ffi

ffi

ffi

ffi

fl

.

(1.34)
The difficulty, however, in using this expression is that σ2

k

is unknown whereas what is known is the seasonal vari-
ance of the residuals. The strategy for finding the values of
α and the coefficients c0, c1, ¨ ¨ ¨ , cn, d1, ¨ ¨ ¨ , dn is there-
fore the following.

Step 1: Compute the Fourier coefficients p0, p1, ¨ ¨ ¨ pn
and q1, ¨ ¨ ¨ , qn of Sptq directly from the deviations
θ1, θ2, ¨ ¨ ¨ , θN .

Step 2: Choose an arbitrary value for α, say
α0, and compute the Fourier coefficients
c0, c1, ¨ ¨ ¨ , cn, d1, ¨ ¨ ¨ dn from expression (1.33)
with α “ α0. Knowing the Fourier coeffi-
cients of σ2psq enables σ2

0 , ¨ ¨ ¨ , σ
2
n to be computed

from equation (1.31). Expression (1.34) is now
used to update the estimate of α0. This proce-
dure may then be iterated by recomputing in turn
c0, c1, ¨ ¨ ¨ , cn, d1, ¨ ¨ ¨ dn and σ2

0 , ¨ ¨ ¨ , σ
2
n. This pro-

cedure is repeated until consecutive estimates of α
are not deemed to be significantly different.

The estimate of α and the Fourier coefficients
a0, b0, a1, ¨ ¨ ¨ , an, b1, ¨ ¨ ¨ , bn and c0, c1 ¨ ¨ ¨ , cn, d1, ¨ ¨ ¨ dn
can either be used as they stand or can be used as an ini-
tial guess for the parameters of the maximum likelihood
estimation procedure outlined in the next subsection.

5.2. Maximum-likelihood estimation
The feasibility of parameter estimation by maximum like-
lihood (ML) in this instance relies on the fact that the
transitional probability density function of average daily
temperature can be computed under the assumption that
the deviations of average daily temperature from its mean
value satisfies the stochastic differential equation (1.1).
Ito’s lemma applied to the stochastic differential equation
(1.1) may be shown to lead to the formal solution

θptq “ θj e
´αpt´tjq`

ż t

tj

e´αpt´sqσpsq dWs , t ą tj .

(1.35)
with θj “ θptjq. The important observation from this so-
lution is that θptq is a Gaussian random variable with mean
value E rθptqs “ θj e

´αpt´tjq and variance

χpt, tjq “

ż t

tj

e´2αpt´sqσ2psq ds

“ Sptq ´ e´2αpt´tjqSptjq ,

(1.36)

where the latter expression for χpt, tjqt is derived directly
from the definition of Sptq given in equation (1.3). Be-
cause T “ T ptq ` θptq, then the average daily temper-
ature T is itself Gaussian distributed with mean value

T ptq`
`

Tj´T j
˘

e´αpt´tjq and variance χpt, tjq “ Sptq´

e´2αpt´tjqSptjq in which

T ptq “ a0`b0t`
n
ÿ

k“1

ak cospωktq`bk sinpωktq . (1.37)

Thus the average daily temperature T ptq has transitional
probability density function

fpT, t |Tj , tjq “
e´ψpT,tq

a

2πχpt, tjq
, (1.38)

where

ψpT, tq “

`

T ´ T ptq ´ pTj ´ T jq e
´αpt´tjq

˘2

2χpt, tjq
.

The likelihood of observing the sequence T1, T2, ¨ ¨ ¨ , TN
of average daily temperatures at calendar times
t1, t2, ¨ ¨ ¨ , tN is therefore

Lpα; a0, a1, ¨ ¨ ¨ , an, b1, ¨ ¨ ¨ bn; c0, c1, ¨ ¨ ¨ , cn, d1, ¨ ¨ ¨ , dnq

“

N´1
ź

j“1

fpTj`1, tj`1 |Tj , tjq .

(1.39)
In practice, the parameters are estimated by minimizing
the negative log-likelihood function

´ logL “ N ´ 1

2
log 2π

`
1

2

N´1
ÿ

j“1

log
`

Sj`1 ´ e
´2αptj`1´tjqSj

˘

`
1

2

N´1
ÿ

j“1

`

Tj`1 ´ T j`1 ´ pTj ´ T jq e
´αptj`1´tjq

˘2

Sj`1 ´ e´2αptj`1´tjqSj
,

(1.40)
where the notation Sj “ Sptjq has been used. The opti-
mal values for the parameters of this model are taken to be
those which minimize expression (1.39). Although model
(1.1) is specified in terms of the intrinsic function σptq,
from a purely technical point of view it is easier to treat
the Fourier coefficients of Sptq as the parameters to be de-
termined by the ML procedure.

6. Empirical Illustration
The task is now to provide a means of gauging the efficacy
of the analytical expressions for the mean and variance of
CN given derived previously in terms of the the expected
payoffs to options contracts. Payoffs based on the analyt-
ical results of the paper are compared to historical pricing
as outlined in [4, 5]. The metric for comparison is taken
to be the mean ‘profit’ of a 90-day call option contract.
Profit is defined from the point of view of the buyer of the
call option as the difference between the actual tick value
of the contract and the expected tick value or ‘price’ of
the option. Of course, this is not meant to represent a true
price for the option, as this notional pricing strategy takes
no account of discounting or overhead expenses. But of
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course, any pricing scheme will stand or fall by its ability
to estimate the expected tick value accurately.

6.1. Data
The data set comprises daily maximum and mini-
mum temperature records in degrees Celsius for Bris-
bane (1/1/1887 – 31/8/2007), Melbourne (1/1/1856 –
31/8/2007), Perth (1/1/1897 – 31/8/2007) and Sydney
(1/1/1859 – 31/8/2007). These locations were chosen pri-
marily because they had accurate temperature records of
over 100 years duration measured at comparable weather
stations.∗

Figure 1.1 shows the long-term expected values (up-
per panel) and standard deviations (lower panel) of daily
temperatures for each day of the year. The figure shows
that the behaviour of the mean and standard deviation is
amenable to modelling by a low-order Fourier series ap-
proximation. In this exercise the order of the series is taken
to be 3. The Fourier approximation is applied only over
the period over which the option is to be written, namely,
1 January to 31 March, inclusive.
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Figure 1.1: The expected value of the average daily tempera-
tures (upper panel) and the expected value of the volatility of av-
erage daily temperatures (lower panel) are shown for Brisbane,
Melbourne, Perth and Sydney.

Descriptive statistics for cumulative CDDs are reported

in Table 1.3. There are two observations of note arising
from Table 1.3. First, the distribution of cumulative CDDs
for Melbourne is skewed to the right as evidenced by a
mean which is significantly larger than the median. Sec-
ond, Perth is notable for the diffuse nature of the distribu-
tion of cumulative CDDs, recording a standard deviation
significantly larger than those of the other cities.

Summary Statistics

N Mean (SD) Med. Min. Max.

BNE 121 584.2 (54.5) 584.6 463.3 705.9

MEL 152 207.9 (64.1) 195.6 93.5 391.4

PER 111 489.6 (83.3) 492.2 298.3 688.3

SYD 149 350.0 (60.1) 350.2 225.5 533.3

Table 1.3: Mean, median, standard deviation, minimum and
maximum cumulative CDDs in four Australian cities.

The distributions of cumulative CDDs for each city is
illustrated in Figure 1.2 which plots both the distribution of
historical cumulative CDDs (shaded region) and the pre-
dicted distributions for 1950 (dashed line) and 2007 (solid
line) generated by closed-form approximations to the dis-
tributions of CDDs derived in the paper. To the uniformed
eye, the distribution of historical cumulative CDDs may
appear well behaved and taken as reasonable evidence in
favour of using historical records to price temperature-
based derivatives. When compared to the distributions for
1950 and 2007 generated by the analytical approach, how-
ever, the potential for error inherent in the historical ap-
proach becomes evident. Not only does the mean of the
predicted distribution change noticeably over time, but the
distribution also has lower volatility.
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∗ All the raw data were supplied by Climate Information Services, National Climate Centre, Australian Bureau of Meteorology. The construction of the
temperature record for each city is discussed in Appendix 3.
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Figure 1.2: Density of historical cumulative CDDs based on
data up to and including 1949 (shaded area), predicted density of
cumulative CDD for 1950 (dashed line) and predicted density of
cumulative CDD for 2007 (solid line).

6.2. Payoffs
The profits generated by two call-option contracts with dif-
ferent strike prices, written on the period 1 January to 31
March are now reported in Tables 1.4 and 1.5 respectively.
The call options used in the experiment have respective
strike prices set to be approximately D “ µ ` 0.5σ and
D “ µ` 0.75σ where µ is the unconditional mean and σ
is the unconditional standard deviation of CDDs up to the

current year under consideration.

The experiments begin by pricing these options for the
year 1950 using data up to and including 1949. The actual
payoff for 1950 is recorded, the profit or loss stored and
the data set updated to include the latest observation on
cumulative CDDs. These steps are repeated up to and in-
cluding 2007 giving a total of 58 separate profits for each
option. The means and standard deviations of the profits
are regarded as measures of the performance of each of the
methods used to determine expected tick values.

BNE MEL PER SYD
Strike D 600 240 530 380

Historical
Mean Payoff ´8.1 ´14.3 ´23.8 7.8
SDev Payoff 33.1 45.8 43.2 48.9

Quarterly Model
Mean Payoff 7.2 13.2 2.2 11.7
SDev Payoff 29.6 41.5 41.8 35.5

Annual Model
Mean Payoff 5.8 15.4 18.3 4.0
SDev Payoff 29.1 41.4 40.0 34.6

Table 1.4: Means and standard deviations of profits to a 90-day
call option defined on CDDs with strike price D approximately
equal to µ ` 0.5σ, where µ and σ are the unconditional mean
and standard deviation of available historical CDDs. The option
is priced for each year from 1950 to 2007 inclusive.

The historical pricing reported in Tables 1.4 and 1.5
is self-explanatory, but the implementation of the closed-
form approximations needs further elucidation. Two vari-
ations of this method are implemented, namely an annual
version and a quarterly version. The annual approach fits
the mean and seasonal variance of average daily tempera-
ture using data for the entire year and the best estimates of
the parameters are used in computing the closed-from ap-
proximations of the distribution of cumulative CDDs. By
contrast, the quarterly version focusses on the period from
1 January to the 31 March in each year and fits the mean
and seasonal variance of average daily temperature for this
90-day period alone. In other words, the fitting procedure
is implemented only on the period over which the contract
is written. The main reason for adopting this approach is
that the behaviour of temperature in parts of the year un-
related to the period of the option are not being allowed to
influence parameter estimates for the mean and variance
processes. Another benefit of this approach is that bet-
ter resolution of the mean and variance processes with the
same number of parameters.
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BNE MEL PER SYD
Strike D 620 260 550 400

Historical Model
Mean Payoff ´17.7 ´24.7 ´35.1 ´4.2
SDev Payoff 25.3 38.3 36.1 42.7

Quarterly Model
Mean Payoff 6.2 11.9 1.3 9.8
SDev Payoff 22.7 34.2 34.2 30.1

Annual Model
Mean Payoff 5.5 13.3 13.4 4.6
SDev Payoff 22.4 34.2 36.6 29.2

Table 1.5: Means and standard deviations of profits to a 90-day
call option defined on CDDs with strike price D approximately
equal to µ ` 0.75σ, where µ and σ are the unconditional mean
and standard deviation of available historical CDDs. The option
is priced for each year from 1950 to 2007 inclusive.

The first striking conclusion to be drawn from these
results is just how bad historical pricing performs for
the Australian temperature data. Interestingly enough, it
appears that historical pricing in three of the cities has
substantially over-priced the call options. This result is
counter-intuitive as the conventional view is that there is
an upward trend in temperature which would result in the
under-pricing of call options priced on the history of cu-
mulative CDDs.

The resolution of this conundrum is to be found in
the behaviour of temperature between the years 1890 and
1920. During this period, Brisbane, Melbourne and Perth
recorded substantial outliers in cumulative CDDs, the likes
of which were not seen again until late in the sample pe-
riod. These outliers will have had a disproportionate af-
fect on the pricing of temperature derivatives in the 1960s,
1970s and 1980s. Their existence also explains the dete-
rioration of profits based on historical pricing when mov-
ing from lower to higher exercise prices. The weather sta-
tion in Sydney where the temperature data were recorded
did not show these extreme temperature events and con-
sequently historical pricing for Sydney performs signifi-
cantly better.

Taken as a whole, the closed-approximations used to
price the call options generate mean profits closer to zero

and with lower standard deviations than historical pricing.
Nevertheless, this method appears to underprice some-
what, even though these pricing errors are smaller in mag-
nitude than those generated by the historical method. This
underpricing is again a manifestation of the outliers in
cumulative CDDs but in this case, not enough weight is
given to them. There is little difference in terms of perfor-
mance of quarterly and annual models, with the exception
of Perth where the quarterly model performs better. It is
conjectured that this is due to the ability of the quarterly
model to better resolve the extreme temperature variations
that are prone to take place in Perth. Unlike the case docu-
mented for historical pricing, there seems little difference
in performance when moving from the lower to the higher
exercise price for the the closed-form approach.

7. Conclusion
This paper has derived closed-form expressions for ap-
proximating the distribution of temperature indices. The
major practical use for these approximations is in estimat-
ing the payoffs to temperature-based weather derivatives.
Although the cumulative cooling degree day index is the
focus of this research, the methods used are equally appli-
cable to derivatives based on cumulative heating degree
days. Common practice when modelling average daily
temperature is to regard the deviations of temperature from
its expected value as an Ornstein-Uhlenbeck process. The
key result derived in this paper, is that if this model of
temperature is adopted, then the distribution of cumula-
tive cooling degree days may be constructed as the sum
of truncated, correlated Gaussian deviates. The mean and
variance of the resultant Gaussian distribution depend on
the parameters of the underlying temperature process and
its autocorrelation structure.

The efficacy of these approximate distributions is tested
by estimating the payoffs to temperature-based deriva-
tives. Time series data spanning over a hundred years of
average daily temperatures in four major Australian cities
are used to estimate the payoffs to European call options
written on cooling degree days. The robust conclusion
to emerge from this line of research is that the closed-
form distributions perform more reliably than the histor-
ical pricing method that is commonly advocated in the lit-
erature.
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Appendix 1
Proof of result (1.15) It has been shown in equation
(1.13) that

Var rTks “ Sk

ż zk

´8

pzk´zq
2φpzq dz´Sk

“

zkΦpzkq`φpzkq
‰2
.

The manipulation of this integral uses the fact that the
Gaussian probability density function enjoys the property
zφpzq “ ´φ1pzq. Thus

Sk

ż zk

´8

pzk ´ zq
2 φpzq dz

“ Sk

ż zk

´8

pz2k ´ 2zzk ` z
2qφpzq dz

“ Skz
2
kΦpzkq ` Sk

ż zk

´8

p2zk ´ zqφ
1pzq dz

“ Skz
2
kΦpzkq ` Sk

”

p2zk ´ zqφpzq
ı zk

´8

` Sk

ż zk

´8

φpzq dz

“ Skpz
2
k ` 1qΦpzkq ` Skzkφpzkq .

It is now straightforward algebra to verify the assertion in
equation (1.14), namely that Var rTks has value

Sk

”

Φpzkq´
`

φpzkq` zkΦpzkq
˘`

φp´zkq´ zkΦp´zkq
˘

ı

,

where the calculation has noted that φpzq is an even-valued
function of z and that 1´ Φpzq “ Φp´zq.

Appendix 2
Proof of result (1.19) The calculation of Cov rTt, Tt`s s
requires I , the value of the integral
a

StSt`s

ż zt

´8

ż zt`s

´8

pzt´zqpzt`s´wq rfpzt`s, ztq dz dw

(1.41)
in which rfpzt`s, ztq is the probability density function

1

2π

d

St`s
St`s ´ β2St

e´ψ ,

with

ψ “
St`sz

2 ´ 2zwβ
a

StSt`s ` St`sw
2

2pSt`s ´ β2Stq

and β “ e´αs. By re-expressing ψ in the form

St`s
2pSt`s ´ β2Stq

´

w ´ β z

d

St
St`s

¯2

´
z2

2
,

expression (1.41) is re-expressed as the repeated integral

I “ St`s

d

St
St`s ´ β2St

ż zt

´8

pzt ´ zqφpzqgpzq dz

(1.42)
where φpzq is the standard normal probability density
function and gpzq is the integral

1
?

2π

ż zt`s

´8

pzt`s´wq exp

»

—

–

´

St`s

´

w ´ β z
b

St

St`s

¯2

2pSt`s ´ β2Stq

fi

ffi

fl

dw .

(1.43)

Phase I The evaluation of this integral is achieved by
changing the variable of integration from w to ξ using the
substitution

ξ “

d

St`s
St`s ´ β2St

´

w ´ β z

d

St
St`s

¯

.

The outcome of this operation is that gpzq takes the sim-
plified form

gpzq “
St`s ´ β

2St
St`s

ż ξt`spzq

´8

`

ξt`spzq ´ ξ
˘

φpξq dξ

(1.44)
where

ξt`spzq “

d

St`s
St`s ´ β2St

´

zt`s ´ β z

d

St
St`s

¯

.

It now follows immediately from the definition of Φpzq,
the cumulative function of the standard normal distribu-
tion, and the basic properties of φpzq that

gpzq “
St`s ´ β

2St
St`s

`

φpξt`sq ` ξt`sΦ
`

ξt`sq
˘

(1.45)

in which the dependence of ξt`s on z has been suppressed
for representational convenience. Consequently

I “
a

StpSt`s ´ β2Stq

ż zt

´8

pzt ´ zqφpzq

ˆ
“

φpξt`sq ` ξt`sΦ
`

ξt`sq
‰

dz.

(1.46)

This completes the first phase in the computation of the
value of I using repeated integration.

Phase II The second phase of calculation continues by
dividing the right hand side of equation (1.46) into the two
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integrals
a

StpSt`s ´ β2Stq

ż zt

´8

ztφpzq
`

φpξt`sq ` ξt`sΦ
`

ξt`sq
˘

dz

´
a

StpSt`s ´ β2Stq

ż zt

´8

zφpzq
`

φpξt`sq ` ξt`sΦ
`

ξt`sq
˘

dz .

The function ξt`spzq is now replaced by its definition in
the first of these integrals, and after some rearrangement,
I is expressed as the sum of four integrals, namely

I “ zt
a

StpSt`s ´ β2Stq

ż zt

´8

φpξt`sqφpzq dz

` ztzt`s
a

StSt`s

ż zt

´8

Φ
`

ξt`sqφpzq dz

´ βztSt

ż zt

´8

Φ
`

ξt`sqzφpzq dz

´
a

StpSt`s ´ β2Stq

ż zt

´8

zφpzq
“

φpξt`sq

` ξt`sΦ
`

ξt`sq
‰

dz .
(1.47)

The third and fourth integrals on the right hand side of this
equation are now manipulated using integration by parts.
Manipulation of the third integral gives

ż zt

´8

Φ
`

ξt`sqzφpzq dz

“

”

´ φpzqΦ
`

ξt`sq
ı zt

´8

´ β

d

St
St`s ´ β2St

ż zt

´8

φpzqφ
`

ξt`sq dz

“ ´ φpztqΦ
`

ηt`sq

´ β

d

St
St`s ´ β2St

ż zt

´8

φpzqφ
`

ξt`sq dz ,

(1.48)
where

ηt`s “
zt`s

a

St`s ´ β zt
?
St

a

St`s ´ β2St
. (1.49)

Manipulation of the fourth integral gives
ż zt

´8

zφpzq
`

φpξt`sq ` ξt`sΦ
`

ξt`sq
˘

dz

“

”

´ φpzq
`

φpξt`sq ` ξt`sΦ
`

ξt`sq
˘

ı zt

´8

´ β

d

St
St`s ´ β2St

ż zt

´8

φpzqΦ
`

ξt`sq dz

“ ´φpztq
`

φpηt`sq ` ηt`sΦ
`

ηt`sq
˘

´ β

d

St
St`s ´ β2St

ż zt

´8

φpzqΦ
`

ξt`sq dz .

(1.50)

Results (1.48) and (1.50) are now incorporated into equa-
tion (1.47) to get

I “ ztSt`s

d

St
St`s ´ β2St

ż zt

´8

φpξt`sqφpzq dz

` zt`s
a

StSt`s φpztqΦ
`

ηt`sq

`
`

ztzt`s
a

StSt`s ` βSt
˘

ż zt

´8

Φ
`

ξt`sqφpzq dz

`
a

StpSt`s ´ β2Stqφpztqφpηt`sq .
(1.51)

The final stage of this calculation is to note that
ż zt

´8

φpξt`sqφpzq dz “
φpzt`sq
?

2π

ˆ

ż zt

´8

exp
”

´
St`s

2pSt`s ´ β2Stq

´

z ´ βzt`s

d

St
St`s

¯2ı

dz

“

d

St`s ´ β2St
St`s

φpzt`sqΦ
´zt

a

St`s ´ βzt`s
?
St

a

St`s ´ β2St

¯

.

To summarize, the repeated integral (1.41) has final value

I “
a

StSt`s
`

ztφpzt`sqΦpχt`sq ` zt`sφpztqΦ
`

ηt`sq
˘

`
`

ztzt`s
a

StSt`s ` βSt
˘

ż zt

´8

Φpξt`sqφpzq dz

`
a

StpSt`s ´ β2Stqφpztqφpηt`sq ,
(1.52)

where the constants ηt`s and χt`s and the function
ξt`spzq are defined respectively by

ηt`s “
zt`s

a

St`s ´ β zt
?
St

a

St`s ´ β2St
,

χt`s “
zt
a

St`s ´ βzt`s
?
St

a

St`s ´ β2St
,

ξt`spzq “
zt`s

a

St`s ´ β z
?
St

a

St`s ´ β2St
.

(1.53)

Appendix 3

The construction of the temperature data for the four Aus-
tralian cities used in the empirical illustration is now out-
lined in detail.
Brisbane: The temperature record contains 44043 obser-
vations starting on the 1/1/1887 and ending on 31/8/2007.
The time series is constructed from data collected from
three weather stations: Brisbane Regional Office (Station
Number 40214) 1/1/1887 - 31/3/1986; Brisbane Airport
(Station Number 40223) 1/4/1986 - 14/2/2000); and again
from Brisbane Airport (Station Number 40842) 15/2/2000
- 31/8/2007.
Melbourne: The temperature record contains 55358 ob-
servations starting on 1/1/1856 and ending on 31/8/2007.
The time series is a continuous set of observations made at
the Melbourne Regional Office (Station Number 86071)
weather station. The location of the office changed in the
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early 1980s although the name of station did not.
Perth: The temperature record contains 40393 obser-
vations starting on 1/1/1897 and ending on 31/8/2007.
The time series is constructed from data collected at two
weather stations: Perth Regional Office (Station Num-
ber 9034) 1/1/1897 - 2/6/1944; and Perth Airport (Station
Number 9021) 3/6/1944 - 31/8/2007.
Sydney: The temperature record contains 54263 observa-
tions starting on 1/1/1859 and ending on 31/8/2007. The

time series is a continuous set of observations made at the
Sydney Observatory Hill (Station Number 66062) weather
station.

Instances of single missing values were treated by aver-
aging adjacent records. In a few rare cases where several
days were missing, the long term average for those days
was inserted. Finally, following Campbell and Diebold
[6], all occurrences of the 29 February were removed.


